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Abstract

We consider the task of recovering two real or complex m-vectors from phaseless Fourier
measurements of their circular convolution. Our method is a novel convex relaxation that is
based on a lifted matrix recovery formulation that allows a non-trivial convex relaxation
of the bilinear measurements from convolution. We prove that if the two signals belong
to known random subspaces of dimensions k and n, then they can be recovered up to the
inherent scaling ambiguity with m > (k + n) log m phaseless measurements. Our method
provides the first theoretical recovery guarantee for this problem by a computationally
efficient algorithm and does not require a solution estimate to be computed for initialization.
Our proof is based on Rademacher complexity estimates. Additionally, we provide an
alternating direction method of multipliers (ADMM) implementation and provide numerical
experiments that verify the theory.

Keywords:  Hyperbolic Constraints, Blind Deconvolution, Phase Retrieval, Convex
Analysis, Rademacher Complexity

1. Introduction

This paper considers recovery of two unknown signals (real- or complex-valued) from the
magnitude only measurements of their convolution. Let w, and x be vectors residing in
H™, where H denotes either R, or C. Moreover, denote by F' the DFT matrix with entries
Flw,t] = \/—%e_j%“’t/ Mmoo 1 <w,t <m. We observe the phaseless Fourier coefficients of the
circular convolution w ®  of w, and @

Y= |F(wex) (1)

where |z| returns the element wise absolute value of the vector z. We use ¢ to denote
noiseless measurements, and reserve the notation y for more general noisy measurements.
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We are interested in recovering w and @ from the phaseless measurements 4§ or y of their
circular convolution. In other words, the problem concerns blind deconvolution of two signals
from phaseless measurements. The problem can also be viewed as identifying the structural
properties on w such that its convolution with the signal /image of interest  makes the phase
retrieval of a signal @ well-posed. Since w and x are both unknown, and in addition, the
measurements are phaseless, the inverse problem becomes severely ill-posed as many pairs of
w and x correspond to the same y. We show that this non-linear problem can be efficiently
solved, under Gaussian measurements, using a semidefinite program and also theoretically
prove this assertion. We also propose a heuristic approach to solve the proposed semidefinite
program computationally efficiently. Numerical experiments show that, using this algorithm,
one can successfully recover a blurred image from the magnitude only measurements of its
Fourier spectrum.

Phase retrieval has been of continued interest in the fields of signal processing, imaging,
physics, computational science, etc. Perhaps, the single most important context in which
phase retrieval arises is the X-ray crystallography (Harrison, 1993; Millane, 1990), where the
far-field pattern of X-rays scattered from a crystal form a Fourier transform of its image, and
it is only possible to measure the intensities of the electromagnetic radiation. However, with
the advancement of imaging technologies, the phase retrieval problem continues to arise in
several other imaging modalities such as diffraction imaging (Bunk et al., 2007), microscopy
(Miao et al., 2008), and astronomical imaging (Fienup and Dainty, 1987). In the imaging
context, the result in this paper would mean that if rays are convolved with a generic pattern
(either man made or naturally arising due to propagation of light through some unknown
media) w prior to being scattered/reflected from the object, the image of the object can be
recovered from the Fourier intensity measurements later on. As is well known from Fourier
optics (Goodman, 2008), the convolution of a visible light with a generic pattern can be
implemented using a lens-grating-lens setup.

Despite recent advances in theoretical understanding of phase retrieval (Candes et al.,
2013, 2015b), the application to actual problems such as crystallography remains challenging
owing partly to the simplistic mathematical models that may not fully capture the actual
physical problem at hand. Our comparatively more complex model in (1) more elaborately
encompasses structure in actual physical problems, for example, crystallography, where due
to the natural periodic arrangement of a crystal structural unit, the observed electron density
function of the crystal exactly takes the form (1); for details, see, Section 2 of (Elser et al.,
2017).

Blind deconvolution is a fundamental problem in signal processing, communications, and
in general system theory. Visible light communication has been proposed as a standard in
5G communications for local area networks (Azhar et al., 2013; Retamal et al., 2015; Azhar
et al., 2010). Propagation of information carrying light through an unknown communication
medium is modelled as a convolution. The channel is unknown and at the receiver it is
generally difficult to measure the phase information in the propagated light. The result in
this paper says that the transmitted signal can be blindly deconvolved from the unknown
channel using the Fourier intensity measurements of the light only. The reader is referred
to the first section of the supplementary note for a detailed description of the visible light
communication and its connection to our formulation.



BLIND DECONVOLUTIONAL PHASE RETRIEVAL VIA CONVEX PROGRAMMING

Main Contributions. In this paper, we study the combination of two important and
notoriously challenging signal recovery problems: phase retrieval and blind deconvolution.
We introduce a novel convex formulation that is possible because the algebraic structure from
lifting resolves the bilinear ambiguity just enough to permit a non-trivial convex relaxation of
the measurements. The strengths of our approach are that it allows a novel convex program
that is the first to provably permit recovery guarantees with optimal sample complexity for
the joint task of phase retrieval and blind deconvolution when the signals belong to known
random subspaces. Additionally, unlike many recent convex relaxations and non-convex
approaches, our approach does not require an initialization or estimate of the true solution
in order to be stated or solved. While our convex formulation is presented in a lifted domain
(with increased dimensionality), in implementing the convex problem, we have been able to
use some recent results in Burer-Monteiro-type approaches and perform the optimization in
a factored space (solving a series of non-convex programs which are guaranteed to land on
the global minima).

Finally, an earlier version of this paper with only the exact recovery result form noiseless
measurements appeared in (Ahmed et al., 2018) by the same authors. This paper extends
the previous result to more general noisy measurements with a significantly modified proof.
Moreover, the implementation in (Ahmed et al., 2018) was performed in a lifted domain and
the proposed scheme required iterative projections onto the positive semidefinite cone, which
was computationally prohibitive for large scale problems. By considering a different way
of modelling the optimization problem, in Section 2 we present a more efficient algorithm,
which is solved in a factored space using a Burer-Monteiro-type approach. This makes our
implementation applicable to a much larger class of problems.

1.1. Observations in Matrix Form

The phase retrieval, and blind deconvolution problem has been extensively studied in signal
processing community in recent years (Candes et al., 2015a; Ahmed et al., 2014) by lifting
the unknown vectors to a higher dimensional matrix space formed by their outer products.
The resulting rank-1 matrix is recovered using nuclear norm as a convex relaxation of the
non-convex rank constraint. Recently, other forms of convex relaxations have been proposed
(Bahmani and Romberg, 2017b; Goldstein and Studer, 2018; Aghasi et al., 2017a,b, 2018) that
solve both the problems in the native (unlifted) space leading to computationally efficiently
solvable convex programs. This paper handles the non-linear convolutional phase retrieval
problem by lifting it into a bilinear problem. The resulting problem, though still non-convex,
gives way to an effective convex relaxation that provably recovers w and x exactly.

