
Journal of Machine Learning Research 20 (2019) 1-35 Submitted 1/19; Revised 6/19; Published 10/19

Quantifying Uncertainty in Online Regression Forests

Theodore Vasiloudis tvas@sics.se
RISE SICS
Stockholm, Sweden

Gianmarco De Francisci Morales gdfm@acm.org
ISI Foundation
Torino, Italy

Henrik Boström bostromh@kth.se

KTH Royal Institute of Technology

Stockholm, Sweden

Editor: Alexander Rakhlin

Abstract

Accurately quantifying uncertainty in predictions is essential for the deployment of machine
learning algorithms in critical applications where mistakes are costly. Most approaches to
quantifying prediction uncertainty have focused on settings where the data is static, or
bounded. In this paper, we investigate methods that quantify the prediction uncertainty in
a streaming setting, where the data is potentially unbounded.

We propose two meta-algorithms that produce prediction intervals for online regression
forests of arbitrary tree models; one based on conformal prediction, and the other based on
quantile regression. We show that the approaches are able to maintain specified error rates,
with constant computational cost per example and bounded memory usage. We provide
empirical evidence that the methods outperform the state-of-the-art in terms of maintaining
error guarantees, while being an order of magnitude faster. We also investigate how the
algorithms are able to recover from concept drift.

Keywords: Online learning, Uncertainty, Decision Trees, Regression

1. Introduction

Machine learning algorithms are increasingly being deployed in critical settings, such as the
financial and medical domains. In such domains, the ability to quantify the uncertainty in
the algorithms’ predictions is crucial to guide decision making. In addition, in time-critical
applications, such as autonomous driving, algorithms need to produce predictions and
uncertainty estimates under tight computational and time budgets. Online learning methods
are often used in such settings, alas, without providing uncertainty estimates, which makes
them unsuitable for scenarios where errors are costly.

There exists a variety of applications where such critical decisions need to be made in
real time, while using limited computational resources. In the financial sector, time-critical
decisions need to be made based on noisy signals, and the models must be kept continuously
up to date with the latest market data (Gama, 2017). In autonomous vehicles (AV), an
embedded system needs to continuously translate noisy input from multiple sensors into
driving commands, with the safety of passengers and pedestrians at stake. Quantification of

c©2019 Theodore Vasiloudis, Gianmarco De Francisci Morales, Henrik Boström.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/19-006.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/19-006.html

Vasiloudis, De Francisci Morales, Boström

the uncertainty in the predictions of the models is paramount to avoid potentially catastrophic
mishappenings (McAllister et al., 2017).

For example, take the problem of estimating the distance from the vehicle ahead for an
AV. A simple point estimate could be dangerous in the presence of uncertainty: assume it
takes the AV 100 meters to stop, and the distance point prediction is 110m but the true
distance is 90m. In an emergency situation, the AV would not be able to stop before crashing
into the vehicle ahead. If instead the model produces a 99.9%-confidence interval of the
distance, we could use its lower end to ensure with high probability that there is always
enough braking distance from the vehicle ahead.

In this work, we focus on ensembles of decision trees as predictors, which have been shown
to be highly competitive in a variety of settings (Fernández-Delgado et al., 2014), including
their online variants (Oza, 2005). Most previous work on decision trees has focused on one
of the aspects of the problem: either providing online algorithms, or providing uncertainty
estimates for batch algorithms. A number of approaches for quantifying the uncertainty of
predictions in random forests (RF) have been proposed in the past, but they all assume
a bounded, static dataset (Mentch and Hooker, 2016; Wager et al., 2014; Chipman et al.,
2010; Meinshausen, 2006; Johansson et al., 2014b; Boström et al., 2017). On the other
hand, most approximate tree algorithms that fit the computational and time limitations
of the domain (Domingos and Hulten, 2000; Ben-Haim and Tom-Tov, 2010; Ikonomovska
et al., 2011) do not provide uncertainty estimates. One notable exception are Mondrian
Forests (Lakshminarayanan et al., 2016), whose runtime cost, however, is still prohibitive
for limited-memory, real-time systems, as both its computational and memory costs increase
with each incoming example.

In this study, we investigate approaches to quantify model uncertainty for regression
tasks, when using ensembles of online decision tree learners with bounded computational and
memory cost. We propose two online algorithms, one based on conformal prediction (Vovk
et al., 2005), and another based on quantile regression (Meinshausen, 2006), and perform a
large-scale empirical evaluation.

The proposed algorithms are meta-algorithms, in the sense that they allow to use different
underlying learning algorithms. However, optimizing the selection of the underlying learner
and tuning the approximate data structures used are out of the scope of the current study.
We instead focus on the performance of the meta-algorithms themselves, while keeping all
other parts constant.

In summary, our contributions are the following:

• We describe how to adapt inductive conformal prediction and quantile regression forests
to the online setting by bounding their computational and memory use (Section 3).

• We report on an extensive experimental evaluation with thirty datasets of various sizes,
including datasets that exhibit concept drift, and compare the proposed approaches
against both a simple baseline and a state-of-the-art algorithm (Section 4).

• We empirically show that the proposed algorithms are able to maintain prediction error
bounds at a rate better than the state-of-the-art, while being bounded in memory and
computation, regardless of the number of data points in the input.1

1. All algorithm implementations, data, and experiment automation scripts used in this study
are available as open source to ensure reproducibility at https://github.com/thvasilo/

uncertain-trees-reproducible

2

https://github.com/thvasilo/uncertain-trees-reproducible
https://github.com/thvasilo/uncertain-trees-reproducible

Quantifying Uncertainty in Online Regression Forests

2. Background

In this section, we formally define the problem of online interval prediction for regression,
and provide descriptions of the algorithms that we later adapt to the online scenario.

2.1. Problem definition

We assume a sequentially arriving data stream (Xi, yi), sampled from some fixed underlying
distribution, where Xi ∈ Rp are the feature vectors and yi ∈ R the labels. Additionally
i ∈ N+ indicates the index of a potentially unbounded dataset. Our goal is to learn a
function Γ(Xi, α) : Rp × (0, 1)→ [l, u], where l, u ∈ R and l ≤ u, such that the probability
of drawing an example (Xi, yi) from the fixed underlying distribution where yi 6∈ Γ(Xi, α) is
less than or equal to α, which is referred to as the significance level. We refer to 1− α as
the confidence level.

In the conformal prediction literature, the property described above is termed conservative
validity, as opposed to exact validity, for which the above probability is exactly α. This
distinction makes our problem different from quantile regression (Koenker, 1996) which aims
for exact validity as well.

Henceforth, for the description of the algorithms, we assume an ensemble that consists of
a random forest ` of T decision trees, each denoted by `t, t ∈ [1, T]. We consider an interval
predictor to be valid if it makes errors, when yi 6∈ Γ(Xi, α), at a rate at most α.

2.2. Inductive Conformal Prediction

Conformal predictors (CP) output prediction regions, that is, sets of labels for classification
and intervals for regression, instead of traditional point predictions. The main property
of a conformal predictor is that it is valid : the expected error rate is upper-bounded by a
predetermined significance level. By leveraging past experiences, the conformal predictor
can guarantee that, as long as the examples are drawn from the same distribution, the
probability of excluding the true label from the prediction region is less than or equal to
the specified significance. In addition, it is a meta-algorithm, which can use any base point
predictor for classification or regression. For a comprehensive review of conformal prediction
see (Vovk et al., 2005).

The original framework for conformal prediction was designed for an online scenario, in
which observations are received one-by-one. Each observation triggers a prediction, after
which the true label is revealed, which in turn allows the predictor to be updated. However,
this framework, which is called transductive conformal prediction, requires retraining the
underlying model with the entire dataset for each new observation to obtain the so-called
non-conformity scores. These scores measure how “out of the ordinary” examples are
compared to the already observed data, and are used to produce the prediction intervals.
The retraining requirement makes the method very costly computationally, and prevents it
from being used straightforwardly for large datasets.

To overcome the computational cost of the transductive framework, another instantiation
of the conformal prediction framework was proposed by Papadopoulos et al. (2002), named
inductive conformal prediction (ICP). This approach is aimed at the batch setting, and
does not require continuous re-training of the underlying model. Instead, it sets aside a

3

Vasiloudis, De Francisci Morales, Boström

subset of the training examples, referred to as the calibration set, C. The rest of the training
data are used to train a batch predictor. The calibration set is used to produce sorted
non-conformity scores, S, which are again used to produce the prediction intervals. In
regression, we commonly measure the non-conformity of an example by the absolute error of
the model’s prediction for that example. To determine the interval, we scan the (ascending)
sorted list of non-conformity scores, S, until we pass b(1−α) · |S|c values. The non-conformity
score at this point gives us the prediction interval. Specifically, let φ = S[b(1 − α) · |S|c]
be the value selected from S. Then the produced interval will be Γ(Xi, α) = [ŷ − φ, ŷ + φ],
where ŷ is the point prediction of the model for Xi.

Vovk (2002) proposed a way to adapt ICP for sequentially arriving datasets. The
proposed method re-trains a new model from scratch after a fixed number of data points
have been observed. This choice creates a trade-off between the computational efficiency of
the algorithm and the predictive effectiveness in terms of the interval size. However, due to
the need to store the complete training set, and completely retrain a new model at pre-set
intervals, this method is still not a viable option for streaming datasets.

