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Abstract

Several data analysis techniques employ similarity relationships between data points to
uncover the intrinsic dimension and geometric structure of the underlying data-generating
mechanism. In this paper we work under the model assumption that the data is made of
random perturbations of feature vectors lying on a low-dimensional manifold. We study
two questions: how to define the similarity relationships over noisy data points, and what
is the resulting impact of the choice of similarity in the extraction of global geometric
information from the underlying manifold. We provide concrete mathematical evidence
that using a local regularization of the noisy data to define the similarity improves the ap-
proximation of the hidden Euclidean distance between unperturbed points. Furthermore,
graph-based objects constructed with the locally regularized similarity function satisfy bet-
ter error bounds in their recovery of global geometric ones. Our theory is supported by
numerical experiments that demonstrate that the gain in geometric understanding facili-
tated by local regularization translates into a gain in classification accuracy in simulated
and real data.

Keywords: manifold denoising, metric estimation, spectral convergence, graph Laplacian

1. Introduction

Several techniques for the analysis of high dimensional data build on the observation that
data-generating mechanisms can often be described by few degrees of freedom. In this
paper we study graph-based methods that employ similarity relationships between data
points to uncover the low intrinsic dimension and geometric structure of datasets. Graph-
based learning provides a well-balanced compromise between accuracy and interpretability
Coifman and Lafon (2006), and is popular in a variety of unsupervised and semi-supervised
tasks Zhu (2005); Von Luxburg (2007). These methods have been extensively analyzed
in the idealized setting where the data is sampled from a low-dimensional manifold and
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similarities are computed using the ambient Euclidean distance or the geodesic distance,
see e.g. Coifman and Lafon (2006); Singer (2006); Burago et al. (2014); Garćıa Trillos et al.
(2018). The manifold setting is truthful in spirit to the presupposition that data arising
from structured systems may be described by few degrees of freedom, but it is not so in that
the data are typically noisy. The aim of this paper is to provide new mathematical theory
under the more general and realistic model assumption that the data consist of random
perturbations of low-dimensional features lying on a manifold.

By relaxing the manifold assumption we bring forward two fundamental questions that
are at the heart of graph-based learning but have not been accounted for by previous the-
ory. First, how to define the inter-point similarities between noisy data points in order to
approximate the Euclidean distances between unperturbed data-points? Second, is it pos-
sible to recover global geometric features of the manifold from suitably-defined similarities
between noisy data points? We will show by rigorous mathematical reasoning that:

(i) Denoising inter-point distances leads to an improved approximation of the hidden
Euclidean distance between unperturbed points. We illustrate this general idea by an-
alyzing a simple, easily-computable similarity defined in terms of a local-regularization
of the noisy dataset.

(ii) Graph-based objects defined via locally regularized similarities can be guaranteed to
satisfy improved error bounds in the recovery of global geometric properties. We
illustrate this general idea by showing the spectral approximation of an unnormalized
ε-graph Laplacian to a Laplace operator defined on the underlying manifold.

In addition to giving theoretical support for the denoising of point clouds, we study the
practical use of local regularization in classification problems. Our analytically tractable
local-regularization depends on a parameter that modulates the amount of localization, and
our analysis suggests the appropriate scaling of said parameter with the level noise level.
In our numerical experiments we show that in semi-supervised classification problems this
parameter may be chosen by cross-validation, ultimately producing classification rules with
improved accuracy. Finally, we propose two alternative denoising methods with similar
empirical performance that are sometimes easier to implement. In short, the improved
recovery of the geometric structure of the underlying point cloud facilitated by (local)
regularization translates into improved graph-based data analysis, and the results seem to
be robust to the choice of methodology.

1.1 Framework

We assume a data model
yi = xi + zi, (1)

where the unobserved points xi are sampled from an unknown m-dimensional manifoldM,
the vectors zi ∈ Rd represent noise, and Yn = {y1, . . . , yn} ⊆ Rd is the observed data.
Further geometric and probabilistic structure will be imposed to prove our main results—
see Assumptions 1 and 2 below. Our analysis is motivated by the case, often found in
applications, where the number n of data points and the ambient space dimension d are
large, but the underlying intrinsic dimension m is small or moderate. Thus, the data-
generating mechanism is described (up to a noisy perturbation) by m � d degrees of
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freedom. We aim to uncover geometric properties of the underlying manifold M from the
observed data Yn by using similarity graphs. The set of vertices of these graphs will be
identified with the set [n] := {1, . . . , n}—so that the i-th node corresponds to the i-th data
point—and the weight W (i, j) between the i-th and j-th data-point will be defined in terms
of a similarity function δ : [n]× [n]→ [0,∞).

The first question that we consider is how to choose the similarity function so that
δ(i, j) approximates the hidden Euclidean distance δXn(i, j) := |xi − xj |. Full knowledge of
the Euclidean distance between the latent variables xi would allow to recover, in the large
n limit, global geometric features of the underlying manifold. This motivates the idea of
denoising the observed point cloud Yn to approximate the hidden similarity function δXn .
Here we will study a family of similarity functions based on the Euclidean distance between
local averages of points in Yn, i.e. averages of the local measures. We define a denoised
dataset Ȳn = {y1, . . . , yn} by locally averaging the original dataset, and we then define an
associated similarity function

δȲn(i, j) := |yi − yj |.

In its simplest form, yi is defined by averaging all points in Yn that are inside the ball of
radius r > 0 centered around yi, that is,

yi :=
1

Ni

∑
j∈Ai

yj , (2)

where Ni is the cardinality of Ai := {j ∈ [n] : yj ∈ B(yi, r)}. As discussed in Subsection 1.3,
this corresponds to one step of the mean-shift algorithm Fukunaga and Hostetler (1975).
Note that Ȳn (and the associated similarity function δȲn) depends on r, but we do not
include said dependence in our notation for simplicity. Other possible local and non-local
averaging approaches may be considered. We will only analyze the choice made in (2) and
we will explore other constructions numerically. Introducing the notation

δXn(i, j) = |xi − xj |, δYn(i, j) = |yi − yj |,

the first question that we study may be formalized as understanding when, and to what
extent, the similarity function δȲn is a better approximation than δYn (the standard choice)
to the hidden similarity function δXn . An answer is given in Theorem 1 below.

The second question that we investigate is how an improvement in the approximation
of the hidden similarity function affects the approximation of the Laplace Beltrami oper-
ator on the underlying manifold M. Specifically, we study how the spectral convergence
of graph-Laplacians constructed with noisy data may be improved by local regularization
of the point cloud. For concreteness, our theoretical analysis is focused on ε-graphs and
unnormalized graph-Laplacians, but we expect our results to generalize to other graphs and
graph-Laplacians—evidence to support this claim will be given through numerical exper-
iments. We now summarize the necessary background to formalize this question. For a
given similarity δ : [n] × [n] → [0,∞) and a parameter ε > 0, we define a weighted graph
Γδ,ε = ([n],W ) by setting the weight between the i-th and j-th node to be

W (i, j) :=
2(m+ 2)

αmεm+2n
1{δ(i, j) < ε}, (3)
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where αm is the volume of the m-dimensional Euclidean unit ball. Associated to the graph
Γδ,ε we define the unnormalized graph Laplacian matrix

∆δ,ε := D −W ∈ Rn×n, (4)

where D is a diagonal matrix with diagonal entries

D(i, i) :=
n∑
j=1

W (i, j).

The motivation for the scaling in (3) is so that ∆δ,ε matches the scale of the Laplace-
Beltrami operator (see for example Burago et al. (2014)). For the rest of the paper we shall
denote ΓXn,ε := ΓδXn ,ε and ∆Xn,ε := ∆δXn ,ε

. We use analogous notation for Yn and Ȳn. The
second question that we consider may be formalized as understanding when, and to what
extent, ∆Ȳn provides a better approximation (in the spectral sense) than ∆Yn to a Laplace
operator on the manifold M. An answer is given in Theorem 3 below.

1.2 Main results

In this subsection we state our main theoretical results. We first impose some geometric
conditions on the underlying manifold M.

Assumption 1 M is a smooth, oriented, compact manifold with no boundary and intrinsic
dimension m, embedded in Rd. Moreover, M has injectivity radius ≥ i0, maximum of the
absolute value of sectional curvature ≤ K, and reach ≥ R. Finally, we assume that M’s
total volume is normalized and equal to one.

Loosely speaking, the injectivity radius determines the range of the exponential map (which
will be an important tool in our analysis and will be reviewed in the next section) and the
sectional curvature controls the metric distortion induced by the exponential map, and
thereby its Jacobian. The reach R can be thought of as an (inverse) conditioning number
of the manifold and controls its second fundamental form; it can also be interpreted as a
measure of extrinsic curvature—see, e.g. Aamari et al. (2019), Federer (1959) for technical
background. The significance of these geometric quantities and their role in our analysis
will be further discussed in Section 2.

Next we impose further probabilistic structure into the data model (1). We assume that
the pairs (xi, zi) are i.i.d. samples of the random vector (X,Z) ∼ µ ∈ P(M× Rd). Let µ
and µx be, respectively, the marginal distribution of X and the conditional distribution of
Z given X = x. We assume that µ is absolutely continuous with respect to the Riemannian
volume form of M with density p(x), i.e.,

dµ(x) = p(x)dvolM(x). (5)

Furthermore, we assume that µx is supported on TxM⊥ (the orthogonal complement of
the tangent space TxM) and that it is absolutely continuous with respect to the (d −m)-
dimensional Hausdorff measure Hd−m restricted to TxM⊥ with density p(z|x), i.e.,

dµx(z) = p(z|x)dHd−m(z).
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To ease the notation we will write dz instead of Hd−m(dz). We make the following assump-
tions on these densities.

Assumption 2 It holds that:

(i) The density p(x) is of class C2(M) and is bounded above and below by positive con-
stants:

0 < pmin ≤ p(x) ≤ pmax, ∀x ∈M.

(ii) For all x ∈M, ˆ
zp(z|x)dz = 0.

Moreover, there is σ < R such that p(z|x) = 0 for all z with |z| ≥ σ.

