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Abstract

The growing size of modern data brings many new challenges to existing statistical
inference methodologies and theories, and calls for the development of distributed inferen-
tial approaches. This paper studies distributed inference for linear support vector machine
(SVM) for the binary classification task. Despite a vast literature on SVM, much less is
known about the inferential properties of SVM, especially in a distributed setting. In this
paper, we propose a multi-round distributed linear-type (MDL) estimator for conducting
inference for linear SVM. The proposed estimator is computationally efficient. In partic-
ular, it only requires an initial SVM estimator and then successively refines the estimator
by solving simple weighted least squares problem. Theoretically, we establish the Bahadur
representation of the estimator. Based on the representation, the asymptotic normality
is further derived, which shows that the MDL estimator achieves the optimal statistical
efficiency, i.e., the same efficiency as the classical linear SVM applying to the entire data
set in a single machine setup. Moreover, our asymptotic result avoids the condition on the
number of machines or data batches, which is commonly assumed in distributed estimation
literature, and allows the case of diverging dimension. We provide simulation studies to
demonstrate the performance of the proposed MDL estimator.

Keywords: Linear support vector machine, distributed inference, Bahadur representa-
tion, asymptotic theory

1. Introduction

The development of modern technology has enabled data collection of unprecedented size.
Very large-scale data sets, such as collections of images, text, transactional data, sensor
network data, are becoming prevailing, with examples ranging from digitalized books and
newspapers, to collections of images on Instagram, to data generated by large-scale net-
works of sensing devices or mobile robots. The scale of these data brings new challenges to
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traditional statistical estimation and inference methods, particularly in terms of memory
restriction and computation time. For example, a large text corpus easily exceeds the mem-
ory limitation and thus cannot be loaded into memory all at once. In a sensor network, the
data are collected by each sensor in a distributed manner. It will incur an excessively high
communication cost if we transfer all the data into a center for processing, and moreover,
the center might not have enough memory to store all the data collected from different
sensors. In addition to memory constraints, these large-scale data sets also pose challenges
in computation. It will be computationally very expensive to directly apply an off-the-shelf
optimization solver for computing the maximum likelihood estimator (or empirical risk min-
imizer) on the entire data set. These challenges call for new statistical inference approaches
that are able to not only handle large-scale data sets efficiently, but also achieve the same
statistical efficiency as classical approaches.

In this paper, we study the problem of distributed inference for linear support vector
machine (SVM). SVM, introduced by Cortes and Vapnik (1995), has been one of the most
popular classifiers in statistical machine learning, which finds a wide range of applications
in image analysis, medicine, finance, and other domains. Due to the importance of SVM,
various parallel SVM algorithms have been proposed in machine learning literature; see, e.g.,
Graf et al. (2005); Forero et al. (2010); Zhu et al. (2008); Hsieh et al. (2014) and an overview
in Wang and Zhou (2012). However, these algorithms mainly focus on addressing the
computational issue for SVM, i.e., developing a parallel optimization procedure to minimize
the objective function of SVM that is defined on given finite samples. In contrast, our paper
aims to address the statistical inference problem, which is fundamentally different. More
precisely, the task of distributed inference is to construct an estimator for the population
risk minimizer in a distributed setting and to characterize its asymptotic behavior (e.g.,
establishing its limiting distribution).

As the size of data becomes increasingly large, distributed inference has received a lot of
attentions and algorithms have been proposed for various problems (please see the related
work Section 2 and references therein for more details). However, the problem of SVM
possesses its own unique challenges in distributed inference. First, SVM is a classification
problem that involves binary outputs {−1, 1}. Thus, as compared to regression problems,
the noise structure in SVM is different and more complicated, which brings new technical
challenges. We will elaborate this point with more details in Remark 1. Second, the hinge
loss in SVM is non-smooth. Third, instead of considering the fixed dimension p as in many
existing theories on asymptotic properties of SVM parameters (see, e.g., Lin, 1999; Zhang,
2004; Blanchard et al., 2008; Koo et al., 2008), we aim to study the diverging p case, i.e.,
p→∞ as the sample size n→∞.

To address aforementioned challenges, we focus ourselves on the distributed inference
for linear SVM, as the first step to the study of distributed inference for more general SVM.1

Our goal is three-fold:

1. Our result relies on the Bahadur representation of the linear SVM estimator (see, e.g., Koo et al., 2008).
For general SVM, to the best of our knowledge, the Bahadur representation in a single machine setting
is still open, which has to be developed before investigating distributed inference for general SVM. Thus,
we leave this for future investigation.
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1. The obtained estimator should achieve the same statistical efficiency as merging all
the data together. That is, the distributed inference should not lose any statistical
efficiency as compared to the “oracle” single machine setting.

2. We aim to avoid any condition on the number of machines (or the number of data
batches). Although this condition is widely assumed in distributed inference literature
(see Lian and Fan, 2017 and Section 2 for more details), removing such a condition
will make the results more useful in cases when the size of the entire data set is much
larger than the memory size or in applications of sensor networks with a large number
of sensors.

3. The proposed algorithm should be computationally efficient.

To simultaneously achieve these three goals, we develop a multi-round distributed linear-
type (MDL) estimator for linear SVM. In particular, by smoothing the hinge loss using a spe-
cial kernel smoothing technique adopted from the quantile regression literature (Horowitz,
1998; Pang et al., 2012; Chen et al., 2018), we first introduce a linear-type estimator in a
single machine setup. Our linear-type estimator requires a consistent initial SVM estimator
that can be easily obtained by solving SVM on one local machine. Given the initial estima-
tor β̃0, the linear-type estimator has a simple and explicit formula that greatly facilitates
the distributed computing. Roughly speaking, given n samples (yi,Xi) for i = 1, . . . , n, our
linear-type estimator takes the form of “weighted least squares”:

β̃ =
[ 1

n

n∑
i=1

ui(yi,Xi, β̃0)XiX
T
i︸ ︷︷ ︸

A1

]−1{ 1

n

n∑
i=1

vi(yi,Xi, β̃0)yiXi −w(β̃0)︸ ︷︷ ︸
A2

}
, (1)

where the term A1 is a weighted gram matrix and ui(yi,Xi, β̃0) ∈ R is the weight that only
depends on the i-th data (yi,Xi) and β̃0. In the vector A2, w(β̃0) is a fixed vector that
only depends on β̃0 and vi(yi,Xi, β̃0) ∈ R is the weight that only depends on (yi,Xi, β̃0).
The formula in (1) has a similar structure as weighted least squares, and thus can be easily
computed in a distributed environment (noting that each term in A1 and A2 only involves
the i-th data point (yi,Xi) and there is no interaction term in Equation 1). In addition,
the linear-type estimator in (1) can be efficiently computed by solving a linear equation
system (instead of computing matrix inversion explicitly), which is computationally more
attractive than solving the non-smooth optimization in the original linear SVM formulation.

The linear-type estimator can easily refine itself by using the β̃ on the left hand side
of (1) as the initial estimator. In other words, we can obtain a new linear-type estimator
by recomputing the right hand side of (1) using β̃ as the initial estimator. By successively
refining the initial estimator for q rounds/iterations, we could obtain the final multi-round

distributed linear-type (MDL) estimator β̃
(q)

. The estimator β̃
(q)

not only has its advantage
in terms of computation in a distributed environment, but also has describable statistical

properties. In particular, with a small number q, the estimator β̃
(q)

is able to achieve the
optimal statistical efficiency, that is, the same efficiency as the classical linear SVM estima-
tor computed on the entire data set. To establish the limiting distribution and statistical
efficiency results, we first develop the Bahadur representation of our MDL estimator of SVM
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(see Theorem 1). Then the asymptotic normality follows immediately from the Bahadur
representation. It is worthwhile noting that the Bahadur representation (see, e.g., Bahadur,
1966; Koenker and Bassett Jr, 1978; Chaudhuri, 1991) provides an important characteriza-
tion of the asymptotic behavior of an estimator. For the original linear SVM formulation,
Koo et al. (2008) first established the Bahadur representation. In this paper, we establish
the Bahadur representation of our multi-round distributed linear-type estimator.

Finally, it is worthwhile noting that our algorithm is similar to a recently developed
algorithm for distributed quantile regression (Chen et al., 2018), where both algorithms
rely on a kernel smoothing technique and linear-type estimators. However, the technique
for establishing the theoretical property for linear SVM is quite different from that for
quantile regression. The difference and new technical challenges in linear SVM will be
illustrated in Remark 1 (see Section 3).

The rest of the paper is organized as follows. In Section 2, we provide a brief overview of
related works. Section 3 first introduces the problem setup and then describes the proposed
linear-type estimator and MDL estimator for linear SVM. In Section 4, the main theoretical
results are given. Section 5 provides the simulation studies to illustrate the performance of
MDL estimator of SVM. Conclusions and future works are given in Section 6. We provide
the proofs of our theoretical results in Appendix A.

2. Related Works

In distributed inference literature, the divide-and-conquer (DC) approach is one of the
most popular approaches and has been applied to a wide range of statistical problems. In
the standard DC framework, the entire data set of n i.i.d. samples is evenly split into
N batches or distributed on N local machines. Each machine computes a local estimator
using the m = n/N local samples. Then, the final estimator is obtained by averaging local
estimators. The performance of the DC approach (or its variants) has been investigated
on many statistical problems, such as density parameter estimation (Li et al., 2013), kernel
ridge regression (Zhang et al., 2015), high-dimensional linear regression (Lee et al., 2017)
and generalized linear models (Chen and Xie, 2014; Battey et al., 2018), semi-parametric
partial linear models (Zhao et al., 2016), quantile regression (Volgushev et al., 2017; Chen
et al., 2018), principal component analysis (Fan et al., 2017), one-step estimator (Huang and
Huo, 2015), high-dimensional SVM (Lian and Fan, 2017), M -estimators with cubic rate (Shi
et al., 2017), and some non-standard problems where rates of convergence are slower than
n1/2 and limit distributions are non-Gaussian (Banerjee et al., 2018). On one hand, the DC
approach enjoys low communication cost since it only requires one-shot communication (i.e.,
taking the average of local estimators). On the other hand, almost all the existing work on
DC approaches requires a constraint on the number of machines. The main reason is that
the averaging only reduces the variance but not the bias of each local estimator. To make
the variance the dominating term in the final estimator constructed by taking averaging, the
constraint on the number of machines is unavoidable. In particular, in the DC approach for
linear SVM in Lian and Fan (2017), the number of machines N has to satisfy the condition
N ≤ (n/ log(p))1/3 (see Remark 1 in Lian and Fan, 2017). As a comparison, our MDL
estimator that involves multi-round aggregations successfully eliminates this condition on
the number of machines.
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In fact, to relax this constraint, several multi-round distributed methods have been
recently developed (see Wang et al., 2017; Jordan et al., 2018). In particular, the key idea
behind these methods is to approximate the Newton step by using the local Hessian matrix
computed on a local machine. However, to compute the local Hessian matrix, their methods
require the second-order differentiability on the loss function and thus are not applicable to
problems involving non-smooth loss such as SVM.