2.3. Quantile Regression Forests

Quantile Regression Forests (QRF) were introduced by Meinshausen (2006) with the purpose
of extending random forests from computing the conditional mean to computing the full
conditional cumulative distribution function (CDF). Following the notation by Meinshausen,
we define the conditional CDF as

F (y | X = x) = P (Y ≤ y | X = x). (1)

Given Equation 1 we can define the β-quantile Qβ(x) as the value for which the probability
of Y being smaller than Qβ(x) for a given x, is exactly β:

Qβ(x) = inf{y : F (y | X = x) ≥ β}.

Having access to the conditional CDF, we are able to produce prediction intervals by
calculating the quantiles at the endpoints of the desired interval. For example, a prediction
interval for significance level α = 0.1 can be obtained by

Γ(x, α) = [Q0.05(x), Q0.95(x)].

QRF, unlike other quantile regression methods, does not change the loss function of the
underlying random forest algorithm. It instead calculates the conditional distribution as
the weighted distribution of the observed labels across the forest. Therefore, only minimal
changes to the underlying learning algorithm are needed in order to provide prediction
intervals. Meinshausen shows that, under some mild assumptions, QRF is a consistent
estimator of the conditional distribution.

Let us describe batch QRF briefly. It grows trees in the random forest as a regular
RF algorithm. However, at every leaf, it stores all the label values, rather than only their
average. Each new observation x is routed down all trees of the forest until it reaches a leaf.
Denote leaf(x, `t) the leaf x reaches for tree `t ∈ `. The weight of the example at each tree
is given by wi(x, `t) = 1Xi∈leaf(x,`t)/|j : Xj ∈ leaf(x, `t)|, i.e., the reciprocal of the number

4

Quantifying Uncertainty in Online Regression Forests

of observations already in that leaf for tree `t. To get the observation’s weight over the
whole forest, we average over the individual trees: wi(x) = T−1

∑T
t=1wi(x, `t). The estimate

for the conditional distribution is then given by the weighted sum over all the observations
in the corresponding leaves for which the label is less than or equal to the requested y:

F̂ (y | X = x) =
N∑
i

wi(x)1{Yi≤y} (2)

where N is the number of data points in the forest.
QRF is a batch method, which requires access to the complete dataset beforehand, as we

need to ensure the weights of all examples sum to one. In addition, in order to provide access
to the full conditional distribution, the labels from all N examples must be stored in the
leaves of the trees, in a mapping from the example weight to the corresponding label. This
requirement imposes a prohibitive memory cost when datasets are massive or unbounded,
which makes the algorithm unsuitable for the online setting.

3. Methods

This section describes the algorithms developed for this work, one based on inductive
conformal prediction, and one on quantile regression forests.

3.1. Conformal Prediction with Online Regression Forests

As mentioned in Section 2, inductive conformal prediction was proposed by Papadopoulos
et al. (2002) as an offline method, while the modification proposed by Vovk (2002) requires
constant retraining of a model at preset intervals, and maintaining the complete training
set. Both methods are thus unsuitable for settings where storing the complete dataset is
impossible, e.g., when streaming massive amounts of data or when the dataset is unbounded.

Our proposed algorithm overcomes these issues, and removes the need to store all data
points. Instead of retraining a new model with an increasing subset of the observed data, we
use a single-pass, online model which continuously incorporates information as new examples
arrive. In addition, by using an online random forest, we are able to maintain an up-to-date
calibration set without setting aside examples exclusively for it. We keep the size of the
calibration set bounded, thus making the memory requirements of the algorithm constant.
Algorithm 1 shows the training function, and Algorithm 2 the corresponding prediction one.

3.1.1. Algorithm Description

We start by describing the training algorithm shown in Algorithm 1. It uses a combination
of the online bagging algorithm by Oza (2005) and the out-of-bag conformal regression
algorithm by Johansson et al. (2014a). Oza made the observation that for a large number of
samples, the binomial distribution used to select samples in bagging tends to a Poisson(1)
distribution. Therefore, this distribution can be used to approximate the bagging process
online when we do not have access to the number of samples beforehand. Given an example
to train on, for each member of the ensemble we make a draw k from a Poisson distribution
with rate parameter λ = 1. If the drawn sample k is larger than zero, we use the example to
train the member of the ensemble (with weight k). Oza showed that this process converges

5

Vasiloudis, De Francisci Morales, Boström

Algorithm 1: OnlineCP Training (`, (Xi, yi)), λ

input : `: the current decision tree ensemble; C: the set of calibration examples; (Xi, yi): a
labeled training example, c: max calibration set size.

output : C: Updated set of calibration examples; `oob: a mapping from calibration examples
to learners.

1 Set isOutOfBag to False
2 foreach `t ∈ ` do // in order t ∈ [1, T]
3 k = Poisson(1)
4 if k > 0 then // example in-bag for `t
5 Train `t with (X, y), weighted by k
6 else // example out-of-bag for `t
7 Set isOutOfBag to True
8 Add `t to `oob for Xi

9 if isOutOfBag then // ∃ `t : (Xi, yi) was out-of-bag

10 if |C| < c then
11 Add (Xi, yi) to bounded set of calibration examples, C
12 else
13 Remove oldest example from set C
14 Add (Xi, yi) to set C

Algorithm 2: OnlineCP Interval Prediction (`, Xi, C, α)

input : `: the current decision tree ensemble; Xi: an unlabeled example; C: the calibration
set; α: the desired significance level.

output : Γ(Xi, α): the prediction interval for Xi at the requested significance α
1 foreach `t ∈ ` do // in order t ∈ [1, T]
2 Compute the prediction pt = `t(X)

3 ŷ = 1
T

∑
t pt // Compute ensemble prediction

4 Compute the sorted non-conformity scores S using Algorithm 3
5 φ = S[b(1− α) · |C|c]
6 Γ(Xi, α) = [ŷ − φ, ŷ + φ]
7 return Γ(Xi, α) // Return the prediction interval

Algorithm 3: Update Non-conformity Scores (`, C)

input : `: the current decision tree ensemble; C: the calibration set, (Xi, yi), i ∈ [1, c]; `oob:
mapping from calibration examples to learners.

output : S: the sorted set of non-conformity scores
1 foreach (Xi, yi) ∈ C do
2 // Only use learners for which (Xi, yi) was oob

3 foreach `t ∈ `oob(Xi) do
4 ŷti = `t(Xi) // Compute oob prediction

5 ŷi = 1
|`oob(Xi)|

∑
t ŷ
t
i // Aggregate oob predictions

6 // Compute non-conformity scores.

7 S = |y − ŷ| // y true labels, ŷ oob predictions

8 Sort and return the non-conformity scores S

6

Quantifying Uncertainty in Online Regression Forests

to the equivalent batch bagging model. We note that λ can be set to larger values as done
by Bifet et al. (2010b), however we follow the original work by Oza and set λ = 1.

If k is zero for some tree in the forest, we add the example to a bounded set, C, of
calibration examples. This set is the equivalent of the calibration set in batch inductive
conformal prediction. The set is kept to a fixed size c by using a FIFO policy. When it is
time to make a prediction, these examples are used to compute the non-conformity scores
by using Algorithm 3. To ensure we compute non-conformity scores only on out-of-bag
examples, we keep track of the learners for which the current example is out-of-bag, by using
a mapping from example identifier to learner index.

The first part of the prediction step in Algorithm 2 works similarly to any bagging
algorithm. It computes and averages the predictions from each member of the ensemble
(Algorithm 2, lines 1-3). However, in order to compute the interval size, it also needs
to have up-to-date non-conformity scores, which Algorithm 3 is responsible for. This
algorithm takes the calibration set C, current ensemble `, and the `oob mapping as input,
and produces a sorted (ascending) list S of non-conformity scores. As in batch ICP for
random forests (Johansson et al., 2014a), our algorithm makes a prediction for each example
in the calibration set by using only the trees for which it was an out-of-bag sample. Then, it
uses a non-conformity function to compute the non-conformity scores. For this work, we
choose the absolute error as our non-conformity function, which is a standard choice for
conformal regression models.

Once we have the non-conformity scores S, we can calculate the interval for the prediction.
Given the desired significance level α and a sorted list S with c elements, the algorithm picks
the element in the list whose index is b(1− α) · cc. The value φ = S[b(1− α) · cc] represents
half the interval width for the current prediction at the given significance level α. Finally,
we use this interval width in line 6 of Algorithm 2 to produce a prediction interval for the
example.

This version of ICP produces the same interval size for all examples, given a fixed
calibration set C. While techniques that adapt the interval size based on an approximation
of the difficulty to predict each example exist (Papadopoulos et al., 2011; Papadopoulos and
Haralambous, 2011), we elect to use the simpler version of ICP. Since the calibration set is
continuously updated, the interval sizes will also be updated based on the performance of
the underlying learner.

Our proposed method is designed as a meta-algorithm, therefore any online tree-based
regression algorithm can be used as the underlying learner. For this paper, we use the Fast
and Incremental Model Tree (FIMT) algorithm (Ikonomovska et al., 2011). FIMT is an
extension to the Very Fast Decision Tree (Domingos and Hulten, 2000) and it inherits its
memory management features, such as deactivating the least promising leaves or dropping
unpromising attributes in order to keep the memory requirements of the algorithm bounded.
It also provides a concept drift adaptation mechanism that allows our methods to adapt to
changes in the underlying data distribution. We call this meta-algorithm CPExact.

