Journal of Machine Learning Research 20 (2019) 1-23 Submitted 12/18; Published 2/19

Near Optimal Frequent Directions for Sketching Dense and
Sparse Matrices

Zengfeng Huang HUANGZFQFUDAN.EDU.CN
School of Data Science

Fudan University

Shanghai, China

Editor: Kilian Weinberger

Abstract

Given a large matrix A € R"*?, we consider the problem of computing a sketch matrix
B € R**? which is significantly smaller than but still well approximates A. We consider
the problems in the streaming model, where the algorithm can only make one pass over
the input with limited working space, and we are interested in minimizing the covariance
error ||AT A — BT B||,. The popular Frequent Directions algorithm of Liberty (2013) and
its variants achieve optimal space-error tradeoffs. However, whether the running time
can be improved remains an unanswered question. In this paper, we almost settle the
question by proving that the time complexity of this problem is equivalent to that of
matrix multiplication up to lower order terms. Specifically, we provide new space-optimal
algorithms with faster running times and also show that the running times of our algorithms
can be improved if and only if the state-of-the-art running time of matrix multiplication
can be improved significantly.

Keywords: Matrix Sketching, Frequent Directions, Streaming Algorithms

1. Introduction

For large-scale matrix computations, exact algorithms are often too slow, so a large body of
work focuses on designing fast randomized approximation algorithms. Matrix sketching is a
commonly used algorithmic technique for solving linear algebra problems over massive data
matrices, e.g., Sarlos (2006); Clarkson and Woodruff (2013); Avron et al. (2013); Chierichetti
et al. (2017). In the sketch-and-solve framework, given a large matrix, we first compute a
small sketch using a lightweight algorithm, and then do more expensive computations on
the sketch instead of on the original matrix. Thus, the key is how to efficiently compute
sketch matrices that are small but still preserve vital properties of the input matrix.

In real-world applications, data often arrives in a streaming fashion and it is often
impractical or impossible to store the entire data set in the main memory. This paper
studies online streaming algorithms for maintaining matrix sketches with small covariance
errors. In the streaming model, the rows of the input matrix arrive one at a time; algorithm
is only allowed to make one pass over the stream with severely limited working space, and
is required to maintain a sketch continuously. This problem has received lots of attention
recently (Liberty, 2013; Ghashami and Phillips, 2014; Woodruff, 2014a; Ghashami et al.,
2016; Wei et al., 2016).

(©2019 Zengfeng Huang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-875.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-875.html

HuanNg

The popular Frequent Directions algorithms (Liberty, 2013; Ghashami et al., 2016)
achieve optimal tradeoffs between space usage and approximation error (Woodruff, 2014a),
which have found lots of applications in online learning, e.g., Boutsidis et al. (2015); Karnin
and Liberty (2015); Leng et al. (2015); Huang and Kasiviswanathan (2015); Luo et al. (2016);
Calandriello et al. (2017), and other important problems (Song et al., 2015; Ye et al., 2016;
Kim et al., 2016; Cohen et al., 2017). However, in contrast to the space complexity, it is
unclear whether their running times can be improved; one might hope to get linear (in
sparsity) time algorithms, which is possible for many matrix problems (see e.g., Clarkson
and Woodruff (2013)). This paper is motivated by the following question:

o [s there an input sparsity time Frequent Directions, which achieves the same optimal

space-error tradeoff?

1.1. Problem Definitions

Given a matrix A € R™ 9, the problem is to compute a much smaller matrix B € R¢*¢,
which has low covariance error, i.e., ||[AT A — BT B||s.

Definition 1 (Covariance Sketch) For any 0 < a < 1, and integer 0 < k < rank(A), we

will call B an (a, k)-cov-sketch of A, if the covariance error!

IATA = BTBl> < allA — [Al]|%. (1)

Here || - ||2 and || - | are the spectral norm and Frobenius norm of matrices; [A]j is the

best rank-k approximation to A. We will use 7% (A) to denote the projection of A on the

top-k singular vectors of B, i.e. 71'%(14) = AVVT, where the columns of V are the top-k
right singular vectors of B.

Definition 2 (Projection Error) The projection error of B with respect to A is defined
as [|A = w5 (A)] .

Note 7% (A) is a rank-k matrix, thereby the projection error is at least ||A — [A]x[/%. It
is proved in Ghashami and Phillips (2014) that one can obtain relative projection error from
small covariance error. We include a proof of the next lemma in Appendix A.1.

Lemma 3 (Covariance Error to Projection Error (Ghashami and Phillips, 2014))
1A = 7E5(A)F < 1A = [AllF + 2k - |ATA = BTB|s.
Therefore, any (57, k)-cov-sketch B has projection error
1A = 7E(A)|F < (1+2)| A= [l (2)

We will often refer to (57, k)-cov-sketches as (g, k)-proj-sketches.
(e, k)-proj-sketches actually satisfy a more general property, called Projection-Cost Pre-
serving property. Specially, suppose B is an (e, k)-proj-sketch of a matrix A, then

1B = BQQM 7 = (1 +)l|4 - AQQIE,
1. for k = 0, we define [A]o =0

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

for all rank-k orthonormal matrices @ (see Feldman et al. (2013); Cohen et al. (2015, 2017)
for more details). One immediate application of projection-cost preserving sketches is
constrained low rank approximations, which can be formulated as the following optimization
problem:
min |A—AXXT|%,
X:rank(X)<k,X€eS

where S is some constraint; special cases include sparse PCA, nonnegative PCA, and k-means
clustering (Feldman et al., 2013; Cohen et al., 2015). Given any projection-cost preserving
sketch B of A, one can solve the above optimization problem with respect to B to obtain an
approximate solution, which significantly reduces the computational costs when B is much
smaller than A.

Modern data matrices are often large and sparse, so we will always assume n and d are
very large and nnz(A) < nd, where nnz(A) in the number of nonzero entries in A. Moreover,
we assume that each entry of A is representable by O(log(nd)) bits. To simplify the analysis,
we assume the entries of A are integers of magnitude at most poly(nd); the general case can
be reduced to this, see e.g., Boutsidis et al. (2016).

