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Abstract

We consider the problem of finding critical points of functions that are non-convex and non-
smooth. Studying a fairly broad class of such problems, we analyze the behavior of three
gradient-based methods (gradient descent, proximal update, and Frank-Wolfe update).
For each of these methods, we establish rates of convergence for general problems, and also
prove faster rates for continuous sub-analytic functions. We also show that our algorithms
can escape strict saddle points for a class of non-smooth functions, thereby generalizing
known results for smooth functions. Our analysis leads to a simplification of the popular
CCCP algorithm, used for optimizing functions that can be written as a difference of two
convex functions. Our simplified algorithm retains all the convergence properties of CCCP,
along with a significantly lower cost per iteration. We illustrate our methods and theory via
applications to the problems of best subset selection, robust estimation, mixture density
estimation, and shape-from-shading reconstruction.

1. Introduction

Non-convex optimization problems arise frequently in statistical machine learning; exam-
ples include the use of non-convex penalties for enforcing sparsity (Fan and Li, 2001; Loh
and Wainwright, 2013; Wainwright, 2019), non-convexity in likelihoods in mixture model-
ing (Yan et al., 2017), and non-convexity in neural network training (Li and Yuan, 2017).
Of course, minimizing a non-convex problem is NP-hard in general, but problems that arise
in machine learning applications are not constructed in an adversarial manner. Moreover,
there have been a number of recent papers demonstrating that all first (and/or second)
order critical points have desirable properties for certain statistical problems (e.g. Loh and
Wainwright 2013; Ge et al. 2017). Given results of this type, it is often sufficient to find
critical points that are first-order (and possibly second-order) stationary. Accordingly, re-
cent years have witnessed an explosion of research on different algorithms for non-convex
problems, with the goal of trying to characterize the nature of their fixed points, and their
convergence properties.
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There is a lengthy literature on non-convex optimization, dating back more than six
decades, and rapidly evolving in the present (e.g., see Tuy 1995; Hartman 1959; Horst
et al. 2000; Lanckriet and Sriperumbudur 2009; Yuille and Rangarajan 2003; Lee et al.
2016; Bolte et al. 2014; Panageas and Piliouras 2016; Lipp and Boyd 2016; Cartis et al.
2010; Attouch et al. 2010; Gotoh et al. 2017). Perhaps the most straightforward approach
to obtaining a first-order critical point is via gradient descent. Under suitable regularity
conditions and step size choices, it can be shown that gradient descent can be used to
compute first-order critical points. Moreover, with a random initialization and additional
regularity conditions, gradient descent converges almost surely to a second-order station-
ary point (e.g., Lee et al. 2016; Panageas and Piliouras 2016). These results, like much of
the currently available theory for (sub)-gradient methods for non-convex problems, involve
smoothness conditions on the underlying objectives. In practice, many machine learning
problems have non-smooth components; examples include the hinge loss in support vector
machines, the rectified linear unit in neural networks, and various types of matrix regular-
izers in collaborative filtering and recommender systems. Accordingly, a natural goal is to
develop subgradient-based techniques that apply to a broader class of non-convex functions,
allowing for non-smoothness.

The main contribution of this paper is to provide precisely such a set of techniques,
along with non-asymptotic guarantees on their convergence rates. In particular, we study
algorithms that can be used to obtain first-order (and in some cases, also second-order)
optimal solutions to a relatively broad class of non-convex functions, allowing for non-
smoothness in certain portions of the problem. For each sequence {xk}k≥0 generated by
one of our algorithms, we provide non-asymptotic bounds on the convergence rate of the
gradient sequence {‖∇f(xk)‖2}k≥0. Moreover, for functions that satisfy a form of the
Kurdaya- Lojasiewicz inequality, we show that our methods achieve faster rates.

Our work has important points of contact with a recent line of papers on algorithms
for non-convex and non-smooth problems, and we discuss a few of them here. Bolte et al.
(2014) developed a proximal-type algorithm applicable to objective functions formed as a
sum of smooth (possibly non-convex) and a convex (possibly non-differentiable) function.
Some recent work by Xu and Yin (2017) extended these ideas and provided analysis for
block co-ordinate descent methods for non-convex functions. Hong et al. (2016) analyzed
the ADMM method for non-convex problems, whereas in other recent work (An and Nam,
2017; Wen et al., 2018), the authors proposed a proximal-type method for non-convex
functions that can be written as a sum of a smooth function, a concave continuous function
and a convex lower semi-continuous function; we also analyze this class in one of our results
(Theorem 2).

Our results also relate to another interesting sub-area of non-convex optimization,
namely functions that can be represented as a difference of two convex functions, popu-
larly known as DC functions. We refer the reader to the papers (Tuy, 1995; Hartman, 1959;
Lanckriet and Sriperumbudur, 2009; Yuille and Rangarajan, 2003) for more details on DC
functions and their properties. One of the most popular DC optimization algorithms is the
Convex Concave Procedure, or CCCP for short; see the papers (Yuille and Rangarajan,
2003; Lipp and Boyd, 2016) for further details. This is a double loop algorithm that min-
imizes a convex relaxation of the non-convex objective function at each iteration. While
the CCCP algorithm has some attractive convergence properties (Lanckriet and Sriperum-
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budur, 2009), it can be slow in many situations due to its double loop structure. One
outcome of the analysis in this paper is a single-loop proximal-method that retains all the
convergence guarantees of CCCP while—as shown in our experimental results—being much
faster to run.

1.1. Problem setup

In this paper, we study the problem of minimizing a non-convex and possibly non-smooth
function over a closed convex set. More precisely, we consider optimization problems of the
form

min
x∈C

{
g(x)− h(x) + ϕ(x)︸ ︷︷ ︸

f(x)

}
, (1)

where the domain C is a closed convex set. In all cases, we assume the function f is bounded
below over domain C, and that the function h is continuous and convex. Our aim is to derive
algorithms for problem (1) for various types of functions g and ϕ.

Structural assumption on functions g and h

(a) Theorems 1 and 4 are based on the assumption that the function g is continuously
differentiable and smooth, and that the function ϕ ≡ 0.

(b) In Theorems 2 and 5, we assume that the function g is continuously differentiable and
smooth, and that the function ϕ is convex, proper and lower semi-continuous.1

(c) Theorem 3 focuses on the case in which the function g is continuously differentiable,
and the function ϕ ≡ 0.

The class of non-convex functions covered in part (a) includes, as a special case, the
class of differences of convex (DC) functions, for which the first convex function is smooth
and the second convex function is continuous. Note that we only put a mild assumption of
continuity on the convex function h, meaning that the difference function g−h can be non-
smooth and non-differentiable in general. In particular, for any continuously differentiable
function h and any smooth function g, the difference function f = g − h is non-smooth.
Furthermore, if we take the function h ≡ 0, then we recover the class of smooth functions
as a special case.

1.2. Overview of our results

• Our first main result (Theorem 1) provides guarantees for a subgradient algorithm as
applied to the minimization problem (2), to be defined in the sequel, when constrained to
a closed convex set C. We provide convergence bounds in terms of the Euclidean norm of

1. Taking the function ϕ ≡ 0 yields part (a) as a special case, but it is worthwhile to point out that the
assumptions in Theorem 1 are weaker than the assumptions of Theorem 2. Furthermore, we can prove
some interesting results about saddle points when the function ϕ ≡ 0; see Corollary 3.
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the subgradient and show that our rates are unimprovable in general. We also illustrate
some consequences of Theorem 1 by deriving a convergence rate for our algorithm when
applied to non-smooth coercive functions; this result has interesting implications for
polynomial programming. We also provide a simplification of the CCCP algorithm,
along with convergence guarantees. In Corollary 3, we argue that our algorithm can
escape strict saddle points for a large class of non-smooth functions, thereby generalizing
known results for smooth functions.

• Our second main result (Theorem 2) provides convergence rates for a proximal-type
algorithm for problem (1). In Section 4.3, we demonstrate how this proximal-type
algorithm can be used to minimize a smooth convex function subject to a sparsity
constraint. We demonstrate the performance of this algorithm through the example of
best subset selection.

• In Theorem 3, we provide a Frank-Wolfe type algorithm for solving optimization prob-
lem (17), and we provide a rate of convergence in terms of the associated Frank-Wolfe gap.

• Finally, in Theorems 4 and 5, we prove that Algorithms 1 and 2, when applied to
functions that satisfy a variant of the Kurdaya- Lojasiewicz inequality, have faster con-
vergence rates. In particular, the convergence rate in terms of gradient norm is at least
O(1/k) – whereas the worst case rate for general non-convex functions is O( 1√

k
). We

also provide examples of functions for which the convergence rate is O(1/kr) with r > 1.
In Theorem 6, we characterize the class of functions that can be written as a difference
of a smooth function and a differentiable convex function.

Section 4 is devoted to an illustration of our methods and theory via applications to the
problems of best subset selection, robust estimation, mixture density estimation and shape-
from-shading reconstruction.

Notation: Given a set C ⊂ Rd, we use int(C) to denote its interior. We use ‖x‖2, ‖x‖1
and ‖x‖0 to denote the Euclidean norm, `1-norm and `0 norms, respectively, of a vector
x ∈ Rd. We say that a continuously differentiable function g is Mg-smooth if the gradient
∇g is Mg-Lipschitz continuous. In many examples considered in this paper, the objective
function f is a linear combination of a differentiable function g and one or more convex
functions h and ϕ. With a slight abuse of notation, for a function f = g − h+ ϕ, we refer
to a vector of the form ∇g(x) − u(x) + v(x), where u(x) ∈ ∂h(x) and v(x) ∈ ∂ϕ(x), as
a gradient of the function f at point x — and we denote it by ∇f(x); here, ∂h(·) and
∂ϕ(·) denote the subgradient sets of the convex functions h and ϕ respectively. We say
a point x is a critical point of the function f if 0 ∈ ∇f(x). For a sequence

{
ak
}
k≥0

, we

define the running arithmetic mean Avg
(
ak
)

as Avg
(
ak
)

: = 1
k

∑`=k+1
`=0 a`. Similarly, for

a non-negative sequence
{
ak
}
k≥0

, we use GAvg
(
ak
)

: = (
k∏
`=0

a`)
1
k+1 to denote the running

geometric mean. Finally, for real-valued sequences {ak}k≥0 and {bk}, we say ak = O
(
bk
)
,

if there exists a positive constant C, which is independent of k, such that ak ≤ Cbk for all
k ≥ 0. We say ak = Ω(bk) if ak = O

(
bk
)

and bk = O
(
ak
)
.
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2. Main results

Our main results are analyses of three algorithms for this class of non-convex non-smooth
problems; in particular, we derive non-asymptotic bounds on their rates of convergence. The
first algorithm is a (sub)-gradient-type method, and it is mainly suited for unconstrained
optimization; the second algorithm is based on a proximal operator and can be applied to
constrained optimization problems. The third algorithm is a Frank-Wolfe-type algorithm,
which is also suitable for constrained optimization problems, but it applies to a more general
class of non-convex optimization problems.

2.1. Gradient-type method

In this section, we analyze a (sub)-gradient-based method for solving a certain class of non-
convex optimization problems. In particular, consider a pair of functions (g, h) such that:

Assumption GR:

(a) The function g is continuously differentiable and Mg-smooth.

(b) The function h is continuous and convex.

(c) There is a closed convex set C such that the difference function f : = g−h is bounded
below on the set C.

Under these conditions, we then analyze the behavior of a (sub)-gradient method in appli-
cation to the following problem

f∗ = min
x∈C

f(x) = min
x∈C

{
g(x)− h(x)

}
. (2)

Let ∂h(x) denote the subdifferential of the convex function h at the point x. With a slight
abuse of notation, we refer to a vector of the form ∇g(x) − u(x) with u(x) ∈ ∂h(x) as a
gradient of the function f at the point x.

Algorithm 1 Subgradient-type method

1: Given an initial point x0 ∈ int(C) and step size α ∈ (0, 1
Mg

]:
2: for k = 0, 1, 2, . . . do
3: Choose subgradient uk ∈ ∂h(xk).
4: Update xk+1 = xk − α

(
∇g(xk)− uk

)
.

5: end for

In our analysis, we assume that the initial vector x0 ∈ int(C) is chosen such that the
associated level set

L(f(x0)) : =
{
x ∈ Rd | f(x) ≤ f(x0)

}
is contained within int(C). This condition is standard in the analysis of non-convex opti-
mization methods (e.g., see Nesterov and Polyak 2006). When C = Rd, it holds trivially.
With this set-up, we have the following guarantees on the convergence rate of Algorithm 1.
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Theorem 1 Under Assumption GR, any sequence {xk}k≥0 produced by Algorithm 1 has
the following properties:

(a) Any limit point is a critical point of the function f , and the sequence of function values
{f(xk)}k≥0 is strictly decreasing and convergent.

(b) For all k = 0, 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖22

)
≤

2
(
f(x0)− f∗

)
α(k + 1)

. (3)

See Appendix B.1 for a proof of this theorem.

2.1.1. Comments on convergence rates

Note that the bound (3) guarantees that the gradient norm sequence minj≤k ‖∇f(xj)‖2
converges to zero at the rate O(1/

√
k). It is natural to wonder whether this convergence rate

can be improved. Interestingly, the answer is no, at least for the general class of functions
covered by Theorem 1. Indeed, note that the class of M -smooth functions is contained
within the class of functions covered by Theorem 1. It follows from past work by Cartis et al.
(2010) that for gradient descent on M -smooth functions, with a step size chosen according
to the Goldstein-Armijo rule, the convergence rate of the gradient sequence {‖∇f(xk)‖2}k≥0

can be lower bounded—for appropriate choices of the function f—as Ω(1/
√
k). It is not

very difficult to see that the same construction also provides a lower bound of Ω(1/
√
k) for

gradient descent with a constant step size. We also note that very recently, Carmon et al.
(2017) proved an even stronger result: more precisely, for the class of smooth functions,
the rate of convergence of any algorithm given access to only the function gradients and
function values cannot be faster than Ω(1/

√
k). Finally, observe that in the special case

h ≡ 0, Algorithm 1 reduces to the ordinary gradient descent with fixed step size α. Putting
together the pieces, we conclude that for the class of functions which can be written as a
difference of smooth and a continuous convex function, Algorithm 1 is optimal among all
algorithms that have access to the gradients (and/or the sub-gradients) and the function
values.

2.2. Consequences for differentiable functions

In the special case when the function h is convex and differentiable, Algorithm 1 reduces
to an ordinary gradient descent on the difference function f = g − h. However, note that
the step size choice required in Algorithm 1 does not depend on the smoothness of the
function h; consequently, the algorithm can be applied to objective functions f that are
not smooth. As a simple but concrete example, suppose that we wish to apply gradient
descent to minimize the function f(x) : = g(x)− ‖x‖q2, where g is any µ-strongly convex and
Mg-smooth function, and q ∈ (1, 2) is a given parameter. Classical guarantees on gradient
descent, which require the smoothness of the function f , would not apply here since the
function f itself is not smooth. However, Theorem 1 guarantees that standard gradient
descent would converge for any step size α ∈

(
0, 1

Mg

]
.
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More generally, given an arbitrary continuously differentiable function f , we can define
its effective smoothness constant as

M∗f : = inf
h

{
L | (f + h) is L-smooth

}
, (4)

where the infimum ranges over all convex and continuously differentiable functions h. Sup-
pose that this infimum is achieved by some function h∗, then gradient descent on the
function f can be viewed as applying Algorithm 1 to the decomposition f = g∗−h∗, where
the function g∗ : = f + h∗ is guaranteed to be M∗f -smooth. To be clear, the algorithm itself
does not need to know the decomposition (g∗, h∗), but the existence of the decomposition
ensures the success of a backtracking procedure. Putting together the pieces, we arrive at
the following consequence of Theorem 1:

Corollary 1 Given a closed convex set C, consider a continuously differentiable function
f with effective smoothness M∗f < ∞ that is bounded below on C. Then for any sequence

{xk}k≥0 obtained by applying the gradient update with step size α ∈
(
0, 1

M∗
f

)
, we have:

Avg
(
‖∇f(xk)‖22

)
≤

2
(
f(x0)− f∗

)
α(k + 1)

. (5a)

Moreover, if we choose step size by backtracking2 with parameter β ∈ (0, 1), then for all
k = 0, 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖22

)
≤

2 max
{

1,M∗f
}(
f(x0)− f∗

)
β2(k + 1)

. (5b)

See Appendix B.2 for proof of the above corollary.