3.1.2. Optimizations

In the previous section, we mention that the set of calibration examples is bounded, that is,
we ensure that we never have to keep more than |C| = c examples in memory. In our case,

7

Vasiloudis, De Francisci Morales, Boström

the size of the calibration set affects the computational cost significantly, as in the worst
case we need to make an ensemble prediction for each calibration example before making an
interval prediction.

The näıve way to implement Algorithm 3 would require each member of the ensemble to
make a prediction for each (out-of-bag) example in the calibration set. However, this step
is unnecessary; by storing the predictions of each learner for which a calibration example
was out-of-bag, we only need to update that prediction when the learner itself gets updated,
otherwise we can use its previous prediction. We call this technique prediction memoization.

While this small optimization can reduce the number of required predictions somewhat,
the factor of c still remains, which implies that for all ensemble members that have been
updated since the last prediction, up to c new predictions are needed to compute the updated
calibration scores. In our implementation, we mitigate this issue by using parallelism across
the members of the ensemble and updating the calibration scores asynchronously as soon as
the training step has finished, thus allowing for overlapping computation until the next call
to the prediction function.

3.1.3. Approximate algorithm

In the common prequential evaluation scenario of online learning (Gama et al., 2009), the
model makes a prediction for an example before being shown its label, which is then used
(together with the example) to update the model. Given that the model is updated for
each new example, in the worst case, we need to calculate the non-conformity scores for the
complete calibration set for each example, thus incurring a high computational cost. While
prediction memoization and asynchronous execution can reduce the runtime of CPExact to
some extent, the core computational constraint of updating the predictions for the complete
calibration set remains.

To address this computational issue, we propose to use an approximate solution to the
computation of the non-conformity scores. In particular, we only use the prediction from
the model obtained when the new example enters the calibration set.

In other words, regardless of whether a tree has been updated, we never re-evaluate its
predictions for all of its calibration examples. Rather, we only make predictions for the
newly introduced examples, i.e., those examples that have been added to the calibration set
since the last time we made a prediction. Note that, as more and more examples accumulate,
the predictions of the underlying models for a given example will change progressively less.
By not making predictions on older examples, we achieve significant computational savings
and remain true to the online spirit of the algorithm. Moreover, by constantly introducing
new examples in the calibration set, we ensure that it remains an accurate representation of
the non-conformity of the examples given the current model. We call this meta-algorithm
CPApproximate.

CPApproximate has an inherent tradeoff: when many samples are used in its calibration
set, it might end up using several stale predictions to calculate the intervals. As we show in
Section 4.4, this tradeoff has an effect on the ability of the algorithm to adapt to concept
drift. By maintaining predictions that were made using a distribution different from the
current concept, the algorithm is slow to adapt its intervals to the newly introduced concept.
This delay can lead to intervals that do not maintain the requested error rate.

8

Quantifying Uncertainty in Online Regression Forests

3.2. Online Quantile Regression Forests

In Section 2.3, we mention that batch QRF requires the complete dataset to be available in
order to assign a weight to each example, and has large memory requirements due to the
need to store a mapping from the weight of each example to its label, for every data point.

The main idea for our adaptation of the algorithm to the online setting is to use an
approximate representation of the label values to bound the memory requirements of the
algorithm and doing away with the need to maintain a weight for each example. In particular,
we employ the KLL streaming quantile estimates proposed by Karnin et al. (2016) to store
the approximate cumulative distribution of label values in the leaves. By using the online
bagging algorithm of Oza (2005) in combination with a feature subset selection scheme
(Gomes et al., 2017), we propose OnlineQRF (oQRF): online regression forests that provide
quantile estimates.

We now briefly explain the core concepts of the KLL sketch, and refer the reader to Karnin
et al. (2016) for a detailed description. Estimating streaming quantiles is an established
problem in data management. The task is to estimate quantile values from an incoming
stream of potentially infinite real values, by utilizing minimal memory and computational
cost. See the work by Greenwald and Khanna (2016); Wang et al. (2013) for surveys on the
subject. The problem can be formulated as finding the approximate rank of a given value
x in a sorted set of n items. An ε approximate quantile sketch returns the approximate
rank up to an additive error of εn. As customary, the KLL algorithm gives a probabilistic
guarantee that the resulting sketch is an ε-approximation with probability 1− δ (over its
executions). Another important property is the mergeability of a sketch; this allows us to
sketch different parts of a stream in parallel, and merge the partial sketches to a final sketch
that has the same accuracy of a single sketch over the complete stream. This scenario is
common in distributed settings (De Francisci Morales and Bifet, 2015), and we make use
of this property to merge the quantile sketches of each tree in the ensemble into a single
quantile prediction.

KLL belongs in the family of methods for quantile estimation that make use of compactors,
a data structure that can store c items, with the same weight w. Compactors can compact
their c elements into c/2 by first sorting them, and then discarding either the odd or even
items, while doubling the weight of the remaining items. Multiple compactors can be chained
together to create a rank estimator; each compactor takes a stream as input and outputs a
halved stream to be used as input for the next compactor, until a sequence of length c is
generated, which can be simply stored in memory. For a new value x, we can estimate its
approximate rank in the original stream from its rank the final sequence of c items. The
KLL sketch uses a cascade of such compactors and samplers to process the stream and
selectively store a small number of elements, which grows logarithmically with the number
of elements in the stream. The only parameter of the algorithm is K, which determines a
tradeoff between the memory cost and accuracy of the algorithm. Higher K means more
elements will be stored, but also higher accuracy. Note that the error ε is not set explicitly
by the user, but depends on K.

Specifically, the KLL sketch is an improvement upon the quantile sketch of Agarwal
et al. (2012), which chooses whether to keep the even or odd positions during compaction by
flipping a fair coin, and subsamples the stream before feeding it to the first compactor. KLL

9

Vasiloudis, De Francisci Morales, Boström

improves the memory footprint of the algorithm by Agarwal et al. by using compactors of
exponentially decreasing size and replacing some of the compactors with a sampler, thus
resulting in a mergeable sketch with a space complexity of O((1/ε) log2 log (1/δε)), which is
currently the state of the art. Their limited memory footprint and mergeability make them
perfect candidates to be used as quantile estimators for OnlineQRF.

Similarly to online conformal prediction, OnlineQRF is meta-algorithm for which any
tree-learning algorithm can be used. For consistency, we again choose to use a variation of
the FIMT algorithm, but this time we maintain an efficient quantile sketch at each leaf. We
use these sketches at prediction time to provide the prediction intervals of the forest. The
parameter K of the KLL sketches constitutes the only parameter of the algorithm.

While QRF is a consistent estimator of the conditional distribution, i.e., the empirical
distribution used at the leaves of QRF converges to the real conditional distribution when
the number of observations tends to infinity, OnlineQRF lacks this property. Indeed, the
use of sketching introduces a fixed error in the approximation of the distribution, which is
guaranteed to be smaller than ε, but is nevertheless constant. Therefore, adding observations
to the sketch does not improve the approximation of the real conditional distribution beyond
a given point. Looking at the issue from a different angle; we cannot hope to approximate
an arbitrary distribution with infinitesimal error by using a fixed-size sketch. The loss of
consistency of the estimation is thus a necessary sacrifice to make the algorithm viable in an
online setting.

Algorithm 4: OnlineQRF Training (`, (Xi, yi)), λ

input : `: the current decision tree ensemble; (X, y): a labeled training example.
1 foreach `t ∈ ` do // in order t ∈ [1, T]
2 k = Poisson(1)
3 if k > 0 then
4 Train `t with (X, y), weighted by k
5 Add yi to Ht, the sketch at the leaf where the example is sorted into.

Algorithm 4 describes the training step of OnlineQRF, which is similar to the original
training for bagged learners by Oza (2005). However, we modify the underlying learners
to maintain an online quantile sketch of the labels. After updating the learner with the
example (Xi, yi), we add the label yi to the corresponding sketch at the leaf, which is a
constant time operation.

We describe the prediction process of OnlineQRF in Algorithm 5. As opposed to the
original QRF algorithm, which requires summing over all the data points (Eq. 2), our
algorithm only requires T − 1 merge operations, and one operation to calculate the quantiles,
both of which take constant time.

Because of the online nature of the sketches, we are able to merge them incrementally,
and so maintain the constant memory requirements of the algorithm.

Additionally, when executing the algorithm in parallel, we are able to use a parallel
reduce operation, therefore further reducing the runtime of the predict operation, in which
the sketch merge is the most expensive operation. Given that the merge operation is the
most time consuming operation for the algorithm, we also experimented with approximate
alternatives, such as computing the quantiles for each sketch separately and averaging the

10

Quantifying Uncertainty in Online Regression Forests

Algorithm 5: OnlineQRF Interval Prediction (`, Xi, α)

input : `: the current decision tree ensemble; Xi: an unlabeled example; α: the desired
significance level.

output : Γ(Xi, α): the prediction interval for Xi at the requested significance α
1 Ĥ = ∅ // Initialize empty sketch

2 foreach `t ∈ ` do // in order t ∈ [1, T]
3 Drop Xi down the tree `t until we arrive at a leaf
4 Retrieve the sketch of the leaf, Ht

5 Merge Ht into Ĥ

6 Γ(Xi, α) = [Qα/2(Ĥ), Q1−α/2(Ĥ)]
7 return Γ(Xi, α) // Return the calculated interval

results, but the intervals produced were not valid. This result indicates that information
from all the trees needs to be aggregated in order for the algorithm to work as expected,
which is also the case for batch QRFs.