We consider the problem of recovering (w?, :pu) € H¢ x H! from measurements of the
form (1). It is clear that uniquely recovering w? and !, even up to the global bilinear
ambiguity, is not possible without extra knowledge or information about the problem. We
will address the problem under the broad and generally applicable structural assumptions
that both w? and «! are members of known subspaces of #™. This means that w? and "
can be parametrized in terms of unknown lower dimensional vectors h? € H* and m? € H",
respectively, as follows

w® = Bh!, 2f = Cm’, (2)
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where B € H™*k and C € H™*™ are known matrices whose columns span the subspaces in
which w? and ? belong, respectively. Since the circular convolution operator diagonalizes in
the Fourier domain, noiseless measurements become

§ = =|Bh"© Cm'|, (3)

where B = /mF B, C= \/> FC, and ©® represents the the Hadamard product. Denoting
by by and ¢y the rows of B and C, respectively, the entries of the noiseless measurements gy
can be expressed as

i = w(be, B (co,m")[?, £=1...m

This problem is non-linear in both unknowns; however, it reduces to a bilinear problem in
the lifted variables h*h%* and mim®, taking the form

g2 = L(byb}, AR (cpc;, m m™) = L(bby, H) (cic;, MP), (4)

where H® = h'h* and M? = m m®. Treating the lifted variables H % and M" as unknowns
makes the measurements bilinear in the unknowns; a structure that will help us formulate
an effective convex relaxation.

In the case of noisy measurements, we will write without loss of generality that

L|Br' o Cm®|o (1+¢), (5)
& > —1forevery f=1...m. (6)

y:

ﬂ\

The noiseless case is given by & = 0.

1.2. Novel Convex Relaxation

The task of recovering H" and M % from the noiseless measurements y in (5) can be naturally
posed as an optimization program

find  H,M (7)
subject to %(bgbZ,HMCgc}‘,M) = }?, {=1...m.
rank(H) = 1, rank(M) = 1.

Both the measurement and the rank constraints are non-convex. Further, the immediate
convex relaxation of each measurement constraint is trivial, as the convex hull of the set of
(H, M) satisfying §7 = L (bsb}, H){(cicj, M) is the set of all possible (H, M).

To derive our convex relaxation, recall that the true H? = hhhh*, and M? = mim
are also positive semidefinite (PSD). This means that incorporating the PSD constraint in
the optimization program translates into the fact that the variables uy, = (byb;, H) and
ve = (cecy, M) are necessarily non-negative. That is,

H>0 and M =0 = uy >0, and vy > 0,

where the implication follows by the definition of PSD matrices. This observation restricts
the hyperbolic constraint set in Figure 1 to the first quadrant only. For a fixed ¢, we propose
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Figure 1: Left: The restriction of the hyperbolic constraint to the first quadrant; Right:
Abstract illustration of the geometry of the convex relaxation. The PSD cone (blue) and the
surface of the hyperbolic set (red) formed by two intersecting hyperbolas (m = 2). Evidently,
there are multiple points on the surface and also in the convex hull of the hyperbolic set that
lie on the PSD cone. The minimizer of the optimization program (8) picks the one with
minimum trace that happens to lie at the intersection of hyperbolic ridge and the PSD cone
(pointed out by an arrow).

replacing the non-convex hyperbolic set {(ug,v¢) € R? | %u@w = g2,ug > 0, vy > 0} with
its convex hull {(u,,vs) € R? | %WW > g%, ug > 0, vg > 0}. In short, our convex relaxation
is possible because the PSD constraint from lifting happens to select a specific branch of
the hyperbola given by any particular bilinear measurement, and this single branch has a
non-trivial convex hull.

The rest of the convex relaxation is standard, as the rank constraint in (7) is then relaxed
with a nuclear-norm minimization, which reduces to trace minimization in the PSD case:

minimize Tr(H) + Tr(M)
subject to %a)gbz,HMC@CZ,M) > gj%, f=1...m
H =0, M :=0.

In the noiseless or noisy cases, we will study the following program, which only differs in
that the noiseless observations are substituted by the possibly noisy ones given from (5):

minimize Tr(H) + Tr(M) (8)
subject to L (byb}, H)(cec;, M) > Yy, b=1...m
H >0, M3»0.

The convexity of the optimization program above is established in the lemma below. A
formal proof of he lemma can be found in Appendix A.

Lemma 1 The optimization problem (8) is a convex program.

1.3. Main Results
We consider the case of i.i.d. Gaussian measurements,

by ~ Normal(0, L1;), ¢¢ ~Normal(0, 11,), ¢=1,...m. 9)
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We show that with this choice, (8) recovers a global scaling (aHh,oflM“) of (Hh,Mh)
The exact value of the unknown scalar multiple a can be characterized for the solution of
(8). Observe that the solution (H, M) of the convex optimization program in (8) obeys

Tr(H) = Tr(M). We aim to show that the solution of the optimization program recovers
the following scaling (H, M) of the true solution (H M?):

" _H' M= L(Hu)Mh (10)
’ Te(M%)

It is worth noting that Tr(H) = Tr(M), H = hh", and M = mm*.

We show that if B and C' are random, and m is sufficiently large with respect to k + n,
then the convex program (8) stably recovers the true solution (Hu, Mh) up to the global
bilinear scaling, with high probability.

Theorem 2 (Stable Recovery) Given the magnitude only Fourier measurements (5) of
the convolution of two unknown vectors w?, and ' in H™ contaminated with additive noise &
in R™. Suppose that w?, and x* are generated as in (2), where B, and C' are known standard
Gaussian matrices as in (9). Assume without loss of generality that noise components & > —1
for every £ = 1,2,3,...,m. Then for any t > 0, when m > c(y/(k + n)logm + t)?, with
probability at least 1 — exp(—%mt2), the solution (ﬁ, ]\/Z) of the convex optimization program
in (8) obeys

IH — aH [} + | M — o' M*||% < 44%||¢||lo (| H | F + | M| 7),

Tr(M?")
Tr(HY)’

where o = and c 1s an absolute constant.

As a straightforward special case, for noiseless measurements, solving the proposed convex
program would identify the true signals exactly, up to the global bilinear ambiguity, with
high probability.

Corollary 3 (Exact Recovery) Consider the magnitude-only Fourier measurements in
(3) and a similar setting as Theorem 2. Fizing t > 0, the convex optimization in (8) uniquely

recovers (aH®, o 'M?) for o = 4/ %AI;I; with probability at least 1 — exp(—%mtz) whenever
m > c(y/(k + n)logm + t)%, where c is an absolute constant.

Both Theorem 2 and Corollary 3 establish high probability recovery for phaseless blinear
inversion within random subspaces, provided that m on the order of (k 4+ n). Except for log
factors, this sample complexity is optimal. Proof for the theorem is in the appendix and is
based on Rademacher complexity estimates of descent directions objective.

2. Implementing the Convex Program

A conference paper by the authors (Ahmed et al., 2018) presented an ADMM scheme to
address the central convex program (8). One of the main computational challenges with



BLIND DECONVOLUTIONAL PHASE RETRIEVAL VIA CONVEX PROGRAMMING

that proposed scheme is that it uses a projection onto the positive semi-definite cone at
every ADMM iteration. Such an operation makes the algorithm prohibitively expensive for
large problem sizes. In this section, we consider an alternative ADMM scheme which uses a
Burer-Monteiro low-rank factorization (Burer and Monteiro, 2003, 2005; Bhojanapalli et al.,
2018) to bypasses the PSD projection and speed up the algorithm convergence!.

