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Abstract

With the growing importance of machine learning (ML) algorithms for practical applications,
reducing data quality problems in ML pipelines has become a major focus of research. In
many cases missing values can break data pipelines which makes completeness one of the most
impactful data quality challenges. Current missing value imputation methods are focusing
on numerical or categorical data and can be difficult to scale to datasets with millions of
rows. We release DataWig, a robust and scalable approach for missing value imputation
that can be applied to tables with heterogeneous data types, including unstructured text.
DataWig combines deep learning feature extractors with automatic hyperparameter tuning.
This enables users without a machine learning background, such as data engineers, to
impute missing values with minimal effort in tables with more heterogeneous data types
than supported in existing libraries, while requiring less glue code for feature engineering
and offering more flexible modelling options. We demonstrate that DataWig compares
favourably to existing imputation packages. Source code, documentation, and unit tests for
this package are available at: github.com/awslabs/datawig
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1. Introduction

Machine learning (ML) algorithms have become a standard technology in production use cases.
One of the main reasons for suboptimal predictive performance of such systems is low data
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table = pandas.read_csv(’products.csv’)
missing = table[table[’color’].isnull ()]

Data Type Featurizers Loss

# instantiate model and train imputer
Normalization model = SimpleImputer (

Numerical Regression input_columns=[’description’,
Neural Network s product . type’
Categorical ~ Embeddings Softmax ‘size’],
output_columns=[’color’])
Bag-of-Words .fit (table)
Text & N/A
LSTM

# impute missing values
imputed = model.predict(missing)

Figure 1: Left: Available featurizers and loss functions for different data types in DataWig.
Right: Application example of DataWig API for the use case shown in Figure 2.

quality and one of the most frequent data quality problems are missing values. Imputation
of missing values can help to increase data quality by filling gaps in training data. However
automated and scalable imputations for tables with heterogeneous data types including
free form text fields remains challenging. Here we present DataWig, a software package
that aims at minimizing the effort required for missing value imputation in heterogeneous
data sources. Most research in the field of imputation focuses on imputing missing values
in matrices, that is imputation of numerical values from other numerical values (Mayer
et al., 2019). Popular approaches include k-nearest neighbors (KNN) (Batista and Monard,
2003), multivariate imputation by chained equations (MICE) (Little and Rubin, 2002),
matriz factorization (Koren et al., 2009; Mazumder et al., 2010; Troyanskaya et al., 2001) or
deep learning methods (Gondara and Wang, 2017; Zhang et al., 2018; Mattei and Frellsen,
2019). While some recent work addresses imputation for more heterogeneous data types
(Stekhoven and Biihlmann, 2012; Yoon et al., 2018; Nazabal et al., 2018), heterogeneous in
those studies refers to binary, ordinal or categorical variables, which can be easily transformed
into numerical representations. In practice also these simple transformations require glue
code that can be difficult to adapt and maintain in a production setting. Writing such feature
extraction code is out of scope for many engineers and can incur considerable technical debt
on any data pipeline (Sculley et al., 2015; Schelter et al., 2018). We release DataWig to
complement existing imputation libraries by an imputation solution for tables that contain
not only numerical values or categorical values, but also more generic data types such as
unstructured text. Extending the functionality of previous packages, DataWig’s imputation
automatically selects from a number of feature extractors, including deep learning techniques,
and learns all parameters in an end-to-end fashion using the symbolic API of Apache mxnet
to ensure efficient execution on both CPUs and GPUs.

2. Imputation Model

The imputation model in DataWig is inspired by established approaches (van Buuren,
2018) and follows the approach of MICE, also referred to as fully conditional specification:
for each to-be-imputed column (referred to as output column), the user can specify the
columns which might contain useful information for imputation (referred to as input columns).
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Figure 2: Imputation example on non-numerical data with deep learning.