One positive characteristic that OnlineQRF shares with the online conformal prediction
methods developed for this work is that the significance level α does not need to be set from
the start. Rather, it is a runtime parameter that the user can set when making a prediction.
Therefore, the user may also request multiple significance levels without the need to train
separate models, which is necessary in QR algorithms that modify the loss function, such as
linear QR (Koenker, 1996).

4. Empirical evaluation

In this section, we present results from an extensive empirical investigation, concerning
20 small-scale datasets, drawn from a diverse set of domains, and another 10 datasets for
studying the effect of concept drift, with millions of data points.

4.1. Experiment Design

The evaluation follows the prequential evaluation design that is commonly employed in
online learning settings (Gama et al., 2009). For each example in the dataset, we first make
a prediction, then update our metrics based on the predicted and true labels, and finally,
reveal the true label to the algorithm. When reporting results over time for the concept drift
datasets, we use tumbling windows of size 10 000, that is, we measure the mean performance
of each algorithm for every 10 000 samples. Because random forests are non-deterministic, we
repeat each experiment 10 times. We report the mean of the metrics across the repetitions
and we show the standard deviation as a shaded area in Figures 5 and 6.

4.1.1. Metrics

We report the Mean Error Rate (MER), Relative Interval Size (RIS), and use Quantile Loss
and Utility as combined metrics of the MER and RIS. The Mean Error Rate measures the
percentage of errors that a method incurs, essentially the average of the 0-1 loss over the
complete dataset:

11

Vasiloudis, De Francisci Morales, Boström

MER =
1

N

N∑
i=1

1{yi 6∈[li,ui]},

where N is the size of the dataset and [li, ui] the predicted interval for Xi. This metric
quantifies the validity of the method; for a significance level α, a method should have an
MER of at most α in order to be considered valid. For example, in our validity experiments,
we set a significance level of 0.1, so we should observe an MER of at most 0.1.

However, the MER metric offers only a partial view of the performance of a method; it is
easy to produce a näıve algorithm with a valid MER by always predicting very large intervals,
which however would not be informative. To measure how informative the produced intervals
are, a property sometimes referred to as the efficiency of the intervals (Vovk et al., 2005),
we employ the Relative Interval Size (RIS) metric. RIS measures the average size of the
intervals over the data, normalized by the range of values in the data to enable comparisons
across datasets:

RIS =
1

N

N∑
i=1

ui − li
ρ

,

where ρ is the range of the dependent variable (label) of the dataset, ρ = max(y)−min(y).

Lower values are better for the RIS, with a value of one indicating a non-informative
interval that covers the whole range of observed values for the target. Values larger than one
are possible for methods that can produce interval predictions outside the range of observed
values, such as the conformal prediction methods. RIS needs to be viewed together with the
MER to get a complete picture of the performance of a method.

To ease presentation, we also employ two combined metrics, Quantile Loss and Utility.
Quantile Loss is based on the established quantile error objective function used in quantile
regression (Koenker, 1996). Since in our case we are dealing with intervals, we can take the
quantile loss for each quantile, Qα/2 for the lower and Q1−α/2 for the upper, and sum their
losses. So for the case of a correct interval prediction, when y ∈ [l, u] we have:

Quantile Lossy∈[l,u] = α(y − l) + (1− (1− α))(u− y)

= α(u− l).

While in the case where y 6∈ [l, u] and, for example, y < l:

Quantile Lossy<l = (1− α)(l − y) + (1− (1− α))(u− y)

= α(u− l) + (l − y).

The loss is symmetric for the case where y > u. The purpose of this metric is to penalize
methods that deviate from the requested error rate, according to the distance from the error
rate, scaled by the size of the interval. Combining the above we can define Quantile Loss as
follows:

12

Quantifying Uncertainty in Online Regression Forests

Quantile Loss = RIS · α+ β.

We use RIS here to normalize the interval widths and allow comparison across datasets. The
factor β is the distance of the true y value from the closest interval boundary:

β =
1(y<l)|y − l|+ 1(y>u)|y − u|

ρ
.

In other words, β tells us how far outside the predicted interval the true value lies.
Like the RIS, β is normalized by the range of the dependent. While the quantile loss is
an established metric, it does not match exactly our problem definition, as it penalizes
conservative methods whose MER is lower than the requested significance. For that purpose
we also present a metric that does not penalize conservative methods, called Utility.

Utility is a single metric based on the time-utility functions commonly used in real-time
systems (Ravindran et al., 2005). These functions combine two measurements: the utility
of a result as a factor of the time it takes to obtain it. We set a time deadline after which
the method is penalized, while before the deadline the method incurs no penalty. We use
(1 − RIS) as the utility, and set the requested significance as the “time” deadline, with
exponential decay. Formally, we define utility as:

Utility =

{
1− RIS, MER ≤ α
(1− RIS) · exp (−γ(MER− α)), otherwise,

where α denotes the requested significance level, and γ is set such that the half-life of the
utility is at 1.5 · α. In other words, once a method’s MER passes the requested significance,
its utility drops off exponentially, and reaches half its original value when the MER is 50%
larger than the requested significance. This metric takes values from 0 (worst) to 1 (best)
and indicates how useful the produced intervals are. If the algorithm is able to maintain
the requested significance level, 1−RIS indicates how tight the intervals are. Otherwise
the intervals are invalid and we discount the utility accordingly. Finally, if the RIS is larger
than one we set the utility to zero.

4.1.2. Baselines

We compare our algorithms with the state-of-the-art Mondrian Forest (MF) algorithm (Lak-
shminarayanan et al., 2016). MF makes use of Mondrian processes (Roy and Teh, 2009)
to create tree-like online prediction models that use a hierarchy of Gaussians to model the
dependent variable and can produce the full predictive posterior distribution. Mondrian
Forest maintains a Gaussian at each node in the forest, consequently it has an unbounded
computational cost that increases with each incoming example. In comparison, our methods
perform learning only at the leaves, and are thus more efficient computationally. We provide
more details for the method in Section 5. As done in the original work, we use the predicted
mean and variance to extract Gaussian quantiles for the requested significance level.

We also employ a simple baseline as an illustration that the problem is non-trivial, similar
to the one used by Lakshminarayanan et al. (2016). We compute the predicted mean and
variance among the trees in an online forest that uses FIMT as the underlying learner, and

13

Vasiloudis, De Francisci Morales, Boström

Dataset Examples Features Domain

2dplanes 40768 10 Artificial
abalone 4177 8 Biology
ailerons 13750 40 Control
bank32 8192 32 Simulation
calHouse 20640 8 Housing
cpuAct 8192 21 Computing
elevators 16599 18 Control
energy 19735 27 Energy Use
friedman 40768 10 Artificial
house8 22784 8 Housing
house16 22784 16 Housing
kin8nm 8192 8 Robotics
mv 40768 10 Artificial
newsPop 39644 60 Web
puma8 8192 8 Robotics
puma32 8192 32 Robotics
qs240 6003 43 Bioinformatics
qs253 4332 26 Bioinformatics
sulfur 10081 6 Monitoring
yprop 8885 251 Drug Design

Table 1: The small-scale datasets used in this study.

take Gaussian quantiles to create the prediction intervals. We report the results of this
method in Section 4.2.

4.1.3. Data

We use 20 small-scale datasets from a variety of domains to test the validity and efficiency
of the algorithms, and 10 data sets to test their ability to deal with concept drift. The
small-scale datasets are gathered from the OpenML repository (Vanschoren et al., 2013).
Table 1 provides summary information about these datasets. We provide more detailed
information about the small-scale data in Appendix A.1.

For the concept drift experiments, we follow Ikonomovska et al. (2011) and generate
datasets using the three “Friedman” functions first introduced in Friedman’s MARS paper
(Friedman, 1991). The first Friedman function includes non-linear dependencies between five
relevant features and the dependent variable, and in addition includes five irrelevant features
that do not affect the dependent variable. All features are independent and uniformly
distributed over [0, 1]. The second and third Friedman functions include four uniformly
distributed features and a noise factor. The dependent variable simulates the impedance
and phase shift in an alternating current circuit. We refer the reader to Friedman (1991) for
more details on these functions.

14

Quantifying Uncertainty in Online Regression Forests

As done by Ikonomovska et al. (2011), we introduce three different kinds of concept drift
for each original function, and produce 1M data points for each dataset, for a total of nine
artificial concept drift datasets. We provide more information about the exact function
definitions in Appendix A.2, and give a brief overview of each type of concept drift below.

• Local expanding : The first type of drift appears only in two distinct regions of the input
space. There are three change points, one every 1/4 of the data, which modify the
generating function if the point lies in one of two designated regions. These regions
expand with each consecutive change point.

• Global reoccurring abrupt drift: This type of drift is global and abrupt. After 1/2 of the
examples have been observed, we abruptly change the generating function. After 3/4 of
the examples have been observed, we change back to the original function.