Note that the assumption on p(z|x) ensures that the noise is centered and bounded by a
constant σ. While the assumption that the noise is bounded and orthogonal to the manifold
can be relaxed, we choose not to do so here to streamline our results and proofs.

In our first main theorem we study the approximation of the similarity function δXn
by δȲn . We consider points xi and xj that are close with respect to the geodesic distance
dM on the manifold, and show that local regularization improves the approximation of the
hidden similarity provided that n is large and the noise level σ is small. The local regularity
parameter r needs to be suitably scaled with σ. We make the following standing assumption
linking both parameters; we refer to Remark 2 below for a discussion on the optimal scaling
of r with σ, and to our numerical experiments for practical guidelines.

Assumption 3 The localization parameter r and the noise level σ satisfy

σ ≤ R

16m
, r ≤ min

{
i0,

1√
K
,

√
αm

2CmK
,

√
R

32

}
, and σ ≤ 1

3
r, (6)

where C is a universal constant, αm denotes the volume of the Euclidean unit ball in Rm,
and i0, R, and K are as in Assumption 1.

In words, Assumption 3 requires both r and σ to be sufficiently small, and r to be larger
than σ.

Now we are ready to state the first main result.

Theorem 1 Under Assumptions 1, 2 and 3, with probability at least 1−4ne−cnr
max{2m,m+4}

,
for all xi and xj with dM(xi, xj) ≤ r we have

∣∣δXn(i, j)− δȲn(i, j)
∣∣ ≤ CM(r3 + rσ +

σ2

r

)
, (7)

where c = min
{
α2
mp

2
min

4m+2 , 1
16

}
and CM is a constant depending on m,K,R, a uniform bound

on the change in second fundamental form of M, and on the regularity of the density p.
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Remark 2 Theorem 1 gives concrete evidence of the importance of the choice of similar-
ity function. For the usual Euclidean distance between observed data, δYn , one can only
guarantee that ∣∣δXn(i, j)− δYn(i, j)

∣∣ ≤ 2σ,

which follows from ∣∣|xi − xj | − |yi − yj |∣∣ ≤ |zi − zj | ≤ 2σ.

However, if we choose r ∝ σ1/2, then the error in (7) is of order σ3/2, which is a considerably
smaller quantity in the small noise limit.

Our second main result translates the local similarity bound from Theorem 1 into a
global geometric result concerning the spectral convergence of the graph Laplacian to the
Laplace operator formally defined by

∆Mf = −1

p
div
(
p2∇f

)
, (8)

where div and ∇ denote the divergence and gradient operators on the manifold and p is
the sampling density of the hidden point cloud Xn, as introduced in Equation (5). It is
intuitively clear that the spectral approximation of the discrete graph-Laplacian to the
continuum operator ∆M necessarily rests upon having a sufficient number of samples from
µ (defined in (5)). In other words, the empirical measure µn = 1

n

∑n
i=1 δxi needs to be close

to µ, the sampling density of the hidden dataset. We characterize the closeness between µn
and µ by the ∞-OT transport distance, defined as

d∞(µn, µ) := min
T :T]µ=µn

esssup
x∈M

dM
(
x, T (x)

)
,

where T]µ denotes the push-forward of µ by T , that is, T]µ = µ
(
T−1(U)

)
for any Borel

subset U of M. Theorem 2 in Garćıa Trillos et al. (2018) shows that for every β > 1, with
probability at least 1− Cβ,Mn−β,

d∞(µn, µ) ≤ CM
log(n)pm

n1/m
,

where pm = 3/4 if m = 2 and pm = 1/m for m ≥ 3. This is the high probability scaling of
d∞(µn, µ) in terms of n.

We introduce some notation before stating our second main result. Let λ`(Γδ,ε) be the
`-th smallest eigenvalue of the unnormalized graph-Laplacian ∆δ,ε defined in Equation (4),
and let λ`(M) be the `-th smallest eigenvalue of the continuum Laplace operator defined
in Equation (8).

Theorem 3 Suppose that Assumptions 1, 2, and 3 hold. Suppose further that ε is small
enough (but not too small) so that

max
{

(m+ 5)d∞(µn, µ), 2Cmη
}
< ε < min

{
1,
i0
10
,

1√
mK

,
R√
27m

}
,

(√
λ`(M) + 1

)
ε+

d∞(µn, µ)

ε
< c̃p,

(9)
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where c̃p is a constant that only depends on m and the regularity of the density p, C is a
universal constant, and

η = CM

(
r3 + rσ +

σ2

r

)
is the bound in (7). Then, with probability at least 1 − 4ne−cnr

max{2m,m+4}
, for all ` =

1, 2, 3, . . .,

|λ`(ΓȲn,ε)− λ`(M)|
λ`(M)

≤ C̃
(
η

ε
+
d∞(µn, µ)

ε
+
(
1 +

√
λ`(M)

)
ε+

(
K +

1

R2

)
ε2

)
,

where C̃ only depends on m and the regularity of p, and c = min
{
α2
mp

2
min

4m+2 , 1
16

}
.

Remark 4 We will see in Section 3 that Theorem 3 follows by plugging the probabilitstic
estimate (7) into a modification of a deterministic result from (Garćıa Trillos et al., 2018,
Corollary 2), which we present for the convenience of the reader in Theorem 20. We remark
that any improvement of Theorem 20 would immediately translate into an improvement of
our Theorem 3. As discussed in Remark 2, local regularization enables a smaller η than if no
regularization is performed. This in turn allows one to choose, for a given error tolerance,
a smaller connectivity ε, leading to a sparser graph that is computationally more efficient.
Note also that the bound in Theorem 3 does not depend on the ambient space dimension d,
but only on the intrinsic dimension m of the data.

Remark 5 Theorem 3 concretely shows how an improvement in metric approximation
translates into an improved estimation of global geometric quantities. We have restricted
our attention to analyzing eigenvalues of a Laplacian operator, but we remark that the idea
goes beyond this particular choice. For example, one can conduct an asymptotic analysis
illustrating the effect of changing the similarity function in the approximation of other ge-
ometric quantities of interest like Cheeger cuts. Such analysis could be carried out using
the variational convergence approach from Garćıa Trillos and Slepčev (2016). Finally, we
remark that it is possible to study convergence of eigenvectors of graph Laplacians following
the results in Garćıa Trillos et al. (2018).

1.3 Related and Future Work

Graph-based learning algorithms include spectral clustering, total variation clustering, graph-
Laplacian regularization for semi-supervised learning, graph based Bayesian semi-supervised
learning. A brief and incomplete summary of methodological and review papers is Shi and
Malik (2000); Ng et al. (2002); Belkin and Niyogi (2004); Zhou and Schölkopf (2005); Spiel-
man and Teng (2007); Von Luxburg (2007); Zhu (2005); Bertozzi et al. (2018). These
algorithms involve either a graph Laplacian, the graph total variation, or Sobolev norms in-
volving the graph structure. The large sample n→∞ theory studying the behavior of some
of the above methodologies has been analyzed without reference to the intrinsic dimension
of the data Von Luxburg et al. (2008) and in the case of points laying on a low dimensional
manifold, see e.g. Belkin et al. (2006); Garcia Trillos and Sanz-Alonso (2018); Garcia Trillos
et al. (2017) and references therein. Some papers that account for both the noisy and low
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intrinsic dimensional structure of data are Niyogi et al. (2008); Little and Maggioni (2017);
Agapiou et al. (2017); Weed and Bach (2017); Genovese et al. (2012); Aamari and Levrard
(2019). For example, Niyogi et al. (2008) studies the recovery of the homology groups of
submanifolds from noisy samples. We use the techniques for the analysis of spectral con-
vergence of graph-Laplacians introduced in Burago et al. (2014) and further developed in
Garćıa Trillos et al. (2018). The results in the latter reference would allow to extend our
analysis to other graph Laplacians, but we do not pursue this here for conciseness.

We highlight that the denoising by local regularization occurs at the level of the dataset.
That is, rather than denoising each of the observed features individually, we analyze de-
noising by averaging different data points. In practice combining both forms of denoising
may be advantageous. For instance, when each of the data points corresponds to an image,
one can first denoise each image at the pixel level and then do regularization at the level of
the dataset as proposed here. In this regard, our regularization at the level of the data-set
is similar to applying a filter at the level of individual pixels Tukey and Tukey (1988). The
success of non-local filter image denoising algorithms suggests that non-local methods may
be also of interest at the level of the dataset, but we expect this to be application-dependent.
Finally, while in this paper we only consider first-order regularization based on averages, a
topic for further research is the analysis of local PCA regularization Little and Maggioni
(2017), incorporating covariance information.

With the same motivation for our work, in Mémoli et al. (2018) a general construction
of metrics on noisy datasets was proposed. The so called Wasserstein transform associates
to each of the data points a “local” probability distribution, and defines a new metric on
the data by computing the Wasserstein distance between the corresponding local measures.
A particular construction of local measures closely related to the metric we study here
assigns to each observation the empirical measure of the observations restricted to a ball of
certain radius around the given data point. The authors of Mémoli et al. (2018) propose the
Wasserstein transform as a way to generalize the mean-shift algorithm and they study how
it alleviates the so called chaining effect in single linkage clustering. The aim of our work
is to provide quantitative evidence of the effect that changing the metric on noisy datasets
has on graph-based spectral clustering algorithms. The success of these algorithms hinges
on their ability to capture the geometry of the underlying data generating model.

It is worth noting the parallel between the local regularization that we study here and
mean-shift and mode seeking methods Chen et al. (2016); Fukunaga and Hostetler (1975).
As a matter of fact the points xi that we construct here correspond to one step in the
standard mean shift algorithm. However, we notice that our goal is not to run mean shift for
mode seeking, but rather, as a way to construct a metric that better captures the underlying
“true” geometric structure of the data that was blurred by noise. This paralellism with
mean-shift techniques (or the more general Wasserstein transform in Mémoli et al. (2018))
suggests the idea of doing local averaging iteratively. Of course, it is important to notice
that unless one prevents points to move tangentially to M (as discussed in Wang and
Carreira-Perpinán (2010)), a large number of iterations would result in points collapsing to
a finite number of local modes.