The second line of the related research is the support vector machine (SVM). Since it
was proposed by Cortes and Vapnik (1995), there is a large body of literature on SVM
from both machine learning and statistics community. The readers might refer to the books
(Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2002; Steinwart and Christmann,
2008) for a comprehensive review of SVM. In this section, we briefly mention a few relevant
works on the statistical properties of linear SVM. In particular, the Bayes risk consistency
and the rate of convergence of SVM have been extensively investigated (see, e.g., Lin, 1999;
Zhang, 2004; Blanchard et al., 2008; Bartlett et al., 2006). These works mainly concern the
asymptotic risk. For the asymptotic properties of underlying coefficients, Koo et al. (2008)
first established the Bahadur representation of linear SVM under the fixed p setting. Jiang
et al. (2008) proposed interval estimators for the prediction error for general SVM. For the
large p case, there are two common settings. One assumes that p grows to infinity at a
slower rate than (or linear in) the sample size n but without any sparsity assumption. Our
paper also belongs to this setup. Under this setup, Huang (2017) investigated the angle
between the normal direction vectors of SVM separating hyperplane and corresponding
Bayes optimal separating hyperplane under spiked population models. Another line of
research considers high-dimensional SVM under a certain sparsity assumption on underlying
coefficients. Under this setup, Peng et al. (2016) established the error bound in L1 norm.
Zhang et al. (2016a) and Zhang et al. (2016b) investigated the variable selection problem
in linear SVM.

3. Methodology

3.1. Preliminaries

In a standard binary classification problem setting, we consider a pair of random variables
{X, Y } with X ∈ X ⊆ Rp and Y ∈ {−1, 1}. The marginal distribution of Y is given by
P(Y = 1) = π+ and P(Y = −1) = π− where π+, π− > 0 and π+ + π− = 1. We assume that
the random vector X has a continuous distribution on X given Y . Let {Xi, yi}i=1,...,n be
i.i.d. samples drawn from the joint distribution of random variables {X, Y }. In the linear
classification problem, a hyperplane is defined by β0 +XTβ = 0 with β = (β1, β2, ..., βp)

T.

Define X̃ = (1, X1, ..., Xp)
T and the coefficient vector β̃ = (β0, β1, ..., βp)

T. For convenience

purpose we also define l(X; β̃) = β0 +XTβ = X̃
T
β̃. In this paper we consider the standard

non-separable SVM formulation, which takes the following form

fλ,n(β̃) =
1

n

n∑
i=1

(
1− yil(Xi; β̃)

)
+

+
λ

2
‖β‖22, (2)

β̃SVM all = arg min
β̃∈Rp+1

fλ,n(β̃). (3)
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Here (u)+ = max(u, 0) is the hinge loss, λ > 0 is the regularization parameter and ‖ · ‖2
denotes the Euclidean norm of a vector. We note that we do not penalize the first coordinate
β0 and thus the regularization is only imposed on β instead of β̃. Throughout this paper,
for any (p + 1)-dimensional parameter vector α̃, we will use α to denote the subvector of
α̃ without the first coordinate, and only α will appear in the regularization term.

The corresponding population loss function is defined as

L(β̃) = E[1− Y l(X; β̃)]+.

We denote the minimizer for the population loss by

β̃
∗

= arg min
β̃∈Rp+1

E[1− Y l(X; β̃)]+. (4)

Koo et al. (2008) proved that under some mild conditions (see Koo et al., 2008 Theorem

1,2), there exists a unique minimizer for (4) and it is nonzero (i.e., β̃
∗
6= 0). We assume

that these conditions hold throughout the paper. The minimizer β̃
∗

of the population loss
function will serve as the “true parameter” in our estimation problem and the goal is to
construct an estimator and make inference of β̃

∗
. We further define some useful quantities

as follows:
ε = 1− Y l(X, β̃

∗
), and εi = 1− yil(Xi, β̃

∗
).

The reason why we use the notation ε is because it plays a similar role in the theoretical
analysis as the noise term in a standard regression problem. However, as we will show in
Section 3 and 4, the behavior of ε is quite different from the noise in a classical regression
setting since it does not have a continuous density function (see Remark 1). Next, denote
by δ(·) the Dirac delta function, we define

S(β̃) = −E[I{1− Y X̃
T
β̃ ≥ 0}Y X̃],

D(β̃) = E[δ(1− Y X̃
T
β̃)X̃X̃

T
],

(5)

where I{·} is the indicator function.
The quantities S(β̃) and D(β̃) can be viewed as the gradient and Hessian matrix of

L(β̃) and we assume that the smallest eigenvalue of D(β̃
∗
) is bounded away from 0. In

fact these assumptions can be verified under some regular conditions (see Koo et al., 2008
Lemma 2, Lemma 3 and Lemma 5 for details) and are common in SVM literature (e.g.,
Zhang et al., 2016b Condition 2 and 6).

3.2. A Linear-type Estimator for SVM

In this section, we first propose a linear-type estimator for SVM on a single machine which
can be later extended to a distributed algorithm. The main challenge in solving the op-
timization problem in (2) is that the objective function is non-differentiable due to the
appearance of hinge loss. Motivated by a smoothing technique from quantile regression
literature (see, e.g., Chen et al., 2018; Horowitz, 1998; Pang et al., 2012), we consider a
smooth function H(·) satisfying H(u) = 1 if u ≥ 1 and H(u) = 0 if u ≤ −1. We replace the
hinge loss with its smooth approximation Kh(u) = uH(uh), where h is the bandwidth. As
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Figure 1: An example of the smoothed hinge loss function Kh with different bandwidth h.
See Section 5 for details in the construction of H(·).

the bandwidth h → 0, H(uh) and 1
hH
′(uh) approaches the indicator function I{u ≥ 0} and

Dirac delta function δ(u) respectively, and Kh(u) approximates the hinge loss max(u, 0)
(see Figure 1 for an example of Kh with different bandwidths). To motivate our linear-type
estimator, we first consider the following estimator with the non-smooth hinge loss in linear
SVM replaced by its smooth approximation:

β̃h = arg min
β̃∈Rp+1

1

n

n∑
i=1

[
1− yil(Xi; β̃)

]
H

(
1− yil(Xi; β̃)

h

)
+
λ

2
‖β‖22

= arg min
β̃∈Rp+1

1

n

n∑
i=1

Kh(1− yil(Xi; β̃)) +
λ

2
‖β‖22.

(6)

Since the objective function is differentiable and dKh(x)
dx = H(x/h) + x

hH
′(x/h), by the

first order condition (i.e., setting the derivative of the objective function in (6) to zero), β̃h
satisfies

1

n

n∑
i=1

(−yiX̃i)

[
H

(
1− yil(Xi; β̃h)

h

)
+

1− yil(Xi; β̃h)

h
H ′

(
1− yil(Xi; β̃h)

h

)]
+λ

(
0

βh

)
= 0.

We first rearrange the equation and express β̃h by

β̃h =

[
1

n

n∑
i=1

X̃iX̃
T

i

1

h
H ′

(
1− yil(Xi; β̃h)

h

)]−1

×

{
1

n

n∑
i=1

yiX̃i

[
H

(
1− yil(Xi; β̃h)

h

)
+

1

h
H ′

(
1− yil(Xi; β̃h)

h

)]
− λ
(

0

βh

)}
.

(7)
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This fixed-point form formula for β̃h cannot be solved explicitly since β̃h appears on both
sides of (7). Nevertheless, β̃h is not our final estimator and is mainly introduced to motivate
our estimator. The key idea is to replace β̃h on the right hand side of (7) by a consistent
initial estimator β̃0 (e.g., β̃0 can be constructed by solving a linear SVM on a small batch

of samples). Then, we obtain the following linear-type estimator for β̃
∗
:

β̃ =

[
1

n

n∑
i=1

X̃iX̃
T

i

1

h
H ′

(
1− yil(Xi; β̃0)

h

)]−1

×

{
1

n

n∑
i=1

yiX̃i

[
H

(
1− yil(Xi; β̃0)

h

)
+

1

h
H ′

(
1− yil(Xi; β̃0)

h

)]
− λ

(
0

β0

)}
.

(8)

Notice that (8) has a similar structure as weighted least squares (see the explanations in the
paragraph below (1) in the introduction). As shown in the following section, this weighted
least squares formulation can be computed efficiently in a distributed setting.

3.3. Multi-Round Distributed Linear-type (MDL) Estimator

It is important to notice that given the initial estimator β̃0, the linear-type estimator in (8)
only involves summation of matrices and vectors computed for each individual data point.
Therefore based on (8), we will construct a multi-round distributed linear-type estimator
(MDL estimator) that can be efficiently implemented in a distributed setting.

First, let us assume that the total data indices {1, ..., n} are divided into N subsets
{H1, ...,HN} with equal size m = n/N . Denote by Dk = {(Xi, yi) : i ∈ Hk} the data in the
k-th local machine. In order to compute β̃, for each batch of data Dk for k = 1, ..., N , we
define the following quantities

Uk =
1

n

∑
i∈Hk

yiX̃i

[
H

(
1− yil(Xi; β̃0)

h

)
+

1

h
H ′

(
1− yil(Xi; β̃0)

h

)]
,

V k =
1

n

∑
i∈Hk

X̃iX̃
T

i

1

h
H ′

(
1− yil(Xi; β̃0)

h

)
.

(9)

Given β̃0, the quantities Uk,V k can be computed independently in each machine and
only (Uk,V k) has to be stored and transferred to the central machine. Then after receiving
(Uk,V k) from all the machines, the central machine can aggregate the data and compute
the estimator by

β̃
(1)

=

(
N∑
k=1

V k

)−1( N∑
k=1

Uk − λ
(

0

β0

))
.

Then β̃
(1)

can be sent to all the machines to repeat the whole process to construct β̃
(2)

using β̃
(1)

as the new initial estimator. The algorithm is repeated q times for a pre-specified

q (see Equation 21 for details), and β̃
(q)

is taken to be the final estimator (see Algorithm
1 for details). We name this estimator as the multi-round distributed linear-type (MDL)
estimator.
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Algorithm 1 Multi-round distributed linear-type estimator (MDL) for SVM

Input: Samples stored in the machines {D1, ...,DN}, the number of iterations q, smooth
function H, bandwidths {h1, ..., hq} and regularization parameter λ.

1: for g = 1, . . . , q do
2: if g = 1 then
3: Compute the initial estimator based on D1:

β̃0 = arg min
β̃∈Rp+1

1

m

∑
i∈H1

(
1− yil(Xi; β̃)

)
+
.

4: else

5: β̃0 = β̃
(g−1)

6: end if
7: β̃0 is transferred to all the local machines.
8: for k = 1, . . . , N do
9: Compute (Uk,V k) according to (9) with data in Dk using the bandwidth hg.

10: Transfer (Uk,V k) to the central machine.
11: end for

12: The central machine computes the estimator β̃
(g)

by

β̃
(g)

=

(
N∑
k=1

V k

)−1( N∑
k=1

Uk − λ
(

0

β0

))
. (10)

13: end for

Output: The final MDL estimator β̃
(q)

.

We notice that instead of computing matrix inversion
(∑N

k=1 V k

)−1
in every iteration

which has a computation cost O(p3), one only needs to solve a linear system in (10). Linear
system has been studied in numeric optimization for several decades and many efficient
algorithms have been developed, such as conjugate gradient method (Hestenes and Stiefel,
1952). We also notice that we only have to solve a single optimization problem on one local
machine to compute the initial estimator. Then at each iteration, only matrix multiplication
and summation needs to be computed locally which makes the algorithm computationally
efficient. It is worthwhile noticing that according to Theorem 2 in Section 4, under some

mild conditions, if we choose h := hg = max
(
λ,
√
p/n, (p/m)2g−2

)
for 1 ≤ g ≤ q, the

MDL estimator β̃
(q)

achieves optimal statistical efficiency as long as q satisfies (21), which
is usually a small number. Therefore, a few rounds of iterations would guarantee good
performance for the MDL estimator.

For the choice of the initial estimator in the first iteration, we propose to construct
it by solving the original SVM optimization (2) only on a small batch of samples (e.g.,

the samples on the first machine D1). The estimator β̃0 is only a crude estimator for β̃
∗
,

but we will prove later that it is enough for the algorithm to produce an estimator with

9
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optimal statistical efficiency under some regularity conditions. In particular, if we compute
the initial estimator in the first round on the first batch of data, we will solve the following
optimization problem

β̃0 = arg min
β̃∈Rp+1

1

m

∑
i∈H1

(
1− yil(Xi; β̃)

)
+
.

