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Abstract

Can one reduce the size of a graph without significantly altering its basic properties? The
graph reduction problem is hereby approached from the perspective of restricted spectral
approximation, a modification of the spectral similarity measure used for graph sparsifi-
cation. This choice is motivated by the observation that restricted approximation carries
strong spectral and cut guarantees, and that it implies approximation results for unsu-
pervised learning problems relying on spectral embeddings. The article then focuses on
coarsening—the most common type of graph reduction. Sufficient conditions are derived
for a small graph to approximate a larger one in the sense of restricted approximation.
These findings give rise to algorithms that, compared to both standard and advanced
graph reduction methods, find coarse graphs of improved quality, often by a large margin,
without sacrificing speed.
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1. Introduction

As graphs grow in size, it becomes pertinent to look for generic ways of simplifying their
structure while preserving key properties. Simplified graph representations find profound
use in the design of approximation algorithms, can facilitate storage and retrieval, and
ultimately ease graph data analysis by separating overall trends from details.

There are two main ways to simplify graphs. First, one may reduce the number of edges—a
technique commonly referred to as graph sparsification. In a series of works, it has been
shown that it is possible to find sparse graphs that approximate all pairwise distances (Pe-
leg and Schäffer, 1989), every cut (Karger, 1999), or every eigenvalue (Spielman and Teng,
2011)—respectively referred to as spanners, cut sparsifiers and spectral sparsifiers. Spec-
tral sparsification techniques, in particular, can yield computational benefits whenever the
number of edges is the main bottleneck (Batson et al., 2013). Indeed, they form a funda-
mental component of nearly-linear time algorithms for linear systems involving symmetric
diagonally dominant matrices (Koutis et al., 2010; Spielman and Srivastava, 2011), and
have found application to machine learning problems involving graph-structured data (Ca-
landriello et al., 2018).
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Alternatively, one may seek to reduce the size of the graph directly, i.e., the number of its
vertices N , by some form of vertex selection or re-combination scheme followed by re-wiring.
This idea can be traced back to the multigrid literature, that targets the acceleration of
finite-element methods using cycles of multi-level coarsening, lifting, and refinement. After
being generalized to graphs, reduction methods have become pervasive in computer science
and form a key element of modern graph processing pipelines, especially with regards to
graph partitioning (Hendrickson and Leland, 1995; Karypis and Kumar, 1998; Kushnir et al.,
2006; Dhillon et al., 2007; Wang et al., 2014) and graph visualization (Koren, 2002; Hu,
2005; Walshaw, 2006). In machine learning, reduction methods are used to create multi-
scale representations of graph-structured data (Lafon and Lee, 2006; Gavish et al., 2010;
Shuman et al., 2016) and as a layer of graph convolutional neural networks (Bruna et al.,
2014; Defferrard et al., 2016; Bronstein et al., 2017; Simonovsky and Komodakis, 2017;
Ardizzone et al., 2018; Liang et al., 2018). In addition, being shown to solve linear systems
in (empirically) linear time (Koutis et al., 2011; Livne and Brandt, 2012) as well as to
approximate the Fiedler vector (Urschel et al., 2014; Gandhi, 2016), reduction methods have
been used to accelerate inverse problems employing graph-regularization (Hirani et al., 2015;
Colley et al., 2017). Some of their main benefits are the ability to deal with sparse graphs
(graphs with at most O(N logN) edges) and to accelerate algorithms whose complexity
depends on the number of vertices as well as edges.

In contrast to graph sparsification, there has been only circumstantial theory supporting
graph reduction (Moitra, 2011; Dörfler and Bullo, 2013; Loukas and Vandergheynst, 2018).
The lack of a concrete understanding of how different reduction choices affect fundamental
graph properties is an issue: the significant majority of reduction algorithms in modern
graph processing and machine learning pipelines have been designed based on intuition and
possess no rigorous justification or provable guarantees.

1.1. A Spectral Perspective

My starting point in this work is spectral similarity—a measure that has been proven useful
in sparsification for determining how well a graph approximates another one. To render
spectral similarity applicable to graphs of different sizes, I generalize it and restrict it over a
subspace of size that is at most equal to the size of the reduced graph. I refer to the result-
ing definition as restricted spectral approximation 1 (or restricted approximation for short).
Despite being a statement about subspaces, restricted approximation has significant conse-
quences. It is shown that when the subspace in question is a principal eigenspace (this is a
feature agnostic choice where one wants to preserve only the graph structure), the eigenval-
ues and eigenspaces of the reduced graph approximate those of the original large graph. It
is then a corollary that (i) if the large graph has a good (normalized) cut so does the smaller
one; and (ii) that unsupervised learning algorithms that utilize spectral embeddings, such
as spectral clustering (Von Luxburg, 2007) and Laplacian eigenmaps (Belkin and Niyogi,
2003), can also work well when ran on the smaller graph and their solution is lifted. More

1. Though similarly named, the definition of restricted spectral similarity previously proposed by Loukas
and Vandergheynst (2018) concerns a set of vectors (rather than subspaces) and is significantly weaker
than the one examined here.

2



Graph Reduction with Spectral and Cut Guarantees

generally, it is expected that methods relying on specific eigenspaces will exhibit similar
behavior when combined with coarsening, e.g., in graph signal regression (Loukas and Per-
raudin, 2016; Grassi et al., 2017), compression (Shahid et al., 2016), sampling (Puy et al.,
2018), or forecasting (Isufi et al., 2018).

The analysis then focuses on graph coarsening—a popular type of reduction where, in each
level, reduced vertices are formed by contracting disjoint sets of connected vertices (each
such set is called a contraction set). I derive sufficient conditions for a small coarse graph
to approximate a larger graph in the sense of restricted spectral approximation. Crucially,
this result holds for any number of levels and is independent of how the subspace is chosen.
Though the derived bound is global, a decoupling argument renders it locally separable over
levels and contraction sets, facilitating computation. The final bound can be interpreted
as measuring the local variation over each contraction set, as it involves the maximum
variation of vectors supported on each contracted subgraph.

These findings give rise to algorithms for graph coarsening that I refer to as local variation
algorithms. Each such algorithm starts from a predefined family of candidate contraction
sets. Even though any connected set of vertices may form a valid candidate set, I opt
for small well-connected sets constructed based on simple rules: in the edge-based vari-
ant one candidate set is constructed for each of pair of adjacent vertices, whereas in the
neighborhood-based variant every candidate set contains a vertex along with all adjacent
vertices. The algorithm then greedily2 contracts those sets whose local variation is the
smallest. Depending on how the candidate family is constructed, the proposed algorithms
obtain different solutions, trading off computational complexity for reduction.

1.2. Theoretical and Practical Implications

This work improves and generalizes upon the state-of-the-art in several ways:

• Instead of directly focusing on specific constructions, a general graph reduction scheme
is studied featuring coarsening as a special case. As a consequence, the implications
of restricted approximation are proven in a fairly general setting where specifics of
the reduction, such as the type of graph representation and the reduction matrices
involved, are abstracted.

• Contrary to previous results on the analysis of coarsening (Loukas and Vandergheynst,
2018), the analysis holds for multiple levels of reduction. Given that the majority of
coarsening methods reduce the number of vertices by a constant factor at each level,
a multi-level approach is necessary to achieve significant reduction. Along that line,
the analysis also brings an intuitive insight: rather than taking the standard approach
of approximating at each level the graph produced by the previous level, one should
strive to preserve the properties of the original graph at every level.

2. Even after decoupling, the problem of candidate set selection is not only NP-hard but also cannot be
approximated to a constant factor in polynomial time (by reduction to the maximum-weight independent
set problem). For the specific case of edge-based families, where one candidate set is constructed for
each pair of adjacent vertices, the greedy iterative contraction can be substituted by more sophisticated
procedures accompanied by improved guarantees.
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• The proposed local variation algorithms are not heuristically designed, but optimize
(an upper bound of) the restricted spectral approximation objective. Despite the
breadth of the literature that utilizes some form of graph reduction and coarsening,
the overwhelming majority of known methods are heuristics (Safro et al., 2015). A
notable exception is Kron reduction (Dörfler and Bullo, 2013), an elegant method that
aims to preserve the effective resistance distance. Compared to Kron reduction, the
methods proposed here are accompanied by stronger spectral guarantees (i.e., beyond
interlacing), do not sacrifice the sparsity of the graph, and can ultimately be more
scalable as they do not rely on the Schur complement of the Laplacian matrix.

To demonstrate the practical benefits of local variation methods, the analysis is comple-
mented with numerical results on representative graphs ranging from scale-free to planar
graphs. Compared to both standard (Karypis and Kumar, 1998) and advanced reduction
methods (Ron et al., 2011; Livne and Brandt, 2012; Shuman et al., 2016), the proposed
methods yield small graphs of improved spectral quality, often by a large margin, without
being much slower than naive heavy-edge matching. A case in point: when examining how
close are the principal eigenvalues of the coarse and original graph for a reduction of 70%,
local variation methods attain on average 2.6× smaller error; this gain becomes 3.9× if one
does not include Kron reduction in the comparison.

2. Graph Reduction and Coarsening

The following section introduces graph reduction. The exposition starts by considering a
general reduction scheme. It is then shown how graph coarsening arises if one additionally
imposes few natural restrictions on the interpretability of reduced variables.

2.1. Graph Reduction

Consider a positive semidefinite (PSD) matrix L ∈ RN×N whose sparsity structure captures
the connectivity structure of a connected weighted undirected graph G = (V, E ,W ) of
N = |V| vertices and M = |E| edges. In other words, L(i, j) 6= 0 only if eij is a valid edge
between vertices vi and vj . Moreover, let x be an arbitrary vector of size N .

I study the following generic reduction scheme:

Scheme 1: Graph reduction

Commence by setting L0 = L and x0 = x and proceed according to the following two
recursive equations:

L` = P∓` L`−1P
+
` and x` = P` x`−1,

where P` ∈ RN`×N`−1 are matrices with more columns than rows, ` = 1, 2, . . . , c is the
level of the reduction, symbol + (resp. ∓) denotes the pseudoinverse (resp. transposed
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Scheme 1: Graph reduction (cont.)

pseudoinverse), and N` is the dimensionality at level ` such that N0 = N and Nc =
n� N .

Vector xc is lifted back to RN by recursion x̃`−1 = P+
` x̃`, where x̃c = xc.

Graph reduction thus involves a sequence of c+ 1 graphs

G = G0 = (V0, E0,W0) G1 = (V1, E1,W1) · · · Gc = (Vc, Ec,Wc) (1)

of decreasing size N = N0 > N1 > · · · > Nc = n, where the sparsity structure of L` matches
that of graph G`, and each vertex of G` represents one of more vertices of G`−1.

The multi-level design allows us to achieve high dimensionality reduction ratio

r = 1− n

N
,

even when at each level the ratio r` = 1− N`
N`−1

is small. For instance, supposing that r` ≥ %
for each `, then c = O(log(n/N)/ log(1− %)) levels suffice to reduce the dimension to n.

One may express the reduced quantities in a more compact form:

xc = Px, Lc = P∓LP+ and x̃ = Πx, (2)

where P = Pc · · ·P1, P+ = P+
1 · · ·P+

c , Π = P+P , and for convenience, I drop zero indices
and refer to a lifted vector as x̃(= x̃0). The rational of this scheme is that vector x̃ should be
the best approximation of x given P in an `2-sense, which is a consequence of the following
property:

Property 1 Π is a projection matrix.

On the other hand, matrix L is reduced such that x>c Lcxc = x̃>Lx̃.