Depending on its data type, each input column gets a dedicated featurizer denoted below as
¢. Similarly, depending on the data type for the output column, DataWig uses a different
loss function. The types of featurizers and loss functions currently available in DataWig are
listed in Figure 1 (left). The code design enables users to extend these types easily to images
or sequences. More formally, DataWig imputes values g, = f(Xz) in an output column
o, where f refers to the imputation model learned on the observed values in column o
and x7 refers to the concatenation of the features extracted from all input columns X7 =
[p1(x1), d2(x2), ..., dc, (xCT)], see also Figure 2. Depending on the data type in the output
column, f is fitted using either a regression or a cross-entropy loss. The API allows imputation
of missing values in a table by simply passing in a pandas dataframe and specifying the input
and output columns, see Figure 1 (right). Alternatively, all missing values in a dataframe can
be imputed by calling SimpleImputer.complete(df). Additionally DataWig has a number
of features that help to automate end-to-end imputation for practitioners: The data types
are detected using heuristics and the corresponding features are learned automatically during
the training of the imputation model. All hyperparameters and neural architectures are
optimized using random search (Bergstra and Bengio, 2012), which can be constrained to
a specified time limit. Probabilistic model outputs are automatically calibrated on the
validation set (Guo et al., 2017), and if requested explanations for the imputations can be
computed for string input columns to better understand the imputations. Moreover, the
model is equipped with functionality to compensate for label shift between the training and
unlabelled production data using in the approach proposed by Lipton et al. (2018).

3. Evaluation

In Figure 3 we compare DataWig on numerical missing value imputation against three methods
from the fancyimpute package (mean, KNN and matrix factorization) and two methods
from the Iterativelmputer of sklearn with the estimators RandomForestRegressor and
LinearRegression, which are similar to the MissForest approach (Stekhoven and Biithlmann,
2012; van Buuren, 2018), and MICE with a linear model (Little and Rubin, 2002); iterative
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Figure 3: Comparison of imputation performance across several synthetic and real world
data sets with varying amounts of missing data and missingness structure. Relative mean
squared errors were normalized to the highest error in a condition.

imputation here means that 10 consecutive imputation rounds were performed for replacing
the missing values in the input columns. All methods were evaluated on one synthetic linear
and one synthetic non-linear problem and five real data sets available in sklearn. Values
were discarded either completely at random, at random (conditioned on values in another
randomly chosen column being in a random interval) or not at random (conditioned on
values to be discarded). In Figure 3 the relative mean-squared error is shown, normalized to
the highest MSE in a given condition. For DataWig the SimpleImputer.complete function
with random search for hyperparameter tuning was used. For each baseline method, grid
search was performed for hyperparameter optimization on a validation set, test errors were
obtained on a separate test set, for details and unnormalized results see benchmarks github
repository. We observe that DataWig compares favourably with other implementations for
numeric imputation, even in the difficult missing-not-at-random condition. These experiments
allow for a comparison of DataWig with existing packages designed for numeric data. For
imputation with text data, standard numerical imputation methods cannot be used. When
comparing DataWig with mode imputation and string matching (Dallachiesa et al., 2013)
DataWig achieves a median Fl-score of 60% across three tasks, imputation of the Wikipedia
attributes birth-place, genre and location, with a simple n-gram model. Mode imputation
reached a median Fl-score of 0.7% and string matching 7.5% (Biessmann et al., 2018).

4. Conclusion

We present DataWig, a software package that enables practitioners such as data engineers
to achieve state-of-the-art imputation results with minimal set up and maintenance. Our
package complements the open source ecosystem by offering deep learning modules combined
with neural architecture search and end-to-end optimization of the imputation pipeline,
also for data types like free text fields. DataWig compares favorably to existing imputation
approaches on numeric imputation problems, but also when imputing values in tables
containing unstructured text. The software, unit tests, and all experiments are available
under github.com/awslabs/datawig. While the present version of our software does not
impute free form text or images, an interesting topic for future research is using generative
models for these types of data building on recent advancements in neural missing value
imputation (Zhang et al., 2018; Camino et al., 2019).
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