Journal of Machine Learning Research 20 (2019) 1-7 Submitted 6/19; Revised 8/19; Published 9/19

GraSPy: Graph Statistics in Python

Jaewon Chung!:f J1c@JHU.EDU
Benjamin D. Pedigo®' BPEDIGO@QJHU.EDU
Eric W. Bridgeford? EBRIDGE2@QJHU.EDU
Bijan K. Varjavand! BVARJAV1@JHU.EDU
Hayden S. Helm? HHQJHU.EDU

1,3,4,% JOVOQJHU.EDU

! Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
2 Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218
3 Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218

Joshua T. Vogelstein

4 Kavli Neuroscience Discovery Institute, Institute for Computational Medicine, Johns Hopkins Uni-
versity, Baltimore, MD 21218

T Denotes equal contribution

*Corresponding author

Editor: Alexandre Gramfort

Abstract

We introduce GraSPy, a Python library devoted to statistical inference, machine learning,
and visualization of random graphs and graph populations. This package provides flexible
and easy-to-use algorithms for analyzing and understanding graphs with a scikit-learn
compliant API. GraSPy can be downloaded from Python Package Index (PyPi), and is
released under the Apache 2.0 open-source license. The documentation and all releases are
available at https://neurodata.io/graspy.

Keywords: Python, graph analysis, network analysis, statistical inference, machine learn-
ing

1. Introduction

Graphs, or networks, are a mathematical representation of data that consists of discrete
objects (nodes or vertices) and relationships between these objects (edges). For example,
a brain can be represented with nodes corresponding to each brain region and edges rep-
resenting the presence of a structural connection between regions (Vogelstein et al., 2019).
Since graphs necessarily deal with relationships between nodes, classical statistical assump-
tions about independence are violated. Thus, novel methodology is required for performing
statistical inference on graphs and populations of graphs (Athreya et al., 2018). While the
theory for inference on graphs is highly developed, to date, there has not existed a numerical
package implementing these methods. GraSPy fills this gap by providing implementations
of algorithms with strong statistical guarantees, such as graph and multi-graph embedding
methods, two-graph hypothesis testing, and clustering of vertices of graphs. Many of the
algorithms implemented in GraSPy are flexible and can operate on graphs that are weighted
or unweighted, as well as directed or undirected. Table 1 provides a comparison of GraSPy

(©2019 Jaewon Chung, Benjamin D. Pedigo, Eric W. Bridgeford, Bijan K. Varjavand, Hayden S. Helm, Joshua T.
Vogelstein.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/19-490.html.

https://neurodata.io/graspy
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/19-490.html

CHUNG PEDIGO BRIDGEFORD VARJAVAND HELM VOGELSTEIN

Plot
Visualize graphs, graph
embeddings
Simulations Cluster
Sample random graphs k Cluster vertex or graph
Utils Embed embeddings
Import, preprocessing mbe [>

i . Graph, graph population
. Single graph X dimensionality reduction Inference
: Input data : [> Test graph hypotheses
oo ! Models
[T mmmmmmmes . Fit graph models to data
| Multiple graphs |
}
[

1 Input data
\

-

Figure 1: Ilustration of modules and procedure for statistical inference on graphs, popula-
tions of graphs, or simulated data. A detailed description of each module is given
in Section 2.

to other existing graph analysis packages (Hagberg et al., 2008; Peixoto, 2014; Leskovec and
Sosi¢, 2016).

2. Library Overview

GraSPy includes functionality for fitting and sampling from random graph models, per-
forming dimensionality reduction on graphs or populations of graphs (embedding), testing
hypotheses on graphs, and plotting of graphs and embeddings. The following provides brief
overview of different modules of GraSPy. An example workflow using these modules is shown
in Figure 1. More detailed overview and code usage can be found in the tutorial section
of GraSPy documentation at https://graspy.neurodata.io/tutorial. All descriptions
here correspond to GraSPy version 0.1.1.

Simulations Several random graph models are implemented in GraSPy, including the
Erdés-Rényi (ER) model, stochastic block model (SBM), degree-corrected Erdds-
Rényi (DCER) model, degree-corrected stochastic block model (DCSBM), and ran-
dom dot product graph (RDPG) (Holland et al., 1983; Karrer and Newman, 2011;
Young and Scheinerman, 2007). The simulations module allows the user to sample
random graphs given the parameters of one of these models. Additionally, the user
can specify a distribution on the weights of graph edges.

Utils GraSPy includes a variety of utility functions for graph and graph population import-
ing and preprocessing. GraSPy can import graphs represented as NetworkX objects
or NumPy arrays. Preprocessing examples include finding the largest connected com-
ponent of a graph, finding the intersection or union of connected components across
multiple graphs, or checking whether a graph is directed.