1.2. Previous Results

In the row-wise update streaming model, Liberty’s Frequent Directions (FD) algorithm (Lib-
erty, 2013), with an improved analysis by Ghashami and Phillips (2014), maintains an
(o, k)-cov-sketch B € R®*? at any time, where £ = O(k 4+ a~'). The algorithm uses O(d¢)
space and runs in O(ndf) time. For sparse matrices, the running time of FD is improved
to O(nnz(A)¢logd + nnz(A)logn + nf?) by Ghashami et al. (2016). Setting a = ¢/2k (or
¢ =0(k/e)) and by Lemma 3, B is a (e, k)-proj-sketch. Now, B contains O(k/e) rows, and
the space and running time become O(dk/c) and O(nnz(A)ke~!-log d+nnz(A)log n+nk?e~2)
respectively. The logd factor in the leading term was removed by Luo et al. (2016). It
was shown by Woodruff (Woodruff, 2014a) that the space used by FD is optimal for both
covariance error and projection error. A natural question is if the running time can be
improved. In particular,

e Is there an input sparsity time algorithm, i.e., in time O(nnz(A)+ (n+d)-poly(ka™1)),
which achieves the same guarantee as FD?

1.3. Our Contributions

This paper almost settles the above question. Our main contributions are summarized as
follows.

1. We give a new space-optimal streaming algorithm with O(ndk) + O(do) running
time to compute («, k)-cov-sketches for dense matrices, which improves the original FD
algorithm for small . The running time is optimal up to lower order terms, provided
matrix multiplication cannot be improved significantly.

2. Based on our fast algorithm for sketching dense matrices, we then give a new space-
optimal streaming algorithm with O(nnz(A)k + nk3) + O(da™3) running time to
compute (a, k)-cov-sketches for sparse matrices. We separate the dependence of

HuanNg

Time
(a, k)-cov \ (e, k)-proj
FD (Liberty, 2013) O(ndk + nd/a) O(ndk/e)
FFDdense (new) O(ndk) O(ndk)
Sparse FD(Ghashami et al., 2016) | O(nnz(A)klogd + nnz(A)logd/a) | O(nnz(A)klogd/e)
FFDsparse (new) O(nnz(A)k) O(nnz(A)k)
Lower bounds (new) Q(nnz(A)k) Q(nnz(A)k)

Table 1: Running times and lower bounds for streaming («, k)-cov-sketch and (e, k)-proj-
sketch algorithms. Lower order terms are omitted and the lower bounds are
conditional.

1/a from nnz(A), which improves the results of Ghashami et al. (2016) for small a.
Therefore, to compute an (g, k)-proj-sketch, our algorithm only needs O(nnz(A)k) time
(ignoring lower order terms) as opposed to O(nnz(A)ke™! -logd) in Ghashami et al.
(2016) (see Table 1).

3. We show that o(nnz(A)k) time is likely very difficult to achieve, as it will imply a
breakthrough in fast matrix multiplication. Specifically, we prove that, under mild
assumptions, the time complexity for computing an (O(1), k)-cov-sketch B € RO*)xd
of A in the streaming model is equivalent to the time complexity of left multiplying A
by an arbitrary matrix C' € RF*™,

1.4. Other Related Work

The problem of computing («, k)-cov-sketches was also studied in the sliding window stream-
ing model (Wei et al., 2016) and distributed models (Ghashami et al., 2014; Huang et al.,
2017; Zhang et al., 2017). A closely related problem, namely approrimate PCA, was studied
in Kannan et al. (2014); Liang et al. (2014); Boutsidis et al. (2016); Zhang et al. (2015).
Clarkson and Woodruff (2009) studied other streaming numerical linear algebra problems.

1.5. Matrix Preliminaries and Notations

We always use n for the number rows and d for the dimension of each row. For a d-dimensional
vector z, ||| is the £3 norm of z. We use x; to denote the ith entry of z, and Diag(x) € R?*¢
is a diagonal matrix such that the ith diagonal entry is x;. For a matrix A € R"*¢ with
n > d, we use A; to denote the ith row of A and a; ; for the (i, j)-th entry of A. nnz(A) is
the number of non-zero entries in A and rows(A) is the number of rows in A. We write the
(reduced) singular value decomposition of A as (U, %, V) = SVD(A). The computation time
of standard SVD algorithms is O(nd?). We use || A2 or ||A|| to denote the spectral norm
of A, which is the largest singular value of A, and ||A||p for the Frobenius Norm, which is

Y af’j. For k < rank(A), we use [A]) to denote the best rank k approximation of A. We

define [A]p = 0. [A; B] is the matrix formed by concatenating the rows of A and B. We use
O() to hide polylog(ndk) factors.

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

1.6. Tools

Frequent Directions. We will use the Frequent Directions (FD) algorithm by Liberty (Lib-
erty, 2013), denoted as FD(A, a, k); and the main result is summarized in the following
theorem.

Theorem 4 (Liberty (2013)) Given A € R"*%, in one pass, FD(A, o, k) processes A in
O(nd(k + o)) time and O(d(k + o)) space. It maintains a matriz B € ROKk+a™)xd
such that |ATA — BTB|s < of| A — [Alx|%.

Row sampling. We provide a result about row sampling, which is analogous to a result
from Drineas et al. (2006). The difference is that they use sampling with replacement, i.e.,
each row of B is an iid sample from the rows of A. On the other hand, we use Bernoulli
sampling, i.e., sample each A; independently with some probability ¢;, and B is the set of
sampled rows. Bernoulli sampling can easily be combined with FD in the streaming model.
The proof is essentially the same as that for sampling with replacement, which can be found
in Appendix.

Theorem 5 For any A € R™? and F > 0, we sample each row A; with probability
12
pi > %; if it is sampled, scale it by 1/\/p;. Let B be the (rescaled) sampled rows, then

w.p. 0.99, |ATA — BT By < 10aVF||A||r and |B||r < 10||A||p. The expected number of
1AN2.

rows sampled is O(" =7 if pi = O(%) for each i.

Input-sparsity time subspace embedding. We will use fast subspace embeddings (Clark-
son and Woodruff, 2013) to speedup computation. There are various approaches to achieve
input-sparsity time subspace embedding with different guarantees; the following result

suffices for our purpose, the proof of which can be found in Woodruff (2014b) (Lemma 4.2
and Remark 4.1).

Theorem 6 (Subspace Embedding) Given any A € R"*? there exist (random) matri-
ces J € ROW*t gnd C € R¥4 with t; = min(d, O(k?)), such that, with probability 0.99,
the column space of S = ACTJT contains an O(1)-approzimate rank-k approrimation to A.
More precisely, there exists X with rank(X) < k such that

1A = SX|7 < O A~ [Al%.

Moreover, C only contains O(d) nonzero entries and S = ACTJT can be computed in time
O(nnz(A)) + O(nk?).

