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Abstract

We consider stochastic settings for clustering, and develop provably-good approximation
algorithms for a number of these notions. These algorithms yield better approximation
ratios compared to the usual deterministic clustering setting. Additionally, they offer a
number of advantages including clustering which is fairer and has better long-term behavior
for each user. In particular, they ensure that every user is guaranteed to get good service
(on average). We also complement some of these with impossibility results.
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1. Introduction

Clustering is a fundamental problem in machine learning and data science. A general
clustering task is to partition the given datapoints such that points inside the same cluster
are “similar” to each other. More formally, consider a set of datapoints C and a set of
“potential cluster centers” F , with a metric d on C ∪ F . We define n := |C ∪ F|. Given
any set S ⊆ F , each j ∈ C is associated with the key statistic d(j,S) = mini∈S d(i, j). The
typical clustering task is to select a set S ⊆ F which has a small size and which minimizes
the values of d(j,S).
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The size of the set S is often fixed to a value k, and we typically “boil down” the large
collection of values d(j,S) into a single overall objective function. A variety of objective
functions and assumptions on sets C and F are used. The most popular problems include 1

• the k-center problem: minimize the value maxj∈C d(j,S) given that F = C.

• the k-supplier problem: minimize the value maxj∈C d(j,S) (where F and C may be
unrelated);

• the k-median problem: minimize the summed value
∑

j∈C d(j,S); and

• the k-means problem: minimize the summed square value
∑

j∈C d(j,S)2.

An important special case is when C = F (e.g. the k-center problem); since this often
occurs in the context of data clustering, we refer to this as the self-contained clustering
(SCC) setting.

These classic NP-hard problems have been studied intensively for the past few decades.
There is an alternative interpretation from the viewpoint of operations research: the sets F
and C can be thought of as “facilities” and “clients”, respectively. We say that i ∈ F is open
if i is placed into the solution set S. For a set S ⊆ F of open facilities, d(j,S) can then be
interpreted as the connection cost of client j. This terminology has historically been used
for clustering problems, and we adopt it throughout for consistency. However, our focus is
on the case in which C and F are arbitrary abstract sets in the data-clustering setting.

Since these problems are NP-hard, much effort has been paid on algorithms with “small”
provable approximation ratios/guarantees: i.e., polynomial-time algorithms that produce
solutions of cost at most α times the optimal. The current best-known approximation ratio
for k-median is 2.675 by Byrka et al. (2017) and it is NP-hard to approximate this problem
to within a factor of 1 + 2/e ≈ 1.735 (Jain et al., 2002). The recent breakthrough by
Ahmadian et al. (2017) gives a 6.357-approximation algorithm for k-means, improving on
the previous approximation guarantee of 9 + ε based on local search (Kanungo et al., 2004).
Finally, the k-supplier problem is “easier” than both k-median and k-means in the sense
that a simple 3-approximation algorithm (Hochbaum and Shmoys, 1986) is known, as is a
2-approximation for k-center problem: we cannot do better than these approximation ratios
unless P = NP (Hochbaum and Shmoys, 1986).

While optimal approximation algorithms for the center-type problems are well-known,
one can easily demonstrate instances where such algorithms return a worst-possible solution:
(i) all clusters have the same worst-possible radius (2T for k-center and 3T for k-supplier
where T is the optimal radius) and (ii) almost all data points are on the circumference of the
resulting clusters. Although it is NP-hard to improve these approximation ratios, our new
randomized algorithms provide significantly better “per-point” guarantees. For example,
we achieve a new “per-point” guarantee E[d(j,S)] ≤ (1 + 2/e)T ≈ 1.736T , while respecting
the usual guarantee d(j,S) ≤ 3T with probability one. Thus, while maintaining good global
quality with probability one, we also provide superior stochastic guarantees for each user.

1. In the original version of the k-means problem, C is a subset of R` and F = R` and d is the Euclidean
metric. By standard discretization techniques (see, e.g., Matoušek (2000); Feldman et al. (2007)), the
set F can be reduced to a polynomially-bounded set with only a small loss in the value of the objective
function.
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The general problem we study in this paper is to develop approximation algorithms
for center-type problems where S is drawn from a probability distribution over k-element
subsets of F ; we refer to these as k-lotteries. We aim to construct a k-lottery Ω achieving
certain guarantees on the distributional properties of d(j,S). The classical k-center problem
can be viewed as the special case where the distribution Ω is deterministic, that is, it is
supported on a single point. Our goal is to find an approximating distribution Ω̃ which
matches the target distribution Ω as closely as possible for each client j.

Stochastic solutions can circumvent the approximation hardness of a number of classical
center-type problems. There are a number of additional applications where stochasticity can
be beneficial. We summarize three here: smoothing the integrality constraints of clustering,
solving repeated problem instances, and achieving fair solutions.

Stochasticity as interpolation. In practice, robustness of the solution is often more important
than achieving the absolute optimal value for the objective function. One potential problem
with the (deterministic) center measure is that it can be highly non-robust. As an extreme
example, consider k-center with k points, each at distance 1 from each other. This clearly
has value 0 (choosing S = C). However, if a single new point at distance 1 to all other
points is added, then the solution jumps to 1. Stochasticity alleviates this discontinuity: by
choosing k facilities uniformly at random among the full set of k + 1, we can ensure that
E[d(j,S)] = 1

k+1 for every point j, a much smoother transition.

Repeated clustering problems. Consider clustering problems where the choice of S can be
changed periodically: e.g., S could be the set of k locations in the cloud chosen by a service-
provider. This set S can be shuffled periodically in a manner transparent to end-users. For
any user j ∈ C, the statistic d(j,S) represents the latency of the service j receives (from
its closest service-point in S). If we aim for a fair or minmax service allocation, then our
k-center stochastic approximation results ensure that, with high probability, every client j
gets long-term average service of at most around 1.736T . The average here is taken over
the periodic re-provisioning of S. (Furthermore, we have the risk-avoidance guarantee that
in no individual provisioning of S will any client have service greater than 3T .)

Fairness in clustering. The classical clustering problems combine the needs of many differ-
ent points (elements of C) into one metric. However, clustering (and indeed many other ML
problems) are increasingly driven by inputs from parties with diverse interests. Fairness in
these contexts has taken on greater importance in the current environment where decisions
are increasingly made by algorithms and machine learning. Some examples of recent con-
cerns include the accusations of, and fixes for, possible racial bias in Airbnb rentals (Badger,
2016) and the finding that setting the gender to “female” in Google’s Ad Settings resulted
in getting fewer ads for high-paying jobs (Datta et al., 2015). Starting with older work such
as Schulman et al. (1999), there have been highly-publicized works on bias in allocating
scarce resources – e.g., racial discrimination in hiring applicants who have very similar re-
sumés (Bertrand and Mullainathan, 2004). Additional work discusses the possibility of bias
in electronic marketplaces, whether human-mediated or not (Ayres et al., 2015; Badger,
2016).

A fair allocation should provide good service guarantees to each user individually. In
data clustering settings where a user corresponds to a datapoint, this means that every
point j ∈ C should be guaranteed a good value of d(j,S). This is essentially the goal of
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k-center type problems, but the stochastic setting broadens the meaning of good per-user
service.

Consider the following scenarios. Each user, either explicitly or implicitly, submits their
data (corresponding to a point in C) to an aggregator such as an e-commerce site. A small
number k of users are then chosen as “influencer” nodes; for instance, the aggregator may
give them a free product sample to influence the whole population in aggregate, as in Kempe
et al. (2015), or the aggregator may use them as a sparse “sketch”, so that each user gets
relevant recommendations from a influencer which is similar to them. Each point j would
like to be in a cluster that is “high quality” from its perspective, with d(j,S) being a good
proxy for such quality. Indeed, there is increasing emphasis on the fact that organizations
monetize their user data, and that users need to be compensated for this (see, e.g., Lanier
(2014); Ibarra et al. (2018)). This is a transition from viewing data as capital to viewing
data as labor. A concrete way for users (i.e., the data points j ∈ C) to be compensated in
our context is for each user to get a guarantee on their solution quality: i.e., bounds on
d(j,S).

1.1. Our contributions and overview

In Section 2, we encounter the first clustering problem which we refer to as chance k-
coverage: namely, every client j has a distance demand rj and probability demand pj , and
we wish to find a distribution satisfying Pr[d(j,S) ≤ rj ] ≥ pj . We show how to obtain an
approximation algorithm to find an approximating distribution Ω̃ with2

Pr
S∼Ω̃

[d(j,S) ≤ 9rj ] ≥ pj .

In a number of special cases, such as when all the values of pj or rj are the same, the
distance factor 9 can be improved to 3, which is optimal ; it is an interesting question to
determine whether this factor can also be improved in the general case.

In Section 3, we consider a special case of chance k-coverage, in which pj = 1 for all
clients j. This is equivalent to the classical (deterministic) k-supplier problem. Allowing
the approximating distribution Ω̃ to be stochastic yields significantly better distance guar-
antees than are possible for k-supplier or k-center. For instance, we find an approximating
distribution Ω̃ with

∀j ∈ C ES∼Ω̃[d(j,S)] ≤ 1.592T and Pr[d(j,S) ≤ 3T ] = 1

where T is the optimal solution to the (deterministic) k-center problem. By contrast,
deterministic polynomial-time algorithms cannot guarantee d(j,S) < 2T for all j, unless
P = NP (Hochbaum and Shmoys, 1986).

In Section 4, we show a variety of lower bounds on the approximation factors achievable
by efficient algorithms (assuming P 6= NP). For instance, we show that our approximation
algorithm for chance k-coverage with equal pj or rj has the optimal distance approximation
factor 3, that our approximation algorithm for k-supplier has optimal approximation factor
1 + 2/e, and that the approximation factor 1.592 for k-center cannot be improved below
1 + 1/e.

2. Notation such as “S ∼ Ω̃” indicates that the random set S is drawn from the distribution Ω̃.
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In Section 5, we consider a different type of stochastic approximation problem based on
expected distances: namely, every client has a demand tj , and we seek a k-lottery Ω with
E[d(j,S)] ≤ tj . We show that we can leverage any given α-approximation algorithm for
k-median to produce a k-lottery Ω̃ with E[d(j,S)] ≤ αtj . (Recall that the current-best α
here is 2.675 as shown in Byrka et al. (2017).)

In Section 6, we consider the converse problem to Section 3: if we are given a k-lottery
Ω with E[d(j,S)] ≤ tj , can we produce a single deterministic set S so that d(j,S) ≈ tj and
|S| ≈ k? We refer to this as a determinization of Ω. We show a variety of determinization
algorithms. For instance, we are able to find a set S with |S| ≤ 3k and d(j,S) ≤ 3tj . We
also show a number of nearly-matching lower bounds.

