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Abstract

The promise of augmenting accurate predictions provided by modern neural networks with
well-calibrated predictive uncertainties has reinvigorated interest in Bayesian neural net-
works. However, model selection—even choosing the number of nodes—remains an open
question. Poor choices can severely affect the quality of the produced uncertainties. In this
paper, we explore continuous shrinkage priors, the horseshoe, and the regularized horse-
shoe distributions, for model selection in Bayesian neural networks. When placed over node
pre-activations and coupled with appropriate variational approximations, we find that the
strong shrinkage provided by the horseshoe is effective at turning off nodes that do not help
explain the data. We demonstrate that our approach finds compact network structures even
when the number of nodes required is grossly over-estimated. Moreover, the model selec-
tion over the number of nodes does not come at the expense of predictive or computational
performance; in fact, we learn smaller networks with comparable predictive performance
to current approaches. These effects are particularly apparent in sample-limited settings,
such as small data sets and reinforcement learning.

Keywords: Bayesian Neural Networks, Model Selection, Horseshoe Priors, Variational
Inference, Structured approximations

1. Introduction

Bayesian neural networks (BNNs) treat the weights in a neural network as random variables.
By performing posterior inference on these weights, BNNs can avoid overfitting in the regime
of small data, provide posterior uncertainty estimates, and model a large class of stochastic
functions with heteroskedastic and multi-modal noise. These properties have resulted in
BNNs being adopted in applications ranging from Bayesian optimization (Springenberg
et al., 2016) and active learning (Gal et al., 2016a) to reinforcement learning (Blundell
et al., 2015; Depeweg et al., 2017).

While there have been many recent advances in training BNNs (Hernández-Lobato and
Adams, 2015; Blundell et al., 2015; Gal and Ghahramani, 2016; Louizos and Welling, 2016;
Hernandez-Lobato et al., 2016), model-selection has received relatively less attention. Un-
fortunately, the consequences for a poor choice of architecture are severe: too few nodes,
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Figure 1: Predictive distributions from a single layer BNN with N (0, 1) priors over
weights, ReLU activations, containing ten, hundred, and thousand units, trained
on noisy samples (in black) from a smooth one dimensional function shown in
black, y = N (sin(x), 0.1). With fixed data increasing BNN capacity leads to
large predictive uncertainties.

and the BNN will not be flexible enough to model the function of interest; too many nodes,
and the BNN predictions will have large variance. We note that these Bayesian model
selection concerns are subtly different from overfitting and underfitting concerns that arise
from maximum likelihood training: here, more expressive models (e.g. those with more
nodes) require more data to concentrate the posterior. When there is insufficient data, the
posterior uncertainty over the BNN weights will remain large, resulting in large variances
in the BNN’s predictions. We illustrate this issue in Figure 1, where we see a BNN trained
with a large number parameters has higher variance around its predictions than one with
fewer. Thus, the core concern of Bayesian model selection is to identify a model class ex-
pressive enough that it can explain the observed data set, but not so expressive that it can
explain everything (Rasmussen and Ghahramani, 2001; Murray and Ghahramani, 2005).

Model selection in BNNs is challenging because the number of nodes in a layer is a dis-
crete quantity, forcing practitioners to perform onerous searches over different layer sizes. In
this work, we demonstrate that we can perform computationally-efficient and statistically-
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effective model selection in Bayesian neural networks by placing horseshoe (Carvalho et al.,
2009) and related priors over the variance of weights incident to each node in the network.
These priors can be interpreted as a continuous relaxation of a spike-and-slab approach that
would assign a discrete on-off variable to each node. The prior has heavy tails and supports
both zero values and large values. Thus, if we fix the mean of the incident weights to be
zero, nodes with small variance parameters are effectively turned off—all incident weights
will be close to zero—while nodes with large variance parameters can be interpreted as
active. In this way, we can perform model selection over the number of nodes required in
a Bayesian neural network. The continuous relaxation provided by these priors keep the
model differentiable; with appropriate parameterization, we can take advantage of recent
advances in variational inference (e.g., Kingma and Welling, 2014) for training. Especially in
sample-limited settings, we demonstrate that our approach returns compact network struc-
tures even when the required number of nodes in the network is grossly over-estimated;
these compact structures sacrifice little—and sometimes even improve—predictive perfor-
mance. We demonstrate the value of these prediction gains through a reinforcement learning
application.

Finally, we note that aspects of this work have appeared in (Ghosh and Doshi-Velez,
2017a,b; Ghosh et al., 2018); here we organize these results and provide a cohesive picture
on priors for model selection in Bayesian neural networks.

2. Bayesian Neural Networks

A deep neural network with L−1 hidden layers is parameterized by a set of weight matrices
W = {Wl}L1 , with each weight matrix Wl being of size R(Kl−1+1)×Kl where Kl is the number
of units (excluding the bias) in layer l. The neural network maps an input x ∈ RD×1 to
a response f(W, x) by recursively applying the transformation h(W T

l [zl−1; 1]), where the
vector zl is the input with the initial input z0 = x, and h is a point-wise non-linearity, for
instance the rectified-linear function, h(a) = max(0, a).

A Bayesian neural network captures uncertainty in the weight parametersW by endow-
ing them with distributions W ∼ p(W). Given a data set of N observation-response pairs
D = {xn, yn}Nn=1, we are interested in estimating the posterior distribution,

p(W | D) =
p(W)

∏N
n=1 p(yn | f(W, xn))

p(D)
,

and leveraging the learned posterior for predicting responses to unseen data x∗, p(y∗ | x∗) =∫
p(y∗ | f(W, x∗))p(W | D)dW. The prior p(W) ostensibly allows one to encode problem-

specific beliefs as well as general properties about weights. Specifying meaningful priors for
Bayesian neural networks, however, remains challenging.

2.1. Priors over neural network weights

Zero-mean Gaussian distributions are perhaps the most commonly used prior on weights.
They have been explored both in the classic works of (MacKay, 1992; Neal, 1993, 1997)
as well as in more recent approaches (Louizos and Welling, 2016; Hernández-Lobato and
Adams, 2015; Louizos and Welling, 2017; Pawlowski et al., 2017). Log uniform (Kingma
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et al., 2015), two component scale mixture of Gaussians (Blundell et al., 2015), layer wise
structured Gaussians (Louizos and Welling, 2016; Sun et al., 2017), as well as data space
priors (Hafner et al., 2019) have been proposed. Buntine and Weigend (1991) explored
entropic priors on BNN weights. While zero mean fixed variance Gaussian priors on weights
are a convenient choice they can lead to undesirable pathologies (Figures 1, 4) — inflated
predictive uncertainties, especially when used in conjunction with fully factorized variational
inference. To see why such pathologies arise, note that the prior function, induced by a
network with standard Gaussian weight priors, when evaluated at two data points exhibits
a covariance that scales with the number of units in the penultimate layer (Williams, 1997).
Further, since neural networks are over-parameterized, the prior can overwhelm the data,
especially in the small data, wide network limit leading to high predictive uncertainties in
these regimes. A work around is to scale the prior variances by the number of inputs as
prescribed by Neal (1997). Alternatively, one could exploit the fact that weights of a network
are effectively lower dimensional and attempt to parametrize the network in this lower
dimensional space (Pradier et al., 2018; Izmailov et al., 2019). Such a parameterization may
prevent the prior from overwhelming small amounts of data. Another option for avoiding
such issues is to use hierarchical priors over weights (MacKay, 1995). This is the direction
explored in this paper. In particular, we employ the horseshoe distribution (Carvalho et al.,
2009), an example of a global-local shrinkage prior (Polson and Scott, 2010), that in addition
to alleviating the inflated predictive uncertainty issue allows us to recover smaller networks.

3. Bayesian Neural Networks with Structured Sparsity

Let the node weight vector wkl ∈ R(Kl−1+1) denote the set of weights incident into unit k
of hidden layer l. There exist several ways to induce group sparsity, that is, turn all the
weights incident to a node small. In this work, we focus on the use of horseshoe priors to
induce group sparsity.

3.1. Horseshoe Priors

We assume that each node weight vector wkl is conditionally independent and distributed
according to a Gaussian scale mixture,

wkl | τkl, υl ∼ N (0, (τ2
klυ

2
l )I), τkl ∼ C+(0, b0), υl ∼ C+(0, bg). (1)

Here, I is an identity matrix, a ∼ C+(0, b) is the Half-Cauchy distribution with density
p(a|b) = 2/πb(1 + (a2/b2)) for a > 0, τkl is a unit specific scale parameter, while the scale
parameter υl is shared across the layer.

The distribution over weights in Equation 1 defines the horseshoe prior (Carvalho et al.,
2009). It exhibits Cauchy-like flat, heavy tails while maintaining an infinitely tall spike
at zero. Consequently, it has the desirable property of allowing sufficiently large node
weight vectors wkl to escape un-shrunk—by having a large scale parameter—while providing
severe shrinkage to smaller weights. This is in contrast to Lasso style regularizers and their
Bayesian counterparts that provide uniform shrinkage to all weights. By forcing the weights
incident on a unit to share scale parameters, the prior in Equation 1 induces sparsity at the
unit level, turning off units that are unnecessary for explaining the data well. Intuitively,
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Figure 2: Horseshoe and regularized horseshoe densities. Both densities exhibit a
spike at zero. While the horseshoe exhibits heavy Cauchy-like tails, the tails of
the regularized Horseshoe are (soft) truncated. The soft truncation is governed
by a zero-mean Gaussian density N (0, c2), shown in the top row. Smaller values
of c lead to sharper truncation. To model uncertainty in our beliefs about the
truncation strength c, we place an inverse Gamma prior, c2 ∼ Inv-Gamma(ca, cb).
In the above plots, the horseshoe parameters b0 and bg are both set to one.

the shared layer wide scale υl pulls all units in layer l to zero, while the heavy tailed unit
specific τkl scales allow some of the units to escape the shrinkage.

3.2. Regularized Horseshoe Priors

While the horseshoe prior has some good properties, when the amount of training data is
limited, units with essentially no shrinkage can produce large weights and adversely affect
generalization performance of HS-BNNs, with minor perturbations of the data leading to
vastly different predictions. To deal with this issue, we consider a related alternative, the
regularized horseshoe prior (Piironen and Vehtari, 2017). Under this prior wkl is drawn
from,

wkl | τkl, υl, c ∼ N (0, (τ̃2
klυ

2
l )I), τ̃2

kl =
c2τ2

kl

c2 + τ2
klυ

2
l

. (2)

Note that for the weight node vectors that are strongly shrunk to zero, we will have tiny
τ2
klυ

2
l . When, τ2

klυ
2
l � c2, τ̃2

kl → τ2
klυ

2
l , recovering the original horseshoe prior. On the other

hand, for the un-shrunk weights τ2
klυ

2
l will be large, and when τ2

klυ
2
l � c2, τ̃2

kl → c2. Thus,
these weights under the regularized horseshoe prior follow wkl ∼ N (0, c2I) and c acts as a
weight decay hyper-parameter. We place a Inv-Gamma(ca, cb) prior on c2. Another way to
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interpret the regularized horseshoe prior is to observe that,

wkl | τkl, υl, c ∝ N (0, (τ2
klυ

2
l )I)N (0, c2I).

This view makes it clear that the regularized variant soft thresholds the horseshoe tails by
penalizing large values of wkl through N (0, c2I). See Figure 2 for a visual comparison of the
densities of the horseshoe and the regularized horseshoe distributions for different values of
c and Figure 24 for a comparison with the Laplace distribution. In the experimental section,
we find that the regularizedHS-BNN does indeed improve generalization over HS-BNN.