Let us reiterate that the advantage of backtracking gradient descent is that it works
without knowledge of the scalar M∗f . The parameter β mentioned in equation (5b) is the
user-defined backtracking parameter (see Algorithm 4 for details). In particular, substitut-
ing β = 1√

2
in equation (5b) yields

Avg
(
‖∇f(xk)‖22

)
≤

4 max
{

1,M∗f
}(
f(x0)− f∗

)
(k + 1)

,

which differs from the rate obtained in equation (5a) only by a factor of two, and a possible
multiple of M∗f .

2.2.1. Consequences for coercive functions

As a consequence of Corollary 1, we can obtain a rate of convergence of the backtracking
gradient descent algorithm (Algorithm 4) for a class of non-smooth coercive functions.
Consider any twice continuously differentiable coercive function f : Rd 7→ R, which is
bounded below. Recall that a function f is coercive if

f(x`)
`→∞→ ∞ for any sequence {x`}`≥0 such that ‖x`‖2 →∞. (6)

2. A detailed description of gradient descent with backtracking is provided in Algorithm 4.
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Let L(f(x0)) : =
{
x ∈ Rd : f(x) ≤ f(x0)

}
denote the level set of the function f at point x0.

It can be verified that for any coercive function f , the set L(f(x0)) is bounded above for all
x0 ∈ Rd. This property ensures that for any descent algorithm and any starting point x0,
the set of iterates

{
xk
}
k≥0

obtained from the algorithm remains within a bounded set—viz.

the level set L(f(x0)) in this case. Since the function f is twice continuously differentiable,
we have that f is smooth over bounded set L(f(x0)); this fact ensures that f has a finite
effective smoothness constant in the set L(f(x0)), which we denote by M∗f,x0 . Finally, note
that Algorithm 4 is a descent algorithm; as a result, a simple application of Corollary 1
yields the following rate of convergence for the backtracking gradient descent algorithm
(Algorithm 4):

Corollary 2 Consider the unconstrained minimization problem of a twice continuously dif-
ferentiable coercive function f that is bounded below on Rd. Then for any initial point x0,
the sequence {xk}k≥0 obtained by applying Algorithm 4 satisfies the following property:

Avg
(
‖∇f(xk)‖22

)
≤

2 max
{

1,M∗f,x0
}(
f(x0)− f∗

)
β2(k + 1)

for all k = 0, 1, 2, . . ., (7)

where β ∈ (0, 1) is the backtracking parameter.

Implications for polynomial programming: Corollary 2 has useful implications for
problems that involve minimizing polynomials. Such problems of polynomial program-
ming arise in various applications, including phase retrieval and shape-from-shading (Wang
et al., 2014), and we illustrate our algorithms for the latter application in Section 4.1.
For minimization of a coercive polynomial, Corollary 2 shows that Algorithm 4 achieves a
near-optimal rate.

It is worth noting that any even degree polynomial can be represented as a difference of
convex (DC) function; hence, such problems are amenable to DC optimization techniques
like CCCP, which we discuss at more length in Section 2.3. However, obtaining a good
DC decomposition, which is crucial to the success of CCCP, is often a formidable task. In
particular, obtaining an optimal decomposition for a polynomial with degree greater than
four is NP-hard; indeed, deciding the convexity of an even degree polynomial with degree
greater than four is NP-hard (Ahmadi et al., 2013; Wang et al., 2014). Even for a fourth
degree polynomial with dimension larger than three, there is no known algorithm for finding
an optimal DC decomposition (Ahmadi and Parrilo, 2013). An advantage of Algorithm 4
is that it obviates the need to find a DC decomposition.

2.2.2. Escaping strict saddle points

One of the obstacles with gradient-based continuous optimization method is possible conver-
gence to saddle points. Here we show that with a random initialization this undesirable out-
come does not occur for the class of strict saddle points. Recall that for a twice differentiable
function f , a point x is called a strict saddle point of the function f if λmin(∇2f(x)) < 0,
where λmin(∇2f(x)) denotes the minimum eigenvalue of the Hessian matrix ∇2f(x). The
following corollary shows that such saddle points are not troublesome:

Corollary 3 Suppose that, in addition to the conditions on (g, h, C) from Theorem 1, the
functions (g, h) are twice continuously differentiable. If Algorithm 1 is applied with step size
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α ∈
(
0, 1

Mg

)
, then the set of initial points for which it converges to a strict saddle point has

measure zero.

See Appendix B.3 for the proof of this corollary.

We note that similar guarantees of avoidance of strict saddle-points are known when the
function f = g− h is twice continuously differentiable and M -smooth (e.g., Lee et al. 2016;
Panageas and Piliouras 2016). The novelty of Corollary 3 is that the same guarantee holds
without imposing a smoothness condition on the entire function f .

2.3. Connections to the convex-concave procedure

As a consequence of Algorithm 1, we show that one can obtain a convergence rate of the
Euclidean norm of the gradient for CCCP (convex-concave procedure), which is a heavily
used algorithm in Difference of Convex (DC) optimization problems. Before doing so, let
us provide a brief description of DC functions and the CCCP algorithm.

DC functions: Given a convex set C ⊆ Rd, we say that a function f : C 7→ R is DC if
there exist convex functions g and h with domain C such that f = g−h. Note that the DC
representation f = g − h mentioned in the definition is not unique. In particular, for any
convex function p, we can write f = (g + p)− (h+ p). The class of DC functions includes
a large number of non-convex problems encountered in practice. Both convex and concave
functions are DC in a trivial sense, and the class of DC functions remains closed under
addition and subtraction. More interestingly, under mild restrictions on the domain, the
class of non-zero DC functions is also closed under multiplication, division, and composition
(e.g., Tuy 1995; Hartman 1959). The maximum and minimum of a finite collection of DC
functions are also DC functions.

Convex-concave procedure: An interesting class of problems are those that involve
minimizing a DC function over a closed convex set C ⊆ Rd, i.e.

f∗ : = min
x∈C

f(x) = min
x∈C

{
g(x)− h(x)

}
, (8)

where g and h are proper convex functions. The above problem has been studied intensively,
and there are various methods for solving it; for instance, see the papers (Tuy, 1995; Lipp
and Boyd, 2016; Pham Dinh et al., 2013) and references therein for details. One of the most
popular algorithms to solve problem (8) is the Convex-concave Procedure (CCCP), which
was introduced by Yuille and Rangarajan (2003). The CCCP algorithm is a special case of
a Majorization-Minimization algorithm, one which uses the DC structure of the objective
function in problem (8) to construct a convex majorant of the objective function f at each
step. We start with a feasible point x0 ∈ int(C). Let xk denote the iterate at kth iteration;
at the (k + 1)th iteration we construct a convex majorant q(·, xk) of the function f via

f(x) ≤ g(x)− h(xk)− 〈uk, x− xk〉︸ ︷︷ ︸
=: q(x,xk)

, (9)

9
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where uk ∈ ∂h(xk), the subgradient set of the convex function h at point xk. The next
iterate xk+1 is obtained by solving the convex program

xk+1 ∈ arg min
x∈C

q(x, xk). (10)

The CCCP algorithm has some attractive convergence properties. For instance, it is a
descent algorithm; when the function g is strongly convex differentiable and the function
h is continuously differentiable, it can be shown (Lanckriet and Sriperumbudur, 2009) that
any limit point of the sequence

{
xk
}
k≥0

obtained from CCCP is stationary. Under the

same assumptions, one can also verify that limk→∞ ‖xk − xk+1‖2 = 0.

We now turn to an analysis of CCCP using the techniques that underlie Theorem 1.
In the next proposition, we derive a rate of convergence of the gradient sequence and
show that all limit points of the sequence

{
xk
}
k≥0

are stationary. Earlier analyses of

CCCP, including the papers (Lanckriet and Sriperumbudur, 2009; Yuille and Rangarajan,
2003), are mainly based on the assumption of strong convexity of the function g, whereas
in the next proposition, we only assume that the function g is Mg-smooth. When the
function g is strongly convex, our analysis recovers the well-known convergence result in
past work (Lanckriet and Sriperumbudur, 2009). In particular, we show that CCCP enjoys
the same rate of convergence as that of Algorithm 1.

Proposition 1 Under Assumption GR and with the function g being convex, the CCCP
sequence (10) has the following properties:

(a) Any limit point of the sequence
{
xk
}
k≥0

is a critical point, and the sequence of function

values
{
f(xk)

}
k≥0

is strictly decreasing and convergent.

(b) Furthermore, for all k = 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖22

)
≤

2Mg

(
f(x0)− f∗

)
(k + 1)

, (11a)

and assuming moreover that g is µ-strongly convex,

Avg
(
‖xk − xk+1‖22

)
≤

2
(
f(x0)− f∗

)
µ(k + 1)

. (11b)

The proof of this proposition builds on the argument used for Theorem 1; see Appendix B.4
for details.

2.3.1. Simplifying CCCP

Algorithm 1 provides us an alternative procedure for minimizing a difference of convex
functions when the first convex function is smooth. The benefit of Algorithm 1 over standard
CCCP is that Algorithm 1 is a single loop algorithm and is expected to be faster than
standard double loop CCCP algorithm in many situations. Furthermore, Algorithm 1
shares convergence guarantees similar to a standard CCCP algorithm.

10
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2.4. Proximal-type method

We now turn to a more general class of optimization problems of the form

f∗ : = min
x∈Rd

f(x) = min
x∈Rd

{(
g(x)− h(x)

)
+ ϕ(x)

}
. (12)

We assume that the functions g, h and ϕ satisfy the following conditions:

Assumption PR

(a) The function f = g − h+ ϕ is bounded below on Rd.

(b) The function g is continuously differentiable and Mg-smooth; the function h is con-
tinuous and convex; and the function ϕ is proper, convex and lower semi-continuous.

Typical examples of the function ϕ include ϕ(x) = ‖x‖1, or the indicator of a closed convex
convex set X . Since for a general lower semi-continuous function ϕ, the sum-function g+ϕ
is neither differentiable nor smooth, a gradient-based method cannot be applied. One way
to minimize such functions is via a proximal-type algorithm, of which the following is an
instance.

Algorithm 2 Proximal-type algorithm

1: Given an initial vector x0 ∈ dom(f) and step size α ∈
(
0, 1

Mg

]
.

2: for k = 0, 1, 2, . . . do

3: Update xk+1 = proxϕ1/α

(
xk − α

(
∇g(xk)− uk

))
for some uk ∈ ∂h(xk).

4: end for

The proximal update in line 3 of Algorithm 2 is very easy to compute and often has a
closed form solution (see (Parikh et al., 2014)). Let us now derive the rate of convergence
result of Algorithm 2.

Theorem 2 Under Assumption PR, any sequence
{
xk
}
k≥0

obtained from Algorithm 2 has
the following properties:

(a) Any limit point of the sequence
{
xk
}
k≥0

is a critical point, and the sequence of function

values
{
f(xk)

}
k≥0

is strictly decreasing and convergent.

(b) For all k = 1, 2, . . ., we have

Avg
(
‖xk − xk−1‖22

)
≤

2α
(
f(x0)− f∗

)
(k + 1)

. (13a)

If moreover the function h is Mh-smooth, then

Avg
(
‖∇f(xk)‖22

)
≤

2αCM,α

(
f(x0)− f∗

)
(k + 1)

, (13b)

where CM,α =
(
Mg +Mh + 1

α

)2
.

See Appendix C for the proof of the theorem.
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Comments: The proof of Theorem 2 reveals that the smoothness condition on the func-
tion h in Theorem 2 can be replaced by the local smoothness of h, when the sequence{
xk
}
k≥0

is bounded. Note that the local smoothness condition is weaker than the global
smoothness condition. For instance, any twice continuously differentiable function is locally
smooth. The boundedness assumption on the iterates

{
xk
}
k≥0

holds in many situations.

For instance, if the function f is coercive (6), then it follows that the iterates
{
xk
}
k≥0

remain bounded. Another instance is when the function ϕ is the indicator function of a
compact convex set. Finally, we point out that when the function h is non-smooth but the
proximal-function ϕ is smooth, the existing proof can be easily modified to obtain a rate of
convergence of the gradient-norm ‖∇f(xk)‖2.

Projected Gradient Descent: A special case of the Algorithm 2 is when ϕ is equal
to the indicator function 1X of a closed convex set X . Consider the following constrained
optimization problem

f∗ : = min
x∈X

{
g(x)− h(x)︸ ︷︷ ︸

f(x)

}
, (14)

where X is a closed convex set, the function g is Mg-smooth, and the function h is convex
continuous. Using Algorithm 2, the update equation in this case is given by

xk+1 = ΠX
(
xk − α(∇g(xk)− uk)

)
. (15)

In projected-gradient-type methods, we should not expect a rate in terms of the gradient.
In such cases, the projected gradient step may not be aligned with the gradient direction, or
the step size may be arbitrarily small due to projection. Rather, an appropriate analogue
of the gradient in this case is as follows:

∇fX (xk) =
1

α

(
xk −ΠX (xk − α(∇g(xk)− uk))

)
. (16)

The analysis of the projected gradient method using∇fX (xk) is standard in the optimization
literature (Bubeck et al., 2015). It is worth pointing out that the quantity ∇fX (xk) is
the analogue of the gradient in the constrained optimization setup, and coincides with
the gradient in the unconstrained setup. Concretely, we have ∇fX (xk) = ∇f(xk) where
f : = g−h, and X = Rd. Combining equations (15) and (16) and applying the bound (13b)
from Theorem 2, we find that

Avg
(
‖∇fX (xk)‖22

)
≤

2
(
f(x0)− f∗

)
α(k + 1)

.

2.5. Frank-Wolfe type method

In our analysis of the previous two algorithms, we assumed that the objective function f
has a smooth component g, and we leveraged the smoothness property of g to establish
convergence rates. In many situations, the objective function may not have a smooth
component; consequently, neither the gradient-type algorithm nor the prox-type algorithm
provides any theoretical guarantee. In this section, we analyze a Frank-Wolfe-type algorithm

12
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for solving such optimization problems. In particular, consider an optimization problem of
the form

f∗ : = min
x∈C

f(x) = min
x∈C

{
g(x)− h(x)

}
, (17)

where C is a closed convex set, and the functions (g, h) satisfy the following conditions:

Assumption FW:

(a) The difference function f = g − h is bounded below over range C.

(b) The function g is continuously differentiable, whereas the function h is convex and
continuous.

The analysis of the Frank-Wolfe algorithm for a convex problem is based on the curva-
ture constant Cf of the convex objective function with respect to the closed convex set C.
This curvature constant can be defined for any differentiable function, which need not be
convex (Lacoste-Julien, 2016).

Here we define a slight generalization of this notion, applicable to a non-differentiable
function f = g − h that can be written as a difference of a differentiable function g and a
continuous convex function h (which may be non-differentiable). Define the set

Sγ : =
{
x, y ∈ C | there exist γ ∈ (0, 1] and u ∈ C with y = x+ γ(u− x)

}
,

and the curvature constant

Cf = sup
x,y∈Sγ
u∈∂h(x)

2

γ2

[
f(y)− f(x)− 〈y − x, ∇g(x)− u〉

]
. (18)

Note that in the special case h ≡ 0, we recover the curvature constant of the differentiable
function g used by Lacoste-Julien (Lacoste-Julien, 2016). We refer to the scalar Cf as the
generalized curvature constant of the function f with respect to the closed convex set C.