1.2. Related Work

With algorithms increasingly running our world, there has been substantial recent interest
on incorporating fairness systematically into algorithms and machine learning. One impor-
tant notion is disparate impact : in addition to requiring that protected attributes such as
gender or race not be used (explicitly) in decisions, this asks that decisions not be dispro-
portionately different for diverse protected classes (Feldman et al., 2015). This is developed
further in the context of clustering in the work of Chierichetti et al. (2017). Such notions of
group fairness are considered along with individual fairness – treating similar individuals
similarly – in Zemel et al. (2013). See Dwork et al. (2012) for earlier work that developed
foundations and connections for several such notions of fairness.

In the context of the location and sizing of services, there have been several studies indi-
cating that proactive on-site provision of healthcare improves health outcomes significantly:
e.g., mobile mammography for older women (Reuben et al., 2002), mobile healthcare for
reproductive health in immigrant women (Guruge et al., 2010), and the use of a community
mobile-health van for increased access to prenatal care (Edgerley et al., 2007). Studies
also indicate the impact of distance to the closest facility on health outcomes: see, e.g.,
McCarthy et al. (2007); Mooney et al. (2000); Schmitt et al. (2003). Such works naturally
suggest tradeoffs between resource allocation (provision of such services, including sizing –
e.g., the number k of centers) and expected health outcomes.

While much analysis for facility-location problems has focused on the static case, other
works have examined a similar lottery model for center-type problems. Harris et al. (2019,
2017) analyzed models similar to chance k-coverage and minimization of E[d(j,S)], but ap-
plied to knapsack center and matroid center problems; they also considered robust versions
(in which a small subset of clients may be denied service). While the overall model was
similar to the ones we explore here, the techniques are somewhat different. Furthermore,
these works focus only on the case where the target distribution is itself deterministic.

Similar stochastic approximation guarantees have appeared in the context of approxima-
tion algorithms for static problems, particularly k-median problems. Charikar and Li (2012)
discussed a randomized procedure for converting a linear-programming relaxation in which
a client has fractional distance tj , into a distribution Ω satisfying ES∼Ω[d(j,S)] ≤ 3.25tj .
This property can be used, among other things, to achieve a 3.25-approximation for k-
median. However, many other randomized rounding algorithms for k-median only seek to
preserve the aggregate value

∑
j E[d(j,S)], without our type of per-point guarantee.
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We also contrast our approach with a different stochastic k-center problem considered in
works such as Huang and Li (2017); Alipour and Jafari (2018). These consider a model with
a fixed, deterministic set S of open facilities, while the client set is determined stochastically;
this model is almost precisely opposite to ours.

1.3. Publicly Verifying the Distributions

Our approximation algorithms will have the following structure: given some target distri-
bution Ω, we construct a randomized procedure A which returns some random set S with
good probabilistic guarantees matching Ω. Thus the algorithm A is itself the approximating
distribution Ω̃.

In a number of cases, we can convert the randomized algorithm A into a distribution
Ω̃ which has a sparse support (set of points to which it assigns nonzero probability), and
which can be enumerated directly. This may cause a small loss in approximation ratio. The
distribution Ω̃ can be publicly verified, and the users can then draw from Ω̃ as desired.

Recall that one of our main motivations is fairness in clustering; the ability for the users
to verify that they are being treated fairly in a stochastic sense (although not necessarily
in any one particular run of the algorithm) is particularly important.

1.4. Notation

We define
(F
k

)
to be the collection of k-element subsets of F . We assume throughout that

F can be made arbitrarily large by duplicating its elements; thus, whenever we have an
expression like

(F
k

)
, we assume without loss of generality that |F| ≥ k.

We will let [t] denote the set {1, 2, . . . , t}. For any vector a = (a1, . . . , at) and a subset
X ⊆ [t], we write a(X) as shorthand for

∑
i∈X ai.

We use the Iverson notation throughout, so that for any Boolean predicate P we let
[[P]] be equal to one if P is true and zero otherwise.

For a real number q ∈ [0, 1], we define q = 1− q.
Given any j ∈ C and any real number r ≥ 0, we define the ball B(j, r) = {i ∈ F |

d(i, j) ≤ r}. We let θ(j) be the distance from j to the nearest facility, and Vj be the facility
closest to j, i.e. d(j, Vj) = d(j,F) = θ(j). Note that in the SCC setting we have Vj = j and
θ(j) = 0.

For a solution set S, we say that j ∈ C is matched to i ∈ S if i is the closest facility of
S to j; if there are multiple closest facilities, we take i to be one with least index.

1.5. Some Useful Subroutines

We will use two basic subroutines repeatedly: dependent rounding and greedy clustering.

In dependent rounding, we aim to preserve certain marginal distributions and negative
correlation properties while satisfying some constraints with probability one. Our algo-
rithms use a dependent-rounding algorithm from Srinivasan (2001), which we summarize
as follows:

Proposition 1 There exists a randomized polynomial-time algorithm DepRound(y) which
takes as input a vector y ∈ [0, 1]n, and outputs a random set Y ⊆ [n] with the following
properties:
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(P1) Pr[i ∈ Y ] = yi, for all i ∈ [n],

(P2) b
∑n

i=1 yic ≤ |Y | ≤ d
∑n

i=1 yie with probability one,

(P3) Pr[Y ∩ S = ∅] ≤
∏
i∈S(1− yi) for all S ⊆ [n].

We adopt the following additional convention: suppose (y1, . . . , yn) ∈ [0, 1]n and S ⊆ [n];
we then define DepRound(y, S) ⊆ S to be DepRound(x), for the vector x defined by
xi = yi[[i ∈ S]].

The greedy clustering procedure takes an input a set of weights wj and sets Fj ⊆ F for
every client j ∈ C, and executes the following procedure:

Algorithm 1 GreedyCluster(F,w)

1: Sort C as C = {j1, j2, . . . , j`} where wj1 ≤ wj2 ≤ · · · ≤ wj` .
2: Initialize C ′ = ∅
3: for t = 1, . . . , ` do
4: if Fjt ∩ Fj′ = ∅ for all j′ ∈ C ′ then update C ′ ← C ′ ∪ {jt}
5: Return C ′

Observation 2 If C ′ = GreedyCluster(F,w) then for any j ∈ C there is z ∈ C ′ with
wz ≤ wj and Fz ∩ Fj 6= ∅.

2. The Chance k-coverage Problem

In this section, we consider a scenario we refer to as the chance k-coverage problem: every
point j ∈ C has demand parameters pj , rj , and we wish to find a k-lottery Ω such that

Pr
S∼Ω

[d(j,S) ≤ rj ] ≥ pj . (1)

If a k-lottery satisfying (1) exists, we say that parameters pj , rj are feasible. We refer
to the special case wherein every client j has a common value pj = p and a common value
rj = r, as homogeneous. Homogeneous instances naturally correspond to fair allocations,
for example, k-supplier is a special case of the homogeneous chance k-coverage problem, in
which pj = 1 and rj is equal to the optimal k-supplier radius.

Our approximation algorithms for this problem will be based on a linear programming
(LP) relaxation which we denote Pchance. It has fractional variables bi, where i ranges
over F (bi represents the probability of opening facility i), and is defined by the following
constraints:

(B1)
∑

i∈B(j,rj)
bi ≥ pj for all j ∈ C,

(B2) b(F) = k,

(B3) bi ∈ [0, 1] for all i ∈ F .

Proposition 3 If parameters p, r are feasible, then Pchance is nonempty.
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Proof Consider a distribution Ω satisfying (1). For each i ∈ F , set bi = PrS∼Ω[i ∈ S]. For
j ∈ C we have pj = Pr

[∨
i∈B(j,rj)

i ∈ S
]
≤
∑

i∈B(j,rj)
Pr[i ∈ S] =

∑
i∈B(j,rj)

bi and thus (B1)

is satisfied. We have k = E[|S|] =
∑

i∈F Pr[i ∈ S] = b(F) and so (B2) is satisfied. (B3) is
clear, so we have demonstrated a point in Pchance.

For the remainder of this section, we assume we have a vector b ∈ Pchance and focus
on how to round it to an integral solution. By a standard facility-splitting step, we also
generate, for every j ∈ C, a set Fj ⊆ B(j, rj) with b(Fj) = pj . We refer to this set Fj as
a cluster. In the SCC setting, it will also be convenient to ensure that j ∈ Fj as long as
bj 6= 0.

As we show in Section 4, any approximation algorithm must either significantly give up
a guarantee on the distance, or probability (or both). Our first result is an approximation
algorithm which respects the distance guarantee exactly, with constant-factor loss to the
probability guarantee:

Theorem 4 If p, r is feasible then one may efficiently construct a k-lottery Ω satisfying

Pr
S∼Ω

[d(j,S) ≤ rj ] ≥ (1− 1/e)pj .

Proof Let b ∈ Pchance and set S = DepRound(b). This satisfies |S| ≤ d
∑n

i=1 bie ≤ dke = k
as desired. Each j ∈ C has

Pr[S ∩ Fj = ∅] ≤
∏
i∈Fj

(1− bi) ≤
∏
i∈Fj

e−bi = e−b(Fi) = e−pj .

and then simple analysis shows that

Pr[d(j,S) ≤ rj ] ≥ Pr[S ∩ Fj 6= ∅] ≥ 1− e−pj ≥ (1− 1/e)pj .

As we will later show in Theorem 20, this approximation constant 1− 1/e is optimal.
We next turn to preserving the probability guarantee exactly with some loss to distance

guarantee. As a warm-up exercise, let us consider the special case of “half-homogeneous”
problem instances: all the values of pj are the same, or all the values of rj are the same. A
similar algorithm works both these cases: we first select a set of clusters according to some
greedy order, and then open a single item from each cluster. We summarize this as follows:

Algorithm 2 Rounding algorithm for half-homogeneous chance k-coverage

1: Set C ′ = GreedyCluster(Fj , wj)
2: Set Y = DepRound(p, C ′)
3: Form solution set S = {Vj | j ∈ Y }.

Algorithm 2 opens at most k facilities, as the dependent rounding step ensures that
|Y | ≤ d

∑
j∈C′ pje = d

∑
j∈C′ b(Fj)e ≤ d

∑
i∈F bie ≤ k. The only difference between the two

cases is the choice of weighting function wj for the greedy cluster selection.