3.3. Half-Cauchy re-parameterization for variational learning.

Both the standard and regularized horseshoe priors involve the Half-Cauchy distribution.
While a direct parameterization of the Half-Cauchy distribution in Equation 1 is possible,
it leads to challenges during variational learning: standard exponential family variational
approximations struggle to capture the thick Cauchy tails, and using Cauchy approximating
family leads to high variance gradients.

Therefore, we use a more convenient auxiliary variable parameterization (Wand et al.,
2011),

a ∼ C+(0, b)⇐⇒ a2 | λ ∼ Inv-Gamma(
1

2
,

1

λ
);λ ∼ Inv-Gamma(

1

2
,

1

b2
),

where v ∼ Inv-Gamma(a, b) is the Inverse Gamma distribution with density
p(v) ∝ v−a−1exp{−b/v} for v > 0. Since the number of output units is fixed by the problem
at hand, there is no need for sparsity inducing prior for the output layer. We place isotropic
Gaussian priors, wkL ∼ N (0, κ2I) with vague hyper-priors κ ∼ C+(0, bκ = 5) on the output
layer weights.

The joint distribution of the horseshoe Bayesian neural network is then given by,

pHS(D, θ) =r(κ, ρκ | bκ)

KL∏
k=1

N (wkL | 0, κ2I)
L∏
l=1

{
r(υl, ϑl | bg)

Kl∏
k=1

r(τkl, λkl | b0)N (wkl | 0, (τ2
klυ

2
l )I)

} N∏
n=1

p(yn | f(W, xn)),

where p(yn|f(W, xn)) is an appropriate likelihood function, and,

r(a, λ|b) = Inv-Gamma(a2|1/2, 1/λ)Inv-Gamma(λ|1/2, 1/b2),

with θ = {W, T , κ2, ρκ}, T = {{τkl}K,Lk=1,l=1, {υl}Ll=1, {λkl}
K,L
k=1,l=1, {ϑl}Ll=1}. An analogous

reparameterization can be applied to the Bayesian neural network with regularized horse-
shoe priors:

pregHS(D, θ) =p(c | ca, cb)r(κ, ρκ | bκ)

KL∏
k=1

N (wkL | 0, κ2I)
L∏
l=1

{
r(υl, ϑl | bg)

Kl∏
k=1

r(τkl, λkl | b0)N (wkl | 0, (τ̃2
klυ

2
l )I)

} N∏
n=1

p(yn | f(W, xn)),

with θ = {W, T , κ2, ρκ, c
2}, T = {{τ2

kl}
K,L
k=1,l=1, {υ2

l }Ll=1, {λkl}
K,L
k=1,l=1, {ϑl}Ll=1}.
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3.4. Non-Centered Parameterization

Both the standard and regularized horseshoe priors exhibit strong correlations between the
weights wkl and the scales τklυl. While their favorable sparsity inducing properties stem
from this coupling, it also gives rise to coupled posteriors that exhibit pathological funnel
shaped geometries (Betancourt and Girolami, 2015; Ingraham and Marks, 2017) that are
difficult to reliably sample or approximate. Fully factorized approximations are particularly
problematic and can lead to non-sparse solutions erasing the benefits of using the horseshoe
prior.

Adopting non-centered parameterizations (Ingraham and Marks, 2017), helps alleviate
the issue. Consider a reformulation of Equation 2,

βkl ∼ N (0, I), wkl = τ̃klυlβkl, (3)

where the distribution on the scales are left unchanged. Since the scales and weights are
sampled from independent prior distributions and are marginally uncorrelated, such a pa-
rameterization is referred to as non-centered. The likelihood is now responsible for intro-
ducing the coupling between the two, when conditioning on observed data. Non-centered
parameterizations are known to lead to simpler posterior geometries (Betancourt and Giro-
lami, 2015). Figure 3 summarizes the conditional dependencies assumed by the centered
and the non-centered horseshoe BNN models. As with the Half-Cauchy reparameterization,
this parameterization does not change the functional form of the standard or regularized
horseshoe prior, but it will improve our ability to perform inference.

4. Variational Inference for Model Learning

We approximate the intractable posterior p(θ | D) with a computationally convenient al-
ternative. The first step involves selecting a tractable family of distributions q(θ | φ), with
free variational parameters φ. Next, learning involves optimizing φ such that the Kullback-
Liebler divergence between the approximation and the true posterior, KL(q(θ | φ)||p(θ | D))
is minimized. This is equivalent to maximizing the lower bound to the marginal likelihood
(or evidence) p(D), p(D) ≥ L(φ) = Eq(θ|φ)[ln p(D, θ)] + H[q(θ | φ)].

4.1. Variational Approximation Choices

The choice of the approximating family governs the quality of inference. The more flex-
ible the approximating family the better it approximates the true posterior. Below, we
first describe a straight-forward fully-factored approximation and then more sophisticated
structured approximations that we demonstrate to have better statistical properties.

4.1.1. Fully Factorized Approximation

The simplest possibility is to use a fully factorized variational family,

q(θ | φ)

=
∏

a∈{c,κ,ρκ}
q(a | φa)

∏
i,j,l

q(βij,l | φβij,l)
∏
k,l

q(τ2
kl | φτkl)q(λkl | φλkl)

∏
l

q(υ2
l | φυl)q(ϑl | φϑl).

(4)
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Figure 3: Graphical models capturing the conditional dependencies assumed by Bayesian
Neural Networks with horseshoe priors. Left: Centered parameterization, Right:
Non-centered parameterization necessary for robust inference.

Restricting the variational distribution for the non-centered weight βij,l between units i in
layer l−1 and j in layer l, q(βij,l | φβijl) to the Gaussian family N (βij,l | µij,l, σ2

ij,l), and the

non-negative scale parameters τ2
kl and υ2

l and the variance of the output layer weights to the
log-Normal family, q(ln τ2

kl | φτkl) = N (µτkl , σ
2
τkl

), q(ln υ2
l | φυl) = N (µυl , σ

2
υl

), and q(ln κ2 |
φκ) = N (µκ, σ

2
κ), allows for the development of straightforward inference algorithms (Ghosh

and Doshi-Velez, 2017a; Louizos et al., 2017). While other variational approximations for
the scale parameters are possible, the log-Normal family is particularly convenient. It
provides a simple parameterization allowing for reparameterized gradients, it is closed under
multiplication, the product of global and local scales is thus another log-Normal distribution,
and as we will see later in this section, it allows for convenient modeling of correlations
between weights and scales. It is not necessary to impose distributional constraints on
the variational approximations of the auxiliary variables ϑl, λkl, or ρκ. Conditioned on
the other variables, the optimal variational family for these latent variables follow inverse
Gamma distributions. We refer to this approximation as the factorized approximation.

Parameter-tying in the fully-factorized approximation. The conditional variational dis-
tribution on wkl implied by Equations 3, 4 is q(wkl | τkl, υl) = N (wkl | τklυlµkl, (τklυl)2Ψ),
where Ψ is a diagonal matrix with elements populated by σ2

ij,l and µkl consists of the cor-
responding variational means µij,l. The distributions of weights incident into a unit are
thus coupled through τklυl while all weights in a layer are coupled through the layer wise
scale υl. This view suggests that using a simpler approximating family q(βij,l | φβijl) =
N (βij,l | µij,l, 1) results in an isotropic Gaussian approximation q(wkl | τkl, υl) = N (wkl |
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τklυlµkl, (τklυl)
2I). Crucially, the scale parameters τklυl still allow for pruning of units

when the scales approach zero. Moreover, by tying the variances of the non-centered
weights together this approximation effectively halves the number of variational param-
eters to be learned and stored. Variational parameters associated with the network weights
grow quadratically with network width while the scale and auxiliary variable parameters
grow linearly. Hence, storage and learning costs in large networks are dominated by the
weight parameters.

We find in Section 6.5 that such parameter tying speeds up training. However, this
computational benefit comes at a price. The tied approximation retains the model selection
benefits, but the variational distributions for the units that escape shrinkage are forced to
be isotropic. This can lead to poorer predictive performance on regression tasks.

4.1.2. Structured Variational Approximations

Although computationally convenient, the factorized approximations fail to capture poste-
rior correlations among the network weights, and more pertinently for the horseshoe prior,
between weights and their scales.

Capturing layer-wise weight correlations We take a step towards a more structured
variational approximation by using a layer-wise matrix variate normal (Gupta and Nagar,
1999) variational distribution for the non-centered weights while retaining the form of the
other factors from Equation 4. Let βl ∈ R(Kl−1+1)×Kl denote the set of weights between
layers l−1 and l, then under this variational approximation we have, q(βl | φβl) =MN (βl |
Ml, Ul, Vl), where Ml ∈ R(Kl−1+1)×Kl is the mean, Vl ∈ RKl×Kl and Ul ∈ R(Kl−1+1)×(Kl−1+1)

capture the covariances among the columns and rows of βl, thereby modeling dependencies
among the variational approximation to the weights in a layer. Louizos and Welling (2016)
demonstrated that even when Ul and Vl are restricted to be diagonal, the matrix Gaussian
approximation can lead to significant improvements over fully factorized approximations for
standard BNNs. We call this the semi-structured approximation because it only captures
correlations among weights but not between weights and scales.

Capturing weight-scale correlations The horseshoe prior exhibits strong correlations be-
tween weights and their scales, which encourages strong posterior coupling between βkl
and τkl. However, the variational families considered to this point do not account for
this dependency. For effective shrinkage towards zero, it is important that the varia-
tional approximations are able to capture this strong dependence. We begin by defining,

Bl =

[
βl
νTl

]
, νl = [ν1l, . . . , νKll]

T , and νkl = ln τ2
kl. Using the variational approximation

q(Bl | φBl) =MN (Bl |Ml, Ul, Vl), allows us to retain the coupling between weights incident
onto a unit and the corresponding unit specific scales, with appropriate parameterizations
of Ul. In particular, we note that a diagonal Ul fails to capture the necessary correlations,
and defeats the purpose of using a matrix Gaussian variational family to model the pos-
terior of Bl. To retain computational efficiency while capturing dependencies among the
rows of Bl we enforce a low-rank structure, Ul = Ψl + hlh

T
l , where Ψl ∈ R(Kl−1+2)×(Kl−1+2)

is a diagonal matrix and hl ∈ R(Kl−1+2)×1 is a column vector. We retain a diagonal struc-
ture for Vl ∈ RKl×Kl . We refer to this as the structured approximation. In Section 6, we
find that this structured approximation indeed leads to stronger shrinkage towards zero in
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Table 1: Variational Approximation Families.

Approximation Description

Factorized q(νl | φνl)q(βl | φβl) =
∏
i,j,l

N (µij,l, σ
2
ij,l)

∏
k,l

q(νkl | φνkl)

Factorized (tied) q(νl | φνl)q(βl | φβl) =
∏
i,j,l

N (µij,l, 1)
∏
k,l

q(νkl | φνkl)

Semi-structured q(νl | φνl)q(βl | φβl) =MN (βl |Ml, Ul, Vl)
∏
k,l

q(νkl | φνkl)

Structured q(βl, νl | φBl) =MN (Bl |Ml, Ul, Vl)

the recovered solutions. When combined with an appropriate pruning rule, it significantly
compresses networks with excess capacity.