Then we have the following proposition from Zhang et al. (2016b).

Proposition 1 (Zhang et al. (2016b)) Under conditions (C1)-(C6) in Zhang et al. (2016b),
we have

‖β̃0 − β̃
∗
‖2 = OP(

√
p/m).

According to our Theorem 1, the initial estimator β̃0 needs to satisfy ‖β̃0 − β̃
∗
‖2 =

OP(
√
p/m), and therefore the estimator computed on the first machine is a valid initial

estimator. On the other hand, one can always use different approaches to construct the
initial estimator β̃0 as long as it is a consistent estimator.

Remark 1 We note that although Algorithm 1 has a similar form as the DC-LEQR esti-
mator for quantile regression (QR) in Chen et al. (2018), the structures of the SVM and QR
problems are fundamentally different and thus the theoretical development for establishing
the Bahadur representations for SVM is more challenging. To see that, let us recall the
quantile regression model:

Y = X̃
T
β̃
∗

+ ε, (11)

where ε is the unobserved random noise satisfying Pr(ε ≤ 0|X̃) = τ and τ is known as
the quantile level. The asymptotic results of QR estimators heavily rely on the Lipschitz
continuity assumption on the conditional density f(ε|X̃) of ε given X̃, which has been

assumed in almost all existing literature. In the SVM problem, the quantity ε := 1−Y X̃
T
β̃
∗

plays a similar role as the noise in a regression problem. However, since Y ∈ {−1, 1} is

binary, the conditional distribution f(ε|X̃) becomes a two-point distribution, which no
longer has a density function. To address this challenge and derive the asymptotic behavior
of SVM, we directly work on the joint distribution of ε and X̃. As the dimension of X̃
(i.e., p+ 1) can go to infinity, we use a slicing technique by considering the one-dimensional

marginal distribution of X̃ (see Condition (C2) and proof of Theorem 1 for more details).

3.4. Communication-Efficient Implementation

In this section, we discuss a communication-efficient implementation of the proposed MDL
estimator. Note that in Algorithm 1, each local machine transmits a (p + 1)-by-(p + 1)
matrix V k to the central machine at each iteration. In fact, the communication of (p+ 1)-
by-(p + 1) matrices can be avoided by using the approximate Newton method (see, e.g.,
Shamir et al., 2014; Wang et al., 2017; Jordan et al., 2018). Instead of transmitting the
Hessian matrix V k, we will only use the local Hessian matrix V 1 computed on the first

machine. More specifically, the estimator β̃
(g)

in (10) essentially solves the minimization
problem

arg min
β̃∈Rp+1

1

2
β̃

T

(
N∑
k=1

V k

)
β̃ − β̃

T

(
N∑
k=1

Uk − λ
(

0

β0

))
. (12)

10
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The approximate Newton method uses the following iterations to solve the above minimiza-
tion problem:

β̃
(g,t)

= β̃
(g,t−1)

−
(
N V̂ 1

)−1
(

N∑
k=1

(
V kβ̃

(g,t−1)
−Uk

)
+ λ

(
0

β0

))
, β̃

(g,0)
= β̃0, (13)

as an inner iterative procedure, which approximately solves the equation (10). In (13),
we let V̂ 1 = V 1 in (9) with the bandwidth h =

√
p/m. The matrix N V̂ 1 is used to

approximate the Hessian matrix
∑N

k=1 V k in (12). To compute the minimizer of (13), we

note that the matrix V̂ 1 only involves the data on the first machine, and thus there is
no need to communicate (p + 1)-by-(p + 1) matrices to compute (13). In fact, each local

machine only transmits a (p+ 1)-by-1 vector V kβ̃
(g,t−1)

−Uk to the central machine. We
present the entire communication-efficient implementation in Algorithm 2.

Recall that β̃
(g)

is the estimator defined in (10). It is easy to show that β̃
(g,t)

in (13)

converges to β̃
(g)

at a super-linear rate:

‖β̃
(g,t)
− β̃

(g)
‖2 ≤

∥∥∥I − V̂ −1

1

1

N

N∑
k=1

V k

∥∥∥‖β̃(g,t−1)
− β̃

(g)
‖2,

where ‖ · ‖ denotes the spectral norm of a matrix. By repeatedly applying the argument,
we have the following proposition, whose proof is relegated to Appendix A.3.

Proposition 2 Assume that the conditions of Theorem 1 in Section 4 hold. Suppose that
p = O(mν) for some 0 < ν < 1 and n = O(mA) for some A > 0. We have

‖β̃
(g,t)
− β̃

(g)
‖2 = OP(m−δt) (14)

for some constant δ > 0, where δ and OP(1) do not depend on t.

Proposition 2 and the convergence rate of β̃
(g)

(see Theorem 1) imply that the inner pro-
cedure takes at most constant-valued iterations to achieve the same convergence rate as

β̃
(g)

. Therefore the theoretical results of the MDL estimator in Algorithm 1 (see Theorem
1 and 2 in Section 4) still hold for Algorithm 2. In summary, as compared to Algorithm
1, Algorithm 2 only requires O(p) communication cost for each local machine. Therefore,
Algorithm 2 is communicationally more efficient when p is large.

4. Theoretical Results

In this section, we give a Bahadur representation of the MDL estimator β̃
(q)

and establish
its asymptotic normality result. From (8), the difference between the MDL estimator and
the true coefficient can be written as

β̃ − β̃
∗

= D−1
n,h

(
An,h − λ

(
0

β0

))
, (15)

whereAn,h = An,h(β̃0), Dn,h = Dn,h(β̃0), and for any α̃, An,h(α̃) andDn,h(α̃) are defined
as follows,

11
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Algorithm 2 Communication-efficient MDL for SVM

Input: Samples stored in the machines {D1, ...,DN}, the number of outer iterations q, the
number of inner iterations T , smooth function H, bandwidths {h1, ..., hq} and regular-
ization parameter λ.

1: for g = 1, . . . , q do
2: if g = 1 then
3: Compute the initial estimator based on D1:

β̃0 = arg min
β̃∈Rp+1

1

m

∑
i∈H1

(
1− yil(Xi; β̃)

)
+
.

4: else

5: β̃0 = β̃
(g−1)

6: end if

7: Let β̃
(g,0)

= β̃0.
8: for t = 1, . . . , T do

9: β̃
(g,t−1)

is transferred to all the local machines.
10: for k = 1, . . . , N do

11: Compute V kβ̃
(g,t−1)

−Uk and transfer it to the central machine.
12: end for

13: The central machine computes β̃
(g,t)

by

β̃
(g,t)

= β̃
(g,t−1)

−
(
N V̂ 1

)−1
(

N∑
k=1

(
V kβ̃

(g,t−1)
−Uk

)
+ λ

(
0

β0

))
,

14: where V̂ 1 is defined as V 1 in (9) but with the bandwidth h =
√
p/m.

15: end for

16: Let β̃
(g)

= β̃
(g,T )

.
17: end for

Output: The final MDL estimator β̃
(q)

.

An,h(α̃) =
1

n

n∑
i=1

yiX̃i

[
H

(
1− yil(Xi; α̃)

h

)
+

1− yil(Xi; β̃
∗
)

h
H ′
(

1− yil(Xi; α̃)

h

)]
,

Dn,h(α̃) =
1

nh

n∑
i=1

X̃iX̃
T

i H
′
(

1− yil(Xi; α̃)

h

)
.

12
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For a good initial estimator β̃0 which is close to β̃
∗
, the quantities An,h(β̃0) and

Dn,h(β̃0) are close to An,h(β̃
∗
) and Dn,h(β̃

∗
). Recall that εi = 1− yiX̃

T

i β̃
∗

and we have

An,h(β̃
∗
) =

1

n

n∑
i=1

yiX̃i

[
H
(εi
h

)
+
εi
h
H ′
(εi
h

)]
,

Dn,h(β̃
∗
) =

1

nh

n∑
i=1

X̃iX̃
T

i H
′
(εi
h

)
.

When h is close to zero, the term H
(
εi
h

)
+ εi

hH
′ ( εi

h

)
in parenthesis ofAn,h(β̃

∗
) approximates

I{εi ≥ 0}. Therefore, An,h(β̃
∗
) will be close to 1

n

∑n
i=1 yiX̃iI{εi ≥ 0}. Moreover, since

1
hH
′(·/h) approximates Dirac delta function as h→ 0, Dn,h(β̃

∗
) approaches

Dn(β̃
∗
) =

1

n

n∑
i=1

[δ(εi)X̃iX̃
T

i ].

When n is large, Dn(β̃
∗
) will be close to its corresponding population quantity D(β̃

∗
) =

E[δ(ε)X̃X̃
T

] defined in (5).

According to the above argument, when β̃0 is close to β̃
∗
, An,h(β̃0) and Dn,h(β̃0)

approximate 1
n

∑n
i=1 yiX̃iI{εi ≥ 0} and D(β̃

∗
), respectively. Therefore, by (15), we would

expect β̃ − β̃
∗

to be close to the following quantity,

D(β̃
∗
)−1

(
1

n

n∑
i=1

yiX̃iI{εi ≥ 0} − λ
(

0

β∗

))
. (16)

We will see later that (16) is exactly the main term of the Bahadur representation of the
estimator. Next, we formalize these statements and present the asymptotic properties of
An,h andDn,h in Proposition 3 and 4. The asymptotic properties of the MDL estimator will
be provided in Theorem 1. To this end, we first introduce some notations and assumptions
for the theoretical result.

Recall that β∗ = (β∗1 , ..., β
∗
p)T and for X = (X1, ..., Xp)

T, let X−s be a (p − 1)-
dimensional vector with Xs removed from X. Similar notations are used for β. Since
we assumed that β̃

∗
6= 0, without loss of generality, we assume β∗1 6= 0 and its absolute

value is lower bounded by some constant c > 0 (i.e., |β∗1 | ≥ c). Let f and g be the density
functions of X when Y = 1 and Y = −1 respectively. Let f(x|X−1) be the conditional den-
sity function of X1 given (X2, ..., Xp)

T and f−1(x−1) be the joint density of (X2, ..., Xp)
T.

Similar notations are used for g(·).
We state some regularity conditions to facilitate theoretical development of asymptotic

properties of An,h and Dn,h.

(C0) There exists a unique nonzero minimizer β̃
∗

for (4) with S(β̃
∗
) = 0, and c ≤

λmin(D(β̃
∗
)) ≤ λmax(D(β̃

∗
)) ≤ c−1 for some constant c > 0.

(C1) |β∗1 | ≥ c and ‖β̃
∗
‖2 ≤ C for some constants c, C > 0.

13
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(C2) Assume that supx∈R |f(x|X−1)| ≤ C, supx∈R |f ′(x|X−1)| ≤ C, supx∈R |xf ′(x|X−1)| ≤
C, supx∈R |xf(x|X−1)| ≤ C, supx∈R |x2f(x|X−1)| ≤ C and supx∈R |x2f ′(x|X−1)| ≤
C for some constant C > 0. Also assume

∫
R |x|f(x|X−1)dx <∞. Similar assumptions

are made for g(·).

(C3) Assume that p = o(nh/ log n) and sup‖v‖2≤1 E exp(t0|vTX|2) ≤ C for some t0 > 0
and C > 0.

(C4) The smoothing function H(x) satisfies H(x) = 1 if x ≥ 1 and H(x) = 0 if x ≤ −1,
and also assume that H is twice differentiable and H(2) is bounded. Moreover, assume
that h = o(1).