Proposition 5 1. Suppose that pj is the same for every j ∈ C. Then using the weighting
function wj = rj ensures that every j ∈ C satisfies Pr[d(j,S) ≤ 3rj ] ≥ pj . Further-
more, in the SCC setting, it satisfies Pr[d(j,S) ≤ 2rj ] ≥ pj .

8



Approximation Algorithms for Stochastic Clustering

2. Suppose rj is the same for every j ∈ C. Then using the weighting function wj = 1−pj
ensures that every j ∈ C satisfies Pr[d(j,S) ≤ 3rj ] ≥ pj . Furthermore, in the SCC
setting, it satisfies Pr[d(j,S) ≤ 2rj ] ≥ pj .

Proof Let j ∈ C. By Observation 2 there is z ∈ C ′ with wz ≤ wj and Fj ∩ Fz 6= ∅. In
either of the two cases, this implies that pz ≥ pj and rz ≤ rj .

Letting i ∈ Fj ∩ Fz gives d(j, z) ≤ d(j, i) + d(z, i) ≤ rj + rz ≤ 2rj . This z ∈ C ′ survives
to Y with probability pz ≥ pj , and in that case we have d(z,S) = θ(z). In the SCC setting,
this means that d(z,S) = 0; in the general setting, we have θ(z) ≤ rz ≤ rj .

2.1. Approximating the General Case

We next show how to satisfy the probability constraint exactly for the general case of chance
k-coverage, with a constant-factor loss in the distance guarantee. Namely, we will find a
probability distribution with

Pr
S∼Ω

[d(j,S) ≤ 9rj ] ≥ pj .

The algorithm is based on iterated rounding, in which the entries of b go through an
unbiased random walk until b becomes integral (and, thus corresponds to a solution set S).
Because the walk is unbiased, the probability of serving a client at the end is equal to the
fractional probability of serving a client, which will be at least pj . In order for this process
to make progress, the number of active variables must be greater than the number of active
constraints. We ensure this by periodically identifying and discarding clients which will be
automatically served by serving other clients. This is similar to a method of Krishnaswamy
et al. (2018), which also uses iterative rounding for (deterministic) approximations to k-
median with outliers and k-means with outliers.

The sets Fj will remain fixed during this procedure. We will maintain a vector b ∈ [0, 1]F

and maintain two sets Ctight and Cslack with the following properties:

(C1) Ctight ∩ Cslack = ∅.

(C2) For all j, j′ ∈ Ctight, we have Fj ∩ Fj′ = ∅

(C3) Every j ∈ Ctight has b(Fj) = 1,

(C4) Every j ∈ Cslack has b(Fj) ≤ 1.

(C5) We have b(
⋃
j∈Ctight∪Cslack

Fj) ≤ k

Given our initial solution b for Pchance, setting Ctight = ∅, Cslack = C will satisfy criteria
(C1)–(C5); note that (C4) holds as b(Fj) = pj ≤ 1 for all j ∈ C.

Proposition 6 Given any vector b ∈ [0, 1]F satisfying constraints (C1)—(C5) with Cslack 6=
∅, it is possible to generate a random vector b′ ∈ [0, 1]F such that E[b′] = b, and with
probability one b′ satisfies constraints (C1) — (C5) as well as having some j ∈ Cslack with
b′(Fj) ∈ {0, 1}.
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Proof We will show that any basic solution b ∈ [0, 1]F to the constraints (C1)—(C5) with
Cslack 6= ∅ must satisfy the condition that b(Fj) ∈ {0, 1} for some j ∈ Cslack. To obtain the
stated result, we simply modify b until it becomes basic by performing an unbiased walk in
the nullspace of the tight constraints.

So consider a basic solution b. Define A =
⋃
j∈Ctight

Fj and B =
⋃
j∈Cslack

Fj . We assume

that b(Fj) ∈ (0, 1) for all j ∈ Cslack, as otherwise we are done.

First, suppose that b(A ∩ B) > 0. So there must be some pair j ∈ Cslack, j
′ ∈ Ctight

with i ∈ Fj ∩ Fj′ such that bi > 0. Since b(Fj′) = 1, there must be some other i′ ∈ Fj′
with bi′ > 0. Consider modifying b by incrementing bi by ±ε and decrementing bi′ by ±ε,
for some sufficiently small ε. Constraint (C5) is preserved. Since Fj′ ∩ Fj′′ = ∅ for all
j′′ ∈ Ctight, constraint (C3) is preserved. Since the (C4) constraints are slack, then for ε
sufficiently small they are preserved as well. This contradicts that b is basic.

Next, suppose that b(A ∩ B) = 0 and b(A ∪ B) < k strictly. Let j ∈ Cslack and i ∈ Fj
with bi > 0; if we change bi by ±ε for sufficiently small ε, this preserves (C4) and (C5);
furthermore, since i /∈ A, it preserves (C3) as well. So again b cannot be basic.

Finally, suppose that b(A∩B) = 0 and b(A∪B) = k. So b(B) = k−|A| and b(B) > 0 as
Cslack 6= ∅. Therefore, there must be at least two elements i, i′ ∈ B such that bi > 0, bi′ > 0.
If we increment bi by ±ε while decrementing bi′ by ±ε, this again preserves all the con-
straints for ε sufficiently small, contradicting that b is basic.

We can now describe our iterative rounding algorithm, Algorithm 3.

Algorithm 3 Iterative rounding algorithm for chance k-coverage

1: Find a fractional solution b to Pchance and form the corresponding sets Fj .
2: Initialize Ctight = ∅, Cslack = C
3: while Cslack 6= ∅ do
4: Draw a fractional solution b′ with E[b′] = b according to Proposition 6.
5: Select some v ∈ Cslack with b′(Fv) ∈ {0, 1}.
6: Update Cslack ← Cslack − {v}
7: if b′(Fv) = 1 then
8: Update Ctight ← Ctight ∪ {v}
9: if there is any z ∈ Ctight ∪ Cslack such that rz ≥ rv/2 and Fz ∩ Fv 6= ∅ then

10: Update Ctight ← Ctight − {z}, Cslack ← Cslack − {z}
11: Update b← b′.
12: For each j ∈ Ctight, open an arbitrary center in Fj .

To analyze this algorithm, define Cttight, C
t
slack, b

t to be the values of the relevant variables
at iteration t. Since every step removes at least one point from Cslack, this process must
terminate in T ≤ n iterations. We will write bt+1 to refer to the random value b′ chosen
at step (4) of iteration t, and vt denote the choice of v ∈ Cslack used step in step (5) of
iteration t.

Proposition 7 The vector bt satisfies constraints (C1) — (C5) for all times t = 1, . . . , T .

10
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Proof The vector b0 does so since b satisfies Pchance. Proposition 6 ensures that step (4)
does not affect this. Also, removing points from Ctight or Cslack at step (6) or (1) will not
violate these constraints.

Let us check that adding vt to Ctight will not violate the constraints. This step only
occurs if bt+1(vt) = 1, and so (C3) is preserved. Since we only move vt from Cslack to Ctight,
constraints (C1) and (C5) are preserved. Finally, to show that (C2) is preserved, suppose
that Fvt ∩ Fvs 6= ∅ for some other vs which was added to Ctight at time s < t. If rvt ≥ rvs ,
then step (10) would have removed vt from Cslack, making it impossible to enter Cttight.

Thus, rvt ≤ rvs ; this means that when we add vt to Cttight, we also remove vs from Cttight.

Corollary 8 Algorithm 3 opens at most k facilities.

Proof At the final step (12), the number of open facilities is equal to |Ctight|. By Propo-
sition 7, the vector bT satisfies constraints (C1) — (C5). So b(Fj) = 1 for j ∈ Ctight and
Fj ∩ Fj′ = ∅ for j, j ∈ Ctight; thus |Ctight| =

∑
j∈Ctight

b(Fj) ≤ k.

Proposition 9 If j ∈ Cttight for any time t, then d(j,S) ≤ 3rj.

Proof Let t be maximal such that j ∈ Cttight. We show the desired claim by induction on
t. When t = T , then this certainly holds as step (12) will open some facility in Fj and thus
d(j,S) ≤ rj .

Suppose that j was added into Cstight, but was later removed from Ct+1
tight due to adding

z = vt. Thus there is some i ∈ Fz∩Fj . When we added j in time s, we would have removed
z from Cstight if rz ≥ rj/2. Since this did not occur, it must hold that rz < rj/2.

Since z is present in Ct+1
tight, the induction hypothesis implies that d(z,S) ≤ 3rz and so

d(j,S) ≤ d(j, i) + d(i, z) + d(z,S) ≤ rj + rz + 3rz ≤ rj + (rj/2)(1 + 3) = 3rj .

Theorem 10 Every j ∈ C has Pr[d(j,S) ≤ 9rj ] ≥ pj.

Proof We will prove by induction on t the following claim: suppose we condition on the
full state of Algorithm 3 up to time t, and that j ∈ Cttight ∪ Ctslack. Then

Pr[d(j,S) ≤ 9rj ] ≥ bt(Fj). (2)

At t = T , this is clear; since CTslack = ∅, we must have j ∈ CTtight, and so d(j,S) ≤ rj
with probability one. For the induction step at time t, note that as E[bt+1(Fj)] = b(Fj), in
order to prove (2) it suffices to show that if we also condition on the value of bt+1, it holds
that

Pr[d(j,S) ≤ 9rj | bt+1] ≥ bt+1(Fj). (3)

If j remains in Ct+1
tight ∪ C

t+1
slack, then we immediately apply the induction hypothesis at

time t+ 1. So the only non-trivial thing to check is that (3) will hold even if j is removed
from Ct+1

tight ∪ C
t+1
slack.

11
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If j = vt and bt+1(Fj) = 0, then (3) holds vacuously. Otherwise, suppose that j is
removed from Cttight at stage (10) due to adding z = vt. Thus rj ≥ rz/2 and there is some
i ∈ Fj ∩ Fz. By Proposition 9, this ensures that d(z,S) ≤ 3rz. Thus with probability one
we have

d(j,S) ≤ d(j, i) + d(i, z) + d(z,S) ≤ rj + rz + 3rz ≤ rj + (2rj)(1 + 3) = 9rj .

This proves the induction. The claimed result follows since b0(Fj) = pj and C0
slack = C.

