
Journal of Machine Learning Research 20 (2019) 1-8 Submitted 3/19; Revised 9/19; Published 10/19

SimpleDet: A Simple and Versatile Distributed Framework
for Object Detection and Instance Recognition

Yuntao Chen chenyuntao2016@ia.ac.cn
Institute of Automation, Chinese Academy of Sciences
Beijing, 100190, China

Chenxia Han chenxiahan18@gmail.com

Yanghao Li lyttonhao@gmail.com

Zehao Huang zehaohuang18@gmail.com
TuSimple, Beijing, China

Yi Jiang jiangyi0425@gmail.com

Naiyan Wang winsty@gmail.com
TuSimple, Beijing, China

Zhaoxiang Zhang zhaoxiang.zhang@ia.ac.cn

Institute of Automation, Chinese Academy of Sciences

Beijing, 100190, China

Editor: Balazs Kegl

Abstract

Object detection and instance recognition play a central role in many AI applications like
autonomous driving, video surveillance and medical image analysis. However, training ob-
ject detection models on large scale datasets remains computationally expensive and time
consuming. This paper presents an efficient and open source object detection framework
called SimpleDet which enables the training of state-of-the-art detection models on con-
sumer grade hardware at large scale. SimpleDet covers a wide range of models including
both high-performance and high-speed ones. SimpleDet is well-optimized for both low pre-
cision training and distributed training and achieves 70% higher throughput for the Mask
R-CNN detector compared with existing frameworks. Codes, examples and documents of
SimpleDet can be found at https://github.com/tusimple/simpledet.

Keywords: Object Detection, Instance Recognition, Distributed Training, Mixed Preci-
sion Training

1. Introduction

During recent years, challenging datasets and sophisticated detection models have emerged
with an ever-growing demand in high performance detection framework. The public avail-
able large-scale datasets grow exponentially in size. Open Images (Kuznetsova et al., 2018)
contains 1700× images compared with PASCAL VOC (Everingham et al., 2010). In order
to take full advantage of large-scale datasets, the state-of-the-art CNNs also scale up in
companion with the datasets. For example, EfficientNet (Tan and Le, 2019) requires 50×
FLOPs compared with AlexNet (Krizhevsky et al., 2012).

c©2019 Chen Yuntao, Han Chenxia, Li Yanghao, Huang Zehao, Jiang Yi, Wang Naiyan, Zhang Zhaoxiang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/19-205.html.

https://github.com/tusimple/simpledet
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/19-205.html


Chen, Han, Li, Huang, Jiang, Wang and Zhang

These two factors bring the training time of a detector from tens of GPU hours up
to tens of thousands of GPU hours, which calls for a distributed detection framework
that scales out. Built on top of MXNet, SimpleDet is a high performance open source
detection framework which provides an optimized training pipeline. Compared with existing
frameworks, SimpleDet could achieve up to 70% higher mixed precision distributed training
throughput and nearly linear scalability for the training of Mask R-CNN. Besides its high
efficiency, SimpleDet also takes user experience as priority. SimpleDet features a modular
design of detector and a configuration system in pure python, which could ease the use for
users and also provides great extendibility. To further ease the adoption of SimpleDet, we
provide pre-built Python wheels, Singularity images, and Docker containers for installation.
The full codes, examples and documents of SimpleDet can be found at https://github.

com/tusimple/simpledet.

2. Benchmark Platforms

We evaluate all frameworks on two platforms P1 and P2. P1 reflects the traditional GPGPU
accelerators and P2 reflects the specialized accelerator (Tensor Core) built for Deep Learn-
ing. Detailed configuration could be found in doc/BENCHMARK.md

P1:

• 2X E5-2682 v4 + 8X 1080Ti + 25GbE

• CUDA 9.0 + cuDNN 7.5.0

P2:

• 2X Platinum 8163 + 8X 2080Ti + 25GbE

• CUDA 10.0 + cuDNN 7.5.0

3. Features of SimpleDet

In this section, we will introduce the model coverage, dataset support, scaling efficiency,
memory saving techniques and other features for SimpleDet.