One can choose J to be a matrix with iid Gaussian random variables and C to be a
count-sketch matrix (Clarkson and Woodruff, 2013)

2. Algorithm for Dense Matrices

Theorem 7 (FFDdense(A,a,k)) Given a matriz A € R™?¢, 0 < a <1 and 0 < k < d,
FFDdense(A, o, k) processes A in one pass using O(ndk) + O(da=3) time and O(dk + da 1))
space, and maintains a matric BOk+a™h)xd pyzsp probability 0.99, it holds that || AT A —
BBz < of|A - [Alu]|-

HuanNg

Overview of the algorithm. To speed up FD, we will use the idea of adaptive random
sampling. Let us first review the standard FD algorithm. Given an integer parameter ¢ < d,
the algorithm always maintains a matrix B with at most 2¢ rows at any time. When a new
row v arrives, it processes the row using FDShrink(B, v, ¢) (Algorithm 3). In this procedure,
we first append a after B; if B has no more than 2¢ rows we do nothing, and otherwise do
a DenseShrink operation (Algorithm 1) on B, which halves the number of rows in B (after
removing zero rows). It was proved by Liberty (2013) and Ghashami and Phillips (2014)
that for £ = k + o~ !, we have

|IATA— BT Bs < af|A - [A]x]|?.

Since each SVD computation in DenseShrink takes O(d¢?) time and there are totally n/¢ SVD
computations (SVD is applied every £ rows), the running time is O(ndf) = O(nd(k + a~1)).
Our goal is to separate nd from o' in the running time.

Algorithm 1 DenseShrink

Input: B e R*x4,
1: Compute [U, X, V] =SVD(B), and 0 = Xy .
2: 3 = y/max(%2 — 02Iy,0)
3: return B = 2V7T

Algorithm 2 DenseShrinkR
Input: B € R**4,
1: Compute [U, X, V] =SVD(B), and 0 = ¥y .
2: 3 = \/max(X2 — 021y, 0)
3:22\/22—22 »22:22_’_22

4: return B = f]VT, Y and VT

Algorithm 3 FDShrink

Input: B € RI'*4 v € R% and an integer ¢ » it always holds that ¢/ < 2¢.
1: B= [B;V]
2: If ¢/ + 1 = 2¢, then B = DenseShrink(B,).
3: return B

To achieve this, we first compute a coarse approximation using FD by invoking B =
FD(A,k, 5-), which takes O(ndk) time. The key idea here is that in each DenseShrink
operation, after shrinking B, we also return the residual; we call this modified shrinking
operation DenseShrinkR (see Algorithm 2). Let C' be the matrix which is the concatenation
of all residuals return from DenseShrinkR. We will show ATA = BTB + CTC and ||C||% <
|A — [A]k||%. We then refine the answer by computing an approximation to C. Since the
norm of C' is small, random sampling suffices. To save space, the sampled rows will be fed

to a standard FD algorithm. See Algorithm 4 for detailed description of the algorithm.

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

Algorithm 4 FFDdense

Input: A € R™¢ 0 < o < 1, and integer k < d.
1: F=0,/¢=3k, Q=empty, B=empty
2: for i =1 ton do

3: Append A; after B
4: if rows(B) = 2/ then
5: [B,X, V] = DenseShrinkR(B) » Here { = 3k, thus B = FD(A, 5+, k)
6: F =F +|Z||%, » Neat: subsample C == XV, and then compress the sampled rows
using standard FD
7 for j = 121:0 2¢ do
8: pj = 0427;“
: Sample C; with probability p;.
10: if C; is sampled then
C.
11: Set v = \/T%"
12: @ = FDShrink([Q;v], 1) » Invoking FD with k = 0
13: end if
14: end for
15: end if
16: end for

17: return [B; Q)]

Correctness. We note that, at the end of Algorithm 4, B = FD(A, i, k), so ||ATA —
BT B||3 < ||A — [Alx||%/2k, or equivalently

max | || Az|? — | Bz|? | < | A~ [Al]%/2k. (3)

z:||z||=1

Let ¥, V@ and B® be the value of ¥, V, and B respectively returned by ith
DenseShrinkR operation (line 5). Let C®) = 2OV We use B') to denote the value of B
right before the ith DenseShrinkR operation (or the input of the ith DenseShrinkR operation).
From Algorithm 2, we have that

BT p) — pOT) | yO)Tx@0)2y @) — gOTBE) 4 cOT (),

Let A® be the rows of A arrived between the (i — 1)th and the ith DenseShrinkR operation,
which means B'®) = [BG~1D; A®] and thus

BT) — pli=DT gli=1) 4 AT 4(),
Combined with the previous equality, we get
ADT @) 4 gi-DT pi-1) _ gO)T gi) — o@T (),

Let ¢ be the total number of iterations. We define B = 0, and ¢ = [C1);...;C®)].
Summing the above equality over ¢ = 1,--- | ¢, we have

cTo — Z cOTo) Z (ADT A() 4 gli-DT gli-1) _ g(&)T BU))

= ATA- BTB.

HuanNg

It follows that
HCHQF = trace(CTC) = trace(ATA) — trace(BTB) = HAH% — HBH%

Now we bound [|A||% — || B||% using similar ideas as in Ghashami and Phillips (2014).
Let w; be the jth singular vector of A, we have

ICIE = 1AlIF — 1B

k d
=D Il Awl®+ Y 4wl ~ | BIIE
7j=1

j=k+1
k k k
< Aw; 1P+ 1A = [Alll3 = D 1Bw;||* because Y ||Buwjl* < ||B|%
j=1 = j=1
< [|A—[AllF + k- | A - [AlellF/2k by Eq (3)
= 1.5]|A — [Alx % (4)

In the algorithm, each row of C' is sampled with probability I A ;L , where F' is the current

squared F-norm of C. Let Cy be the sampled rows. Given Eq (4) we can prove the following
using Theorem 5

ICTC — CLCll2 < allA — [AlplF, and [|Cs|[7 = O(1) - | A — [Alx]|%.
At the end of the algorithm, @ = FD(Cs, «, 0), then
ICSCs = Q1 Q2 < allCs||E < O(a) - 1A — [Alull?-
Applying triangle inequality, we have [|CTC — QTQ|2 < O(a) - || A — [A]x]|%, and thus
IATA = BTB-Q'Q|2 = [CTC ~ Q" Ql2 < O(a) - | A — [AlI7,

which proves the correctness.

Space and running time. The space is dominated by maintaining B = FD(A, 1/2k, k)
and @ = FD(Cs, a,0), which is O(dk + d/«) in total.