As we discussed in Section 3.1, condition (C0) is a standard assumption which can be
implied by some mild conditions (see Koo et al., 2008 (A1)-(A4)). Conditions (C1) is a

mild condition on the boundness of β̃
∗
. Condition (C2) is a regularity condition on the

conditional density of f and g, and it is satisfied by commonly used density functions, e.g.,
Gaussian distribution and uniform distribution. Condition (C3) is a sub-Gaussian condition
on X. Condition (C4) is a smoothness condition on the smooth function H(·) and can be
easily satisfied by a properly chosen H(·) (e.g., see an example in Section 5).

Under the above conditions, we give Proposition 3 and Proposition 4 for the asymptotic

behavior of An,h and Dn,h, respectively. Recall that εi = 1 − yiX̃
T

i β̃
∗

and we have the
following propositions. The proofs of all results in this section are relegated to Appendix
A.2.

Proposition 3 Under conditions (C0)-(C4), assume that we have an initial estimator β̃0

with ‖β̃0 − β̃
∗
‖2 = OP(an), where an is the convergence rate of the initial estimator. We

choose the bandwidth such that an = O(h), then we have∥∥∥∥∥An,h(β̃0)− 1

n

n∑
i=1

yiX̃iI{εi ≥ 0}

∥∥∥∥∥
2

= OP

(√
ph log n

n
+ a2

n + h2

)
.

Proposition 4 Suppose the same conditions in Propositions 3 hold, we have

∥∥∥Dn,h(β̃0)−D(β̃
∗
)
∥∥∥ = OP

(√
p log n

nh
+ an + h

)
.

According to the above propositions, with some algebraic manipulations and condition
(C0), we have

β̃ − β̃
∗

= D(β̃
∗
)−1

(
1

n

n∑
i=1

yiX̃iI{εi ≥ 0} − λ
(

0

β∗

))
+ rn, (17)

with

‖rn‖2 = OP

(√
p2 log n

n2h
+

√
ph log n

n
+ a2

n + h2

)
. (18)
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By appropriately choosing the bandwidth h such that it shrinks with an at the same
rate (see Theorem 1), a2

n becomes the dominating term on the right hand side of (18). This

implies that by taking one round of refinement, the L2 norm of β̃−β̃
∗

improves from OP(an)

to OP(a2
n) (note that ‖β̃0 − β̃

∗
‖2 = OP(an), see Proposition 3). Therefore by recursively

applying the argument in (17) and setting the obtained estimator as the new initial estimator
β̃0, the algorithm iteratively refines the estimator β̃. This gives the Bahadur representation

of our MDL estimator β̃
(q)

for q rounds of refinements (see Algorithm 1).

Theorem 1 Under conditions (C0)-(C4), assume that the initial estimator β̃0 satisfies

‖β̃0 − β̃
∗
‖2 = OP(

√
p/m). Also, assume p = O(m/(log n)2) and λ = O(1/ log n). For a

given integer q ≥ 1, let the bandwidth in the g-th iteration be

h := hg = max(λ,
√
p/n, (p/m)2g−2

)

for 1 ≤ g ≤ q. Then we have

β̃
(q)
− β̃

∗
= D(β̃

∗
)−1

(
1

n

n∑
i=1

yiX̃iI{εi ≥ 0} − λ
(

0

β∗

))
+ rn, (19)

with

‖rn‖2 = OP

(√
phq log n

n
+
( p
m

)2q−1

+ λ2

)
. (20)

It is worthwhile noting that the choice of bandwidth hg in Theorem 1 is up to a constant.

One can choose hg = C0 max(
√
p/n, (p/m)2g−2

) for a constant C0 > 0 in practice and
Theorem 1 still holds. We omit the constant C0 for simplicity of the statement (i.e., setting
C0 = 1). We notice that the algorithm is not sensitive to the choice of C0. Even with
a suboptimal constant C0, the algorithm still shows good performance with a few more
rounds of iterations (i.e., using a larger q). Please see Section 5 for a simulation study that
shows the insensitivity to the scaling constant.

According to our choice of hq, we can see that as long as the number of iterations satisfies

q ≥ 1 + log2

(
log n− log p

logm− log p

)
, (21)

the bandwidth is hq =
√
p/n. Then by (20), the Bahadur remainder term rn becomes

‖rn‖2 = OP((p/n)3/4(log n)1/2 + λ2). (22)

When λ ≥
√
p/n, the convergence rate β̃

(q)
− β̃

∗
in (19) is dominated by λ. On the

other hand, if λ = O(
√
p/n), then β̃

(q)
− β̃

∗
achieves the optimal rate OP(

√
p/n).

Remark 2 (The conditions on p and ‖β̃0 − β̃
∗
‖2) In this paper, we assume that the

initializer is computed on the first machine with the convergence rate ‖β̃0 − β̃
∗
‖2 =

OP(
√
p/m). We require p = O(m/(log n)2), which not only guarantees the consistency
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of the estimator, but also provides us with a concise rate in the Bahadur remainder term
(see Equation 20).

In fact, the assumption is not necessary if we assume that there is an initializer β̃0 that

satisfies ‖β̃0 − β̃
∗
‖2 = OP(n−δ) for some constant δ > 0. Let hg = max(λ,

√
p/n, n−2g−1δ)

and assume that conditions (C0)-(C4) hold. By the proof of Theorem 1, we have

‖rn‖2 = OP

(√
phq log n

n
+ n−2qδ + λ2

)
.

As long as the number of iterations q satisfies

q ≥ log2

(
log n− log p

δ log n

)
, (23)

which is usually a small number in practice, we still obtain the optimal rate of the Bahadur
remainder term in (22).

Remark 3 (Choice of the batch size m) The data batch size m balances the tradeoff
between communication cost and computation cost. More specifically, when the batch size
m is large, the convergence rate of the initial estimator is faster. Then, the required number
of iterations becomes smaller (see Equation 21), which leads to a smaller communication
cost. On the other hand, for a large batch size m, the computation cost of the initial
estimator is large. Moreover, the computation time of Uk and V k on each local machine
also grows linearly in m. When the batch size m is small, the computation of the initial
estimator becomes faster but it requires more iterations to achieve the same performance.

In practice, when the data is collected by multiple machines, the batch size will naturally
be the storage size of each local machine. If we are allowed to specifym, we first need to make
sure that m should be large enough so that the initial estimator is consistent. Moreover,
since the communication is usually the bottleneck in distributed computing, it is desirable
to choose m to be as large as possible to reach the capacity/memory limit of each local
machine. This will provide a faster convergence rate of the initial estimator, and thus leads
to a smaller number of iterations.

Remark 4 (Unbalanced batch size case) When the sample sizes on local machines are
not balanced, we will choose the machine with the largest local sample size as the first
machine to compute the initial estimator. This will provide us an initial estimator with
faster convergence rate. As compared to the balanced case, our MDL estimator will require
a smaller number of iterations to achieve the optimal statistical efficiency. It is worth noting
that after the initial estimator is given, the MDL estimator in Algorithm 1 does not depend
on the sample size on each local machine.

Define G(β̃
∗
) = E[X̃X̃

T
I{1− Y X̃

T
β̃
∗
≥ 0}]. By applying the central limit theorem to

(19), we have the following result on the asymptotic distribution of β̃
(q)
− β̃

∗
.
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Theorem 2 Suppose that all the conditions of Theorem 1 hold with h = hg and λ =
o(n−1/2). Further, assume that n = O(mA) for some constant A ≥ 1, p = o(min{n1/3/(log n)2/3,mν})
for some 0 < ν < 1 and q satisfies (21). For any nonzero ṽ ∈ Rp+1, we have as n, p→∞,

n1/2ṽT(β̃
(q)
− β̃

∗
)√

ṽTD(β̃
∗
)−1G(β̃

∗
)D(β̃

∗
)−1ṽ

→ N (0, 1).

Please see Appendix A.2 for the proofs of Theorem 1 and Theorem 2. We impose the
conditions n = O(mA) and p = o(mν) for some constants A ≥ 1 and ν ∈ (0, 1) in order
to ensure the right hand side of (21) is bounded by a constant, which implies that we only
need to perform a constant number of iterations even when n,m→∞.

We introduce the vector ṽ since we consider the diverging p regime and thus the di-
mension of the “sandwich matrix” D(β̃

∗
)−1G(β̃

∗
)D(β̃

∗
)−1 is growing in p. Therefore, it

is notationally convenient to introduce an arbitrary vector ṽ to make the limiting vari-
ance ṽTD(β̃

∗
)−1G(β̃

∗
)D(β̃

∗
)−1ṽ a positive real number. Also note that the conditions

p = o(n1/3/(log n)2/3) guarantees that the remainder term (22) satisfies ‖rn‖2 = oP(n−1/2),
which enables the application of the central limit theorem.

It is also important to note that the asymptotic variance ṽTD(β̃
∗
)−1G(β̃

∗
)D(β̃

∗
)−1ṽ

in Theorem 2 matches the optimal asymptotic variance of β̃SVM all in (3), which is directly
computed on all samples (see Theorem 2 in Koo et al., 2008). This result shows that the

MDL estimator β̃
(q)

does not lose any statistical efficiency as compared to the linear SVM
in a single machine setup. By contrast, the näıve divide-and-conquer approach requires the
number of local machines N to satisfy the condition N ≤ (n/ log(p))1/3 (see Remark 1 in
Lian and Fan, 2017). When this condition fails, the asymptotic normality of the estimator
no longer holds. The MDL estimator removes the restriction on the number of machines but
requires more communications overhead. In particular, the total communication cost for
the MDL approach is O(p2Nq) (or O(pNqT ) for Algorithm 2), as compared to the one-shot
communication O(pN) in the näıve divide-and-conquer approach. It is worth noting that,
under the assumptions n = O(mA) and p = O(mν) for some constants A > 0 and 0 < ν < 1
(see Proposition 2), a constant number of iterations (i.e., qT = O(1)) is enough to achieve
the optimal rate.

We note that to construct the confidence interval of ṽTβ̃
∗

based on Theorem 2, we need
consistent estimators of D(β̃

∗
) and G(β̃

∗
). Since G(β̃

∗
) is defined as an expectation, it is

natural to estimate it by its empirical version Ĝ(β̃
(q)

). Moreover, by Proposition 4, we can

estimate D(β̃
∗
) by Dn,h(β̃

(q−1)
) = N−1

∑N
k=1 V k. Since Dn,h(β̃

(q−1)
) has already been

obtained in the algorithm in the last iteration, we don’t need extra computation. Given the
nominal coverage probability 1− ρ0, the confidence interval for ṽTβ̃

∗
is given by

ṽTβ̃
(q)
± n−1/2zρ0/2

√
ṽTD̂(β̃

(q−1)
)−1Ĝ(β̃

(q)
)D̂(β̃

(q−1)
)−1ṽ, (24)

where zρ0/2 is the 1− ρ0/2 quantile of the standard normal distribution. For a fixed vector

ṽ, denote σ̂n,q =

√
ṽTD̂(β̃

(q−1)
)−1Ĝ(β̃

(q)
)D̂(β̃

(q−1)
)−1ṽ. We have the following theorem

for the asymptotic validity for the constructed confidence interval.
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Theorem 3 (Plug-in estimation of the confidence interval) Under the conditions of
Theorem 2, for any nonzero ṽ ∈ Rp+1, we have as n, p→∞,

P
(
ṽTβ̃

(q)
− n−1/2zρ0/2σ̂n,q ≤ ṽ

Tβ̃
∗
≤ ṽTβ̃

(q)
+ n−1/2zρ0/2σ̂n,q

)
→ 1− ρ0.

In the proof, we first show that Ĝ(β̃
(q)

) is a consistent estimator of G(β̃
∗
). The detailed

proof of Theorem 3 is relegated to Appendix A.2.