3. Chance k-coverage: Approximating the Deterministic Case

An important special case of k-coverage is where pj = 1 for all j ∈ C. Here, the target
distribution Ω is just a single set S satisfying ∀jd(j,S) ≤ rj . In the homogeneous case,
when all the rj are equal to the same value, this is specifically the k-supplier problem.
The usual approximation algorithm for this problem chooses a single approximating set
S, in which case the best guarantee available is d(j,S) ≤ 3rj . We improve the distance
guarantee by constructing a k-lottery Ω̃ such that d(j,S) ≤ 3rj with probability one, and
ES∼Ω̃[d(j,S)] ≤ crj , where the constant c satisfies the following bounds:

1. In the general case, c = 1 + 2/e ≈ 1.73576;

2. In the SCC setting, c = 1.60793;

3. In the homogeneous SCC setting, c = 1.592.3

We show matching lower bounds in Section 4; the constant value 1 + 2/e is optimal for the
general case (even for homogeneous instances), and for the third case the constant c cannot
be made lower than 1 + 1/e ≈ 1.367.

We remark that this type of stochastic guarantee allows us to efficiently construct
publicly-verifiable lotteries.

Proposition 11 Let ε > 0. In any of the above three cases, there is an expected polynomial
time procedure to convert the given distribution Ω into an explicitly-enumerated k-lottery
Ω′, with support size O( logn

ε2
), such that PrS∼Ω′ [d(j,S) ≤ 3rj ] = 1 and ES∼Ω′ [d(j,S)] ≤

c(1 + ε)rj.

Proof Take X1, . . . , Xt as independent draws from Ω for t = 6 logn
cε2

and set Ω′ to be the
uniform distribution on {X1, . . . , Xt}. To see that ES∼Ω′ [d(j,S)] ≤ c(1 + ε)rj holds with
high probability, apply a Chernoff bound, noting that d(j,X1), . . . , d(j,Xt) are independent
random variables in the range [0, 3rj ].

We use a similar algorithm to Algorithm 2 for this problem: we choose a covering set
of clusters C ′, and open exactly one item from each cluster. The main difference is that

3. This value was calculated using some non-rigorous numerical analysis; we describe this further in what
we call “Pseudo-Theorem” 17

12
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instead of opening the nearest item Vj for each j ∈ C ′, we instead open a cluster according
to the solution b of Pchance.

Algorithm 4 Rounding algorithm with clusters

1: Set C ′ = GreedyCluster(Fj , rj).
2: Set F0 = F −

⋃
j∈C′ Fj ; this is the set of “unclustered” facilities

3: for j ∈ C ′ do
4: Randomly select a point Wj ∈ Fj according to the distribution Pr[Wj = i] = bi

// This is a valid probability distribution, as b(Fj) = 1
5: Let S0 ← DepRound(b, F0)
6: Return S = S0 ∪ {Wj | j ∈ C ′}

We will need the following technical result in order to analyze Algorithm 4.

Proposition 12 For any set U ⊆ F , we have

Pr[S ∩ U = ∅] ≤
∏

i∈U∩F0

(1− bi)
∏
j∈C′

(1− b(U ∩ Fj)) ≤ e−b(U).

Proof The set U contains each Wj independently with probability b(U ∩ Fj). The set S0

is independent of them and by (P3) we have Pr[U ∩ S0 = ∅] ≤
∏
i∈U∩F0

(1− bi). So

Pr[S ∩ U = ∅] ≤
∏

i∈U∩F0

(1− bi)
∏
j∈C′

(1− b(U ∩ Fj)) ≤
∏

i∈U∩F0

e−bi
∏
j∈C′

e−b(U∩Fj) = e−b(U)

At this point, we can show our claimed approximation ratio for the general (non-SCC)
setting:

Theorem 13 For any j ∈ C, the solution set S of Algorithm 4 satisfies d(j,S) ≤ 3rj with
probability one and E[d(j,S)] ≤ (1 + 2/e)rj.

Proof By Observation 2, there is some v ∈ C ′ with Fj ∩ Fv 6= ∅ and rv ≤ rj . Letting
i ∈ Fj ∩ Fv, we have

d(j,S) ≤ d(j, i) + d(i, v) + d(v,S) ≤ rj + rv + rv ≤ 3rj .

with probability one.

If S ∩ Fj 6= ∅, then d(j,S) ≤ rj . Thus, a necessary condition for d(j,S) > rj is that
S ∩ Fj = ∅. Applying Proposition 12 with U = Fj gives

Pr[d(j,S) > rj ] ≤ Pr[S ∩ Fj = ∅] ≤ e−b(Fj) = e−1

and so E[d(j,S)] ≤ rj + 2rj Pr[d(j,S) > rj ] ≤ (1 + 2/e)rj .

13
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3.1. The SCC Setting

To motivate the algorithm for the SCC setting (where C = F), note that if some client
j ∈ C has some facility i opened in a nearby cluster Fv, then this guarantees that d(j,S) ≤
d(j, v) +d(v, i) ≤ 3rj . This is what we used to analyze the non-SCC setting. But, if instead
of opening facility i, we opened v itself, then this would ensure that d(j,S) ≤ 2rj . Thus,
opening the centers of a cluster can lead to better distance guarantees compared to opening
any other facility. We emphasize that this is only possible in the SCC setting, as in general
we do not know that v ∈ F .

We use the following Algorithm 5, which takes a parameter q ∈ [0, 1] which we will
discuss how to set shortly. We recall that we have assumed in this case that j ∈ Fj for
every j ∈ C. (Also, note our notational convention that q = 1 − q; this will be used
extensively in this section to simplify the formulas.)

Algorithm 5 Rounding algorithm for k-center

1: Set C ′ = GreedyCluster(Fj , rj).
2: Set F0 = F −

⋃
j∈C′ Fj ; this is the set of “unclustered” facilities

3: for j ∈ C ′ do
4: Randomly select Wj ∈ Fj according to the distribution Pr[Wj = i] = qbi + q[[i = j]]
5: Let S0 = DepRound(b, F0)
6: Return S = S0 ∪ {Wj | j ∈ C ′}

This is the same as Algorithm 4, except that some of the values of bi for i ∈ Fj have
been shifted to the cluster center j. In fact, we can think of Algorithm 5 as a two-part
process: we first modify the fractional vector b to obtain a new fractional vector b′ defined
by

b′i =


qbi + q if i ∈ C ′

qbi if i ∈ Fj − {j} for j ∈ C ′

bi if i ∈ F0

.

and we then execute Algorithm 4 on the resulting vector b′. In particular, Proposition 12
remains valid with respect to the modified vector b′.

Theorem 14 Let j ∈ C. After running Algorithm 5 with q = 0.464587 we have d(j,S) ≤
3rj with probability one and E[d(j,S)] ≤ 1.60793rj.

Proof Let D = {v ∈ C ′ | Fj ∩ Fv 6= ∅, rv ≤ rj}; note that D 6= ∅ by Observation 2. For
each v ∈ D ∪ {0}, set av = b(Fj ∩ Fv) and observe that a0 +

∑
v∈D av = b(Fj) = 1.

As before, a necessary condition for d(j,S) > rj is that Fj∩S = ∅. So by Proposition 12,

Pr[d(j,S) > rj ] ≤ Pr[Fj ∩ S = ∅] ≤
∏

i∈Fj∩F0

(1− b′i)
∏
v∈C′

(1− b′(Fv ∩ Fj))

≤
∏

i∈Fj∩F0

(1− bi)
∏
v∈D

(1− qb(Fv ∩ Fj)) ≤ e−b(Fj∩F0)
∏
v∈D

(1− qb(Fv ∩ Fj))

= e−a0
∏
v∈D

eav(1− qav) = (1/e)
∏
v∈D

eav(1− qav).

14
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where the last equality comes from the fact that a0 + a(D) = 1.

Similarly, if there is some i ∈ S ∩ D, then d(j,S) ≤ d(v, i) ≤ 2rj . Thus, a necessary
condition for d(j,S) > 2rj is that S∩(D∪Fj) = ∅. Applying Proposition 12 with U = D∪Fj
gives:

Pr[d(j,S) > 2rj ] ≤
∏

v∈(D∪Fj)∩F0

(1− bv)
∏
v∈C′

(1− b′((D ∪ Fj) ∩ Fv))

≤ e−b(Fj∩F0)
∏
v∈D

q(1− av) = (1/e)
∏
v∈D

eavq(1− av)

Putting these together gives:

E[d(j,S)] ≤ rj
(

1 + 1/e
∏
v∈D

eav(1− qav) + 1/e
∏
v∈D

eavq(1− av)
)

(4)

Let us define s = a(D) and t = |D|. By the AM-GM inequality we have:

E[d(j,S)] ≤ rj
(

1 + es−1
(
1− qs/t

)t
+ es−1qt(1− s/t)t

)
This is a function of a single real parameter s ∈ [0, 1] and a single integer parameter

t ≥ 1. Some simple analysis, which we omit here, shows that E[d(j,S)] ≤ 1.60793rj .

3.2. The Homogeneous SCC Setting

From the point of view of the target distribution Ω, this setting is equivalent to the classical
k-center problem. We may guess the optimal radius, and so we do not need to assume that
the common value of rj is “given” to us by some external process. By rescaling, we assume
without loss of generality here that rj = 1 for all j.

We will improve on Theorem 14 through a more complicated rounding process based
on greedily-chosen partial clusters. Specifically, we select cluster centers π(1), . . . , π(n),
wherein π(i) is chosen to maximize b(Fπ(i) − Fπ(1) − · · · − Fπ(i−1)). By renumbering C,
we may assume without loss of generality that the resulting permutation π is the identity;
therefore, we assume throughout this section that C = F = [n] and for all pairs i < j we
have

b(Fi − F1 − · · · − Fi−1) ≥ b(Fj − F1 − · · · − Fi−1) (5)

For each j ∈ [n], we let Gj = Fj − F1 − · · · − Fj−1 and we define zj = b(Gj). We say
that Gj is a full cluster if zj = 1 and a partial cluster otherwise. We note that the values
of z appear in sorted order 1 = z1 ≥ z2 ≥ z3 ≥ · · · ≥ zn ≥ 0.

We use the following randomized Algorithm 7 to select the centers. Here, the quantities
Qf, Qp (short for full and partial) are drawn from a joint probability distribution which we
discuss later.
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Algorithm 7 Partial-cluster based algorithm

1: Draw random variables Qf, Qp.
2: Z ← DepRound(z)
3: for j ∈ Z do
4: Randomly select Wj ∈ Gj according to the distribution Pr[Wj = i] = (qjyi + qj [[i =

j]])/zj where qj is defined as

qj =

{
Qf if zj = 1

Qp if zj < 1

5: Return S = {Wj | j ∈ Z}

Before the technical analysis of Algorithm 7, let us provide some intuition. It may be
beneficial to open the center of some cluster near a given client j ∈ C as this will ensure
d(j,S) ≤ 2. However, there is no benefit to opening more than one such cluster center.
So, we would like a significant negative correlation between opening the centers of distinct
clusters near j. Unfortunately, the full clusters all “look alike,” and so it seems impossible
to enforce any significant negative correlation among them.