3.1. Models and Methods

SimpleDet covers both high performance (Dai et al., 2017; Zhu et al., 2019; Cai and Vas-
concelos, 2018; Li et al., 2019; Ghiasi et al., 2019) and high speed detectors (Tan and Le,
2019; Redmon and Farhadi, 2018; Hinton et al., 2014), in addition to standard benchmark
detectors (Ren et al., 2015; He et al., 2017; Lin et al., 2017). Furthermore, we provide an
integrated knowledge distillation utility which could combine merits the high performance
and high speed detectors for real-work applications.1

Standard Methods:

• Faster R-CNN

• Mask R-CNN

• RetinaNet

Performance-Oriented Methods:

• DCN v1/v2

• Cascade R-CNN

• TridentNet

• NASFPN

Speed-Oriented Methods:

• EfficientNet

• YOLOv3 (WIP)

• FCOS

• Knowledge Distill

1. Up to git commit 03b808, Sep 2019, we will keep this project up to date.

2

https://github.com/tusimple/simpledet
https://github.com/tusimple/simpledet


SimpleDet

1 2 4 8 16 32 64
number of GPU

0

50

100

150

200

250

300
im

ag
e 

/ s
ec

5.4 10.6 21.5
41.9

75.2

151.6

300.1

(a)

base +fp16 +ckpt +IABN
memory saving technique

0

1

2

3

4

5

G
P

U
 M

em
or

y 
(G

B
yt

es
)

5.1

3.5
3.0

2.6

(b)

Figure 1: (a) Scaling efficiency of SimpleDet. Throughput results are measured with a R50-
FPN Mask R-CNN on the P1 platform. (b) GPU memory usages ablation with different
memory saving techniques. Training memory usages with mixed precision training(+fp16),
memory checkpoint(+ckpt), and in-place activation BN(+IABN) are reported. Results are
obtained with a R50-C4 Faster R-CNN.

Besides a good coverage of models, SimpleDet also provides extensive pre-processing
and post-processing routines in detection with their best practices, including various data
augmentation techniques, multi-scale training and testing, soft NMS (Bodla et al., 2017)
and weighted NMS, etc. All these features are provided based on the unified and versatile
interfaces in SimpleDet, which allows the users to easily customize and extend these features
in training.

3.2. Supported Datasets

SimpleDet provides generic parsing utilities for both COCO-style and VOC-style annota-
tions. These tools allow users to utilize a wide range of existing annotations (Wang et al.,
2019). A light-weight JSON format of annotation is also supported, which enables users
to train on their own data. More details can be found in doc/DATASET.md. Currently
supported datasets includes

1. Cityscapes

2. COCO

3. DeepLesion

4. DOTA

5. Kitchen

6. KITTI

7. VOC

8. WiderFace

3.3. Distributed Training

In order to take full advantage of ever-growing data, we need to utilize data parallelism
to scale out to multiple machines. The efficiency of parameter communication lies in the
core of scalable distributed training. Thanks to the underlying MXNet, SimpleDet supports

3



Chen, Han, Li, Huang, Jiang, Wang and Zhang

mask rcnn faster rcnn retinanet
model

0

10

20

30

40

50

60

70

im
ag

e 
/ s

ec 45

54 55

36

48 49

29

38 40

data type = float32

mask rcnn faster rcnn retinanet
model

58

70 72

34

47

0

31

41
46

data type = float16

framework
simpledet
benchmark
mmdet

Figure 2: Compare with other detection frameworks on various detectors with different
input data types. Here benchmark denotes maskrcnn-benchmark. Throughput results are
obtained on the P2 platform with the R50-FPN backbone. RetinaNet with FP16 are not
supported on maskrcnn-benchmark@24c8c9, so the result is 0.

both parameter server and all-reduce algorithms for model parameter update. Sophisticated
communication algorithms like gradient aggregation and compression are also available out-
of-the-box. Along with the mixed precision training technique which will be introduced in
the next section, SimpleDet could give nearly linear scaling efficiency for a 8-node cluster as
shown in Figure 1a. SimpleDet achieves 20% higher performance on the training of Mask
R-CNN than MMDet with much lower end harwards (1080Ti vs V100, and 25Gb Ethernet
vs 100Gb Infiniband).