To proceed, consider our central convex program

minimize Tr(X;) + Tr(X2) (11)

X1,Xo
subject to (a1 ea ", X1) (azeas ™, X2) >9,>0, £=1...m
X170, X220

Note that complex-valued positive semidefinite matrices are necessarily Hermitian. For a
simpler notation, we define the convex set

C ={(u,v) e R™ x R™ : wypvy > §y > 0,up > 0}. (12)

An alternative way of formulating program (11) is

2
minimize  Te(uy, u) + Y Tr(X;) + 1 (X)) (13)

{X5ujti=1,2 =1

subject to  wujp = (ajra;;*, X ), L=1...m, j=1,2,

where
0 (u,v) €C 0 X =0
le(u,v) = { +oo (u,v) ¢C "’ L (X) = { +oo X #0

Defining the dual vectors o, ay € R™, the augmented Lagrangian for (13) takes the form

2

L({Xj,uj, 0} j=10) = Te(ur,ug) + Y Tr(X;) + 1 (X)
j=1

2
P
+52

Jj=1

m
D (g — (ajeajet, X5) + aj)”. (14)
(=1

To set up an ADMM scheme, each variable update at the k-th iteration is performed by
minimizing £ with respect to that variable while fixing the others. More specifically, using

the superscript (k) to denote the iteration, for j = 1,2 we have the primal updates

(k+1) . ) P . ) ok (k) (lc)
X; = al;(gjr;én Tr(X ;) + 2;:1 <<ajygaj7g , Xj) —uyy —ap g> , (15)
2 m
1 *
(ungrl)’ungrl)) — argmin 3 E E (ujz <a,j’gaj7[ ,X§k+1)> + ;’?) ’ (16)

(u1u2 EC j=1 ¢=1

1. An implementation of our solver is publicly available at: https://github.com/branchhull/BDPR
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along with the dual updates

k+1 k k+1 k+1
ot = all) +ul — (a0, XV

In the sequel we outline a computational procedure for each step of the proposed ADMM
scheme.

2.1. Performing the X-update

Central to the ADMM step (15), in this section we focus on addressing the convex program

m
inimi Tr( 1 Xag—0)". 17
minimize r(X ZZ: a;Xa;—0,)* (17)

One of the most successful heuristics to address (17), which was brought into attention by
Burer and Monteiro (2003), is to consider the PSD factorization X = VV™* and to address
the non-convex program

m
s 2 4 2 2
minimize ||V||F+2Z§_1j(||v a3 - 0:) . (18)

For a large class of objectives, there have been theoretical arguments that local minimizers
to (18) can form the global minimizer to (17). Specifically, for the objective form (17),
Bhojanapalli et al. (2018) have recently shown that for almost all objectives of this form, if
V € R™ " is a second-order stationary solution to (18) and r(r + 1) > 2m, then X = vv'
is a global minimizer to (17) (see Corollary 2 in the aforementioned reference).

Finding solutions to (18) can be performed via standard optimization toolboxes. In
particular, we use quasi-Newton methods with cubic line search as implemented in Schmidt
(2005), which only need the gradient of the objective in (18), calculated as

2V + pz (HV*G‘EHS — 9() apa;V.
/=1

It is noteworthy that the gradient calculation only requires a series of matrix-vector multipli-
cations.

With the proposed computational scheme, to update X at each ADMM iteration, another
iterative scheme needs to be carried out to solve (18). Despite the nested nature of this
framework, a very good initialization for V' at the start of each ADMM update is the optimal
V from the previous ADMM step. Aside from the factorization technique, such choice of
initialization further contributes to fast solutions of (17).

2.2. Performing the u-update

The u-update in (16) is a standard projection problem onto the set C. It is straightforward
to see that program

1 2 m
min 722 Ujp — (19)

c 2
(u1,u2) € J=1 =1
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decouples into m distinct programs of the form

2
.1 2 .
— i — 0, : > > 0.
guug 5 E 1 (uj —0;)° subject to: ujug >0 >0, ug >0 (20)
]:

In the sequel we focus on addressing (20), as solving (20) for each component ¢ would deliver
the solution to (19). We proceed by forming the Lagrangian for the constrained problem (20)
2

I =2 (M) - (&
UL, U2, K1, K2 —2 s 02 )

Along with the primal constraints, the Karush-Kuhn-Tucker optimality conditions are

+ p1 (6 — ugug) — pous.

ol
= — 6, — — =0 21
Dy Ui 1 — H1u2 — H2 > ( )
ol
— — 0y — =0 22
E Uug 2 — H1u1 > ( )

p1 >0,  pi(6—wuu) =0,
p2 >0, pour = 0.

We now proceed with the possible cases.
Case 1. 1 = s = 0:
In this case we have (uj,u) = (01,62) and this result would only be acceptable when
uiug > 6 and ug > 0.
Case 2. 41 =0, u; =0:
In this case the first feasibility constraint of (20) requires that § < 0, which is not a possibility
Case 3. § —ujus =0, up =0:
Similar to the previous case, this cannot happen when § > 0.
Case 4. s =0, 6 —ujus = 0:
In this case we have § = ujug, combining which with (22) yields § = (62 + pyu1)uq, or

0 — Oau
= ——pt (23)
uy
Similarly, (21) yields
ur = 61 + p1 (02 + piur). (24)

Since the condition § = ujuy requires that u; > 0, g1 can be eliminated between (23) and
(24) to generate the following forth order polynomial equation in terms of u;:

uj — 013 4 60yu1 — 62 = 0.
After solving this fourth order polynomial equation, we pick the real root u; which obeys
Ui 2 0, o — (92’LL1 Z 0. (25)

Note that the second inequality in (25) warrants non-negative values for p; thanks to (23).
After picking the right root, we can explicitly obtain p1 using (24) and calculate the ug using
(22). The resulting (u1, ug) pair presents the solution to (20), and finding such pair for every
¢ provides the solution to (19). Thanks to the decoupling of the projection step in ¢, the
u-update can enjoy a parallel computing framework.
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3. Experiments and Application

We now present numerical experiments that verify the recovery guarantee for bilinear inversion
from phaseless Fourier measurements by program (8). We consider the noiseless case with
i.i.d. Gaussian matrices B and C. In Figure 2 we present the phase portrait associated
with the proposed convex framework. To obtain the diagram on the left panel, for each
fixed value of m, we run the algorithm for 100 different combinations of n and k, each time
using independently generated Gaussian matrices B and C'. If the algorithm converges to a
sufficiently close neighbourhood of the ground-truth solution (a relative error of less than
1% with respect to the 3 norm), we label the experiment as successful. Figure 2 shows the
collected success frequencies, where solid black corresponds to 100% success and solid white
corresponds to 0% success. For an empirically selected constant ¢, the success region almost
perfectly stands on the left side of the line n 4+ k = emlog=2m. The results indicate that
the constants in the Theorem are not unreasonably large in practice.

While the analysis in this paper is specifically focused on the Gaussian subspace em-
beddings for w and x, we additionally consider the case where B is deterministic and C'
is Gaussian. Specifically B will be an equispaced sampling of the columns of the identity
matrix. On the right panel of Figure 2, we have plotted the phase diagram for this case of
deterministic B and random C'. These results hint that the convex framework is applicable
to more realistic deterministic subspace models.