Partial clusters break the symmetry. There is at least one full cluster near j, and possibly
some partial clusters as well. We will create a probability distribution with significant
negative correlation between the event that partial clusters open their centers and the
event that full clusters open their centers. This decreases the probability that j will see
multiple neighboring clusters open their centers, which in turn gives an improved value of
E[d(j,S)].

The dependent rounding in Algorithm 7 ensures that |Z| ≤ d
∑n

j=1 zje =
∑n

j=1 b(Fj −
F1 − · · · − Fj−1) = b(F) ≤ k, and so |S| ≤ k as required. We also need the following
technical result; the proof is essentially the same as Proposition 12 and is omitted.

Proposition 15 For any U ⊆ C, we have

Pr[S ∩ U = ∅ | Qf, Qp] ≤
n∏
j=1

(
1− qjb(U ∩Gj)− qjzj [[j ∈ U ]]

)
.

Our main lemma to analyze Algorithm 7 is the following:

Lemma 16 Let i ∈ [n]. Define Jf, Jp ⊆ [n] as

Jf = {j ∈ [n] | Fi ∩Gj 6= ∅, zj = 1}
Jp = {j ∈ [n] | Fi ∩Gj 6= ∅, zj < 1}

Let m = |Jf| and Jp = {j1, . . . , jt} where j1 ≤ j2 ≤ · · · ≤ jt. For each ` = 1, . . . , t + 1
define

u` = b(Fi ∩Gj`) + b(Fi ∩Gj`+1
) + · · ·+ b(Fi ∩Gjt)

Then 1 ≥ u1 ≥ u2 ≥ · · · ≥ ut ≥ ut+1 = 0 and m ≥ 1. Furthermore, if we condition on
a fixed value of (Qf, Qp) then we have

E[d(i,S)] ≤ 1 +

(
1−Qf

u1

m

)m t∏
`=1

(1−Qp(u` − u`+1)) +

(
Qf

(
1− u1

m

))m t∏
`=1

(u` +Qpu`+1).
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Proof For ` = 1, . . . , t we let a` = b(Fi∩Gj`) = u`−u`+1. For j ∈ Jf, we let sj = b(Fi∩Gj).
First, we claim that zj` ≥ u` for ` = 1, . . . , t. For, by (5), we have

zj` ≥ b(Fi − F1 − · · · − Fj`−1) ≥ b(Fi)−
∑
j∈Jf

b(Fi ∩Gj)−
∑
v<j`

b(Fi ∩Gv)

= b(Fi)−
∑
j∈Jf

b(Fi ∩Gj)−
∑
v<`

b(Fi ∩Gjv) as Fi ∩Gv = ∅ for v /∈ Jp ∪ Jf

= 1−
∑
j∈Jf

sj −
`−1∑
v=1

av = u`.

Next, observe that if m = 0, we have u1 =
∑t

`=1 b(Fi∩Gj`) =
∑n

j=1 b(Fi∩Gj) = b(Fi) =
1. Applying the above bound at ` = 1 gives zj1 ≥ u1 = 1. But, by definition of Jp we have
zj1 < 1, which is a contradiction. This shows that m ≥ 1.

We finish by showing the bound on E[d(i,S)]. All the probabilities here should be
interpreted as conditioned on fixed values for parameters Qf, Qp.

A necessary condition for d(i,S) > 1 is that no point in Fi is open. Applying Proposi-
tion 15 with U = Fi yields

Pr[S ∩ Fi = ∅] ≤
∏
j∈Jf

(1−Qfb(Fi ∩Gj)−Qf[[j ∈ Fi]])
∏
j∈Jp

(1−Qpb(Fi ∩Gj))−Qpzj [[j ∈ Fi]])

≤
∏
j∈Jf

(1−Qfb(Fi ∩Gj))
∏
j∈Jp

(1−Qpb(Fi ∩Gj)) =
∏
j∈Jf

(1−Qfsj)
t∏

`=1

(1−Qpa`).

A necessary condition for d(i,S) > 2 is that we do not open any point in Fi, nor do we
open center of any cluster intersecting with Fi. Applying Proposition 15 with U = Fi∪Jf∪Jp,
and noting that zj` ≤ u`, we get:

Pr[S ∩ U = ∅] ≤
∏
j∈Jf

(1−Qfb(U ∩Gj)−Qf)
∏
j∈Jp

(1−Qpb(U ∩Gj))−Qpzj)

≤
∏
j∈Jf

(1−Qfb(Fi ∩Gj)−Qf)

t∏
`=1

(1−Qpb(Fi ∩Gj`)−Qpzj`)

=
∏
j∈Jf

Qf(1− sj)
t∏

`=1

(1−Qpa` −Qpzj`) ≤
∏
j∈Jf

Qf(1− sj)
t∏

`=1

(1−Qpa` −Qpu`)

Thus,

E[d(i,S)] ≤ 1 +
∏
j∈Jf

(1−Qfsj)

t∏
`=1

(1−Qpa`) +
∏
j∈Jf

Qf(1− sj)
t∏

`=1

(1−Qpa` −Qpu`) (6)

The sets Gj partition [n], so
∑

j∈f sj = 1 −
∑t

`=1 a` = 1 − u1. So by the AM-GM
inequality, we have

E[d(i,S)] ≤ 1 +

(
1−Qf

u1

m

)m t∏
`=1

(1−Qpa`) +

(
Qf

(
1− u1

m

))m t∏
`=1

(1−Qpa`−Qpu`). (7)
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The claim follows as a` = u` − u`+1.

Lemma 16 gives an upper bound on E[d(i,S)] for a fixed distribution on Qf, Qp and for
fixed values of the parameters m,u1, . . . , ut. By a computer search, along with a number
of numerical tricks, we can obtain an upper bound over all values for m and all possible
sequences u1, . . . , ut satisfying 1 = u1 ≥ u2 ≥ · · · ≥ ut. This gives the following result:

Pseudo-Theorem 17 Suppose that Qf, Qp has the following distribution:

(Qf, Qp) =

{
(0.4525, 0) with probability p = 0.773436

(0.0480, 0.3950) with probability 1− p
.

Then for all j ∈ C we have d(j,S) ≤ 3rj with probability one, and E[d(j,S)] ≤ 1.592rj.

We call this a “pseudo-theorem” because some of the computer calculations used double-
precision floating point for convenience, without carefully tracking rounding errors. In
principle, this could have been computed using rigorous numerical analysis, giving a true
theorem. Since there are a number of technical complications in this calculation, we defer
the details to Appendix A.

4. Lower Bounds on Approximating Chance k-coverage

We next show lower bounds for the chance k-coverage problems of Sections 2 and 3. These
constructions are adapted from lower bounds for approximability of k-median (Guha and
Khuller, 1999), which in turn are based on the hardness of set cover.

Formally, a set cover instance consists of a collection of sets B = {S1, . . . , Sm} over a
ground set [n]. For any set X ⊆ [m] we define SX =

⋃
i∈X Si. The goal is to select a

collection X ⊆ [m] of minimum size such that SX = [n]. The minimum value of |X| thus
obtained is denoted by OPT.

We quote a result of Moshkovitz (2015) on the inapproximability of set cover.

Theorem 18 (Moshkovitz (2015)) Assuming P 6= NP, there is no polynomial-time al-
gorithm which guarantees a set-cover solution X with SX = [n] and |X| ≤ (1−ε) lnn×OPT,
where ε > 0 is any constant.

We will need a simple corollary of Theorem 18, which is a (slight reformulation) of the
hardness of approximating max-coverage.

Corollary 19 Assuming P 6= NP, there is no polynomial-time algorithm which guarantees
a set-cover solution X with |X| ≤ OPT and

∣∣SX ∣∣ ≥ cn for any constant c > 1− 1/e.

Proof Suppose for contradiction that A is such an algorithm. We will repeatedly apply A
to solve residual instances, obtaining a sequence of solutions X1, X2, . . . ,. Specifically, for
iterations i ≥ 1, we define Ui = [n] −

⋃
j<i SXj and Bi = {S ∩ Ui | S ∈ B}, and we let Xi

denote the output of A on instance Bi.
Each Bi has a solution of cost at most OPT. Thus, |Xi| ≤ OPT and |Ui ∩ SXi | ≥ c|Ui|.

Thus |Ui+1| = |Ui − SXi | ≤ (1 − c)|Ui|. So, for s = d1 + lnn
ln( 1

1−c )
e we have Us = ∅, and so
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the set X = X1 ∪ · · · ∪Xs solves the original set-cover instance B, and |X| ≤
∑s

i=1 |Xi| ≤
(1 + lnn

ln( 1
1−c )

)OPT.

Since c > 1− 1/e, we have 1
ln( 1

1−c )
≤ (1− Ω(1)), which contradicts Theorem 18.

Theorem 20 Assuming P 6= NP, there is a family of homogeneous chance k-coverage
instances, with a feasible demand of pj = rj = 1 for all clients j, such that no polynomial-
time algorithm can guarantee a distribution Ω with either of the following:

1. ∀jES∼Ω[d(j,S)] ≤ crj for constant c < 1 + 2/e

2. ∀j PrS∼Ω[d(j,S) < 3rj ] ≥ cpj for constant c > 1− 1/e

In particular, approximation constants in Theorem 4, Proposition 5, and Theorem 13
cannot be improved.

Proof Consider a set cover instance B = {S1, . . . , Sm}. We begin by guessing the value
OPT (there are at most m possibilities, so this can be done in polynomial time). We define
a k-center instance with k = OPT and with disjoint client and facility sets, where F is
identified with [m] and C is identified with [n]. We define d by d(i, j) = 1 if j ∈ Si and
d(i, j) = 3 otherwise.

If X is an optimal solution to B then d(j,X) ≤ 1 for all points j ∈ C. So there
exists a (deterministic) distribution with feasible demand parameters pj = 1, rj = 1. Also,
note that d(j,S) ∈ {1, 3} with probability one for any client j. Thus, if j satisfies the
second property PrS∼Ω[d(j,S) < 3rj ] ≥ cpj for constant c > 1 − 1/e, then it satisfies
E[d(j,S)] ≤ 1 + 2(1− cpj) = 3−2c = (1 + 2/e−Ω(1))rj . So it will satisfy the first property
as well. So it suffices to show that no algorithm A can satisfy the first property.