Though introduced here for the reduction of sparse PSD matrices representing the sparsity
structure of a graph, Scheme 1 can also be applied to any PSD matrix L. This and similar
reduction schemes belong to the class of Nyström methods and, to the extent of my knowl-
edge, were first studied in the context of approximate low-rank matrix approximation (Halko
et al., 2011; Wang and Zhang, 2013). Despite the common starting point, interpreting L
and Lc as sparse “graph matrices”, as it is done here, incorporates a graph-theoretic twist
to reduction, distinguishing it from previous approaches 3: the constructions that we will
study are eventually more scalable and interpretable as they maintain the graph structure
of L after reduction. Obtaining guarantees is also arguably more challenging in this setting,
as the involved problems end up being strongly combinatorial.

3. To achieve low-rank approximation, matrix P is usually built by sampling columns of L.
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2.2. Properties of Reduced Graphs

Even in the general context where P is an arbitrary n×N matrix, certain handy properties
can be proven about the relation between Lc and L.

To begin with, it is simple to see that the set of positive semidefinite matrices is closed
under reduction.

Property 2 If L is PSD, then so is Lc.

The proof is elementary: if L is PSD then there exists matrix S such that L = S>S,
implying that Lc = P∓LP+ can also be written as Lc = S>c Sc if one sets Sc = SP+.

I further consider the spectrum of the two matrices. Sort the eigenvalues of L as λ1 ≤
λ2 ≤ . . . ≤ λN and denote by λ̃k the k-th largest eigenvalue of Lc and ũk the associated
eigenvector.

It turns out that the eigenvalues λ̃ and λ are interlaced.

Theorem 3 For any P with full-row rank and k = 1, . . . , n, we have

γ1 λk ≤ λ̃k ≤ γ2 λk+N−n

with γ1 = λ1((PP>)−1) and γ2 = λn((PP>)−1), respectively the smallest and largest eigen-
value of (PP>)−1.

The above result is a generalization of the Cauchy interlacing theorem for the case that
PP> 6= I. It also resembles the interlacing inequalities known for the normalized Lapla-
cian, where the re-normalization is obtained by construction. Chen et al. (2004) showed in
Theorem 2.7 of their paper that after contracting N − n edges λk−N+n ≤ λk ≤ λk+N−n for
k = 1, 2, . . . , n and with λ` = 0 when ` ≤ 0, resembling the upper bound above. The lower
bound is akin to that given by Chung (1997, Lemma 1.15), again for the normalized Lapla-
cian. Also notably, the inequalities are similar to those known for Kron reduction (Dörfler
and Bullo, 2013, Lemma 3.6).

Theorem 3 is particularly pessimistic as it has to hold for every possible P and L (subject
to γ1 and γ2). Much stronger results will be obtained later on by restricting the attention
to constructions that satisfy additional properties (see Theorem 13).

One can also say something about the action of Lc on vectors.

Property 4 For every vector x ∈ im(Π), one has

x>c Lcxc = x>ΠLΠx = x>Lx and x̃ = Πx = x.

In other words, reduction maintains the action of L of every vector that lies in the image
of Π. Naturally, after lifting the eigenvectors ũk of Lc are included in this set.
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2.3. Coarsening as a Type of Graph Reduction

Coarsening is a type of graph reduction abiding to a set of constraints that render the
graph transformation interpretable. More precisely, in coarsening one selects for each level
` a surjective (i.e., many-to-one) map ϕ` : V`−1 → V` between the original vertex set V`−1

and the smaller vertex set V`. I refer to the set of vertices V(r)
`−1 ⊆ V`−1 mapped onto the

same vertex v′r of V` as a contraction set :

V(r)
`−1 = {v ∈ V`−1 : ϕ`(v) = v′r}

For a graphical depiction of contraction sets, see Figure 1. I also constrain ϕ` slightly by

requiring that the subgraph of G`−1 induced by each contraction set V(r)
`−1 is connected.

It is easy to deduce that contraction sets induce a partitioning of V`−1 into N` subgraphs,
each corresponding to a single vertex of V`. Every reduced variable thus corresponds to
a small set of adjacent vertices in the original graph and coarsening amounts to a scaling
operation. An appropriately constructed coarse graph aims to capture the global problem
structure, whereas neglected details can be recovered in a local refinement phase.

Coarsening can be placed in the context of Scheme 1 by restricting each P` to lie in the
family of coarsening matrices, defined next:

Definition 5 (Coarsening matrix) Matrix P` ∈ RN`×N`−1 is a coarsening matrix w.r.t.
graph G`−1 if and only if it satisfies the following two conditions:

a. It is a surjective mapping of the vertex set, meaning that if P`(r, i) 6= 0 then P`(r
′, i) =

0 for every r′ 6= r.

b. It is locality preserving, equivalently, the subgraph of G`−1 induced by the non-zero
entries of P`(r, :) is connected for each r.

An interesting consequence of this definition is that, in contrast to graph reduction, with
coarsening matrices the expensive pseudo-inverse computation can be substituted by simple
transposition and re-scaling:

Proposition 6 (Easy inversion) The pseudo-inverse of a coarsening matrix P` is given
by P+

` = P>` D
−2
` , where D` is the diagonal matrix with D`(r, r) = ‖P`(r, :)‖2.

Proposition 6 carries two consequences. First, coarsening can be done in linear time. Each
coarsening level (both in the forward and backward directions) entails multiplication by
a sparse matrix. Furthermore, both P` and P+

` have only N`−1 non-zero entries meaning
that O(N) and O(M) operations suffice to coarsen respectively a vector and a matrix L
whose sparsity structure reflects the graph connectivity. In addition, the number of graph
edges also decreases at each level. Denoting by µ` the average number of edges of the

graphs induced by contraction sets V(r)
`−1 for every r, then a quick calculation reveals that

the coarsest graph has m = M −
∑c

`=1N`µ` edges. If, for instance, at each level all
vertices are perfectly contracted into pairs then µ` = 2 and N` = N/2`, meaning that
m = M − 2N(1− 2−c).
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(a) Graph G (b) Coarse graph Gc

Figure 1: Toy coarsening example. Grey discs denote contraction sets. The first three vertices of G
forming contraction set V1

0 are contracted onto vertex v′1. All other vertices remain unaffected.

2.4. Laplacian Consistent Coarsening

A further restriction that can be imposed is that coarsening is consistent w.r.t. the Laplacian
form. Suppose that L is the combinatorial Laplacian of G defined as

L(i, j) =


di if i = j

−wij if eij ∈ E
0 otherwise,

where wij is the weight associated with edge eij and di the weighted degree of vi. The
following proposition can be proven:

Proposition 7 (Consistency) Let P be a coarsening matrix w.r.t. a graph with combi-
natorial Laplacian L. Matrix Lc = P∓LP+ is a combinatorial Laplacian if and only if the
non-zero entries of P+ are equally valued.

It is a corollary of Propositions 6 and 7 that in Laplacian consistent coarsening, for any
v′r ∈ V` and vi ∈ V`−1 matrices P` ∈ RN`×N`−1 and P+

` ∈ RN`−1×N` are given by:

P`(r, i) =


1

|V(r)
`−1|

if vi ∈ V(r)
`−1

0 otherwise
and [P+

` ](i, r) =

{
1 if vi ∈ V(r)

`−1

0 otherwise,

where the contraction sets V(1)
`−1, . . . ,V

(N`)
`−1 were defined in Section 2.3.

2.4.1. A Toy Example

The toy graph shown in Figure 1a whose Laplacian is given by

L =


3 −1 −1 −1 0
−1 3 −1 0 −1
−1 −1 2 0 0
−1 0 0 1 0
0 −1 0 0 1


8
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illustrates an example where the gray vertices V(1)
0 = {v1, v2, v3} of G are contracted onto

vertex v′1, as shown in Figure 1b. The main matrices I have defined are

P1 =

1/3 1/3 1/3 0 0
0 0 0 1 0
0 0 0 0 1

 P+
1 =


1 0 0
1 0 0
1 0 0
0 1 0
0 0 1

 Π = P+
1 P1 =


1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
1/3 1/3 1/3 0 0
0 0 0 1 0
0 0 0 0 1


and coarsening results in

Lc = P∓1 LP
+
1 =

 2 −1 −1
−1 1 0
−1 0 1

 xc = P1x =

(x(1) + x(2) + x(3))/3
x(4)
x(5)

 .
Finally, when lifted xc becomes

x̃ = P+
1 xc =


(x(1) + x(2) + x(3))/3
(x(1) + x(2) + x(3))/3
(x(1) + x(2) + x(3))/3

x(4)
x(5)

 .

Since vertices v4 and v5 are not affected, the respective contraction sets V(2)
0 and V(3)

0 are
singleton sets.

2.5. Properties of Laplacian Consistent Coarsening

Due to its particular construction, Laplacian consistent coarsening is accompanied some
interesting properties. I present three in the following:

Cuts. To begin with, weights of edges in Gc correspond to weights of cuts in G.

Property 8 For any level `, the weight W`(r, q) between vertices v′r, v
′
q ∈ V` is equal to

W`(r, q) =
∑

vi∈S
(r)
`

∑
vj∈S

(q)
`

wij ,

where S(r)
` = {vi ∈ V : ϕ` ◦ · · · ◦ ϕ1(vi) = v′r} ⊂ V contains all vertices of G contracted onto

v′r ∈ V`.

In the toy example, there exists a single edge of unit weight connecting vertices in V(1)
0 and

V(2)
0 , and as such the weight between v′1 and v′2 is equal to one.

Eigenvalue interlacing. For a single level of Laplacian consistent coarsening, matrix PP> =

P1P
>
1 is given by diag(1/|V(1)

0 |, . . . , 1/|V
(N1)
0 |), implying that the multiplicative constants in

Theorem 3 are:
γ1 = min

vi∈V
|Vϕ1(vi)

0 | ≥ 1 and γ2 = max
vi∈V
|Vϕ1(vi)

0 |.
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Above, v′r = ϕ1(vi) ∈ V1 is the vertex to which vi is mapped to and the set Vϕ1(vi)
0 contains

all vertices also contracted to v′r. Thus in the toy example, λk ≤ λ̃k ≤ 3λk+2 for every
k ≤ 3. If multiple levels are utilized these terms become dependent on the sequence of
contractions. To obtain a general bound let ϕ`1(vi) = ϕ` ◦ · · · ◦ ϕ1(vi) ∈ V` be the vertex
onto which vi ∈ V is contracted to in the `-th level.

Property 9 If Lc is obtained from L by Laplacian consistent coarsening, then

γ1 ≥ min
vi∈V

c∏
`=1

|Vϕ
`
1(vi)

`−1 | ≥ 1 and γ2 ≤ max
vi∈V

c∏
`=1

|Vϕ
`
1(vi)

`−1 |,

with the set Vϕ
`
1(vi)

`−1 containing all vertices of V`−1 that are contracted onto ϕ`1(vi).

The proof follows from the diagonal form of P` · · ·P1P
>
1 · · ·P>` and the special row structure

of each P` for every `, but it’s not included for brevity. The dependency of λ̃k on the size of
contraction sets can be removed either by enforcing at each level that all contraction sets
have identical size and dividing the graph weights by that size, or by re-normalizing each P`
such that P>` = P+

` . The latter approach was used by Loukas and Vandergheynst (2018)
but is not adopted here as it results in Lc losing its Laplacian form.

Nullspace. Finally, as is desirable, the structure of the nullspace of L is preserved both by
coarsening and lifting:

Property 10 If P is a (multi-level) Laplacian consistent coarsening matrix, then

P1N = 1n and P+1n = 1N ,

where the subscript indicates the dimensionality of the constant vector.