Local regularization may be also interpreted as a form of dictionary learning, where each
data-point is represented in terms of its neighbors. For specific applications it may be of
interest to restrict (or extend) the dictionary used to represent each data point Haddad et al.
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(2014). Finally we refer to Hein and Maier (2007) for alternative techniques on manifold
denoising.

1.4 Outline

The paper is organized as follows. In Section 2 we formalize the geometric setup and
prove Theorem 1. Section 3 contains the proof of Theorem 3 and a lemma that may be
of independent interest. Finally, Section 4 includes several numerical experiments. In the
Appendix we prove a technical lemma that serves as a key ingredient in proving Theorem
1.

2. Distance Approximation

In this section we prove Theorem 1. We start with Subsection 2.1 by giving some intuition
on the geometric conditions imposed in Assumption 1 and introducing the main geometric
tools in our analysis. In Subsection 2.2 we decompose the approximation error between the
similarity functions δȲn and δXn into three terms, which are bounded in Subsections 2.3,
2.4, and 2.5.

2.1 Geometric Preliminaries

In this subsection we set our notation and provide some background on geometric concepts
used in the remainder of this paper.

2.1.1 Basic Notation

For each x ∈ M we let TxM be the tangent plane of M at x centered at the origin. In
particular, TxM is a m-dimensional subspace of Rd, and we denote by TxM⊥ its orthogonal
complement. We will use volM to denote the Riemannian volume form ofM. We will denote
by |x − x̃| the Euclidean distance between arbitrary points in Rd and denote by dM(x, x̃)
the geodesic distance between points in M. We denote by Bx balls in TxM and by BM
balls in the manifold M (with respect to the geodesic distance). Also, unless otherwise
specified B, without subscripts will be used to denote balls in Rd. We denote by αm the
volume of the unit Euclidean ball in Rm. Throughout the rest of the paper we use R, i0
and K to denote the reach, injectivity radius, and maximum absolute curvature of M, as
in Assumption 1. We now describe at an intuitive level the role that these quantities play
in our analysis.

2.1.2 The Reach

The reach of a closed submanifoldM is the largest value t ∈ [0,∞] such that the projection
map ontoM is well defined on {x ∈ Rd : infx̃∈M|x̃−x| < t}, i.e., every point in the tubular
neighborhood around M of width t has a unique closest point in M. Our assumption
that the noise level satisfies σ < R guarantees that xi is the (well-defined) projection of yi
onto the manifold. The reach can be thought of as an inverse conditioning number for the
manifold Niyogi et al. (2008). We will use that the inverse of the reach provides a uniform
upper bound on the second fundamental form (see Lemma 12).
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2.1.3 Exponential Map, Injectivity Radius and Sectional Curvature

We will make use of the exponential map exp, which for every x ∈M is a map

expx : Bx(0, i0)→ BM(x, i0)

where i0 is the injectivity radius for the manifold M. We recall that the exponential map
expx takes a vector v ∈ TxM and maps it to the point expx(v) ∈ M that is at geodesic
distance |v| from x along the unit speed geodesic that at time t = 0 passes through x with
velocity v/|v|. The injectivity radius i0 is precisely the maximum radius of a ball in TxM
centered at the origin for which the exponential map is a well defined diffeomorphism for
every x. We denote by Jx the Jacobian of the exponential map expx. Integrals with respect
to dvolM can then be written in terms of integrals on TxM weighted by the function Jx.
More precisely, for an arbitrary test function ϕ :M→ R,

ˆ
BM(x,i0)

ϕ(x̃)dvolM(x̃) =

ˆ
Bx(0,i0)

ϕ
(

expx(v)
)
Jx(v)dv.

For fixed 0 < r ≤ min{i0, 1/
√
K} one can obtain bounds on the metric distortion by the

exponential map expx : Bx(0, r) ⊆ TxM→M ((do Carmo, 1992, Chapter 10) and (Burago
et al., 2014, Section 2.2)), and thereby guarantee the existence of a universal constant C
such that, for |v| ≤ r,

(1 + CmK|v|2)−1 ≤ Jx(v) ≤ (1 + CmK|v|2). (10)

An immediate consequence of the previous inequalities is

|vol(BM(x, r))− αmrm| ≤ CmKrm+2, (11)

where we recall αm is the volume of the unit ball in Rm. Equations (10) and (11) will be
used in our geometric and probabilistic arguments and motivate our assumptions on the
choice of local regularization parameter r in terms of the injectivity radius and the sectional
curvature.

2.2 Local Distributions

Next we study the local behavior of (X,Z). To characterize its local distribution, it will be
convenient to introduce the following family of probability measures.

Definition 6 Let y be a vector in Rd whose distance to M is less than R. Let x be the
projection of y onto M. We say that the random variable (X̃, Z̃) has the distribution µy
provided that

P
(
(X̃, Z̃) ∈ A1 ×A2

)
:= P

(
(X,Z) ∈ A1 ×A2|X + Z ∈ B(y, r)

)
,

for all Borel sets A1 ⊆ M A2 ⊆ Rd, where in the above (X,Z) is distributed according to
µ.
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In the remainder we use µi as shorthand notation for µyi . As for the original measure
µ, we characterize µi in terms of a marginal and conditional distribution. We introduce
the density p̃i :M→ R given by

p̃i(x) :=
Pi
(
X + Z ∈ B(yi, r)|X = x

)
Pi
(
X + Z ∈ B(yi, r)

) · p(x), (12)

and define

p̃i(z|x) =
1x+z∈B(yi,r)

Pi
(
X + Z ∈ B(yi, r)|X = x

) · p(z|x), (13)

where in the above and in the remainder we use Ei and Pi to denote conditional expecta-
tion and conditional probability given (xi, zi). It can be easily shown that these functions
correspond to the marginal density of X̃i and the conditional density of Z̃i given X̃i = x,
where (X̃i, Z̃i) ∼ µi. The distribution µi is of relevance because by definition of yi one has

Ei[yi] = Ei[X̃i + Z̃i].

Now we are ready to introduce the main decomposition of the error between the simi-
larity functions δȲn and δXn . Using the triangle inequality we can write∣∣|xi − xj | − |ȳi − ȳj |∣∣ ≤ ∣∣Ei[X̃i]− xi − (Ej [X̃j ]− xj)

∣∣ (14)

+
∣∣Ej [Z̃j ]∣∣+

∣∣Ei[Z̃i]∣∣ (15)

+
∣∣Ei[ȳi]− ȳi∣∣+

∣∣Ej [ȳj ]− ȳj∣∣. (16)

In the next subsections we bound each of the terms (15) (expected conditional noise), (14)
(difference in geometric bias), and (16) (sampling error). As we will see in Subsection 2.5
we can control both terms in (16) with very high probability using standard concentration
inequalities. The other three terms are deterministic quantities that can be written in terms
of integrals with respect to the distributions µ̃i and µ̃j . To study these integrals it will be
convenient to introduce two quantities r− < r < r+ (independent of i = 1, . . . , n) satisfying:

i) For all x ∈M with dM(x, xi) > r+ we have

Pi
(
X + Z ∈ B(yi, r)|X = x

)
= 0.

Equivalently, the density p̃i(x) is supported in BM(xi, r+).

ii) For all x with dM(x, xi) < r− we have

Pi
(
X + Z ∈ B(yi, r)|X = x

)
= 1.

It should be noted that the choice of both r− and r+ depends on r. In Appendix A we
present the proof of the following lemma giving estimates for r+ and r−.

Lemma 7 (Bounds for r+ and r−) Under Assumption 3, the quantities

r− := r

(√
1 +

4σ

R
+

16σ2

r2
+
mσ

R

)−1

,

r+ := r

(√
1− 8r2

R
− 4σ

R
− mσ

R

)−1

,

11
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satisfy properties i) and ii). Furthermore,

r+ − r− ≤ Cm,R
(
r3 + rσ +

σ2

r

)
, Cm,R := max

{
8m+ 32

R
, 64

}
and

1

2
r+ ≤ r ≤ 2r−. (17)

2.3 Bounding Expected Conditional Noise

Proposition 8 Suppose that Assumptions 1 and 2 hold. Then,

∣∣Ei[Z̃i]∣∣ ≤ Cm,pσ
r

(r+ − r−), Cm,p :=
4m+1pmax
mpmin

.

Proof Using the definition of r+,

Ei[Z̃i] =

ˆ
BM(xi,r+)

ˆ
zp̃i(z|x)dz p̃i(x) dvolM(x)

=

ˆ
BM(xi,r−)

ˆ
zp̃i(z|x)dz p̃i(x) dvolM(x)

+

ˆ
BM(xi,r+)\BM(xi,r−)

ˆ
zp̃i(z|x)dz p̃i(x)dvolM(x).

The first integral is the zero vector because for x ∈ BM(xi, r−), we have p̃(z|x) ∝ p(z|x)
and p(z|x) is assumed to be centered. Therefore,

∣∣Ei[Z̃i]∣∣ ≤ σ ˆ
BM(xi,r+)\BM(xi,r−)

p̃i(x)dvolM(x)

=
σ

Pi
(
X + Z ∈ B(yi, r)

) ˆ
BM(xi,r+)\BM(xi,r−)

p(x)dvolM(x)

≤ σpmax

Pi
(
X + Z ∈ B(yi, r)

) ˆ
BM(xi,r+)\BM(xi,r−)

dvolM(x)

≤ σpmax

Pi
(
X + Z ∈ B(yi, r)

) ˆ
Bxi (0,r+)\Bxi (0,r−)

Jxi(v)dv

≤ 2αmσpmax

Pi
(
X + Z ∈ B(yi, r)

)(rm+ − rm− )

≤ 2αmσpmax

mPi
(
X + Z ∈ B(yi, r)

)(r+ − r−)rm−1
+ ,

where we have used (10) and the assumptions on r to say (in particular) that Jxi(v) ≤ 2,
and also the fact that, for t > s > 0,

tm − sm =

ˆ t

s

um−1

m
du ≤ (t− s) t

m−1

m
.