5000 12000
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6000

4000

2000

0
100 120 140 10 20 30 40 50 60 80 920 100 110 120

20 40 60

n £k n+k
Figure 2: Phase portraits highlighting the frequency of successful recoveries of the proposed
convex program for random and deterministic channel subspaces (see the text for the
experiment details).

We do not want to give the reader the impression that the present paper solves the
problem of blind deconvolutional phase retrieval in practice. The numerical experiments
we perform do indeed show excellent agreement with the theorem in the case of random
subspaces. Such subspaces are unlikely to appear in practice, and typically appropriate
subspaces would both be deterministic, including partial Discrete Cosine Transforms or
partial Discrete Wavelet Transforms. Numerical experiments, not shown, indicate that our
convex relaxation is less effective for the cases of these doubly deterministic subspaces. We
suspect this is due to the fact that the subspaces for both measurements should be mutually
incoherent, in addition to both being incoherent with respect to the Fourier basis given by the
measurements. As with the initial recovery theory for the problems of compressed sensing and
phase retrieval, we have studied the random case in order to show information theoretically
optimal sample complexity is possible by efficient algorithms. Based on this work, it is clear
that blind deconvolutional phase retrieval is still a very challenging problem in the presence

10
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of deterministic matrices, and one for which development of convex or non-convex methods
may provide substantial progress in applications. In fact, we are still far from phase retrieval,
and blind deconvolution problems individually in their natural and practical settings. The
formulation (1) is general, and the subspace assumptions on w and @ only cover some applied
scenarios. There are some recent articles (Kuo et al., 2019; Zhang et al., 2018) that, though
study the blind deconvolution or phase retrieval individually, make some advances in going
beyond the subspace model to arguably more realistic signal models in real applications.

3.1. Related Real-World Applications

As discussed earlier, the proposed framework addresses a general version of the phase retrieval,
where as a result of the light propagation through a medium, the rays are convolved with an
unknown kernel. Aside from this general setup, in this section we will point out two specific
physical problems, solving which requires simultaneously addressing variants of the phase
retrieval and blind deconvolution problems.

3.1.1. STYLIZED APPLICATION IN VISIBLE LIGHT COMMUNICATIONS

As discussed in the body of the paper, an important application domain where blind
deconvolution from phaseless Fourier measurements arises is the visible light communication
(VLC). A stylized VLC setup is shown in Figure 3. A message m € R" is to be transmitted
using visible light. The message is first coded by multiplying it with a tall coding matrix
C € R™*™ and the resultant information * = Cm is modulated on a light wave. The
light wave propagates through an unknown media. This propagation can be modelled as a
convolution & ® w of the information signal & with unknown channel w € R"”. The vector
w contains channel taps, and frequently in realistic applications has only few significant taps.
In this case, one can model

w ~ Bh,

where h € R¥ is a short (k < m) vector, and B € R™** in this case is a subset of the
columns of an identity matrix. Generally, the multipath channels are well modelled with
non-zero taps in top locations of w. In that case, B is exactly known to be the top few
columns of the identity matrix.

In visible light communication, there is always a difficulty associated with measuring
phase information in the received light. Figure 3 shows a setup, where we measure the
phaseless Fourier transform (light through the lens) of this signal. The measurements are
therefore

§ = |F(Bh®Cm)|.

and one wants to recover m, and h given the knowledge of B and the coding matrix C. Since
we chose C' to be random Gaussian, and B is the columns of identity. As mentioned at the
end of the numerics section that with this subspace model, we obtain similar recovery results
as one would have for both B, and C being random Gaussian. The proposed convex program
solves this difficult inverse problem and recovers the true solution with these subspace models.

11
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lens
signal beam
H

Figure 3: Visible light communication optical setup; the media block normally consists of phosphor,
filter and a linear polarizer. The lens takes the Fourier transform of the light and one can only
measure the intensity only measurements of this transformed light source signal.

3.1.2. CRYSTALLOGRAPHY

In crystallography, the lattice structural information is carried in the electron density function
of the crystal, which may be represented as

p(x) = pe(z —y). (26)

yeSs

Here, p.(x) is a compactly supported central motif, and S is a finite, but large compact set
of translation vectors. In a sense, the electron density function is the result of convolving the
central motif with the indicator of the set S.

Denoting the Fourier transforms of p(x) and p.(x) by p(w) and p.(w), similar to the
other phase retrieval problems, X-ray experiments measure the magnitude of the Fourier
transform of p(w), which can be written as

plw) =) exp (—i2m{z, w)) pe(w).

yeSs

Identifying the motif j.(w) and the set S, using measurements of the form |j.(w)|* would be
a problem which involves simultaneously addressing a phase retrieval and blind deconvolution
problem. The reader is referred to (Elser et al., 2017) and the references therein for more
details of the underlying physics and measurement system.

4. Proof of Theorem 2

As shown in Appendix A, the hyperbolic feasible set {(H, M) : %(bgb}‘, H)(cyc;, M) > y2}
is convex in (H, M), however, the corresponding constraint function? fp(H, M) = y% —
L(byb;, H){cic}, M) is a non-convex function of (H, M). In the analysis later, it is easier to
work with convex constraint functions instead; therefore, we replace the function f;(H, M)

2. We will abuse the notation by specifying the same using (u¢, v¢) as parameters, i.e., f°(ue, ve) = yi — Laugvy,
where recall that ue = (beb;, H), and v, = (cecy, M)

12
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above with a convex counterpart whose 0-level-set is the same under the additional constraints
that H = 0 and M 3= 0:

fe(H, M) :=
1 * * 1 * *
’W(H’ M) (\/4y[g + E«bfbéa H> - <cfcg’ M>)2 - ﬁ«bfbfa H> + <CgC£, M>)> ’ (27)
where
in {1’ <bgbj,I:I)—|2-<clcz,M)} | ¢4y31+$<<bibz,H>f<ce*cz,M>>2 <1
v(H, M) := ) i i ((beby H) +(egey, M) (28)
(beby Ht{eee;, M) otherwise.

2 9

is a scalar chosen to normalize the gradients computed below. Recall that yl? = gj?(l +&). It
is now easy to check that feasible sets drawn by the convex and non-convex functions are
equal under the additional constraint of uy = (beb;, H) > 0, and v, = (cec;, M) > 0 for
every H, and M, i.e., H > 0, and M = 0, respectively. Mathematically,

{(ug,v0) | f(ue,v0) = y; — Lugwg < 0,ug >0, vg >0} =

{(W,W) | fo(we, ve) := e (\/4%? + (g = ve)? = = (e + vz)) < 0} :

for any v, > 0. Note that fy(us,v) < 0 automatically constrains uy, > 0 and vy > 0. It
is easy to check that fy(ug, vy) is a convex function. Since H = 0 and M = 0 imply that
ug > 0, and vy > 0, respectively, and since vy,(H, M) > 0, we can write the above conclusion
in the matrix space as

{(H, M) € HPF x H™™ | yf < L(bgby, H)(coc;, M), H = 0, M = 0} =
{(H,M) e HFXF  rxn | fo(H,M)<0,H >0, M > o}.