Algorithm 3 Frank-Wolfe type method

1: Given initial vector x0 ∈
∫

(C):
2: for k = 1, . . . ,K do
3: Choose any uk ∈ ∂h(xk).
4: Compute sk : = arg mins∈C〈s, ∇g(xk)− uk〉.
5: Define dk : = sk − xk and gk : = −〈dk, ∇g(xk)− uk〉. (Frank-Wolfe gap)

6: Set γk = min
{ gk
C0
, 1
}

for some C0 ≥ Cf .

7: Update xk+1 = xk + γkdk.
8: end for

Next, we provide an analysis of Algorithm 3 in terms of the Frank-Wolfe (FW) gap gk

defined Step 5. We show that the minimum FW gap {gk}k≥0 defined in Algorithm 3
converges to zero at the rate 1√

k+1
.

13
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Theorem 3 Under Assumption FW, the Frank-Wolfe gap sequence {gk}k≥0 from Algo-
rithm 3 satisfies the following property:

min
0≤j≤k

gj ≤
max

{
2
(
f(x0)− f∗

)
, C0

}
√
k + 1

for all k = 0, 1, 2, . . ..

See Appendix D.1 for the proof of this theorem.

Comments: The FW gap appearing in Theorem 3 is standard in the analysis of Frank-
Wolfe algorithm; note that it is invariant to an affine transformation of the set C. Similar
convergence guarantees for the minimum FW-gap are available for differentiable functions;
for instance, see the paper (Lacoste-Julien, 2016). The novelty of the above theorem is that
it provides convergence guarantees of minimum FW-gap for a class of non-differentiable
functions.

Upper bound on generalized curvature constant: It is worth mentioning that Al-
gorithm 3 only requires an upper bound of the generalized curvature constant Cg−h. Con-
sequently, it is interesting to obtain an upper bound for the scalar Cg−h. For a Mg-smooth

function g, one well-known upper bound of the curvature constant Cg is Mg×
(

diam‖·‖2(C)
)2

;
see also Jaggi (2013). A similar upper bound also holds for the generalized curvature con-
stant defined in equation (59). In particular, we prove that for a difference function f = g−h,
with the function h being convex continuous, the scalar Cg−h is always upper bounded by
Cg, the curvature constant of the function g (see Lemma 6).

3. Faster rate under KL-inequality

In the preceding sections, we have derived rates of convergence for the gradient norms for
various classes of problems. It is natural to wonder if faster convergence rates are pos-
sible when the objective function is equipped with some additional structure. Based on
Theorems 1 and 2, we see that both Algorithms 1 and 2 ensure that ‖xk − xk+1‖2 → 0,
meaning that the successive differences between the iterates converge to zero. Although we
proved that any limit point of the sequence {xk}k≥0 has desirable properties, the condition
‖xk − xk+1‖2 → 0 is not sufficient—at least in general—to prove convergence3 of the se-
quence {xk}k≥0. In this section, we provide a sufficient condition under which Algorithm 1
and Algorithm 2 yield convergent sequences of iterates {xk}k≥0, and we establish that the
gradient sequences {‖∇f(x)‖2}k≥0 converge at faster rates.

3.1. Kurdaya- Lojasiewicz inequality

Let us now establish a faster local rate of convergence of Algorithms 1 and 2 for functions
that satisfy a form of the Kurdaya- Lojasiewicz (KL) inequality. More precisely, suppose

that there exists a constant θ ∈ [0, 1) such that the ratio (f(x)−f(x̄))θ

‖∇f(x)‖2 is bounded above

in a neighborhood of every point x̄ ∈ dom(f). This type of inequality is known as a
Kurdaya- Lojasiewicz inequality, and the exponent θ is known as the Kurdaya- Lojasiewicz

3. The convergence of the sequence
{
xk

}
k≥0

for Algorithm 2 was studied in the papers (An and Nam, 2017;

Wen et al., 2018). We provide the proof under a weaker set of assumptions.
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exponent (KL-exponent) of the function f at the point x̄. These type of inequalities were
first proved by  Lojasiewicz (1963) for real analytic functions; in later work, Kurdyka
(1998) and Bolte et al. (2007) proved similar inequalities for non-smooth functions, and the
authors also provided examples of many functions that satisfy a form of the KL inequality.
See Appendix A.2 for further details on functions of the KL type.

Assumption KL: For any point4 x̄ ∈ dom(f), there exists a scalar θ ∈ [0, 1) such that

the ratio |f(x)−f(x̄)|θ
‖∇f(x)‖2 is bounded above in a neighborhood of x̄.

3.2. Convergence guarantees

Theorem 4 Under Assumptions GR and KL, any bounded sequence {xk}k≥0 obtained from
Algorithm 1 satisfies the following properties:

(a) The sequence {xk}k≥0 converges to a critical point x̄, and for all k = 1, 2, . . .

Avg
(
‖∇f(xk)‖2

)
≤ c1

k
,

(b) Suppose that at the point x̄, the function f has a KL exponent θ̄ ∈
[

1
2 ,

r
2r−1

)
for some

r > 1. Then we have

GAvg
(
‖∇f(xk)‖2

)
≤ c2

kr
for all k = 1, 2, . . . ,

where the constants (c1, c2) are independent of k, but they may depend on the KL
parameters at the point x̄.

See Appendix E.1 for proof of this theorem.

Comments: It is worth pointing out that Theorem 4 does not require the function h to
satisfy any smoothness assumption. Such conditions are needed for applying Algorithm 2,
so that Theorem 4 is based on milder conditions than Theorem 5.

Our next result is to exhibit a faster convergence rate for Algorithm 2 under the KL
assumption:

Theorem 5 Suppose that, in addition to Assumptions PR & KL, the function h in Algo-
rithm 2 is locally smooth. Then any bounded sequence {xk}k≥0 obtained from Algorithm 2
satisfy the following properties:

(a) The sequence {xk}k≥0 converges to a critical point x̄, and for all k = 1, 2 . . .

Avg
(
‖∇f(xk)‖2

)
≤ c1

k
.

4. It can be shown that such an inequality would hold at non-critical point of a continuous function f ;
see Remark 3.2 of (Bolte et al., 2007). Note that the parameter θ and the neighborhood mentioned in
Assumption KL above may depend on the point x̄.
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(b) Given some r > 1, suppose that at the point x̄ the function f has a KL exponent
θ̄ ∈

[
1
2 ,

r
2r−1

)
. Then

GAvg
(
‖∇f(xk)‖2

)
≤ c2

kr
for all k = 1, 2, . . . ,

where the constants (c1, c2) are independent of k, but they may depend on the KL
parameters at the point x̄.

See Appendix E.2 for the proof of this theorem.

Comments: Note that min1≤i≤k ‖∇f(xk)‖2 is upper bounded by the quantities Avg
(
‖∇f(xk)‖2

)
and GAvg

(
‖∇f(xk)‖2

)
. It thus follows that the sequence {‖∇f(xk)‖2}k≥0 converges to zero

at a rate of at least 1/k, thereby improving the rate of convergence of ‖∇f(x)‖2 obtained
in Theorems 1 and 2. When θ < 1

2 , a simple modification of the proof (using γ = 2) shows
that, Algorithms 1 and 2 converge in a finite number of steps. Finally, we point out that
when the function h is non-smooth but the proximal-function ϕ is smooth, the existing proof
can be easily modified to obtain a rate of convergence of the gradient-norm ‖∇f(xk)‖2.

4. Some illustrative applications

In this section, we study four interesting classes of non-convex problems that fall within the
framework of this paper. We also discuss various consequences of Theorems 1—5 as well as
Corollaries 1—3 when applied to these problems.

4.1. Shape from shading

The problem of shape from shading is to reconstruct the three-dimensional (3D) shape of
an object based on observing a two-dimensional (2D) image of intensities, along with some
information about the light source direction. It is assumed that the observed 2D image
intensity is determined by the angle between the light source direction and the surface
normals of the object (Ecker and Jepson, 2010).

In more detail, suppose that both the object and its 2D image are supported on a
rectangular grid of size r × c. We introduce the shorthand notation [r] = {1, 2, . . . , r} and
[c] = {1, 2, . . . , c} for the rows and columns of this grid. For each pair (i, j) ∈ [r] × [c],
we let Iij ∈ R denote the observed intensity at location (i, j) in the image, and we let
Nij ∈ R3 denote the surface normal at the vertex vij : = (xij , yij , zij) of the object. Based
on observing the 2-dimensional image, both the intensity Iij and co-ordinate pair (xij , yij)
are known for each pair (i, j) ∈ [r]× [c]. The goal of shape from shading is to estimate the
unknown coordinate zij , which corresponds to the height of the object at location (i, j).
Knowledge of these z-coordinates allows us to generate a 3D representation of the object,
as illustrated in Figure 1.

Lambertian lighting model: In order to reconstruct the z-coordinates, we require a
model that relates the observed intensity Iij to the surface normal. In a Lambertian model,
for a given light source direction L : = (`1, `2, `2)> ∈ R3, it is assumed that the surface
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normal Nij and intensity Iij are related via the relation

Iij =
〈L, Nij〉
‖Nij‖2

. (19)

Figure 1. Figure shows 3D shape reconstruction of Mozart (first row) and Vase (second
row) from corresponding 2D images. The gray-scale images in the left column are the 2D
input images; the two colored images in the right column are the reconstructed 3D shapes.
The 3D shapes are constructed by solving the problem (21) using Algorithm 4.

In one standard model (Wang et al., 2014), the surface normal Nij : = (pij , qij , 1)> is
assumed to be determined by the triplet of vertices (vij , vi+1,j , vi,j+1) via the equations

pij =
(yi,j+1 − yi,j)(zi+1,j − zij)− (yi+1,j − yi,j)(zi,j+1 − zij)
(xi,j+1 − xij)(yi+1,j − yij)− (xi+1,j − xij)(yi,j+1 − yij)

,

qij =
(xi,j+1 − xi,j)(zi+1,j − zij)− (xi+1,j − xi,j)(zi,j+1 − zij)
(xi,j+1 − xij)(yi+1,j − yij)− (xi+1,j − xij)(yi,j+1 − yij)

.

Squaring both sides of equation (19) and substituting the expression for surface normal Nij

yields the polynomial equation(
p2
ij + q2

ij + 1
)
Iij − (`1pij + `2qij + `3)2 = 0, (20)
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which should be satisfied under the assumed model.

In practice, this equality will not be exactly satisfied, but we can estimate the z-coordinates
by solving the following non-convex optimization problem in the r× c matrix z with entries{
zij | (i, j) ∈ [r]× [c]}:

min
z∈Rr×c

{ r∑
i=1

c∑
j=1

(
(1 + p2

ij + q2
ij)I

2
ij − (`1pij + `2qij + `3)2

)2
︸ ︷︷ ︸

P (z)

}
. (21)

Some reconstruction experiments: In order to illustrate the behavior of our method
for this problem, we considered two synthetic images for simulated experiments. The first
one is a 256× 256 image of Mozart (Zhang et al., 1999), and the second one is a 128× 128
image of Vase. The 3D shapes were constructed from the 2D images by solving optimization
problem (21) using the backtracking gradient descent algorithm 4. The reconstructed sur-
faces for Vase and Mozart are provided in Figure 1. We ran 500 iterations of Algorithm 4
for both the images. The runtime for Mozart-example was 87 seconds, whereas the runtime
for Vase-example was 39 seconds. The implementation of Algorithm 4 for Problem (21) is
parallelizable; hence, the runtime can be much lower than our runtime with a parallel im-
plementation. It is worth mentioning that the polynomial P is a fourth-degree polynomial
with dimension r × c; polynomial P is coercive and bounded below by zero. Consequently,
we can apply Corollary 2 to the problem (21) which guarantees that average of the squared
gradient norm Avg

(
‖∇P‖22

)
converges to zero at a rate 1

k .

One might also consider applying the CCCP method to this problem. In a recent pa-
per, Wang et al. (2014) provided a DC decomposition of the polynomial P using a sum of
square (SOS) optimization technique. However, it is crucial to note that the DC decompo-
sition of polynomial P obtained from the SOS-optimization method need not be optimal.
In order to see this, note that the dimension of the polynomial P is much larger than three.
In particular, the variable zij is used in the computation of surface normals Nij , Ni,j−1 and
Ni−1,j , hence is related to variables (zi,j+1, zi+1,j , zi−1,j , zi,j−1)—which are again related to
the other variables. Ahmadi and Parrilo (2013) showed that SOS techniques for deriving a
DC decomposition are sub-optimal for a fourth-degree polynomial when the dimension of
the polynomial is greater than three. Consequently, deriving an optimal DC decomposition
for the polynomial P will be computationally intensive.

4.2. Robust regression using Tukey’s bi-weight

Next, we turn to the problem of robust regression with Tukey’s bi-weight penalty function.
Suppose that we observe pairs (yi, zi) ∈ R× Rd linked via the noisy linear model

yi = 〈zi, µ∗〉+ εi for i = 1, . . . , n.

Here the vector µ∗ ∈ Rd is the unknown parameter of interest, whereas the variables {εi}ni=1

correspond to additive noise. In robust regression, we obtain an estimate of the parameter
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vector µ∗ by computing

min
µ∈Rd

{ 1

n

n∑
i=1

Ψ
(
yi − 〈zi, µ〉

)}
︸ ︷︷ ︸

= : f(µ)

(22)

where Ψ is a known loss function with some robustness properties. One popular example
of the loss function Ψ is Tukey’s bi-weight function, which is given by

Ψ(t) =

{
1− (1− (t/λ)2)3 if |t| ≤ λ
1 otherwise

, (23)

where λ > 0 is a tuning parameter. Note that Ψ is a smooth function, whence the function
f in the objective (22) is also smooth, implying that Algorithm 1 is suitable for the problem.

With this set-up, applying Theorem 1, Theorem 4 and Corollary 3, we obtain the following
guarantee:

Corollary 4 Given a random initialization, any bounded sequence {µk}k≥0 obtained by
applying Algorithm 1 to the objective (22) has the following properties:

(a) Almost surely with respect to the random initialization, the sequence {µk}k≥0 converges
to a point µ̄ such that ∇f(µ̄) = 0 and ∇2f(µ̄) � 0.

(b) There is a universal constant c1 such that

Avg
(
‖∇f(µk)‖2

)
≤ c1

k
for all k = 1, 2, . . ..

We provide the proof in Appendix F.1.

4.3. Smooth function minimization with sparsity constraints

Moving beyond the robust regression problem, we now discuss another interesting prob-
lem of minimizing a smooth function subject to sparsity penalty. Consider the following
optimization problem

min
x∈Rd
‖x‖0≤s

g(x), (24)

where g is a smooth function, the `0-“norm” ‖x‖0 counts the number of non-zero en-
tries in the vector x, and s ∈ {1, . . . , d} is a sparsity parameter. The constraint set{
x ∈ Rd | ‖x‖0 ≤ s

}
is non-convex, and consequently, the optimization problem (24) is

non-convex. However, the constraint set can be expressed as the level set of a certain
DC function (Gotoh et al., 2017). In particular, let |x|(d) ≥ |x|(d−1) ≥ · · · ≥ |x|(1) denote

the values of x ∈ Rd re-ordered in terms of their absolute magnitudes. In terms of this
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notation, we have ‖x‖1 ≥
∑d

i=d−s+1 |x|(i) for all x ∈ Rd, with equality holding if and only
if x is s–sparse. This fact ensures that{

x ∈ Rd : ‖x‖0 ≤ s
}

=
{
x ∈ Rd : ‖x‖1 −

d∑
i=d−s+1

|x|(i) ≤ 0
}
. (25)

Since both of the functions x 7→ ‖x‖1 and x 7→
∑d

i=d−s+1 |x|(i) are convex (Boyd and Van-
denberghe, 2004), this level set formulation is a DC constraint. Now using the representa-
tion (25), we can rewrite problem (24) as minx∈Rd g(x) such that ‖x‖1−

∑d
i=d−s+1 |x|(i) ≤ 0.