Remark 5 (Kernel SVM) It is worthwhile to note that the proposed distributed algo-
rithm can also be used in solving nonlinear SVM by using feature mapping approximation
techniques. In the general SVM formulation, the objective function is defined as follows:

min
β̃=(β0,β)

n∑
i=1

(
1− yi(φ(Xi)

Tβ + β0)
)

+
+
λ

2
‖β‖22, (25)

where the function φ is the feature mapping function which maps Xi to a high or even
infinite dimensional space. The function K : Rp×Rp → R defined by K(x, z) = φ(x)Tφ(z)
is called the kernel function associated with the feature mapping φ. With kernel mapping
approximation, we construct a low dimensional feature mapping approximation ψ : Rp → Rd
such that ψ(x)Tψ(z) ≈ φ(x)Tφ(z) = K(x, z). Then the original nonlinear SVM problem
(25) can be approximated by

min
β̃∈Rd+1

n∑
i=1

(
1− yi(ψ(Xi)

Tβ + β0)
)

+
+
λ

2
‖β‖22. (26)

Several feature mapping approximation methods have been developed for kernels with some
nice properties (see, e.g., Rahimi and Recht, 2008; Lee and Wright, 2011; Vedaldi and
Zisserman, 2012), and it is also shown that the approximation error |ψ(x)Tψ(z)−K(x, z)|
is small under some regularity conditions. We note that we should use a data-independent
feature mapping approximation where ψ only depends on the kernel function K. This
ensures that ψ can be directly computed without loading data, which enables efficient
algorithm in a distributed setting. For instance, for the RBF kernel, which is defined as
KRBF (x, z) = exp

(
−σ‖x− z‖22

)
, Rahimi and Recht (2008) proposed a data-independent

approximation ψ as

ψ(X) =

√
2

d
[cos(vT

1X + ω1), ..., cos(vT
dX + ωd)]

T,

where v1, ...,vd ∈ Rp are i.i.d. samples from a multivariate Gaussian distribution N (0, 2σI)
and ω1, ..., ωd are i.i.d. samples from the uniform distribution on [0, 2π].

Remark 6 (High-dimensional extension) We note that it is possible to extend the
proposed MDL estimator to the high-dimensional case. In particular, with the smoothing
technique used in our paper, we have the following smoothed loss function,

Ln(β̃) =
1

n

n∑
i=1

Kh(1− yil(Xi; β̃)) +
λ

2
‖β‖22,
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where Kh(u) = uH(uh) is the smoothed hinge loss. Since the loss function Ln(β̃) is second-
order differentiable, we can adopt the regularized approximate Newton method (see, e.g.,
Jordan et al., 2018; Wang et al., 2017). More specifically, the regularized approximate
Newton method considers the following estimator,

β̃1 = arg min
β̃∈Rp+1

{L1(β̃)− β̃
T

(∇L1(β̃0)−∇Ln(β̃0)) +
λ̃

2
‖β‖1}, (27)

where β̃0 is an initial estimator and L1(β̃) is the smoothed loss function computed using
the data on the first machine. It can be extended to an iterative algorithm by repeatedly
updating the estimator using (27). However, there are two technical challenges. First,
the smoothed loss function becomes non-convex. Second, it is unclear how to choose the
bandwidth h such that it shrinks properly with the number of iterations. We leave these two
technical questions and the extension to the high-dimensional case for future investigation.

5. Simulation Studies

In this section, we provide a simulation experiment to illustrate the performance of the
proposed distributed SVM algorithm. The data is generated from the following model

P (Yi = 1) = p+, P (Yi = −1) = p− = 1− p+,

Xi = Yi1 + εi, εi ∼ N (0, σ2I), i = 1, 2, ..., n,

where 1 is the all-one vector (1, 1, ..., 1)T ∈ Rp and the triplets (Yi,Xi, εi) are drawn inde-
pendently. We set σ =

√
p throughout the simulation study. In order to directly compare

the proposed estimator to other estimators, we follow the simulation study setting in Koo
et al. (2008) and consider the optimization problem without penalty term, i.e., λ = 0. We
set p+ = p− = 1

2 , i.e., the data is generated from the two classes with equal probability.

Note that we can explicitly solve the true coefficient β̃
∗

by the following claim whose proof
is relegated to Appendix A.3.

Claim 1 The true coefficient vector is β̃
∗

= 1
a(0, 1, ..., 1)T ∈ Rp+1, where a is the solution

to
∫ a
−∞ φ1(x)xdx = 0 and φ1(x) is the p.d.f. of the distribution N (p, σ2p).

We use the integral of a kernel function as the smoothing function:

H(v) =


0 if v ≤ −1,
1
2 + 15

16

(
v − 2

3v
3 + 1

5v
5
)

if |v| < 1,
1 if v ≥ 1.

The initial estimator β̃0 is computed by directly solving the convex optimization problem
(2) with only the samples in the first machine, and the iterative distributed algorithm is
then applied to data in all the machines. We consider the näıve divide-and-conquer (Näıve-
DC) approach which simply computes the solution of the optimization problem on every
single machine and combines all the solutions by taking the average. The oracle estimator
is defined by (3) which directly solves the optimization with data from all machines. The
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(a) p = 4, n = 104 case (b) p = 20, n = 106 case

Figure 2: L2 error of three estimators with different number of iterations q. The dashed
horizontal lines show the performance of the Näıve-DC for different values of m
and the solid lines show the performance of the MDL estimators (for different m)
and the oracle estimator.

confidence intervals are constructed for ṽT
0 β̃
∗

with all these three estimators, where ṽ0 =
(p + 1)−1/21p+1 and the nominal coverage probability 1 − ρ0 is set to 95%. We use (24)
to construct the confidence interval and we also use the same interval length for all the
three estimators. We compare both the L2 distance between the estimator and the true
coefficient β̃

∗
and the empirical coverage rate for all the three estimators.

5.1. L2 Error and Empirical Coverage Rate

We first investigate how the L2 error of our proposed estimator improves with the number
of aggregations. We consider two settings: the number of samples n = 104, dimension
p = 4, batch size m ∈ {50, 100, 200} and n = 106, p = 20, m ∈ {500, 1000, 2000}. We set
the max number of iterations as 10 and plot the L2 error at each iteration. We also plot
the L2 error of Näıve-DC estimator (the dashed line) and the oracle estimator (the black
line) as horizontal lines for comparison. All the results reported are the average of 1000
independent runs. From Figure 2 we can see that the error of proposed MDL estimator
decreases quickly with the number of iterations. After 5 rounds of aggregations, the MDL
estimator performs better than the Näıve-DC approach and it almost achieves the same L2

error as the oracle estimator.

Next, we experiment on how the performance of the estimators changes with the total
number of data points n while the number of data that each machine can store is fixed.
We consider two settings where the machine capacity m = 100 and 1000, the number of
iterations q = 10 and dimension p = 4 and 20, and we plot the L2 error and empirical
coverage rate for all the three estimator against the sample size n.
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(a) p = 4, m = 100 case

(b) p = 20, m = 1000 case

Figure 3: L2 error and coverage rate of the MDL estimator with different total sample size
n (the number of iterations q = 10).

From Figure 3 we can observe that the L2 error of the oracle estimator decreases as n
increases, but the Näıve-DC estimator clearly fails to converge to the true estimator which
is essentially due to the fact that the bias of the Näıve-DC estimator does not decrease with
n. However, the proposed MDL estimator converges to the true coefficient with almost the
identical rate as the oracle estimator. We also notice that the coverage rate of the MDL
estimator is quite close to that of the oracle estimator which is close to the nominal coverage
probability 95%, while the coverage rate of the Näıve-DC estimator quickly decreases and
drops to zero when n increases.

The next experiment shows how the L2 error and the coverage rate change with different
machine capacity m with fixed sample size n. Two parameter settings are considered where
the sample size n = 105, 106, dimension p = 4, 20, and the number of iterations is q = 10.
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(a) p = 4, n = 105 case

(b) p = 20, n = 106 case

Figure 4: L2 error and coverage rate of the MDL estimator with different batch size m (the
number of iterations q = 10).

The results are shown in Figure 4. From Figure 4 we can see that when the machine
capacity gets small, the L2 error of the Näıve-DC estimator increases drastically and it fails
when m ≤ 100 in the n = 105 case and m ≤ 400 in the n = 106 case. On the contrary,
the MDL estimator is quite robust even when the machine capacity is small. Moreover, the
empirical coverage rate for the Näıve-DC estimator is small and only approaches 95% when
m is sufficiently large, while the coverage rate for the proposed MDL estimator is close to
the oracle estimator which is close to the nominal coverage probability 95%.

5.2. Bias and Variance Analysis

In Table 1 and Table 2, we report the bias and variance analysis for the MDL, Näıve-DC
and oracle estimator. In Table 1, we fix two settings of sample size n and dimension p
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(n, p) m
MDL Näıve-DC Oracle

bias2

(×10−4)

var

(×10−4)

bias2

(×10−4)

var

(×10−4)

bias2

(×10−4)

var

(×10−4)

(104, 4)

100 0.004 3.906 59.329 4.457 0.000 2.275

200 0.002 2.516 10.678 2.950 0.000 2.275

500 0.005 2.459 1.393 2.581 0.000 2.275

1000 0.006 2.608 0.304 2.420 0.000 2.275

(105, 20)

400 0.000 0.076 9.759 0.085 0.000 0.058

500 0.000 0.059 5.351 0.080 0.000 0.058

1000 0.000 0.059 1.140 0.069 0.000 0.058

2000 0.000 0.060 0.261 0.063 0.000 0.058

2500 0.000 0.060 0.168 0.062 0.000 0.058

5000 0.000 0.061 0.041 0.058 0.000 0.058

Table 1: Bias and variance analysis of MDL, Näıve-DC and oracle estimator with different
batch size m when number of aggregations q = 6.

and investigate how the bias and variance of ṽT
0 β̃ change with the batch size m for each

estimator. As we can see from Table 1, the variance of both the MDL and Näıve-DC
estimators is close to the oracle estimator. However, when the batch size m gets relatively
small, the bias term of the Näıve-DC estimator goes large, and the squared bias quickly
exceeds the variance term, which aligns with the discussion in Section 2. On the other
hand, the bias of the MDL estimator stays small and is quite close to the bias of the oracle
estimator.

Similarly, in Table 2 we fix two settings of m and p and vary the sample size n. We
observe that the variance of all the three estimators reduces as the sample size n grows
large. However, in both settings the squared bias of the Näıve-DC estimator does not
improve as n increases which also illustrates why the central limit theorem fails for the
Näıve-DC estimator. On the other hand, the squared bias of the MDL estimator is close to
that of the oracle estimator as n gets large.

5.3. The Performance under Large n and p

In this section, we investigate the performance of the MDL estimator for varying dimension
p. In Table 3, we choose a large sample size n = 106, and vary the dimension p and the batch
size m. We report the L2 error of the MDL estimator with different number of iterations.
From the result we can see that our proposed estimator maintains good performance under
large scale settings. The L2 error of the MDL estimator becomes small in all settings and
stays stable when the number of iterations q is slightly larger (e.g., q ≥ 4).

23



Wang, Yang, Chen and Liu

(m, p)
n

(×103)

MDL Näıve-DC Oracle

bias2

(×10−4)

var

(×10−4)

bias2

(×10−4)

var

(×10−4)

bias2

(×10−4)

var

(×10−4)

(100,4)

2 1.782 55.412 58.377 24.912 0.017 13.382

3 0.221 28.275 60.877 17.707 0.046 8.557

5 0.120 12.694 60.696 10.267 0.020 5.016

8 0.005 4.056 58.806 6.213 0.028 3.244

10 0.008 3.054 62.461 4.919 0.025 2.568

20 0.006 1.400 61.609 2.589 0.005 1.325

30 0.000 1.611 60.540 1.754 0.002 0.773

(1000,20)

20 0.002 0.355 1.075 0.334 0.001 0.294

30 0.001 0.207 1.148 0.236 0.001 0.194

50 0.001 0.122 1.147 0.144 0.001 0.121

80 0.000 0.072 1.118 0.082 0.000 0.072

100 0.000 0.054 1.090 0.060 0.000 0.053

Table 2: Bias and variance analysis of MDL, Näıve-DC and oracle estimator with different
sample size n when number of aggregations q = 6.