The running time of computing B is O(ndk), and the running time for @ is O(rows(Cs)d /).
To bound rows(Cs), we divide the stream into epochs, where F' roughly doubles in each
epoch. This means the total number of epochs is bounded by O(log(nd)), since we assume
each real number in the input can be represented by O(log(nd)) bits. We emphasize that
a rigorous analysis on this will be more subtle; see discussions in the proof of Lemma 15
below. Applying Theorem 5 on the submatrix in each epoch, it is easy to check the expected
number of rows sampled in each epoch is O(1/a?), so rows(Cy) = O(h’goiigd)). Thus the total
running time is O(ndk) + O(da—3). We remark that the residual return by DenseShrinkR is
in the form of C' = X V7, where ¥ is diagonal and V' has orthonormal columns. Therefore,
the row norms of C' are simply the diagonals of 3.

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

3. Algorithm for Sparse Matrices

For sketching sparse matrices, we will use a subroutine (see Algorithm 5) for computing
weak low rank approximations based on fast subspace embeddings. In this subroutine, the
input matrix is an £ x d matrix A and two additional matrices J and C, where J has O(k)
rows and C has d columns. In our applications, J, C' will always be the subspace embedding
matrices from Theorem 6. The algorithm outputs an O(k) x ¢ matrix Z with orthonormal
TOWS.

Algorithm 5 Weak Low Rank Approximation (LRA)

Input: A € R4 Je ROKXw and ¢ € RWx4
1: Compute S = ACTJT
2. Compute Z € RO¥) X! whose rows form an orthonormal basis for the column space of S
3: return Z

The following lemma is a simple corollary of Theorem 6.

Lemma 8 IfJ,C are the subspace embedding matrices from Theorem 6 with w = min(d, O(k?))
and Z is the output of Algorithm 5, then with probability 0.99

|A—Z"ZA|% <O(1)||A - [Ali] 7
Moreover, Z can be computed in O(nnz(A) 4 £k3) time and O((k?) extra space.

Proof From Theorem 6, there exists X with rank(X) < k such that
14 = Z"X |7 < O()[|A — [AlxlF-
Hence,
|4~ Z7ZA < | A~ 27 ZA + |2 24~ 27X}
=||A - ZTX||% Pythagorean theorem
<O0M)||A — [AllE-
Note that S can be computed in time O(nnz(A) + ¢k®) and Z can be computed from S in

O(fk?) time. The space usage is dominated by storing the intermediate result ACT', which
is O((k?). [|

3.1. Overview of Our Algorithm

Our approach is quite different from Ghashami et al. (2016). Their main idea is to use fast
approximate SVD (Musco and Musco, 2015) in the original FD, which leads to suboptimal
time. Our approach is summarized as follows.

1. Decompose ATA = AT A’ + RTR, such that A’ contains small number of rows and
1A = [A']]|F = O(1) - [|A = [A]]| % Moreover, [|R[|% = O(1) - || A — [A]]|%-

HuanNg

2. Compute a sketch B of A’ using fast FD algorithm for dense matrices (Theorem 7),
which satisfies that |ATA’ — BT B||s < af|A" — [A']x]|% < af|A — [Alx]|%-

3. Compute a sketch matrix C' of R such that |RTR — CTC|ls < o||R|% < O(a) - |A -
[A]||%, which can be done via random sampling (Theorem 5) combined with FD.

4. The final sketch is S = [B; C].
Note that S = [B; C] approximate [A’; R] in the sense that

|ATA"+ RTR—BTB - CTC|, < |ATA' - BTB|y + |[RTR - CTC||;
< O(a) - || A = [Al]|%-

From step (1), we have ATA = AT A’ + RTR, and thus [B;C] is a good approximation of A.
Next we briefly describe how to implement this in one pass and small space.

To achieve (1), we use the following new idea. Let Z € RO¥)*¢ be an orthonormal
matrix satisfying |4 — ZTZA|% < O(1)||A — [Alg]|%. Let A’ = ZA and R= (I — ZTZ)A.
It is easy to check that A" and R satisfy the requirement of (1). In the streaming model, we
divide A into blocks, each of which contains roughly dk non-zero entries, and thus there are

at most t = nnjéA) blocks. We use the above idea for each of the blocks and concatenate the

results together. More precisely, for each block A ¢ REXd we yse an input-sparsity time
algorithm (Algorithm 5 and Lemma 8) to compute a matrix Z() € RO*)*4 guch that

14D — ZOT ZO 4O < O(1)]| AD — (AP 5.

Let A0 = ZOA® and RO = (I — ZOT20)A® | We then set A’ = [A'(D: ... ; A/B] and
R=[RW;...: R®] and prove that A’ and R satisfy the requirement of (1), where A’ only
has t x O(k) = O(%(m) rows (since each block of A’ has O(k) rows). Here we do not
compute R explicitly, as we will sample a subset of the rows from R. Note that the running
time of this step is dominated by computing Z®A® which is O(nnz(A®)k), and thus
O(nnz(A)k) in total.

To compute B of step (2), we may use the standard FD(A’, o, k) (Theorem 4). Since
A’ has at most O(%(m) rows, B can be computed in O(nnz(A)(k + a~1)) time. However,
it still has an nnz(A)a~! term. So, we apply our faster FD algorithm for dense matrices
(Theorem 7) on A’, which only takes O(nnz(A)k) + O(da?) time.

In order to compute a sketch C' of R in step (3), we first subsample the rows of R using
streaming Bernoulli sampling. One difficulty is that R could be dense, and it may take
nd time to compute the row norms. Fortunately, each R is of special form, and we are
able to design a fast algorithm to compute its row norms (Algorithm 7). Let @ be the
sampled rows, with rows(Q) = O(1/a?), and note that each row of Q can be computed in
time O(kd) as Z() A has already been computed in step (1). We finally use FD(Q, «,0)
to compute a sketch matrix C of @ in time O(da‘3). In all, the running time is roughly
O(nnz(A)k) + O(da—? 4 dka~2).

3.2. Our Algorithm

10

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

Algorithm 6 FFDsparse

Input: A € R™*¢ o € (0,1), and integers k < d.