For our experiments, it is more convenient to solve the penalized analogue of the last prob-
lem, given by

min
x∈Rd

{
g(x) + λ

(
‖x‖1 −

d∑
i=d−s+1

|x|(i)
)}
, (26)

where λ > 0 is a tuning parameter. The optimization problem (26) can be solved using
Algorithm 2 with g(x) = g(x), ϕ(x) = λ‖x‖1 and h(x) = λ

∑d
i=d−s+1 |x|(i). For the non-

smooth component ϕ(x) = λ‖x‖1, there is a closed form expression of the proximal update
in Algorithm 2, so that the method is especially efficient in this case.

4.3.1. Best subset selection

A special case of problem (26) arises from best subset selection in linear regression. Suppose
that we observe a vector y ∈ Rn and a matrix B ∈ Rn×d that are linked via the standard
linear model y = Bx∗ + ε. Here the vector ε ∈ Rn corresponds to additive noise, whereas
x∗ ∈ Rd is the unknown regression vector. We wish to estimate the unknown parameter
vector x∗ subject to a sparsity constraint, and we do so by solving the following optimization
problem:

min
x∈Rd
‖x‖0≤s

‖y −Bx‖22. (27)

Here the non-negative integer s is a tuning parameter that controls maximum number
of allowable non-zero entries in the vector x. Following the development leading to the
formulation (26), let us consider instead the problem of minimizing the function

f(x) : = ‖y −Bx‖22 + λ
(
‖x‖1 −

d∑
i=d−s+1

|x|(i)
)}
. (28)

Note that the function f can be decomposed as a difference of two convex functions as
follows:

f(x) = ‖y −Bx‖22 + λ‖x‖1︸ ︷︷ ︸
convex

−λ
d∑

i=d−s+1

|x|(i)︸ ︷︷ ︸
convex

. (29)

Consequently, problem (28) is a DC optimization problem; hence, it is amenable to standard
DC optimization techniques like CCCP. We can also apply Algorithm 2 on problem (28)
with g(x) = ‖y −Bx‖22, ϕ(x) = λ‖x‖1 and h(x) = λ

∑d
i=d−s+1 |x|(i).
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4.3.2. Comparison of Algorithm 2 and CCCP

Let us compare the performance of our Algorithm 2 (prox-type method) with the popular
convex-concave procedure (CCCP) for minimizing differences of convex functions. We apply
both algorithms to the best subset selection problem (28).

Let us reiterate that problem (28) can be written as a difference of two convex functions,
and one can apply CCCP update (10) to the decomposition (29). The inner convex opti-
mization problem in update (10) is solved by proximal methods for minimizing the sum of
a smooth convex function and a `1 regularizer. We also apply Algorithm 2 on problem (28)
with g(x) = ‖y −Bx‖22, h(x) = λ

∑d
i=d−s+1 |x|(i) and ϕ(x) = λ‖x‖1.

Synthetic data generation: We generated the rows of the n × d matrix B from a d-
dimensional Gaussian distribution with zero mean and an equicovariance matrix Σ, where
Σii = 1 for all i, and Σij = 0.7 for all i 6= j. The regression vector x∗ ∈ Rd (true value) was
chosen to be a binary vector with sparsity s (s � d). The location of the nonzero entries
of the vector x∗ was chosen uniformly without replacement form the set

{
1, . . . , d

}
.

Performance measures: We use the following two criteria to compare the performance
of the prox-type method and CCCP.

(a) Total runtime: Firstly, we compare the algorithms in terms of their total runtime.
The runtime was measured in units of seconds.

(b) Estimation error: Secondly, we use average estimation error of the algorithms as a
measure of performance. Let us recall that if x̄ ∈ Rd is the estimated value of the
unknown regression vector x∗, then the average estimation error is defined as ‖x̄−x

∗‖2√
p‖x̄‖2 .

Note that the average estimation error used here is invariant under scaling.

Comparison results: Figure 2 shows the performances of the prox-type method and
CCCP for synthetic data simulated as above, with problem parameters (n, p) = (190, 300)
and (n, p) = (380, 600) and different choices of sparsity s.

For both the algorithms, the tolerance level η was set to η = 10−8, whereas the maximum
number of iterations was 1000. Figure 2 suggests that total runtime of the prox-type method
is significantly smaller than the runtime of CCCP. Furthermore, the estimation error for
the prox-type method is lower compared to CCCP, which possibly suggests that prox-type
method is finding better local minima compared to CCCP for the non-convex optimization
problem (28). In all our simulations we used same initializations for both the algorithms.
The simulation results shown in Figure 2 are average over 100 replications, and we also
provide the pointwise error bar in the plots.

4.3.3. Some theoretical guarantees

Interestingly, it turns out that when applied to problem (28), the convergence behavior of
Algorithm 2 to a given stationary point x̄ depends on the behavior of a certain convex
program defined in terms of x̄. More precisely, for any point x̄ ∈ Rd with |x̄|(r) > |x̄|(r+1),
consider the following convex relaxation of problem (28):

P(x̄) : = min
x∈Rd

{
‖y −Bx‖22 + λ‖x‖1 − λ〈∇h(x̄), x− x̄〉

}
. (30)
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Figure 2. Performance of CCCP compared to that of Algorithm 2 on the best subset
selection problem for synthetic data for different values of (n, p). The left columns correspond
to (n, p) = (190, 300), whereas the right columns correspond to (n, p) = (380, 600). Plots in
the first row compare the performance in terms of total runtime, those in the second row
compare algorithms in terms of estimation error. We see that Algorithm 2 outperforms CCCP
in terms of runtime. The performance of Algorithm 2 and CCCP in terms of estimation error
are similar for low values of sparsity, whereas Algorithm 2 outperforms CCCP when sparsity
is moderate to large. We initialized both the algorithms from the same starting point. Results
shown above are averaged over 100 replications, and we also provide point-wise error bars in
the plots.
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Note that |x̄|(r) > |x̄|(r+1) implies the differentiability of the function h : = λ
∑d

i=d−s+1 |x|(i)
which ensures that the above problem is well-defined.

Corollary 5 Let
{
xk
}
k≥0

be any bounded sequence obtained by applying Algorithm 2 on

problem (28). Suppose there exists a limit point x̄ of the sequence
{
xk
}
k≥0

satisfying |x̄|(r) >
|x̄|(r+1), and the convex problem (30) has unique solution. Then the sequence

{
xk
}
k≥0

converges to the point x̄, and for all k = 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖2

)
≤ c1

k
, and ‖xk − x̄‖2 ≤ cqk,

where q ∈ (0, 1), and (c, c1) are positive constants independent of k.

Comments on problem (30): It can be shown that when the matrix B is of full rank,
the objective function in problem (30) is strictly convex, and as a result, the problem (30)
has unique solution. In the proof of Corollary 5, we show that the point x̄ is always a
minimizer of the convex problem (30), so that the uniqueness assumption implies that x̄ is
in fact the unique solution.

4.4. Mixture density estimation

As a final example, we consider the problem of estimating a two-component mixture density,
where each of the constituent densities belong to an exponential family. The density of an
exponential family (with respect to a fixed base measure, typically counting or Lebesgue)
takes the form

p(y; η) = g(y) exp
{
〈η, T (y)〉 −A(η)

}
. (31)

Here the function T : Y → Rd is a vector of sufficient statistics, whereas the log-partition
function

A(η) : = log
(∫
Y
g(y) exp{〈η, T (y)〉}dy

)
serves to normalize the density. The parameter vector η ∈ Rd determines the choice of
density within the family. See Table 1 for some examples of 1-dimensional exponential
families of this type. It includes various familiar examples, such as the Gaussian, Poisson
and Beta families.

In the problem of mixture density estimation, one is interested in densities of the form

ζ(y;π, η0, η1︸ ︷︷ ︸
θ

) = π p(y; η0) + (1− π)p(y; η1), (32)

where π ∈ (0, 1) is an unknown mixing proportion, and (η0, η1) are the unknown parameters
of the two underlying densities.

Given n i.i.d. samples {yi}ni=1 drawn from a mixture density of the form (32), a standard
goal is to estimate the unknown parameter vector θ : = (π, η0, η1). One way to do so is by
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Distribution
Name

η A(η) Twice continuously
differentiable and

sub-analytic

Poisson (λ) ln(λ) exp η X
Geometric (p) ln(p) − ln(1− exp η) X

Gaussian(µ, σ2)
( µ
σ2 ,− 1

2σ2

)> − η21
4η2
− 1

2 ln(−2η2) X

Exponential (λ) −λ − ln(−η) X
Gamma (α, β) (α− 1, β)> ln Γ(η1 + 1)− (η1 + 1) ln(η2) X
Weibull (λ, k5) − 1

λk
ln(−η)− ln(k) X

Beta (α, β) (α, β)> ln Γ(η1)+ln Γ(η2)−ln Γ(η1+η2) X

Table 1. Table showing the natural parameter η and the log-partition function A for different
densities of exponential family, which are twice continuously differentiable and sub-analytic.
In Appendix F.3 we prove the log-partition functions A mentioned in the above table are
sub-analytic.

computing the maximum likelihood estimate (MLE), obtained via minimizing the negative
log-likelihood of parameter θ given by the data. Frequently, a regularized form of the MLE
is used, say of the form

min
θ

{
−

n∑
i=1

log
(
ζ(yi; θ)

)
︸ ︷︷ ︸

g(θ)

}
such that η0, η1 ∈ Rd, π ∈ [0, 1], and ‖η0‖2 ≤ R0, ‖η1‖2 ≤ R1.

(33)

Here R0 > 0 and R1 > 0 are tuning parameters providing upper bound on the `2-norms of
the parameters η0 and η1 respectively, often chosen by a data-dependent procedure (such
as cross-validation).

By inspection, the objective function g in problem (33) is non-convex. By standard the-
ory on exponential families, the function A is always infinitely differentiable on its domain,
so that the objective function g is infinitely differentiable on the convex set

X =
{
θ = (η0, η1, π) | ηj ∈ dom(A), π ∈ [0, 1], ‖ηj‖2 ≤ Rj for j = 0, 1

}
.

Consequently, we may apply Algorithm 2 with g(·) = −
n∑
i=1

log
(
ζ(·; yi)

)
, h ≡ 0 and ϕ(·) =

1X (·) and f = g − h + ϕ. Interestingly, the log-partition function A is sub-analytic for
many exponential family densities (see Table 1), which ensures that the function g is also
sub-analytic. In Appendix A.3, we show that continuous sub-analytic functions satisfy
Assumption KL so that we can apply Theorem 5 to obtain the following:

Corollary 6 Any sequence {θk}k≥0 =
{
ηk0 , η

k
1 , π

k
}
k≥0

obtained by applying Algorithm 2 to

problem (33) satisfies the following properties:

(a) It converges to a first order stationary point.
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(b) For all k = 1, 2, . . ., we have Avg
(
‖∇f(θk)‖2

)
≤ c1

k , where c1 is a universal constant
independent of k.

See Appendix F.3 for the proof of this corollary.

5. Discussion

In this paper, we analyzed the behavior of three gradient-based algorithms—namely gradient
descent, a proximal method, and an algorithm of the Frank-Wolfe type—for finding critical
points of a class of non-convex non-smooth optimization problems. For each of the three
algorithms, we provided non-asymptotic bounds on the rate of convergence to a first-order
stationary point. We showed that our algorithm can escape strict saddle point for a class
of non-smooth functions, thereby generalizing existing results for smooth functions. As a
consequence of our theory, we obtained a simplification of the popular CCCP algorithm, and
the simplified algorithm retains all the convergence properties of CCCP. Finally, we showed
that for a large subclass of functions, which include continuous sub-analytic functions as a
special case, we can have a significant improvement in the rate of convergence.

Our work leaves open a number of questions for future research. For instance, it would
be interesting to characterize the class of DC-based functions mentioned in problem (2)
when the convex function h is non-differentiable. Indeed, we then obtain a larger non-class
of non-differentiable functions, and we suspect that Theorem 6 can be suitably generalized.
Finally, we suspect that the proof techniques used here can be leveraged in order to establish
sharper results for other forms of non-convex optimization problems.
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Appendix A. Technical background

In this appendix, we collect some technical background on subdifferentials and sub-analytic
functions.

A.1. Fréchet and limiting subdifferential

We first recall the definitions and some useful properties of sub-differentials, which will be
useful in subsequent sections.

Definition 1 Let f : Rd 7→ R be a lower semicontinuous function. For any x ∈ dom(f),
the Fréchet subgradient of the function f at point x is defined as

∂̂f(x) =

{
u
∣∣∣ lim inf
y 6=x,y→x

f(y)− f(x)−
〈
u, y − x

〉
‖y − x‖2

≥ 0

}
.
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Definition 2 Let f : Rd 7→ R be a lower semi-continuous function. For any x ∈ dom(f),
the limiting subdifferential of the function f at point x is defined as

∂Lf(x) =
{
u
∣∣∣ ∃ xk → x, uk → u with f(xk)→ f(x) and uk ∈ ∂̂f(xk) as k →∞

}
.

Properties: The following properties of Fréchet and limiting sub-differential are provided
in Chapter 8 of Rockafellar and Wets (2009).

(a) For any proper convex function h, we have ∂Lh(x) = ∂̂h(x) for all x ∈ dom(h), and
both quantities agree with the usual subgradient of the convex function h.

(b) If a function g is smooth in a neighborhood of a point x, then ∂Lf(x) = ∇f(x).

(c) Consider a function f of the form f = g + ϕ, where the function g is smooth in a
neighborhood of a point x, and the function ϕ is proper convex and finite at the point
x. Then the limiting sub-differential of the function f at the point x is given by
∂Lf(x) = ∇g(x) + ∂ϕ(x).

(d) (Graph continuity:) Consider a sequence
{(
xk, uk

)}
k≥1

in graph(∂Lf) such that

the sequence {(xk, uk, f(xk)}k≥0 converges to a point (x, u, f(x)). Then (x, u) ∈
graph(∂Lf). Recall that graph(∂Lf) : =

{
(x, u) ∈ Rd × R | u ∈ ∂Lf(x)

}
.

.

A.2. Sub-analytic functions satisfy KL-assumption

In this appendix, we show that continuous sub-analytic functions satisfy the KL-inequality.
We also provide examples of functions which are sub-analytic.

Comments on limiting sub-differential: In order to facilitate our discussion, we men-
tion some simple facts on limiting subdifferential of a function f , where f is of the form
f = g − h (Theorems 1 and 4) or f = g + ϕ − h (Theorems 2 and 5). The following
properties are direct consequences of properties of the limiting subdifferential mentioned in
Appendix A.1.

• Suppose that the difference function f = g−h satisfies parts (a) and (b) of Assumption
GR. Then we have

∂L(−f)(x) = ∂h(x)−∇g(x), and moreover

‖∇f(x)‖2 : = ‖∇g(x)− ∂h(x)‖2 = ‖∂L(−f)(x)‖2

• Suppose that the function f = g+ϕ−h, where the function h is locally smooth, and the
function f satisfies Assumption PR part (b). Then ∂Lf(x) = ∇g(x)−∇h(x)+∂ϕ(x).
Consequently, we have that ‖∇f(x)‖2 = ‖∂Lf(x)‖2.