5.4. Sensitivity Analysis of the Bandwidth Constant C0

Finally, we report the simulation study to show that the algorithm is not sensitive to the
choice of C0 in bandwidth hg where hg = C0 max(

√
p/n, (p/m)2g−2

). We set n = 104, p = 4
with m ∈ {50, 100} and n = 105, p = 20 with m ∈ {500, 1000}. The constant C0 is selected
from {0.5, 1, 2, 5, 10}. We plot the L2 error of the MDL estimator at each iteration step with
different choices of C0. We also plot the L2 error of the Näıve-DC estimator (the dashed
line) and the oracle estimator (the black line) as horizontal lines for comparison. Figure 5
shows that the proposed estimator exhibits good performance for all choices of C0 after a
few rounds of iterations and finally achieves the L2 errors which are close to the L2 error
of the oracle estimator.

6. Conclusions and Future Works

In this paper, we propose a multi-round distributed linear-type (MDL) estimator for con-
ducting inference for linear support vector machine with a large sample size n and a growing
dimension p. The proposed method only needs to calculate the SVM estimator on a small
batch of data as an initial estimator, and all the remaining works are simple matrix op-
erations. Our approach is not only computationally efficient but also achieves the same
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(n, p) m
MDL (×10−2)

q = 2 q = 4 q = 6 q = 8 q = 10

(106, 50)

1000 3.223 0.313 0.294 0.293 0.293

2000 0.601 0.290 0.291 0.291 0.291

2500 0.436 0.292 0.291 0.291 0.291

(106, 100)

2000 2.330 0.372 0.337 0.338 0.338

2500 1.473 0.339 0.338 0.338 0.338

5000 0.436 0.340 0.338 0.338 0.338

(106, 200)

2500 3.182 0.540 0.342 0.324 0.324

4000 1.139 0.351 0.320 0.324 0.324

5000 0.865 0.336 0.324 0.324 0.324

(106, 500)

6250 3.502 0.823 0.315 0.324 0.320

8000 1.547 0.309 0.332 0.321 0.321

10000 1.342 0.319 0.312 0.320 0.321

Table 3: Comparison of the L2 error under different dimensionality p and batch size m.
The sample size is fixed to n = 106, and the number of iterations q = 10.

statistical efficiency as the classical linear SVM estimator using all the data. In our theo-
retical results in Theorem 1, the term ( pm)2q−1

corresponds to the convergence rate of the
bias. An interesting theoretical open problem is that whether the rate of the bias is optimal.
Note that according to Lemma 1, the expectation of the bias is bounded by a2

n (with the
choice of bandwidth h = an). We conjecture that the rate of the bias a2

n is optimal, but we
leave this conjecture for future investigation.

This work only serves as the first step towards distributed inference for SVM, which is
an important area that bridges statistics and machine learning. In the future, we would like
to further establish unified computational approaches and theoretical tools for statistical
inference for other types of SVM problems, such as Lq-penalized SVM (see ,e.g., Liu et al.
(2007)), high-dimensional SVM (see, Peng et al. (2016); Zhang et al. (2016b)), and more
general kernel-based SVM.
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mance of the Näıve-DC approach and the black solid line shows the performance
of the oracle estimator. Other colored lines show the performance of the MDL
estimator with different choices of constants in the bandwidth.

(2015CB856004), and a grant from Australian Research Council. Zhuoyi Yang and Xi
Chen are supported by NSF Award (IIS-1845444), Alibaba Innovation Research Award,
and Bloomberg Data Science Research Grant.

26



Distributed Inference for Linear Support Vector Machine

Appendix A. Proofs for Results

In this appendix, we provide the proofs of the results.

A.1. Technical Lemmas

Before proving the theorems and propositions, we first introduce three technical lemmas,
which will be used in our proof.

Lemma 1 Suppose that conditions (C0)-(C4) hold. For any ṽ ∈ Rp+1 with ‖ṽ‖2 = 1, we
have

E

{
Y ṽTX̃

(
H

(
1− Y X̃

T
α̃

h

)
+

1− Y X̃
T
β̃
∗

h
H ′

(
1− Y X̃

T
α̃

h

))}
= O(h2 + ‖α̃− β̃

∗
‖22),

uniformly in ‖α̃− β̃
∗
‖2 ≤ an with any an → 0.

Proof of Lemma 1. Without loss of generality, assume that β∗1 ≥ c. Then α1 ≥ c/2. For
any v ∈ Rp,

E
{
Y (v0 + vTX)H

(
1− Y (α0 +XTα)

h

)}
=π+

∫
Rp

(v0 + vTx)H

(
1− α0 − xTα

h

)
f(x)dx− π−

∫
Rp

(v0 + vTx)H

(
1 + α0 + xTα

h

)
g(x)dx.

We have

∫
Rp

(v0 + vTx)H

(
1− α0 − xTα

h

)
f(x)dx

=

∫
Rp−1

∫
R

(v0 + v1x1 + vT
−1x−1)H

(
1− α0 − x1α1 − xT

−1α−1

h

)
f(x1,x−1)dx1dx−1

=− h

α1

∫
Rp−1

f−1(x−1)

∫
R

(
v0 + v1

1− α0 − xT
−1α−1 − hy
α1

+ vT
−1x−1

)

× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H(y)dydx−1.
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Define G(t|x−1) =
∫ t
−∞ xf(x|x−1)dx. Since

∫
R |x|f(x|x−1)dx <∞ , we have G(−∞|x−1) =

0. Then,

−
∫
R
v1

1− α0 − xT
−1α−1 − hy
α1

f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H(y)dy

=
α1

h
v1

∫
R
H(y)dG

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)

=− α1

h
v1

∫ 1

−1
G

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dy

=− α1

h
v1G

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)

− α1

h
v1

∫ 1

−1

1− β∗0 − xT
−1β

∗
−1

β∗1
f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
∆(α,β∗,x−1, y)H ′(y)dy

+O(1)
α1

h
v1

∫ 1

−1
∆2(α,β∗,x−1, y)|H ′(y)|dy,

where

∆(α,β∗,x−1, y) =
1− α0 − xT

−1α−1 − hy
α1

−
1− β∗0 − xT

−1β
∗
−1

β∗1
,

and the inequality |xf(x|x−1)− yf(y|x−1)| ≤ C|x− y| followed from Condition (C2). Also,

−
∫
R

(v0 + vT
−1x−1)f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H(y)dy

=− α1

h

∫ 1

−1
(v0 + vT

−1x−1)F

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dy

=− α1

h
(v0 + vT

−1x−1)F

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)

− α1

h

∫ 1

−1
(v0 + vT

−1x−1)f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
∆(α,β∗,x−1, y)H ′(y)dy

+O(1)
α1

h

∫ 1

−1
|v0 + vT

−1x−1|∆2(α,β∗,x−1, y)|H ′(y)|dy.

Next we consider

E
{
Y (v0 + vTX)

1− Y (β∗0 +XTβ∗)

h
H ′
(

1− Y (α0 +XTα)

h

)}
=π+

∫
Rp

(v0 + vTx)
1− β∗0 − xTβ∗

h
H ′
(

1− α0 − xTα

h

)
f(x)dx

− π−
∫
Rp

(v0 + vTx)
1 + β∗0 + xTβ∗

h
H ′
(

1 + α0 + xTα

h

)
g(x)dx.
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We have ∫
Rp

(v0 + vTx)
1− β∗0 − xTβ∗

h
H ′
(

1− α0 − xTα

h

)
f(x)dx

=− 1

α1

∫
Rp−1

f−1(x−1)

∫
R

(
v0 + v1

1− α0 − xT
−1α−1 − hy
α1

+ vT
−1x−1

)

×

(
1− β∗0 − β∗1

1− α0 − xT
−1α−1 − hy
α1

− xT
−1β

∗
−1

)

× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dydx−1.

Note that

− 1

α1

∫
R

(
v0 + v1

1− α0 − xT
−1α−1 − hy
α1

+ vT−1x−1

)
×
(

1− β∗0 − β∗1
1− α0 − xT

−1α−1 − hy
α1

− xT
−1β

∗
−1

)
× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1
)
H ′(y)dy

=
β∗1
α1

∫
R

(
v0 + v1

1− α0 − xT
−1α−1 − hy
α1

+ vT−1x−1

)
∆(α,β∗,x−1, y)

× f
(

1− α0 − xT
−1α−1 − hy
α1

|x−1
)
H ′(y)dy

=

∫
R

(
v0 + v1

1− α0 − xT
−1α−1 − hy
α1

+ vT−1x−1

)
∆(α,β∗,x−1, y)

× f
(

1− β∗0 − xT
−1β

∗
−1

β∗1
|x−1

)
H ′(y)dy

+O(1)

∫
R

∣∣∣∣v0 + v1
1− α0 − xT

−1α−1 − hy
α1

+ vT−1x−1

∣∣∣∣∆2(α,β∗,x−1, y)|H ′(y)|dy

+O(1)
|β∗1 − α1|

α1

∫
R

∣∣∣∣v0 + v1
1− α0 − xT

−1α−1 − hy
α1

+ vT−1x−1

∣∣∣∣∆(α,β∗,x−1, y)|H ′(y)|dy

=

∫
R

(
v0 + v1

1− β∗0 − xT
−1β

∗
−1

β1
+ vT−1x−1

)
∆(α,β∗,x−1, y)f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
H ′(y)dy

+O(1)

∫
R

∣∣∣∣v0 + v1
1− α0 − xT

−1α−1 − hy
α1

+ vT−1x−1

∣∣∣∣∆2(α,β∗,x−1, y)|H ′(y)|dy

+O(1)
|β∗1 − α1|

α1

∫
R

∣∣∣∣v0 + v1
1− α0 − xT

−1α−1 − hy
α1

+ vT−1x−1

∣∣∣∣∆(α,β∗,x−1, y)|H ′(y)|dy

+O(1)

∫
R

∆2(α,β∗,x−1, y)|H ′(y)|dy.

Note that

|∆(α,β∗,x−1, y)| ≤ C
(
h+ |xT

−1(α−1 − β∗−1)|+ |1− β∗0 − xT
−1β

∗
−1||α1 − β∗1 |+ |α0 − β∗0 |

)
.
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So we have∫
Rp

(v0 + vTx)H

(
1− α0 − xTα

h

)
f(x)dx

+

∫
Rp

(v0 + vTx)
1− β∗0 − xTβ∗

h
H ′
(

1− α0 − xTα

h

)
f(x)dx

=− v1

∫
Rp−1

G

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
f−1(x−1)dx−1

−
∫
Rp−1

(v0 + vT
−1x−1)F

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
f−1(x−1)dx−1 +O(h2 + ‖α− β∗‖22).

Note that

v1

∫
Rp−1

G

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
f−1(x−1)dx−1 = E[v1Y X1I{1− Y X̃

T
β̃
∗
≥ 0}|Y = 1],

and ∫
Rp−1

(v0 + vT
−1x−1)F

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
f−1(x−1)dx−1

=E[Y (v0 + vT
−1X−1)I{1− Y X̃

T
β̃
∗
≥ 0}|Y = 1].

So

E

{
Y ṽTX̃

(
H

(
1− Y X̃

T
α̃

h

)
+

1− Y X̃
T
β̃
∗

h
H ′

(
1− Y X̃

T
α̃

h

))}
=− E[ṽTY X̃I{1− Y X̃

T
β̃
∗
≥ 0}] +O(h2 + ‖α̃− β̃

∗
‖22)

=O(h2 + ‖α̃− β̃
∗
‖22).