Suppose that A does satisfy the first property. The resulting solution set S ⊆ F can be
regarded as a solution X to the set cover instance, where d(j,S) = 1 + 2[[j /∈ SX ]]. Thus∑

j∈[n]

d(j,S) = |SX |+ 3(n− |SX |),

and so |SX | =
3n−

∑
j∈[n] d(j,S)

2 . As E[d(j,S)] ≤ crj = c for all j, this implies that E[|SX |] ≥
(3−c)n

2 .
After an expected constant number of repetitions of this process we can ensure that

|SX | ≥ c′n for some constant c′ > 3−(1+2/e)
2 = 1− 1/e. This contradicts Corollary 19.

A slightly more involved construction applies to the homogeneous SCC setting.

Theorem 21 Assuming P 6= NP, there is a family of homogeneous SCC chance k-coverage
instances, with a feasible demand of pj = rj = 1 for all j, such that no polynomial-time
algorithm can guarantee a distribution Ω with either of the following:

1. ∀jES∼Ω[d(j,S)] ≤ crj for constant c < 1 + 1/e

2. ∀j PrS∼Ω[d(j,S) < 2rj ] ≥ cpj for constant c > 1− 1/e

19



Harris, Li, Pensyl, Srinivasan

In particular, the approximation constants in Theorem 4 and Proposition 5 cannot be
improved for SCC instances, and the approximation factor 1.592 in Pseudo-Theorem 17
cannot be improved below 1 + 1/e.

Proof Consider a set cover instance B = {S1, . . . , Sm}, where we have guessed the value
OPT = k. We define a k-center instance as follows. For each i ∈ [m], we create an item vi
and for each j ∈ [n] we create t = n2 distinct items wj,1, . . . , wj,t. We define the distance
by setting d(vi, wj,t) = 1 if j ∈ Si and d(vi, vi′) = 1 for all i, i′ ∈ [m], and d(x, y) = 2
for all other distances. This problem size is polynomial (in m,n), and so A runs in time
poly(m,n).

If X is an optimal solution to the set cover instance, the corresponding set S = {vi |
i ∈ X} satisfies d(j,S) ≤ 1 for all j ∈ C. So the demand vector pj = rj = 1 is feasible.
Also, note that that d(j,S) ∈ {0, 1, 2} with probability one for any j. Thus, if j satisfies
the second property PrS∼Ω[d(j,S) < 2rj ] ≥ cpj for constant c > 1 − 1/e, then it satisfies
E[d(j,S)] ≤ 1 + 1(1− cpj) = (1 + 1/e−Ω(1))rj . So it will satisfy the first property as well.
So it suffices to show that no algorithm A can satisfy the first property.

Suppose that algorithm A satisfies the first property. From the solution set S, we
construct a corresponding set-cover solution by X = {i | vi ∈ S}. For wj,` /∈ S, we can
observe that d(wj,`,S) = 1 + [[j /∈ SX ]]. Therefore, we have

∑
j∈[n]

t∑
`=1

d(wj,`,S) ≥
∑

j,`:wj,` /∈S

(1 + [[j /∈ SX ]]) ≥
∑
j,`

(1 + [[j /∈ SX ]])− 2|S|

≥ n2(2n− |SX |)− 2k,

and so |SX | ≥ 2n−
∑
j,` d(wj,`,S)

n2 − 2k/n2.
Taking expectations and using our upper bound on E[d(j,S)], we have E[|SX |] ≥

2n− cn− 2k/n2 ≥ (2− c)n− 2/n. Thus, for n sufficiently large, after an expected constant
number of repetitions of this process we get |SX | ≥ (2 − c − o(1))n ≥ (1 − 1/e + Ω(1))n.
This contradicts Corollary 19.

5. Approximation Algorithm for E[d(j,S)]

In the chance k-coverage problem, our goal is to achieve certain fixed values of d(j,S) with a
certain probability. In this section, we consider another criterion for Ω; we wish to achieve
certain values for the expectation ES∼Ω[d(j,S)]. We suppose we are given values tj for
every j ∈ C, such that the target distribution Ω satisfies

ES∼Ω[d(j,S)] ≤ tj . (8)

In this case, we say that the vector tj is feasible. As before, if all the values of tj are
equal to each other, we say that the instance is homogeneous. We show how to leverage
any approximation algorithm for k-median with approximation ratio α, to ensure our target
distribution Ω̃ will satisfy

ES∼Ω̃[d(j,S)] ≤ (α+ ε)tj .
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More specifically, we need an approximation algorithm for weighted k-median. In this
setting, we have a problem instance I = F , C, d along with non-negative weights wj for
j ∈ C, and we wish to find S ∈

(F
k

)
minimizing

∑
j∈C wjd(j,S). (Nearly all approximation

algorithms for ordinary k-median can be easily adapted to the weighted setting, for example,
by replicating clients.) If we fix an approximation algorithm A for (various classes of)
weighted k-median, then for any problem instance I we define

αI = sup
weights w

∑
j∈C wjd(j,A(I, w))

minS∈(Fk)
∑

j∈C wjd(j,S)
.

We first show how to use the k-median approximation algorithm to achieve a set S
which “matches” the desired distances tj :

Proposition 22 Given a weighted instance I and a parameter ε > 0, there is a polynomial-
time algorithm to produce a set S ∈

(F
k

)
satisfying:

1.
∑

j∈C wj
d(j,S)
tj
≤ (αI +O(ε))

∑
j∈C wj,

2. Every j ∈ C has d(j,S) ≤ ntj/ε.

Proof We assume αI = O(1), as constant-factor approximation algorithms for k-median
exist. By rescaling w, we assume without loss of generality that

∑
j∈C wj = 1. By rescaling

ε, it suffices to show that d(j,S) ≤ O(ntj/ε).

Let us define the weight vector zj =
ε/n+wj

tj
. Letting Ω be a distribution satisfying (8),

we have

ES∼Ω

[∑
j∈C

zjd(j,S)
]

=
∑
j∈C

zjtj ≤
∑
j∈C

(
ε

ntj
+
wj
tj

)tj = ε|C|/n+
∑
j∈C

wj = 1 + ε.

In particular, there exists some S ∈
(F
k

)
with

∑
j∈C zjd(j,S) ≤ 1 + ε. When we apply

algorithm A with weight vector z, we thus get a set S ∈
(F
k

)
with

∑
j∈C zjd(j,S) ≤ αI(1+ε).

We claim that this set S satisfies the two conditions of the theorem. First, we have

∑
j∈C

wjd(j,S)

tj
≤
∑
j∈C

zjd(j,S) ≤ αI(1 + ε) ≤ (αI +O(ε))
∑
j

wj .

Next, for any given j ∈ C, we have

d(j,S)

tj
≤ d(j,S)zj(n/ε) ≤ (n/ε)

∑
w∈C

zwd(w,S) ≤ (n/ε)αI(1 + ε) ≤ O(n/ε).

Theorem 23 There is an algorithm which takes as input an instance I, a parameter ε > 0
and a feasible vector tj, runs in time poly(n, 1/ε), and returns an explicitly enumerated
distribution Ω̃ with support size n and ES∼Ω̃[d(j,S)] ≤ (αI + ε)tj for all j ∈ C.
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Proof We assume without loss of generality that ε ≤ 1; by rescaling ε it suffices to show
that E[d(j,S)] ≤ (αI +O(ε))tj .

We begin with the following Algorithm 8, which uses a form of multiplicative weights
update with repeated applications of Proposition 22.

Algorithm 8 Approximation algorithm for E[d(j,S)]: first phase

1: for ` = 1, . . . , r = n lnn
ε3

do

2: Let X` ∈
(F
k

)
be the resulting of applying the algorithm of Proposition 22 with

parameters ε, tj and weight vector w given by

wj = exp
(
ε2

`−1∑
s=1

d(j,Xs)

ntj

)
,

3: Set Ω̃′ to be the uniform distribution on X1, . . . , Xr

Let us define φ = ε2/n. For each iteration ` = 1, . . . , r + 1 let u
(`)
j = φd(j,X`)/tj ,

and let w
(`)
j = e

∑`−1
s=1 u

(s)
j denote the weight vector. Proposition 22 ensures that u

(`)
j ≤ ε,

and thus eu
(`)
j ≤ 1 + eε−1

ε u
(`)
j ≤ 1 + (1 + ε)u

(`)
j , as well as ensuring that

∑
j w

(`)
j u

(`)
j ≤

φ(αI +O(ε))
∑

j w
(`)
j .

Now let Φ` =
∑

j∈C w
(`)
j . Note that Φ1 = n, and for each ` ≥ 1, we have

Φ`+1 =
∑
j∈C

w
(`)
j eu

(`)
j ≤

∑
j∈C

w
(`)
j

(
1 + (1 + ε)u

(`)
j

)
≤
∑
j∈C

w
(`)
j + (1 + ε)

∑
j∈C

w
(`)
j u

(`)
j

≤ Φ`

(
1 + (1 + ε)φ(αI +O(ε))

)
≤ Φ`e

φ(αI+O(ε))

This recurrence relation implies that Φ` ≤ ne(`−1)φ(αI+O(ε)). Since w
(r+1)
j ≤ Φr+1, this

implies
r∑
`=1

φd(j,X`)/tj = lnw
(r+1)
j ≤ ln Φr+1 ≤ lnn+ rφ(αI +O(ε)).

or equivalently,
r∑
`=1

d(j,X`)

r
= tj

( lnn

rφ
+ (αI +O(ε))

)
As r = n lnn

ε3
= lnn

εφ , we thus have
∑r
`=1 d(j,X`)

r ≤ (αI + O(ε))tj . Thus, the distribution Ω̃′

satisfies
∀j ∈ C ES∼Ω̃′ [d(j,S)] ≤ (αI +O(ε))tj . (9)

Now the distribution Ω̃′ satisfies the condition on E[d(j,S)], but its support is too large.
We can reduce the support size to |C| by moving in the nullspace of the |C| linear constraints
(9).

Byrka et al. (2017) have shown a 2.675+ε-approximation algorithm for k-median, which
automatically gives a 2.675 + ε-approximation algorithm for k-lottery as well. Some special
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cases of k-median have more efficient approximation algorithms. For instance, Cohen-
Addad et al. (2016) gives a PTAS for k-median problems derived from a planar graph,
and Ahmadian et al. (2017) gives a 2.633 + ε-approximation for Euclidan distances. These
immediately give approximation algorithms for the corresponding k-lotteries. We also note
that, by Theorem 20, one cannot obtain a general approximation ratio better than 1 + 2/e
(or 1 + 1/e in the SCC setting).