We prove that continuous sub-analytic functions satisfy Assumption KL by exploit-
ing results due to Bolte et al. (2007). Let us introduce some notation used in this pa-
per. We use mf (x) to denote the `2 distance of the set ∂Lf(x) from zero; concretely,
mf (x) := dist‖·‖2

(
0, ∂Lf(x)

)
. In Theorem 3.1 (for critical points of the function f ) and Re-

mark 3.2 (for non-critical points of the function f), Bolte et al. (2007) proved the following
fact about sub-analytic functions.
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Lemma 1 (Bolte et al. (2007)): Let f : Rd 7→ R ∪ {+∞} be a sub-analytic function
with closed domain, and assume that f |dom(f) is continuous. Then for any a ∈ dom(f),

there exists an exponent θ ∈ [0, 1) such that, the function |f−f(a)|θ
mf

is bounded above in a

neighborhood of a.

Using Lemma 1, we now argue that sub-analytic functions, under the conditions of Theo-
rem 4 or Theorem 5, satisfy Assumption KL.

Lemma 2 Any sub-analytic function f satisfying Assumption GR also satisfies Assumption
KL.

Proof First, note that the function f is continuous by Assumption GR; suppose f is sub-
analytic, then from properties of sub-analytic functions, we have that the function −f is
also sub-analytic. Furthermore, the function −f is continuous in the closed domain C —
which by Lemma 1 guarantees that, for any a ∈ C, there exists θ ∈ [0, 1) such that the ratio
|−f−(−f(a))|θ

m(−f)
is bounded above in a neighborhood of the point a. Since | − f − (−f(a))| =

|f − f(a)|, proving satisfiability of Assumption KL reduces to showing that m(−f)(x) is
upper bounded by ‖∇f(x)‖2. To this end, note that from the discussion about limiting
subdifferential in the paragraph above Lemma 1, we have

‖∇f(x)‖2 = ‖∂L(−f)(x)‖2
(i)

≥ m(−f)(x), (34)

where step (i) follows from the definition of m(−f)(x). Putting together the pieces, we
conclude that any sub-analytic function f which satisfies Assumption GR, also satisfies As-
sumption KL.

Lemma 3 Suppose that, in addition to the conditions on the functions (g, h, ϕ) from The-
orem 2, the function f : = g − h+ ϕ is continuous and sub-analytic in its domain dom(f),
and the domain dom(f) is closed. Then the function f satisfies Assumption KL.

Proof Since the function f |dom(f) is continuous and sub-analytic by assumption, from
Lemma 1, we have that for any a ∈ dom(f) there exists a θ ∈ [0, 1) such that, the ratio
|f−f(a)|θ

mf
is bounded above in a neighborhood of the point a. In order to justify satisfiability

of Assumption KL, it suffices to prove that mf (x) is upper bounded by ‖∇f(x)‖2. To this
end, note that the function h is locally smooth by assumptions of Theorem 2 part (b).
Hence, from the discussion about limiting subdifferential in the paragraph above Lemma 1,
we have

‖∇f(x)‖2 = ‖∂Lf(x)‖2
(i)

≥ mf (x), (35)

where step (i) follows from the definition of mf (x). Putting together the pieces, guarantees
that the function f satisfies Assumption KL.
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A.3. Instances of sub-analytic functions

In Appendix A.2, we proved that continuous sub-analytic functions satisfy Assumption
KL, and in those cases,—by Theorems 4 and 5—we have a faster rate of convergence of
Algorithms 1 and 2. In this appendix, we provide examples of functions which are sub-
analytic. We start by providing definitions of sub-analytic functions following the definition
of (Bolte et al., 2007).

A subset S ⊂ Rd is called semi-analytic if each point of Rd admits a neighborhood V
such that the set S ∩ V has the form

S ∩ V = ∪pi=1 ∩
q
j=1

{
x ∈ V | hij = 0, gij > 0

}
,

where the functions hij , gij : V 7→ R are real-analytic.

A set S is called sub-analytic, if each point of Rd admits a neighborhood V such that

S ∩ V =
{
x ∈ Rd :

(
x, y
)
∈ B

}
,

where B is a bounded semi-analytic subset of Rd × Rm for some m ≥ 1. A function f is
called sub-analytic if the graph of f , defined by graph(f) : =

{
(x, y) ∈ Rd × R : f(x) = y

}
,

is sub-analytic.

The class of sub-analytic functions is quite large. In order to motivate the reader, we
provide few examples here. The following results can be found in Bolte et al. (2014) and
Chapter 6 in the book by Facchinei and Pang (2007).

(a) Any real-valued polynomial or analytic function is sub-analytic.

(b) Any real-valued semi-algebraic or semi-analytic function is sub-analytic.

(c) Indicator function of a semi-algebraic set is sub-analytic.

(d) Sub-analytic functions are closed under finite linear combinations, and the product of
two sub-analytic functions is sub-analytic.

(e) Point-wise maximum and minimum of a finite collection of sub-analytic functions are
sub-analytic.

(f) Composition rule: If g1 and g2 are two sub-analytic functions with the function g1

being continuous, then the composition function g2 ◦ g1 is sub-analytic. In fact, the
class of continuous sub-analytic functions are closed under algebraic operations.

Appendix B. Proofs related to Algorithm 1

In this appendix, we collect the proofs of various results related to the gradient-based
Algorithm 1, including Theorem 1, Corollaries 1 and 3, and Proposition 1.

B.1. Proof of Theorem 1

Our proof of this theorem, as well as subsequent ones, depends on the following descent
lemma:
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Lemma 4 Under the conditions of Theorem 1, we have

xk ∈ int(C) and f(xk+1) ≤ f(xk)− α

2
‖∇f(xk)‖22 for all k = 0, 1, 2, . . .. (36)

See Appendix B.1.1 for the proof of this lemma.

We now prove Theorem 1 using Lemma 4.

Convergence of function values: We first prove that the function value sequence
{f(xk)}k≥0 is convergent. Since f∗ : = min

x∈C
f(x) is finite by assumption, and xk ∈ int(C) for

all k ≥ 0 by Lemma 4, the sequence {f(xk)}k≥0 is bounded below. For any non-stationary
xk, inequality (36) also ensures that f(xk) > f(xk+1); hence, there must exist some scalar
f̄ such that lim

k→∞
f(xk) = f̄ .

Stationarity of limit points: Next, we establish that any limit point of the sequence
{xk}k≥0 must be stationary. Consider a subsequence {xkj}j≥0 of

{
xk
}
k≥0

such that xkj → x̄,

and let {ukj}j≥0 be the associated sequence of subgradients. It suffices to exhibit a sub-
gradient ū ∈ ∂h(x̄) such that ∇g(x̄) − ū = 0. Since the sequence {xkj}j≥0 converges to x̄,
we must have

‖∇f(xkj )‖2 = ‖∇g(xkj )− ukj‖2 → 0.

The function g is continuously differentiable by assumption, and we have ∇g(xkj )→ ∇g(x̄).
Combining these we find that ukj → ∇g(x̄). Furthermore, by continuity of the function
g, we have g(xkj ) → g(x̄). Putting together the pieces we have established above that(
xkj , ukj , g(xkj )

)
→
(
x̄, ū, g(x̄)

)
, where ū : = ∇g(x̄). Consequently, the graph continuity of

limiting-sub-differentials (see Appendix A.1) guarantees that ū = ∇g(x̄) ∈ ∂h(x̄). Overall,
we conclude that ∇f(x̄) : = ∇g(x)− ū = 0, so that x̄ is a stationary point as claimed.

Establishing the bound (3): Finally, we prove the claimed bound (3) on the averaged
squared gradient. Recalling that f∗ : = min

x∈C
f(x) is finite, we have

f(x0)− f∗ ≥ f(x0)− f(xk+1) =

k∑
j=0

f(xj)− f(xj+1)

(i)

≥ α

2

k∑
j=0

‖∇f(xk)‖22

=
α(k + 1)

2
Avg

(
‖∇f(xk)‖22

)
,

where step (i) follows from equation (36). Rearranging yields the claimed bound (3) on the
averaged squared gradient.
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B.1.1. Proof of Lemma 4

Recall that by assumption, the function g is continuously differentiable and Mg-smooth,
and the function h is convex. As a consequence, for any vector xk ∈ C and subgradient
uk ∈ ∂h(xk), we have

g(x) ≤ g(xk) + 〈∇g(xk), x− xk〉+
Mg

2
‖x− xk‖22 (37a)

h(x) ≥ h(xk) + 〈uk, x− xk〉. (37b)

Combining inequalities (37a) and (37b) yield

f(x) = g(x)− h(x) ≤ f(xk) + 〈∇g(xk)− uk, x− xk〉+
Mg

2
‖x− xk‖22. (38)

Substituting x = xk+1 : = xk − α
(
∇g(xk)− uk

)
in equation (38) and simplifying yields

f(xk)− f(xk+1) ≥
( 1

α
− Mg

2

)
‖xk+1 − xk‖22 = α

(
1− αMg

2

)
‖∇g(xk)− uk‖22

(i)

≥ α

2
‖∇f(xk)‖22,

where inequality (i) follows from the upper bound α ≤ 1
Mg

. This proves the second part
of the stated lemma. As for the claim that the sequence remains in the interior of the
set C, note that f(xk+1) ≤ f(xk) ≤ f(x0), which ensures that xk+1 ∈ L(f(x0)) ⊂ int(C), as
claimed.

B.2. Proof of Corollary 1

The first part of the proof builds on a simple application of Theorem 1 and the definition of
effective smoothness constant M∗f . The second part of the proof utilizes a relation between
the backtracking step size and the effective smoothness constant. For sake of completeness,
we first describe the gradient descent backtracking algorithm.

Algorithm 4 Gradient descent with backtracking

1: Given an initial point x0 ∈ int(C) and parameter β ∈ (0, 1):
2: for k = 0, 1, 2, . . . do
3: Choose the smallest nonnegative integer ik such that the step size tk : = βik satisfies:

f
(
xk − tk∇f(xk)

)
≤ f(xk)− tk

2
‖∇f(xk)‖2. (39)

4: Update xk+1 = xk − tk∇f(xk).
5: end for

Establishing the bound in (5a): For any step size α in the interval
(
0, 1

Mf∗

)
, the

definition of the effective smoothness constant Mf∗ ensures the following property. There
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exists a Mg-smooth function g and a convex-differentiable function h with f = g − h,
and the scalar Mg satisfies α < 1

Mg
≤ 1

Mf∗
. Since the function f is differentiable, applying

Algorithm 1 on the function f with the decomposition f = g − h is equivalent to applying
gradient descent on f . Furthermore, the step size α satisfies the upper bound α ≤ 1

Mg
, and

applying the bound (3) from Theorem 1 yields:

Avg
(
‖∇f(xk)‖22

)
≤

2
(
f(x0)− f∗

)
α(k + 1)

. (40)

Establishing the backtracking bound (5b): For any fraction β ∈ (0, 1), the definition
of the effective smoothness constant Mf∗ guarantees the following. There exists a Mg-
smooth function g and a convex and differentiable function h with f = g − h, and the
scalar Mg satisfies βMg ≤Mf∗ ≤Mg. Comparing the descent step (36) from Lemma 4
and step (39) in Algorithm 4, we conclude that the step size tk satisfies the lower bound

tk ≥ min
{

1, β
Mg

}
≥ min

{
1, β

2

M∗
f

}
. Applying the descent step (39) in Algorithm 4 repeatedly

and then utilizing the last lower bound on step size tk, we find that for all k = 0, 1, 2 . . .

f(x0)− f(xk+1) ≥
k∑
i=0

tk

2
‖∇f(xk)‖2 ≥ min

{1

2
,
β2

2M∗f

} k∑
i=0

‖∇f(xk)‖2.

Rearranging the last inequality yields:

Avg
(
‖∇f(xk)‖2

)
≤

2 max
{

1,
M∗
f

β2

}(
f(x0)− f(xk+1)

)
(k + 1)

(i)

≤
2 max

{
1,M∗f

}(
f(x0)− f∗

)
β2(k + 1)

, (41)

where step (i) follows since β ∈ (0, 1), along with the lower bound f(xk+1) ≥ f∗.

B.3. Proof of Corollary 3

Based on Theorem 4 of (Lee et al., 2016), it suffices to show that the gradient map
G(x) : = x− α∇f(x) is a diffeomorphism for any step size α ∈

(
0, 1

Mg

)
. Recall that a

map G : Rd 7→ Rd is a diffeomorphism if the map G is a bijection, and both the maps G
and G−1 are continuously differentiable.

Injectivity: We first prove that G is an injective map. Consider a pair of vectors x, y
such that G(x) = G(y); our aim is to prove that x = y. The condition G(x) = G(y) is
equivalent to x− y = α

(
∇f(x)−∇f(y)

)
, and we have that

‖x− y‖22 = α〈x− y, ∇f(x)−∇f(y)〉
= α〈x− y, ∇g(x)−∇g(y)〉 − α〈x− y, ∇h(x)−∇h(y)〉
(i)

≤ αMg‖x− y‖22 − α〈x− y, ∇h(x)−∇h(y)〉
(ii)

≤ αMg‖x− y‖22.
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Here inequality (i) follows because the gradient ∇g is Mg-Lipschitz by assumption; in-
equality (ii) follows from the convexity of the function h, which implies the monotonicity
of the gradient ∇h. Finally, since the step size α < 1

Mg
by assumption, the inequality

‖x− y‖22 ≤ αMg‖x− y‖22 can hold only when x = y.

Surjectivity: For any fixed vector y ∈ Rd, consider the following problem

arg min
x∈Rd

{1

2
‖x− y‖22 − αg(x) + αh(x)

}
. (42)

Observe that for any step size α ∈
(
0, 1

Mg

)
and any fixed vector y ∈ Rd, the map x 7→

1
2‖x − y‖

2
2 − αg(x) is strongly convex, whence the map x 7→ 1

2‖x− y‖
2
2 − αg(x) + αh(x) is

also strongly convex. Consequently, the convex problem (42) has a unique minimizer, and
we denote it by xy. In order to prove surjectivity of the map G, it suffices to show the point
xy is mapped to the point y. Recalling the KKT conditions of the problem (42), we have
that

y = xy − α∇f(xy) = G(xy),

which completes the proof of surjectivity of the map G.

Combining the injectivity and the surjectivity of the map G, we conclude that the inverse
mapG−1 exists. Next, letDG(·) denote the Jacobian of the mapG, thenDG(x) = I− α∇2g(x) + α∇2h(x).
Since the function g is Mg-smooth, and the map G is continuously differentiable, standard
application of the inverse-function theorem guarantees that for all step size α < 1

Mg
, the

inverse map G−1 is continuously differentiable. Putting together the pieces, we conclude
that map G−1 exists, and both the maps (G,G−1) are continuously differentiable. Overall,
we have established that the map G is a diffeomorphism, as claimed.

B.4. Proof of Proposition 1

The CCCP update at step (k + 1) is given by xk+1 = arg min
x∈C

q(x, xk), where

q(x, xk) : = g(x)− h(xk)− 〈∇h(xk), x− xk〉. (43)

Observe that step (k + 1) of Algorithm 1 is equivalent to a gradient descent update with
step size α on the map x 7→ q(x, xk). Accordingly, if we define yk+1 = xk − α∇q(x, xk),
then we have q(yk+1, xk) ≥ q(xk+1, xk); moreover

f(xk)− f(xk+1)
(i)

≥ q(xk, xk)− q(xk+1, xk)

(ii)

≥ q(xk, xk)− q(yk+1, xk)

(iii)

≥ 1

2Mg
‖∇f(xk)‖22. (44)

Here inequality (i) follows from the equality q(xk, xk) = f(xk) combined with the lower
bound q(x, xk) ≥ f(x). Inequality (ii) follows since q(yk+1, xk) ≥ q(xk+1, xk), and inequality
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(iii) follows from Lemma 4 with step size α = 1
Mg

. Note that equation (44) guarantees that

the function value sequence {f(xk)}k≥0 is decreasing. Since the function f is bounded
below, we have that the sequence {f(xk)}k≥0 converges. In order to prove that all limit
points of the sequence

{
xk
}
k≥0

are critical points, we follow the corresponding argument

in proof of Theorem 1. This completes the proof of part (a) in Proposition 1.
Turning to part (b), unwrapping the recursive lower bound (44) and re-arranging yields

inequality (11a). Finally, we turn to the proof of inequality (11b) under the additional
strong convexity condition. Under this condition, the map x 7→ q(x, xk) in equation (43) is
µ-strongly convex, so that

f(xk)− f(xk+1) ≥ q(xk, xk)− q(xk+1, xk)
(i)

≥ µ

2
‖xk − xk+1‖22, (45)

where inequality (i) follows from the strong convexity of the map x 7→ q(x, xk) and the fact
that ∇q(xk+1, xk) = 0. Using this equation repeatedly, we find that

f(x0)− f∗ ≥ f(x0)− f(xk+1) =
k∑
j=0

{
f(xj)− f(xj+1)

}
≥ µ

2

k∑
j=0

‖xj − xj+1‖22

=
µ(k + 1)

2
Avg

(
‖xk − xk+1‖22

)
.