Embed Inferences on random graphs can leverage low-dimensional Euclidean representa-
tions of the vertices, known as latent positions. Adjacency spectral embedding (ASE)

https://graspy.neurodata.io/tutorial

GRASPY: GRAPH STATISTICS IN PYTHON

Graph Theory Statistical Modeling Other
.
§ 'SJ’@ § g ~
~ @ D] g S O * T
S £ §\|8 § 5 § & |35 A
g 3 S g g S 5 N N S
package S IS S o g g & ~]]
GraSPy 0.1.1 X X v v v v v/ v v v
NetworkX 2.3 v v v X X v X v v
graph-tool 2.29 v v X v 4 X v X
Snap.py 4.1 v v v X X 4 X 4 X

Table 1: Qualitative comparison of Python graph analysis packages. GraSPy is largely com-
plementary to existing graph analysis packages in Python. GraSPy does not imple-
ment many of the essential algorithms for operating on graphs (rather, it leverages
NetworkX for these implementations). The focus of GraSPy is on statistical model-
ing of populations of networks, with features such as multiple graph embeddings,
model fitting, and hypothesis testing. A v is given for packages that implement
the respective feature, a + for packages that partially implement the respective
feature, and a X is given for packages that do not implement the respective feature.
Note that while a v/ shows that the feature exists in the corresponding package, it
does not imply that the specific algorithms are the same for all packages.

and Laplacian spectral embedding (LSE) are methods for embedding a single graph
(Athreya et al., 2018). Omnibus embedding and multiple adjacency spectral em-
bedding (MASE) allows for embedding multiple graphs into the same subspace such
that the embeddings can be meaningfully compared (Levin et al., 2017; Arroyo et al.,
2019). GraSPy includes a method for choosing the number of embedding dimensions
automatically (Zhu and Ghodsi, 2006).

Models GraSPy includes classes for fitting random graph models to an input graph (Figure
2). Currently, ER, SBM, DCER, DCSBM, and RDPG are supported for model esti-
mation. After fitting a model to data, the model class can also output goodness-of-fit
metrics (mean squared error, likelihood) and the number of estimated model param-
eters, allowing for model selection. The model classes can also be used to sample new

simulated graphs based on the fit model.

Inference Given two graphs, a natural question to ask is whether these graphs are both
random samples from the same generative distribution. GraSPy provides two types
of test for this null hypothesis: a latent position test and a latent distribution test.
Both tests are framed under the RDPG model, where the generative distribution for
the graph can be modeled as a set of latent positions. The latent position test can
only be performed on two graphs of the same size and with known correspondence
between the vertices of the two graphs (Tang et al., 2017). The latent distribution test

CHUNG PEDIGO BRIDGEFORD VARJAVAND HELM VOGELSTEIN

Figure 2: Connectome model fitting using GraSPy. Heatmaps show the probability of po-
tential edges for models of graphs fit to the Drosophila larva right mushroom body
connectome (unweighted, directed) (Eichler et al., 2017). The node labels corre-
spond to cell types: P) projection neurons, O) mushroom body output neurons,
I) mushroom body input neurons. The graph models are: inhomogeneous Erdés-
Rényi (IER) model in which all potential edges are specified, random dot prod-
uct graph (RDPG), degree-corrected stochastic block model (DCSBM), degree-
corrected Erdés-Rényi (DCER), stochastic block model (SBM), and Erdds-Rényi
(ER). Blocks (cell types) are sorted by number of member vertices and nodes are
sorted by degree within blocks. The code used to generate the figure is a tutorial
section at https://neurodata.io/graspy.

can be performed on graphs without vertex alignment, or even with slightly different
numbers of vertices (Tang et al., 2014).

Cluster GraSPy extends Gaussian mixture models (GMM) and k-means from scikit-learn
to sweep over a specified range of parameters and choose the best clustering (Pedregosa
et al., 2011). The number of clusters and covariance structure for each GMM is cho-
sen by Bayesian information criterion (BIC), which is a penalized likelihood function

https://neurodata.io/graspy

GRASPY: GRAPH STATISTICS IN PYTHON

to evaluate the quality of estimators (Schwarz et al., 1978). Silhouette score is used
to choose the number of clusters for k-means (Rousseeuw, 1987). Clustering is often
useful for computing the the community structure of vertices after embedding.

Plot GraSPy extends seaborn to visualize graphs as adjacency matrices and embedded
graphs as paired scatter plots (Waskom et al., 2018). Individual graphs can be vi-
sualized using heatmap function, and multiple graphs can be overlaid on top of each
other using gridplot. The nodes in both graph visualizations can be sorted by various
node metadata, such as node degree or assigned node labels. Pairplot can visualize
high dimensional data, such as embeddings, as a pairwise scatter plot.