• Global slow: The third type of drift is also global but gradual. Starting after 1/2 of
the examples have been observed, we gradually introduce data points from a different
concept, with a probability that linearly increases to one after 100k additional points
have been observed. At the 3/4 point, we introduce a new concept in a similar manner,
which completely replaces the previous concept after 100k points.

We also use a real-world dataset of flight delays. 2 This dataset contains flight arrival
and departure details for all commercial flights in the US during 2008, with the task
being to predict the delay of flights based on attributes such as the age of the airplane
or the day of the year. This dataset was already used in the evaluation of Mondrian
Forests (Lakshminarayanan et al., 2016), and we have re-created the same splits of the data
in samples with 700K, 2M, and 5M data points. 3 We perform a standard pre-processing
step to transform some categorical attributes, such as day of week or month, to a one-hot
(binary) representation, resulting in a dataset with fifty-five features.

4.1.4. Parameter Settings

For all the experiments, we use an ensemble size of 10. We use |C| = 1000 calibration
examples for the conformal prediction algorithms, while for OnlineQRF we use quantile
sketches at the leaves with the default accuracy parameter K = 200, as recommended by
Karnin et al., which yields a normalized rank error of 1.65%.

We experimented with different numbers of K and calibration examples, and these
parameters did not significantly affect the results. We have implemented these algorithms
in the MOA online learning framework (Bifet et al., 2010a). For the Mondrian Forest, we
use the optimized implementation available in the scikit-garden 4 Python library. We
have verified with the author of the original work that this implementation produces correct
results in online learning mode for the parameter settings we use. Specifically, we set
min samples split = 2, which determines the minimum number of samples necessary for
a leaf to be considered for a split. We note that for values larger than this, MF requires
that the entire dataset be stored in memory at the leaves, making it infeasible for the large
datasets and limited resources common in online learning.

2. http://stat-computing.org/dataexpo/2009

3. We thank M. Deisenroth for providing the pre-processing scripts.
4. https://github.com/scikit-garden/scikit-garden

15

http://stat-computing.org/dataexpo/2009
https://github.com/scikit-garden/scikit-garden

Vasiloudis, De Francisci Morales, Boström

Dataset MER RIS Dataset MER RIS

2dplanes 0.394 0.10 house16 0.367 0.11
abalone 0.727 0.05 kin8nm 0.659 0.14
ailerons 0.271 2.89 mv 0.147 0.16
bank32 0.413 0.20 newsPop 0.053 0.06
calHouse 0.524 0.15 puma8 0.581 0.22
cpuAct 0.525 0.15 puma32 0.502 0.24
elevators 0.392 560.95 qs240 0.448 0.28
energy 0.137 111.9 qs253 0.510 0.48
friedman 0.379 0.12 sulfur 0.462 0.04
house8 0.405 0.09 yprop 0.073 8.32

Table 2: Mean Error Rate and Relative Interval Size for the Gaussian quantiles baseline.
Desired MER is 0.1.

We set the requested significance level α to 0.1 for the validity experiments, but explore
the effect of different significance levels in Section 4.5.

4.2. Baseline

We start by reporting the validity and interval sizes of the Gaussian quantiles baseline
method, as a way to illustrate the difficulty of the problem. Table 2 shows the MER and RIS
for the Gaussian quantiles baseline, with a desired MER of 0.1. As can be seen, the observed
mean error rate is several times larger than this; the average MER over all datasets is 0.4.
This indicates that merely assuming a Gaussian distribution over the trees’ predictions is
not an appropriate way to quantify the uncertainty.

4.3. Small-scale data

Figure 1 breaks down the MER and RIS for each method, while Figure 2 reports the utility
for the small-scate data. Each point in Figure 1 represents the average MER and RIS of a
method for a single dataset, over the ten repeats of each experiment.

The ability to maintain the desired error rate, and the required interval size to do so,
differ significantly between methods. OnlineQRF is the overall best performing method for
these datasets, managing to strike a balance between maintaining the requested error rate
and having small prediction intervals. On the other hand, CPExact is the only method
that is consistently valid for all the datasets, i.e., stays below the requested 0.1 error level
on average. However, it will sometimes produce intervals with an RIS close or larger than
one, leading to a utility near zero for those datasets. As a result, its mean utility is lower
than OnlineQRF, with CPApproximate following closely. Mondrian Forests, while generally
producing tight intervals, manage to maintain the requested error rate on average for only
nine out of the twenty datasets, leading to the lowest utility among all methods.

In Figure 3 we can see that, modulo one outlier for the conformal prediction methods,
all methods perform roughly equally in terms of quantile loss. A slight advantage for the

16

Quantifying Uncertainty in Online Regression Forests

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

MER

0.0

0.2

0.4

0.6

0.8

1.0

R
IS

MondrianForest

OnlineQRF

CPApproximate

CPExact

Figure 1: MER and RIS for small-scale data. Each point corresponds to one dataset. The
dashed vertical line indicates the desired error rate (significance) at 0.1.

methods proposed in this paper can be seen in Figure 2 in terms of utility, which unlike
quantile loss does not penalize methods with conservative predictions.

These results can, to some degree, be explained by the nature of each algorithm. It is
likely that aggregating the mixture of Gaussians produced by the Mondrian Forest to a
single Gaussian distribution to be used for quantile estimation is the main source of errors
for the method. In MF, each node in the path from the root to the leaf for an example
produces a mean and a variance. These are averaged to produce one mean and variance
per tree. Then the means and variances of all trees in the ensemble are averaged again to
produce a final Gaussian distribution that is used to produce the intervals. These two levels
of aggregation are a potential source of error for MF.

Unlike MF and the CP methods, the intervals of OnlineQRF never lie outside the range of
observed labels, thus making the method less likely to produce outliers which the conformal
prediction methods suffer from, as exemplified in Figure 1. Finally, we note the ability of
CPApproximate and particularly CPExact to maintain the expected error rate. However,
this result often comes at the cost of larger interval sizes and, as shown later in Section 4.6,
significantly increased runtime for CPExact.

4.4. Concept Drift

In this section, we examine the validity of the algorithms on datasets with concept drift.

We illustrate the performance of the algorithms on the artificial Friedman #1 data in
Figure 5. The results are consistent with the other Friedman datasets, which we summarize
in Figures 7 and 8 for utility and quantile loss respectively, and Figure 4 for a combined
view into MER and RIS.

17

Vasiloudis, De Francisci Morales, Boström

MondrianForest OnlineQRF CPApproximate CPExact

Method

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

Figure 2: Utility for the small-scale data. Higher is better.

MondrianForest OnlineQRF CPApproximate CPExact

Method

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Q
ua

nt
ile

L
os

s

Figure 3: Quantile loss for the small-scale data. Lower is better. The conformal prediction
methods have an outlier for the yprop dataset which is not shown here to ease presentation.

18

Quantifying Uncertainty in Online Regression Forests

0.05 0.10 0.15 0.20 0.25

MER

0.0

0.2

0.4

0.6

0.8

1.0

R
IS

MondrianForest

OnlineQRF

CPApproximate

CPExact

Figure 4: MER and RIS for Friedman data. Each point corresponds to one dataset. The
dashed vertical line indicates the desired error rate (significance) at 0.1.

Starting from Figure 5, the first concept drift occurs at 500k examples, and the second at
750k. We can observe different behaviors of the algorithms. Starting with CPExact, after the
first concept drift, its RIS rises rapidly to account for the additional uncertainty in the model.
As a result, it manages to maintain the requested error rate throughout the experiment, but
its intervals remain large after the concept drift. In contrast, CPApproximate maintains
a stable RIS throughout the experiment, with a MER that after an initial spike drops off
exponentially to return to the requested error rate. This behavior follows from the fact that
the method does not update the old non-conformity scores.

OnlineQRF lies in the middle between the two; it also exhibits a spike in RIS at the
concept drift points, but it is quick to recover and, importantly, it remains valid throughout
the experiment. Finally, Mondrian Forest has consistently wide intervals, and its error is
slow to recover after the first concept drift.

As with the small-scale datasets, OnlineQRF is a strong performer, providing consistent
results. However, in this set of experiments, CPApproximate performs better than CPExact
due to its tight intervals, and actually has the best average utility among all methods, with
OnlineQRF nearly matching it. Mondrian Forest is only able to maintain the requested error
rate for half of the datasets (Figure 4), and even in those it mostly has the lowest utility.

The performance of the algorithms in the real-world flight delay data is shown in Figure 6
for the two million examples dataset. The concept drift occurs after having observed around
1.1 million examples, which causes the MER of all the algorithms to spike considerably.
Mondrian Forest and OnlineQRF are able to return to the desired error rate before observing
1.2 million examples. On the other hand, CPApproximate requires close to 900 000 additional

19

Vasiloudis, De Francisci Morales, Boström

0 200000 400000 600000 800000 1000000

Instance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
E

rr
or

R
at

e

MondrianForest

OnlineQRF

CPApproximate

CPExact

(a) Friedman #1 Mean Error Rate. The dashed horizontal line indicates the desired error rate at 0.1.

0 200000 400000 600000 800000 1000000

Instance

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
In

te
rv

al
S

iz
e

MondrianForest

OnlineQRF

CPApproximate

CPExact

(b) Friedman #1 Relative Interval Size.