1:
2:

10:

11:
12:
13:
14:

F=nF =0,B=0,Q=0 » 1 will be determined in Lemma 15
Divide the rows of A into continuous blocks AM), ..., A®: we will put new rows into
the current block until: a) the number of non-zero entries exceeds dk, or b) the number
of rows is % When either a) or b) happens, we start a new block. Note that the total

number of blocks ¢t < ””Z(A) + nd/f

Choose subspace embeddlng matrices J,C' (Theorem 6) » J,C are fixed for all blocks
fori=1tot do
Compute Z) = LRA(A®, J,C) (Algorithm 5). Let £; = rows(A®).
Compute A/ = Z2(1) A®),
w = RowNorms(A®), Z() » w contains the row norms of A® — ZOT 7 A()
(Algorithm 7)
F'=F +|w|? and if F/ > 2F, F = F.
» We always have F' = O(1) - Y. [|[({ — ZOT 7)) A@)2
Let p € R% such that Dj = w'2 mforj=1,--- 4. Let x € R’ be a random vector with
independent entries: For each Jyxj = 1/p] w.p. pj, and x; =0 w.p. 1 —p;.
Let RO = (I — ZzWOTZ20)A® and Q¥ = Diag(z) - R®) (no need to compute R(®
explicitly).
B = FFDdense([B; A’D], a, k). » Sketching A’ = [A'M); ... ; A/®)] using Theorem 7
C =FD([C;QY], , 0). » Sketching Q = [QW); - -- ; Q"] using FD.
end for
return [B; C]

11

HuanNg

Theorem 9 (FFDsparse) Given any matric A € R™ 0 < a<1and0 < k < d,
FFDsparse(A, a, k) (Algorithm 6) maintains a matriz S in a streaming fashion, such that,
with probability 0.9,

|AT A~ STS]l, < all A — [Al]3.

The algorithm uses O(d(k + a~1)) space and O(nnz(A)k + nk3) + O(da =3 + dka—?) time.
By Lemma 3, we also have the following result.

Theorem 10 Given any matric A € R™? 0 < e <1 and 0 < k < d, there is a streaming
algorithm which maintains a strong (e, k)-proj-sketch S € ROWK/E)xd The algorithm uses

O(dk/¢) space and runs in O(nnz(A)k + nk®) + O(dk®c=?)) time.

3.3. Proof of Theorem 9

The detail of our fast algorithm for sparse matrix is described in Algorithm 6. We let
A/ = [A,(l)’ e ;A/(t)]’ R —_ [R(1)7 e ’R(t)]’ and Q — [Q(l), e 7Q(t)] We use w(l) to denote
the vector w in 7th iteration. We need some technical lemmas.

Lemma 11 With probability at least 0.99, we have (1) |A" — [Ak]|% < |A — [Alk]%; (2)
IR[IE < O1) - | A~ [Al]Z-

Proof We divide A and A’ into blocks as defined in Algorithm 6, i.e. A = [A(1);...; A(®)]
and A" = [A'D); A®]. For each i, we have A') = 20 A® for some matrix Z®) with
O(k) orthonormal rows.

Let P be the projection matrix onto the subspace spanned by the top-k right singular
vectors of A. So we have

||A/ - [A/]k:H% < ||A/ — A,PH% since P is of rank k

t
= > - APy}
i=1

t
— Z 1ZHA® — 2@ 46 p|12,
i=1

t

< Z |AG) — A p|%, Z is a orthonormal
i=1

= |A— AP|% = | A — [A]4]|%, by definition of P

which proves (1).
As defined in Algorithm 6, R®) = (I — ZOT Z0) AW where Z(®) = LRA(A®, J, C). Since
|A®) — ZzOT 7D A2 < O(1) - ||AD — [AD],||2 for each i (by Lemma 8), one gets

t t
IRIE =Y IIRVIE =D I - 20T Z20) A5
=1 =1

t
<O(1)- Y 1AY — AV 13
i=1

<0(1)- A - [AllE

12

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

which proves (2). One caveat: the above argument needs [|A®) — Z0T 720 A®)2, < O(1) -
|A® — [A®],||Z to hold for all i simultaneously. To achieve this, one could use a similar
idea as in Boutsidis et al. (2016) to first boost the success probability in Lemma 8 and then
apply a union bound, but this results in an extra log factor in the time complexity.

Thus, we use a different argument to bypass this. Let S = ACT JT and write S in the
block form as § = [S1);... ; O],

Note that S = AOCTJT and the rows of Z® form an orthonormal basis for the
column space of S® thus for each i

A'L) (Z)X 2 _ A Z(l)TX 2
oo, IF =y .min, | I

— min ”A — 70T 7(0) A@) 4 7OT 7(@) gG) _ Z(i)TX]\%
X:rank(X)<k

~ mi (i) _ 70T 7() 4O |2 4 | ZOT 76 46 _ 7T 12
x;rﬁ&)gkO’A ZOT 70 AO)2, 1 || 2OT 70 AC) _ 7 XHF) by Pythagorean

> HA(i) _ Z(Z’)Tz(i)A(i)mF
Therefore, we get

A—SX|% = AW — g0 x |2
N % = H&glKkZII 17

> |AD — 5@ x |2,
Zx,aaﬁ&)<k | I7

> Z 1AW — ZzOTZ0 AV, ()

One the other hand, by Theorem 6, w1th probablhty 0.99

i A—SX||% <O00)||A - [Alx]%. 6
X:rami%)gk“ HF = ()” []kHF ()

Combining (5) and (6), we ﬁnally get

IRII = Z IRW|: = Z 1AW — ZzOTZO AV)3 < O(W)I|IA — [Alul-

Note that, in the above proof, we only require one probabilistic event, i.e., (6), to happen,
and thus avoid the union bound argument. This finish the proof of part (2). |

Lemma 12 ATA = RTR+ AT A'; and with probability 0.99, it holds that | AT A— AT A'||F <
0(1) - | A — [Alx]l%-

Proof To prove the first part, we only need to prove AOT AW = ROTRE) 4 4/()T A7)
holds for all i. Recall that A’® = Z@WA® For each i, we have

ROTRW — AGT (1 — zOT 7G)y . (1 — 70T 7(0)) o)

= AOT(1 — ZzOT 7Dy A since (I — ZMTZ2W) is a projection
— ADT @) _ gOT /(@)

13

HuanNg

This proves the first part, from which, we also get
|ATA = AT A p = |RTR||F < ||RII,

where the inequality is from the submultiplicative property of the Frobenius norm. Then
the second part follows from Lemma 11. |

Lemma 13 If the entries of A are integers bounded in magnitude by poly(nd) and rank(A) >
1.1k, then ||A — [A]x||% > 1/poly(nd).

Proof The lemma directly follows from a result of Clarkson and Woodruff (2009), and here
we use the restated version from Boutsidis et al. (2016).

Lemma 14 (Lemma 37 of Boutsidis et al. (2016)) If an n X d matriz A has integer
entries bounded in magnitude by v, and has rank p, then the k-th largest singular value of A
satisfies

o > (nd’yQ)*k/Q(pfk).

Lemma 15 We set n = poly_l(nd) (see line 1 of Algorithm 6), then with probability at
least 0.99, it holds that

1QIE = O(IRIE). IR"R - QTQl2 = O(a) - |A — [Alx/[3,
and rows(Q) = O(log(nd)/a?).