3. Code example

Given the connectomes of the Drosophila larva left and right mushroom bodies, one natural
question to ask is: how similar are these graphs (Eichler et al., 2017)7 We can frame
this question as whether these graphs are generated from the same distribution of latent
positions (Tang et al., 2014). We can use the latent distribution test to test this hypothesis:

from graspy.datasets import load_drosophila_left, load_drosophila_right
from graspy.inference import LatentDistributionTest

Load data
left_graph = load_drosophila_left ()
right_graph = load_drosophila_right ()

Initialize hypothesis test object and compute p-value

1dt = LatentDistributionTest(n_components=3, n_bootstraps=500)
p_value = 1ldt.fit(left_graph, right_graph)

print ("p-value: " + str(p_value))

p-value: 0.002

4. Conclusion

GraSPy is an open-source Python package to perform statistical analysis on graphs and
graph populations. Its compliance with the scikit-learn API makes it an easy-to-use tool
for anyone familiar with machine learning in Python (Buitinck et al., 2013). In addition,
GraSPy is implemented with an extensible class structure, making it easy to modify and
add new algorithms to the package. As GraSPy continues to grow and add functionality,
we believe it will accelerate statistically principled discovery in any field of study concerned
with graphs or populations of graphs.

Acknowledgments

This work is graciously supported by the DARPA, under agreement numbers FA8650-18-
2-7834 and FA8750-17-2-0112. We thank all the contributors for assisting with writing
GraSPy. We thank the NeuroData Design class, the NeuroData lab, and Carey E. Priebe
at Johns Hopkins University for helpful feedback.

CHUNG PEDIGO BRIDGEFORD VARJAVAND HELM VOGELSTEIN

References

Jests Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E Priebe, and Joshua T
Vogelstein. Inference for multiple heterogeneous networks with a common invariant sub-
space. arXiv preprint arXiw:1906.10026, 2019.

Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park,
Joshua T. Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman.
Statistical inference on random dot product graphs: a survey. Journal of Machine Learn-
ing Research, 18(226):1-92, 2018. URL http://jmlr.org/papers/v18/17-448 .html.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaél Varoquaux. API design for
machine learning software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pages 108-122, 2013.

Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey M
Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber,

et al. The complete connectome of a learning and memory centre in an insect brain.
Nature, 548(7666):175, 2017.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmod-
els: First steps. Social networks, 5(2):109-137, 1983.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in
networks. Physical review E, 83(1):016107, 2011.

Jure Leskovec and Rok Sosi¢. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

Keith Levin, Avanti Athreya, Minh Tang, Vince Lyzinski, and Carey E Priebe. A central
limit theorem for an omnibus embedding of multiple random dot product graphs. pages
964-967, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Tiago P. Peixoto. The graph-tool python library. figshare, 2014. doi: 10.6084/m9.figshare.
1164194. URL http://figshare.com/articles/graph_tool/1164194.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53—-65, 1987.

http://jmlr.org/papers/v18/17-448.html
http://figshare.com/articles/graph_tool/1164194

GRASPY: GRAPH STATISTICS IN PYTHON

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):
461-464, 1978.

Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, and Carey E. Priebe. A
nonparametric two-sample hypothesis testing problem for random dot product graphs.
Journal of Computational and Graphical Statistics, art. arXiv:1409.2344, September 2014.

Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, Youngser Park, and
Carey E Priebe. A semiparametric two-sample hypothesis testing problem for random
graphs. Journal of Computational and Graphical Statistics, 26(2):344-354, 2017.

Joshua T Vogelstein, Eric W Bridgeford, Benjamin D Pedigo, Jaewon Chung, Keith Levin,
Brett Mensh, and Carey E Priebe. Connectal coding: discovering the structures linking
cognitive phenotypes to individual histories. Current Opinion in Neurobiology, 55:199—
212, 2019.

Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel Ostblom, Saulius
Lukauskas, David C Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole,
Jordi Warmenhoven, Julian de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas,
Santi Villalba, Gero Kunter, Eric Quintero, Pete Bachant, Marcel Martin, Kyle Meyer,
Alistair Miles, Yoav Ram, Thomas Brunner, Tal Yarkoni, Mike Lee Williams, Constan-
tine Evans, Clark Fitzgerald, Brian, and Adel Qalieh. mwaskom/seaborn: v0.9.0 (july
2018), July 2018. URL https://doi.org/10.5281/zenodo.1313201.

Stephen J Young and Edward R Scheinerman. Random dot product graph models for social
networks. In International Workshop on Algorithms and Models for the Web-Graph, pages
138-149. Springer, 2007.

Mu Zhu and Ali Ghodsi. Automatic dimensionality selection from the scree plot via the use
of profile likelihood. Computational Statistics & Data Analysis, 51(2):918-930, 2006.

https://doi.org/10.5281/zenodo.1313201

	Introduction
	Library Overview
	Code example
	Conclusion