In the sequel, we will refer to

fe(H, M) :=

oL M) (0574 50 ) — (exe M) = (0 H) + v M) )

which is same as fy(H, M) except the measurements yg is now replaced by corresponding
noiseless measurements ﬂl?. Define a convex indicator function for the positive semidefinite
cone:

0, H>0and M =0

400, otherwise.

(H,M) := {

Introduce the convex regularizer

JH,M)=Tr(H)+ Tr(M) + «(H,M).

13
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For analysis purposes, we will work with the following optimization program

minimize J(H, M) (29)
subject to fy(H,M) <0, £=1...m
where fo(H, M) is given by (27).The optimization program (29) is equivalent to (8) as the

objective and constraint set remain unchanged. In the analysis later, we will also need the
subdifferential V fy, evaluated at (H, M), which are given by (10). One can verify that

jm«cecg, M) byb, (bebj, H)eqel) € V fo(ELL V). (30)

To see this, refer to a brief derivation below

beb; . M))beb;
ng;(H M) = ~o(H, ) ( o ((beby, H) — (cpc;, M) 2 _ 1 bebZ)
VAT + L (beby, H) — (ege, D)2 V™
1 * k
= _7\/%<CECK7M>be[7

where the last equality follows by using 77 = - (bsb;, H)(c,c;, M).

We now build some preliminaries required to characterize the set of descent directions
for the objective function of the optimization program (29). Let T}, and Ty be the set of
symmetric matrices of the form

T == {X = hz" + 2R}, Ty = {X = mz* + zm*},

and denote the orthogonal complements by T;ll, and T%, respectively. Note that X € T. ,;L iff

both the row and column spaces of X are perpendicular to h. Pr, denotes the orthogonal
projection onto the set 15, and a matrix X of appropriate dimensions can be projected into
T; as

h

RR hh* _ hh" x hh'
Pr(X) = g X X hig ~ i g

Similarly, define the projection operator Pz, . The projection onto orthogonal complements
are then simply PTJ_ :=I—"Pr;, and Pp. := IT—Pr,,, where T is the identity operator. We use

X7, asa 5horthand for Pr. (X). Let (W1, W3) € HFXE x HPX and (W, Wy 1) =
k) h ' m
(Pri(W1),Ppi(W3)). The subgradient 07 (H, M) of the objective J(H, M) at the
h m

proposed solution (H, M) is

87 (H, M) = {G e UK x Y | G =

(HI:_I[_IHF? ”]\]ZVI”F) + (Wl,T;f?WZT%)’ AmaX(Wl,T;Ll?WZ,T%) < 1}7 (31)

for details; see, Section 8.6 in Tropp (2015), and references therein.
Given the measurements (5), one can only identify the true solution (H oM h) up to the
bilinear scaling ambiguity. To formalize this, begin by defining a set

N = {(H,M) e H>F x ™" | (H,M) = p(—H, M), € R}, (32)

14
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and denote by (H, M) ® N a set N shifted by a point (H, M). Mathematically,

(H,M)®N = {(H,M) € H*>* x 5™ | (H,M) = ((1 - B)H, (1 + p)M), 3 € R}.
(33)

We will refer to this set as the linearized global scaling of (H, M).
The main argument of stable recovery in the noisy case is summarized as follows: Let

Ny = {(H,M) € HFXF e ‘ <H7_I:I>+<M7M>:O}

be the orthogonal complement of the subspace N'. The first step consists of showing that any
feasible perturbation (§H,5M) € N| about the linearized scaling ambiguity (H, M) ® N
cannot be too large. This only shows that a large perturbation in the N direction is
not allowed, however, the movement away from the ground truth (IEI M ) along the line
(ﬁ, M) @ N can still be arbitrarily large. In the second step, we note that the straight
line (H, M) @ N touches (in the noiseless case) the hyperbolic feasible set at (H, M), and
diverges away from it as we deviate away (large () from the point (H, M) along the line
(H,M) ® N. However, moving too far away along the line (H, M) @& N would make it
impossible to jump back into the hyperbolic feasible region while not exceeding the allowed
leap length in the | direction prescribed in the first step. This allows us to control deviations
from (H,M) along (H, M) ® N as well. Combining the limited allowed deviations both
in A/, and NV| from the ground truth (IEI .M ) enables us to show that program recovers a
solution (ﬁ, M ) in the neighbourhood of (H, M). In the noiseless case, the same argument
leads to an exact recovery result.

We now formally proceed with the proof argument. The set Q of descent directions only
in A/} of the objective function in (29) is characterized as follows

{(6H,sM) e N\ | ((G,(6H,6M)) <0,YG € 0J(H,M)} C

{(5H,(5M)€./\/]_ << H_ M >7(5HT,~175MT,;L)>+Tr(5HTiLL,5MTﬁL1)SO}g

IH|r" IM|F

{(OH,6M) € N | Tr(0H 1, 6Mpy) < V2|[(0H 1y, 6M, )| p} =: Q, (34)

where the first set containment follows by using (W 1o, Wo 1), (0H 1, 0M 1)) <
s stom A3 m

Tr(0H ;. ,6M 1), which follows from Amax(Wy 0, Wy 1) <1, and (6H 1, 6M 1) =0
h m R L i ey

as any feasible perturbation must obey (IEI +6H, M + M) = 0. Last containment simply
uses Cauchy-Schwartz inequality, and the fact that

()

We quantify the "width" of the set of descent directions Q through a Rademacher
complexity, and a probability that the gradients Vf; in (30) of the constraint functions
of (29) lie in a certain half space. This enables us to build an argument using the small
ball method (Koltchinskii and Mendelson, 2015; Mendelson, 2014) that it is unlikely to
have points that meet the constraints in (29) and still be in Q. Before moving forward, we
introduce the above mentioned Rademacher complexity and probability term.

_ 5

F
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For a set Q C (H¥**, H"*"), the Rademacher complexity of the gradients V fo in (30) is
defined as

¢(Q):=E sup g0 (V for, AL (35)
(H,M)EQ; < ||<H,M>HF>

where €4, £ =1...m are iid Rademacher random variables independent of everything else in
the expression. For a convex set Q, €(Q) is a measure of the width of Q around origin in
terms of the gradients Vfy, £ = 1...m. For example, random choice of gradient might yield
little overlap with a structured set Q leading to a smaller complexity Q.

Our result also depends on a probability p,(Q) and a positive parameter 7 defined as

pr(Q)i= it P((VF(H.M)>

(H,M)eQ (H, M)HF)- (36)

-
\/MH
The probability p,(Q) quantifies visibility of the set Q through the gradient vectors® V f. A
small value of 7 and p,(Q) means that the set Q@ mainly remains invisible through the lenses
of Vfy,0=1,2,3,...,m. This can be appreciated just by noting that p-(Q) depends on the
correlation of the elements of Q with the gradient vectors V fp.

The following lemma shows that the minimizer of (29) almost always resides in the
desired set (H, M) ® N for a sufficiently large m quantified interms of €(Q), p-(Q), and 7.