3.4. Mixed Precision Training

Modern specialized hardwares like NVIDIA Tensor Core provide 10 times throughput for
computation in half precision (FP16) over traditional GPGPUs. Besides speed up the
training, low precision training also reduces the memory footprint and in turn saving the
communication bandwidth. The main obstacle for the adoption in mixed precision training
is the convergence issue and accuracy drop due to the limited range of representation.
SimpleDet implements the scale loss proposed by Micikevicius et al. (2018) to mitigate
these problems. In practice, we find that the mixed precision training yields identical
training curves and detection mAP as the full precision one.

3.5. INT8 Training

Low-bit neural networks have been gaining more popularity in practice. The reduced storage
usage, memory footprint and latency makes low-bit networks especially favorable. The
traditional post-training quantization techniques work well in general scenarios but provide
little flexibility for the corner cases. SimpleDet provides an integrated pseduo-int8 training
pipeline, which enables the quantization of a wider range of models and provides more

4



SimpleDet

flexibility for the users. In practice, we find that our minmax-based quantization method
gives similar detection mAP as the full precision one.

3.6. Beyond Fixed Batch Normalization

Due to the limit of GPU memory, modern detectors are trained in a 1 ∼ 2 images per GPU
setting. But BN is usually implemented in a per-GPU manner, which forces researchers
to freeze BN statistics and parameters during training as a workaround. As indicated by
Peng et al. (2018), fixed BN detectors trained with linear learning rate scaling scheme fail
to converge when the total batch size increases beyond a threshold. This harms the scala-
bility of a detection framework. In order to mitigate this limitation, SimpleDet integrates
Cross-GPU Batch Normalization(CGBN) and Group Normalization. These normalization
methods are available to users as a one-line configuration. In practice, we find that scaling
a detector to a mini-batch size of 256 with CGBN or GN leads to stable convergence.

3.7. Memory Saving Techniques

A major limiting factor for the design of new detectors is the amount of memory available
for a single GPU. Since the main training paradigm of CNN detector is data parallelism,
designs are bounded by the amount of memory that a single GPU could provide. To miti-
gate this problem, SimpleDet combines mixed precision training, in-place activation batch
normalization (Rota Bulò et al., 2018), computation graph merge, and layer-wise memory
checkpointing (Chen et al., 2016) together to minimize the demand of GPU memory. Com-
bining all these techniques, SimpleDet could save up to 50% memory as in Figure 1b with
a marginal increase in computation cost compared with the vanilla setting.

4. Framework Design

Figure 3 gives a brief overview of the API design of SimpleDet. SimpleDet explicitly sepa-
rates the implementation of the training and the test phases to reduce the code complexity.
For example, RpnHead gives all proposals for test while only sampled proposals for training.
Components are well-decoupled and only needs to process a small sets of input and output
tensors. More details could be found in doc/FRAMEWORK_OVERVIEW.md.

5. Comparison with Other Detection Frameworks

We compare four other detection frameworks with SimpleDet in terms of training speed,
supported models and advanced features in Table 1.

1. detectron2 is the first general framework for object detection. But its training speed
is a major problem as it uses Python operators in the core part of the framework
extensively.

2. mmdetection(Chen et al., 2019) is a well-designed framework written in PyTorch
which supports a wide range of detection models. Again, the training speed is a
major problem of mmdetection as demonstrated in Figure 2.