Thus, we can casually ignore vectors parallel to the constant vector in our analysis.

3. Restricted Notions of Approximation

This section formalizes how should a graph be reduced such that fundamental structural
properties (e.g., its spectrum and cuts) are preserved. Inspired by work in graph sparsifica-
tion, I introduce a measure of approximation that is tailored to graph reduction. The new
definition implies strong guarantees about the distance of the original and coarsened spec-
trum and gives conditions such that the cut structure of a graph is preserved by coarsening.

3.1. Restricted Spectral Approximation

One way to define how close a PSD matrix L is to its reduced counterpart is to establish
an isometry guarantee w.r.t. the following induced semi-norms:

‖x‖L =
√
x>Lx and ‖xc‖Lc

=
√
x>c Lcxc

10
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Ideally, one would hope that there exists ε > 0 such that

(1− ε) ‖x‖L ≤ ‖xc‖Lc
≤ (1 + ε) ‖x‖L (3)

for all x ∈ RN .

If the inequalities in (3) hold, matrices Lc and L are called ε-similar. The objective of
constructing sparse spectrally similar graphs is the main idea of spectral graph sparsifiers,
a popular method for accelerating the solution of linear systems involving the Laplacian. In
addition, spectral similarity carries several interesting consequences that are of great help
in the construction of approximation algorithms: the eigenvalues and eigenvectors of two
similar graphs are close and, moreover, all vertex partitions have similar cut size.

In contrast to graph sparsification however, since here the dimension of the space changes
it is impossible to satisfy (3) for every x ∈ RN unless one trivially sets ε = 1 (this follows
by a simple rank argument). To carry out a meaningful analysis, one needs to consider a
subspace of dimension k ≤ n and aim to approximate the behavior of L solely within it.

With this in mind, I define the following generalization of spectral similarity:

Definition 11 (Restricted spectral approximation) Let R be a k-dimensional sub-
space of RN . Matrices Lc and L are (R, ε)-similar if there exists an ε ≥ 0 such that

‖x− x̃‖L ≤ ε ‖x‖L for all x ∈ R,

where x̃ = P+Px.

In addition to the restriction on R, the above definition differs from (3) in how the error
is measured. In fact, it asserts a property that is slightly stronger than an approximate
isometry w.r.t. a semi-norm within R. The strengthening of the notion of approxima-
tion deviates from the restricted spectral similarity property proposed by Loukas and Van-
dergheynst (2018) and is a key ingredient in obtaining multi-level bounds. Nevertheless,
one may recover a restricted spectral similarity-type guarantee as a direct consequence:

Corollary 12 If Lc and L are (R, ε)-similar, then

(1− ε) ‖x‖L ≤ ‖xc‖Lc
≤ (1 + ε) ‖x‖L for all x ∈ R.

Proof Let S be defined such that L = S>S. By the triangle inequality:

| ‖x‖L − ‖xc‖Lc
| = | ‖Sx‖2 −

∥∥SP+Px
∥∥

2
| ≤ ‖Sx− SP+Px‖2 = ‖x− x̃‖L ≤ ε ‖x‖L ,

which is equivalent to the claimed relation.

Clearly, if Lc and L are (R, ε)-similar then they are also (R′, ε′)-similar, where R′ is any
subspace of R and ε′ ≥ ε. As such, results about large subspaces and small ε are the most
desirable.

It will be shown in Sections 3.2 and 3.3 that the above definition implies restricted versions
of the spectral and cut guarantees provided by spectral similarity. For instance, instead of
attempting to approximate the entire spectrum as done by spectral graph sparsifiers, here
one can focus on a subset of the spectrum with particular significance.

11
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3.2. Implications for the Graph Spectrum

One of the primary benefits of restricted spectral approximation is that it implies a relation
between the spectra of matrices L and Lc that goes beyond interlacing (see Theorem 3).

To this effect, consider the smallest k eigenvalues and corresponding eigenvectors and define
the following matrices:

Uk ∈ RN×k = [u1, u2, . . . , uk] and Λk = diag(λ1, λ2, . . . , λk)

As I will show next, ensuring that ε in Proposition 17 is small when R = Uk
∆
= span(Uk)

suffices to guarantee that the first k eigenvalues and eigenvectors of L and Lc are aligned.

The first result concerns eigenvalues.

Theorem 13 (Eigenvalue approximation) If Lc and L are (Uk, εk)-similar, then

γ1 λk ≤ λ̃k ≤ γ2
(1 + εk)

2

1− ε2k(λk/λ2)
λk,

whenever ε2k < λ2/λk.

Crucially, the bound depends on λk instead of λk+N−n and thus can be significantly tighter
than the one given by Theorem 3. Noticing that εk ≤ εk′ whenever k < k′, one also deduces
that it is stronger for smaller eigenvalues. For k = 2 in particular, one has

γ1 λ2 ≤ λ̃2 ≤ γ2
(1 + ε2)2

1− ε22
λ2,

which can be made small by controlling ε2.

I also analyze the angle between principal eigenspaces of L and Lc. I follow Li (1994) and
split the eigendecompositions of L = UΛU> and P>LcP = P>Ũ Λ̃Ũ>P as

L = (Uk, Uk⊥)

(
Λk

Λk⊥

)(
U>k
U>
k⊥

)
P>LcP = (P>Ũk, P

>Ũk⊥)

(
Λ̃k

Λ̃k⊥

)(
Ũ>k P

Ũ>
k⊥
P

)
,

where Λ̃k and Ũk are defined analogously to Λk and Uk. Davis and Kahan (1970) defined
the canonical angles between the spaces spanned by Uk and P>Ũk as the singlular values
of the matrix

Θ(Uk, P
>Ũk)

∆
= arccos(U>k P

>ŨkŨ
>
k PUk)

−1/2,

see also (Stewart, 1990). The smaller the sinus of the canonical angles are the closer the
two subspaces lie. The following theorem reveals a connection between the Frobenius norm
of the sinus of the canonical angles and restricted spectral approximation.

12
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Theorem 14 (Eigenspace approximation) If Lc and L are (Uk, εk)-similar then

∥∥∥sin Θ
(
Uk, P

>Ũk
)∥∥∥2

F
≤ 1

λk+1 − λk

∑
i≤k

λi

(
(1 + εi)

2

γ1
− 1

)
+ λk

∑
i≤k

εi

 ,

Note that the theorem above utilizes all εi with i ≤ k, corresponding to the restricted
spectral approximation constants for R = Ui, respectively. However, all these can be
trivially relaxed to εk, since εi ≤ εk for all i ≤ k.

3.3. Implications for Graph Partitioning

One of the most popular applications of coarsening is to accelerate graph partitioning (Hen-
drickson and Leland, 1995; Karypis and Kumar, 1998; Kushnir et al., 2006; Dhillon et al.,
2007; Wang et al., 2014). In the following, I provide a rigorous justification for this choice
by showing that if the (Laplacian consistent) coarsening is done well and Gc contains a good
normalized cut, then so will G. For the specific case of spectral clustering, I also provide
an explicit bound on the coarse solution quality.

3.3.1. Existence Results

For consistent coarsening, the spectrum approximation results presented previously imply
similarities between the cut-structures of Gc and G.

To formalize this intuition, the conductance of any subset S of V is defined as

φ(S)
∆
=

w(S, S̄)

min{w(S), w(S̄)}
,

where S̄ = V \ S is the complement set, w(S, S̄) =
∑

vi∈S,vj∈S̄ wij is the weight of the cut

and w(S) =
∑

vi∈S
∑

vj∈V wij is the volume of S.

The k-conductance of a graph measures how easy it is to cut it into k disjoint subsets
S1, . . . ,Sk ⊂ V of balanced volume:

φk(G) = min
S1,...,Sk

max
i
φ(Si),

where the minimum is taken over all possible k-partitionings (S1, . . . ,Sk). The smaller
φk(G) is, the easier it is to partition our graph.

As it turns out, restricted spectral approximation can be used to relate the conductance
of the original and coarse graphs. To state the result, it will be useful to denote by D the
diagonal degree matrix and further to suppose that Vk contains the first k eigenvectors of
the normalized Laplacian Ln = D−1/2LD−1/2, whose eigenvalues are 0 = µ1 ≤ · · · ≤ µk.

13
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Theorem 15 For any graph G and integer 2 ≤ k ≤ bn/2c, if Lc and L are (R2k, ε2k)-
similar combinatorial Laplacian matrices then

φk(G) ≤ φk(Gc) = O

(√
γ2 (1 + ε2k)2ξk(G)

1− ε22k(µ2k/µ2)
φk(G)

)

with R2k = span(D−1/2V2k) and ξk(G) ≤ log k, whenever ε22k < µ2/µ2k. If G is planar then
ξk(G) ≤ 1 and if G excludes Kh as a minor (but is not planar) then ξk(G) ≤ h4. For k = 2,
supposing that Lc and L are (R2, ε2)-similar, we additionally have

φ2(G) ≤ φ2(Gc) ≤ 2

√
γ2 (1 + ε2)2

1− ε22
φ2(G).

The above theorem gives a non-constructive result: it does not reveal how to find the
optimal partitioning, but provides conditions such that the latter is of similar quality in the
two graphs.

3.3.2. Spectral Clustering

It is also possible to derive approximation results about the solution quality of unsupervised
learning algorithms that utilize the first k eigenvectors in order to partition G. I focus here
on spectral clustering. To perform the analysis, let Uk and P>Ũk be the spectral embedding
of the vertices w.r.t. L and Lc, respectively, and define the optimal partitioning as

P∗ = arg min
P={S1,...,Sk}

Fk(Uk,P) and P̃∗ = arg min
P={S1,...,Sk}

Fk(P>Ũk,P), (4)

where, for any embedding X, the k-means cost induced by partitioning V into clusters
S1, . . . ,Sk is defined as

Fk(X,P)
∆
=

k∑
z=1

∑
vi,vj∈Sz

‖X(i, :)−X(j, :)‖22
2 |Sz|

.

One then measures the quality of P̃∗ by examining how far the correct minimizer Fk(Uk,P∗)
is to Fk(Uk, P̃∗). Boutsidis et al. (2015) noted that if the two quantities are close then,
despite the clusters themselves possibly being different, they both feature the same quality
w.r.t. the k-means objective.

An end-to-end control of the k-means error is obtained by combining the inequality derived
by Loukas and Vandergheynst (2018), based on the works of (Boutsidis et al., 2015; Yu et al.,

2014; Martin et al., 2018), |Fk(Uk,P∗)1/2−Fk(Uk, P̃∗)1/2| ≤ 2
√

2
∥∥∥sin Θ

(
Uk, P

>Ũk
)∥∥∥
F

with

Theorem 14:
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Corollary 16 If Lc and L are (Uk, εk)-similar then

(
Fk(Uk,P∗)

1/2 −Fk(Uk, P̃∗)
1/2
)2
≤ 8

λk+1 − λk

∑
i≤k

λi

(
(1 + εi)

2

γ1
− 1

)
+ λk

∑
i≤k

εi

 .

Contrary to previous analysis (Loukas and Vandergheynst, 2018), the approximation result
here is applicable to any number of levels and it can be adapted to hold for the eigenvectors
of the normalized Laplacian4. Nevertheless, it should be stressed that at this point it is
an open question whether the above analysis yields benefits over other approaches tailored
especially to the acceleration of spectral clustering. A plethora of such specialized algorithms
are known (Tremblay and Loukas, 2019)—arguing about the pros and cons of each extends
beyond the scope of this work.