6. Determinizing a k-lottery

Suppose that we have a set of feasible weights tj such some k-lottery distribution Ω satisfies
ES∼Ω[d(j,S)] ≤ tj ; let us examine how to find a single, deterministic set S with d(j,S) ≈ tj .
We refer to this as the problem of determinizing the lottery Ω. Note that this can be viewed
as a converse to the problem considered in Section 3.

We will see that, in order to obtain reasonable approximation ratios, we may need |S|
to be significantly larger than k. We thus define an (α, β)-determinization to be a set
S ∈

(F
k′

)
with k′ ≤ αk and d(j,S) ≤ βtj for all j ∈ C. We emphasize that we cannot

necessarily obtain (1, 1)-determinizations, even with unbounded computational resources.
The following simple example illustrates the tradeoff between parameters α and β:

Observation 24 Let α, β, k ≥ 1. If β < αk+1
(α−1)k+1 , there is a homogeneous SCC instance

for which no (α, β)-determinization exists.

Proof Let k′ = αk and consider a problem instance with F = C = {1, . . . , k′ + 1}, and
d(i, j) = 1 for every distinct i, j. Clearly, every S ∈

(F
k′

)
satisfies minj d(j,S) = 1. When Ω

is the uniform distribution on
(F
k

)
, we have E[d(j,S)] = 1− k

k′+1 . Thus tj = k
k′+1 is feasible

and therefore β ≥ 1
1− k

k′+1

= αk+1
(α−1)k+1 .

In particular, when α = 1 we must have β ≥ k + 1 and when k → ∞, we must have
β & α

α−1 .
We examine three main regimes for the parameters (α, β): (1) the case where α, β are

scale-free constants; (2) the case where β is close to one, in which case α must be of order
log n; (3) the case where α = 1, in which case β must be order k.

Our determinization algorithms for the first two cases will based on the following LP
denoted Pexpectation, defined in terms of fractional vectors bi, ai,j where i ranges over F and
j ranges over C:

(A1) ∀j ∈ C,
∑

i∈F ai,jd(i, j) ≤ tj ,

(A2) ∀j ∈ C,
∑

i∈F ai,j = 1,

(A3) ∀i ∈ F , y ∈ C, 0 ≤ ai,j ≤ bi,

(A4) ∀i ∈ F , 0 ≤ bi ≤ 1,

(A5)
∑

i∈F bi ≤ k.

Theorem 25 If tj is feasible, then Pexpectation has a fractional solution.
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Proof Let Ω be a probability distribution with E[d(j,S)] ≤ tj . For any draw S ∼ Ω,
define random variable Zj to be the facility of S matched by j. Now consider the fractional
vector defined by

bi = Pr
S∼Ω

[i ∈ S], ai,j = Pr
S∼Ω

[Zj = i]

We claim that this satisfies (A1) — (A5). For (A1), we have

E[d(j,S)] = E[d(j, Zj)] =
∑
i∈F

d(i, j) Pr[Zj = i] =
∑
i∈F

d(i, j)ai,j ≤ tj .

For (A2), note that
∑

i Pr[Zj = i] = 1. For (A3), note that Zj = i can only occur if
i ∈ S. (A4) is clear, and (A5) holds as |S| = k with probability one.

We next describe upper and lower bounds for these three regimes.

6.1. The Case Where α, β are Scale-free Constants.

For this regime (with all parameters independent of problem size n and k), we may use the
following Algorithm 9, which is based on greedy clustering using a solution to Pexpectation.

Algorithm 9 (α, β)-determinization algorithm

1: Let a, b be a solution to Pexpectation.
2: For every j ∈ C, select rj ≥ 0 to be minimal such that

∑
i∈B(j,rj)

ai,j ≥ 1/α

3: By splitting facilities, form a set Fj ⊆ B(j, rj) with b(Fj) = 1/α.
4: Set C ′ = GreedyCluster(Fj , θ(j) + rj)
5: Output solution set S = {Vj | j ∈ C ′}.

Step (3) is well-defined, as (A3) ensures that b(B(j, rj)) ≥
∑

i∈B(j,rj)
ai,j ≥ 1/α. Let us

analyze the resulting approximation factor β.

Proposition 26 Every client j ∈ C has rj ≤ αtj−θ(j)
α−1 .

Proof Let s =
αtj−θ(j)
α−1 . It suffices to show that∑

i∈F ,d(i,j)>s

ai,j ≤ 1− 1/α.

As d(i, j) ≥ θ(j) for all i ∈ F , we have∑
i∈F

d(i,j)>s

ai,j ≤
∑
i∈F

d(i,j)>s

ai,j
d(i, j)− θ(j)
s− θ(j)

≤
∑
i∈F

ai,j
d(i, j)− θ(j)
s− θ(j)

=

∑
i∈F ai,jd(i, j)− θ(j)

∑
i∈F ai,j

s− θ(j)

≤ tj − θ(j)
s− θ(j)

= 1− 1/α, by (A1), (A2).
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Theorem 27 Algorithm 9 gives an (α, β)-determinization with the following parameter β:

1. In the general setting, β = max(3, 2α
α−1).

2. In the SCC setting, β = 2α
α−1 .

Proof We first claim that the resulting set S has |S| ≤ αk. The algorithm opens at most
|C ′| facilities. The sets Fj are pairwise disjoint for j ∈ C ′ and b(Fj) = 1/α for j ∈ C ′. Thus∑

j∈C′ b(Fj) = |C ′|/α. On the other hand, b(F) = k, and so k ≥ |C ′|/α.

Next, consider some j ∈ C; we want to show that d(j,S) ≤ βtj . By Observation 2, there
is z ∈ C ′ with Fj ∩Fz 6= ∅ and θ(z) + rz ≤ θ(j) + rj . Thus d(j,S) ≤ d(z,S) +d(z, i) +d(j, i)
where i ∈ Fj ∩ Fz. Step (5) ensures d(z,S) = θ(z). We have d(z, i) ≤ rz and d(i, j) ≤ rj
since i ∈ Fj ⊆ B(j, rj) and i ∈ Fz ⊆ B(z, rz). So

d(j,S) ≤ θ(z) + rz + rj ≤ 2rj + θ(j).

By Proposition 26, we therefore have

d(j,S) ≤ 2αtj − 2θ(j)

α− 1
+ θ(j) =

2αtj
α− 1

+
α− 3

α− 1
θ(j) (10)

This immediately shows the claim for the SCC setting where θ(j) = 0.

In the general setting, for α ≤ 3, the second coefficient in the RHS of (10) is non-positive

and hence the RHS is at most
2αtj
α−1 as desired. When α ≥ 3, then in order for t to be feasible

we must have tj ≥ θ(j); substituting this upper bound on θ(j) into (10) gives

d(j,S) ≤ 2αtj
α− 1

+
α− 3

α− 1
tj = 3tj

We note that these approximation ratios are, for α close to 1, within a factor of 2
compared to the lower bound of Observation 24. As α → ∞, the approximation ratio
approaches to limiting values 3 (or 2 in the SCC setting).

6.2. The Case of Small β

We now consider what occurs when β becomes smaller than the critical threshold values
3 (or 2 in the SCC setting). We show that in this regime we must take α = Ω(log n). Of
particular interest is the case when β approaches 1; here, in order to get β = 1 + ε for small
ε we show it is necessary and sufficient to take α = Θ( logn

ε ).

Proposition 28 For any ε < 1/2, there is a randomized polynomial-time algorithm to
obtain a (3 logn

ε , 1 + ε) determinization.

Proof First, let a, b be a solution to Pexpectation. Define pi = min(1, 2 logn
ε bi) for each

i ∈ F and form S = DepRound(p). Observe then that |S| ≤ d
∑

i pie ≤ d
2 logn
ε

∑
bie ≤

1 + 2k logn
ε ≤ 3k logn

ε .
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For j ∈ C, define A = Bj,(1+ε)tj . Let us note that, by properties (A3), (A1) and (A2),
we have∑

i∈A
bi ≥

∑
i∈A

ai,j = 1−
∑

i:d(i,j)>(1+ε)tj

ai,j ≥ 1−
∑

i:d(i,j)>(1+ε)tj

ai,j
d(i, j)

(1 + ε)tj
≥ 1− 1

1 + ε

So by property (P3) of DepRound, and using the bound ε < 1/2, have

Pr[d(j,S) > (1 + ε)tj ] = Pr[A ∩ S = ∅] ≤
∏
i∈A

(1− pi) ≤
∏
i∈A

e−
2 logn
ε

bi ≤ e
−2 logn

ε
(1− 1

1+ε
) ≤ n−4/3

A union bound over j ∈ C shows that solution set S satisfies d(j,S) ≤ (1 + ε)tj for all j
with high probability.

The following shows matching lower bounds:

Proposition 29 1. There is a universal constant K with the following properties. For
any k ≥ 1, ε ∈ (0, 1/3) there is some integer Nk,ε such that for n > Nk,ε, there is a
homogeneous SCC instance of size n in which every (α, 1+ε)-determinization satisfies
α ≥ K logn

ε .

2. For each β ∈ (1, 2) and each k ≥ 1, there is a constant K ′β,k such that, for all n ≥ 1,
there is a homogeneous SCC instance of size n in which every (α, β)-determinization
satisfies α ≥ K ′β,k log n.

3. For each β ∈ (1, 3) and each k ≥ 1, there is a constant K ′′β,k such that, for all
n ≥ 1, there is a homogeneous instance of size n in which every (α, β)-determinization
satisfies α ≥ K ′′β,k log n

Proof These three results are very similar, so we show the first one in detail and sketch
the difference between the other two.

Consider an Erdős-Rényi random graph G ∼ G(n, p), where p = 3ε/k; note that p ∈
(0, 1). As shown by Glebov et al. (2015) asymptotically almost surely the domination
number J of G satisfies J = Ω(k logn

ε ).
We construct a related instance with F = C = [n], and where d(i, j) = 1 if (i, j) is an

edge, and d(i, j) = 2 otherwise. Note that if X is not a dominating set of G, then some
vertex of G has distance at least 2 from it; equivalently, maxj d(j,X) ≥ 2 for every set X
with |X| < J .

Chernoff’s bound shows that every vertex of G has degree at least u = 0.9np with high
probability. Assuming this event has occured, we calculate E[d(j,S)] where S is drawn
from the uniform distribution on

(F
k

)
. Note that d(j,S) ≤ 1 if j is a neighbor of X and

d(j,S) = 2 otherwise, so

E[d(j,S)] ≤ 1 +

(
n−u
k

)(
n
k

) ≤ 1 + e−0.9pk = 1 + e−2.7ε.