12
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Finally, notice that

Pi
(
X+Z ∈ B(yi, r)

)
≥ Pi

(
X ∈ BM(xi, r−)

)
=

ˆ
Bxi (0,r−)

p
(

expxi(v)
)
Jxi(v)dv ≥ 1

2
pminαmr

m
− ,

where again we have used (10) to conclude (in particular) that Jxi(v) ≥ 1/2. The result
now follows by (17).

2.4 Bounding Difference in Geometric Bias

In terms of r+ and r−, the difference Ei[X̃i]− xi (and likewise Ej [X̃j ]− xj) can be written
as:

Ei[X̃i]− xi =

ˆ
BM(xi,r+)

(x− xi)p̃i(x)dvolM(x)

=

ˆ
Bxi (0,r+)

(
expxi(v)− xi

)
p̃i
(

expx(v)
)
Jxi(v)dv

=

ˆ
Bxi (0,r+)

(
expxi(v)− xi

)
p̃i
(

expx(v)
)
dv+

ˆ
Bxi (0,r+)

(
expxi(v)− xi

)
p̃i
(

expx(v)
)(
Jxi(v)− 1

)
dv

=
1

Pi
(
X + Z ∈ B(yi, r)

) ˆ
Bxi (0,r−)

(
expxi(v)− xi

)
p
(

expx(v)
)
dv+

ˆ
Bxi (0,r+)\Bxi (0,r−)

(
expxi(v)− xi

)
p̃i
(

expx(v)
)
dv+

ˆ
Bxi (0,r+)

(
expxi(v)− xi

)
p̃i
(

expx(v)
)(
Jxi(v)− 1

)
dv

:=
1

Pi
(
X + Z ∈ B(yi, r)

) ˆ
Bxi (0,r−)

(
expxi(v)− xi

)
p
(

expx(v)
)
dv + ξi,

where the second to last equality follows from (12). To further simplify the expression for
xi − Ei[X̃i] let us define

bi :=

ˆ
Bxi (0,r−)

(
expxi(v)− xi

)
p
(

expx(v)
)
dv.

It follows that∣∣Ei[X̃i]− xi − (Ej [X̃j ]− xj)
∣∣ ≤ ∣∣∣ bi

Pi
− bj
Pj

∣∣∣+
∣∣ξi∣∣+

∣∣ξj∣∣
≤
∣∣∣ 1

Pi
− 1

Pj

∣∣∣∣∣bi∣∣+
1

Pj

∣∣bi − bj∣∣+
∣∣ξi∣∣+

∣∣ξj∣∣, (18)

where in the above

Pi := Pi
(
X + Z ∈ B(yi, r)

)
, Pj := Pj

(
X + Z ∈ B(yj , r)

)
.

13
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Lemma 9 The following hold.

i) The terms Pi satisfy
1

2
pminαmr

m
− ≤ Pi.

ii) The terms ξi satisfy: ∣∣ξi∣∣ ≤ C1(r+ − r−) + C2r
3,

where, up to universal multiplicative constants,

C1 =
4m+1pmax
mpmin

, C2 = 4m+3mK
pmax
pmin

.

iii) Suppose that dM(xi, xj) ≤ r. Then,

|Pi − Pj | ≤ C3r
m+1 + C4(r+ − r−)rm−1 + C5r

m+2,

where, up to universal multiplicative constants,

C3 = Cpαm, C4 =
2m−1αmpmax

m
, C5 = mKpmaxαm.

and Cp only depends on bounds on the first derivatives of the density p.

Proof The first inequality was already obtained at the end of the proof of Proposition 8.
For the second inequality recall that

ξi =

ˆ
Bxi (0,r+)\Bxi (0,r−)

(
xi − expxi(v)

)
p̃i
(

expxi(v)
)
dv+

ˆ
Bxi (0,r+)

(
xi − expxi(v)

)
p̃i
(

expxi(v)
)
[Jxi(v)− 1]dv := I1 + I2.

For the first term we notice that |xi − expxi(v)| ≤ dM(xi, expxi(v)) ≤ r+. Thus using i)
and the definition of p̃i we have

|I1| ≤
r+pmaxαm

Pi
(
X + Z ∈ B(yi, r)

)(rm+ − rm− ) ≤ 4m+1pmax
mpmin

(r+ − r−).

For the second term we use i) and (10) to see that

|I2| ≤
CmKpmaxαm

Pi
(
X + Z ∈ B(yi, r)

)rm+3
+ ≤ C4m+3mK

pmax
pmin

r3.

For iii) we notice that by definition of r− and r+ we can write

Pi
(
X ∈ Bxi(0, r−)

)
−Pj

(
X ∈ Bxj (0, r+)

)
≤ Pi−Pj ≤ Pi

(
X ∈ Bxi(0, r+)

)
−Pj

(
X ∈ Bxj (0, r−)

)
,

14
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and in particular it is enough to bound Hij :=
∣∣Pi(X ∈ BM(xi, r+)

)
−Pj

(
X ∈ BM(xj , r−)

)∣∣.
We can expand Hij as follows.

Hij =

ˆ
Bxi (0,r−)

p
(

expxi(v)
)
dv −

ˆ
Bxj (0,r−)

p
(

expxj (ṽ)
)
dṽ

+

ˆ
Bxi (0,r+)\Bxi (0,r−)

p
(

expxi(v)
)
dv

+

ˆ
Bxi (0,r−)

p
(

expxi(v)
)(
Jxi(v)− 1

)
dv −

ˆ
Bxj (0,r−)

p
(

expxj (ṽ)
)(
Jxj (ṽ)− 1

)
dṽ

:= I1 + I2 + I3.

By a similar argument as above, we can bound I2 and I3 by

|I2| ≤ pmaxαm(rm+ − rm− ) ≤ 2m−1

m
αmpmax(r+ − r−)rm−1,

|I3| ≤ 2CmKpmaxαmr
m+2
− ≤ 2CmKpmaxαmr

m+2.

Finally, we notice that we can identify Bxi(0, r−) with Bxj (0, r−). From the assumed
smoothness on p (which in particular is C1) we see that for any v ∈ Bxi(0, r−) we have∣∣p( expxi(v)

)
− p
(

expxj (v)
)∣∣ ≤ CpdM( expxi(v), expxj (v)

)
≤ 3Cpr.

Then it follows that |I1| ≤ 3Cpαmr
m+1 and we get the desired result.

We now bound the difference
∣∣bi − bj∣∣ for nearby points xi, xj , where we recall that

bi :=

ˆ
Bxi (0,r−)

(
expxi(v)− xi

)
p
(

expxi(v)
)
dv.

Proposition 10 Suppose that xi and xj are such that dM(xi, xj) ≤ r. Then,∣∣bi − bj∣∣ ≤ Crm+3,

where the constant C can be written as

C = pmaxαm

(
6
√
m

R2
+
(

1 +
4

R

)
CM

)
+
Cp
R
αm,

where Cp is a constant that depends on bounds on first and second derivatives of the density
p, and CM is a constant that depends only on the change in second fundamental form along
M (a third order term).

As we will see Proposition 10 can be proved combining several ideas from differential geom-
etry. We present the required auxiliary results as we develop the proof of the proposition.

We start by conveniently writing bi and bj in a way that facilitates their direct compar-
ison. Indeed, for any given v ∈ Bxi(0, r−) let us consider the curves

γv,i(t) := expxi

(
t
v

|v|

)
, t ∈ [0, |v|],

15
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and

t ∈ [0, |v|] 7→ xi + t ∈ [0, |v|].

Thus, γv,i is an arc-length parameterized geodesic on M that starts at the point xi and
at time |v| passes though the point expxi(v). Its initial velocity γ̇v,i(0) is the vector v/|v|.
On the other hand, while the second curve does not stay in M for t > 0, it does have the
same starting point and velocity as γv,i. We can use the fundamental theorem of calculus
to write:

expxi(v)− (xi + v) =

ˆ |v|
0

(
γ̇v,i −

v

|v|

)
dt,

as well as

γ̇v,i(t)−
v

|v|
=

ˆ t

0
γ̈v,i(s)ds, ∀t ∈ [0, |v|]. (19)

In particular, we have the second order representation

expxi(v)− xi = v +

ˆ |v|
0

ˆ t

0
γ̈v,i(s)dsdt. (20)

As a consequence of the previous formula we can rewrite bi as

bi =

ˆ
Bxi (0,r−)

(
expxi(v)− xi

)
p
(

expxi(v)
)
dv

=

ˆ
Bxi (0,r−)

p
(

expxi(v)
) ˆ |v|

0

ˆ t

0
γ̈v,i(s)dsdtdv +

ˆ
Bxi (0,r−)

vp
(

expxi(v)
)
dv.

(21)

Completely analogous definitions and statements can be introduced to represent bj .

With the objective of using the formula (21) to compare bi and bj we relate vectors
in TxiM with vectors in TxjM by a convenient linear isometry Fij : TxiM 7→ TxjM
constructed using parallel transport.

Lemma 11 Suppose that xi and xj are such that dM(xi, xj) ≤ r. Let φ : t ∈ [0, dM(xi, xj)] 7→
φ(t) ∈ M, be the arc-length parameterized geodesic starting at xi at time zero and passing
through xj at time t = dM(xi, xj). For an arbitrary vector v ∈ TxiM let Vv be the (unique)
vector field along φ that solves the ODE{

D
dtVv(t) = 0, t ∈

(
0, dM(xi, xj)

)
,

Vv(0) = v,
,

where D
dt denotes the covariant derivative (on M) along the curve φ. Then, the map Fij

defined by

Fij : v 7−→ ṽ := Vv
(
dM(xi, xj)

)
is a linear isometry. Moreover,

|v − ṽ| ≤ 1

R
|v|dM(xi, xj), ∀v ∈ TxiM. (22)
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Proof First note that Fij is a linear isometry since the ODE defining Vv is linear and the
vector fields Vv are parallel to the curve φ by definition. To get the estimate (22) we can
use the fundamental theorem of calculus and write

ṽ = v +

ˆ t

0
V̇v(s)ds,

where t := dM(xi, xj). The fact that Vv is parallel along the curve φ implies that V̇v(s) ∈
Tφ(s)M⊥ and furthermore that for arbitrary unit norm η with η ∈ Tφ(s)M⊥ we have

|〈V̇v(s), η〉| = |〈Sη(Vv(s)), φ̇(s)〉| ≤ ‖Sη‖|Vv(s)||φ̇(s)| = ‖Sη‖|v|,

where Sη is the so called shape operator representing the second fundamental form (see
Proposition 2.3. Chapter 6 in do Carmo (1992)). The relevance of the previous inequality
is that when combined with Proposition 6.1 in Niyogi et al. (2008) (which shows that the
operator norm of the second fundamental form is bounded by 1/R) it implies that

|V̇v(s)| ≤
|v|
R
, ∀s ∈ [0, t].