4. Graph Coarsening by Local Variation

This section proposes algorithms for Laplacian consistent coarsening. I suppose that L is a
combinatorial graph Laplacian and, given a subspace R and a target graph size n, aim to
find an (R, ε)-similar Laplacian Lc of size n× n with ε smaller than some threshold ε′.

Local variation algorithms differ only in the type of contraction sets that they consider.
For instance, the edge-based local variation algorithm only contracts edges, whereas in the
neighborhood-based variant each contraction set is a subset of the neighborhood of a vertex.
Otherwise, all local variation algorithms follow the same general methodology and aim to
minimize an upper bound of ε. To this end, two bounds are exploited: First, Lc is shown to
be (R, ε)-similar to L with ε ≤

∏
`(1 +σ`)− 1, where the variation cost σ` depends only on

previous levels (see Section 4.1). The main difficulty with minimizing σ` is that it depends
on interactions between contraction sets. For this reason, the second bound shows that
these interactions can be decoupled by considering each local variation cost, i.e., the cost

of contracting solely the vertices in V(r)
`−1, independently on a slightly modified subgraph

(see Section 4.2). Having achieved this, Section 4.3 considers ways of efficiently identifying
disjoint contraction sets with small local variation cost.

4.1. Decoupling Levels and the Variation Cost

Guaranteeing restricted spectral approximation w.r.t. subspace R boils down to minimizing
at each level ` the variation cost

σ` = ‖Π⊥` A`−1‖L`−1
= ‖S`−1Π⊥` A`−1‖2,

where L`−1 = S>`−1S`−1 and Π⊥` = I − P+
` P` is a projection matrix. Matrix A`−1 captures

two types of information:

4. For the normalized Laplacian, one should perform (combinatorial) Laplacian consistent coarsening on a
modified eigenspace, as in the proof of Theorem 15.
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1. Foremost, it encodes the behavior of the target Laplacian matrix L w.r.t. R. This is
clearly seen in the first level, for which one has that A0 = V V >L+1/2 with V ∈ RN×k
being an orthonormal basis of R.

2. When ` > 1 one needs to consider A0 in view of the reduction done in previous levels.
The necessary modification turns out to be A`−1 = B`−1(B>`−1L`−1B`−1)+1/2, with

B`−1 = P`−1B`−2 ∈ RN`−1×N expressed in a recursive manner and B0 = A0.

The following result makes explicit the connection between ε and σ`.

Proposition 17 Matrices Lc and L are (R, ε)-similar with ε ≤
∏c
`=1(1 + σ`)− 1.

Crucially, the previous result makes it possible to design a multi-level coarsening greedily,
by starting from the first level and optimizing following levels one at a time. Thus, every
local variation algorithm operates in the following manner:

Algorithm 1 Multi-level coarsening

1: input: Combinatorial Laplacian L, threshold ε′, and target size n.
2: Set `← 0, L` ← L, and ε` ← 0.
3: while N` > n and ε` < ε′ do
4: `← `+ 1
5: Coarsen L`−1 using Algorithm 2 with threshold σ′ = 1+ε′

1+ε`−1
− 1 and target size n.

Let L` be the resulting Laplacian of size N` with variation cost σ`.
6: ε` ← (1 + ε`−1)(1 + σ`)− 1.

7: return L`

Algorithm 1 returns a Laplacian matrix Lc that is (R, ε)-similar to L with ε ≤ εc ≤ ε′,
where c is the last level `. On the other hand, setting ε′ to a large value ensures that
the same algorithm always attains the target reduction at the expense of loose restricted
approximation guarantees.

Remark. The variation cost simplifies when R is an eigenspace of L. I demonstrate this for
the choice of Uk, though an identical argument can be easily derived for any eigenspace.
Denote by Λ the diagonal N × N eigenvalue matrix placed from top-left to bottom-right
in non-decreasing order and by U the respective full eigenvector matrix. Furthermore,
let Λk be the k × k sub-matrix of Λ with the smallest k eigenvalues in its diagonal. By
the unitary invariance of the spectral norm, it follows that σ0 = ‖Π⊥1 UkU>k L+1/2‖L0 =
‖Π⊥1 UkU>k L+1/2U‖L0 = ‖Π⊥1 UkU>k UΛ+1/2‖L0 . Simplifying and eliminating zero columns,

one may redefine B0 = UkΛ
+1/2
k ∈ RN×k, such that once more σ0 = ‖Π⊥1 B0‖L0 . This is

computationally attractive because now at each level one needs to take the pseudo-inverse-
square-root of a k × k matrix B>`−1L`−1B`−1, with k � N .

16



Graph Reduction with Spectral and Cut Guarantees

4.2. Decoupling Contraction Sets and Local Variation

Suppose that Π⊥C is the (complement) projection matrix obtained by contracting solely the
vertices in set C, while leaving all other vertices in V`−1 untouched:

[
Π⊥C x

]
(i) =

{
x(i)−

∑
vj∈C

x(j)
|C| if vi ∈ C

0 otherwise.

(Here, for convenience, the level index is suppressed.)

Furthermore, let LC be the N`−1 ×N`−1 combinatorial Laplacian whose weight matrix is

[WC ] (i, j) =


W`−1(i, j) if vi, vj ∈ C
2W`−1(i, j) if vi ∈ C and vj /∈ C
0 otherwise.

(5)

That is, WC is zero everywhere other than at the edges touching at least one vertex in C.
The following proposition shows us how to decouple the contribution of each contraction
set to the variation cost.

Proposition 18 The variation cost is bounded by

σ2
` ≤

∑
C∈P`

‖Π⊥C A`−1‖2LC ,

where P` = {V(1)
`−1, . . . ,V

(N`)
`−1 } is the family of contraction sets of level `.

The above argument therefore entails bounding the, difficult to optimize, variation cost
as a function of locally computable and independent costs ‖Π⊥C A`−1‖2LC . The obtained
expression is a relaxation, as it assumes that the interaction between contraction sets will
be the worst possible. It might be interesting to notice that the quality of the relaxation
depends on the weight of the cut between contraction sets. Taking the limit, the inequality
converges to an equality as the weight of the cut shrinks. Also of note, the bound becomes
tighter the larger the per-level dimensionality reduction requested (the smaller N` = |P`|
is, the fewer inequalities are involved in the derivation).

4.3. Local Variation Coarsening Algorithms

Starting from a candidate family F` = {C1, C2, C3, . . .}, that is, an appropriately sized family
of candidate contraction sets, the strategy will be to search for a small contraction family

P` = {V(1)
`−1, . . . ,V

(N`)
`−1 } with minimal variation cost σ` (P` is valid if it partitions V`−1 into

N` contraction sets). Every coarse vertex v′r ∈ V` is then formed by contracting the vertices

in V(r)
`−1.

As a thought experiment, suppose that set C ∈ F` is chosen to be part of P`. From the
decoupling argument, its contribution to σ2

` will be at most ‖Π⊥C A`−1‖2LC independently of
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how other candidate sets are chosen. Moreover, the selection will reduce N`−1 by |C| − 1
vertices. Thus, one needs to look for the non-singleton candidate sets C with cost

cost`(C)
∆
=
‖Π⊥C A`−1‖2LC
|C| − 1

(6)

that is as small as possible. I refer to (6) as local variation cost because it captures the
maximal variation of all signals from an appropriate subspace (implied by A`−1) with sup-
port on C. On the other hand, since any permissible contraction family P` should be a
partitioning of V`−1, choosing C precludes us from selecting any C′ with which it intersects.

Based on this intuition, Algorithm 2 sequentially examines candidate sets from F`, starting
from those with minimal cost. To decide whether a candidate set C will be added to P`
the algorithm asserts that all vertices in C are unmarked—essentially enforcing that all
contraction sets are disjoint. Accordingly, as soon as C is added to P`, all vertices that are
in C become marked. Candidate sets with marked vertices are pruned (C′ ← C\marked) and
their cost is updated. The algorithm terminates if either the target reduction is achieved,
the error threshold is exceeded, or no candidate sets remain. Even though this remains
implicit in the discussion, if at termination P` does not cover every vertex of V`−1, then I
compliment it with singleton sets, featuring one vertex each (and zero cost).

Algorithm 2 Single-level coarsening by local variation

1: input: Combinatorial Laplacian L`−1, threshold σ′, and target size n.
2: Form the family of candidate sets F` = {C1, C2, C3, . . .} (algorithm-specific step).
3: N` ← N`−1, marked← ∅, σ2

` ← 0.
4: Sort F` in terms of increasing cost`(C).
5: while |F`| > 0 and N` > n and σ` ≤ σ′ do
6: Pop the candidate set C of minimal cost s from F`.
7: if all vertices of C are not marked and σ′ ≥

√
σ2
` + (|C| − 1)s then

8: marked← marked ∪ C, P` ← P` ∪ C, N` ← N` − |C|+ 1, σ2
` ← σ2

` + (|C| − 1)s
9: else

10: C′ ← C \marked
11: if |C′| > 1 then
12: Compute cost`(C′) and insert C′ into F` while keeping the latter sorted.

13: Form the N` ×N`−1 coarsening matrix P` based on P`.
14: return L` ← P∓` L`−1P

+
` and σ`

Undeniably, Algorithm 2 is only one of the possible ways to select a partitioning of small
variation cost. However, this algorithm stands out from other algorithms I experimented
with, as it is efficient when the subspace of interest is an eigenspace (e.g., V = Uk), k is
small, and the families F` have been selected appropriately. Denote by Φ = max`

∑
C∈F`

|C|
the maximum number of vertices in all candidate sets and by δ = max`, C∈F`

|C| the car-
dinality of the maximum candidate set—I refer to these measures as family weight and
width, respectively. Choosing R = Uk, the computational complexity of Algorithm 2 is
Õ(ckM + k2N + ck3 + cΦ

(
min{k2δ + kδ2, kδ2 + δ3}+ log max` |F`|

)
), which up to poly-

log factors is linear on the number of edges, vertices, and Φ (see Appendix B for details).
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If computational complexity is of no concern, one may consider the following two more
sophisticated algorithms: The optimal algorithm. Given a candidate family, the algorithm
that optimally minimizes the sum of local variation costs constructs a graph with one
vertex for each subset of a candidate set and adds an edge between every two vertices
whose respective sets have a non-empty intersection. It then selects P` as the maximum
independent set of minimal weight (the weight of each vertex is a local variation cost w.r.t
a set). Unfortunately, even if the size of this graph is polynomial in N , this problem
cannot be solved efficiently, since the minimum-weight independent set problem is NP-
hard. Nevertheless, for the specific case where candidate sets correspond to edges the
problem simplifies to a minimum-weight matching problem, which can be computed in
O(N3

`−1) time exactly, whereas a (2 + δ)-approximation can be found much faster (Paz
and Schwartzman, 2017). The quadratic variant. A second possibility is to proceed as
with Algorithm 2, but to prune each C′ ∈ F` after a set C is added to P`. The numerical
experiments indicated that this additional step may improve the coarsening quality slightly,
but it is not recommended for large graphs as it introduces a quadratic dependency of the
complexity on N .

4.3.1. Candidate Contraction Families

To keep coarsening efficient, I focus on families of linear weight and almost constant width.
Two possibilities are considered:

Edge-based. Here F` contains one candidate set for each edge of G`−1. This is a natural
choice for coarsening—indeed, most coarsening algorithms in the literature use some form of
edge contraction. It is straightforward to see that in this case Φ = 2M and δ = 2, meaning
that the expression of the computational complexity simplifies to Õ(ckM+ck3 +k2N). The
drawback of contracting edges is that at each level the graph size can only be reduced by at
most a factor of 2, meaning that a large number of levels is necessary to achieve significant
reduction5.