Both the bound on the domination number and the minimum degree of G hold with
positive probability for n sufficiently large (as a function of k, ε). In this case, tj = 1+e−2.7ε
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is a feasible homogeneous demand vector. At the same time, every set S ∈
(
F
J−1

)
satisfies

minj∈C d(j,S) ≥ 2. Thus, an (α, β)-determinization cannot have α < J
k = Θ( logn

ε ) and
β ≤ 2

1+e−2.7ε . Note that 2
1+e−2.7ε ≥ 1 + ε for ε < 1/3. Thus, whenever β ≤ 1 + ε, we have

α ≥ Θ( logn
ε ).

For the second result, we use the same construction as above with p = 1 − 1
2(λ/2)1/k

where λ = 2−β. A similar analysis shows that the vector tj = 1 +λ/2 is feasible with high
probability and |J | ≥ Ω(k log n) (where the hidden constant may depend upon β, k). Thus,
unless α ≥ Ω(log n), the approximation ratio achieved is 2

1+λ/2 ≥ β.
The third result is similar to the second one, except that we use a random bipartite

graph. The left-nodes are associated with F and the right-nodes with C. For i ∈ F and
j ∈ C, we define d(i, j) = 1 if (i, j) is an edge and d(i, j) = 3 otherwise.

6.3. The Case of α = 1

We finally consider the case α = 1, that is, where the constraint on the number of open
facilities is respected exactly. By Observation 24, we must have β ≥ k + 1 here. The
following greedy algorithm gives a (1, k + 2)-determinization, nearly matching this lower
bound.

Algorithm 10 (1, k + 2)-determinization algorithm

1: Initialize S = ∅
2: for ` = 1, . . . , |F| do
3: Let C` denote the set of points j ∈ C with d(j,S) > (k + 2)tj
4: If C` = ∅, then return S.
5: Select the point j` ∈ C` with the smallest value of tj` .
6: Update S ← S ∪ {Vj`}

Theorem 30 If the values tj are feasible, then Algorithm 10 outputs a (1, k+2)-determinization
in O(|F||C|) time.

Proof For the runtime bound, we first compute Vj for each j ∈ C; this requires O(|F||C|)
time upfront. When we update S at each iteration `, we update and maintain the quantities
d(j,S) quantities by computing d(j, Vj`) for each j ∈ C. This takes O(|C|) time per iteration.

To show correctness, note that if this procedure terminates at iteration `, we have
C` = ∅ and so every point j ∈ C has d(j,S) ≤ (k + 2)tj . The resulting set S at this point
has cardinality ` − 1. So we need to show that the algorithm terminates before reaching
iteration ` = k + 2.

Suppose not; let the resulting points be j1, . . . , jk+1 and for each ` = 1, . . . , k + 1 let
w` = tj` . Because j` is selected to minimze tj` we have w1 ≤ w2 ≤ · · · ≤ wk+1.

Now, let Ω be a k-lottery satisfying ES∼Ω[d(j,S)] ≤ tj for every j ∈ C, and consider
the random process of drawing S from Ω. Define the random variable D` = d(j`,S) for
` = 1, . . . , k + 1. For any such S, by the pigeonhole principle there must exist some pair
j`, j`′ with 1 ≤ ` < `′ ≤ k + 1 which are both matched to a common facility i ∈ S, that is

D` = d(j`,S) = d(j`, i), D`′ = d(j`′ ,S) = d(j`′ , i).
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By the triangle inequality,

d(j`′ , Vj`) ≤ d(j`′ , i) + d(i, j`) + d(j`, Vj`) = D`′ +D` + θ(j`)

On the other hand, j`′ ∈ C`′ and yet Vj` was in the partial solution set S seen at iteration
`′. Therefore, it must be that

d(j`′ , Vj`) > (k + 2)tj`′ = (k + 2)w`′

Putting these two inequalities together, we have shown that

D` +D`′ + θ(j`) > (k + 2)w`′ .

As θ(j`) ≤ w` ≤ w`′ , this implies that

D`

w`
+
D`′

w`′
≥ D` +D`′

w`′
>

(k + 2)w`′ − θ(j`)
w`′

≥ (k + 2)w`′ − w`
w`′

≥ (k + 2)w`′ − w`′
w`′

= k + 1.

We have shown that, with probability one, there is some pair ` < `′ satisfying this
inequality D`/w` +D`′/w`′ > k + 1. Therefore, with probability one it holds that

k+1∑
`=1

D`/w` > k + 1. (11)

But now take expectations, observing that E[D`] = E[d(j`,S)] ≤ tj` = w`. So the LHS
of (11) has expectation at most k + 1. This is a contradiction.

We remark that it is possible to obtain an optimal (1, k+1)-determinization algorithm for
the SCC or homogeneous settings, but we omit this since it is very similar to Algorithm 10.
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Appendix A. Proof of Pseudo-Theorem 17

We would like to use Lemma 16 to bound E[d(i,S)], over all possible integer values m ≥ 1
and over all possible sequences 1 ≥ u1 ≥ u2 ≥ u3 ≥ · · · ≥ ut ≥ 0. One technical obstacle
here is that this is not a compact space, due to the unbounded dimension t and unbounded
parameter m. The next result removes these restrictions.

Proposition 31 For any fixed integers L,M ≥ 1, and every j ∈ C, we have

E[d(j,S)] ≤ 1 + max
m∈{1,2,...,M}

1≥u1≥u2≥...uL≥0

EQR̂(m,u1, u2, . . . , uL),
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where we define

α =
L−1∏
`=1

(1−Qp(u` − u`+1))× e−QpuL ,

β =

L−1∏
`=1

(u` +Qpu`+1)×

(1− uL) if uL ≤ Qp

e
−uL−Qp

1−Qp (1−Qp) if uL > Qp

,

R̂(m,u1, . . . , uL) =

{
(1−Qf

u1
m )mα+ (Qf(1− u1

m ))mβ if m < M

e−Qfu1α+Qf
M
e−u1β if m = M

.

The expectation EQ is taken only over the randomness involved in Qf, Qp.

Proof By Lemma 16,

E[d(i,S) | Qf, Qp]

≤ 1 +

(
1−Qf

u1

m

)m t∏
`=1

(1−Qp(u` − u`+1)) +

(
Qf(1−

u1

m
)

)m t∏
`=1

(u` +Qpu`+1).

where u1, . . . , ut,m are defined as in Lemma 16; in particular 1 ≥ u1 ≥ u2 ≥ · · · ≥ ut ≥
ut+1 = 0 and m ≥ 1. If we define uj = 0 for all integers j ≥ t, then

E[d(i,S) | Qf, Qp]

≤ 1 +

(
1−Qf

u1

m

)m ∞∏
`=1

(1−Qp(u` − u`+1)) +

(
Qf(1−

u1

m
)

)m ∞∏
`=1

(u` +Qpu`+1).

The terms corresponding to ` > L telescope so we estimate these as:

∞∏
`=L

(1−Qp(u` − u`+1)) ≤
∞∏
`=L

e−Qp(u`−u`+1) = e−QpuL

and

∞∏
`=L

(u` +Qpu`+1) ≤ (1− uL +QpuL+1)

∞∏
`=L+1

e−u`+Qpu`+1 ≤ (1− uL +QpuL+1)e−uL+1 .

Now consider the expression (1−uL+QpuL+1)e−uL+1 as a function of uL+1 in the range
uL+1 ∈ [0, uL]. Elementary calculus shows that it satisfies the bound

(1− uL +QpuL+1)e−uL+1 ≤

(1− uL) if uL ≤ Qp

e
−uL−Qp

1−Qp (1−Qp) if uL > Qp

,

Thus

E[d(i,S) | Qf, Qf] ≤ 1 +

(
1−Qf

u1

m

)m
α+

(
Qf(1−

u1

m
)

)m
β.
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If m < M we are done. Otherwise, for m ≥M , we upper-bound the Qf terms as:

(1−Qfu1/m)m ≤ e−Qfu1 , (Qf(1− u1/m))m ≤ Qf
M
e−u1

In light of Proposition 31, we can get an upper bound on E[d(i,S)] by maximizing R̂.
We now discuss to bound R̂ for a fixed choice of L,M , where we select Qf, Qp according to
the following type of distribution:

(Qf, Qp) =

{
(γ0,f, 0) with probability p

(γ1,f, γ1,p) with probability 1− p
.

Note that we are setting γ0,p = 0 here in order to keep the search space more manageable.
We need to upper-bound the function EQR̂(m,u1, . . . , uL), for fixed values γ and where
m,u range over the compact domain m ∈ {1, . . . ,M}, 1 ≥ u1 ≥ · · · ≥ uL ≥ 0. The most
straightforward way to do so would be to divide (u1, . . . , uL) into intervals of size ε, and
then calculate upper bounds on R̂ within each interval and for each m. This process would
have a runtime of Mε−L, which is too expensive.

But suppose we have fixed uj , . . . , uL, and we wish to continue to enumerate over
u1, . . . , uj−1. To compute R̂(m,u1, . . . , uL) as a function of m,u1, . . . , uL, observe that
we do not need to know all the values uj+1, . . . , uL, but only the following four summary
statistics of them:

1. a1 = e−γ1,puL
∏L−1
`=j (1− γ1,p(u` − u`+1)),

2. a2 =
∏L−1
`=j (u` + γ1,pu`+1)×

(1− uL) if uL ≤ γ1,p

e
−
uL−γ1,p
1−γ1,p (1− γ1,p) if uL > γ1,p

,

3. a3 = e−uL
∏L−1
`=j (1− (u` − u`+1)),

4. a4 = uj+1.

We thus use a dynamic program wherein we track, for j = L, . . . , 1, all possible values for
the tuple (a1, . . . , a4). Furthermore, since R̂ is a monotonic function of a1, a2, a3, a4, we only
need to store the maximal tuples (a1, . . . , a4). The resulting search space has size O(ε−3).

We wrote C code to perform this computation to upper-bound EQR̂ with M = 10, ε =
2−12, L = 7. This runs in about an hour on a single CPU core. With some additional
tricks, we can also optimize over the parameter p ∈ [0, 1] while still keeping the stack space
bounded by O(ε−3).

Note that due to the complexity of the dynamic programming algorithm, the compu-
tations were carried out in double-precision floating point arithmetic. The rounding errors
were not tracked precisely, and it would be difficult to write completely correct code to do
so. We believe that these errors should be orders of magnitude below the third decimal
place, and that the computed value 1.592 is a valid upper bound.
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