Therefore,

|ṽ − v| ≤
ˆ t

0
|V̇v(s)|ds ≤

|v|
R
dM(xi, xj),

establishing in this way the desired bound.

From now on, for a given v ∈ Bxi(0, r−) we let ṽ ∈ Bxj (0, r−) be its image under Fij .
We consider the curve

γṽ,j(t) := expxj

(
t
ṽ

|ṽ|

)
, t ∈ [0, |ṽ|],

where we recall that |v| = |ṽ| because Fij is a linear isometry. We can then make a change
of variables and write bj as

bj =

ˆ
Bxi (0,r−)

p
(

expxj (ṽ)
) ˆ |v|

0

ˆ t

0
γ̈ṽ,j(s)dsdtdv +

ˆ
Bxi (0,r−)

ṽp
(

expxj (ṽ)
)
dv. (23)

In the next lemma we find bounds for the norms of accelerations.

Lemma 12 Let v ∈ Bxi(0, r−) and let ṽ be as in Lemma 11. Then, for all t ∈ [0, |v|] we
have

|γ̈v,i(t)| ≤
1

R
,

and

|γ̇v,i(t)− γ̇ṽ,j(t)| ≤ 2
|v|
R

+
dM(xi, xj)

R
.
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Proof The first inequality appears in the proof of Proposition 2 in Niyogi et al. (2008) and
is obtained in a completely analogous way as we obtained the bound for V̇v in the proof of
Lemma 11 (given that unit speed geodesics are auto parallel).

To prove the second estimate, we notice that from the first bound and (19) it follows
that ∣∣∣∣γ̇v,i(t)− v

|v|

∣∣∣∣ ≤ |v|R , ∀t ∈ [0, |v|].

Naturally, a similar inequality holds for γṽ,j . Using Lemma 11 we conclude that for all
t ∈ [0, |v|] (recall that |v| = |ṽ|)

|γ̇v,i(t)− γ̇ṽ,j(t)| ≤
∣∣∣∣ v|v| − ṽ

|ṽ|

∣∣∣∣+

∣∣∣∣γ̇v,i(t)− v

|v|

∣∣∣∣+

∣∣∣∣γ̇ṽ,i(t)− ṽ

|ṽ|

∣∣∣∣
≤ 1

|v|
|v − ṽ|+ 2

|v|
R

≤ dM(xi, xj)

R
+ 2
|v|
R
.

From our assumption that the density p was in C2(M) it follows that

p
(

expxi(v)
)

= p(xi) + 〈∇p(xi), v〉+Ri(v),

p
(

expxj (ṽ)
)

= p(xj) + 〈∇p(xj), ṽ〉+Rj(ṽ),

where ∇p(xi) is the gradient (in M) of p at the point xi, and the remainder terms satisfy

max{|Ri(v)|, |Rj(ṽ)|} ≤ Cp|v|2,

for a constant Cp that depends on a uniform bound on second derivatives of p. Likewise,

max{|p(xi)− p(xj)|, |∇p(xi)−∇p(xj)|} ≤ CpdM(xi, xj).

Plugging the previous identities in the expressions (21) and (23), usingˆ
Bxi (0,r−)

p(xi)vdv = 0,

ˆ
Bxi (0,r−)

p(xj)ṽdṽ = 0,

inequality (22), the bound on accelerations from Lemma 12, and finally Assumption 2, we
can conclude that∣∣bi − bj∣∣ ≤ ˆ

Bxi (0,r−)

ˆ |v|
0

ˆ t

0

∣∣p(xj)γ̈ṽ,j(s)− p(xi)γ̈v,i(s)∣∣dsdtdv +
Cp
R
αmr

m+2
(
r + dM(xi, xj)

)
≤ pmax ·

ˆ
Bxi (0,r−)

ˆ |v|
0

ˆ t

0

∣∣γ̈ṽ,j(s)− γ̈v,i(s)∣∣dsdtdv
+

ˆ
Bxi (0,r−)

ˆ |v|
0

ˆ t

0

∣∣p(xj)− p(xi)∣∣∣∣γ̈v,i(s)∣∣dsdtdv +
Cp
R
αmr

m+2
(
r + dM(xi, xj)

)
≤ pmax ·

ˆ
Bxi (0,r−)

ˆ |v|
0

ˆ t

0

∣∣γ̈ṽ,j(s)− γ̈v,i(s)∣∣dsdtdv +
Cp
R
αmr

m+2
(
r + dM(xi, xj)

)
.

(24)
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In the above, Cp is a constant that depends on derivatives of p of order 1 and order 2 (and
in particular is equal to zero when p is constant) and αm is the volume of the m-dimensional
unit ball.

Proposition 10 now follows from the next lemma where we bound the difference of
accelerations.

Lemma 13 Let v ∈ Bxi(0, r−) and let ṽ be as in Lemma 11. Then, for all t ∈ [0, |v|] we
have∣∣γ̈v,i(t)− γ̈ṽ,j(t)∣∣ ≤ (2

√
m

R2
+ CM

)(
2|v|+ dM(xi, xj)

)
+ 2CM

(
|v|
R

+
dM(xi, xj)

R

)
,

where CM is a constant that depends on M (a third order term).

Proof For a fixed t ∈ [0, |v|] we let

x := γv,i(t), x̃ := γṽ,j(t).

We start by constructing a convenient linear map

η ∈ TxM⊥ 7→ η̃ ∈ Tx̃M⊥.

For this purpose we use an orthonormal frame E1, . . . , Em on a neighborhood (in M)
of x containing the geodesic connecting x and x̃ . The frame is constructed by parallel
transporting an orthonormal basis E1(x), . . . , Em(x) of TxM along geodesics emanating
from x. Now, associated to η ∈ TxM⊥ we define the (normal) vector field Nη by

Nη := η −
m∑
l=1

〈El, η〉El.

Equivalently, Nη can be written as

Nη(z) = Πz(η),

where for a point z ∈M, Πz denotes the projection onto TzM⊥ (the orthogonal complement
of the tangent plane at z).

Let φxx̃ be the arc-length parameterized geodesic with φxx̃(0) = x and φxx̃(t̃) = x̃. We
restrict the vector field Nη to the curve φx,x̃ and abuse notation slightly to write Nη(s) and
Ej(s) for the value of the vector fields at the point φxx̃(s). We let η̃ := Nη(t̃) and notice
that

|η − η̃| =

(
m∑
l=1

〈El(t̃), η〉2
)1/2

=

(
m∑
l=1

〈El(t̃)− El(0), η〉2
)1/2

≤
√
mdM(x, x̃)|η|

R
, (25)

where in the last line we have used that |El(t̃)−El(0)| ≤ t̃
R (proved in the exact same way

as (22)).
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Let η ∈ TxM⊥ be a unit norm vector and let η̃ be as constructed before. Since Nη is a
normal vector field which locally extends η we can follow the characterization for the shape
operator in Proposition 2.3 Chapter 6 in do Carmo (1992) and deduce that:

〈γ̈v,i(t), η〉 = 〈Sη(γ̇v,i), γ̇v,i(t)〉 = 〈 d
dt
Nη(γv,i(t)), γ̇v,i(t)〉.

Moreover, the smoothness of the manifold M allows us to extend Nη smoothly to a neigh-
borhood in Rd of x and x̃ (we also use Nη to represent the extension). Indeed, for any point
z in a tubular neighborhood of M of width smaller than R we can define

Nη(z) := Nη(ProjM(z)),

where ProjM is the projection onto M (which is well defined for points within distance R
from M). The smoothness of Nη in particular implies that

‖DNη(x)−DNη(x̃)‖ ≤ CM|x− x̃| ≤ CMdM(x, x̃),

‖DNη(x̃)‖ ≤ CM,

where DNη is the matrix of derivatives of the vector field Nη, and where CM is some
constant that only depends onM. With this extension at hand, we can then use the chain
rule and write:

〈γ̈v,i(t), η〉 = 〈DN(x)γ̇v,i(t), γ̇v,i(t)〉,

and in a similar fashion

〈γ̈ṽ,j(t), η〉 = 〈γ̈ṽ,j(t), η − η̃〉+ 〈γ̈ṽ,j(t), η̃〉 = 〈γ̈ṽ,j(t), η − η̃〉+ 〈−DN(x̃)γ̇ṽ,j(t), γ̇ṽ,j(t)〉.

Using the triangle and Cauchy-Schwarz inequalities we obtain

|〈γ̈v,i(t)− γ̈ṽ,j(t), η〉| ≤|γ̈ṽ,j ||η − η̃|+ ‖DN(x)−DN(x̃)‖|γ̇v,i|2+

‖DN(x̃)‖|γ̇v,i − γ̇ṽ,j |(|γ̇ṽ,j |+ |γ̇v,i|)

≤
√
m

R2
dM(x, x̃) + CMdM(x, x̃) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
.