Table 1 summarizes the variational approximations introduced in this section. All our
variational approximations employ a, possibly correlated, Gaussian distribution for the
weights and log-Normal distributions for the scale parameters. These choices were primar-
ily governed by computational ease. The Gaussian distribution on weights allows for the
use of the “local reparameterization trick” (Kingma et al., 2015), and consequently low
variance gradients. The log-Normal distributions are similarly amenable to reparameter-
ized gradients again allowing for low variance gradients. Moreover, it allows us to easily
model correlations between the weights and the log scales through a multivariate Gaussian
distribution. Other choices of variational distributions are certainly possible. Exploring
variational distribution families that better trade off computational ease for accuracy is an
interesting direction for future work.

4.2. Black Box Variational Inference

Irrespective of the chosen variational family, the resulting evidence lower bound (ELBO),

L(φ) =
∑
n

Eq(θ|φ)[ln p(yn | f(θ, xn))] + Eq(θ|φ)[ln p(θ | b0, bg, bκ, ca, cb)] + H[q(θ | φ)], (5)

is challenging to evaluate. Here we have used β to denote the set of all non-centered weights
in the network. The non-linearities introduced by the neural network and the potential
lack of conjugacy between the neural network parameterized likelihoods and the horseshoe
priors render the first expectation in Equation 5 intractable. Consequently, the traditional
prescription of optimizing the ELBO by cycling through a series of fixed point updates is
no longer available.

Recent progress in black box variational inference (Kingma and Welling, 2014; Rezende
et al., 2014; Ranganath et al., 2014; Titsias and Lázaro-gredilla, 2014) subverts this dif-
ficulty. These techniques compute noisy unbiased estimates of the gradient ∇φL̂(φ), by
approximating the offending expectations with unbiased Monte-Carlo estimates and relying
on either score function estimators (Williams, 1992; Ranganath et al., 2014) or reparame-
terization gradients (Kingma and Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-
gredilla, 2014) to differentiate through the sampling process. With the unbiased gradi-
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ents in hand, stochastic gradient ascent can be used to optimize the ELBO. In practice,
reparameterization gradients exhibit significantly lower variances than their score func-
tion counterparts and are typically favored for differentiable models. The reparameteri-
zation gradients rely on the existence of a parameterization that separates the source of
randomness from the parameters with respect to which the gradients are sought. For
our Gaussian variational approximations, the well known non-centered parameterization,
ζ ∼ N (µ, σ2)⇔ ε ∼ N (0, 1), ζ = µ+ σε, allows us to compute Monte-Carlo gradients,

∇µ,σEqw [g(w)]⇔ ∇µ,σEN (ε|0,1)[g(µ+ σε)] ≈ 1

S

∑
s

∇µ,σg(µ+ σε(s)), (6)

for any differentiable function g and ε(s) ∼ N (0, 1). Furthermore, practical implementations
of variational Bayesian neural networks typically use a further re-parameterization to lower
variance of the gradient estimator. They sample from the implied variational distribution
over a layer’s pre-activations instead of directly sampling the much higher dimensional
weights (Kingma et al., 2015).

4.2.1. Variational distribution on pre-activations for structured
approximating families

While the “local” re-parametrization is straightforward for the factorized and semi-structured
approximations, it is more involved for the structured case. We observe that by factorizing
q(Bl | φBl) as q(βl | νl, φβl)q(νl | φνl) and that conditioned on νl ∼ q(νl | φνl), βl follows
another matrix Gaussian distribution. This conditional variational distribution is given by,
q(βl | νl, φβl) = MN (Mβl|νl , Uβl|νl , V ). The conditional mean Mβl|νl and row variances

Uβl|νl expressions are derived in the supplement. It then follows that b = βTl a for an input

a ∈ R(Kl−1+1)×1 into layer l, is distributed as,

b | a, νl, φβl ∼ N (b | µb,Σb), (7)

with µb = MT
βl|νla, and Σb = (aTUβl|νla)V . Since, aTUβl|νla is scalar and V is diagonal, Σ is

diagonal as well. For regularized HS-BNN, recall that the pre-activation of node k in layer
l, is ukl = τ̃klυlb, and the corresponding variational posterior is,

q(ukl | µukl , σ2
ukl

) = N (ukl | µukl , σ2
ukl

); µukl = τ̃
(s)
kl υ

(s)
l µbk; σ2

ukl
= τ̃

(s)2

kl υ
(s)
l

2
Σbk,k, (8)

where τ
(s)
kl , υ

(s)
l , c(s) are samples from the corresponding log-Normal posteriors and τ̃

(s)
kl is

constructed as c(s)2
τ

(s)
kl

2
/(c(s)2

+ τ
(s)
kl

2
υ

(s)
l

2
). Thus, to compute the pre-activation distribu-

tions under the structured variational approximation, we first sample the vector νl and then
sampling the pre-activations conditioned on νl and inputs into the layer. Crucially, we can
perform all operations without having to sample the high dimensional weights βl.

4.2.2. Algorithm

We now have a simple prescription for optimizing Equation 5. Recursively sampling the
variational posterior of Equation 8 for each layer of the network, allows us to forward
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propagate information through the network. Using the reparameterizations (Equation 6),
allows us to differentiate through the sampling process. We compute the necessary gradi-
ents through reverse mode automatic differentiation tools (Maclaurin et al., 2015). With
the gradients in hand, we optimize L(φ) with respect to the variational weights φB, per-unit
scales φτkl , per-layer scales φυl , and the variational scale for the output layer weights, φκ
using Adam (Kingma and Ba, 2015). For the structured approximation, we found a further
heuristic — wherein we restrict the variational distributions such that the parameters Ψ, V ,
and h lie in the `2 unit-ball produced better predictive performance. A more rigorous treat-
ment of this heuristic is left as future work. Conditioned on these, the optimal variational
posteriors of the auxiliary variables ϑl, λkl, and ρκ follow inverse gamma distributions.
Fixed point updates that maximize L(φ) with respect to φϑl , φλkl , φρκ , holding the other
variational parameters fixed are available. It can be shown that,

q(λkl | φλkl) = Inv-Gamma(λkl | 1,E[
1

τ2
kl

] +
1

b20
). (9)

The distributions of the other auxiliary variables are analogous. By alternating between
gradient and fixed point updates to maximize the ELBO in a coordinate ascent fashion we
learn all variational parameters jointly (see Algorithm 1).

4.2.3. Computational Considerations

The primary computational bottleneck for the structured approximation arises in comput-
ing the pre-activations in Equation 7. While computing Σb in the factorized approximation
involves a single inner product, in the structured case it requires the computation of the
quadratic form aTUMβl|νl

a and a point wise multiplication with the elements of Vl. Ow-
ing to the diagonal plus rank-one structure of UMβl|νl

, we only need two inner products,
followed by a scalar squaring and addition to compute the quadratic form and Kl scalar
multiplications for the point-wise multiplication with Vl. Thus the structured approxima-
tion is only marginally more expensive. Further, it uses only (Kl + 2)× (Kl−1 + 1) weight
variance parameters per layer, instead of Kl× (Kl−1 + 1) parameters used by the factorized
approximation. Not having to compute gradients and update these additional parameters
further mitigates the performance difference.

Algorithm 1 Training with Standard and Regularized HS-BNNs

1: Input Model p(D, θ), variational approximation q(θ | φ), number of iterations T.
2: Output: Variational parameters φ
3: Initialize variational parameters φ.
4: for T iterations do
5: Update φc, φκ, φγ , {φBl}l, {φυl}l ← ADAM(L(φ)).
6: for all hidden layers l do
7: Conditioned on φBl , φυl update φϑl , φλkl using fixed point updates (Equation 9).
8: end for
9: Conditioned on φκ update φρκ via the corresponding fixed point update.

10: end for
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4.3. Pruning Rule

The group horseshoe and its regularized variant provide strong shrinkage towards zero for
small wkl. However, since we infer a posterior distribution the shrunk weights, although
tiny, are never actually zero. A user-defined thresholding rule is required to prune away
the shrunk weights. In previous work, Louizos et al. (2017) first summarized the inferred
posterior distributions using a point estimate and then used the point summary to define
a thresholding rule. Here, we propose an alternate thresholding rule that does not rely
on a point summary of the posterior. We prune away a unit if p(τklυl < δ) > p0, that
is, when the probability of the scale being small is sufficiently large. The scale δ and the
probability p0 are user defined parameters, with τkl ∼ q(τkl | φτkl) and υl ∼ q(υl | φυl).
To see why this rule is sensible, recall that for units which experience strong shrinkage
the regularized horseshoe tends to the horseshoe. Under the horseshoe prior, τklυl governs
the (non-negative) scale of the weight node vector wkl. Therefore, under our thresholding
rule, we prune away nodes whose posterior scales, place probability greater than p0 below a
sufficiently small threshold δ. In our experiments, we set p0 = 0.9 and δ to either 1e− 3 or
1e− 5 (for the year data set). Further, under our variational approximations, τklυl follows
a log-Normal distribution. Evaluating the thresholding rule is as simple as evaluating the
log-Normal cumulative distribution.

5. Related Work

Early work on Bayesian neural networks can be traced back to (Buntine and Weigend, 1991;
MacKay, 1992; Neal, 1993). Neal (1993) introduced Hamiltonian Monte Carlo (HMC) for
exploring the posterior over network weights, while MacKay (1992); Buntine and Weigend
(1991) relied on Laplace approximation to characterize the network posterior. HMC re-
mains the gold standard for posterior inference in BNNs. However, it does not scale well to
modern architectures or the large data sets required to learn them. Similarly, vanilla ap-
plication of the Laplace approximation has difficulty scaling to modern architectures with
millions of parameters. Recent advances in stochastic MCMC methods (Welling and Teh,
2011; Chen et al., 2014) and stochastic variational methods (Blundell et al., 2015; Rezende
et al., 2014), black-box variational inference and alpha-divergence minimization (Hernandez-
Lobato et al., 2016; Ranganath et al., 2014), probabilistic backpropagation (Hernández-
Lobato and Adams, 2015) as well as scalable Laplace approximations (Ritter et al., 2018)
have reinvigorated interest in BNNs by allowing efficient scalable inference. We direct the
interested reader to Yao et al. (2019) for a thorough comparison of modern inference algo-
rithms for BNNs.

Work on learning structure in BNNs has received less attention. Blundell et al. (2015) in-
troduce a mixture-of-Gaussians prior on the weights, with one mixture tightly concentrated
around zero, thus approximating a spike and slab prior over weights. Others (Kingma
et al., 2015; Gal and Ghahramani, 2016) have noticed connections between Dropout and
approximate variational inference (Srivastava et al., 2014). In particular, Molchanov et al.
(2017) show that the interpretation of Gaussian dropout as performing variational inference
in a network with log uniform priors over weights leads to sparsity in weights. The goal
of turning off edges is very different than the approach considered here, which performs
model selection over the appropriate number of nodes. Yet others (Neklyudov et al., 2017)
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have proposed pruning units via truncated log-normal priors over unit scales. However,
they do not place priors over network weights and are unable to infer posterior uncertainty
over weights, which may lead to poorer predictive uncertainties. Related but orthogonal
research (Adams et al., 2010; Song et al., 2017) has focused on the problem of structure
learning in deep belief networks.

Closely related to this work is the work of Louizos et al. (2017). They also consider
group Horseshoe priors for model compression. In this paper, we take a closer look at the
model selection properties afforded by such priors. We also provide robust extensions to
the model—via the regularized Horseshoe prior—the inference—via structured variational
approximations—and provide a thresholding rule to prune units with small scales.