Rearranging the last inequality yields the bound (11b). Finally, let us reiterate that bounds
similar to (11b) are known in the literature; see the paper (Lanckriet and Sriperumbudur,
2009) for example. We provide the proof of bound (11b) for completeness.

Appendix C. Proof of Theorem 2

This proof shares some important steps with Theorem 1, but it requires a more refined
argument due to the presence of a non-smooth and non-continuous function ϕ. We start
by stating an auxiliary lemma that underlies the proof of Theorem 2. In the proof, the
subgradients of the convex functions h and ϕ at a point xk are denoted by uk and vk,
respectively.

Lemma 5 Under the conditions of Theorem 2, we have

xk+1 = xk − α(∇g(xk) + vk+1 − uk), and (46a)

f(xk)− f(xk+1) ≥ 1

2α
‖xk − xk+1‖22, (46b)

valid for all k = 0, 1, 2, . . .. Furthermore, for any convergent subsequence
{
xkj
}
j≥0

of the

sequence
{
xk
}
k≥0

with xkj → x̄, we have

lim
j→∞

ϕ(xkj+1) = ϕ(x̄).
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See Appendix C.1 for the proof of this lemma.

We now prove Theorem 2 using Lemma 5.

Convergence of function value: We first prove that the sequence of function values
{f(xk)}k≥0 is convergent. Since f∗ : = min

x∈Rd
f(x) is finite by assumption, the sequence

{f(xk)}k≥0 is bounded below. If xk = xk+1 for some k, the convergence of the sequence{
f(xk)

}
k≥0

is trivial. Hence, we may assume without loss of generality that xk 6= xk+1

for all k = 0, 1, 2, ... In that case, inequality (46b) ensures that f(xk) > f(xk+1), and
consequently, there must exist some scalar f̄ such that lim

k→∞
f(xk) = f̄ .

Stationarity of limit points: Next, we establish that any limit point of the sequence{
xk
}
k≥0

must be stationary. Consider a subsequence
{
xkj
}
j≥0

such that xkj → x̄. Let{
vkj
}
j≥0

and
{
ukj
}
j≥0

be the associated sequence of subgradients. It suffices to exhibit

subgradients v̄ ∈ ∂ϕ(x̄) and ū ∈ ∂h(x̄) such that, ∇g(x̄) + v̄ − ū = 0.

Step 1: Existence of subgradient ū: Since the sequence
{
xkj
}
j≥0

is convergent, we may as-

sume that the sequence
{
xkj
}
j≥0

is bounded, and it lies in a compact set S. The function

h is convex continuous, and we have that h(xkj ) → h(x̄), and the subgradient sequence{
ukj
}
j≥0

is bounded; see example 9.14 in the book (Rockafellar and Wets, 2009). Passing

to a subsequence if necessary, we may assume that the sequence
{
ukj
}
j≥0

converges to ū.

Putting together these pieces, we conclude that (xkj , ukj , h(xkj ))→ (x̄, ū, h(x̄)) as j →∞;
consequently, the graph continuity of limiting sub-differentials guarantees that ū ∈ ∂h(x̄)
(see Appendix A.1 for graph continuity).

Step 2: Existence of subgradient v̄: In order to complete the proof, it suffices to show that the
vector v̄ : = −∇g(x̄) + ū belongs to the subgradient set ∂ϕ(x̄). Since the norm of successive
difference ‖xkj − xkj+1‖2 converges to zero, Lemma 5 yields ‖∇g(xkj ) + vkj+1− ukj‖2 → 0,
and xkj+1 → x̄. Furthermore, continuity of the gradient ∇g yields ∇g(xkj ) → ∇g(x̄),
and step 1 above guarantees ukj → ū. Combining these two facts with ‖∇g(xkj ) + vkj+1 −
ukj‖2 → 0, we obtain vkj+1 → v̄ := −∇g(x̄)+ū, and by Lemma 5, we have ϕ(xkj+1)→ ϕ(x̄).
Putting together the pieces, we conclude that (xkj+1, vkj+1, ϕ(xkj+1))→ (x̄, v̄, ϕ(x̄)). Con-
sequently, the graph continuity of limiting subdifferentials guarantees that v̄ ∈ ∂ϕ(x̄) (see
Appendix A.1 for graph continuity).

Finally, the subgradients ū ∈ ∂h(x̄) and v̄ ∈ ∂ϕ(x̄) obtained from steps 1 and and 2 respec-
tively satisfy the relation ∇g(x̄) + v̄ − ū = 0, which establishes the claimed stationarity of
x̄.
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Establishing the bound (13a): Next, we establish the claimed bound (13a) on the
averaged squared successive difference. Recalling that f∗ : = min

x∈Rd
f(x) is finite, we have

f(x0)− f∗ ≥ f(x0)− f(xk+1) =

k∑
j=0

f(xj)− f(xj+1)

(i)

≥ 1

2α

k∑
j=0

‖xj − xj+1‖22

=
(k + 1)

2α
Avg

(
‖xk − xk+1‖22

)
, (47)

where step (i) follows from equation (46b). Rearranging the last inequality yields the
claimed bound (13a) on the averaged squared successive difference.

Establishing the bound (13b): In order to establish the bound (13b) on the averaged
squared gradient, we start by establishing the following upper bound on the gradient-norm
‖∇f(xk+1)‖2:

‖∇f(xk+1)‖2 ≤
(
Mg +Mh +

1

α

)
‖xk − xk+1‖2. (48)

Recall that the function h is Mh smooth by assumption, and we have

‖∇g(xk+1)−∇h(xk+1) + vk+1‖2
(i)
= ‖∇g(xk+1)−∇h(xk+1) +

(
∇h(xk)−∇g(xk) +

1

α

(
xk − xk+1

))
‖2

(ii)

≤ ‖∇g(xk)−∇g(xk+1)‖2 + ‖∇h(xk)−∇h(xk+1)‖2 +
1

α
‖xk − xk+1‖2

(iii)

≤
(
Mg +Mh +

1

α

)
‖xk − xk+1‖2.

Here step (i) follows from the update equation of xk+1 in Lemma 5 and from differentiability
of the function g; step (ii) follows from triangle inequality, and step (iii) follows from the
smoothness of the functions g and h. Putting together the bounds (48) and (47), we obtain
the desired bound (13b).

C.1. Proof of Lemma 5

Here we prove the claims of Lemma 5.

Establishing update equation (46a): Recalling the convex majorant defined in equa-
tion (38), we define a convex majorant q(·, xk) of the function f as follows:

q(x, xk) = g(xk)− h(xk) + 〈∇g(xk)− uk, x− xk〉+
1

2α
‖x− xk‖22 + ϕ(x), (49)

where subgradient uk ∈ ∂h(xk), and the step size α satisfies 0 < α ≤ 1
Mg

. Observe

that minimizer of the convex function x 7→ q(x, xk) over x ∈ Rd is same as proxϕ1/α
(
xk −

α(∇g(xk)−uk)
)
, which implies that xk+1 is a minimizer of the convex function x 7→ q(x, xk)
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over x ∈ Rd. Consequently, the optimality condition of xk+1 guarantees that there exists
subgradient vk+1 ∈ ∂g(xk+1) satisfying the following equation:

∇g(xk)− uk + vk+1 +
1

α

(
xk+1 − xk

)
= 0. (50)

Rewriting the above equation yields the update equation (46a).

Establishing the descent step (46b): Note that

f(xk)− q(xk+1, xk)
(i)

≥ g(xk)− h(xk) + ϕ(xk+1) + 〈vk+1, xk − xk+1〉 − q(xk+1, xk)

(ii)

≥ 〈∇g(xk)− uk + vk+1, xk − xk+1〉 − 1

2α
‖xk − xk+1‖22

(iii)

≥ 1

2α
‖xk − xk+1‖22. (51)

Here step (i) follows from the convexity of the function ϕ; step (ii) follows by substituting
q(xk+1, xk) from equation (49). In step (iii), we use the relation∇g(xk)− uk + vk+1 = 1

α

(
xk − xk+1

)
,

which follows from equation (50). Finally, recall that the function x 7→ q(x, xk) is a majorant
for the function f , and we deduce that

f(xk)− f(xk+1) ≥ f(xk)− q(xk+1, xk)

≥ 1

2α
‖xk − xk+1‖22. (52)

Limit of the sequence
{
ϕ(xkj+1)

}
j≥0

: Consider any convergent subsequence
{
xkj
}
j≥0

of the sequence
{
xk
}
k≥0

with xkj → x̄. Recall that f∗ = infx∈Rd f(x) is finite by assumption;

combining this with step (46b) in Lemma 5, we have that ‖xk − xk+1‖2 → 0, and that
xkj+1 → x̄. The function ϕ is lower semi-continuous, and we have

lim inf
j→∞

ϕ(xkj+1) ≥ ϕ(x̄). (53)

Since we already proved xkj+1 is a minimizer of the convex function x 7→ q(x, xkj ), we have
q(xkj+1, xkj ) ≤ q(x̄, xkj ). Unwrapping the last inequality and taking lim sup yields

lim sup
j→∞

ϕ(xkj+1)
(i)

≤ ϕ(x̄) + lim sup
j→∞

(
〈x̄− xkj , ∇g(xkj )− ukj 〉+

1

2α
‖xkj − x̄‖22

)
(ii)
= ϕ(x̄). (54)

Here step (i) holds since ‖xkj − xkj+1‖2 → 0, and the sequence
{
∇g(xkj )

}
− ukj

}
j≥0

is

bounded—which we prove shortly; step (ii) above follows from xkj → x̄ and boundedness
of the sequence

{
∇g(xkj ) − ukj

}
j≥0

. Combining equations (53) and (54) we obtain the
claimed result.
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Boundedness of the sequence
{
∇g(xkj ) − ukj

}
j≥0

: In order to prove the bounded-

ness of the sequence
{
∇g(xkj ) − ukj

}
j≥0

, it suffices to show that the gradient sequence{
∇g(xkj )

}
j≥0

and the sub-gradient sequence
{
ukj
}
j≥0

are bounded. Recall that xkj → x̄,

and we have that the sequence {xkj}j≥0 is bounded. Consequently, from the smoothness
of the function g, we find that the sequence

{
∇g(xkj )

}
j≥0

is bounded. Finally, note that

the function h is convex continuous, and we already argued that the sequence {xkj}j≥0 is
bounded. Combining this with example 9.14 in the book (Rockafellar and Wets, 2009), we
conclude that the subgradient sequence

{
ukj
}
j≥0

bounded.

Appendix D. Proofs related to Algorithm 3

In this appendix, we provide the proof of Theorem 3, which applies to the Frank-Wolfe
based method (Algorithm 3). We also provide an upper bound on the generalized curvature
constant Cf , which is stated in Lemma 6.

D.1. Proof of Theorem 3

Let xγ : = xk + γdk, where the difference dk is defined as dk : = sk − xk, and the vector sk

is the Frank-Wolfe direction defined in Algorithm 3. Unpacking the definition (18) of the
generalized curvature constant Cf , we find that for any scalar γ ∈ (0, 1) and subgradient
uk ∈ ∂h(xk), we have the following:

f(xγ) ≤ f(xk) + γ〈∇g(xk)− uk, dk〉+
γ2

2
Cf

(i)

≤ f(xk)− γgk +
γ2

2
C0. (55)

Here inequality (i) is obtained by substituting gk = 〈dk, uk −∇g(xk)〉 and using C0 ≥ Cf .

Substituting γ = γk : = min
{ gk
C0
, 1
}

in equation (55) yields

f(xk+1) ≤ f(xk)−min
{(gk)2

2C0
, gk − C0

2
1{

gk>C0

}}, (56)

where xk+1 = xk + γkdk. Let ḡk : = min0≤j≤k g
j denote the minimum FW gap up to

iteration k, then repeated application of equation (56) yields

f(x0)− f(xk+1) ≥
k∑
j=0

min
{(gj)2

2C0
, gj − C0

2
1{

gj>C0

}}
≥ (k + 1) min

{(ḡk)2

2C0
, ḡk − C0

2
1{

ḡk>C0

}}. (57)

Rewriting the last equation yields the following upper bound

min
{(ḡk)2

2C0
, ḡk − C0

2
1{

ḡk>C0

}} (i)

≤ f(x0)− f∗

k + 1
,
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where step (i) follows from the lower bound f(xk+1) ≥ f∗ : = minx∈C f(x). Considering
the cases where ḡk ≤ C0 and ḡk > C0 separately, it can be shown following (Lacoste-Julien,
2016) that

ḡk ≤


2(f(x0)−f∗)√

k+1
for k + 1 ≤ 2(f(x0)−f∗)

C0√
2C(f(x0)−f∗)

k+1 otherwise .

Finally, note that
√

2C0(f(x0)− f∗) ≤ max{2(f(x0)− f∗), C0} and we conclude that

ḡk ≤
max

{
2
(
f(x0)− f∗

)
, C0

}
√
k + 1

.

D.2. Upper bound on generalized curvature constant

In this section, we provide an upper bound on the generalized curvature constant Cf , where
the function f is a difference of a differentiable function g and a continuous function h. For
better readability, we use Cg−h instead of Cf in the following lemma.

Lemma 6 Suppose that the function g is continuously differentiable and function h is con-
vex, then we have Cg−h ≤ Cg. Furthermore, if the function g is Mg-smooth, and the function
h is a µ strongly convex function with 0 ≤ µ < M , then

Cg−h ≤
(
M − µ

)
×
(

diam‖·‖2(C)
)2
, (58)

where diam‖·‖2 denote the diameter of the set C, measured in `2 norm.

Comments: The first upper bound on Cg−h in Lemma 6 posits that the curvature constant
of the difference function g − h is upper bounded by curvature constant of the function g,
whenever the second function h is convex. Let us try to understand an implication of this
result through an example. One of the well-known upper bound of curvature constant for
Mg-smooth function g is Mg×

(
diam‖·‖2(C)

)2
; see the paper by (Jaggi, 2013). Now consider

continuously differentiable functions g and h such that the function g is Mg-smooth and the
function h is non-smooth and convex. It can be verified that the difference function g − h
is not smooth in this case; consequently, the earlier bound on curvature constant Cg−h is
∞, whereas Lemma 6 ensures that

Cg−h ≤ Cg ≤Mg ×
(

diam‖·‖2(C)
)2
.