Proof Let us first assume rank(A) > 1.1k. Each row R; of R is sampled with probability

12
@(%), with F initialized to be . We have n < ||A — [A]x]|% (by Lemma 13). When
12
| R||% > n, the sampling probability for each row is at least Q(JLI\TIZ%H”Z
F
constant approximation to ||R|% at any time), so the first two parts directly follow from

Theorem 5 and Lemma 11. Otherwise if |R||% < n < ||A — [A]x||%, then the probability
LR |?

) (since F' is at most a

for sampling each row is Q(M) = Q=) and the first two parts follow from
a®n 2| A-[Alk %
Theorem 5.
To bound the number of rows sampled, we divide the stream into epochs, where F

roughly doubles in each epoch. So the total number of epochs is bounded by O(log %),

as the final value of F is at most O(||R||%). Recall that we assume each entry of A4 is an
integer bounded in magnitude by poly(nd), which implies the number of epochs is

2
Ol1og 112 < 0 (tog (|4 - poly (1)) = Olog(nc).

The number of rows sampled in each epoch is at most O(1/a?): let a1, -- ,a; be the rows
of R in the epoch, and thus la;[|> < O(F) (since the epoch ends if F' doubles); each row

14

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

a; is sampled with probability @(%), which implies the total number of rows sampled is
O(1/a?). This proves the third part.

The case rank(A) < 1.1k is easier: we can set the rank parameter k a little larger (say
k' = 2k) in our algorithm so that R is always 0 by Lemma 11, and thus rows(Q) = 0. In
this case, our algorithm is essentially exact. |

Correctness. By union bound, with probability 0.9, all the above lemmas hold simultane-

ously, and we assume this happens. Since C' = FD(Q, «,0), by Theorem 4 and Lemma 15,
we have

1QTQ — CTCl2 < a|QIIF < O(a) - | R % (7)
Since B = FFDdense(A’, a, k), by Theorem 7, we have
AT A" = BYB> < afl A = [Alel[F < af| A= [All|Z, (8)
where the last inequality is from Lemma 11. Let S = [B; C],

|ATA - 8TS||y = |[ATA - BTB - CTC|l;

< JJATA - ATA —CTC|y+||ATA — BTB|y

< |ATA—ATA —CTOlly + A~ (A3 by (8)

= |[R"R-C"Clla +]| A - [Alx|I%

<||[R"TR-Q"Q|2 +11Q"Q — CTC|l2 + || A — [Alx||% triangle inequality

< O(a) - [|A = [AllF + O(@) - | Rl + ol A = [Alg[7 by (7) and Lemma 15
<O(a)- | A= [Alxl%, by Lemma 11

which proves the error bound after adjusting « by a constant.

Running time. Let ¢; be the number of rows in ith block A®). The time to compute Z®)
using Lemma 8 is O(nnz(A®) + ¢;k?). Hence the total time used on this step is

Z O(nnz(AD) + £;k?) = O(nnz(A) + nk?).

The step to compute the matrix multiplication A" = Z(® A®) takes O(nnz(AM)k) time,
since Z has O(k) rows. So the total time spent on this step is O(nnz(A)k). By definition,
there are at most O(nnéliA) + %) blocks. Moreover, after left multiplied by Z(®, each
block contributes O(k) rows to A’, and thus the total number of rows in A’ is at most
O(%(A) + "7]“2) Computing B by invoking B = FFDdense(4’, a, k) needs O(rows(A’)dk) +
O(d/a?®) = O(nnz(A)k + nk®) + O(d/a?) time. Finally, each row of Q can be computed
in time O(dk) given A’ (which has been computed in line 6). Invoking C' = FD(Q, a,0)
needs O(d/a® + dk/a?) since rows(Q) = O(1/a?) by Lemma 15. So far, the total time is
O(nnz(A)k + nk?) + O(da=3 + dka™2).

The time for naively computing the row norms of R is high. One may use Johnson-
Lindenstrauss transforms (Johnson and Lindenstrauss, 1984) to reduce the running time,

15

HuanNg

since constant approximations are good enough. By standard arguments, it is not hard to
verify that the running time will be O(nnz(A)logn) with JL transforms. If k£ = Q(logn),
this term is absorbed by the leading term O(nnz(A)k); if k = o(log n), however, this becomes
the dominating part. We next provide an algorithm, which computes the ezact row norms
of A~ ZTZA in time O(nnz(A)k). Using this algorithm, the total time of FFDsparse is
O(nnz(A)k + nk?) + O(da™3 + dka™2).

Faster algorithm for computing row norms.

Lemma 16 Given any A € R™*? and Z € ROK*" the exact row norms of A— ZTZA can
be computed in time O(nnz(A)k + dk* + nk?) and in space O(nk + dk).

Proof The algorithm is presented in Algorithm 7. We first compute ZA in nnz(A)k time,

Algorithm 7 RowNorms
Input: A € R"¥4 7 ¢ ROK)*L
1: Compute S = ZA

2: Compute [U, X, V] = SVD(S)

3: Compute L = ZTUYX

4: for i =1ton do

5. Compute a) = 4,V

6: Compute w; = [|JalV) — LiH2 + 1A% — [la®))2
7: end for

8: return w = [wy, -, wy]

then perform SVD on ZA: ZA =UXVT. Since ZA is a O(k) x d matrix, this takes O(dk?)
time. Next compute L = ZTUY., which takes O(rows(A)k?) time. Let a be the ith row in A.
We compute al) = aV (in O(nnz(a)k) time), and set b =a —aMV7T (we don’t compute b
explicitly). Then decompose a into two orthogonal parts as

a=alv7T +p.
The ith row of A — ZTZA is
a— LV = (al ;) VT +b.
Note that VT and b are orthogonal, and thus

2
la— LVTI = | (a® = 2) VI + b2 = [|a® = L[|+ Jla)/2 - a2

which can be computed in time O(nnz(a) + k). In all, the total time to compute all the row
norms in A — ZTZA is

rows(A)
nnz(A)k + dk* + rows(A)k* + Z O(nnz(4;) + k) = O(nnz(A)k + dk* 4 rows(A)k?).
i=1

16

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

Therefore, the time to compute all the row norms in the jth block AV — ZTZAWU) is

O(nnz(AU)k + dk? + rows(AYW)k2), and the total time over all block is thus

t
O(nnz(AD)k + dk? + rows(AD)k?) = O(nnz(A)k + nk?),

=1

J

where we use the fact that t = O(nnfligf) + .