There is also a body of work on learning structure in non-Bayesian neural networks.
Early work (LeCun et al., 1990; Hassibi et al., 1993) pruned networks by analyzing second-
order derivatives of the objectives. More recently, Wen et al. (2016) describe applications
of structured sparsity not only for optimizing filters and layers but also computation time.
Closer to our work in spirit, Ochiai et al. (2016); Scardapane et al. (2017); Alvarez and Salz-
mann (2016); Murray and Chiang (2015), use group sparsity to prune groups of weights—e.g.
weights incident to a node. However, these approaches do not model uncertainty in weights
and provide uniform shrinkage to all parameters. Our approach provides group shrinkage
while retaining weight uncertainties.

6. Experiments

In this section, we carefully evaluate our proposed modeling and inferential contributions.
First, on synthetic data we explore the properties of the horseshoe BNN (HS-BNN) and
its different parameterizations. We find that employing a non-centered parameterization is
necessary for effective model selection. Next, on several real-world data sets we vet both the
model selection effects and the predictive performance of the non-centered HS-BNN and find
that it is able to provide model selection benefits without significantly sacrificing predictive
performance. We next evaluate the impact of our modeling and inference extensions. On
the modeling front, we find that the regularized Horseshoe BNN (reg-HS) improves upon
the predictive performance of HS-BNN, especially on smaller data sets. Through further
controlled comparisons we find that the structured variational approximation improves upon
the factorized variants by recovering solutions that exhibit significantly stronger shrinkage
towards zero. Finally, we end with experiments that go beyond prediction and demonstrate
the value of HS-BNNs for reinforcement learning. In our experiments, unless otherwise
mentioned we use a learning rate of 0.005. For regression problems we employ a Gaussian
likelihood with an unknown precision γ, p(yn|f(W, xn), γ) = N(yn|f(W, xn), γ−1). We
place a vague prior on the precision, γ ∼ Gamma(6, 6) and approximate the posterior over
γ using another Gamma distribution. For classification problems we use a Categorical
distribution parameterized by S(f(W, xn)), where S is the softmax transformation.

6.1. Underfitting variational Bayesian neural networks

We began by exploring the effect of model specification on BNNs learned via fully fac-
torized variational inference. We generated varying amounts of synthetic data from y ∼
N (sin(x), 0.1) and fit fully connected BNN models of varying size. We used ReLU activa-
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tions and placed factorized Gaussian priors over the network weights, wij,l ∼ N (0, 1), where
wij,l denotes the weight between nodes i in layer l − 1 and j in layer l. We used black-
box variational inference with locally reparameterized gradients (Kingma et al., 2015). We
trained the models to convergence from thirty random restarts and selected the highest
evidence lower bound solution.

We found that BNNs trained under this regime were not robust to model specification,
quickly increasing the uncertainty of their predictions as more nodes were added to the net-
work while keeping the amount of training data fixed. This is illustrated in Figure 1. Fig-
ure 4 visualizes the corresponding weights, where we plot the 2-Wasserstein distance between
the inferred variational posterior and the prior, W2(N (wij,l | µij,l, σ2

ij,l),N (wij,l | 0, 1)).

This experiment leads to the following observation. A sufficiently wide BNN with N (0, σ2)
prior on weights, when conditioning on a sufficiently small data set and trained via fully
factorized variational inference produces a posterior approximation that tends towards the
prior and consequently a posterior predictive distribution that reverts to the prior predic-
tive distribution. To gain further insight into this observation, note that the ELBO for a
BNN is

∑N
n=1 Eq(W|φ)[ln p(yn | f(W, xn)] − KL(q(W | φ)||p(W)) =

∑N
n=1 Eq(W|φ[ln p(yn |

f(W, xn)]−∑P
j=1 KL(q(wj | φ)||N (wj | 0, 1)), where the equality follows from the fully fac-

torized variational approximation. When P , the number of weights, is significantly larger
than N , the KL term in the ELBO dominates incentivizing the posterior approximation
q(W | φ) to revert to the prior.

6.2. Demonstrations of HS-BNN Behavior on Synthetic Data

In this section, we first demonstrate the value of the Horseshoe prior by returning to the
the demonstration in Figure 1. We also demonstrate the importance of non-centered pa-
rameterization of the Horseshoe distribution.

6.2.1. Horseshoe priors demonstrate robustness to model specification.

In Figure 5, we reproduce the results of Figure 1 alongside the fit of a 1000 unit HS-BNN.
While the fit of the BNN with zero mean, unit variance Gaussian priors quickly deteriorates
with increasing capacity conditioned on the limited amount of training data, HS-BNN is
robust to model-misspecification, pruning away the additional capacity. Like the BNN, HS-
BNN training employed thirty random initializations. Solutions with the highest evidence
lower bound are plotted.

To verify that this effect holds across data sets, we also reproduced the noisy polynomial
regression problem considered in (Hernández-Lobato and Adams, 2015), yn = x3

n + εn,
εn ∼ N (0, 9). Figure 6 illustrates the fits recovered by a Bayesian neural network with
Gaussian priors against a HS-BNN conditioned on data sampled from U(−4,+4). We
sample a total of 500 points, using a 100 for training and rest for testing. We again find
that the BNN underfits the data and significantly overestimates the predictive uncertainty.
HS-BNN on the other hand provides improved estimates of predictive uncertainty. We also
plot the test predictive log likelihoods averaged over five random trials in Figure 6. Observe
that with increasing size, the predictive likelihoods drop significantly for BNN. HS-BNN
exhibits robustness with more modest drops in performance. Later in this section we will
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Figure 4: Analysis of posterior weights of variational BNNs with N (0, 1) priors.
This figure provides the posterior weights corresponding to the predictive distribu-
tions presented in Figure 1. Each rug represents the (squared) 2-Wasserstein dis-
tance the inferred posterior and the prior, W2(N (wij,l | µijl, σ2

ijl),N (wij,l | 0, 1))2

for weight wij,l. A kernel density estimate of the Wasserstein distances are also
plotted. Along each column, from top to bottom the width of the network in-
creases while the number of training instances remains constant. Observe that
the density plots exhibit a leftward shift from top to bottom along each column
and a rightward shift along each row from left to right. These results indicate
that for a fixed size network as the number of training instances increase posterior
weights deviate more strongly from the prior and consequently exhibit better fits
to the data. On the other hand for a fixed amount of training data, increasing
the network size encourages the prior to overwhelm the data resulting in poste-
riors that do not deviate from the prior. Note that with respect to Figure 1, we have
transposed the columns and rows here to more clearly illustrate the effects of network size
on posterior inference.

see that using more sophisticated variational approximations further improves results where
predictive performance no longer deteriorates with increasing capacity.

6.2.2. Non-centered parameterizations are crucial for reliable inferences

The results above crucially rely on using a non-centered parameterization. We illustrate
the importance of the non-centered parameterization with a simple two dimensional classi-
fication problem generated by sampling data uniformly at random from [−1,+1]× [−1,+1]
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Figure 5: Horseshoe BNN. We return to the example from Figure 1. The 1000 node HS-
BNN (right-most column) underfits significantly less than its 1000 node standard
BNN counterpart.

and using a 2-2-1 network, whose parameters are known a-priori to generate the class la-
bels. We train three Bayesian neural networks with a 15-unit hidden layer on these data,
with Gaussian priors, with non-centered horseshoe priors, and with centered horseshoe pri-
ors. All three models are able to easily fit the data and provide high predictive accuracy.
However, the structure learned by the three models are very different. Figure 7 plots the
posterior means of weight vectors (E[wkl]) incident onto a unit. Unsurprisingly, the BNN
with Gaussian priors does not exhibit shrinkage towards zero. In contrast, models employ-
ing the horseshoe prior are able to prune units away by setting all incident weights to tiny
values. It is interesting to note that even for this highly stylized example the centered
parameterization struggles to recover the true structure of the underlying network. In con-
trast, the non-centered parameterization prunes away all but two units. The effect remains
even with 100 units in the hidden layer (Figure 18) in Appendix C.2.

6.3. Evaluation of HS-BNN Performance on Real Data Sets

In Section 6.2, we demonstrated the basic properties of the HS BNN and the importance
of the non-centered parameterization. We now turn to the evaluation of the HS BNN on
real data sets. In the experiments below, we use the fully factorized variational approxima-
tion, unless otherwise stated; we will return to comparisons between different variational
approximations in Section 6.5.
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Figure 6: Noisy polynomial regression yn = x3
n+ εn, εn ∼ N (0, 9). The crosses indicate

training data and the dotted line visualizes the noise free cubic function, and in
red we visualize the predicted means and ± 3 standard deviations for single layer
networks with 1000 hidden units. Right: Average predictive log likelihood for
single layer networks with 10, 100 and 1000 units. The error bars are smaller
than the size of the plotted markers. HS-BNN improves upon BNN and the
held out log likelihoods deteriorate more slowly with increasing model capacity.
In Figure 15 we will see that employing a structured variational approximation
leads to even better fits with held out likelihoods no longer deteriorating with
extra capacity.
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Figure 7: Non-centered parameterization is essential for robust inference. From left to
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2-2-1 network, the two classes are in red and black. Expected weights inferred with
a Bayesian neural network with Gaussian priors on weights. Expected weights
recovered with a centered horseshoe parameterization. Non-centered horseshoe
parameterization. The box-plots display Eq[wkl].

6.3.1. Classification with MNIST: HS-BNN learns sparse models.

We preprocessed the images in the MNIST digits data set by dividing the pixel values with
126. We explored networks with varying widths and depths all employing rectified linear
units. For HS-BNN we used Adam with a learning rate of 0.005 and 500 epochs. We found
that annealing in the entropy (Sønderby et al., 2016) and cross-entropy terms of the ELBO
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as well as scaling the variances of the variational posterior of the weights by the number
of incoming nodes improved predictive performance. We did not use a validation set to
monitor performance or tune hyper-parameters.

We compare HS-BNN against modern approaches for variational learning of neural net-
works — variational matrix Gaussian (VMG) (Louizos and Welling, 2016), a BNN with
a two-component scale mixture (SM-BNN) prior on weights proposed by Blundell et al.
(2015) and a BNN with Gaussian prior (BNN) on weights. VMG uses a structured varia-
tional approximation, while the other approaches use fully factorized approximations and
differ only in the type of prior used. We trained all models using the parameter settings
recommended in the original papers for the competing methods.

Figure 8 summarizes our findings. We showcase results for three architectures with
two hidden layers each containing 400, 800 and 1200 rectified linear hidden units. Across
architectures, we find our performance to be significantly better than BNN, comparable to
SM-BNN, and worse than VMG. More interestingly, we clearly see the strong shrinkage
provided by the horseshoe prior. Recall that under the horseshoe prior, wkl ∼ N (0, τ2

klυ
2
l I).

As the scales τklυl tend to zero the corresponding units (and all incident weights) are pruned
away. SM-BNN also encourages shrinkage to zero, but on weights not nodes. Further, the
horseshoe prior with its thicker tails and taller spike at origin encourages stronger shrinkage.
To see this we compared the `2-norms of the inferred expected weight node vectors E[wkl]
found by SM-BNN and HS-BNN. For HS-BNN the inferred scales are small for most units,
with a few notable outliers that escape un-shrunk. This causes the corresponding weight
vectors to be zero for the majority of units, suggesting that the model is able to effectively
“turn off” extra capacity. In contrast, the weight node vectors recovered by SM-BNN (and
BNN) are less tightly concentrated at zero. We also plot the density of E[wkl] with the
smallest norm in each of the three architectures. Note that with increasing architecture size
(modeling capacity) the density peaks more strongly at zero, suggesting that the model is
more confident in turning off the unit and not use the extra modeling capacity.