Neighborhood-based. A more attractive choice is to construct one candidate set for the
neighborhood of each vertex, including the vertex itself. Denoting by ∆ the largest combi-
natorial degree and since Φ = 2M , the complexity here is bounded by Õ(cM(k+min{k2∆+
k∆2, k∆2 + ∆3}) + ck3 + k2N). The experiments show that the neighborhood-based vari-
ant generally achieves better reduction while being marginally slower than the edge-based
variant.

As a final remark, when G is dense, the dependency on M can be dropped by sparsifying
the graph before using Algorithm 1.

5. Numerical Results

The evaluation was performed on four representative graphs, each exhibiting different struc-
tural characteristics:

5. In practice, depending on the graph in question, the per-level reduction ratio r` is usually between 0.35
and 0.45.
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• Yeast. Protein-to-protein interaction network in budding yeast, analyzed by Jeong
et al. (2001). The network has N = 1458 vertices, M = 1948 edges, diameter of 19,
and degree between 1 and 56.

• Airfoil. Finite-element graph obtained by airflow simulation Preis and Diekmann
(1997), consisting of N = 4000 vertices, M = 11490 edges, diameter of 65, and degree
between 1 and 9.

• Minnesota. Road network with N = 2642 vertices, M = 3304 edges, diameter of 99,
and degree between 1 and 5 (Gleich, 2008).

• Bunny. Point cloud consisting of N = 2503 vertices, M = 65490 edges, diameter of
15, and degree between 13 and 97 (Turk and Levoy, 1994). The point cloud has been
sub-sampled from its original size.

I compare to the following methods for multi-level graph reduction:

• Heavy edge matching. At each level of the scheme, the contraction family is obtained
by computing a maximum-weight matching with the weight of each contraction set
(vi, vj) calculated as wij/max{di, dj}. In this manner, heavier edges connecting ver-
tices that are well separated from the rest of the graph are contracted first. Heavy edge
matching was first introduced in the algebraic multigrid literature and, perhaps due
to its simplicity, its variants have been repeatedly used for partitioning (Karypis and
Kumar, 1998; Dhillon et al., 2007) and drawing (Walshaw, 2000; Hu, 2005) graphs, as
well as more recently in graph convolutional neural networks (Defferrard et al., 2016).

• Algebraic distance. This method differs from heavy edge matching in that the weight
of each candidate set (vi, vj) ∈ E is calculated as (

∑Q
q=1(xq(i)− xq(j))2)1/2, where xk

is an N -dimensional test vector computed by successive sweeps of Jacobi relaxation.
The complete method is described by Ron et al. (2011), see also (Chen and Safro,
2011). As recommended by the authors, I performed 20 relaxation sweeps. Further,
I set the number of test vectors Q to equal the dimension k of the space I aimed to
approximate (a simple rank argument shows that Q ≥ k for the test vectors to span
the space).

• Affinity. This is a vertex proximity heuristic in the spirit of the algebraic distance
that was proposed by Livne and Brandt (2012) in the context of their work on the
lean algebraic multigrid. As per the author suggestion, the Q = k test vectors are
here computed by a single sweep of a Gauss-Seidel iteration.

• Kron reduction. At each level, the graph size is reduced by selecting a set of ver-
tices of size N/2 (corresponding to the positive entries of the last eigenvector of L)
and applying Kron reduction. The method, which was proposed by Shuman et al.
(2016), is not strictly a coarsening method as it rewires the vertices of the reduced
graph, resulting in significantly denser graphs6. Unfortunately, the rewiring step en-

6. As suggested by the authors, the sparsity of reduced graphs can be controlled by spectral sparsification.
The sparsification step was not included in the numerical experiments since it often resulted in increased
errors.
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tails finding the Schur complement of a large Laplacian submatrix and thus generally
exhibits O(N3) complexity, rendering it prohibitive for graphs of more than a few
thousand vertices. Despite these drawbacks, the method is quite popular because of
its elegant theoretical guarantees (Dörfler and Bullo, 2013).

Depending on how the edge matching is constructed, different variants of edge contrac-
tion methods can be implemented. At the two extremes of the complexity spectrum one
finds the maximum matching of minimum weight at O(N3) complexity (Galil, 1986) or
greedily constructs a matching by visiting vertices in random order and inducing O(M)
overhead (Dhillon et al., 2007).

For consistency, I implemented all edge-based methods by combining Algorithm 2 with
an edge-based family and substituting the local variation cost with the (negative) method-
specific edge weight. This generally yields matchings of better quality (heavier weight) than
visiting vertices in a predefined order, at the expense of the marginally larger O(M logM)
complexity necessary for sorting the edge weights. The choice is also motivated by the
observation that the computational bottleneck of (sophisticated) edge contraction methods
lies in the edge weight computation. For all experiments, I set ε′ = ∞ aiming for a fixed
reduction rather than a restricted spectral approximation guarantee. The code reproducing
the experiments can be accessed online 7.

5.1. Restricted Spectral Approximation

The first experiment tests how well Lc approximates the action of L w.r.t. the subspace Uk
of the smallest variation. In other words, for each method, I plot the smallest ε such that
the following equation holds:

‖x− x̃‖L ≤ ε ‖x‖L for all x ∈ Uk. (7)

The results are summarized in Figure 2 for two representative subspaces of size k = 10 and
k = 40. With the exception of the Kron reduction that was repeated 10 times, all methods
are deterministic and thus were run only once.

Overall, it can be seen that local variation methods outperform other coarsening methods
in many problem instances. The gap is particularly prominent for large reductions, where
multiple levels are employed. Neighborhood-based contraction yields the best result overall,
mainly because it achieves the same reduction in fewer levels. Interestingly, local variation
(and coarsening) methods in many cases also outperform Kron reduction, even though the
latter is more demanding computationally.

I elaborate further on four points stemming from the results:

In most instances, a reduction of up to 70% is feasible while maintaining a decent ap-
proximation. The attained approximation is a function of the graph in question and k.
Nevertheless, in almost all experiments, the best coarsening method could reduce the graph
size by at least 70% while also ensuring that ε < 1 (horizontal black line). This is an

7. github.com/loukasa/graph-coarsening/tree/v1.1 (DOI 175851068)
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Figure 2: Quality of approximation comparison for four representative graphs (rows) and two sub-
space sizes (columns).
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encouraging result, illustrating that significant dimensionality reduction is often possible,
without sacrificing too much the solution quality.

Following intuition, it is generally harder to approximate subspaces of larger dimension k,
but not excessively so. Increasing k from 10 to 40 in most cases increases ε only slightly. The
only case where the approximation becomes profoundly better with small subspaces is with
small reduction ratios r. For instance, coarsening the yeast graph results in an impressive
approximation for all r < 30% when k = 10, whereas ε increases almost by an order of
magnitude when k becomes 40.

Kron reduction is an effective way to half the graph size but can result in poor approximation
otherwise. If one is willing to sacrifice in terms of efficiency, Kron reduction effectively
reduces the graph size by a factor of two (with the exception of the yeast graph). What
might be startling is that the method behaves poorly for different reduction ratios. Three
main factors cause this deterioration of performance. First, the sampling set is constructed
based on the sign pattern of uN , i.e., by keeping the vertices vi for which uN (i) ≥ 0, and has
cardinality close to N/2 (Shuman et al., 2016). Therefore, if at any level one tries to reduce
the graph size by less than half, the last eigenvector heuristic cannot be used precisely.
Second, numerical instability issues sometimes manifest when r exceeds 50%. I was not
able to improve the implementation featured in the PyGSP toolbox, and in my experiments
some problem instances could not be solved successfully (hence the missing markers). The
third reason is described next.

Coarse levels should aim to approximate the original graph and not the proceeding levels.
The conventional approach in multi-level schemes is to aim at each level to approximate as
closely as possible the graph of the previous level. This can lead to a sudden increase of error
at consecutive levels (e.g. notice the minnesota error as r approaches 50%) as decisions early
in the scheme can have a significant impact later on. On the other hand, local variation
methods modify the cost function minimized at each level (see Proposition 17), resulting in
smoother transitions between levels and tighter approximations at large r.

5.2. Spectrum Approximation

The second part of the experiments examines the coarsening through the lens of spectral
graph theory. The premise is that, since the spectrum of the Laplacian distills information
about the graph structure, one may interpret the spectral distance as a proxy for the
structural similarity of the two graphs. This is by no means a new idea—the Laplacian
spectrum is a common ingredient in accessing graph similarity (Wilson and Zhu, 2008).

Tables 1 and 2 report the mean relative eigenvalue error defined as 1
k

∑k
i=1

|λ̃i−λi|
λi

for two
representative k, respectively 10 and 40. The results for k = 80 were consistent with those
presented here, and are not reported here for reasons of brevity.

As expected, the reduction ratio plays a significant role in the closeness of Laplacian spectra.
Indeed, for most cases, the eigenvalue error jumps by almost an order of magnitude whenever
r increases by 20%. Yet, also in most cases, acceptable errors can be achieved even when
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r
heavy
edge

local var.
(edges)

local var.
(neigh.)

algebraic
distance

affinity
Kron

reduction

yeast
30% 0.284 0.123 0.003 0.126 0.164 0.054
50% 1.069 0.460 0.034 0.759 0.877 1.321
70% 5.126 3.920 0.409 3.395 3.140 1.865

airfoil
30% 0.278 0.036 0.065 0.219 0.258 0.345
50% 0.527 0.201 0.197 1.221 1.291 0.900
70% 3.954 1.042 0.926 5.562 5.145 2.027

bunny
30% 0.015 0.006 0.061 0.244 0.070 0.335
50% 0.064 0.046 0.190 0.401 0.137 0.801
70% 0.122 0.080 0.323 0.694 0.304 1.812

minnesota
30% 0.332 0.088 0.078 0.220 0.295 0.324
50% 1.363 0.431 0.310 2.394 2.676 0.873
70% 7.452 4.553 1.892 8.412 9.354 2.068

Table 1: Mean relative error for the first k = 10 eigenvalues, for different graphs, reduction ratios,
and coarsening methods.

r
heavy
edge

local var.
(edges)

local var.
(neigh.)

algebraic
distance

affinity
Kron

reduction

yeast
30% 0.311 0.113 0.023 0.113 0.162 0.120
50% 1.087 0.413 0.130 0.522 0.676 1.196
70% 3.618 2.212 0.454 2.387 2.474 1.946

airfoil
30% 0.278 0.095 0.181 0.191 0.257 0.366
50% 0.555 0.326 0.349 0.692 0.788 0.955
70% 2.059 0.905 0.848 2.309 2.619 2.141

bunny
30% 0.014 0.008 0.085 0.215 0.049 0.294
50% 0.067 0.058 0.181 0.356 0.092 0.660
70% 0.122 0.098 0.299 0.520 0.200 1.192

minnesota
30% 0.358 0.118 0.115 0.223 0.308 0.342
50% 0.967 0.468 0.383 1.105 1.296 0.944
70% 3.588 2.160 1.610 4.113 4.133 2.198

Table 2: Mean relative error for the first k = 40 eigenvalues, for different graphs, reduction ratios,
and coarsening methods.

the coarse graph is as small as one third of the size of the original graph (corresponding to
r = 70%).