Figure 5: MER and RIS evolution over time for Friedman #1 with global abrupt drift.

20

Quantifying Uncertainty in Online Regression Forests

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

Instance

0.05

0.10

0.15

0.20

0.25

M
ea

n
E

rr
or

R
at

e

MondrianForest

OnlineQRF

CPApproximate

CPExact

(a) Flight delay Mean Error Rate.

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000

Instance

0.06

0.08

0.10

0.12

0.14

R
el

at
iv

e
In

te
rv

al
S

iz
e

MondrianForest

OnlineQRF

CPApproximate

CPExact

(b) Flight delay Relative Interval Size.

Figure 6: MER and RIS evolution over time for the flight delay dataset.

21

Vasiloudis, De Francisci Morales, Boström

MondrianForest OnlineQRF CPApproximate CPExact

Method

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

Figure 7: Utility for the concept drift data. Higher is better.

MondrianForest OnlineQRF CPApproximate CPExact

Method

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Q
ua

nt
ile

L
os

s

Figure 8: Quantile loss for the concept drift data. Lower is better.

22

Quantifying Uncertainty in Online Regression Forests

Method Metric
α

0.3 0.2 0.1 0.05 0.01

MF
MER 0.28 0.20 0.13 0.094 0.062
RIS 0.19 0.23 0.29 0.349 0.460

oQRF
MER 0.23 0.14 0.07 0.036 0.015
RIS 0.20 0.23 0.31 0.345 0.510

CPapprox
MER 0.22 0.13 0.06 0.032 0.006
RIS 0.21 0.31 0.48 0.785 1.130

CPexact
MER 0.25 0.16 0.08 0.039 0.009
RIS 0.28 0.37 0.57 0.622 0.944

Table 3: MER and RIS for different significance levels. The target MER is α where α the
significance level. See Appendix B for detailed results.

examples before returning to under the requested error rate. CPExact is able to adapt faster
than CPApproximate, and exhibits a lower MER during the concept drift.

Overall, CPApproximate is slow to adapt its intervals, which can be explained by the slow
update of its nonconformity scores, but as a result maintains tighter intervals. Conversely,
CPExact is able to adapt faster, since it updates the predictions for all elements in the
calibration set to derive the non-conformity scores. This means that as the learners shift to
the new distribution, so will all the non-conformity scores, as opposed to one-at-a-time with
CPApproximate. However, this adaptivity comes at the cost of increased interval sizes, and
much slower computation (Section 4.6). Mondrian Forest is also slow to adapt to changes in
the underlying distribution, thus leading to large areas where its intervals are wrong, the
result of which can be seen in Figure 7, where its utility is the lowest among all methods.

OnlineQRF provides a good compromise, both for the artificial and the real-world
datasets. Its intervals are quickly adapted to distribution changes, which makes it recover
the requested error rates, and also produce tight intervals in a timely manner, therefore
making its predictions both valid and efficient.

The situation is similar in terms of quantile loss, shown in Figure 8, with CPApproximate
having the lowest median loss, and Mondrian Forest performing the worst among all methods.

4.5. Significance level

Depending on how critical an application is, a user might require different error guarantees.
A natural question that arises is how different settings of the significance level affect the
methods. We investigate this question by running all the algorithms on the small-scale data
with a significance level varying from 0.3 to 0.01, and report the aggregated results, averaged
over all datasets, for each method and significance level in Table 3. We provide a more
in-depth look with MER/RIS figures similar to Figure 1 in Appendix B. Ideally, we would
like the MER to never cross the value α, where α is the significance level, while keeping the
RIS low.

23

Vasiloudis, De Francisci Morales, Boström

Dataset MF oQRF CPapprox CPexact

Small-scale data 41.6 5.4 5.7 102.3
Flight delays 6340 836 899 27863
Friedman 2380 114 213 2011

Table 4: Average running times for all algorithms (seconds).

Table 3 shows that, for larger significance values, Mondrian Forest maintains a valid
MER. However, Mondrian Forest fails to meet the MER requirements for significance values
below 0.1, which represent critical use cases with little room for errors. OnlineQRF shows a
very robust tradeoff between MER and RIS for a range of values of α. It fails to meet the
MER requirements only for α = 0.01, while maintaining an RIS competitive with MF for all
significance levels. Finally, the conformal prediction methods are able to maintain the error
guarantee across the range of significance values. The price to pay is increased interval sizes,
which with lower significance levels approach, or even exceed, the range of observed label
values.

4.6. Computational cost

This section reports the computational cost of each method, which is one of the main
considerations when selecting an online learning method. For the running time comparison,
note that Mondrian Forest is implemented in Cython using Numpy primitives. Therefore, a
perfectly fair comparison with the Java implementations of the algorithms developed for
this study is not possible without a full porting, which is outside of the scope of the current
work.

However, we mention that for each tree in a Mondrian Forest, the cost to process the
nth data point is O(log n), and hence growing for each additional data point, so the total
cost to process N data points is O(

∑N
n=1 log n) = O(logN !). In contrast, the computational

cost of the methods developed in this paper, and the underlying FIMT learner, are constant,
regardless of the number of data points. They depend only on constant values, such as the
number of features for FIMT, sketch accuracy for OnlineQRF, and the size of the calibration
set for the conformal prediction methods, and are generally bounded by the number of
features p, so the cost to train the nth data point is always O(p).

Table 4 lists the results; to ease presentation, we average the runtimes of all the different
datasets in each group. OnlineQRF is the fastest algorithm for all the data groups, with
CPApproximate a close second. We note that both approaches are an order of magnitude
faster than Mondrian Forest, confirming the theoretical computational costs of the algorithms.
Finally, we can clearly see the drawbacks of CPExact: for every data point, it requires a
pass through the entire calibration set to get updated predictions. This incurs a significant
computational cost, making it more than an order of magnitude slower than the approximate
version of the algorithm.

24

Quantifying Uncertainty in Online Regression Forests

5. Related Work

Decision trees have attracted a large body of research, both in order to extend them to
the online learning setting, and to quantify the uncertainty of their predictions. In this
section, we describe work in these two areas that is directly related to this study and refer
the interested reader to Kotsiantis (2013) for a general survey of decision tree learning.

Online decision trees and forests

One of the first adaptations of decision tress to the online setting is the Very Fast Decision
Tree (VFDT), or Hoeffding Tree (Domingos and Hulten, 2000). Unlike batch decision trees,
which recursively partition all examples when growing the tree, VFDT is a single-pass
algorithm, where new examples can only affect the leafs of the tree. The statistics of each
feature are accumulated at leafs denoted as “learning leafs” which are tested periodically to
determine whether they should be split. The Hoeffding bound provides a δ-guarantee on the
optimality of the selected split.

While single trees can deal with simpler problems and provide better interpretability,
ensemble techniques such as random forests (RF) have been shown to achieve better accuracy
for a variety of tasks (Fernández-Delgado et al., 2014). As a result, there have been multiple
studies to adapt them to the online learning setting. The bagging part of the RF algorithm
was originally adapted to online learning by Oza (2005). Saffari et al. (2009) use a combination
of the online bagging algorithm by Oza and propose a tree randomization scheme to adapt
random forests to the online setting. Adaptation to concept drift was proposed to be handled
by discarding trees that exhibit a high out-of-bag error. Gomes et al. (2017) also leverage the
online bagging algorithm by Oza (2005). The authors restrict the number of features that
leaves can consider for splitting to create an algorithm that is similar the original random
forests by Breiman, but adapted to the online setting through the use of Hoeffding trees as
the base learner. The algorithm includes a warning mechanism to deal with concept drift
that learns “background” trees, which eventually replace original trees if drift is confirmed
for a tree.

Confidence and prediction intervals in tree models

Decision and regression trees can be modified to output not only a single label, i.e., class or
regression value, but also some estimate of the confidence that the model has in its prediction.
Many alternative approaches have been proposed in the batch setting: Mentch and Hooker
(2016) use formal statistical inference to produce prediction intervals, Wager et al. (2014)
make use of the jackknife to estimate standard errors for random forests, and Chipman et al.
(2010) propose Bayesian additive regression trees that estimate a distribution over decision
trees which can be used to produce prediction intervals. Johansson et al. (2014b) propose
a model for conformal prediction that uses a batch trained decision tree that updates its
predictions in an online manner. The structure of the tree however remains static, i.e. no
online training is performed.

Lakshminarayanan et al. (2016) use Mondrian processes (Roy and Teh, 2009) to create
tree-like online prediction models which have the property of being “extensible”, i.e., the
distribution of trees in the online version is the same as the batch one. This property can
be leveraged to create online random forests that can be updated efficiently and produce

25

Vasiloudis, De Francisci Morales, Boström

models comparable to their batch version. Mondrian forests are able to predict the full
conditional distribution for the predicted variable, and therefore can produce prediction
intervals. However, the prediction model is parametric: it models the variable as a hierarchy
of Gaussians, one for each node in the tree. The benefit of having access to the complete
predictive posterior comes at cost as well: the memory and computational cost for each tree
grows for each data point processed, making them unsuitable for unbounded streaming data.

6. Conclusions

In this paper, we proposed two algorithms that quantify the prediction uncertainty of
regression forests by producing prediction intervals for unbounded data streams. We have
presented an extensive empirical investigation, which shows that our approaches outperform
näıve and state-of-the-art methods for a variety of datasets in terms of error rate and interval
size, while being an order of magnitude faster to execute.