To further explore the implications of unit versus weight shrinkage, we visualize E[wkl]
learned by SM-BNN and HS-BNN in Figure 8. Weight shrinkage in SM-BNN encourages
fundamentally different filters that pick up edges at different orientations. In contrast, HS-
BNN’s node shrinkage encourages filters that correspond to digits or superpositions of digits
and may lead to more interpretable networks. Stronger shrinkage afforded by the horseshoe
is again evident when visualizing filters with the lowest norms. HS-BNN filters are nearly
all black when scaled with respect to the SM-BNN filters. Pruning away entire units allows
for significant test-time speedups relying only on standard dense matrix operations.

Finally, in Figure 9, we provide additional results that illustrate the model selection
abilities of HS-BNN. First we visualize the norms of inferred node weight vectors E[wkl]
found by BNN, SM-BNN and HS-BNN for 400− 400, 800− 800 and 1200− 1200 networks
(Figure 9). Note that as we increase capacity the model selection abilities of HS-BNN
becomes more obvious and as opposed to the other approaches illustrate clear inflection
points and it is evident that the model is using only a fraction of its available capacity. Next,
we visualize the density of the inferred node weight vectors E[wkl] under the two models for
networks 400−400, 800−800 and 1200−1200. For each network we show the density of the
five units with the smallest norms from either layer. Note that in all three cases HS-BNN
produces weights that are more tightly concentrated around zero. Moreover for HS-BNN
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Figure 8: MNIST Results. TOP: From left to right, Test error rates for different archi-
tectures and methods. The center two plots compare the shrinkage properties of
the solutions found by HS-BNN, SM-BNN and BNN. For the 1200-1200 network,
we compare the expected node weight vectors inferred under the different models.
We sort the recovered weight vectors E[wkl] based on their 2-norm and compare
them via scatter plots. Each circle corresponds to one of the 1200 weight node
vectors. Compared to competing methods a large number of weight node vectors
are zeroed out, while a small number escapes un-shrunk for HS-BNN. The right-
most plot shows the density of the unit with the lowest norm from the the three
architectures. BOTTOM: E[wkl] for the first layer. The left and right columns
visualize the ten units with the largest and the smallest norms.

the concentration around zero becomes sharper with increasing modeling capacity (larger
architectures), again indicating that we are pruning away additional capacity.

6.3.2. Classification for Gesture Recognition: HS-BNNs again achieve
shrinkage while retaining strong predictive performance.

We also experimented with a gesture recognition data set (Song et al., 2011) that consists
of 24 unique aircraft handling signals performed by 20 different subjects, each for 20 repe-
titions. The task consists of recognizing these gestures from kinematic, tracking and video
data. However, we only use kinematic and tracking data. A couple of example gestures are
visualized in Figure 10. The data set contains 9600 gesture examples. A 12-dimensional
vector of body features (angular joint velocities for the right and left elbows and wrists), as
well as an 8 dimensional vector of hand features (probability values for hand shapes for the
left and right hands) collected by Song et al. (2011) are provided as features for all frames
of all videos in the data set. We additionally used the 20 dimensional per-frame tracking
features made available by Song et al. (2011). We constructed features to represent each
gesture by first extracting frames by sampling uniformly in time and then concatenating
the per-frame features of the selected frames to produce 600-dimensional feature vectors.
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Figure 9: Model selection in HS-BNN. Left : From top to bottom, we plot log ||E[wkl]||2
for the first layer of a network with 400, 800 and 1200 units. The x-axis has been
normalized by the number of units. Further exploration of sparse solutions found
by HS-BNN. Right : Here we provide density plots for the five smallest (across all
layers) node weight vectors wkl found by HS-BNN and SM-BNN for the 400-400
(top row), 800-800 (middle row), 1200-1200 (bottom row) network. Plots are
sorted by 2-norm of wkl, from left to right.

This is a much smaller data set than MNIST and recent work (Joshi et al., 2017) has
demonstrated that a BNN with Gaussian priors performs well on this task. Figure 10 com-
pares the performance of HS-BNN with competing methods. We train a two layer HS-BNN
with each layer containing 400 units. The error rates reported are a result of averaging over
five random 75/25 splits of the data. Similar to MNIST, HS-BNN significantly outperforms
BNN and is competitive with VMG and SM-BNN and provides strong shrinkage.

6.3.3. Regression on UCI data sets: horseshoe priors continue to learn
smaller models with comparable accuracy.

We next apply our HS-BNN to various standard UCI regression data sets. We follow the
experimental protocol proposed in (Hernández-Lobato and Adams, 2015) and train a single
hidden layer network with 50 rectified linear units for all but the larger “Protein” and
“Year” data sets for which we train a 100 unit network. For the smaller data sets we
train on a randomly subsampled 90% subset and evaluate on the remainder and repeat this
process 20 times. For “Protein” we perform five replications and for “Year” we evaluate on
a single split. We compare against VMG with 10 inducing points. Figure 11 summarizes
our predictive results and Figure 19 in Appendix C.2 illustrates the shrinkage towards zero
exhibited by the recovered solutions. We observe that while HS-BNN is competitive with
VMG on the larger data sets, it is outperformed on the smaller ones. In the next section, we
describe how the additional regularization of the regularized horseshoe BNN prior provides
uniformly better performance.
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Figure 10: Gesture recognition. Top: Example gestures from the NATOPS data set.
Bottom: Left : Test error rates averaged over 5 runs achieved by competing
methods. Right : Scatter plots of solutions recovered by HS-BNN and competing
methods for the 800-800 architecture on one of the five splits.

6.4. Model Innovation: Regularized horseshoe Priors provide consistent
benefits, especially on smaller data sets.

Above, we noted that BNNs learned with standard horseshoe priors (HS) can have higher
variance with smaller data sets, resulting in lower predictive performance. The regularized
Horsehoe prior (reg-HS) should alleviate this issue. We applied the regularized horseshoe
prior BNN to the same collection of UCI data sets, with inverse Gamma hyper-parameters
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Figure 11: Regression performance on a collection of data sets from the UCI repository.
Data sets are arranged from left to right in order of increasing number of data
points and plotted on the log scale. Plots display relative improvements in test
log likelihood and root mean squared error (± 1 standard deviation) averaged
over 20 random splits of the data. Relative improvement is defined as (x −
y)/max(|x|, |y|). VMG performs better on smaller data sets and comparably on
larger ones.

ca = 2 and cb = 6 for both the regularized and standard HS-BNN. To focus on the effect
of the model, we employed the same factorized variational approximating family for both
models. Figure 12 shows that the regularized horseshoe leads to consistent improvements in
predictive performance. As expected, the gains are more prominent for the smaller data sets
for which the regularization afforded by the regularized horseshoe helps avoid over-fitting.

6.5. Inference Innovations: Value of Various Variational Approximations

All of our previous results focused on using fully-factorized approximating families. How-
ever, as we noted in Section 4.1, there are many options for adding structure as well as
reducing the number of parameters. These choices can have a large effect: in our previous
results with comparisons with standard BNNs, the type of approximating family—e.g. the
MVG vs. the fully-factored—had a very large effect on performance. In this section, we
explore the properties of different variational approximations. All experiments used a batch
size of 128, and bg = 10−5.

Tied approximation speeds up training. We begin by first comparing the tied and fully
factorized approximations on the NATOPS gesture recognition data set, with both models
employing un-regularized horseshoe priors. Figure 13 contrasts the held-out test perfor-
mance of the full and tied approximations against wall-clock time.1 Since we have far fewer
variational parameters to learn, the tied approximation converges faster nearly halving the
training time with only small deterioration in predictive performance for classification prob-
lems; thus one could also imagine using the tied approximation initially and then switching
over to one with more parameters.

Structured variational approximations provide stronger shrinkage. In preliminary exper-
iments, we found that of the various approximations described in Section 4.1, the structured
approximation outperformed the semi-structured variant. Thus, we focus on a presenting a

1. Experiments were performed on a 2.5 GHz Intel Core i7, with 16GB of RAM.
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Figure 12: Regularized horseshoe results in consistent improvements (TOP) over the
vanilla horseshoe prior (values over 0 indicate improvements). The data sets
are sorted according to the number of data instances and plotted on the log
scale, with ‘yacht’ being the smallest and ‘year’ being the largest. Relative im-
provement is defined as (x−y)/max(|x|, |y|). (BOTTOM) Regularized horseshoe
performs similarly to VMG, better on some data sets and worse on others.

detailed comparison between models employing the structured and (fully) factorized varia-
tional families. Furthermore, since we have already seen reg-HS outperform vanilla HS, we
use regularized horseshoe priors in all subsequent experiments.

Shrinkage on Synthetic Examples. In Figures 14 and 15, we explore the effects of struc-
tured and factorized variational approximations on predictive uncertainties. We return to
the sinusoid prediction problem from Figure 1. We compare single layer 1000 unit BNNs
with regularized horseshoe priors employing factorized and structured variational approxi-
mations. The structured approximation best alleviates the under-fitting issues and leads to
improved fits. We also revisit the noisy polynomial regression example from Secion 6.2. In
Figure 15, we find that consistent with the noisy sinusoid example structured approxima-
tion results in tighter uncertainties. Consequently, predictive likelihoods do not degrade as
more units are added (right panel).

Shrinkage on UCI benchmarks. We return to the UCI benchmark to carefully vet the
different variational approximations. We deviate from prior work, by using networks with
significantly more capacity than previously considered for this benchmark. In particular,
we use single layer networks with an order of magnitude more hidden units (500) than
considered in previous work (50). This additional capacity is more than that needed to
explain the UCI benchmark data sets well. With this experimental setup, we are able to
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Figure 13: Tied variational approximation. We contrast the test accuracy against
training time for the tied and full approximations, averaged over five random
splits, and run for 500 epochs each on the NATOPS gesture recognition data
set.

evaluate how well the proposed methods perform at pruning away extra modeling capacity.
For all but the ‘year’ data set, we report results from 5 trials each trained on a random
90/10 split of the data. For the large year data set, we ran a single trial.

In Figure 16, we see that the factorized and structured variational approximations have
similar predictive performance. However, the structured approximation consistently recov-
ers solutions that exhibit much stronger shrinkage towards zero. We have plotted the 50
units with the smallest ||wkl||2 weight norms recovered by the factorized and structured ap-
proximations, from five random trials. Both approximations provide shrinkage towards zero,
but the structured approximation has significantly stronger shrinkage. Further, the degree
of shrinkage from the factorized approximation varies significantly between random initial-
izations. In contrast, the structured approximation consistently provides strong shrinkage.
We compare the shrinkage provided by the two approximations using ||E[wkl]||2 instead of
applying the pruning rule from section 4.3 and comparing the resulting compression rates.
This is because although the scales τklυl inferred by the factorized approximation provide
a clear separation between signal and noise, they do not exhibit shrinkage toward zero. On
the other hand, wkl = τklυlβkl does exhibit shrinkage and provides a fair comparison.