It might also be interesting to observe that there is a general agreement between the trends
reported here and those described in the matrix approximation experiment. In particular,
if one sorts the tested methods from best to worse, he/she will obtain an ordering that is
generally consistent across the two experiments, with local variation methods giving the best
approximation by a significant margin. A case in point: for the maximum ratio, the smallest
local variation error is on average 3.5× smaller than the leading state-of-the-art coarsening
method. The gain is 2.3× if the Kron reduction is also included in the comparison.

Overall, it can be deduced from these results that local variation methods coarsen a graph
in a manner that preserves its spectrum. This is in accordance with the theoretical results.
As it was shown by Theorem 13, if L and Lc act similar w.r.t. all vectors in Uk, then their
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Figure 3: Execution time as a function of the number of edges of the graph.

eigenvalues cannot be far apart. Therefore, by aiming for restricted approximation, local
variation methods implicitly also guarantee spectrum approximation.

5.3. Efficiency

The last experiment tests computational efficiency. I adopt a simple approach and aim
to coarsen a 10-regular graph of increasing size8. I measure the execution time of the six
different methods for graph reduction and report the mean over ten iterations while capping
computation at 100 seconds.

The results are displayed in Figures 3a and 3b for subspaces of size 10 and 40, respec-
tively. As with most such comparisons, the actual numbers are only indicative and depend
on the programming language utilized (Python), processing paradigm (no parallelism was
employed), and hardware architecture (2.2GHz CPU)9.

Focusing on the trends, except for Kron reduction and affinity, most methods scale quasi-
linearly with the number of edges. Interestingly, local variation methods are quite compet-
itive and do not sacrifice much as compared to the straightforward heavy edge matching.
One can also observe that constructing F`−1 based on neighborhoods results in slightly
slower computation that with the edge-based method construction because in the latter
case the local variation cost can be computed much more efficiently.

6. Conclusions

Graph reduction techniques are commonly used in modern graph processing and machine
learning pipelines in order to facilitate the processing and analysis of large graphs. Nev-
ertheless, more often than not these techniques have been designed based on intuition and
possess no rigorous justification or provable guarantees.

8. Starting from a ring, this graph is constructed by connecting each vertex with the five neighbors in either
side.

9. I expect that a significant speedup can be achieved by compiling the code to native machine instructions
as well as by parallelizing the local variation cost computation.
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This work considered the graph reduction problem from the perspective of restricted spec-
tral approximation—a modification of the measure utilized for the construction of graph
sparsifiers. This measure is especially relevant when restricted to Laplacian eigenspaces of
small variation, as it implies strong spectral and cut guarantees. The analysis of restricted
spectral approximation has lead to new algorithms for graph coarsening that provably ap-
proximate (a portion of) the graph spectrum, as well as the cut structure of a large graph.

Certain important questions remain open at the point of concluding this manuscript. To
begin with, I am currently unaware of a rigorous way to determine how much one may benefit
from reduction—that is, how small can ε be for a specific subspace and target n? In addition,
no polynomial-time algorithm for graph coarsening exists that provably approximates the
minimal achievable ε. Finally, though I lack a formal proof, I also suspect that stronger
cut guarantees can be derived from restricted spectral approximation. I argue that the
potential of graph reduction cannot be fully realized until these fundamental questions are
satisfactorily addressed.
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Appendix A. Deferred Proofs

A.1. Proof of Property 1

I draw up an inductive argument demonstrating that Π is a projection matrix. The base
case, i.e., that Ac = P+

c Pc is a projection matrix follows by the definition of the pseudo-
inverse: AcAc = P+

c PcP
+
c Pc = P+

c Pc = Ac, where one uses the property Pc = PcP
+
c Pc.

For the inductive step, I argue that if A`+1 is a projection matrix the same holds for

A` = P+
` A`+1 P`.

To this end, let P` = UΣV > be the singular-value decomposition with Σ = (D; 0) ∈
RN`+1×N` decomposed into the N`+1 ×N`+1 diagonal matrix D and the all zero matrix 0.
Then

A` = V Σ+U>A`+1 UΣV >.

Recalling that a projection matrix remains projective if it undergoes a similarity transfor-
mation, we deduce that U>A`+1 U is also projective and, moreover, if Σ+U>A`+1 UΣ is a
projection matrix, so is A`. However, one may write

Σ+U>A`+1 UΣ =

(
D−1 0

0 0

)
U>A`+1 U

(
D 0
0 0

)
=

(
D−1U>A`+1 UD 0

0 0

)
.
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As a block diagonal matrix whose blocks are projective (again D−1U>A`+1 UD is a sim-
ilarity transformation), Σ+U>A`+1 UΣ is also a projection matrix. The proof that Π is
a projection matrix concludes by letting the induction unfold backwards from c to 1 and
setting Π = A1.

A.2. Proof of Theorem 3

The Courant-Fischer min-max theorem for a Hermitian matrix L reads

λk = min
dim(U)=k

max
x∈U

{
x>Lx

x>x
|x 6= 0

}
, (8)

whereas the same theorem for Lc gives

λ̃k = min
dim(Uc)=k

max
xc∈Uc

{
x>c Lcxc
x>c xc

|xc 6= 0

}
= min

dim(Uc)=k
max
Px∈Uc

{
x>ΠLΠx

x>P>Px
|x 6= 0

}
,

where in the second equality I substitute Lc = P∓LP+ and xc = Px.

We will need the following result:

Lemma 19 For any P with full-row rank, the following holds:

λ1(PP>)x>Πx ≤ x>P>Px ≤ λn(PP>)x>Πx,

with λ1(PP>) and λn(PP>), respectively the smallest and largest eigenvalues of PP>.

Proof Set D = (PP>)+, which is an n × n PSD matrix. By the properties of the
Moore–Penrose inverse P+ = P>(PP>)+ = P>D and therefore P>P = P>DD−1P =
P+D−1P . Supposing that the eigenvalues of D lie in [λmin(D), λmax(D)] and that P is full
row-rank such that λmin(D) > 0, one may write

1

λmax(D)
x>Πx ≤ x>P>Px = x>P+D−1Px ≤ 1

λmin(D)
x>Πx.

To grasp why the aforementioned inequality holds, first use the cyclic property of the trace
to obtain

x>P+D−1Px = tr(x>P+D−1Px) = tr(D−1Pxx>P+),

and further recall that for any symmetric A and PSD matrix B one has λmin(A)tr(B) ≤
tr(AB) ≤ λmax(A)tr(B), where λmin(A) denotes the smallest eigenvalue of A (and λmax(A)
is the largest) (Fang et al., 1994). Set A = D−1, which is by assumption symmetric, and
B = Pxx>P+, which is PSD since its rank is (at most) one with the only (potentially)
non-zero eigenvalue exactly tr(Pxx>P+) = x>P+Px = x>Πx = x>Π2x = ‖Πx‖22 ≥ 0,
where Π = Π2 due to being a projection matrix (Property 1. The desired inequality then
follows since λmin(D−1) = 1/λmax(D) = 1

β , λmax(D−1) = 1/λmin(D) = 1
α and once more

tr(Pxx>P+) = x>Πx.
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Finally, since P is full row-rank, D is invertible meaning λmin(D) = 1/λn(PP>) and
λmax(D) = 1/λ1(PP>).

From the above, it is deduced that

λ̃k ≥ min
dim(Uc)=k

max
Px∈Uc

{
x>ΠLΠx

λn(PP>)x>Πx
|x 6= 0

}
=

1

λn(PP>)
min

dim(U)=k,U⊆im(Π)
max
x∈U

{
x>Lx

x>x
|x 6= 0

}
,

where the equality holds since Π is a projection matrix (see Property 1). Notice how, with
the exception of the constraint x = Πx and the multiplicative term, the final optimization
problem is identical to the one for λk, given in (8). As such, the former’s solution must be
strictly larger (since it is a more constrained problem) and λ̃k ≥ λk

λn(PP>)
.

Analogously, one obtains the lower inequality λ̃k−(N−n) ≤ λk
λ1(PP>)

by applying the same

argument on matrices −L and −Lc and exploiting that the k-th largest eigenvalue of any
matrix M is also the k-th smallest eigenvalue of −M .

A.3. Proof of Proposition 6

For notational convenience, I drop the level index supposing that c = 1 and thus P is an
n×N coarsening matrix. As we will see in the following, P has rank n and thus to prove
that P+ = P>D−2, it is sufficient to show that matrix Π = P>D−2P is a projection matrix
of rank n (and thus equal to P+P ). Matrix P̃ = D−1P has the same sparsity structure
as P and is thus also a coarsening matrix. W.l.o.g. let the rows of P be sorted based on
their support, such that for any two rows r < r′ and P (r, i), P (r′, i′) 6= 0 we necessarily
have i < i′. Furthermore, denote by pr the vector containing all non-zero entries of P (r, :)
such that ‖pr‖2 = ‖P (r, :)‖2 = D(r, r). Due to the disjoint support of the rows of P and
under this particular sorting, matrix Π is block-diagonal. Moreover, each block Br in its
diagonal is a rank 1 projection matrix as B2

r = BrBr =
(
prD(r, r)−2p>r

) (
prD(r, r)−2p>r

)
=

prD(r, r)−2p>r
p>r pr
‖pr‖22

= Br. We have thus arrived to the relation Π2 = Π, which constitutes

a necessary and sufficient condition for Π to be a projection matrix. The block-diagonal
structure of Π also implies that its rank (as well as that of P ) is n.

A.4. Proof of Proposition 7

Let us first remark that, by Proposition 6, A = P∓ is also a coarsening matrix with the
same sparsity structure as P .

Necessity. I start by considering the nullspace of Lc = ALA> and aim to ensure that it
is equal to the span of the constant vector 1, which is a necessity for all combinatorial
Laplacian matrices. Since matrix A is full row-rank and L has rank N − 1, the nullspace of
Lc is one dimensional. Therefore, the nullspace is correct as long as 1>ALA>1 = 0, which
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happens if either A>1 = α1 for a constant α or A>1 = 0. In both cases, (A>1)(r) = α1
for every r. By the definition of A however, we know that its rows have disjoint support
and, as such, vector A>1 exactly contains the non-zero entries of A. In other words, for the
nullspace of Lc to be properly formed, the non-zero entries of A should either all be equal
to α (such that A>1 = α1) or zero (in which case A>1 = 0). The latter case can clearly
be discarded as it would disconnect the graph. We have thus discovered that ALA> has a
properly formed nullspace if and only if the non-zero entries of A are equal, rendering the
latter condition necessary.

Sufficiency. Considering that every Laplacian of M edges can be re-written as L = S>S,
where S is the M×N incidence matrix, one may confirm that the condition is also sufficient
by showing that, for every A with equal non-zero entries, the matrix Sc = SA> is an
incidence matrix of Lc such that Lc = S>c Sc. W.l.o.g., suppose that α = 1 (α2L is a valid
Laplacian for all α). By construction, each row of Sc is Sc(q, :)

> = AS(q, :)>. Name as
eij the corresponding edge, such that S(q, :)> = δi − δj , where δi is a dirac centered at
vertex vi. It follows that Sc(q, :)

> = Aδi − Aδj . Obviously, if none of vi, vj are contracted
then Sc(q, :)

> = δi − δj , which is a valid row. Moreover, by construction of A, if either
of vi, vj is contracted (but not both) or if vi, vj are contracted into different vertices then
both relations Aδi = δi and Aδj = δj hold and thus once more Sc(q, :)

> = δi − δj is a
valid row. Lastly, if vi, vj are contracted into the same vertex then for some r it must be
that A(r, i) = A(r, j), whereas A(r′, i) = A(r′, j) = 0 for all r′ 6= r and thus Sc(r, :)

> = 0,
signifying that the edge is not present. Summarizing, in every case Sc is a valid incidence
matrix, rendering the condition also sufficient.