Proof of the upper bound Cg−h ≤ Cg: Unwrapping the definition of Cg−h, we have

Cg−h = sup
x,y∈cγ
u∈∂h(x)

2

γ2

[
f(y)− f(x)− 〈y − x, ∇g(x)− u〉

]
= sup

x,y∈cγ
u∈∂h(x)

2

γ2

[
g(y)− g(x)− 〈y − x, ∇g(x)〉 −∆h(y, x, u)

]
(59)

(i)

≤ sup
x,y∈cγ

2

γ2

[
f(y)− f(x)− 〈y − x, ∇g(x)〉

]
︸ ︷︷ ︸

Cg

,
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where ∆h(y, x, u) : = h(y) − h(x) − 〈y − x, u〉. Here inequality (i) follows by noting that,
for any pair of points x, y ∈ C, and for any convex function h with u ∈ ∂h(x), we have
∆h(y, x, u) ≥ 0 .

Proof of upper bound (58): Suppose in addition, the function g is Mg-smooth, and the
function h is µ-strongly convex with µ ≥ 0. Then we have ∆h(y, x, u) ≥ µ

2‖x− y‖
2
2, and

equation (59) yields

Cg−h ≤ sup
x,y∈cγ

2

γ2

[
g(y)− g(x)− 〈y − x, ∇g(x)〉 − µ

2
‖x− y‖22

]
(i)

≤ sup
x,y∈cγ

2

γ2

[
Mg − µ

2
‖x− y‖22

]
,

where step (i) follows since the function g is Mg-smooth. Substituting y − x = γs with
s ∈ C, we obtain the claimed upper bound

Cg−h ≤ (Mg − µ)×
(

diam‖·‖2(C)
)2
.

Appendix E. Proofs of faster rates under Assumption KL

In this appendix, we prove our results on improved convergence rates for functions which
satisfy Assumption KL—as stated in Theorems 4 and 5. We begin by stating an auxiliary
lemma that underlies the proofs of Theorems 4 and 5.

Lemma 7 Under assumptions of either Theorem 4 or Theorem 5, there exists constants
θ ∈ [0, 1), C > 0 and positive integer k1 such that for all k ≥ k1, we have

|f(xk)− f̄ |θ ≤ C‖∇f(xk)‖2,

where f(xk) ↓ f̄ . Furthermore, if xk → x̄, then the parameters (θ, C), obtained from KL-
inequality of the function f at the point x̄, satisfy the above inequality.

See Appendix E.3 for the proof of this lemma.

E.1. Proof of Theorem 4

Now we prove Theorem 4 using Lemma 7.

Convergence of the sequence
{
xk
}
k≥0

: We demonstrate the convergence of the se-

quence
{
xk
}
k≥0

by proving that the sequence has finite length property; more precisely, we

show that
∑∞

k=0 ‖xk − xk+1‖2 <∞. First, note that for any scalar 0 ≤ θ < 1, the function
t 7→ t1−γθ is concave for 0 < γ < 1

θ ; consequently, for iteration k ≥ k1 we have(
f(xk)− f̄

)1−γθ − (f(xk+1)− f̄
)1−γθ ≥ (1− γθ)(f(xk)− f̄

)−γθ(
f(xk)− f(xk+1)

)
(i)

≥
(
1− γθ

)(
|f(xk)− f̄ |

)−γθ × 1

2α
‖xk − xk+1‖22

(ii)

≥ (1− γθ)
C‖∇f(xk)‖γ2

× 1

2α
‖xk − xk+1‖22

(iii)
=

(1− γθ)
2Cα1−γ ‖x

k − xk+1‖2−γ2 . (60)
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Here inequality (i) follows from the descent property in equation (36) and from the fact
that f(xk) ↓ f̄ . Inequality (ii) follows from Lemma 7, and equality (iii) follows from the
relation xk − xk+1 = α

(
∇g(xk)− uk

)
= α∇f(xk). Substituting γ = 1 and summing both

side of inequality (60) from index k = k1 to k =∞, we obtain

(
f
(
xk1
)
− f̄

)1−θ
=

∞∑
k=k1

(
f
(
xk
)
− f̄

)1−θ − (f(xk+1
)
− f̄

)1−θ
≥

∞∑
k=k1

(1− θ)
2C

‖xk − xk+1‖2,

which proves the finite length property of the sequence
{
xk
}
k≥0

. Consequently, we are

guaranteed to have a vector x̄ such that xk → x̄ as k →∞.

Rate of convergence of Avg
(
‖∇f(xk)‖2

)
: Rewriting equation (60), we have the fol-

lowing:

Cγ : =

k1∑
`=0

(1− γθ)
2Cα1−γ ‖x

` − x`+1‖2−γ2 +
(
f
(
xk1
)
− f̄

)(1−γθ)
(i)

≥
k−1∑
`=0

(1− γθ)
2Cα1−γ ‖x

` − x`+1‖2−γ2

=
k(1− γθ)
2Cα1−γ Avg

(
‖xk − xk+1‖2−γ2

)
, (61)

where step (i) above follows from equation (60), and Avg
(
‖xk − xk+1‖2−γ2

)
:= 1

k

∑k−1
`=0 ‖x` − x`+1‖2−γ2

denote the running arithmetic average. Since 0 ≤ θ < 1, we can take γ = 1 in equation (61),
and we obtain the following rate:

Avg
(
‖∇f(xk)‖2

)
=

1

α
Avg

(
‖xk − xk+1‖2

)
≤ c1

k
,

where c1 =
2CCγ
α(1−θ) . Finally, note that the last equality holds trivially for iteration k ≤ k1

with the given choice of the constant c1.

Rate of convergence of GAvg
(
‖∇f(xk)‖2

)
: Since we proved that the sequence{

xk
}
k≥0

is convergent to the point x̄, we have that the parameter θ in Lemma 7 can

be taken to be the KL-exponent of the function f at point x̄. Suppose 1
2 ≤ θ <

r
2r−1 , then

substituting γ = 2r−1
r in equation (61) yields,

GAvg
(
‖∇f(xk)‖2

)
=

1

α
GAvg

(
‖xk − xk+1‖2

)
(i)

≤ 1

α

{
Avg

(
‖xk − xk+1‖

1
r
2

)}r
(ii)

≤ c2

kr
,
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where c2 = 1
α

(2CCγα1−γθ

1−γθ
)r

with γ = 2r−1
r , and GAvg

(
‖xk − xk+1‖2−γ2

)
: =

∏k−1
`=0

(
‖x` −

x`+1‖2
) 1
k , the geometric average of the sequence

{
‖x` − x`+1‖2

}k−1

l=0
. Here step (i) above

follows from arithmetic-geometric mean (AM/GM) inequality; step (ii) follows from the
bound in equation (61) and from the fact that γ = 2r−1

r . Finally, note that the last equality
holds trivially for iteration k ≤ k1 with the given choice of constant c2.

E.2. Proof of Theorem 5

The proof of Theorem 5 builds on the techniques used in the proof of Theorem 4 but requires
additional technical care due to the presence of possibly non-continuous function ϕ.

Convergence of the sequence
{
xk
}
k≥0

: The proof of Theorem 5 has two steps. First,

we prove a descent condition similar to equation (60). We then leverage this descent con-
dition and weighted AM-GM inequality to obtain the desired result.

Step 1: Following the proof of Theorem 4, we prove the convergence of the sequence{
xk
}
k≥0

by showing that the sequence
{
xk
}
k≥0

has finite length property. First, note that

for scalars 0 ≤ θ < 1 and 0 < γ < 1
θ , the function t 7→ t1−γθ is concave. Consequently, for

iteration k ≥ k1, from Lemma 7 we have(
f(xk)− f̄

)1−γθ − (f(xk+1)− f̄
)1−γθ ≥ (1− γθ)(f(xk)− f̄

)−γθ(
f(xk)− f(xk+1)

)
(i)

≥
(
1− γθ

)(
|f(xk)− f̄ |

)−γθ × 1

2α
‖xk − xk+1‖22

(ii)

≥ (1− γθ)
C‖∇f(xk)‖γ2

× 1

2α
‖xk − xk+1‖22. (62)

Here step (i) follows from the descent property in equation (52) and from the fact that
f(xk) ↓ f̄ ; step (ii) follows from Lemma 7. The function h is locally smooth by assumption;

as a result, we have that the difference function g − h is locally smooth. We also assumed
that the sequence

{
xk
}
k≥0

is bounded (lies in a compact set S); consequently, we may
assume that the difference function g−h is smooth in the compact set S with a smoothness
parameter Mg−h(say). Borrowing the argument of Theorem 2 part(b), it follows that:

‖∇g(xk)−∇h(xk) + vk‖2 ≤
(
Mg−h +

1

α

)
‖xk − xk−1‖2. (63)

Combining the last inequality with inequality (62) yields the following descent property

(
f(xk)− f̄

)1−γθ − (f(xk+1)− f̄
)1−γθ ≥ (1− γθ)

2αC
(
Mg−h + 1

α

)γ × ‖xk − xk+1‖22
‖xk − xk−1‖γ2

. (64)

Step 2: We now leverage the descent condition obtained from step 1 to prove finite length
property of the sequence

{
xk
}
k≥0

. In order to facilitate further discussion, we use ∆k
γ to

denote the following:

∆k
γ : = C3

((
f(xk)− f̄

)1−γθ − (f(xk+1)− f̄
)1−γθ)

,
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where the constant C3 : =
2αC
(
Mg−h+ 1

α

)γ
(1−γθ) . With this notation, we can rewrite the equa-

tion (64) as

∆k
γ‖xk−1 − xk‖γ2 ≥ ‖x

k − xk+1‖22. (65)

Combining equation (65) with the weighted AM-GM inequality, we obtain

(
1 +

γ

2− γ
)
×

k∑
j=k1+1

‖xj − xj+1‖2−γ2

(i)

≤
(
1 +

γ

2− γ
)
×

k∑
k=k1+1

(√
∆j
γ ‖xj−1 − xj‖γ2

) 2−γ
2

(ii)

≤
k∑

j=k1+1

(
∆j
γ +

γ

2− γ
‖xj−1 − xj‖2−γ2

)
(iii)

≤ C3

(
f(xk1)− f̄

)1−γθ
+

k∑
j=k1+1

γ

2− γ
‖xj−1 − xj‖2−γ2 .

(66)

Here step (i) follows from equation (65), and step (ii) is implied by applying weighted
AM-GM inequality as follows:

∆j
γ + γ

2−γ ‖x
j−1 − xj‖2−γ2

1 + γ
2−γ

≥
(

∆j
γ‖xj−1 − xj‖γ2

) 1
1+

γ
2−γ .

Step (iii) in equation (66) follows from the following observation

k∑
j=k1

∆j
γ = C3

k∑
j=k1

(
f(xj)− f̄

)1−γθ − (f(xj+1)− f̄
)1−γθ

≤ C3

(
f(xk1)− f̄

)1−γθ
.

Rewriting inequality (66), we have for all k ≥ k1 + 2

k−1∑
j=k1+1

‖xj − xj+1‖2−γ2 ≤ C3

(
f(xk1)− f̄

)1−γθ
+

γ

2− γ
‖xk1 − xk1+1‖2−γ2 −

(
1 +

γ

2− γ
)
‖xk − xk+1‖2−γ2

≤ C3

(
f(xk1)− f̄

)1−γθ
+

γ

2− γ
‖xk1 − xk1+1‖2−γ2 <∞. (67)

Finally, by substituting γ = 1 and letting k →∞ in the last equation, we deduce the finite
length property of the sequence

{
xk
}
k≥0

.

Rate of convergence of Avg
(
‖∇f(xk)‖2

)
and GAvg

(
‖∇f(xk)‖2

)
: The proof of this

part follows from the corresponding proof in Theorem 4 and using the inequality (67) and
upper bound (63).
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E.3. Proof of Lemma 7

Since the sequence
{
xk
}
k≥0

is bounded by assumption, without loss of generality, we may

assume that the set of limit points of the sequence
{
xk
}
k≥0

— which we denote by X̄ — is a

compact set. From Theorem 1 (respectively Theorem 2), we have that all the limit points of
the sequence

{
xk
}
k≥0

are critical points of the function f ; furthermore, since f(xk) ↓ f̄ , we

also have that the function f is constant on the set of limit points X̄ , and the function value
on X̄ equals f̄ . Combining this with Assumption KL, we have for all z ∈ X̄ , there exists
constants θ(z) ∈ [0, 1), rz > 0 and C(z) > 0 such that, | f(x)− f̄ |θ(z)≤ C(z)× ‖∇f(x)‖2
for all x ∈ B(z, rz). Now, consider the open cover {B(z, rz) : z ∈ X̄} of the set X̄ . From
compactness of the set X̄ , we are guaranteed to have a finite subcover; more precisely, there
exists {z1, . . . zp} ⊆ X̄ such that X̄ ⊆

⋃p
i=1B(zi, rzi). Define constants θ : = max{θ(zi) :

1 ≤ i ≤ p}, C : = max{C(zi) : 1 ≤ i ≤ p}, and r : = min
{ rzi

2 : 1 ≤ i ≤ p
}

. Utilizing the
result ‖xk − xk+1‖2 → 0 from Theorem 1 (respectively Theorem 2), one can show that,
there exists positive integer k1 such that for all k ≥ k1 we have ‖xk − xk+1‖2 < r

2 , and
xk ∈

⋃p
i=1B(zi, rzi). Putting together these pieces, we conclude that for all k ≥ k1

xk ∈
p⋃
i=1

B(zi, rzi), and | f(xk)− f̄ |θ≤ C‖∇f‖2,

which proves the first part of claimed lemma. Now suppose the sequence
{
xk
}
k≥0

converges

to a point x̄, then we have that the set of limit points X̄ = {x̄}, is a singleton set. The rest
of the proof is immediate by repeating the argument so far, with the additional information
that X̄ = {x̄}.

Appendix F. Proofs of Corollaries

In this appendix, we collect the proofs of Corollaries 4, 5 and 6 from Section 4.

F.1. Proof of Corollary 4

First, note that in order to apply Theorem 1 and Theorem 4 to Corollary 4, it is enough
to show that the function µ 7→ f(µ) is Mf -smooth (in this example, function h ≡ 0, and
hence f ≡ g), and the function f satisfies Assumption KL. We verify that Assumption KL is
satisfied by proving that the objective function f in problem (22) is continuous sub-analytic
(see Appendix A.2). For proving sub-analyticity, we heavily use the properties mentioned
in Appendix A.3. In the following proof, we assume without loss of generality that λ = 1.

The function f is continuous sub-analytic: First, we show that the function Ψ is sub-
analytic. We begin by observing that Ψ is piecewise polynomial. Polynomials are analytic
functions and intervals are semi-analytic sets. Since piecewise analytic functions with semi-
analytic pieces are semi-analytic (hence sub-analytic), we conclude that the function Ψ is
sub-analytic. Now, the function µ 7→ yi−〈zi, µ〉 is linear, and hence continuous sub-analytic.
Furthermore, since continuous sub-analytic functions are closed under composition, we have
that the function µ 7→ Ψ

(
yi − 〈zi, µ〉

)
is sub-analytic. Finally, note that sub-analytic

functions are closed under linear combination, and we conclude that the function f is sub-
analytic. The continuity of the function f is immediate by inspection.
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The function f is smooth: Since the vectors
{

(zi, yi)
}n
i=1

are fixed, it suffices to prove
that the function Ψ is smooth. A straightforward calculation shows that Ψ is continuously
differentiable and smooth; in particular, it has a smoothness parameter 36 when λ = 1.

Putting together the pieces, we conclude that Theorem 1 and Theorem 4 are applicable for
problem (22). Convergence of the sequence

{
µk
}
k≥0

to a point µ̄ and the convergence rate

of gradient norms follows from Theorem 4, and the stationary condition ∇f(µ̄) = 0 follows
from Theorem 1.

Escaping strict saddle points: Note that the functions (g, h) are twice continuously
differentiable, and the function g is smooth. Consequently, from Corollary 3, it follows that
with random initializations, Algorithm 1 avoids strict saddle points almost surely.