Prediction and shrinkage comparison against competing methods. Finally, we compare
the reg-HS model with structured variational approximation against the variational matrix
Gaussian (VMG) approach of Louizos and Welling (2016), which has previously been shown
to outperform other variational approaches to learning BNNs. We used the pruning rule with
δ = 10−3 for all but the ‘year’ data set, for which we set δ = 10−5. Figure 16 demonstrates
that structured reg-HS is competitive with VMG in terms of predictive performance. We
either perform similarly or better than VMG on the majority of the data sets. More
interestingly, structured reg-HS achieves competitive performance while pruning away excess
capacity and achieving significant compression. We also experimented with fine-tuning
the pruned model by updating the weight means while holding others fixed. Figure 16
reports results from running 20 such fine-tuning epochs. We did not find fine-tuning to
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Figure 14: Regularized horseshoe BNNs prune away excess capacity and are more re-
sistant to underfitting. Variational approximations aware of model structure
improve fits.

significantly improve generalization performance. Additional experiments employing multi-
layer architectures are available in the appendix (Figure 23).

6.6. Assessing Calibration: HS-BNN with structured variational
approximations are better calibrated

The consistency between the predictive distribution and the empirical frequency of observa-
tions is referred to as calibration. When the two match well, the predictive model is deemed
well-calibrated. Here, we assess calibration of BNN variants on the synthetic data presented
in Figures 1, 5, and 15. Knowing the true data generating process, we sample an additional
thousand data points unobserved during training. We use this validation set to assess model
calibration and compare a BNN with N (0, 1) priors, against the regularized HS-BNN em-
ploying both the structured and factorized variational approximations. Since calibration
is only a meaningful metric provided that the fits are good, we assess performance of the
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likelihood for single layer networks with 10, 100 and 1000 units. Regularized HS-
BNN with structured variational approximation provides robust performance in
the presence of model misspecification.

models trained on two hundred data points. With these many training instance, all three
models achieve a reasonable fit to the data.

Calibrations of continuous responses are typically assessed using the predictor’s pre-
dictive cumulative distribution functions (CDF). Before presenting our results, we briefly
review the definitions of the two types of calibration we consider here and refer the interested
reader to (Gneiting et al., 2007) for a more thorough treatment of the material.

Let n index the data ({xn, yn}Nn=1) in the validation set, Fn be the predictive CDF,
i.e., CDF of the predictive distribution p(yn | xn) =

∫
p(yn | xn,W)p(W | Dtrain)dW. In

our experiments we used the empirical distribution function of Monte Carlo samples to
approximate Fn.2 Let Gn be the (unobserved) true data generating process. We say that
{pn = Fn(yn)}Nn=1 is probabilistically calibrated with respect {Gn}Nn=1, iff 1

N

∑N
n=1 1(pn ≤

p) converges almost surely to p for all p ∈ [0, 1]. The definition can be operationalized by
selecting a sufficiently large N , a set of discrete thresholds (pt) in [0, 1] and computing the
fraction of validation instances below the threshold and comparing it to the threshold itself.
This is illustrated in Figure 17, where we plot the thresholds pt (expected confidence level)
against p̂t = 1

N

∑N
n=1 1(pn ≤ pt) (empirical confidence level). Plots closer to the diagonal

indicate better calibration. Probabilistic calibration has also been recently used to assess
the calibration of deep regression models (Kuleshov et al., 2018). They also proposed a
quantitative metric for measuring miscalibration, ∝∑T

t=1(pt − p̂t)2. Although widely used
probabilistic calibration is a necessary but not sufficient criteria for calibration (Gneiting
et al., 2007; Hamill, 2001). We assess the models according to an additional mode of
calibration — marginal calibration, to further lend credence to whether a particular model
is indeed well calibrated.

Marginal calibration is said to hold iff the empirical distribution function of the val-
idation set, Ĝ(y) = 1

N

∑N
n=1 1(yn < y), y ∈ R converges almost surely to the average

2. A moment matched Gaussian CDF produced similar results.
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Figure 16: Top: Structured variational approximations result in similar predictive
performance but consistently recover solutions that exhibit stronger shrinkage.
The left most figure plots the predictive log likelihoods achieved by the two ap-
proximations, each point corresponds to a UCI data set. We also plot the fifty
units with the smallest ||E[wkl]||2, on a number of data sets. Each point in the
plot displays the inferred ||E[wkl]||2 for a unit in the network. We plot recov-
ered expected weight norms from all five random trials for both the factorized
and structured approximation. The structured approximation (in red) consis-
tently provides stronger shrinkage. The factorized approximation both produces
weaker shrinkage and the degree of shrinkage exhibits higher variance with ran-
dom trials. Bottom: The structured approximation is competitive with VMG
while using much smaller networks. Fine tuning leads to small improvements.
Compression rates are defined as the fraction of un-pruned units.

predictive CDF F̄ (y) = lim
N→∞

1
N

∑N
n=1 Fn(y) for all y ∈ R as N →∞. The definition can be

approximated by selecting a sufficiently large validation set and comparing the empirical dis-
tribution function computed from the validation set and F̄ both evaluated at a common set
of selected thresholds yt. The empirical distribution function and average predictive CDF
are compared in Figure 17. Plots closer to the diagonal again indicate better calibration.
We can again quantify the calibration error by computing the error ∝∑T

t=1(Ĝ(yt)−F̄ (yt))
2.

We define overall calibration error as the arithmetic mean,

calibration error =
1

2

(
1

T1

T1∑
t=1

(pt − p̂t)2 +
1

T2

T2∑
t=1

(Ĝ(yt)− F̄ (yt))
2

)
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indicate better calibration.

6.7. HS-BNNs Application: Reinforcement Learning

One application area in which having good predictive uncertainty estimates is crucial is in
model-based reinforcement learning scenarios (e.g. (Depeweg et al., 2017; Gal et al., 2016b;
Killian et al., 2017)): here, it is essential not only to have an estimate of what state an agent
may be in after taking a particular action, but also an accurate sense of all the states the
agent may end up in. In the following, we apply our regularized HS-BNN with structured
approximations to two domains: the 2D map of Killian et al. (2017) and acrobot Sutton
and Barto (1998). The goal of the 2D map was to traverse from a start region to a goal
region around an obstacle and “wind” or slippery conditions. The state space (S ∈ R2) of
2D map consists of x-axis and y-axis and at each step, the agent can choose actions from
directions N,E, S,W .

The goal of the acrobot was to swing up an under-actuated double pendulum where
the goal is to swing it from hanging down to fully up. The state space (S ∈ R4) consists
of two angles (the angle between the pendulum and the ceil and the angle of the joint),
the angular velocities of two links and there are three possible actions. The details of the
dynamics settings of both domains are described in (Killian et al., 2017).

In each domain, we first collected data by training a DDQN (2 layers of width 256,
512; learning rate 5e− 4) online (updated every episode) and an epsilon-greedy policy that
started at 1 and decayed to 0.15 with decay rate 0.995. That is, we started with a randomly
initialized DDQN, ran it with a completely random policy (epsilon=1), updated the param-
eters of the DDQN to estimate the state-action values based on the data. We repeated
the process over 500 episodes, gradually decaying epsilon to have the agent converge to the
optimal policy. (2 layers of width 256, 512; learning rate 5e − 4). Overall, this procedure
ensured that we had a wide variety of samples that were still biased in coverage toward the
optimal policy.

While this procedure allowed us to generate a large amount of data around the optimal
policy, our goal was learning in resource-constrained settings. Thus, we sampled 1% data
randomly from the large cohort. We used these data to train a transition function to predict
the next position of the agent given the current position and action. Using a BNN to model
the transition function allowed us to capture uncertainty due to limited data, as well as
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Table 2: Model-based reinforcement learning. The under-fitting of the standard BNN re-
sults in lower task performance, whereas the HS-BNN is more robust to this un-
derfitting.

2D Map

Test RMSE Avg. Reward

BNN x-500-y 0.187 975.386

BNN x-100-100-y 0.089 966.716

Structured x-500-y 0.058 995.416

Structured x-100-100-y 0.061 992.893

Acrobot

BNN x-500-y 0.924 -156.573

BNN x-100-100-y 0.710 -23.419

Structured x-500-y 0.558 -108.443

Structured x-100-100-y 0.656 -17.530

stochasticity. For the transition function, we considered two architectures, a single hidden
layer network with 500 units, and a two layer network with 100 units per layer as the
transition function for each domain. We used learning rate 0.0002, and batch size 32, and
trained the network for 2000 episodes. We considered two priors, the standard normal on
the weights and our HS-BNN.

Finally, once we had trained an approximate transition function to model the domain,
we used that function as a simulator. Now, instead of training a DDQN based on data
from the real environment, we trained with data generated from the BNN. Once that policy
learning converged, we tested that policy—learned from the approximate BNN transition
model—on the original simulator to measure its performance in the true setting.

HS-BNNs improve reinforcement learning performance. As in our prediction results,
training a moderately-sized BNN with so few data results in severe underfitting, which in
turn, adversely affects the quality of the policy that is learned. That is, if we believe we have
a lot of uncertainty about the effect of an action—due to underfitting—we cannot find an
appropriate policy. We see in table 2 that the better fitting of the structured reg-HS-BNN
results in higher task performance, across domains and model architectures.

7. Discussion and Conclusion

Model selection in Bayesian networks is an important problem. In this work, we demon-
strated that a properly parameterized horseshoe prior on the scales of the weights incident
to each node is a computationally efficient tool for model selection in Bayesian neural
networks. Decomposing the horseshoe prior into inverse gamma distributions led to com-
putationally convenient inference algorithms. However, auxiliary variables introduced by
the decomposition can pose further inferential challenges and lead to poorer approxima-
tions (Neville et al., 2014). We found that using a non-centered representation ensured a
degree of robustness to such issues as well as poor local optima. Designing efficient and ac-
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curate inference algorithms as well as metrics for reliably measuring the quality of posterior
approximations for BNNs and Horseshoe BNNs remains an exciting direction for followup
work. We also showed that the regularized horseshoe prior, combined with a structured
variational approximating distribution, provides a computationally efficient tool for model
selection in Bayesian neural networks. By retaining crucial posterior dependencies, the
structured approximation provided strong shrinkage while being competitive in predictive
performance to approaches without shrinkage.

All that said, one might wonder about alternatives for model selection. For example,
one could place a simple exponential prior on the weight scale to encourage all incident
weights to be zero, but without heavy tails all scales will be forced to be artificially low
and prediction will suffer (Molchanov et al., 2017; Wen et al., 2016). In contrast, simply
using a heavy-tail prior on the scale parameter, such as a half-Cauchy, will not apply any
pressure toward setting small scales to zero. Another alternative is to observe that a node
can be pruned if the product z ·w is nearly constant for all inputs z—having small weights
is sufficient to achieve this property; weights w that are orthogonal to the variation in z is
another. Thus, instead of putting a prior over the scale of w, one could put a prior over
the scale of the variation in z · w. However, in initial experiments, we found that such a
formulation has many more local optima and thus harder to optimize. In contrast, inference
for the horseshoe prior is fairly robust: following the parameterization considerations and
choice of variational family, our code is standard BBVI.

Within Horseshoe priors, there remain several interesting follow-on directions, including,
modeling enhancements that use layer, node, or even weight specific weight decay c, or layer
specific global shrinkage parameter bg to provide different levels of shrinkage to different
parts of the BNN. One could imagine using the machinery of Horseshoe priors to turn off
entire layers or entire skip connections; one could imagine these being governed in some way
by the input location x. It would also be interesting to consider how to adapt Horseshoe
priors to exhibit interesting limiting behaviors as the number of nodes in a layer grow
without bound.