Lemma 2 Suppose that conditions (C0)-(C4) hold. For any ṽ ∈ Rp+1 with ‖ṽ‖2 = 1, we
have

E

{
1

h
(ṽTX̃)2H ′

(
1− Y X̃

T
α̃

h

)}
= ṽTE

[
δ(1− Y X̃

T
β̃
∗
)X̃X̃

T
]
ṽ +O(h+ ‖α̃− β̃

∗
‖2),

uniformly in ‖α̃− β̃
∗
‖2 ≤ an with any an → 0.

Proof of Lemma 2. Without loss of generality, assume that β∗1 ≥ c. Then α1 ≥ c/2. For
any v ∈ Rp,

E

{
1

h
(ṽTX̃)2H ′

(
1− Y X̃

T
α̃

h

)}

=π+

∫
Rp

1

h
(ṽTx̃)2H ′

(
1− x̃Tα̃

h

)
f(x)dx+ π−

∫
Rp

1

h
(ṽTx̃)2H ′

(
1 + x̃Tα̃

h

)
g(x)dx.

30



Distributed Inference for Linear Support Vector Machine

We have

1

h

∫
Rp

(v0 + vTx)2H ′
(

1− α0 − xTα

h

)
f(x)dx

=
1

h

∫
Rp−1

∫
R

(v0 + v1x1 + vT
−1x−1)2H ′

(
1− α0 − x1α1 − xT

−1α−1

h

)
f(x1,x−1)dx1dx−1

=− 1

α1

∫
Rp−1

f−1(x−1)

∫ 1

−1
(v0 + v1

1− α0 − xT
−1α−1 − hy
α1

+ vT
−1x−1)2

× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dydx−1.

Note that

∫ 1

−1
(v0 + vT

−1x−1)2f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dy

=

∫ 1

−1
(v0 + vT

−1x−1)2f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
H ′(y)dy

+O(1)

∫ 1

−1
(v0 + vT

−1x−1)2∆(α,β∗,x−1, y)|H ′(y)|dy.

According to Condition (C2), we have

∫ 1

−1
2(v0 + vT

−1x−1)v1
1− α0 − xT

−1α−1 − hy
α1

f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dy

=

∫ 1

−1
2(v0 + vT

−1x−1)v1
1− β∗0 − xT

−1β
∗
−1

β∗1
f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
H ′(y)dy

+O(1)

∫ 1

−1
2(v0 + vT

−1x−1)v1∆(α,β∗,x−1, y)|H ′(y)|dy,

and

∫ 1

−1
v2

1

(
1− α0 − xT

−1α−1 − hy
α1

)2

f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
H ′(y)dy

=

∫ 1

−1
v2

1

(
1− β∗0 − xT

−1β
∗
−1

β∗1

)2

f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
H ′(y)dy

+O(1)

∫ 1

−1
v2

1∆(α,β∗,x−1, y)|H ′(y)|dy.
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Therefore,

1

h

∫
Rp

(v0 + vTx)2H ′
(

1− α0 − xTα

h

)
f(x)dx

=− 1

β∗1

∫
Rp−1

f−1(x−1)

∫ 1

−1
(v0 + v1

1− β∗0 − xT
−1β

∗
−1

β∗1
+ vT

−1x−1)2

× f

(
1− β∗0 − xT

−1β
∗
−1

β∗1
|x−1

)
H ′(y)dydx−1

+O(1)

∫
Rp−1

f−1(x−1)

∫ 1

−1
(v0 + v1 + vT

−1x−1)2∆(α,β∗,x−1, y)|H ′(y)|dydx−1

+O(1)
|α1 − β∗1 |
α1β∗1

∫
Rp−1

f−1(x−1)

∫ 1

−1
(v0 + v1

1− β∗0 − xT
−1β

∗
−1

β∗1
+ vT

−1x−1)2|H ′(y)|dydx−1

=ṽTE
[
δ(1− Y X̃

T
β̃
∗
)X̃X̃

T
|Y = 1

]
ṽ +O(h+ ‖α̃− β̃

∗
‖2).

Then we get

E

{
1

h
(ṽTX̃)2H ′

(
1− Y X̃

T
α̃

h

)}
= ṽTE

[
δ(1− Y X̃

T
β̃
∗
)X̃X̃

T
]
ṽ +O(h+ ‖α̃− β̃

∗
‖2).

Define K(X̃, θ̃) = |1 + X̃
T
θ̃| and

Hh(α̃) = H

(
1− Y X̃

T
α̃

h

)
− I{ε ≥ 0}+

ε

h
H ′

(
1− Y X̃

T
α̃

h

)
.

Lemma 3 Suppose that conditions (C0)-(C4) hold. For some t > 0 and any ṽ, θ̃ ∈ Rp+1

with ‖ṽ‖2 = 1 and ‖θ̃‖2 = 1, we have

E{ṽTY X̃Hh(α̃)}2 exp(t|ṽTX̃|K(X̃, θ̃)) = O(h+ ‖α̃− β̃
∗
‖2 + ‖α̃− β̃

∗
‖22/h),

uniformly in ‖α̃− β̃
∗
‖2 ≤ an with any an → 0.

Proof of Lemma 3. We have∫
Rp

(ṽTx̃)2 exp(t|ṽTx̃|K(x̃, θ̃))

[
H

(
1− x̃Tα̃

h

)
− I{ε ≥ 0}

]2

f(x)dx

=− h

α1

∫
Rp−1

f−1(x−1)

∫
R

(ṽTx̃∗)2 exp(t|ṽTx̃∗|K(x̃∗, θ̃))

×

[
H(y)− I

{
1− β∗0 − β∗1

1− α0 − xT
−1α−1 − hy
α1

− xT
−1β

∗
−1 ≥ 0

}]2

× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
dydx−1,
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where I
{

1− β∗0 − β∗1
1−α0−xT

−1α−1−hy
α1

− xT
−1β

∗
−1 ≥ 0

}
= I{y ≥ α1

h ∆(α,β∗,x−1, 0)} and x̃∗

denotes x̃ with x1 being replaced by
1−α0−xT

−1α−1−hy
α1

. According to Condition (C2), (C3)
and (C4), note that∫

R
(ṽTx̃∗)2 exp(t|ṽTx̃∗|K(x̃∗, θ̃))

[
H(y)− I{y ≥ α1

h
∆(α,β∗,x−1, 0)}

]2

× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
dy

≤C
(
vT
−1x−1

)2
exp(t

′ |vT
−1x−1|2 + t

′
(1 + |θT

−1x−1|+ |αT
−1x−1|+ |β∗T−1x−1|)2)

×
(

1 +
∣∣∣α1

h
∆(α,β∗,x−1, 0)

∣∣∣) ,
for some t

′
> 0. Therefore, by (C3)∫

Rp

(ṽTx̃)2 exp(t|ṽTx̃|K(x̃, θ̃))

[
H

(
1− x̃Tα̃

h

)
− I{ε ≥ 0}

]2

f(x)dx ≤ O(h+ ‖α̃− β̃
∗
‖2).

On the other hand, we can easily prove that∫
Rp

(ṽTx̃)2 exp(t|ṽTx̃|K(x̃, θ̃))

[
ε

h
H ′
(

1− x̃Tα̃

h

)]2

f(x)dx

=− hβ∗21

α1

∫
Rp−1

f−1(x−1)

∫ 1

−1
(ṽTx̃∗)2 exp(t|ṽTx̃∗|K(x̃∗, θ̃))

[
∆(α,β∗,x−1, y)

h
H ′(y)

]2

× f

(
1− α0 − xT

−1α−1 − hy
α1

|x−1

)
dydx−1

≤O(h+ ‖α̃− β̃
∗
‖22/h).

Now we complete the proof of the lemma.

A.2. Proofs of the Main Results

After introducing and proving the above three lemmas, we begin to prove Proposition 3
and 4, Theorem 1 and 2.

Proof of Proposition 3. Recall that εi = 1− yiX̃
T

i β̃
∗
. Define ∆(α̃) = α̃− β̃

∗
, and

Cn,h(α̃) = An,h(α̃)− 1

n

n∑
i=1

yiX̃iI{εi ≥ 0}

=
1

n

n∑
i=1

yiX̃i

[
H

(
1− yiX̃

T

i α̃

h

)
− I{εi ≥ 0}+

1− yiX̃
T

i β̃
∗

h
H ′

(
1− yiX̃

T

i α̃

h

)]
.

Let Cn,h = Cn,h(β̃
∗
). Note that ‖Cn,h‖2 = supṽ∈R(p+1),‖ṽ‖2=1 |ṽTCn,h|.

Let Sp1/2 be a 1/2 net of the unit sphere Sp in the Euclidean distance in Rp+1. According

to the proof of Lemma 3 in Cai et al. (2010), we have dp+1:=Card(Sp1/2) ≤ 5p+1. Let
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ṽ1, ..., ṽdp+1 be the centers of the dp+1 elements in the net. Therefore for any ṽ in Sp, we have

‖ṽ−ṽj‖2 ≤ 1/2 for some j. Therefore, ‖Cn,h‖2 ≤ 2 supj≤dp+1
|ṽT
j Cn,h|. It is easy to see that

for any M > 0, there exists a set of points in Rp+1, {α̃k, 1 ≤ k ≤ sp+1} with sp+1 ≤ nM(p+1),

such that for any α̃ in the ball ‖α̃ − β̃
∗
‖2 ≤ an, we have ‖α̃ − α̃k‖2 ≤ 2

√
p+ 1an/n

M for

some 1 ≤ k ≤ sp+1 and ‖α̃k − β̃
∗
‖2 ≤ an.

Define

Cn,h,j(α̃) =
1

n

n∑
i=1

ṽT
j yiX̃i

[
H

(
1− yiX̃

T

i α̃

h

)
− I{εi ≥ 0}+

εi
h
H ′

(
1− yiX̃

T

i α̃

h

)]

,
1

n

n∑
i=1

ṽT
j yiX̃iHh,i(α̃).

According to the proof of Proposition 4.1 in Chen et al. (2018), it is enough to show that

sup
j

sup
k
|Cn,h,j(α̃k)| = OP

(√
ph log n

n
+ a2

n + h2

)
.

Since H and xH ′(x) are bounded, it is easy to see that

|Hh,i(α̃)| ≤ C(1 + |X̃
T

i (α̃− β̃
∗
)|/‖α̃− β̃

∗
‖2) =: K(X̃i, α̃, β̃

∗
).

By Lemma 3, we have for some t > 0,

E(ṽT
j yiX̃iHh,i(α̃))2 exp(t|ṽT

j X̃i|K(X̃i, α̃, β̃
∗
)) ≤ Ch(1 + ‖α̃− β̃

∗
‖2/h+ ‖α̃− β̃

∗
‖22/h2).

By
√
p log n = o(

√
nh) and Lemma 1 in Cai and Liu (2011), we can get for any γ > 0, there

exists a constant C such that

sup
j

sup
k

P

(
|Cn,h,j(α̃k)− ECn,h,j(α̃k)| ≥ C

√
ph log n

n

)
= O(n−γp).

The remaining work is to give a bound for ECn,h,j(α̃k). According to Lemma 1, we know

that ECn,h,j(α̃k) = O(h2 + ‖α̃k − β̃
∗
‖22). Hence, supj supk |ECn,h,j(α̃k)| = O(h2 + ‖α̃k −

β̃
∗
‖22). Combining with the above analysis, the proof is completed.