F.2. Proof of Corollary 5

We begin by providing a high-level outline of the proof. First, note that from Theorem 2,
we have the successive difference ‖xk−xk+1‖2 → 0, and as a result, the set of limit point of
the sequence

{
xk
}
k≥0

—call it X̄—is a connected set (Ostrowski, 2016). We prove that the

connected-set X̄ is singleton by showing that the set X̄ has an isolated point — this also
proves that sequence {xk}k≥0 is convergent. Next, we show that the objective-function f ,
in the problem (28), satisfies Assumption KL with exponent θ = 1

2 . Finally, we show that

condition |x̄|(r) > |x̄|(r+1) ≥ 0 implies that function x 7→ h(x) : =
∑d

i=d−s+1 |x|(i) is smooth
in a neighborhood of point x̄, and we use the proof techniques of Theorem 5 to establish
the convergence rate of the gradient sequence. In order to obtain the rate of convergence
of the sequence

{
xk
}
k≥0

, we use ideas similar to those in the paper (Lee et al., 2016).

Convergence of the sequence {xk}k≥0: For notational convenience, let us use g(x) : = ‖y −Bx‖22,

ϕ(x) : = λ‖x‖1, and h(x) : = λ
∑d

i=d−s+1 |x|(i). Since the point x̄ satisfies the condition
|x̄|(r) > |x̄|(r+1) ≥ 0 by assumption, there must exist a neighborhood B(x̄, r) such that the
function h is differentiable in the neighborhood B(x̄, r), and all points x ∈ B(x̄, r) satisfy
sign(x(i)) = sign(x̄(i)) for 1 ≤ i ≤ r. We show that, in a neighborhood of the point x̄, it
is the only critical point, thereby proving that the point x̄ is an isolated critical point. To
this end consider the convex sub-problem mentioned in Corollary 5

P(x̄) : = min
x∈Rd

g(x) + λϕ(x)− λ〈∇h(x̄), x〉. (68)

For any point x∗ such that x∗ ∈ B(x̄, r) ∩ X̄ , from Theorem 2, we know that

∇g(x̄) + λū− λ∇h(x̄) = 0 and ∇g(x∗) + λu∗ − λ∇h(x∗) = 0, (69)

where subgradients u∗ ∈ ∂ϕ(x∗) and ū ∈ ∂ϕ(x̄). Next, note that from the choice of
neighborhood B(x̄, r), it follows that for all x ∈ B(x̄, r) we have ∇h(x) = ∇h(x̄), and in
particular, we deduce ∇h(x∗) = ∇h(x̄). Combining this relation with equation (69) yields:

∇g(x̄) + λū− λ∇h(x̄) = 0 and ∇g(x∗) + λu∗ − λ∇h(x̄) = 0,

which implies both the points x∗ and x̄ are zero sub-gradient points of convex problem (68);
this contradicts the assumption that problem (68) has an unique solution. Hence, we
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conclude that x∗ = x̄, and the point x̄ is an isolated critical point of the sequence
{
xk
}
k≥0

,

and X̄ . Putting together the pieces, we conclude that xk → x̄.

Smoothness of function h in a neighborhood of x̄: We already argued above that for
all x ∈ B(x̄, r), the function h is differentiable and ∇h(x) = ∇h(x̄). Consequently, we have
that in the neighborhood B(x̄, r), the function h is smooth with a smoothness parameter
Mh = 0.

The function f satisfies Assumption KL with exponent θ = 1
2 : Recently, in the

paper (Li and Pong, 2016) (Corollaries 5.1 and 5.2), the authors showed that if the functions
f1, f2, . . . , fT satisfy the KL-inequality with an exponent θ = 1

2 , then the function f : =
min

{
f1, f2, . . . , fT

}
also satisfies KL-inequality with the exponent θ = 1

2 . Interestingly, the
function f can be represented as is minimum of finitely many functions as follows:

f(x) = min
a∈A

{
‖y −Bx‖22 + λ‖x‖1 − λa>x

}
, (70)

where A : =
{
a ∈

{
− 1, 0, 1

}d
:
∑d

i=1 |ai| = r
}

. Note that the set A has cardinality at
most 3d. It is known that functions of the form x 7→ 1

2x
>Ax + P (x) + b>x satisfy the

KL-inequality with exponent θ = 1
2 , where P is a proper closed polyhedral function, and

A is a positive semi-definite matrix; see Corollaries 5.1 and 5.2 in the paper (Li and Pong,
2016). Putting together these two observations, we conclude that the function f satisfies
KL-assumption with KL-exponent θ = 1

2 .

Combining the pieces: Since we proved xk → x̄, we have that for a suitable choice of k1,
the tail sequence

{
xk
}
k≥k1 lies in the neighborhood B(x̄, r). Now, the function f satisfies

Assumption KL with exponent θ = 1
2 , and the function h is smooth in the neighborhood

B(x̄, r); hence, following the argument in proof of Theorem 5 part(b), we conclude that:

Avg
(
‖∇f(xk)‖2

)
≤ c1

k
.

Rate of convergence of sequence
{
xk
}
k≥0

: The KL-exponent for the function f is

θ = 1
2 , and we may use γ = 1 in equation (67) which yields

∞∑
`=k1+1

‖x` − x`+1‖2 ≤ ‖xk1 − xk1+1‖2 + C3

(
f(xk1)− f̄

) 1
2 , (71)

for some constant C3. From Lemma 7 and equation (48), we have(
f(xk1)− f̄

) 1
2 ≤ C‖∇f(xk1)‖2 ≤ C(M +Mh +

1

α
)‖xk1 − xk1−1‖2. (72)

Combining equations (71) and (72) we have

∞∑
`=k1

‖x` − x`+1‖2 ≤ 2‖xk1 − xk1+1‖2 + C3

(
f(xk1)− f̄

) 1
2

(i)

≤ 2‖xk1 − xk1+1‖2 + CC3(M +Mh +
1

α
)‖xk1 − xk1−1‖2

(ii)

≤ C̄‖xk1 − xk1−1‖2, (73)
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where C̄ is a constant depending on M,Mh, α, C3 and C, and step (i) above follows from
equation (72). We justify step (ii) shortly, but let us first derive the linear rate of convergence
of the sequence

{
xk
}
k≥0

using the derivation in equation (73). Denote ek =
∑∞

`=k ‖x` −
x`+1‖2. Then equation (73) provides the following recursion

ek1 ≤ C̄(ek1−1 − ek1).

Simple inspection of proof of Theorem 5 and derivations so far ensure that we can derive the
equations (71) and (72) for all k ≥ k1; this provides us a recursion relation as above with
k1 replaced by k. Furthermore, by choosing a larger value of the constant C̄ if necessary,
we may conclude that for all k ≥ 1 we have

ek ≤ C̄(ek−1 − ek).

Rearranging the above inequality yields ek ≤ C̄
C̄+1

ek−1, which guarantees that the sequence{
ek
}
k≥0

converges to zero at a linear rate. Finally, observe that ‖xk − x∗‖2 ≤
∑∞

`=k ‖x` −
x`+1‖2 = ek, and the linear rate of convergence of the sequence

{
‖xk − x∗‖2

}
k≥0

to zero
follows.

Justification for step (ii) in equation (73): Note that it suffices to show that the
object ‖xk1 − xk1+1‖2 is upper bounded by a constant multiple of ‖xk1 − xk1−1‖2, where
the constant depends only on M,Mh, α and C. Recalling the decent property proved in
equation (52) we have:(

f(xk1)− f̄
) 1

2 ≥
(
f(xk1)− f(xk1+1)

) 1
2 ≥ 1√

2α
‖xk1 − xk1+1‖2. (74)

Combining equations (74) and (72) we obtain the following upper and lower bound of(
f(xk1)− f̄

) 1
2 :

1√
2α
‖xk1 − xk1+1‖2 ≤

(
f(xk1)− f̄

) 1
2 ≤ C(M +Mh + 1/α)‖xk1 − xk1−1‖2.

Rearranging the last equality proves the desired upper bound. Finally, we reiterate that
the above justification also hold for any iterate k with k ≥ k1.

F.3. Proof of Corollary 6

The proof of this corollary is based on application of Theorems 2 and 5. We verify the

assumptions of Theorems 2 and 5 with g(θ) = −
n∑
i=1

log
(
ζ(yi; θ)

)
, h ≡ 0, ϕ = 1X and

function f : = g − ϕ+ h. Note that the domain dom(f) = X is compact, which guarantees
that the iterate sequence {θk}k≥0 obtained from Algorithm 2 is bounded. The function
h ≡ 0 is smooth. The log-partition function A is twice continuously differentiable by
assumption, which guarantees that the function g is also twice continuously differentiable,
whence smooth in the compact domain X . Finally, we verify that the function f satisfies
Assumption KL by proving that f is continuous sub-analytic in its domain X , and the
domain X is closed; see Lemma 3. Clearly, dom(f) = X is closed, and the function f
is continuous in dom(f). Finally, we show that the functions (g, ϕ) are sub-analytic, and
invoking the property (d) of sub-analytic functions form Appendix A.3, we conclude that
the function f : = g + ϕ is sub-analytic.
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The function ϕ is sub-analytic: Here, we use a simple result by (Attouch et al., 2010),
which states that the indicator function of a semi-algebraic set is a semi-algebraic function
(hence a sub-analytic function). In order to show that the set X is semi-algebraic, we note
the following representation of the set X

X =
{ d∑
i=1

θ2
i > R2

1

}c⋂{ 2d∑
i=d+1

θ2
i > R2

2

}c⋂{
θ2d+1 > 1

}c⋂{
− θ2d+1 > 0

}c
. (75)

Each of the four sets in representation (75) are semi-algebraic by definition, and semi-
algebraic sets are closed under finite intersection and complements; see the book by (Coste,
2002). Putting together these two observations, we conclude that the set X is semi-algebraic,
and that 1X is a sub-analytic function.

The function g is sub-analytic: The log-partition function A is sub-analytic by as-
sumption. For a fixed vector y, the map η 7→ η>T (y) is linear, and hence sub-analytic.
Since sub-analytic functions are closed under a finite linear combination, we conclude that
the map η 7→ η>T (y)− A(η) is sub-analytic. Continuous sub-analytic functions are closed
under multiplication and composition; since the exp(·) function is continuous sub-analytic,
we have for every fixed vector y the following map

(η0, η1, p) 7→ ζ(y; η0, η1, p) : = p exp(η>0 T (y)−A(η0)) + (1− p) exp(η>1 T (y)−A(η1))

is sub-analytic. Furthermore, the log(·) function analytic on the interval (0,∞), and us-
ing the composition rule for continuous sub-analytic functions, we obtain that the map
θ 7→ log(ζ(yi; θ)) is sub-analytic, where θ : = (η0, η1, p). Finally, the target function g is a
linear combination of sub-analytic functions log(ζ(yi; θ)), and we conclude that the map
θ 7→ g(θ) is sub-analytic.

Combining the pieces: Putting together the pieces, we conclude that the function f is
sub-analytic, with the function f being continuous in dom(f), whereas dom(f) is closed;
furthermore, the functions g and h are smooth. This allows us to apply Theorem 2 and
Theorem 5 and the corollary follows.

Sub-analyticity of the log-partition functions A in Table 1: The sub-analyticity of
the log-partition function A mentioned in Table 1 follows from the following two observa-
tions. First, note that the functions exp, ln and Γ are continuous and analytic (hence sub-
analytic). Given two continuous sub-analytic functions g1 and g2, the composition function
g2 ◦ g1 is also continuous sub-analytic. Secondly, any linear combination of sub-analytic
functions is also sub-analytic function. See Appendix A.3 for properties of sub-analytic
functions.

Appendix G. Characterizing “smooth - convex” function class

In Theorem 1 and Theorem 2 we discussed a class of non-smooth non-convex functions,
where a gradient or a prox-type algorithm provides satisfactory convergence to a critical
point. One possible deficiency of the theory discussed so far is that, in Algorithm 1 (re-
spectively Algorithm 2), we need to specify a decomposition of the objective function f as
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a difference of a smooth and a convex function (respectively, smooth + convex - convex).
Consequently, it is natural to wonder if we can characterize the class of functions which
has a decomposition needed in Algorithms 1 and 2. Furthermore, if a function has this a
decomposition, how can we obtain such a decomposition easily. It is worth pointing out that
for the case of Algorithm 2, the convex function ϕ is known in many cases. For instance,
in the case of constrained optimization, the function ϕ is the indicator of the constraint
set; in many statistical estimation problems, ϕ is a penalty function on the parameters;
a well-known example of such penalty function is the `1 penalty, which is used to obtain
sparse solutions. Hence, for all practical purposes, the task of characterizing the function
class mentioned in Theorems 1 and 2 reduces to characterizing functions which can be
decomposed as a difference of a smooth function(g) and a convex function (h). In the next
theorem, we characterize the class of of continuously differentiable functions that can be
written as a difference of a smooth function and a convex function.

Theorem 6 Given any continuously differentiable function f : Rd 7→ R, the following two
properties are equivalent:

(a) There exists a M -smooth function g, and a convex continuously differentiable function
h such that:

f(x) = g(x)− h(x) for all x ∈ Rd.

(b) The gradient of the function f satisfies the following inequality:〈
∇f(x)−∇f(y), x− y

〉
≤M‖x− y‖2 for all x, y ∈ Rd.

Proof We establish the equivalence by proving the circle of implications (a) =⇒ (b) =⇒ (a).

Implication (a) =⇒ (b): For any M -smooth function g, we have the following:〈
∇g(x)− g(y), x− y

〉
≤ ‖∇g(x)− g(y)‖2 × ‖x− y‖2
(i)

≤ M‖x− y‖22, for all x, y ∈ Rd, (76)

where step (i) follows since the gradient ∇g is M Lipschitz. Next note that the gradient of
a differentiable convex function is a monotone operator, and we have that for all x, y ∈ Rd:〈

∇h(x)−∇h(y), x− y
〉
≥ 0. (77)

Subtracting equation (77) from equation (76), we obtain the desired upper bound in part
(b).

Implication (b) =⇒ (a): We prove this implication by finding a M–smooth function g
and a convex differentiable function h such that f = g− h. To this end, we fix any x0 ∈ Rd
and consider the following two functions:

g(x) : = f(x0) +
〈
∇f(x0), x− x0

〉
+
M

2
‖x− x0‖22 (78a)

h(x) : = g(x)− f(x). (78b)
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The function g in definition (78a) is M -smooth by inspection. Since both the functions
f and g are continuously differentiable, the function h is continuously differentiable by
construction. In order to complete the proof, it suffices to show that the function h is
convex. To this end, the first order Taylor series expansion of the function h yields

h(x) = h(y) +
〈
∇h(y + t(x− y)), x− y

〉
for some t ∈ [0, 1]

= h(y) +
〈
∇h(y), x− y

〉
+
〈
∇h(y + t(x− y))−∇h(y), x− y

〉
. (79)

Expanding the term
〈
∇h(y + t(x− y))−∇h(y), x− y

〉
above yields,

〈
∇h(y + t(x− y))−∇h(y), x− y

〉 (i)
= M‖x− y‖22 −

〈
∇f(y + t(x− y))−∇f(y), t(x− y)

〉
t

(ii)

≥ M‖x− y‖22 −Mt‖x− y‖22
(iii)

≥ 0.

Here step (i) follows by substituting the expression of the function h; step (ii) follows from
the gradient inequality of part (b), and step (iii) follows from the inequality 0 ≤ t ≤ 1. Since
the vectors x, y ∈ Rd were arbitrary, the inequality

〈
∇h(y + t(x− y))−∇h(y), x− y

〉
≥ 0

combined with equation (79) proves the convexity of the function h, thereby proving the
claimed result in part (a).

Comments: It would be interesting to characterize the class of DC-based functions men-
tioned in problem (2) when the convex function h is non-differentiable. Indeed, we obtain
a larger and more interesting non-differentiable class of functions. It would interesting to
see whether Theorem 6 can be suitably generalized in this setting.
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Stanislaw  Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Les
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