Lemma 4 Given the noisy measurements (5), where the additive noise & obeys (6). For
signal recovery, consider the optimization program in (29), and let Q, characterized in (34),
be the set of descent directions for which €(Q), and p,(Q) can be determined using (35) and
(36). Choose

. <2¢(Q)+t7>2

TpT(Q)

for any t > 0. Then the minimizer (fi\, ]\/Z) of (29) satisfies
|(F BD) — (FL, B} < 442 € (1 EIE + 1523

with probability at least 1 — e=2mit®

Proof of this lemma. is based on small ball method developed in Koltchinskii and Mendelson
(2015); Mendelson (2014) and further studied in Lecué et al. (2018); Lecué and Mendelson
(2017). The proof is repeated using the argument in Bahmani and Romberg (2017a), and is
provided in the supplementary material for completeness.

Lemma 4 proves that under the choice of m outlined in Lemma 4, the optimization
program (8) recovers (I~{ M ) exactly in the noiseless case £ = 0, and stably in the noisy case.
The last missing piece in the proof of Theorem 2 is to quantify the Rademacher complexity
¢(Q), and p,(Q) for the Q appearing in the measurement bound.

3. We drop the subscript £ here as sz, ¢ =1...m are identically distributed
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4.1. Rademacher Complexity
We begin with evaluation of the complexity €(Q)

¢(Q):=E sup ep(V f, OHIM)
(§H ,6M)€Q ; < 6H 5M)||F>

Splitting (0H,5M) between (T3, T5), and (T}, T#), and using Holder’s inequalities, we
obtain

€(Q) <

(0Hr, 0Mr,,)

EH;,;;Eg«cecz,MwT,.L(bgbz),<bzbz,ﬂ>7>Tm<cecz>>HF- swp | ksl |

(6H 5M)eQ

(‘SHT;LL ’6MT7% )

1 = * n, * * *
+ EH% ;€Z(<c€c€7M>be€7 <beb£aH>C£Ce)H ©_sup OHSM) 5

(6H,§M)cQ

Recall that (6H 1 ,0M 1) = 0, and, therefore, Tr(0H ;1,0M 1) = [[(0H pu, M1 )||s.
h m h m h m
On the set Q, defined in (34), we have
Tr(0H o, 6M 1)
h m
IOH, sM)|p —

(6H7,,0M7,)
I(6H, 6M)]

<V2.

Using Jensen’s inequality, the first expectation simply becomes

EH\/IM ;w«qc}f, M>7DT,-L(beZ)7 (beb}, H)Pr, (cc)) HF

< 7EHZ££ czcea 7)T (beby), <b€bz’I~{>PTm(czcz>)H;

- fZE(cecz, )P, (beb) 3+ 1beb HYPr (e 7).

where the last equality follows by going through with the expectatlon over &y ’s. Recall from

the definition of the projection operator that Pr. (beby) = | hHQ beb; +bb; \?’ﬁl I?fﬁl beb; \?’ﬁl .
2 2 2

|lbe ||2 ll}i’ﬁ‘ll , and, therefore,

|b; h|?
I3

It can be easily verified that ||PT}.I(bgb2<)||F 2

- . ~ bih b h|* ~
El|((cec, M)Pr, (b))} < Elcjml} - E (210508 b — D) < 3llmlld (0k - 3).

where we used a simple calculation involving fourth moments of Gaussian E|b}h|? ”bg” =
31<:Uh||2 In an exactly similar manner, we can also show that ||((bsb}, H)Pr, (coci)||% <
3||h||3(6n — 3). Putting these together gives us

E| fz (ceci, M)Pr, (beby), (bebj, H)Pr, (ecc)) | < 5max([R], |3 vE +n.
/=1
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Moreover,

m
1
H T > eel(eeci, M)beby, (beb, H)eoc H<
=1

B max((byby, H), (ecci, M) B[ L ;ée(bebZ, ceef) |
Standard net arguments; see, for example, Sec. 5.4.1 of Eldar and Kutyniok (2012) show that

P (H\/lﬁ ng(bgb;f, Cch)H > cVk + n) < e " provided that m > c(k +n).
(=1

< ¢v'k + n. The random variables wu,

and vy being sub-exponential have Orlicz-1 norms bounded by ¢max(||h|3, ||/ ]|2). Using
standard results, such as Lemma 3 in van de Geer and Lederer (2013), we then have
E maxy(ug, vg) < clogm. Putting these together yields

This directly implies that EH\/—% Sy ee(bebp, cocy)

B[ 3 eelleres, M)bibi, (beby, H)eocr) | < cmax(IRIB, 1il3)y/ (5 + n) log?m. (37)
=1

We have all the ingredients for the final bound on €(Q) stated below
€(Q) < cmax(|[k]3, [m]3)y/ (k +n) log? m. (38)

4.2. Probability p,(Q)

In this section, we determine the probability p;(Q), and the positive parameter 7 in (36) for
the set Q in (34). For a point (§H,0M) € Q, and randomly chosen V f;, we have via the
Paley-Zygmund inequality that
= 212
1 (E(V fe, (6H,6M))| )
~ 4 EB|(Vf, 0H,oM))|*

]P’(‘<Vfg,(6H,5M)>’2 lg

> SE[(Vfe, (6H, oM >] )=
The particular choice of random gradient vectors we are using is

Ve = (1/v/m)(|ejm|?beby, [bih|coc),
giving us (Vfy, (0H,6M)) = (1/y/m)|c;m|>(bb}, 6 H) + |bjh|*(coct, IM). Since by, and
c¢ are standard Gaussian vectors, using the equivalence of L,-norms for Gaussian, we deduce
that

B 4 1/4
(& letmP o om) + AP e omn)]| ) <

B ) 1/2
¢ (E ’]cem\2<bgb}f,6H) n \b}fhP(cec}f,éM)‘ ) .
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Plugging last two inequalities in (36) reveals that
pr(Q)=2c>0 (39)

for an absolute constant ¢. To compute 7, we expand E |(g,, (§H,5M))|* giving us

~ 2
E ||c;m[*(beb}, 6 H) + |bjh[* (cocy, 6M)| = 3||m||3((diag(6H ), 6H) + 2||5H || %)
+ 3||h||3((diag(6 M), M) + 2|6 M ||%) + 2|h" diag(6H )h + 2k §HR|?,  (40)

where we have made use of multiple simple facts 1nclud1ng that ]E\bgh]4 = 3||h||27 and
similarly for |¢jmn|?, and two identities: E|bjh|?bjoHb, = h'diag(6H )h + 2k §Hh, and
E(b;6Hby)beb; = diag(6H ) + 2(6H) = E|bjoHb,|*> = (diag(6H),0H) + 2||6H||}. We
also made use of the fact that Q 1 A and therefore (H,0H)— (M ,5M) = 0, or equivalently,
h'6Hh = m*6 Mm.
It is easy to conclude from (40) now that

~ 2 ~
E||c;im|*(beby, 0H) + |bgh|*(cecy, 6M)| > 6(||R10H |F + [m2]6M |7
> cmin(|[p]3, [17]3) (16 HIIE + M [F) = cmax(||a]3, 17 ]3) (16 H[|F + | 5M]|),

where the last equality uses the fact that Tr(H) = Tr(M) from (10), which is equivalent
to ||h||3 = m|3. This directly means, we can take 7 = cmax(||h||3, |[72|3), where ¢ is an
absolute constant.