More broadly, model selection via Horseshoe priors may represent a sweet spot, at least
for now, between (still the most common) fully factorized priors and recent attempts at
specifying function-based priors (Wang et al., 2019; Sun et al., 2019). The latter provide
an elegant approach for specifying an implicit prior over BNN weights via an explicit prior
over the kinds of functions are likely, but currently these approaches are fairly computa-
tionally intensive and involve more challenging optimizations. It would be interesting to
see if variants of Horseshoe priors can bring us interesting function classes at relatively low
computational and inferential expense.
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Appendix A. Algorithm

A.1. Conditional variational pre-activations

Recall from Section 4.2, that the variational pre-activation distribution is given by q(b |
a, νl, φβl) = N (b | µb,Σb) = N (b | MT

βl|νla, (a
TUβl|νla)V ), where U = Ψ + hh′, and V is

diagonal. The Equation requires Mβl|νl and Uβl|νl . The expressions for these follow directly
from the properties of partitioned Gaussians.

For a particular layer l, we drop the explicit dependency on l from the notation. Recall

that B =

[
β
νT

]
, and let B ∈ Rm×n, β ∈ Rm−1×n, and ν ∈ Rn×1 q(B | φB) = MN (B |

M,U, V ). From properties of the Matrix normal distribution, we know that a column-wise
vectorization of B, ~B ∼ N ( ~M, V ⊗U). From this and Gaussian marginalization properties
it follows that the jth column tj = [βj ; νj ] of B is distributed as tj ∼ N (mj , VjjU), where
mj is the appropriate column of M . Conditioning on νj then yields, q(βj | νj) = N (βj |
µβj |νj ,Σβj |νj ), where

Σβj |νj = Vjj(Ψβ +
Ψν

Ψν + h2
ν

hβh
T
β )

µβj |νj = µβj +
hν(νj − µνj )

Ψν + h2
ν

hβ

Rearranging, we can see that, Mβ|ν is made up of the columns µβj |νj and Uβ|ν = Ψβ +
Ψν

Ψν+h2ν
hβh

T
β .

A.2. Algorithmic details

The ELBO corresponding to the non-centered regularized HS model is,

L(φ) = Eq(c2)[ln Inv-Gamma(c2 | ca, cb)] + Eq(κ2)q(ρk)[ln Inv-Gamma(κ2 | 1/2, 1/ρκ)]

+ Eq(ρk)[ln Inv-Gamma(ρκ | 1/2, 1/b2κ)] +
∑
n

Eq(β,T ,κ2,c2)[ln p(yn | β, T , κ2, c2, xn)]

+
L−1∑
l=1

KL∑
k=1

Eq(λkl)[ln Inv-Gamma(λkl | 1/2, 1/b20)]

+

L−1∑
l=1

Eq(υl)q(ϑl)[ln Inv-Gamma(υ2
l | 1/2, 1/ϑl)] + Eq(ϑl)[ln Inv-Gamma(ϑl | 1/2, 1/b2g)]

+

L−1∑
l=1

Eq(Bl)[ln N (βl | 0, I)] +

L−1∑
l=1

KL∑
k=1

Eq(Bl)[ln Inv-Gamma(τ2
kl | 1/2, 1/λkl)]

+

KL∑
k=1

Eq(βkL)[ln N (βkL | 0, I)] + H[q(θ | φ)].

We rely on a Monte-Carlo estimates to evaluate the expectation involving the likelihood
Eq(β,T ,κ2,c2)[ln p(yn | β, T , κ2, c2, xn)].
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Efficient computation of the Matrix Normal Entropy The entropy of q(B) =
MN (B | M,U, V ) is given by mn

2 ln (2πe) + 1
2 ln |V ⊗ U |. We can exploit the structure

of U and V to compute this efficiently. We note that ln |V ⊗U | = mln |V |+nln |U |. Since
V is diagonal ln |V | =

∑
j ln Vjj . Using the matrix determinant lemma we can efficiently

compute |U | = (1 + h′Ψ−1h)|Ψ|. Owing to the diagonal structure of Ψ, computing it’s
determinant and inverse is particularly efficient.

Fixed point updates The auxiliary variables ρκ, ϑl and ϑl all follow inverse Gamma
distributions. Here we derive for λkl, the others follow analogously. Consider,

ln q(λkl) ∝ E−qλkl [ln Inv-Gamma(τ2
kl | 1/2, 1/λkl)] + E−qλkl [ln Inv-Gamma(λkl | 1/2, 1/b20)],

∝ (−1/2− 1/2− 1)ln λkl − (E[1/τkl] + 1/b20)(1/λkl),

(10)

from which we see that,

q(λkl) = Inv-Gamma(λkl | c, d),

c = 1, d = E[
1

τ2
kl

] +
1

b20
.

(11)

Since, q(τ2
kl) = ln N (µτkl , σ

2
τkl

), it follows that E[ 1
τ2kl

] = exp{−µτkl + 0.5 ∗ σ2
τkl
}. We can

thus calculate the necessary fixed point updates for λkl conditioned on µτkl and σ2
τkl

. Our
algorithm uses these fixed point updates given estimates of µτkl and σ2

τkl
after each Adam

step.

Appendix B. Useful Properties of the Log-Normal distribution

These results are well known and included here for completeness. See Johnson et al. (1970),
or other appropriate text for more details. If lnx ∼ N (µ, σ2) then x follows a log-Normal

distribution with mean, E[x] = eµ+ 1
2
σ2

and variance, E[x2]− E[x]2 = (eσ
2 − 1)e2µ+σ2

.

B.1. Moments

For any real k, the kth moment of x is,

E[xk] = ekµ+ 1
2
k2σ2

,

this immediately leads to the result E[x−1] = e−µ+ 1
2
σ2

, which we used to compute the
parameters of the inverse Gamma distribution in Equation 11.

B.2. Closed under multiplication

If xa ∼ log-Normal(µa, σ
2
a) and xb ∼ log-Normal(µb, σ

2
b ), then,

y = xaxb ∼ log-Normal(µa + µb, σ
2
a + σ2

b ),

a fact we exploited for computing with the pruning rule of Section 4.3.
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Appendix C. Experiments

C.1. Experimental details

For regression problems we use Gaussian likelihoods with an unknown precision γ, p(yn |
f(W,xn), γ) = N (yn | f(W,xn), γ−1). We place a vague prior on the precision,γ ∼
Gamma(6, 6) and approximate the posterior over γ using another variational distribution
q(γ | φγ). The corresponding variational parameters are learned via a gradient update
during learning.

Classification Experiments For VMG, we used 150 inducing points, a batch size of
128, and a learning rate of 0.001.

Regression Experiments For comparing the reg-HS and HS models we followed the
protocol of (Hernandez-Lobato & Adams, 2015) and trained a single hidden layer network
with 50 rectified linear units for all but the larger “Protein” and “Year” data sets for which
we train a 100 unit network. For the smaller data sets we train on a randomly subsampled
90% subset and evaluate on the remainder and repeat this process 20 times. For “Protein”
we perform 5 replications and for “Year” we evaluate on a single split. For, VMG we used
10 pseudo-inputs, a learning rate of 0.001 and a batch size of 128.

The details of the different UCI data sets used are presented in Table 3

data set N D

Yacht 308 6
Boston 506 13
Energy 768 8
Concrete 1030 8
Wine 1599 11
Kin8nm 8192 8
Power Plant 9568 4
Naval 11,934 16
Protein 45,730 9
Year 515,345 90

Table 3: UCI Regression results. HS-BNN and VMG are compared.

C.2. Additional Experiments

C.2.1. Non-centered parameterization

In Figure 18 we display that the non-centered parameterization is able to recover the true
network even under large model misspecification.
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Figure 19: We plot ||wkl||2 recovered by the HS-BNN using the fully factorized variational
approximation on a number of UCI data sets.

C.2.2. Shrinkage provided by the fully factorized approximation on UCI
benchmarks

Figure 19 illustrates the shrinkage afforded by 50 unit HS-BNNs using fully factorized
approximations. Note that on some data sets, we do not achieve much compression and all
50 units are used. This is a consequence of the fully factorized approximations providing
weaker shrinkage as well as 50 units not being large enough to model the complexity of the
data set.
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C.2.3. Scaled Priors and Structured Inference

Here we further explore under-fitting issues in BNNs not employing horseshoe priors. As
pointed out in the main text, using N (0, σ2) priors over the network weights encourages the
prior predictive variance to increase with the width of the network. It is well known (Neal,
1997) that instead scaling the prior variance with the width of the layerN (0, σ2/H) does not
result in such pathologies and one instead recovers a Gaussian process in the infinite width
limit. A natural question then is whether such a scaled prior alleviates the under-fitting
issues observed in Figure 1. We find (Figure 21) that this is not the case when employing
a fully factorized variational approximation. We find that the posterior again tends to the
prior just as it did for BNNs with standard normal priors. Since, here we are using one
dimensional inputs the input to hidden layer prior is still a N (0, 1) distribution while the
hidden to output layer employs a N (0, 1/1000) distribution. Empirically, we find that the
higher variance input to hidden layer compensates for the smaller variance output layer prior
and cause high predictive uncertainties. A heuristic, sometimes employed, is to divide the
input to each layer by the square root of its dimensionality during the variational forward
pass. This addresses the high predictive variance issue but not the underfitting problem,
resulting in similar poor fits but with lower predictive variances. These observations suggest
that in addition to appropriate priors better variational approximations are necessary to
avoid pathologies. We further corroborated this hypothesis by instead using layer-wise
matrix variate Gaussians (Louizos and Welling, 2016) as our variational approximation. We
observe that even with N (0, σ2) priors improved fits are obtained with approximations that
retain more of the correlations among the weights. As illustrated in the main text similar
conclusions also hold for HS-BNN — structured inference leads to higher test likelihoods
(Figure 16) and better calibrated uncertainties (Figures 14, 17).

C.2.4. Comparisons against Hamiltonian Monte Carlo

Retaining model structure in the variational approximations do typically lead to more ac-
curate but nonetheless biased inferences. Hamiltonian Monte Carlo (Neal, 1993; Duane
et al., 1987) on the other hand provides accurate and asymptotically exact inferences and
is widely regarded as the gold standard for inference in Bayesian neural networks. They do
however have difficulty scaling with the number of data instances. Moreover, the horseshoe
is a challenging distribution to sample from, these difficulties are only exacerbated for BNN
models with (regularized) horseshoe priors which involve sampling high dimensional poste-
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Figure 21: Model or Inference. Predictive distributions from a single layer BNN with
ReLU activations, containing 1000 units trained on twenty noisy samples from
a Sine function. From left to right, we have a BNN with N (0, I/Hin) priors
over weights and a fully factorized variational approximation, and BNNs with
N (0, I) priors but employing matrix Gaussian variational distributions (Louizos
and Welling, 2016) with one and two pseudo inputs. Similar to Figure 1, under-
fitting issues can be seen for the scaled priors employing fully factorized varia-
tional families. More expressive variational approximations (columns 2 and 3)
somewhat alleviate these issues, even for the unscaled N (0, I) priors.
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Figure 22: HMC (left) and structured VI (right) predictive distributions of a single
hidden layer ten unit BNN with a regularized horseshoe prior (bg = 10−5).

riors involving many horseshoe distributions, one for each hidden layer node. Nonetheless,
resorting to Riemannian Hamiltonian Monte Carlo (Girolami and Calderhead, 2011) we
sampled from the posterior of a small BNN model with a single hidden layer comprising of
ten nodes, conditioned on twenty training instances. We used the diagonal softabs metric
proposed in (Betancourt, 2013). Figure 22 compares the predictive distribution resulting
from 1000 samples from HMC against structured VI, with both approaches performing sim-
ilarly. We emphasize that it is unlikely that structured VI continues to perform similarly
to HMC on larger models and larger amounts of data. Developing HMC procedures that
reliably sample from larger BNNs employing similar shrinkage priors is an exciting direction
of future work.
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Figure 23: Structured variational approximations results for two layer networks each
with 100 hidden units. We achieve competitive performance, often improving
on the x-500-y networks. For most data sets the second hidden layer is exhibits
larger compression. Compression rates are defined as the fraction of un-pruned
units.