2. https://github.com/facebookresearch/Detectron

5



Chen, Han, Li, Huang, Jiang, Wang and Zhang

image

Data Loader

rpn_feat
rcnn_feat

Backbone

rcnn_feat

rpn_feat

Neck

all_roi

RpnHead

roi_feat

RoiExtractor

prediction

RcnnHead

Post Process

In-Network

Out-Network

image

rpn_cls_target
rpn_reg_target

Data Loader

rpn_feat
rcnn_feat

Backbone

rcnn_feat

rpn_feat

Neck

sampled_roi

rpn_loss

RpnHead

roi_feat

RoiExtractor

rcnn_loss

RcnnHead

Metric

Training Phase Test Phase

output

Figure 3: An overview of a generalized R-CNN detector in SimpleDet. The colored rect-
angles denotes components for a detector and the arrowed lines denote input and output
tensors.

3. tensorpack3 supports some advanced training features like Cross-GPU Batch Nor-
malization and distributed training, but it lacks supports of some new models.

4. maskrcnn-benchmark4 is a well optimized framework with amazing training speed.
But it supports the least models of all frameworks. The apex-based FP16 support is
also quite limited.

detectron tensorpack mmdetection maskrcnn-benchmark simpledet

Commit ID 6efa99 cda5fd d71184 24c8c9 2d8144
R50-FPN FRCNN Speed 29 images/s 29 images/s 38 images/s 48 images/s 54 images/s

FasterRCNN 3 3 3 3 3
MaskRCNN 3 3 3 3 3
RetinaNet 3 7 3 3 3

Other Models few few lots few some
Cross-GPU BN 7 3 3 7 3

Mixed Precision Training 7 7 3 3 3
Distributed Training 7 3 3 7 3

Memory Checkpointing 7 7 3 7 3

Table 1: Comparison of the training speed and supported features for detectron,
tensorpack, mmdetection, maskrcnn-benchmark and simpledet.

3. https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN
4. https://github.com/facebookresearch/maskrcnn-benchmark

6



SimpleDet

6. Conclusion

In this work, we present the SimpleDet framework for object detection and instance seg-
mentation. SimpleDet features optimized mixed precision training and nearly linear scaling
distributed training over 25Gb Ethernet, which achieves 70% higher throughput for Mask
R-CNN compared with existing frameworks. It also integrates various memory-saving tech-
niques to enable the training of large detectors. Besides, SimpleDet covers a wide range of
detection models and datasets. We hope that this framework could help users design and
benchmark new detection systems more efficiently.

References

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-NMS–improving object
detection with one line of code. In International Conference on Computer Vision, 2017.

Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: Delving into high quality object detection.
In Conference on Computer Vision and Pattern Recognition, 2018.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, et al. MMDetection: Open MMLab detection toolbox and benchmark.
arXiv:1906.07155, 2019.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv:1604.06174, 2016.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In International Conference on Computer Vision, 2017.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision,
88(2):303–338, 2010.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. NAS-FPN: Learning scalable feature pyramid ar-
chitecture for object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In International
Conference on Computer Vision, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
Advances in Neural Information Processing Systems Workshop, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, 2012.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, et al. The open images dataset v4: Unified
image classification, object detection, and visual relationship detection at scale. arXiv:1811.00982,
2018.

Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware trident networks for
object detection. In International Conference on Computer Vision, 2019.

7



Chen, Han, Li, Huang, Jiang, Wang and Zhang

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In International Conference on Computer Vision, 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In International Conference on Learning Representations, 2018.

Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu, and Jian Sun.
MegDet: A large mini-batch object detector. In Conference on Computer Vision and Pattern
Recognition, 2018.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv:1804.02767, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems,
2015.

Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for
memory-optimized training of DNNs. In Conference on Computer Vision and Pattern Recog-
nition, 2018.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, 2019.

Xudong Wang, Zhaowei Cai, Dashan Gao, and Nuno Vasconcelos. Towards universal object detection
by domain attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable ConvNets v2: More deformable,
better results. In Conference on Computer Vision and Pattern Recognition, 2019.

8


	Introduction
	Benchmark Platforms
	Features of SimpleDet
	Models and Methods
	Supported Datasets
	Distributed Training
	Mixed Precision Training
	INT8 Training
	Beyond Fixed Batch Normalization
	Memory Saving Techniques

	Framework Design
	Comparison with Other Detection Frameworks
	Conclusion