Since the above inequality holds for all η ∈ TxM⊥ with norm one, we conclude that

|Πx(γ̈v,i(t))−Πx(γ̈ṽ,j(t))| ≤
√
m

R2
dM(x, x̃) + CMdM(x, x̃) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
,

where we recall Πx represents the projection onto TxM⊥. Moreover, since γ̈v,i(t) is the
acceleration of a unit speed geodesic passing through x, we know that γ̈v,i(t) ∈ TxM⊥, so
that Πx(γ̈v,i) = γ̈v,i. Similarly we have Πx̃(γ̈ṽ,j) = γ̈ṽ,j (where Πx̃ represents projection onto
Tx̃M⊥ ) . Hence

|γ̈v,i(t)− γ̈ṽ,j(t)| ≤ |Πxγ̈v,i(t)−Πxγ̈ṽ,j(t)|+ |Πxγ̈ṽ,j(t)− γ̈ṽ,j(t)|, (26)
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and so it remains to find a bound for |Πxγ̈ṽ,j(t)− γ̈ṽ,j(t)|. We can write

Πxγ̈ṽ,j = γ̈ṽ,j −
m∑
l=1

〈γ̈ṽ,j , El(0)〉El(0).

Therefore,

|γ̈ṽ,j −Πxγ̈ṽ,j | =

(
m∑
l=1

〈γ̈ṽ,j , El(0)〉2
)1/2

=

(
m∑
l=1

〈γ̈ṽ,j , El(0)− El(t̃)〉2
)1/2

≤
√
m
dM(x, x̃)

R2
.

Putting everything together we deduce that

|γ̈v,i − γ̈ṽ,j | ≤ (2

√
m

R2
+ CM)dM(x, x̃) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
≤ (2

√
m

R2
+ CM)(2|v|+ dM(xi, xj)) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
,

where in the last step we have used the triangle inequality

dM(x, x̃) ≤ dM(x, xi) + dM(xi, xj) + dM(xj , x̃) ≤ 2|v|+ dM(xi, xj).

Remark 14 Notice that the computations in the proof of Proposition 10 also show that

|bi| ≤ Crm+2, i = 1, . . . , n.

Indeed, this can be seen directly from (21), Lemma 12 (which bounds the acceleration term),
and the fact that the first term on the right-hand side of the following expression drops by
symmetry:

ˆ
Bxi (0,r−)

p(expxi(v))vdv = p(xi)

ˆ
Bxi (0,r−)

vdv +

ˆ
Bxi (0,r−)

(〈∇p(xi), v〉+Ri(v))vdv.

2.5 Bounding Sampling Error

We will make use of two concentration inequalities to bound the sampling error. We first
recall Hoeffding’s inequality.

Lemma 15 (Hoeffding’s inequality) Let w1, . . . , wn be i.i.d samples from a random
variable w taking values in the interval [0,1] and let w be the sample average. Then,

P (|w − E[w]| > t) ≤ 2e−2nt2 .

The next is a generalization for random vectors that follows directly from the simple and
elegant work Pinelis (1992) (more precisely, Theorem 3).
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Lemma 16 Let W1, . . . ,Wn be i.i.d samples from a random vector W such that |W | ≤M
for some constant M , and E[W ] = 0. Let W be the sample average. Then,

P
(∣∣∣W − E

[
W
]∣∣∣ >√M2

n
t

)
≤ 2e−t

2/16.

Proposition 17 Suppose Assumption 3 holds. Then,

P

(∣∣yi − Ei[yi]
∣∣ >√ 2m+4

αmpmin
r3

)
≤ 4e−cnr

max{2m,m+4}
, where c = min

{
α2
mp

2
min

4m+2
,

1

16

}
.

In particular, if nrmax{2m,m+4} � 1, then
∣∣yi − Ei[yi]

∣∣ ≤√ 2m+4

αmpmin
r3 with high probability.

Proof Let Ni be the number of points in B(yi, r). Notice that x̃i + z̃i − Ei[X̃i + Z̃i] is
centered and bounded by 2r in norm, and yi = x̃i + z̃i. Then Lemma 16 implies

Pi

∣∣yi − Ei[yi]
∣∣ >√4r2

Ni
t

∣∣∣∣∣Ni

 ≤ 2e−t
2/16.

By the law of iterated expectations it follows that

P

∣∣yi − Ei[yi]
∣∣ >√4r2

Ni
t

 ≤ 2e−t
2/16.

Next note that Ni, the number of points yj in B(yi, r), can be bounded below by Ñi, the
number of points xj that lie in the ball BM(xi, r−). Thus,

P
(∣∣ȳi − Ei[ȳi]

∣∣ >√4r2

Ñi

t

)
≤ 2e−t

2/16. (27)

Now we find probabilistic bound for Ñi. Let wj = 1{xj ∈ B(xi, r−)}. Then given xi, the
wj are i.i.d samples from Bernoulli(qi), where qi = µ

(
BM(xi, r−)

)
. Lemma 15 implies

Pi
(∣∣Ñi − nqi

∣∣ > nt
∣∣xi) ≤ 2e−2nt2 .

Again by the law of iterated expectation and rearranging terms, we have

P
(
Ñi < n(qi − t)

)
≤ 2e−2nt2 . (28)

Combining (27) and (28), we obtain

P

(∣∣yi − Ei[yi]
∣∣ >√ 4r2

n(qi − s)
t

)
= P

(∣∣yi − Ei[yi]
∣∣ >√ 4r2

n(qi − s)
t, Ñi < n(qi − s)

)

+ P

(∣∣yi − Ei[yi]
∣∣ >√ 4r2

n(qi − s)
t, Ñi ≥ n(qi − s)

)

≤ P
(
Ñi < n(qi − s)

)
+ P

(∣∣yi − Ei[yi]
∣∣ >√4r2

Ñi

t

)
≤ 2e−2ns2 + 2e−t

2/16.
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Under Assumption 3, (11) implies qi ≥ αmpmin
2m+1 rm. Taking s = αmpmin

2m+2 rm and t =
√
nrm+4,

we see that

P

(∣∣yi − Ei[yi]
∣∣ >√ 2m+4

αmpmin
r3

)
≤ 2e−

α2mp
2
min

4m+2 nr2m + 2e−nr
m+4/16 ≤ 4e−cnr

max{2m,m+4}
,

where c = min
{
α2
mp

2
min

4m+2 , 1
16

}
. The result then follows.

Theorem 1 now follows by combining Lemma 9, Propositions 8, 10, and Proposition 17
together with a union bound.

3. From Local Regularization to Global Estimates

In this section we use the local estimates (7) to show spectral convergence of ∆Ȳn,ε towards
the continuum Laplace-Beltrami operator. We first make some definitions. Recall that the
graph Γδ,ε = ([n],W ) has weights

W (i, j) =
2(m+ 2)

αmεm+2n
1{δ(i, j) < ε},

where m is the dimension of M and αm is the volume of the m−dimensional Euclidean
unit ball. For a function u : [n]→ R, we denote its value on the i-th node as u(i). We then
define the discrete Dirichlet energy of u as

Eδ,ε[u] =
m+ 2

αmεm+2n

n∑
i=1

n∑
j=1

1{δ(i, j) < ε}|u(i)− u(j)|2

and the L2 norm of u as

‖u‖2 =
1

n

n∑
i=1

|u(i)|2.

Given that ∆δ,ε is a positive semi-definite operator, we can use the minimax principle (see
for example Lieb et al. (2001)) to write

λ`(Γδ,ε) = min
L

max
u∈L\{0}

Eδ,ε[u]

‖u‖2
,

where λ`(Γδ,ε) is the `-th smallest eigenvalue of ∆Γδ,ε and the minimum is taken over all
subspaces L of dimension `. The following lemma compares the eigenvalues of the discrete
graphs constructed using δXn and δȲn .

Lemma 18 Let η be the bound in (7) so that for all i, j with dM(xi, xj) ≤ r we have∣∣δXn(i, j)− δȲn(i, j)
∣∣ ≤ η.

Suppose that ε is chosen so that ε ≥ 2Cmη, for some universal constant C. Then,(
1− Cmη

ε

)
λ`(ΓXn,ε−η) ≤ λ`(ΓȲn,ε) ≤

(
1 + Cm

η

ε

)
λ`(ΓXn,ε+η). (29)
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Garćıa Trillos, Sanz-Alonso, and Yang

Proof We first compare the Dirichlet energies. Since δXn(i, j) < δȲn(i, j) + η, we have

EȲn,ε[u] =
m+ 2

αmεm+2n

∑
i

∑
j

1{δȲn(i, j) < ε}|ui − uj |2

≤ m+ 2

αmεm+2n

∑
i

∑
j

1{δXn(i, j) < ε+ η}|ui − uj |2

=
(ε+ η

ε

)m+2
EXn,ε+η[u]

≤
(

1 + Cm
η

ε

)
EXn,ε+η[u]. (30)

Now we use the minimax principle to show the upper-bound on (29). Let u1, . . . , u` be the
first l eigenvectors of ∆Xn,ε+η and let L = span{u1, . . . , u`}. Then dimL = ` and for any
u ∈ L, EXn,ε+η[u] ≤ λ`(ΓXn,ε+η)‖u‖2. Then by (30), we have

λ`(ΓȲn,ε) ≤ max
L\0

EȲn,ε[u]

‖u‖2
≤
(

1 + Cm
η

ε

)
max
L\0

EXn,ε+η[u]

‖u‖2
=
(

1 + Cm
η

ε

)
λ`(ΓXn,ε+η).

By a similar argument applied to ΓXn,ε−η and ΓȲn,ε, we get the lower-bound in (29).

Remark 19 With the convergence of eigenvalues and the relationship between the Dirichlet
energies it is also possible to make statements about convergence of eigenvectors (or better
yet, spectral projections).

The spectral convergence towards the continuum (Theorem 3) is a consequence of the
following theorem, proved in (Garćıa Trillos et al., 2018, Corollary 2).

Theorem 20 Let d∞ be the ∞-OT distance between µn and µ. Suppose ε satisfies the
conditions in Equation (9) and that Assumptions 1 and 2 hold. Then

|λ`(ΓXn,ε)− λ`(M)|
λ`(M)

≤ C̃
(
d∞
ε

+
(
1 +

√
λ`(M)

)
ε+

(
K +

1

R2

)
ε2

)
,

where C̃ only depends on m and the regularity of p.

Combining Lemma 18 and Theorem 20 gives Theorem 3.