Proof of Proposition 4. For simplicity, denote D(β̃
∗
) by D. According to the proof of

Lemma 3 in Cai et al. (2010), for Dn,h we have

‖Dn,h −D‖ ≤ 10 sup
j≤bp+1

|ṽT
j (Dn,h −D)ṽj |.

where ṽj , 1 ≤ j ≤ bp+1, are some non-random vectors with ‖ṽj‖2 = 1 and bp+1 ≤ 5p+1.
Define

Dn,h,j(α̃) =
1

nh

n∑
i=1

(ṽT
j X̃i)

2H ′

(
1− yiX̃

T

i α̃

h

)
.
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When ‖β̃0 − β̃
∗
‖2 ≤ an, then

sup
j≤bp+1

|ṽT
j (Dn,h −D)ṽj | ≤ sup

j≤bp+1

sup
‖α̃−β̃∗‖2≤an

|Dn,h,j(α̃)− ṽT
j Dṽj |.

As the proof of Lemma 3, we obtain that

E

[
ṽTx̃iH

′

(
εi − yix̃T

i ∆(α̃)

h

)]2

= O(h).

According to the proof of Proposition 4.2 in Chen et al. (2018), Dn,h,j satisfies

sup
j

sup
k
|Dn,h,j(α̃k)− EDn,h,j(α̃k)| = OP

(√
p log n

nh

)
.

The remaining work is to give a bound for EDn,h,j(α̃k)−ṽT
j Dṽj . From Lemma 2, we obtain

that
EDn,h,j(α̃)− ṽT

j Dṽj = O(h+ ‖α̃− β̃
∗
‖2).

Hence, supj supk |EDn,h,j(α̃k)− ṽT
j Dṽj | = O(h+ ‖α̃k − β̃

∗
‖2). Combining with the above

analysis, the proof of the proposition is completed.

Proof of Theorem 1 and 2. We first assume that ‖β̃0 − β̃
∗
‖ = OP(an) with an = o(1)

and an = O(h). For independent random vectors {(yi, X̃i), i = 1, ..., n} with supj E|Xj |3 =
O(1), we can see that

‖ 1

n

n∑
i=1

yiX̃iI(εi ≥ 0)‖2 = OP(
√
p/n).

Note that ‖β̃0− β̃
∗
‖ = oP(1) and ‖β̃

∗
‖2 ≤ C. From the above result and Proposition 3 and

4 we know that for the estimator β̃ and the true parameter β̃
∗
,

β̃ − β̃
∗

= D(β̃
∗
)−1

(
1

n

n∑
i=1

yiX̃iI{εi ≥ 0} − λ
(

0

β∗

)
+ λ

(
0

β∗ − β0

))
+ rn.

with

‖rn‖2 = OP

(√
p2 log n

n2h
+

√
p log n

nh
λ+

√
ph log n

n
+ λh+ h2

)
.

Since λ ≤ h and ‖β̃0 − β̃
∗
‖ = OP(an), we have

β̃ − β̃
∗

= D(β̃
∗
)−1

(
1

n

n∑
i=1

yiX̃iI{εi ≥ 0} − λ
(

0

β∗

))
+ rn.

with

‖rn‖2 = OP

(√
p2 log n

n2h
+

√
ph log n

n
+ h2

)
. (28)
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Note that hg ≥
√
p/n, then

√
p2 logn
n2hg

≤
√

phg logn
n .

For q = 1, it is easy to see that Theorem 1 holds. Suppose the theorem holds for q = g−1
with g ≥ 2. Note that p = O(m/(log n)2) and λ = O(1/ log n), then hg−1 = O(1/ log n) and

we have
√
ph(g−1)(log n)/n = O(

√
p/n). Then we have an = max{λ2,

√
p/n, (p/m)2g−2} =

O(hg) for q = g with initial estimator β̂0 = β̂(g−1). Now we complete the proof of Theorem
1 by (28). Theorem 2 follows directly from Theorem 1 and the Lindeberg-Feller central
limit theorem.

Proof of Theorem 3. To prove Theorem 3, we first introduce the following lemma, which

shows that Ĝ(β̃
(q)

) is a consistent estimator of G(β̃
∗
).

Lemma 4 Under the conditions of Theorem 2 and an → 0, we have

sup
‖α̃−β̃∗‖2≤an

‖Ĝ(α̃)−G(β̃
∗
)‖ = oP(1).

Proof of Lemma 4. Let ṽj , 1 ≤ j ≤ bp+1 be defined as in the proof Proposition 4. Define

Gn,j(α̃) =
1

n

n∑
i=1

(ṽT
j X̃i)

2I{1− Y X̃
T

i α̃ ≥ 0}.

By (C3) and Lemma 1 in Cai and Liu (2011), we can show that, for any γ > 0, there exists
a constant C > 0 such that

max
j

sup
‖α̃−β̃∗‖2≤an

P

(∣∣∣Gn,j(α̃)− EGn,j(α̃)
∣∣∣ ≥ C√p log n

n

)
= O(n−γp).

Let α̃k, 1 ≤ k ≤ sp, be defined as in the proof of Proposition 3. Therefore

max
1≤j≤bp+1

max
1≤k≤sp

∣∣∣Gn,j(α̃k)− EGn,j(α̃k)
∣∣∣ = OP

(√p log n

n

)
. (29)

Put tM = 2
√
p+ 1an/n

M . In the following, we show that

P

(
max
j

max
k

sup
‖α̃−α̃k‖2≤tM

∣∣∣Gn,j(α̃)−Gn,j(α̃k)
∣∣∣ ≥ C√p log n

n

)
= o(1) (30)

and

max
j

max
k

sup
‖α̃−α̃k‖2≤tM

∣∣∣EGn,j(α̃)− EGn,j(α̃k)
∣∣∣ ≤ C√p log n

n
. (31)

Note that for ‖α̃− α̃k‖2 ≤ tM ,∣∣∣I{1− yiX̃T

i α̃ ≥ 0} − I{1− yiX̃
T

i α̃k ≥ 0}
∣∣∣ ≤ I{−tM‖X̃i‖2 ≤ 1− yiX̃

T

i α̃k ≤ tM‖X̃i‖2}
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≤ I{−tMn ≤ 1− yiX̃
T

i α̃k ≤ tMn}
+I{‖X̃i‖2 ≥ n}.

By (C3), we have

P( max
1≤i≤n

‖X̃i‖2 ≥ n) = o(1). (32)

Define

Zi,j,k(α̃k) = (ṽT
j X̃i)

2I{−tMn ≤ 1− yiX̃
T

i α̃k ≤ tMn}.

By (C2) and (C3), we have

EZi,j,k(α̃k) ≤
√
E(ṽT

j X̃i)4

√
P(−tMn ≤ 1− yiX̃

T

i α̃k ≤ tMn) = O(
√
tMn) (33)

and

E(Zi,j,k(α̃k))
2 exp(t0Zi,j,k(α̃k)) = O(

√
tMn).

Note that

sup
‖α̃−α̃k‖2≤tM

∣∣∣Gn,j(α̃)−Gn,j(α̃k)
∣∣∣I{max

1≤i≤n
‖X̃i‖2 < n} ≤ 1

n

n∑
i=1

Zi,j,k(α̃k). (34)

By (C3) and Lemma 1 in Cai and Liu (2011), for any γ > 0, there exists a constant C > 0
such that

max
j,k

P

(∣∣∣ 1
n

n∑
i=1

(Zi,j,k(α̃k)− EZi,j,k(α̃k))
∣∣∣ ≥ C√p log n

n

)
= O(n−γp).

By (32)-(34), we can see that (30) and (31) hold.
By (29), (30) and the definition of ṽj , we have

sup
‖α̃−β̃∗‖2≤an

‖Ĝ(α̃)−G(α̃)‖ = OP

(√p log n

n

)
.

Moreover, we have∣∣∣I{1− yiX̃T

i α̃ ≥ 0} − I{1− yiX̃
T

i β̃
∗
≥ 0}

∣∣∣ ≤ I{−
√
an ≤ 1− yiX̃

T

i α̃k ≤
√
an}

+I{|X̃
T

i (α̃− β̃
∗
)|/‖α̃− β̃

∗
‖2 ≥ a−1/2

n }.

By this inequality, (C2) and (C3), it is easy to show that

E(ṽTX̃i)
2I{1− Y X̃

T

i α̃ ≥ 0} − E(ṽTX̃i)
2I{1− Y X̃

T

i β̃
∗
≥ 0} = o(1)

uniformly in ‖v‖2 = 1 and ‖α̃ − β̃
∗
‖2 ≤ an. This implies that sup‖α̃−β̃∗‖2≤an

‖G(α̃) −

G(β̃
∗
)‖ = oP(1).
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Now we prove Theorem 3. Without loss of generality, we can assume that ‖ṽ‖2 = 1. By

the consistency of D̂(β̃
(q−1)

) and Ĝ(β̃
(q)

) (see Lemma 4), we have

σ̂n,q →
√
ṽTD(β̃

∗
)−1G(β̃

∗
)D(β̃

∗
)−1ṽ

as n, p→∞. This implies the theorem.

A.3. Proof of Auxiliary Results

Proof of Proposition 2. By Proposition 4, in the g-th iteration, we have∥∥∥∥∥N−1
N∑
k=1

V k −D(β̃
∗
)

∥∥∥∥∥ = OP

(√
p log n

nhg
+ hg

)
.

Therefore, it suffices to show that∥∥∥V̂ 1 −D(β̃
∗
)
∥∥∥ = OP

(
m−δ

)
for some δ > 0. With the notation in the proof of Proposition 4, we have

sup
j

sup
k
|Dm,h,j(α̃k)− EDm,h,j(α̃k)| = OP

(√
p log n

mh

)

with h =
√
p/m. Also, |EDm,h,j(α̃k) − ṽT

j Dṽj | = O(h + ‖α̃k − β̃
∗
‖2) uniformly in j, k.

This completes the proof as p = O(mγ) for some 0 < γ < 1.

Proof of Claim 1. Let us define ε̄ = Y ε = (ε̄1, . . . , ε̄p). It is easy to show it follows normal
distribution N (0, σ2I). By the construction of X (i.e., X = Y 1 + ε), we have YX =

Y 21 + Y ε = 1 + ε̄ and Y X̃ =
(
Y

1+ε̄

)
. Recall that S(β̃

∗
) = −E[I{1 − Y X̃

T
β̃
∗
≥ 0}Y X̃].

Therefore we have

S(β̃
∗
) = −E

[
I

{
1− 1

a
(1 + ε̄)T1 ≥ 0

}(
Y

1 + ε̄

)]
= −E

[
I{a ≥ p+ 1Tε̄}

(
Y

1 + ε̄

)]
.

In order to show that S(β̃
∗
) = 0, we only need to show that E

[
I{a ≥ p+ 1Tε̄}Y

]
= 0

and E
[
I{a ≥ p+ 1Tε̄}(1 + ε̄i)

]
= 0 for i = 1, . . . , p. The first equation holds because Y is

independent of ε̄ and E[Y ] = p+ − p− = 0. To show the second equation, we note that for
any i, j ∈ {1, . . . , p}, we have E[I{a ≥ p + 1Tε̄}(1 + ε̄j)] = E[I{a ≥ p + 1Tε̄}(1 + ε̄i)] by
distributional symmetry of ε̄i and ε̄j . Therefore it is enough to show that

p∑
j=1

E[I{a ≥ p+ 1Tε̄}(1 + ε̄j)] = E[I{ν ≤ a}ν] = 0,

where ν = p + 1Tε̄. Recall that a satisfies
∫ a
−∞ φ1(x)xdx = 0 where φ1(x) is the p.d.f.

of the distribution N (p, σ2p). Since ν follows the normal distribution N (p, σ2p), we have

E[I{ν ≤ a}ν] = 0. Therefore we have shown that S(β̃
∗
) = 0. By the convexity of the loss

function and uniqueness of the minimizer, we have proved that β̃
∗

is the true coefficient
under the given setting.
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