The complexity estimate in (38), value of 7 computed above, and p,(Q) stated in (39)
together with an application of Lemma 4 prove Theorem 2.

5. Proof of Lemma 4

The proof is based on small ball method developed in Koltchinskii and Mendelson (2015);
Mendelson (2014) and further studied in Lecué et al. (2018) and Lecué and Mendelson (2017).
Introduce a one sided loss function:

1 m
L(H,M):=—> [f(H,M)], (41)
M=
where (-)4 denotes the positive side, and fo(H, M) is a convex function as defined in (27).

Using this definition, we rewrite (29) compactly as

minimize J(H, M) (42)
subject to L(H, M) < 0.

Our objective is to show that any feasible perturbation (6H,5M) € Q around any member
(H'!, M) of the linearized global scaling set (H,M) & N has a small Frobenius norm.
Feasibility of the perturbation implies that

L(H'+6H, M +6M) <o0. (43)
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Expand the summands [f¢(H+0H, M'+§M)], of the loss function E(H*—I—(SH, M*+5M)
to obtain

[fo(H + 0H, M' + M), =

Yo(H'+ 6H, M’ + M) !\/4y§ - i(<bgb;f, H'+ 6H) — (coc;, M + 5M))?
m

1
- ﬁ(wbz, H' + 6H) + (c,c;, M + 6M))
_l’_

Recall that the noisy measurements yg, defined in (5), are related to the noiseless measure-
ments gjg through yl? = 7]3(1 + &). Using this relation together with triangle inequality

gives

[fo(H'+ 6H, M + §M)],

= v (H'+6H, M' 4+ 5 M) [\/4g@2 — L ((byb}, H' + 6H) — (e}, M + 6M))”
~ i (beb HI 4 6H) + (ere;, M1 4 6M)) = \JI-ai | |
> [fo(H' + 0H, M' + M)}, — 2y(H' + 6H, M' + 6M)\/ [-572¢] 4

> [fo(H! + 0H, M+ M), — 21/ [- 526+

V
gl

> [fo(H = BH + 6H, M + BM + M)y — 2\/[=§7¢d)+

> [(Vfe, (—BH + 6H, BM + SM))] 4 — 21/ [~ 526+
= [(Vfe,(=BH +6H,BM + M) — 2\/[-§2&]+
= [(Vfe, (0H,6M))]+ — 24/ [~i2&d+, (44)

where in the first inequality follows from the fact that if @ > 0, and b < 0 with a+b > 0, then
Va+b>/a—+/—bholds, and if a > 0, and b > 0, v/a + b > /a holds, the second inequality
uses the fact that f(H! + 6H, M' +6M) < 0 as (6H,5M) is a feasible perturbation of
(H*, M*), and hence using the definition (28) it holds that ’yg(HJf + 6H, M + oM) < 1,
the third simply uses the fact that (H!, M) € (H, M) & N is of the form (H' M) =
(1= B)H, (1+ B)M) for some 3 € R (More precisely, the scalar 8 € [1,1], as by feasibility
Hf, and M are PSD), and finally the last inequality uses the definition of sub-gradient (30)
of the convex function fy. The last equality uses the fact that (Vfy, (—H, M)) = 0.
Plugging the lower bound (44) in (43) produces

m m - 2 m = B
> UV fe, (OH,6M))]y < 22\/|yz@| < Vel ) bihllcirm]
=1 = =1

.
” Lo |Gy < 18y/mlET Al (45
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where the second last display follows just by using the fact that g7 = %(bgbz, H )(cecy M),
where H = fzﬁ*, and M = mm*, and the last display simply employs Cauchy Schwartz,
and || B| < 3y/m, and ||C|| < 3,/m, which holds with probability at least 1 —e~"/2.

Let 94(s) := (s)+ — (s —t)4. Using the fact that ¢+(s) < (s)4, and that for every a, ¢ > 0,
and s € R, 1at(s) = ta(7), we have

1 . 1 .
- ; (Ve GH.0M))], 2 = ;w”(m,m”(w, (6H,5M)))
- s
= [|(6H, M) - ; (Y for TSt ))
(6H,6M
= (6H,6M)||F - [ZE¢T 7 m»
S (6H,0
> [wa (Ve orannte) — ¥ (Ve <6Iféz\%f|p>>u
=1
(46)
Define a centred random process R(B, C) as follows
1 (H M) SH,6M
R(B,C) = e o T Vi 4 Z [EW Vi 5H S ||F>) Ve (Ve e sz,aM)f|F>)]

and an application of bounded difference inequality (McDiarmid, 1989) yields that R(B, C') <
ER(B, C) + tr//m with probability at least 1 — e~2"™", It remains to evaluate ER(B, C),
which after using a simple symmetrization inequality (van der Vaart and Wellner, 1997)
yields

ER(B,C) <2E  sup ety ((V fi, ASHLIM) (47)
( ) (5H 5 M) eQ\FZ a I M”M HF>)
where €1,¢9,...,&, are independent Rademacher random variables. Using the fact that

P4(0) = 0, and 1¢(s) is a contraction: [ (a1) — Yi(a2)| < |ag — ag| for all ag, ay € R, we
have from the Rademacher contraction inequality (Ledoux and Talagrand, 2013) that

E sup € ¢T Vfa (OH M) <E sup Ey fo? ACHOM)
(6H,6M eQ\Fz ¢ Sl 5H5M)||F>) 5H5M)6sz ||(6H5M)||F>

(5H 5M)

=E sup \/>Z<€4<Vfg, m> (48)

(6H,0M)eQ

where the last equality is the result of the fact that a global sign change of a sequence of
Rademacher random variables does not change their distribution. In addition, using the
facts that t1(s > t) < 1(s), and that random vectors Vf1,V fa, ...,V fn, are identically
distributed and the distribution is symmetric, it follows

TP (Vie SHAlE) 2 \/Tm) = \/m < [Wff’ HATE) 2 \/%D
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(SH,6M (6H,6M
< By m <<Vf€7 ToH 6M)f|p>> \ﬁElﬁT (<Vf€= TOHSM)[[» 5M)\)\F>> (49)
Plugging (49), and (48) in (46), we have

1

ﬁ ; [<VJE€7 (5H=5M)>]+ > TH(éHaéM)HF (<vf€7 ¢ 56171{{5%/[||F> = )

1 S (6H,0M) tT
—2|(6H,M)|rE  sup — > (V] o||(GH, 6 M) .
[ (SHLSM)cQ m; I 5H<5M)||F> | | N

Using this lower bound in (45), we obtain

1 & (5H 5 M)
SH,5M)||p|7P((V fy, ASHSM) v~ Ty _op  gup eo(V fo,
Ii¢ HF[ (Vo mmamts) = =) N T mZZI ¢ f||6H6M)||F>]
—2[|(6H, M) HF* < 18V/[[€los [ 2l| 72 |2-