Space. For space, we need a buffer to store a new block of A, the size of which is at most
dk + d, as nnz(A") is at most dk + d. When using Algorithm 5, the input matrix always
has at most % rows, so we need O(dk) space to compute and store each Z (@) (Lemma 8).
A'® s of dimension O(k) x d, which needs O(dk) space to compute and store. According to
Lemma 16, the space needed to compute the row norms of each R®) is O(¢;k + dk) = O(dk),
since ¢; < ¢ for all i. From Theorem 7, the space used by FFDdense(A4’, a, k) is O(d(k+a™1)).
Note that, in line 12 of Algorithm 6, the rows of Q® can be computed one by one and fed
to FD directly, and thus compute C' = FD(Q, «, 0) uses O(d/«) space by theorem 4. In all,
the total space usage is bounded by O(d(k + a™1)).

4. On the Equivalence Between Frequent Directions and Matrix
Multiplication

In this section, we show that, under mild assumptions, the time complexity of Frequent
Directions is essentially equivalent to that of matrix multiplication modulo lower order terms.

Let A be an algorithm for multiplying a matrix A € R"*¢ with an arbitrary k& by n
matrix; and T'(nnz(A), k,n,d) be the running time. In this section we will assume T is
non-decreasing in the first parameter nnz(A). Moreover, T is additive in the first parameter,
ie., T(a,k,n,d)+T(b,k,n,d) =T(a+b,k,n,d) for any non-negative a and b.

4.1. Faster Matrix Multiplication Implies Faster FD

This direction follows from our FFDsparse algorithm.

Theorem 17 Let A be an algorithm for multiplying a matriz A € R™*¢ with an arbitrary
k by n matriz and assume its running time is T(nnz(A),k,n,d). If T is additive and
non-decreasing in the first parameter nnz(A), then Algorithm 6 can be implemented in time
T(nnz(A),O(k), ¢,d) + O(nk?) + O(da=® + dka™2).

Proof First, we note that the time complexity of our algorithm for sketching sparse matrices
is dominated by computing Z® A®) (Line 6 in Algorithm 6) for i = 1,2,--- , ¢, where A
contains O(k) rows. Using A, this takes T'(nnz(A®), O(k), %, d) time, since the number of
rows in A® is at most d/k in the algorithm. By the additive assumption, the total time is

17

HuanNg

4.2. Faster FD Implies Faster Matrix Multiplication

In this subsection, we prove the other direction by showing that the running time of FD
is lower bounded by matrix multiplication. The proof is based on the idea of Musco and
Woodruff (2017). In particular, we show that the existence an algorithms which computes
an (O(1), k)-cov-sketch in time o(nnz(A)k) implies a breakthrough in matrix multiplication,
which is likely very difficult. In fact, the lower bound holds even for offline algorithms
without constraints on working space.

Theorem 18 Assume there is an algorithm A , which, given any A € R™% with polynomi-
ally bounded integer entries, returns B € ROW*d in time T(nnz(A), k,n,d) such that

|ATA — BTBll2 < Al|A - [Ali|1 %,

for some constant error parameter A. If T is additive and non-decreasing in the first
parameter, then there is a T(nnz(M), k,n,d) + T(nk, k,n,d) + O(dk?) time algorithm for
multiplying arbitrary polynomially bounded integer matrices MT e RUA—K)xn O ¢ Rnxk,

Proof For any matrices M € R™ (%) and C € R™* with integer entries in [—U, U],
let A € R™ be the matrix which is a concatenation of the columns of M and wC, i.e.,
A = [M,wC]. Here w is large number will be determined later. We have |4 — [A]¢||% <
|M||% < ndU? and

MTM wMTC

AT A =
wCTM w?CcTC

We assume A is an algorithm with running time 7', which can compute a sketch matrix
B € ROW)*d of A such that

|ATA — BT B2 < Al A — [Alll} < AUnd,

for some constant error parameter A.

The spectral norm of a matrix IV is the largest singular value, which can be equivalently
defined as ||N|l2 = max, ,.,=|y|=1 ©' Ny, thereby N;; = el Ne; < ||N||y for all i,5. It
follows that (ATA — BTB); ; < AU?nd, meaning the corresponding block of BT B is an
entry-wise approximation to wM7T C within additive error AU?nd.

Now if w is a large integer, say w = [3AU?nd], we can recover M7C from BT B exactly
by rounding the numbers in BT B to their nearest integer multiple of w (as MTC is an
integer matrix). Note BYB can be computed in time O(dk?) given B and the rounding
can be done in O(dk), so using A, the exact integer matrix multiplication M7 C can be
computed in time

T(nnz(A), k,n,d) + O(dk*) = T(nnz(M), k,n, d) + T(nk, k,n,d) + O(dk?).

Here we used the fact that nnz(wC') < nk and the assumption that 7" is linear in the
first parameter. We remark that all the integers in our reduction are at most poly(nd) in
magnitude, as long as U = poly(nd), so our reduction works for any M, C' with polynomially
bounded entries. [|

Therefore, if T' = o(nnz(A)k) = o(nnz(M)k + nk?), then M7 C can be computed in time
o(nnz(M)k) + O(nk? + dk?), which will be a breakthrough in fast matrix multiplication.

18

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

5. Conclusion

This paper studies the problem of computing covariance sketches for matrices in the streaming
model. Based on several novel algorithmic techniques, we provide new space-optimal
algorithms with improved running time. We also prove that, under mild assumptions,
the time complexity of Frequent Directions is essentially equivalent to that of matrix
multiplication up to lower order terms. In particular, this implies that the running times of
FFDdense and FFDsparse cannot be significantly improved unless the state-of-the-art matrix
multiplication algorithms can, and vice versa. Thus, this paper almost settles the time
complexity of this problem.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No.
61802069), Shanghai Sailing Program (Grant No. 18YF1401200) and Shanghai Science and
Technology Commission (Grant No. 17JC1420200).

19

HuanNg

Appendix A. Omitted Proofs
A.1. Covariance error to projection error

Lemma 19 [|[A —7j5(A)|F < [|A - [AlullF + 2k - [ATA - BTB||2.
Proof For any z with ||z| = 1, we have

| Az || — ||Bz|* | = [2" (ATA~ B'B)z | < | ATA ~ BT B2 (9)
Let u; and w; be the ith right singular vector of B and A respectively

1A = 7 (A)F = 1Al7 — 7B (A
k

= | A% - Z |Au;||> Pathagorean theorem
i=1

k
< Al% = IBuil® + k- |A"A~ B"B|> by Eq. (9)
=1

k k k
< [l AIE = S IBwill? + k- [ATA~ BTB|ly because Y_ [|Buwil|? < Y || Buy?
i=1 i=1 i=1
k
< || Az =D [l Awi|® + 2k - [|[ATA — B"B||z by Eq. (9)
=1
= A~ [A)ullf + 2k - | ATA ~ BT B..