4. Numerical Experiments

In this section we present a series of numerical experiments where we conduct local regular-
ization on three different datasets. In Subsection 4.1 we consider a toy example with artifi-
cial data generated by perturbing points sampled uniformly from the unit, two-dimensional
sphere embedded in Rd with d = 100. We show that the approximation of the hidden
Euclidean distances between unperturbed points is significantly improved by locally regu-
larizing the data, and that this improvement translates into better spectral approximation
of the spherical Laplacian. Our numerical findings corroborate the theory developed in the
previous two sections. In Subsection 4.2 we consider the two-moon and MNIST datasets
and show that graphs constructed with locally regularized data can be used to improve the
performance of a simple graph-based optimization method for semi-supervised classification.
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4.1 Distance & Spectrum

Here we study the effect of local regularization on distance approximation and spectral
convergence, as an illustration of the results from Sections 2 and 3. In our toy model we
consider uniform samples from the unit two-dimensional sphere M = S embedded in Rd,
with d = 100. The motivation for such a choice is that the eigenvalues of the associated
Laplace-Beltrami operator on S are known explicitly (see for example Olver). Indeed,
after appropriate normalization, ∆S admits eigenvalues `(`+ 1), ` ∈ N, with corresponding
multiplicity 2`+ 1.

The dataset is generated by sampling n = 3000 points xi uniformly from the sphere
and adding uniform noise zi normal to the tangent plane, and bounded by σ in norm.
To be more precise, the noise is normal to the sphere for the first three dimensions and
uniform in all directions for the rest dimensions. Local regularization is performed by
taking r ∝

√
σ and the graph is constructed with ε = 2n−1/4. The optimal proportion

constant in r is not obvious from our theory and in the experiments below we choose
r =

√
σ/3 for σ = 0.1 and r =

√
σ for the rest of the σ’s. We first show that the ȳi

give a better approximation of the pairwise distances of the xi than the yi do. We only
consider those nodes i, j such that δXn(i, j) < ε (i.e. the nodes that are relevant for the
construction of the graph Laplacians). More precisely, let DXn be the matrix whose ijth
entry is δXn(i, j)1{δXn(i, j) < ε}. Similarly, we define [DYn ]ij = δYn(i, j)1{δXn(i, j) < ε}
and [DȲn ]ij = δȲn(i, j)1{δXn(i, j) < ε}. In Table 1 we compare the entrywise ∞-norm of
the DXn −DYn and DXn −DȲn for different values of σ. We see that the improvement is
substantial.

σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9

‖DXn −DYn‖∞ 0.095 0.298 0.505 0.723 0.937

‖DXn −DȲn‖∞ 0.084 0.090 0.087 0.093 0.144

Table 1: Entrywise ∞-norm of DXn −DYn and DXn −DȲn on S for several σ’s.

Next we study the spectral approximation of Laplacians by comparing the spectra of
∆Xn,ε, ∆Yn,ε with that of ∆Ȳn,ε. Note that since the xi are uniformly distributed, the

density p on S that they are sampled from is constant and equal to 1
volM . So for the spectra

of the graph Laplacians to match in scale with that of ∆S , the weights should be rescaled
according to

W (i, j) =
2(m+ 2)vol(M)

αmεm+2n
,

where vol(M) is the volume of the manifold and equals 4π in this case. In Figure 1 we
compare the first 100 eigenvalues of ∆Xn,ε, ∆Yn,ε, and ∆Ȳn,ε with the continuum spectrum.
We see that when the noise size is large, the Euclidean graph Laplacian ∆Yn,ε does not
give a meaningful approximation of the continuum spectrum, while the locally regularized
version ∆Ȳn,ε still performs well.

Remark 21 While our theory in Section 2 suggests the choice r ∝
√
σ in the small r and

large n limit, for practical purposes some other scalings may give better results. Indeed for

25
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(a) σ = 0.1 (b) σ = 0.2 (c) σ = 0.3

(d) σ = 0.4 (e) σ = 0.5 (f) σ = 0.6

(g) σ = 0.7 (h) σ = 0.8 (i) σ = 0.9

Figure 1: Comparison of spectra of continuum Laplacian, ∆Xn,ε, ∆Yn,ε and ∆Ȳn,ε for dif-
ferent values of σ.

the above σ’s, choosing r = σ seems to give better spectral approximation. The choice of the
local-regularization parameter will be further investigated in Subsection 4.2.2 in the context
of a semi-supervised classification task, where a data-driven (cross-validation) approach can
be used.

4.2 Classification

In this subsection we demonstrate the practical use of local regularization by applying it
to classification problems. To show the potential benefits, we consider synthetic and real
datasets, namely the two moons and MNIST datasets. Since in one of our experiments we
study a real dataset, where in general the connectivity parameter in an ε graph is hard to
tune, we instead consider fully connected graphs with self-tuning weights. Precisely, given
a similarity δ : [n]× [n]→ [0,∞) we define, following Zelnik-Manor and Perona (2005), the
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weights by

W (i, j) = exp

(
− δ(i, j)2

2τ(i)τ(j)

)
, (31)

where τ(i) is the similarity between the i-th data point and its K-th nearest neighbor with
respect to the distance δ. As before, we denote by ΓXn , ΓYn and ΓȲn the graphs constructed
with similarities δXn , δYn , and δȲn . Instead of specifying a universal ε representing the
connectivity length-scale, the neighborhood for each point is selected from using the local
geometry which varies in space. It amounts to choosing different values of ε adaptively
depending on the local scale, as proposed in Zelnik-Manor and Perona (2005). Since the
τ(i) are defined by considering K-nearest neighbors, a natural variant of the above fully
connected graph is to set the weights to be 0 whenever xi and xj are not among the K-
nearest neighbors of each other. In other words, we can construct a (symmetrized) K-NN
graph with the same K as in the definition of τ(i) and the nonzero weights are the same
as above. It turns out that empirically this K-NN version can improve the classification
performance substantially, but to illustrate the local regularization idea, we will present
results for both graph constructions. We shall denote these two types of graphs as fully-
connected and K-NN variants for brevity, or fully and K-NN for short.

In the following, we focus on the semi-supervised learning setting where we are given n
data points with the first J being labeled. The classification is done by minimizing a probit
functional as explained below. Let ∆δ be a normalized graph Laplacian constructed on the
dataset, which will be constructed using Xn, Yn and Ȳn and ∆δ = I − D−1/2WD−1/2 as
compared with (4). Let (λi, qi), i = 1, . . . , n be the associated eigenvalue-eigenvector pairs,
and let U = span{q2, . . . , qn}. The classifier is set to be the sign of the minimizer u of the
functional

J (u) :=
1

2c
〈u,∆δu〉 −

J∑
j=1

log
(

Φ(y(j)u(j); γ)
)
, with c := n

( n∑
i=2

λ−1
i

)−1
,

where {y(j)}Jj=1 is the vector of labels and Φ is the cdf of N (0, γ2). The functional J can
be interpreted as the negative log posterior in a Bayesian setting, as discussed in Bertozzi
et al. (2018). Throughout our experiments we set γ = 0.1.

4.2.1 Two Moons

We first study the two moons dataset (Bühler and Hein (2009)), which is generated by
sampling points uniformly from two semi-circles of unit radius centered at (0, 0) and (1, 0.5)
and then embedding the dataset in Rd, with d = 100. We then perturb the data by adding
uniform noise with norm bounded by σ. As before, the noise in the first two dimensions
are normal to the semicirlces; the noise is taken to be uniform in the ambient space in
the remaining dimensions. In addition to the semi-supervised setting, we also examine the
unsupervised case.

We consider n = 1000 points 1% of which have labels and we set K = 10. As pointed
out in Remark 21, we choose the regularization parameter r to be equal to σ. We compare
the approximation of distance matrix and classification performance on Xn,Yn, and Ȳn’s,
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as in Table 2 and Figure 4. Instead of comparing nodes that are within δXn-distance ε, we
consider nodes that are K-nearest neighbors of each other with respect to δXn . As before,
the regularized points Ȳn approximate the pairwise distances better and moreover, they
improve the classification performance. Especially for the fully-connected case, we see that
Ȳn is able to capture the exact correct labeling as the clean data does for moderate σ’s,
while the noisy data Yn is making mistakes even when σ is as small as 0.3.

σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9

‖DXn −DYn‖∞ 0.109 0.344 0.589 0.795 0.996

‖DXn −DȲn‖∞ 0.064 0.164 0.240 0.372 0.431

Table 2: Entrywise∞-norm of DXn−DYn and DXn−DȲn on two moons for different values
of σ.

(a) Fully-connected. (b) K-NN variant.

Figure 2: Classification error rates for ΓXn , ΓYn and ΓȲn on two moons for different values
of σ.

For further understanding, in Figure 3 we plot the first two coordinates of the points
in Xn, Yn and Ȳn for large values of σ. We see that after local regularization, the first
two coordinates of Ȳn lie almost on the underlying manifold. The denoising effect of local
regularization is apparent. Furthermore, we observe that the semicircles for Ȳn are “shorter”
than those of Xn. In other words, points near the ends are pulled away from the boundaries.
Moreover, if one looks carefully at the plots for Ȳn, points are denser near the top and
bottom. This illustrates that local regularization not only reduces noise, but also moves
points to regions of high probability. We refer to Chen et al. (2016); Fukunaga and Hostetler
(1975) and the references therein for some discussion on mean-shift and mode-seeking type
algorithms.

Remark 22 The two moons dataset is sampled from a manifold with boundaries, and so
our theory does not directly apply. However, the numerical results seem to suggest that our
theory continues to hold in this setting.
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(a) σ = 0.1.

(b) σ = 0.5.

(c) σ = 0.9.

Figure 3: Visualization of the point clouds Xn, Yn, and Ȳn. Each row contains scatter plots
of the first two coordinates of the points in the datasets Xn, Yn, and Ȳn.

Remark 23 Additional numerical experiments not shown here suggest that applying local
regularization within unsupervised spectral clustering gives qualitatively similar results to
those shown in Figure 2 for a semi-supervised setting.