Comparing the proposed algorithms in terms of practicality, OnlineQRF appears to offer
the best trade-off between maintaining the requested error rate and mean interval size, while
being computationally efficient. Although the conformal prediction methods are able to
better maintain the requested error rate at a confidence level above 95%, they do so at a cost
of significantly increased interval size and, in the case of CPExact, an order of magnitude
longer running time.

As evidenced by our experiments on the datasets exhibiting concept drift, when the
theoretical assumptions of the algorithms are violated, OnlineQRF is able to adapt relatively
quickly to the concept drift. CPApproximate is slower to adapt but maintains tight intervals,
and while CPExact can maintain the requested error rate, it does so at the cost of the
interval’s utility. Moreover, its computational cost makes it unsuitable for large scale data.
That said, CPExact is the only method that consistently maintains validity in both stationary
and concept drift settings, so it is our recommendation in cases where maintaining the error
rate is of utmost importance.

This work opens several important research avenues. First, the empirical results presented
here can be reinforced by providing validity guarantees for the conformal prediction methods.
They can also be extended to incorporate normalization to possibly produce more informative
intervals, see e.g., (Boström et al., 2017). Second, we aim to properly address the issues
of concept drift at the meta-algorithm level, by introducing mechanisms that inject more
uncertainty in the predictions when a concept drift is detected. Finally, we would like to
provide more scalable implementations of the methods, for example by developing efficient
distributed algorithms for OnlineQRF and the conformal prediction methods.

Appendix A. Data Descriptions

A.1. Small-scale data

In this appendix we provide a brief description of each small-scale dataset used in this study.
When possible we have used the description of the data provided by the original authors.

2dplanes: This is an artificial dataset described in Breiman et al. (1984), with variance
1 instead of 2. The 10 attributes are generated independently using:

26

Quantifying Uncertainty in Online Regression Forests

P (X1 = −1) = P (X1 = 1) = 1/2

P (Xm = −1) = P (Xm = 0) = P (Xm = 1) = 1/3,m = 2, ..., 10.

We obtain the value of the target variable Y using the rule:

if X1 = 1 set Y = 3 + 3X2 + 2X3 +X4 + σ(0, 1)

if X1 = −1 set Y = −3 + 3X5 + 2X6 +X7 + σ(0, 1)

abalone: The task is to predict the age of abalone from physical measurements. Features
include sex, dimensions, and weight.

ailerons: This dataset addresses a control problem, namely flying a F16 aircraft. The
attributes describe the status of the aeroplane, while the goal is to predict the control action
on the ailerons of the aircraft.

bank32nh: A synthetically generated dataset from a simulation of how bank-customers
choose their banks. Tasks are based on predicting the fraction of bank customers who leave
the bank because of full queues.

calHousing: The task here is to predict the median house value based on features like
median income and median age, collected from the 1990 California census.

cpu act: A collection of computer systems activity measures. The task is to predict
the portion of time that CPUs run in user mode, based on attributes such as number of
reads/writes to the system, system calls, and page requests.

energy: Appliances energy prediction dataset. The task is to predict the energy
consumption of appliances in a home. From the UCI data repository: https://archive.

ics.uci.edu/ml/datasets/Appliances+energy+prediction

elevators: This dataset also concerns the task of controlling a F16 aircraft, although
the target variable and attributes are different from the ailerons domain. In this case the
goal variable is related to an action taken on the elevators of the aircraft.

friedman: This is an artificial dataset used in Friedman (1991). The examples are
generated using the following method: Generate the values of 10 attributes, X1, ..., X10

independently, each of which is uniformly distributed over [0, 1]. Obtain the value of the
target variable Y using the equation:

Y = 10 ∗ sin(π ∗X1 ∗X2) + 20 ∗ (X3 − 0.5)2 + 10 ∗X4 + 5 ∗X5 + σ(0, 1),

where σ(0, 1) is a random number generated from a normal distribution with mean 0 and
variance 1.

house: Both the house 8L and house 16H datasets are concerned with predicting the
median price of a house in a region based on demographic composition and a state of housing
market. The number signifies the approximate difficulty of the task, L for low difficulty, H
for high.

kin8nm: This dataset is concerned with the forward kinematics of an 8 link robot arm.
Among the existing variants of this dataset we have used the variant 8nm, which is known
to be highly non-linear and medium noisy.

27

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

Vasiloudis, De Francisci Morales, Boström

mv: This is an artificial dataset with dependencies between the attribute values. It
contains three nominal and seven continuous features, which contain dependencies of the
form IF (X5 < 0.5) THEN X8 = normal ELSE X8 = large, where X5 ∼ U(−1, 1). The full
interactions can be found on the dataset’s website 5.

newsPopularity: This dataset summarizes a heterogeneous set of features about articles
published on Mashable6 in a period of two years. The goal is to predict the number of shares
in social networks (popularity) based on attributes such as the number of words, images,
and videos in the article, publication time and other word-based derived features.

puma: This is a family of datasets synthetically generated from a realistic simulation of
the dynamics of a Unimation Puma 560 robot arm. There are eight datasets in this family.
The task is to predict the angular acceleration of one of the robot arm’s links. The inputs
include angular positions, velocities and torques of the robot arm. The number in the name
of the dataset indicates the number of features, 8 or 32.

qsar-chembl: This dataset contains QSAR data (from ChEMBL7 version 17) showing
activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL ID.

sulfur: These are measurements for the amount of sulfur recovered by recovery units
that remove environmental pollutants from acid gas streams in industrial settings before
they are released into the atmosphere. The features are gas and air flows.

yprop 4 1: A drug design dataset, used in Feng et al. (2003). The task is to predict
the toxic effects of a substance based on a number of chemical descriptors.

A.2. Friedman Functions

In this section we provide a description for all the Friedman function concept drift datasets
used in this study.

We follow the concept drift types and equations used by Ikonomovska et al. (2011) for
the first Friedman function, and apply similar transformations for the second and third
functions.

Friedman #1

The original Friedman #1 function is the one used for our small-scale data: it generates
the values of 10 attributes, X1, ..., X10 independently, each of which is uniformly distributed
over [0, 1], out of which only the five first affect the dependent. We obtain the value of the
target variable Y using the equation:

Y = 10 ∗ sin(π ∗X1 ∗X2) + 20 ∗ (X3 − 0.5)2 + 10 ∗X4 + 5 ∗X5 + σ(0, 1),

where σ(0, 1) is again drawn from a standard normal distribution.

The concept drift functions are the same as in (Ikonomovska et al., 2011):

Local expanding abrupt drift: At the first change point (250k points) two regions of the input
space are introduced, each of which has a different generating function than the original.
The first region is R1 ≡ X2 < 0.3 & X4 > 0.7 & X5 < 0.3. The new generating function for

5. http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html (MV Artificial Domain)
6. https://www.mashable.com
7. https://www.ebi.ac.uk/chembl/index.php/

28

Quantifying Uncertainty in Online Regression Forests

this region is:

y1,R1 = 10 ∗X1 ∗X2 + 20 ∗ (X3 − 0.5) + 10 ∗X4 + 5 ∗X5 + σ(0, 1)

The second region is R2 ≡ X2 > 0.7 & X3 > 0.7 & X4 < 0.3 & X5 > 0.7. The new
generating function for this region is:

y1,R2 = 10 ∗ cos(X1 ∗X2) + 20 ∗ (X3 − 0.5) + eX4 + 5 ∗X5
2 + σ(0, 1).

At the second point of change at 500k points the regions are expanded by removing the last
inequality (x5 < 0.3 and x5 > 0.7, respectively). At the third change point (750k instances)
we again remove the last inequality (x4 > 0.7 and x4 < 0.3, respectively).

Global reoccurring concept drift : At the first change (500k) point we permute the positions
of independent variables so the generating function becomes:

y2 = 10 ∗ sin(π ∗X4 ∗X5) + 20 ∗ (X2 − 0.5)2 + 10 ∗X1 + 5 ∗X3 + σ(0, 1).

At the second change point (750k) the original function reoccurs.

Global slow gradual drift : In this drift we gradually introduce instances generated from
a different concept after the change point, with a linearly increasing probability, until 100k
instances later the new concept takes over. At the first change point (500k) we introduce
points from the function:

y3 = 10 ∗ sin(π ∗X4 ∗X5) + 20 ∗ (X2 − 0.5)2 + 10 ∗X1 + 5 ∗X3 + σ(0, 1).

At the second point of change (750k) we gradually introduce instances from the second
concept, which is a permutation of the previous concept:

y4 = 10 ∗ sin(π ∗X2 ∗X5) + 20 ∗ (X4 − 0.5)2 + 10 ∗X3 + 5 ∗X1 + σ(0, 1).

Friedman #2 and #3

The second and third Friedman functions model an alternating current series circuit involving
a resistor R, inductor L and capacitor C. A generator places voltage on the circuit with an
angular frequency ω = 2πf , where f the cyclic frequency.

Then the impedance, Z, and phase shift, φ, both depend on the components of the
circuit:

Z(R,ω, L,C) = [R2 + (ωL− 1/ωC)2]1/2

φ(R,ω, L,C) = tan−1
[
ωL− 1/ωC

R

]
.