NG

Using the definitions in (35), and (36), we can write

|G 60 (mg) - (2@@}”) < 18/ &l |1l 7|2

2
It is clear that choosing m > (231(0?()57) implies that any feasible direction (§H,0M) € N|
is bounded by

I(6H, 6M)|[F < 18%|1€ oo H || || M| 7 (50)

with probability at least 1 —e™“™, where ¢; = ct? for a universal constant ¢, where we used
the fact that H = hh*, and M = mm”. Since (0H,5M ) € N1, the last display only gives
us that an element, ((1 — Go)H, (1 + Bo)M) for some By € R, of the set (H, M) ® N obeys

|(H, M) — (1 — Bo)H, (1 + o) M)|[3 < 18%||€]|oc|| H || p|| M| . (51)

That is, the solution (ﬁ, M ) cannot wander too far away from the line (H, M) & N. We
call this norm cylinder constraint as the solution must lie within a cylinder, centred at a
line (IEI , M ) @ N and of radius given by the rhs of the last display above. Equivalently, a
displacement ((1 — Bo)H, (1 + Bo)M) of the ground truth (H, M) is sufficiently close to
(ﬁ, M ). Using this fact together with the fact that the feasible hyperbolic set diverges away
from the (ﬁ M ) @ N for larger displacement (3, we will conclude in the remaining proof
that the displacement Sy cannot be too large, and hence the Euclidean distance between
(H M ), and the ground truth (H, M) is also bounded.

Case 1: Assume that noise £ is such that & € [—1,0] for every £ € [m], and 3 ¢ € [m] such
that fg/ = 0.
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Trivially, the minimizer (ﬁ, M ) must lie somewhere in the feasible set specified by the
¢’ constraint: = (bpbj,, H){cpcly, M) > 2. Define the boundary B of the feasible set above
as follows

1
m

Bi= {(H,M): L (bybj, H)(cpcji, M) = ). (52)

1
m
The line (H,M ) ® N only touches the feasible set at (H,M). Define a plane P :=
span{(H,0), (0, M)}. Clearly, the line (H, M) ® N is contained in P. Moreover, the
intersection P N B only happens at a set of bilinear scaling ambiguity, that is, PN B =
{(vH, %M) for some v € R —{0}}. Observe now that a point (H, M) leads to the largest
displacement 5y when PN B is feasible, (ﬁ, M ) € PNB, and (ﬁ, M ) achieves the rhs bound
in (51). For all other feasible points (H, M), there exists a point ((1 — 8o)H, (1+ Bo) M)
for a smaller 5y € R such that (51) is satisfied. Use this fact to conclude that in the worst
case (largest Bp) solution point (H, M) must be equal to (vH, %J\N/I) for some v € R — {0}.
In general, the Euclidean distance between a point (’yff, %M) € PN B and its orthogonal
projection ((1 — 8)H, (1 + 8)M) onto the line (H, M) & N is given by

I(vH, AM) — (1= B)H, (1 + B)M)||} =

26+ /B2 +2 Co(emrvEr 2 N\ -
<\/§_1> +< 5 —1) I|(EL, M)

15 (53)

In light of (51), we then have

2 2
(W - 1) + (% L 1) (L BT [ < 182 o | | M

= 463 (H, M)|% < 18%(|€] o H || || M| F,

where the implication follows by using the fact that

2 2
28+VB*+2 28+ +2 2

holds for any 8 € R. No (f—I\, M ) can achieve a larger displacement fy. This allows us to
then conclude that (H, M) cannot deviate too far not only from the line of linearized scaling
ambiguity but also from the ground truth using a simple triangle inequality and (51) as
follows

|(H, M) — (H,M)||r — Bo||(H, M)||r < w €|oo || L || 7| M ||
|(H, M) — (H, M)||% < 405(|¢||oo || H || || M || -

Case 2: We now consider general case of noise when & is such that & > —1.
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The key idea is that the measurements with noise as in Case 2 can be converted to the
measurements with noise as in Case 1. To see this, define

o= max 2 = 14 (€], mei= ~(1—s+&).
Le[m] Yo S
From the definitions above, it can be easily verified that s = 1 + |||/, and that (1 + &) =
s(14m¢). Using this relation allows us to rewrite measurements y, = g¢(1 + &) contaminated
with noise & equivalently as y; = sy¢(1 + 7¢), where 7, is now interpreted as noise, and the
new scaled noiseless measurements are interpreted as sy,. We will now show that n, € [—1,0].

By definition, s > 1 4 &, this implies that n, < (1/s)(s — s) = 0. Also note that n, =0
for a & that achieves maximum |[|£]|so. Moreover, using the definition of 7y, and the fact that
& > —1 gives np > —1.

Firstly, the new noise 7, obeys all the conditions in Case 1 above. Secondly, since the
noiseless measurements 7 of (H, M) are §} = L (bby, H){c,c;, M), we can interpret sjj?
as the noiseless measurements of (v/sH,/sM). We can now directly invoke result of Case 1
here to obtain

I(H, M) — (VsH,VsM)|5 = |H — v/sHI|[} + | M — sM|[%
< 405|013 Vs H || pl|Vs M| < 4055 |nl|oo | H || FIIM || < 810[€]loc| | H || 7| M|, (54)

where the last inequality is obtained using the inequality derived below

sne=1—s5+& =& — |€llcc = sl = [|€]loc — &2

= s[nlleo = [I1€lo ‘é?ﬁ% §e < 2/|€]loo-

Observe that

|(H, M) — (E,8)| 5 = /| H — H|}3+ | M - M3

— \IIH — V/3H + VSH — H|[} + | M — 3M + sM — M|

<2 (% VH — SHI|3 + | M — V3N + (V5 - 0y | H % + HMII%>
< 2VBT0V/ €T/ | HL £l V2 + 2(v/5 — 1)/ | ELI3 + 1822

< 44y/TEllo/ 1B + 523

where the second last inequality follows by using (54). The proof is complete.

Appendix A. Proof of Lemma 1

The objective of (8) is simply linear, we focus on the constraints. For a fixed ¢, let Sy :=
{(H,M) € HPk xHm<m | Liyby, H)(cicj, M) > G2, H = 0, M 3= 0}, Sp1 == {(ug, v¢) €
R? | Lugvy > §2,ug > 0,00 > 0}, and

Spo = {(H, M) € H>* x H™ ™ | ((bsb}, H), (cic), M) € Sp1}.

24



BLIND DECONVOLUTIONAL PHASE RETRIEVAL VIA CONVEX PROGRAMMING

To show that Sy is convex, it suffices to show that Sy, and Sy are convex.
Fix (u1,v1), (u2,v2) € Sp1, and let a € [0,1]. Note that u; > 0, and ug > 0 as y; > 0.
Consider

o + (1~ a)uz)(owy + (1~ a)uz)

= % ((a2u1U1 +(1- a)2u2'[}2) + a1l — a)(ujvg + u2211))

~9 -9
(] u
(042:193 + (1 — a)zgg) + a(l — a)(% + M)
U2 Ul
7 (14 200w = 2aurus + a(l - a)(uf + ud)
. Uu2

72 (1 n (a—a?)(ur — u2)2) > 2,

ui1uU2

Y

where the last inequality follows form the fact that « € [0, 1], and ujug > 0. This shows that
Se 1 is convex.

The set Sy o is convex as the inverse image of a convex set of a linear map is convex. This
implies that Sy is convex. Finally, the intersection of any number of convex sets is convex
means that the constraint of (8) is convex. This proves that (8) is a convex program.
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