4.2.2 MNIST

In this subsection we apply local regularization on the MNIST data-set of hand-written
digits (LeCun (1998)). Each digit is described by a 784-dimensional vector, but the number
of degrees of freedom of the data-generating mechanism is much smaller. For instance, in
Hein and Audibert (2005) the authors estimate the intrinsic dimension of the digits 1 from
MNIST to be 8. However, unlike in the previous examples, here there is no explicitly avail-
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able underlying manifold from which the digits are sampled. Instead of adding additional
noise to the dataset, we directly apply local regularization to the digits and show that doing
so improves their binary classification. Since the level of noise is unknown choosing the lo-
calization parameter r cannot be guided by the theory and in our experiments, we tune it by
performing 2-fold cross validation on the label sets. When there are few labels, we repeat-
edly generate holdout sets and compare the overall error. Due to this practical difficulty of
tuning r, we propose two variants of ΓȲn that can serve as alternatives in practice.

We study the classification performance of ΓȲn for different pairs of digits. We consider
a semi-supervised learning problem with n = 1000 images and K = 20 for the K-nearest
neighbor variant. Table 3 shows the classification error percentage for four different pairs
of digits when 4% of the digits are labeled. Table 4 shows the decrease on the classification
error on the pair 4&9 as the percentage of labeled digits is increased.

Fully 3&8 5&8 4&9 7&9 K-NN 3&8 5&8 4&9 7&9

ΓYn 27.7% 48.0% 48.0% 48.0% ΓYn 7.6% 5.5% 13.3% 7.3%

ΓȲn 13.4% 17.4% 30.0% 15.3% ΓȲn 6.0% 3.6% 9.6% 5.4%

Table 3: Classification error for different pairs of digits 3&8, 5&8, 4&9, and 7&9.

Fully 4% 8% 12% 16% K-NN 4% 8% 12% 16%

ΓYn 48.0% 42.7% 38.8% 29.4% ΓYn 13.3% 10.9% 7.6% 5.1%

ΓȲn 30.0% 26.1% 21.9% 18.2% ΓȲn 9.6% 6.4% 6.0% 4.5%

Table 4: Classification error for 4&9 with different number of labels.

(a) Threes in MNIST. (b) Eights in MNIST.

Figure 4: Visualization of the regularization effects. The second row is the regularized
version of the corresponding image in the first row. While arguably more blurred, the digits
in the second row are more homogeneous within each group, making classification easier.

Again the K-NN variant performs much better than the fully-connected graph. As in
Table 3, we see that except for the pair 3&8, the classification error for the other three pairs
with ΓYn is 480: after respecting the 40 labels, the other 960 images are classified as part
of the same group. However, after regularization, the classification error is greatly reduced
with ΓȲn . The same is true when we use the K-NN variant, but the improvement is smaller.
Similarly as in Table 4, the improvement for local regularization becomes less dramatic as we
go from the fully-connect graph to its K-NN variant and as the number of labels increases.
This implies that there is certainly a limit for the improvement that local regularization can
provide. Moreover, such improvement is most effective when label information is limited
and one has to extract information from the geometry. Our theory and our experiments
show that local regularization improves the recovery of geometric information and thereby
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boosts the classification performance in that scenario. We present a visualization of the
effect of local regularization in Figure 3. The two rows represent the image before and after
local regularization respectively. We can see that especially for the eights, many of the
images get “fixed” after regularization. Moreover, at a high level, images within each group
in the second row look more similar among themselves than those in the first row. Because
of this we expect the classification to be better.

Remark 24 The four chosen pairs of digits are the hardest pairs to classify but local reg-
ularization can improve the performance for other pairs too. For unsupervised spectral
clustering, local regularization still gives improvement, but using cross validation to choose
r is no longer possible.

4.3 Future Directions

As mentioned above, the practical choice of r can be challenging. We propose two alter-
natives that may be easier to work with and investigate their competence on the MNIST
dataset.

4.3.1 k-NN regularization

This is a natural variant of ΓȲn based on k-nearest neighbor regularization. Instead of
specifying a neighborhood of yi of radius r, we simply regress the data by averaging over
its k nearest neighbors. Here k is not necessarily the same as K (the number of neighbors
used to construct a similarity graph). Conceptually, choosing k amounts to setting different
values of r at different points in such a way that the resulting neighborhoods contain roughly
the same number of points. This construction is easier to work with since k is in general
easier to tune than r.

4.3.2 Self-tuning regularization

This is a global regularization variant that does not require hyper parameters. Instead of
averaging over a neighborhood of radius r, we take a global weighted average of the whole
point cloud, where the weights are proportional to the similarities between the yi. More
specifically, we define a new distance in terms of the points ŷi, where

ŷi =

n∑
j=1

W (i, j)yj ,

and W (i, j) is the defined as in (31). We see that points far from yi have small contribution
in the definition of ŷi and so essentially one ends up summing over points in a neighborhood
that is implicitly specified by the similarities. For points close to yi, the weights are roughly
on the same order. Hence ŷi can be seen approximately as ȳi plus a small contribution
from points that are far from yi. We expect this construction to behave a little worse
than the ΓȲn with optimal r. However, the fact that this construction does not require
the tuning of any hyper-parameter makes it an appealing choice. Table 6 compares the
classification performance of all graphs mentioned above (with the four different choices of
distance function, and the two alternatives to build similarity graphs).
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Fully 3&8 5&8 4&9 7&9 K-NN 3&8 5&8 4&9 7&9

ΓYn 27.7% 48.0% 48.0% 48.0% ΓYn 7.6% 5.5% 12.8% 7.3%

ΓȲn 13.4% 17.4% 36.9% 15.3% ΓȲn 6.9% 3.6% 9.7% 5.4%

k-NN 11.5% 7.4% 43.1% 18.3% k-NN 5.3% 5.9% 9.6% 6.1%

self-tuning 16.1% 13.9% 33.4% 26.3% self-tuning 7.6% 3.1% 8.8% 5.6%

Table 5: Comparison of classification errors with 4% labeled data.

Remark 25 The idea of using labels to learn r (or k) can be understood as a specific
instance of a more general idea: to use labels to better inform the learning of the underlying
geometry of a dataset. What is more, one can try to simultaneously learn the geometry of
the input space with the learning of the labeling function, instead of looking at these two
problems in sequential form. This will be the topic of future research.
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Appendix A. Estimating r− and r+

A.1 Estimating r−

We want to find values of t > r
2 for which for all v ∈ TxiM with |v| ≤ t, and for all

η ∈ Texpxi (v)M⊥ with |η| ≤ σ we have

|expxi(v) + η − yi| < r.

We will later take the maximum value of t for which this holds and set r− to be this
maximum value.

Let x = expxi(v). First, with the parallel transport map used in the proof of the
geometric bias estimates (as in (25)) we can associate a vector η̃ ∈ TxiM⊥ to a vector
η ∈ TxM⊥ with norm less than σ, for which

|η − η̃| ≤ m

R
σt.

Now,

|x+ η − yi| ≤ |x− xi + η̂ − zi|+ |η − η̂|

=
(
|x− xi|2 + 2〈x− xi, η̂ − zi〉+ |η̂ − zi|2|

)1/2
+ |η − η̂|

≤
(
|x− xi|2 + 2〈x− xi, η̂ − zi〉+ |η̂ − zi|2|

)1/2
+
m

R
σt.
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We have

|x− xi| ≤ dM(x, xi) = |v| ≤ t,

and also

〈x− xi, η̂ − zi〉 = 〈x− (xi + v), η̂ − zi〉,

as it follows from the fact that η, zi ∈ TxiM⊥ and v ∈ TxiM. Using this, Cauchy-Schwartz,
and (20) we conclude that

|〈x− (xi + v), η̂ − zi〉| ≤ 2σ|x− (xi + v)| ≤ 2σ
|v|2

R
,

and hence

|x+ η − yi| ≤
(
t2 +

4

R
σt2 + 4σ2

)1/2

+
mσt

R

= t

(√
1 +

4σ

R
+

4σ2

t2
+
mσ

R

)

≤ t

(√
1 +

4σ

R
+

16σ2

r2
+
mσ

R

)
.

From the above it follows that r− defined as

r− := r

(√
1 +

4σ

R
+

16σ2

r2
+
mσ

R

)−1

, (32)

satisfies the desired properties and moreover

r − r− ≤ r

1−

(√
1 +

4

R
σ +

16σ2

r2
+
mσ

R

)−1
 . (33)

A.2 Estimating r+

To estimate r+, we need the following lemma proved in Garćıa Trillos et al. (2018).

Lemma 26 Suppose x, x̃ ∈M are such that |x− x̃| ≤ R/2. Then

|x− x̃| ≤ dM(x, x̃) ≤ |x− x̃|+ 8

R
|x− x̃|3. (34)

To construct r+ we find values of t with 2r ≥ r + σ > t > 0 such that if |v| > t then

| expxi(v) + ση − yi| ≥ r

for all η ∈ Texpxi (v)M⊥ of norm no larger than σ.
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As in the construction of r− we let x := expxi(v). Similar computations give

|x+ η − yi| ≥ |x− xi + η̂ − zi| − |η − η̂|

=
(
|x− xi|2 + 2〈x− xi, η̂ − zi〉+ |η̂ − zi|2|

)1/2 − |η − η̂|
≥
(
|x− xi|2 + 2〈x− xi, η̂ − zi〉+ |η̂ − zi|2|

)1/2 − m

R
σ|v|

≥
((
|v| − 1

R
|v|3
)2
− 4

R
σ|v|2

)1/2

− m

R
σ|v|

≥ |v|

(√
1− 2|v|2

R
− 4σ

R
− mσ

R

)

≥ |v|

(√
1− 8r2

R
− 4σ

R
− mσ

R

)

≥ t

(√
1− 8r2

R
− 4σ

R
− mσ

R

)
,

where in the third inequality we have used (34) to conclude that

| expxi(v)− xi| ≥ dM(x, xi)− C(dM(x, xi))
3 = |v| − C|v|3.

We can then take t to be such that the right hand side of (33) is equal to r. That is, we
can take

r+ := r

(√
1− 8r2

R
− 4σ

R
− mσ

R

)−1

.

From these estimates we see that

r+ − r− ≤ c
(
r3 + rσ +

σ2

r

)
.
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