We add an error factor to the values, drawn from a standard normal.
The independent variables are uniformly distributed and lie in the range:

0 ≤ R ≤ 100 ohms,

20 ≤ f ≤ 280 hertz,

0 ≤ L ≤ 1 henries,

1 ≤ C ≤ 11 microfarads.

29

Vasiloudis, De Francisci Morales, Boström

Similarly to the above we introduce artificial concept drift to each function:

Local expanding abrupt drift: For the drift regions we use the same criteria as for the
first Friedman function, only on normalized values of the independent variables, so that
they again belong in the [0, 1] range. We again permute the positions of the independent
variables when the concept changes. For the impedance Z we use the functions:

Z1,R1(R,ω, L,C) = [C2 + (ωR− 1/ωL)2]1/2

Z1,R2(R,ω, L,C) = [R2 + (RC − 1/RL)2]1/2,

for regions R1 and R2.
For the phase shift we use the functions:

φ1,R1(R,ω, L,C) = tan−1
[
RC − 1/ωL

ω

]
φ1,R2(R,ω, L,C) = tan−1

[
ωC − 1/ωR

R

]
,

for regions R1 and R2.

Global abrupt reoccurring: The new concepts that are introduced between 500k and 750k
instances for Z and φ are:

Z2(R,ω, L,C) = [C2 + (ωE − 1/ωL)2]1/2 (3)

φ2(R,ω, L,C) = tan−1
[
RC − 1/ωL

R

]
. (4)

As before, we use the original functions for instances 0-250k and 750k-1M.

Global slow gradual drift: The concepts introduced gradually at the first change point are
the same used above for the global abrupt reoccurring, i.e. Equation 3 for Z and Equation 4
for φ.

At the second change point we introduce:

Z4(R,ω, L,C) = [L2 + (ωC − 1/ωR)2]1/2

φ4(R,ω, L,C) = tan−1
[
ωC − 1/ωR

R

]
.

Appendix B. Significance Level Figures

In this appendix we provide combined MER-RIS figures for the confidence experiments of
Section 4.5, which are shown aggregated in Table 3. The results for α = 0.1 (90% confidence)
can be seen in Figure 1 so we omit it here.

These figures clearly demonstrate the inability of Mondrian Forest to maintain the
requested error, especially for a confidence of 95% and 99%, as shown in Figure 10. We also
note the ability of CPExact to maintain the requested error rate across all experiments.

30

Quantifying Uncertainty in Online Regression Forests

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

MER

0.0

0.2

0.4

0.6

0.8

1.0
R

IS
MondrianForest

OnlineQRF

CPApproximate

CPExact

(a) Significance 0.3 (70% confidence).

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

MER

0.0

0.2

0.4

0.6

0.8

1.0

R
IS

MondrianForest

OnlineQRF

CPApproximate

CPExact

(b) Significance 0.2 (80% confidence).

Figure 9: MER - RIS plots for significance 0.3 (top) and 0.2 (bottom).

31

Vasiloudis, De Francisci Morales, Boström

0.00 0.05 0.10 0.15 0.20 0.25 0.30

MER

0.0

0.2

0.4

0.6

0.8

1.0
R

IS
MondrianForest

OnlineQRF

CPApproximate

CPExact

(a) Significance 0.05 (95% confidence).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

MER

0.0

0.2

0.4

0.6

0.8

1.0

R
IS

MondrianForest

OnlineQRF

CPApproximate

CPExact

(b) Significance 0.01 (99% confidence).

Figure 10: MER - RIS plots for significance 0.05 (top) and 0.01 (bottom).

32

Quantifying Uncertainty in Online Regression Forests

References

Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei Wei, and
Ke Yi. Mergeable summaries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’12, pages 23–34, 2012.

Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm. Journal of
Machine Learning Research, 11:849–872, 2010.

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA: Massive online
analysis. Journal of Machine Learning Research, 11:1601–1604, 2010a.

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging bagging for evolving data
streams. In Machine Learning and Knowledge Discovery in Databases, pages 135–150,
2010b.

Henrik Boström, Henrik Linusson, Tuve Löfström, and Ulf Johansson. Accelerating diffi-
culty estimation for conformal regression forests. Annals of Mathematics and Artificial
Intelligence, 81(1-2):125–144, 2017.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and
Regression Trees. CRC press, 1984.

Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. BART: Bayesian Additive
Regression Trees. The Annals of Applied Statistics, 4:266–298, 2010.

Gianmarco De Francisci Morales and Albert Bifet. SAMOA: Scalable Advanced Massive
Online Analysis. Journal of Machine Learning Research, 16:149–153, 2015.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 71–80, 2000.

Jun Feng, Laura Lurati, Haojun Ouyang, Tracy Robinson, Yuanyuan Wang, Shenglan
Yuan, and S. Stanley Young. Predictive Toxicology: Benchmarking Molecular Descriptors
and Statistical Methods. Journal of Chemical Information and Computer Sciences, 43:
1463–1470, 2003.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need
hundreds of classifiers to solve real world classification problems? Journal of Machine
Learning Research, 15:3133–3181, 2014.

Jerome H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19:
1–67, 1991.

João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. Issues in evaluation of stream
learning algorithms. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 329–338, 2009.

Joao Gama. Evolving Data, Evolving Models in Economy and Finance. In MIDAS ’17:
Second Workshop on Mining Data for Financial Applications, 2017. Keynote.

33

Vasiloudis, De Francisci Morales, Boström

Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabŕıcio Enembreck,
Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. Adaptive random forests for
evolving data stream classification. Machine Learning, 106:1469–1495, 2017.

Michael B. Greenwald and Sanjeev Khanna. Quantiles and Equi-depth Histograms over
Streams, pages 45–86. Springer, 2016.

Elena Ikonomovska, João Gama, and Sašo Džeroski. Learning model trees from evolving
data streams. Data Mining and Knowledge Discovery, 23:128–168, 2011.

Ulf Johansson, Henrik Boström, Tuve Löfström, and Henrik Linusson. Regression conformal
prediction with random forests. Machine Learning, 97:155–176, 2014a.

Ulf Johansson, Cecilia Sönströd, Henrik Linusson, and Henrik Boström. Regression trees for
streaming data with local performance guarantees. In 2014 IEEE International Conference
on Big Data, pages 461–470, 2014b.

Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in streams.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 71–78, Oct 2016.

Roger Koenker. Quantile Regression. Cambridge University Press, 1996.

Sotiris Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review, 39(4):
261–283, 2013.

Balaji Lakshminarayanan, Daniel M. Roy, and Yee Whye Teh. Mondrian Forests for Large-
Scale Regression when Uncertainty Matters. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, volume 51, pages 1478–1487, 2016.

Rowan McAllister, Yarin Gal, Alex Kendall, Mark van der Wilk, Amar Shah, Roberto Cipolla,
and Adrian Weller. Concrete problems for autonomous vehicle safety: Advantages of
bayesian deep learning. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 4745–4753, 2017.

Nicolai Meinshausen. Quantile Regression Forests. Journal of Machine Learning Research,
7:983–999, 2006.

Lucas Mentch and Giles Hooker. Quantifying Uncertainty in Random Forests via Confidence
Intervals and Hypothesis Tests. Journal of Machine Learning Research, 17:1–41, 2016.

Nikunj C. Oza. Online bagging and boosting. In 2005 IEEE International Conference on
Systems, Man and Cybernetics, volume 3, pages 2340–2345, 2005.

Harris Papadopoulos and Haris Haralambous. Reliable prediction intervals with regression
neural networks. Neural Networks, 24(8):842 – 851, 2011.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive
confidence machines for regression. In Proceedings of the 13th European Conference in
Machine Learning, pages 345–356, 2002.

34

Quantifying Uncertainty in Online Regression Forests

Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression conformal predic-
tion with nearest neighbours. Journal of Artificial Intelligence Research, 40(1):815–840,
2011.

Binoy Ravindran, E. Douglas Jensen, and Peng Li. On recent advances in time/utility
function real-time scheduling and resource management. In 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05), pages
55–60, 2005.

Daniel M Roy and Yee W. Teh. The Mondrian Process. In Advances in Neural Information
Processing Systems 21, pages 1377–1384, 2009.

Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof. On-
line random forests. In 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pages 1393–1400, 2009.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
Science in Machine Learning. SIGKDD Explorations, 15:49–60, 2013.

Vladimir Vovk. On-line confidence machines are well-calibrated. In Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science, pages 187–196, 2002.

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random
world. Springer Science & Business Media, 2005.

Stefan Wager, Trevor Hastie, and Bradley Efron. Confidence Intervals for Random Forests:
The Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research, 15:
1625–1651, 2014.

Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. Quantiles over data streams: An
experimental study. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages 737–748, 2013.

35

	Introduction
	Background
	Problem definition
	Inductive Conformal Prediction
	Quantile Regression Forests

	Methods
	Conformal Prediction with Online Regression Forests
	Algorithm Description
	Optimizations
	Approximate algorithm

	Online Quantile Regression Forests

	Empirical evaluation
	Experiment Design
	Metrics
	Baselines
	Data
	Parameter Settings

	Baseline
	Small-scale data
	Concept Drift
	Significance level
	Computational cost

	Related Work
	Conclusions
	Data Descriptions
	Small-scale data
	Friedman Functions

	Significance Level Figures