A.2. Row sampling

Theorem 20 For any A € R™™% and F > 0, we sample each row A; with probability
p; > HAZI‘L ; if it is sampled, scale it by 1/./p;. Let B be the (rescaled) sampled rows, then
w.p. 0.99, ||[ATA — BTB|l < 10aVF|A|lr , and | B||r < 10||A||p. The expected number of
A2
a?F

rows sampled is O(%) if pi = O(gpr

P) for each i.

Proof Since spectral norm is no larger than the Frobenius norm, it is sufficient to prove
|ATA — BT B||r < 10a/F||Al|p.
For each j € [n], let

{1 if the jth rows of A is sampled
:Ej =

0 otherwise.

We have (ATA); ; = Y"1 | atiarj, while

BTB Z Cat ’Lat,j

20

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

So E[(BTB); ;] = (AT A); ;. We also have

" a2 apar; " a?.a?. - Var [x? " oa?.q?.
Var[(BTB); j] = Var | Y T 0000 | N~ T 2] <y it
t=1 Pt i— by - P
where we use the fact Var[z7] = p;(1 — pr) < pr. So we have
2 07307,
E [((ATA)i,j—(BTB)Z‘,j) } Var[(BT B), <Z ; g
=1

Therefore,
E[|A"A— BTB|%] = Z E[((ATA)i; — (BTB)iy)’]

at zat

<ZZ

i,j t=1

A2 A2
:ZH th!t el (10)
t=1

n
=) o’ F||A? = 2F||A|I%.
t=1

We adjust a by a constant, and using Markov’s inequality
Pr[|ATA — BT B||% > 100a*F || A||}] < 0.01,
which is equivalent to

Pr [||ATA — BTB|p > 10a\/1?|yAy|F] < 0.01.

The success probability can be boosted by a similar argument as in Drineas et al. (2006)
via McDiarmid’s inequality (see e.g. Boucheron et al. (2013)).
It is not hard to verify that

E[IBIE] = [lAll7

So by another Markov inequality, we prove the second part. |

References

Haim Avron, Vikas Sindhwani, and David Woodruff. Sketching structured matrices for
faster nonlinear regression. In NIPS, 2013.

Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

21

HuanNg

Christos Boutsidis, Dan Garber, Zohar Karnin, and Edo Liberty. Online principal components
analysis. In SODA. STAM, 2015.

Christos Boutsidis, D Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. In STOC, 2016.

Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Efficient second-order online
kernel learning with adaptive embedding. In NIPS, 2017.

Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, and
David Woodruff. Algorithms for ¢, low rank approximation. In ICML, 2017.

Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming
model. In STOC. ACM, 2009.

Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in
input sparsity time. In STOC, 2013.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.

Dimensionality reduction for k-means clustering and low rank approximation. In STOC.
ACM, 2015.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank
approximation via ridge leverage score sampling. In SODA. SIAM, 2017.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for
matrices i: Approximating matrix multiplication. SIAM Journal on Computing, 36(1):
132-157, 2006.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca and projective clustering. In SODA. SIAM, 2013.

Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank matrix
approximations. In SODA. SIAM, 2014.

Mina Ghashami, Jeff M Phillips, and Feifei Li. Continuous matrix approximation on
distributed data. Proceedings of the VLDB Endowment, 7(10):809-820, 2014.

Mina Ghashami, Edo Liberty, and Jeff M Phillips. Efficient frequent directions algorithm
for sparse matrices. In KDD, 2016.

Hao Huang and Shiva Prasad Kasiviswanathan. Streaming anomaly detection using ran-
domized matrix sketching. Proceedings of the VLDB Endowment, 9(3):192-203, 2015.

Zengfeng Huang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. Efficient matrix sketching
over distributed data. In Proceedings of PODS. ACM, 2017.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

22

NEAR OPTIMAL FREQUENT DIRECTIONS FOR SKETCHING DENSE AND SPARSE MATRICES

Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and
higher correlations for distributed data. In COLT, 2014.

Zohar Karnin and Edo Liberty. Online pca with spectral bounds. In COLT, 2015.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. Scalable semi-supervised query classifi-
cation using matrix sketching. In ACL, 2016.

Cong Leng, Jiaxiang Wu, Jian Cheng, Xiao Bai, and Hanqging Lu. Online sketching hashing.
In IEEE CVPR, 2015.

Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff.
Improved distributed principal component analysis. In NIPS, 2014.

Edo Liberty. Simple and deterministic matrix sketching. In KDD. ACM, 2013.

Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and John Langford. Efficient second
order online learning by sketching. In NIPS, 2016.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger
and faster approximate singular value decomposition. In NIPS, 2015.

Cameron Musco and David Woodruff. Is input sparsity time possible for kernel low-rank
approximation? In NIPS, 2017.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In FOCS, 2006.

Qiang Song, Jian Cheng, and Hanqging Lu. Incremental matrix factorization via feature
space re-learning for recommender system. In RecSys. ACM, 2015.

Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong Wen. Matrix
sketching over sliding windows. In SIGMOD, 2016.

David Woodruff. Low rank approximation lower bounds in row-update streams. In NIPS,
2014a.

David Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1-2):1-157, 2014b.

Qiaomin Ye, Luo Luo, and Zhihua Zhang. Frequent direction algorithms for approximate
matrix multiplication with applications in cca. In AAAL AAAIT Press, 2016.

Haida Zhang, Zengfeng Huang, Zhewei Wei, Wenjie Zhang, and Xuemin Lin. Tracking
matrix approximation over distributed sliding windows. In Data Engineering (ICDE),
2017 IEEE 33rd International Conference on. IEEE, 2017.

Yuchen Zhang, Martin Wainwright, and Michael Jordan. Distributed estimation of generalized
matrix rank: Efficient algorithms and lower bounds. In ICML, 2015.

23

	Introduction
	Problem Definitions
	Previous Results
	Our Contributions
	Other Related Work
	Matrix Preliminaries and Notations
	Tools

	Algorithm for Dense Matrices
	Algorithm for Sparse Matrices
	Overview of Our Algorithm
	Our Algorithm
	Proof of Theorem 9

	On the Equivalence Between Frequent Directions and Matrix Multiplication
	Faster Matrix Multiplication Implies Faster FD
	Faster FD Implies Faster Matrix Multiplication

	Conclusion
	Omitted Proofs
	Covariance error to projection error
	Row sampling