A.5. Proof of Property 8

For any two disjoint subsets S1,S2 of V denote by w(S1,S2) =
∑

vi∈S1
∑

vj∈Sj wij the cut
weight in G.

The claim is proven by induction on the number of levels. For the base case, set ` = 1 and

define C = P+
1 such that cr = C(:, r) is the indicator vector of the contraction set V(r)

0 . It
is a consequence of the Laplacian form of L that, for any vr, vq ∈ V1 with r 6= q, we have

W1(r, q) = −L1(r, q) = −c>r Lcq =
∑
vi 6=vj

wijcr(i)cq(j) +
∑
vi

dicr(i)cq(i)

=
∑

vi∈V
(r)
0 ,vj∈V

(q)
0

wij = w(S(r)
1 ,S(q)

1 ),

where the penultimate step uses cr(i)cq(i) = 0 since contraction steps are disjoint, and the

last step exploits the equivalence V(q)
0 = S(q)

1 . For the inductive step, consider level ` > 1.
Since L`−1 is a Laplacian matrix, one may employ an identical argument as when ` = 1 to
find that the weight between vertices vr, vq ∈ V` with r 6= q is

W`(r, q) =
∑

vi∈V
(r)
`−1,vj∈V

(q)
`−1

W`−1(i, j).
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By the induction hypothesis however, it must be W`−1(i, j) = w(S(i)
`−1,S

(j)
`−1), implying

W`(r, q) =
∑

vi∈V
(r)
`−1,vj∈V

(q)
`−1

w(S(i)
`−1,S

(j)
`−1) = w(S(r)

` ,S(q)
` ),

with the final equality being true due to the recursive definition of sets S(r)
` and S(q)

` , as well
as the following property of cuts: for any two sets (call them large sets) and any partition
of each into an arbitrary number of subsets, the cut between the large sets is equal to the
sum of all cuts between pairs of subsets belonging to different large sets. This completes
the proof.

A.6. Proof of Theorem 13

The lower bound is given by Theorem 3. For the upper bound, I reason similarly to the
proof of the latter to find:

λ̃k = min
dim(Uc)=k

max
xc∈Uc

{
x>c Lcxc
x>c xc

|xc 6= 0

}
≤ γ2 min

dim(U)=k,U⊆im(Π)
max
x∈U

{
x>ΠLΠx

x>Πx
|x 6= 0

}
.

Above, the inequality is due to Lemma 19 with γ2 = 1/λ1(PP>). Thus, for any matrix V
the following inequality holds

λ̃k ≤ γ2 max
x∈span(V )

{
x>ΠLΠx

x>Πx
|x 6= 0

}
,

as long as the image of V is of dimension k and does not intersect the nullspace of Π.
Write Uk to denote the N × k matrix with the k first eigenvectors of L, whose image is of
dimension k as needed. Assume for now that the nullspace requirement is also met:

λ̃k ≤ γ2 max
x∈span(Uk)

{
x>ΠLΠx

x>Πx
|x 6= 0

}
= γ2 max

x∈span(Uk)

{
‖SΠx‖22
‖Πx‖22

|x 6= 0

}
.

It will be convenient to manipulate the square-root of this quantity:√
λ̃k
γ2
≤ max

a∈Rk

‖SΠUka‖2
‖ΠUka‖2

=
‖SΠUk‖2
‖ΠUk‖2

≤ ‖SUk‖2 + ‖SΠ⊥Uk‖2
‖ΠUk‖2

=

√
λk + ‖SΠ⊥Uk‖2
‖ΠUk‖2

, (9)

with S defined such that L = S>S. The norm in the numerator is upper bounded by

‖SΠ⊥Uk‖2 = ‖SΠ⊥UkΛ
−1/2
k Λ

1/2
k ‖2 ≤ ‖SΠ⊥UkΛ

+1/2
k ‖2‖Λ

1/2
k ‖2

=
√
λk ‖SΠ⊥UkΛ

+1/2
k ‖2 =

√
λk εk.

If the last step is not immediately obvious, one can be convinced by first exploiting the

unitary-invariance of the spectral norm to write ‖SΠ⊥UkΛ
+1/2
k ‖2 = ‖SΠ⊥UkU

>
k L

+1/2‖2,
and then confirming in the proof of Proposition 17 that the latter quantity is exactly εk
when V = Uk.
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The preceding analysis assumed that the image of Uk and the nullspace of Π did not
intersect. Since Π⊥ = I − Π is a complement projection matrix , the previous holds when
‖Π⊥Uk‖22 < 1. Since ‖Π⊥u1‖ = 0, one may w.l.o.g. exclude the first eigenvector u1 from
the space of interest. For the remainder of im(Uk) the following holds:

‖Π⊥Uk‖22 = max
x∈Uk and x⊥u1

‖Π⊥x‖22
‖x‖22

≤ 1

λ2
max

x∈Uk and x⊥u1

‖Π⊥x‖2L
‖x‖22

= ε2k
λk
λ2
.

Therefore, when ε2k <
λ2
λk

, the nullspace condition is met. The proof is then concluded by

substituting the bound ‖ΠUk‖22 = 1− ‖Π⊥Uk‖22 ≥ 1− ε2k
λk
λ2

in the denominator of (9).

A.7. Proof of Theorem 14

Li (1994) showed that we can express the sinΘ as a sum of squared inner products:∥∥∥sin Θ
(
Uk, P

>Ũk
)∥∥∥2

F
=
∥∥∥Ũ>k⊥PUk∥∥∥2

F
=
∑
i≤k

∑
j>k

(ũ>j Pui)
2 (10)

If Lc and L are (Ui, εi)-similar it follows from Corollary 12 that

u>i P
>LcPui ≤ (1 + εi)

2λi.

Summing these inequalities for all i ≤ k amounts to∑
i≤k

(1 + εi)
2λi ≥

∑
i≤k

n∑
j=1

λ̃j(ũ
>
j Pui)

2

≥ γ1

∑
i≤k

n∑
j=1

λj(ũ
>
j Pui)

2

= γ1

∑
j≤k

λ
∑
i≤k

(ũ>j Pui)
2 + γ1

∑
j>k

λj
∑
i≤k

(ũ>j Pui)
2. (11)

where, following Theorem 3, I set γ1 = 1/λn(PP>) such that λ̃i ≥ γ1λi. Perform the
following manipulation:

∑
j≤k

λj
∑
i≤k

(ũ>j Pui)
2 ≥

∑
j≤k

λj
∑
i≤k

(ũ>j Pui)
2 =

∑
j≤k

λj

(
1−

∑
i>k

(ũ>j Pui)
2

)

≥
∑
j≤k

λj − λk
∑
i≤k

‖Π⊥ui‖22 +
∑
j≥k

(ũ>j Pui)
2

 ,

which together with (10) and (11) yields∥∥∥sin Θ
(
Uk, P

>Ũk
)∥∥∥2

F
≤
∑
i≤k

(1 + εi)
2λi/γ1 − λi + λk‖Π⊥ui‖22

λk+1 − λk
(12)

To proceed, I note the following useful inequality:
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Lemma 20 If L and Lc are (Ui, εi)-similar, then ‖Π⊥ui‖22 ≤ εi.

Proof For every ui one sees that

u>i P
>LcPui = u>i ΠLΠui = u>i (I −Π⊥)L(I −Π⊥)ui

= u>i Lui − 2u>i LΠ⊥ui + u>i Π⊥LΠ⊥ui

= λi − 2λiu
>
i Π⊥ui + u>i Π⊥LΠ⊥ui

meaning that

‖Π⊥ui‖22 =
1

2

(
1 +

u>i Π⊥LΠ⊥ui
λi

− u>i P
>LcPui
λi

)
≤ 1

2

(
1 + ε2i − (1− εi)2

)
= εi.

The last inequality is because, by restricted spectral approximation, we have u>i Π⊥LΠ⊥ui =
‖Π⊥ui‖2L ≤ ε2i ‖ui‖2L = ε2iλi and from Corollary 12:

u>i P
>LcPui = ‖Pui‖2Lc

≥ (1− εi)2‖ui‖2L = (1− εi)2λi.

As a consequence, it follows that∥∥∥sin Θ
(
Uk, P

>Ũk
)∥∥∥2

F
≤
∑
i≤k

(1 + εi)
2λi/γ1 − λi + λkεi
λk+1 − λk

,

which after manipulation gives the desired inequality.

A.8. Proof of Theorem 15

The lower bound is a direct consequence of consistent coarsening and holds independently
of restricted spectral approximation: for any set Sc ⊂ Vc define S ⊂ V such that vi ∈ S if
and only if ϕc ◦ϕc−1 ◦ · · ·ϕ1(vi) ∈ Sc. Clearly, w(S) ≥ wc(Sc), where the subscript c implies
that the latter volume is w.r.t. Gc. In addition, by the definition of Laplacian consistent
coarsening and since every contraction set belongs either in S or S̄ (but not in both), it
follows that w(S, S̄) = wc(Sc, S̄c). In other words, for every Sc there exists a set S such
that

φ(S) =
w(S, S̄)

min{w(S), w(S̄)}
≤ wc(Sc, S̄c)

min{wc(Sc), wc(S̄c)}
= φc(Sc),

implying also that the k-conductance of G and Gc are related by φk(G) ≤ φk(Gc).

For the upper bound, I exploit the following multi-way Cheeger inequality:

Theorem 21 (Restatement of Theorem 1.2 by Lee et al. (2014)) For every graph
G and every k ∈ N, we have

µk
2
≤ φk(G) = O(

√
µ2k ξk(G)),

with ξk(G) ≤ log k. If G is planar then ξk(G) ≤ 1 and if G excludes Kh as a minor (but is
not planar) then ξk(G) ≤ h4.
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Further, in the standard Cheeger inequality (Alon and Milman, 1985; Alon, 1986) k = 2
and the upper bound is given by

√
2µ2. Note that the eigenvalues mentioned here are those

of the normalized Laplacian matrix Ln = D−1/2LD−1/2. To this end, suppose that V2k

contains the first 2k eigenvectors of Ln and fix R = span(D−1/2V2k). Perform consistent
coarsening w.r.t. to the combinatorial Laplacian L (not Ln). Then, by definition, if Lc and
L are (ε2k,R)-similar then for every x ∈ R one gets

‖Π⊥x‖L ≤ ε2k‖x‖L.

The substitution y = D1/2x, such that y ∈ span(V2k), allows us to transform the semi-norms
above into semi-norms concerning Ln as follows:

‖x‖2L = x>Lx = y>D−
1/2LD−

1/2y = ‖y‖2Ln

and

‖Π⊥x‖L = ‖D−1/2D
1/2Π⊥D−

1/2D
1/2x‖L = ‖D1/2Π⊥D−

1/2y‖Ln = ‖(I −Πn)y‖Ln .

Above, Πn = D1/2ΠD−1/2 is the projection matrix (the set of projection matrices is closed
under similarity transformations) corresponding to the coarsening matrix Pn = PD−1/2,
and now yc = Πny. It follows that, for every y ∈ V2k = span(V2k), we have

‖y −Πny‖Ln ≤ ε2k‖y‖Ln

and thus Lnc and Ln are (V2k, ε2k)-similar.