C.2.5. Additional UCI Regression results

In Figure 23 we present additional regression results for x-100-100-y networks employing
regularized horseshoe priors with structured variational approximations. We report results
from averaging over five 90/10 random splits of the data set. We use bg = 10−5 and a pruning
threshold δ = 10−3. Observe that in addition to competitive predictive performance, we
achieve (often significant) compression for both layers. Interestingly, we find that for most
data sets our pruning strategy more severely prunes the second layer (closer to the output).

Appendix D. Metrics

For a test point i, with true label y∗i and posterior predictive samples {y1
i , . . . , y

S
i } we

compute the per data point root mean squared error as,

rmsei =

√√√√ 1

S

S∑
s=1

(ysi − y∗i )2,

and the average root mean squared error of the test split t with N test points as,

¯rmset =
1

N

N∑
i=1

rmsei =
1

N

N∑
i=1

√√√√ 1

S

S∑
s=1

(ysi − y∗i )2.

The mean and standard deviation of ¯rmset across splits t = 1, . . . T is reported in the text.

We compute test log likelihood for a test point i, {y∗i , x∗i } given training data D as,

lli = ln p(y∗i | x∗i ,D) ≈ ln
1

S

S∑
s=1

p(y∗i | x∗i ,Ws); Ws ∼ q(W | D).
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Summaries across data instances and train/test splits are computed and reported analo-
gously to root mean squared error. For split t with N test instances we have,

l̄lt =
1

N

N∑
i=1

lli =
1

N

N∑
i=1

ln
1

S

S∑
s=1

p(y∗i | x∗i ,Ws); Ws ∼ q(W | D).

Appendix E. Sparsity inducing priors.
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Figure 24: Density for the Laplace distribution ( 1
2be
− |x|

b , with b = 1), the horseshoe (b0 =
bg = 1), and the regularized horseshoe distribution (b0 = bg = 1 and c = 2).
Both horseshoe variants have significantly larger spikes at zero than the Laplace
distribution and the regularized horseshoe has truncated tails.

E.1. Laplace

The Laplace distribution results in the widely used `1 penalty and leads to sparse MAP
solutions. It however exhibits thinner tails and drastically smaller spike at zero than its
horseshoe counterparts. See Bhadra et al. (2017) for a more in-depth discussion contrasting
horseshoe like distributions against the Laplace.

w | b ∼ Laplace(w | 0, b)
Laplace(w | 0, b) =

1

2b
e−
|w|
b
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E.2. Horseshoe

wkl | τkl, υl ∼ N (0, (τ2
klυ

2
l )I),

τkl ∼ C+(0, b0), υl ∼ C+(0, bg).

E.3. Regularized Horseshoe

wkl | τkl, υl, c ∼ N (0, (τ̃2
klυ

2
l )I), τ̃2

kl =
c2τ2

kl

c2 + τ2
klυ

2
l

,

τkl ∼ C+(0, b0), υl ∼ C+(0, bg).
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José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In International Conference on Machine
Learning (ICML), 2015.

John B Ingraham and Debora S Marks. Variational inference for sparse and undirected
models. In International Conference on Machine Learning (ICML), 2017.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and
Andrew Gordon Wilson. Subspace inference for Bayesian deep learning. In Uncertainty
in Artificial Intelligence (UAI), 2019.

Norman Lloyd Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous
univariate distributions, volume 1. Houghton Mifflin Boston, 1970.

42



Model Selection in Bayesian Neural Networks

Ajjen Joshi, Soumya Ghosh, Margrit Betke, Stan Sclaroff, and Hanspeter Pfister. Per-
sonalizing gesture recognition using hierarchical Bayesian neural networks. In Computer
Vision and Pattern Recognition (CVPR), 2017.

Taylor W Killian, Samuel Daulton, Finale Doshi-Velez, and George Konidaris. Robust and
efficient transfer learning with hidden parameter markov decision processes. In Advances
in Neural Information Processing Systems (NIPS), 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations (ICLR), 2015.

Diederik P Kingma and Max Welling. Stochastic gradient VB and the variational auto-
encoder. In International Conference on Learning Representations (ICLR), 2014.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems (NIPS),
2015.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep
learning using calibrated regression. In International Conference on Machine Learning
(ICML), 2018.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in
Neural Information Processing Systems (NIPS), 1990.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with
matrix Gaussian posteriors. In International Conference on Machine Learning (ICML),
2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian
neural networks. In International Conference on Machine Learning (ICML), 2017.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning.
Advances in Neural Information Processing Systems (NIPS), 2017.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

David JC MacKay. Developments in probabilistic modelling with neural networksensemble
learning. In Neural Networks: Artificial Intelligence and Industrial Applications, pages
191–198. Springer, 1995.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients
in numpy. In AutoML Workshop, ICML, 2015.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies
deep neural networks. In International Conference on Machine Learning (ICML), 2017.

Iain Murray and Zoubin Ghahramani. A note on the evidence and Bayesian Occam’s Razor.
Technical report, Gatsby Unit Technical Report, 2005.

43



Ghosh, Yao, and Doshi-Velez

Kenton Murray and David Chiang. Auto-sizing neural networks: With applications to
n-gram language models. arXiv:1508.05051, 2015.

Radford M Neal. Bayesian learning via stochastic dynamics. In Advances in Neural Infor-
mation Processing Systems (NIPS), 1993.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, 1997.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured
Bayesian pruning via log-normal multiplicative noise. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Sarah E Neville, John T Ormerod, MP Wand, et al. Mean field variational bayes for
continuous sparse signal shrinkage: pitfalls and remedies. Electronic Journal of Statistics,
8(1):1113–1151, 2014.

Tsubasa Ochiai, Shigeki Matsuda, Hideyuki Watanabe, and Shigeru Katagiri. Au-
tomatic node selection for deep neural networks using group Lasso regularization.
arXiv:1611.05527, 2016.

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit
weight uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.

Juho Piironen and Aki Vehtari. On the hyperprior choice for the global shrinkage parameter
in the horseshoe prior. Conference on Artificial Intelligence and Statistics (AISTATS),
2017.

Nicholas G. Polson and James G. Scott. Shrink globally, act locally: Sparse Bayesian
regularization and prediction. Bayesian Statistics, 9:501–538, 2010.

Melanie F Pradier, Weiwei Pan, Jiayu Yao, Soumya Ghosh, and Finale Doshi-Velez. Latent
projection bnns: Avoiding weight-space pathologies by learning latent representations of
neural network weights. In Workshop on Bayesian Deep Learning, NIPS, 2018.

Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. In
Conference on Artificial Intelligence and Statistics (AISTATS), 2014.

Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s Razor. In Advances in Neural
Information Processing Systems (NIPS), pages 294–300, 2001.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on
Machine Learning (ICML), 2014.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation
for neural networks. In International Conference on Learning Representations (ICLR),
2018.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse
regularization for deep neural networks. Neurocomputing, 241:81–89, 2017.

44



Model Selection in Bayesian Neural Networks

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Advances in Neural Information Processing Systems
(NIPS), 2016.

Yale Song, David Demirdjian, and Randall Davis. Tracking body and hands for gesture
recognition: NATOPS aircraft handling signals database. In IEEE International Confer-
ence on Automatic Face & Gesture Recognition and Workshops (FG), 2011.

Zhao Song, Yusuke Muraoka, Ryohei Fujimaki, and Lawrence Carin. Scalable model selec-
tion for belief networks. In Advances in Neural Information Processing Systems (NIPS),
2017.

J. T. Springenberg, A. Klein, S.Falkner, and F. Hutter. Bayesian optimization with robust
bayesian neural networks. In Advances in Neural Information Processing Systems (NIPS),
2016.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research (JMLR), 15(1):1929–1958, 2014.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncer-
tainty in Bayesian neural networks. In Conference on Artificial Intelligence and Statistics
(AISTATS), 2017.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational
Bayesian neural networks. In International Conference on Learning Representations
(ICLR), 2019.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction, vol-
ume 1. MIT press Cambridge, 1998.

Michalis Titsias and Miguel Lázaro-gredilla. Doubly stochastic variational Bayes for non-
conjugate inference. In International Conference on Machine Learning (ICML), pages
1971–1979, 2014.

Matthew P Wand, John T Ormerod, Simone A Padoan, Rudolf Fuhrwirth, et al. Mean
field variational Bayes for elaborate distributions. Bayesian Analysis, 6(4), 2011.

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle optimization
for Bayesian neural networks. In International Conference on Learning Representations
(ICLR), 2019.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In International Conference on Machine Learning (ICML), 2011.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information Processing Systems
(NIPS), 2016.

45



Ghosh, Yao, and Doshi-Velez

Christopher KI Williams. Computing with infinite networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 1997.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty
quantification for Bayesian neural network inference. In Workshop on Uncertainty and
Robustness in Deep Learning, ICML, 2019.

46


	Introduction
	Bayesian Neural Networks
	Priors over neural network weights

	Bayesian Neural Networks with Structured Sparsity
	Horseshoe Priors
	Regularized Horseshoe Priors
	Half-Cauchy re-parameterization for variational learning.
	Non-Centered Parameterization

	Variational Inference for Model Learning
	Variational Approximation Choices
	Fully Factorized Approximation
	Structured Variational Approximations

	Black Box Variational Inference
	Variational distribution on pre-activations for structured approximating families
	Algorithm
	Computational Considerations

	Pruning Rule

	Related Work
	Experiments
	Underfitting variational Bayesian neural networks
	Demonstrations of HS-BNN Behavior on Synthetic Data
	Horseshoe priors demonstrate robustness to model specification.
	Non-centered parameterizations are crucial for reliable inferences

	Evaluation of HS-BNN Performance on Real Data Sets
	Classification with MNIST: HS-BNN learns sparse models.
	Classification for Gesture Recognition: HS-BNNs again achieve shrinkage while retaining strong predictive performance.
	Regression on UCI data sets: horseshoe priors continue to learn smaller models with comparable accuracy.

	Model Innovation: Regularized horseshoe Priors provide consistent benefits, especially on smaller data sets.
	Inference Innovations: Value of Various Variational Approximations
	Assessing Calibration: HS-BNN with structured variational approximations are better calibrated
	HS-BNNs Application: Reinforcement Learning

	Discussion and Conclusion
	Algorithm
	Conditional variational pre-activations
	Algorithmic details

	Useful Properties of the Log-Normal distribution
	Moments
	Closed under multiplication

	Experiments
	Experimental details
	Additional Experiments
	Non-centered parameterization
	Shrinkage provided by the fully factorized approximation on UCI benchmarks
	Scaled Priors and Structured Inference
	Comparisons against Hamiltonian Monte Carlo
	Additional UCI Regression results


	Metrics
	Sparsity inducing priors.
	Laplace
	Horseshoe
	Regularized Horseshoe