Combining the multi-way Cheeger inequality with Theorem 13 for Lnc and Ln one obtains

φ2
k(Gc) = O (µ̃2k ξk(G))

= O

(
γ2(1 + ε2k)

2 µ2

µ2 − ε2kµ2k
µ2k ξk(G)

)
= O

(
γ2 (1 + ε2k)

2ξk(G)

1− ε22k(µ2k/µ2)
φk(G)

)
,

where the eigenvalues above are those of Ln and the preceeding holds whenever ε22k <

µ2/µ2k. Further, when k = 2 the upper bound simplifies to φ2
2(Gc) ≤ 4 γ2 (1+ε2)2

1−ε22
φ2(G).

A.9. Proof of Proposition 17

The following analysis is slightly more general than what is claimed in the statement of
Proposition 17: it holds for arbitrary PSD L and Lc (i.e., not necessarily Laplacian matrices)
as long as the image im(Π) of the projection matrix Π encloses the nullspace of L. The
former trivially holds for Laplacian consistent coarsening, as, by design, one has Π1 = 1
(see Section 2.4).

Let V ∈ RN×k be a basis of R. I start by proving that, for any integer k ≤ n and for all
x ∈ span(V ) the inequality

‖x−Πx‖L ≤ ε ‖x‖L
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holds for all ε ≥ ‖Π⊥B0‖L, where B0 = V V >L+1/2. I remind the reader that ‖x‖L =
‖Sx‖2 = ‖L1/2x‖2 and Π⊥ = I − P+P . Furthermore, since im(Π) necessarily encloses the
nullspace N of L, w.l.o.g., one may assume that ∀x ∈ R the action of matrix L is invertible.
To see why, note that if x ∈ N then ‖x‖L = 0 and ‖x − Πx‖L = 0, meaning that the
inequality above is trivially satisfied. I then derive

max
x∈R

‖x−Πx‖L
‖x‖L

= max
x∈R

‖SΠ⊥x‖2
‖L1/2x‖2

= max
x∈R

‖SΠ⊥V V >x‖2
‖L1/2x‖2

(13)

= max
x∈im(LV )

‖SΠ⊥V V >L+1/2x‖2
‖x‖2

(14)

≤ ‖SΠ⊥V V >L+1/2‖2 = ‖Π⊥B0‖L,

where equality (13) holds because V V > is a projection onto R, whereas equality (14) is
true since L is invertible within R.

One should also note that, for the specific case where V is an eigenspace of L, im(LV ) = R
and as such ε = ‖Π⊥x‖L/ ‖x‖L = ‖SΠ⊥V V >L+1/2‖2 (once more w.l.o.g. the nullspace of L
can be ignored).

In addition, as the following technical lemma claims, in a multi-level scheme, any ‖Π⊥x‖L
can be broken down into the contributions of each level:

Lemma 22 Define projection matrices Π` = P+
` P` and Π⊥` = I −Π`. If

‖Π⊥` x`−1‖L`−1
≤ σ` ‖x`−1‖L`−1

at each level ` ≤ c,

then the multi-level error is bounded by

‖Π⊥x‖L ≤

 c∑
`=1

σ`

`−1∏
q=1

(1 + σq)

 ‖x‖L =

(
c∏
`=1

(1 + σ`)− 1

)
‖x‖L.

Proof Recursively apply the following inequality∥∥∥S`−1Π⊥` x`−1

∥∥∥
2
≤ σ` ‖S`−1x`−1‖2
= σ` ‖S`−2Π`−1x`−2‖2
≤ σ`

(
‖S`−2x`−2‖2 +

∥∥∥S`−2Π⊥`−1x`−2

∥∥∥
2

)
≤ σ` (‖S`−2x`−2‖2 + σ`−1 ‖S`−2x`−2‖2) = σ` (1 + σ`−1) ‖S`−2x`−2‖2

to deduce that∥∥∥S`−1Π⊥` x`−1

∥∥∥
2
≤ σ`

`−1∏
q=1

(1 + σq)‖S0x0‖2 = σ`

`−1∏
q=1

(1 + σq)‖x‖L.

34



Graph Reduction with Spectral and Cut Guarantees

The end-to-end error ‖SΠ⊥x‖2 is controlled with a simple telescopic series argument.

‖Π⊥x‖L = ‖S0Π⊥x0‖2 = ‖S0x0 − Scxc‖2
≤ ‖S0x0 − S1x1‖2 + ‖S1x1 − S2x2‖2 + . . .+ ‖Sc−1xc−1 − Scxc‖2
= ‖S0Π⊥1 x1‖2 + ‖S1Π⊥1 x1‖2 + . . .+ ‖Sc−1Π⊥c xc−1‖2

Together, the above two results imply the desired bound.

Therefore, to guarantee that in a multi-level scheme

‖Π⊥B0‖L = max
b∈RN

‖SΠ⊥B0 b‖2
‖b‖2

≤ ε,

one needs to make sure that, for each level ` = 1, . . . , c, the following holds:

‖S`−1Π⊥` x`−1‖2
‖S`−1x`−1‖2

≤ σ`, for all x`−1 = P`−1 · · ·P1B0 b

By the same argument used for the multi-level error, when ` = 1, we have that σ1 =
‖Π⊥1 B0‖L0 . For all other `, set B`−1 = P`−1 · · ·P1B0 and further let (B>`−1L`−1B`−1)+1/2 be

the pseudo-inverse of the matrix square-root of the N ×N matrix B>`−1L`−1B`−1. By the
substitution b = S`−1B`−1a, the above can be rewritten as

max
b∈RN

‖S`−1Π⊥` B`−1b‖2
‖S`−1B`−1b‖2

= max
b∈RN

‖S`−1Π⊥` B`−1(B>`−1L`−1B`−1)+1/2b‖2
‖b‖2

.

For ` > 1, therefore σ` = ‖Π⊥` A`−1‖L`−1
with A`−1 = B`−1(B>`−1L`−1B`−1)+1/2.

A.10. Proof of Proposition 18

For notational simplicity in the context of this proof I drop level indices and assume that
only a single coarsening level is used—this is without loss of generality, as an identical
argument holds for every level of the scheme.

Consider any x and set y = Π⊥x. Furthermore, define for each contraction set the (i)
internal edge set E(r) = {eij |vi, vj ∈ V(r) and eij ∈ E`−1} , and (ii) the boundary edge set
∂E(r), such that eij ∈ ∂E(r) if and only if vi ∈ V(r) and vj /∈ V(r). It is true that

‖Π⊥x‖2L =
∑
eij∈E

wij(y(i)− y(j))2

=

n∑
r=1

( ∑
eij∈E(r)

wij(y(i)− y(j))2

︸ ︷︷ ︸
ar

+
1

2

∑
eij∈∂E(r)

wij(y(i)− y(j))2

︸ ︷︷ ︸
br

)
.
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In the following, I will express ar and br as a function of the vector yr = Π⊥V(r)x. Term ar
is luckily independent of any other contraction set:

ar =
∑

eij∈E(r)
wij(y(i)− y(j))2 =

∑
eij∈E(r)

wij(yr(i)− yr(j))2.

On the other hand, br is smaller than

br =
∑

eij∈∂E(r)
wij(y(i)− y(j))2 ≤ 2

∑
eij∈∂E(r)

wij(y(i)− 0)2 + 2
∑

eij∈∂E(r)
wij(0− y(j))2.

Distributing the second quantities, respectively, amongst the contraction sets that include
said vertices, one gets

‖Π⊥x‖2L ≤
n∑
r=1

( ∑
eij∈E(r)

wij(yr(i)− yr(j))2 + 2
∑

eij∈∂E(r)
wij(y(i)− 0)2

)

=
n∑
r=1

( ∑
eij∈E(r)

wij(yr(i)− yr(j))2 +
∑

eij∈∂E(r)
(2wij)(yr(i)− yr(j))2

)

=
n∑
r=1

‖yr‖2LV(r) =
∑
C∈P
‖yr‖2LC .

The second step above used the fact that [Π⊥](i) = 0 for all vi /∈ C. A decoupled bound
can then be obtained as follows:

‖Π⊥A‖2L = max
a∈Rk−1

‖SΠ⊥Aa‖22
‖a‖22

≤
∑
C∈P

max
a∈Rk−1

‖Π⊥C Aa‖2LC
‖a‖22

=
∑
C∈P
‖Π⊥C A‖2LC

The final inequality is derived by taking the square-root of the last equation.

Appendix B. Complexity Analysis

The computational complexity of Algorithm 1 depends on the number of nodes N and
edges M of G, the number of levels c, the subspace size k, as well as on how the families
of candidate sets are formed. To derive worst-case bounds, I denote by Φ` =

∑
C∈F`

|C|
the number of vertices in all candidate sets and by δ = max`,C∈F`

|C| the cardinality of the
maximum candidate set over all levels. Furthermore, I suppose that the per-level reduction
ratio r` is a constant.

I start with some basic observations:

• Computing A0, . . . , Ac−1 is possible in Õ(ckM +k2N + ck3) operations when V = Uk.
Each A`−1 is computed once for each level. For ` = 1, one needs to approximate
the first k eigenpairs of L, which can be achieved in Õ(kM) operations using inverse
iteration as described by Vishnoi et al. (2013). For consecutive levels, forming matrix
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B>`−1L`−1B`−1 takes O(M`−1k+N`−1k
2) operations, whereas computing the pseudo-

square-root (B>`−1L`−1B`−1)+1/2 is possible in O(k3) operations. Summed up, the costs
for all levels amount to O(k

∑c
`=1M`−1 +k2

∑c
`=2N`−1 +ck3) = O(ckM+k2N+ck3),

where I used the observation that
∑c

`=2N`−1 = O(N).

• At each level, the cost function is evaluated at most Φ` times. One starts by computing
the cost of each candidate set in F`. Moreover, every C added to P` causes the
pruning of at most

∑
vi∈C(φi− 1) other sets, where φi is the number of candidate sets

that include vi. Since P` is a partitioning of V`−1, at most
∑
C∈P`

∑
vi∈C(φi − 1) ≤∑

vi∈V`−1
φi − |F`| = Φ` − |F`| cost re-evaluation are needed.

• Given A`−1, each call of cost`(C) requires O(min{k2δ + kδ2, kδ2 + δ3}) operations.
The involved matrices themselves can be easily formed since, excluding all-zero rows
and columns, both LC and Π⊥C are |C| × |C| matrices and one can safely restrict A`−1

to be of size |C|×k by deleting all rows that would have been multiplied by zero. Now,
by definition, the incidence matrix SC of LC has at most δ columns and 2δ rows (since
one can bundle all boundary weights of a vertex in C in a single row). Depending on
the relative size of k and δ the computation can be performed in two ways:

– Either one forms the k× k matrix A>`−1Π⊥C LCΠ
⊥
C A`−1 and approximate its spec-

tral norm paying a total of O(k2δ + kδ2).

– Otherwise, the 2d × 2d matrix SCΠ
⊥
C A`−1A

>
`−1Π⊥C S

>
C is formed and its norm is

computed at a combined cost of O(δ2k + δ3).

• Maintaining F` sorted incurs O(Φ` log |F`|) cost. Sorting F` during initialization
entails O(|F`| log |F`|) operations. Inserting each C′ into F` (see step 12) can be done
in O(log |F`|) and, moreover, by the same argument used to bound the number of cost
evaluations, at most Φ` − |F`| such insertions can happen.

• Other operations carry negligible cost. In particular, by implementing marked as a
binary array, checking if a vertex is marked or not can be done in constant time.

Overall, using Algorithm 2 and for R = Uk one can coarsen a graph in Õ(ckM + k2N +
ck3 +

∑c
`=1 Φ`(min{k2δ + kδ2, kδ2 + δ3} + log |F`|)) time, where the asymptotic notation

hides poly-logarithmic factors.
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