
Journal of Machine Learning Research 20 (2019) 1-25 Submitted 6/19; Published 11/19

Why do deep convolutional networks generalize so poorly to
small image transformations?

Aharon Azulay aharon.azulay@mail.huji.ac.il
ELSC
Hebrew University of Jerusalem

Yair Weiss yweiss@cs.huji.ac.il

CSE, ELSC

Hebrew University of Jerusalem

Editor: Rob Fergus

Abstract

Convolutional Neural Networks (CNNs) are commonly assumed to be invariant to small
image transformations: either because of the convolutional architecture or because they
were trained using data augmentation. Recently, several authors have shown that this is
not the case: small translations or rescalings of the input image can drastically change
the network’s prediction. In this paper, we quantify this phenomena and ask why neither
the convolutional architecture nor data augmentation are sufficient to achieve the desired
invariance. Specifically, we show that the convolutional architecture does not give invari-
ance since architectures ignore the classical sampling theorem, and data augmentation
does not give invariance because the CNNs learn to be invariant to transformations only
for images that are very similar to typical images from the training set. We discuss two
possible solutions to this problem: (1) antialiasing the intermediate representations and (2)
increasing data augmentation and show that they provide only a partial solution at best.
Taken together, our results indicate that the problem of insuring invariance to small image
transformations in neural networks while preserving high accuracy remains unsolved.

Keywords: Machine Learning, Deep Convolutional Neural Networks, Generalization

1. Introduction

Deep convolutional neural networks (CNNs) have revolutionized computer vision. Perhaps
the most dramatic success is in the area of object recognition, where performance is now
described as “superhuman” (He et al., 2015). A key to the success of any machine learning
method is the inductive bias of the method, and clearly the choice of architecture in a neural
network significantly affects the inductive bias. In particular, the choice of convolution and
pooling in CNNs is motivated by the desire to endow the networks with invariance to irrel-
evant cues such as image translations, scalings, and other small deformations (Fukushima
and Miyake, 1982; Zeiler and Fergus, 2014). This motivation was made explicit in the 1980s
by Fukushima in describing the “neocognitron” architecture, which served as inspiration
for modern CNNs (LeCun et al., 1989). Fukushima pointed out that the fact that all layers
in the neocognitron are convolutional means that the response in the final layer “is not af-

c©2019 Aharon Azulay, Yair Weiss.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/19-519.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/19-519.html

Azulay, Weiss

0.8

1.0

0.4

0.6

0 2 4 6 8

P
(b
in
oc

ul
ar
s)

S
hi
ft

Horizontal Shift

0.6

0.7

0.3

0.2

0.5

0.4

0 2 4 6 8

P
(w

ar
p
la
ne

)

S
ca
le

Scale

0.8

0.2

0.6

0.4P
(o
tt
er
)

V
id
eo

Frame
0 2 4 6 8

Figure 1: Examples of jagged predictions of modern deep convolutional neural networks.
Top: A negligible horizontal shift of the object results in an abrupt decrease in
the network’s predicted score of the correct class. Middle: A tiny increase in
the size of the object produces a dramatic decrease in the network’s predicted
score of the correct class. Bottom: A very small change in the otters posture
results in an abrupt decrease in the network’s predicted score of the correct class
(see https://youtu.be/MpUdRacvkWk). Colored dots represent images chosen
from interesting x-axis locations of the graphs on the right. These dots illustrate
sensitivity of modern neural networks to small, insignificant (to a human), and
realistic variations in the image.

fected by the shift in position of the stimulus pattern at all. Neither is it affected by a slight
change of the shape or the size of the stimulus pattern.”. Fukushima also demonstrated
experimentally that the neocognitron’s output is unchanged when characters are translated,
rescaled or slightly deformed, even if the characters were not seen during training.

A second source of inductive bias injected to neural networks is what is known as “data
augmentation”. When training a CNN for object recognition, the network is presented
with a crop of the original image (Simonyan and Zisserman, 2014; Huang et al., 2017): the

2

https://youtu.be/MpUdRacvkWk

Why do deep convolutional networks generalize so poorly to small image transformations?

location and size of the crop is chosen randomly. Thus any particular input image can be
seen by the network at different shifts and rescalings during training. We would therefore
expect that the CNN will learn a discriminant that is invariant to resizing the image or to
translating the image.

Despite these two sources of inductive bias, modern CNNs are surprisingly brittle when
the input is translated, rescaled or otherwise transformed using a small image transforma-
tion. Figure 1 shows examples of such failures for the InceptionResnetV2 CNN: a one pixel
shift of the image (top), or a one pixel rescaling of the image (middle), or an impercep-
tible change in the otter’s posture, result in a dramatic change in the network’s output.
This is despite the fact that the network is fully convolutional and was trained using data
augmentation for scalings and translations. Why does the inductive bias fail?

In this paper we address this question. We first quantify the effect systematically and
show that it occurs in different architectures and when different algorithms for rescaling and
translating are used. We show that the chance that a CNN output on a randomly chosen
image will change after translating downward by a single pixel can be as high as 30%. We
then address separately the two sources of inductive bias (1) the convolutional architecture
and (2) the use of data augmentation and explain why they are not sufficient to achieve
invariance. The convolutional architecture ignores the classical sampling theorem, so that
aliasing effects make the output not invariant. Data augmentation causes the network to
learn invariance only for images that are very similar to those seen during training, and
since the distribution of images in the training set is highly biased, this leads to a lack of
invariance on images that do not obey the bias. Finally, we address two possible solutions:
antialiasing the internal representations and increasing data augmentation and show that
they provide only a partial solution, at best.

2. Quantifying the lack of invariance in modern CNNs

The lack of invariance of modern CNNs to small image deformation was reported in several
recent reports (Azulay and Weiss, 2018; Engstrom et al., 2017a; Zhang, 2019). How typical
were the examples shown in these reports? In order to systematically quantify the effect
we used 6 different CNNs and for each network we showed 1000 images with 4 different
protocols.

We tested three networks from the Keras package (VGG16, ResNet50, InceptionRes-
NetV2), and another three from the Pytorch package (VGG16, ResNet50, DenseNet121).
The basic experiment we conducted is to choose a random image from the ImageNet test
set, choose a one pixel perturbation using one of the four protocols described below, and
then measure the network’s sensitivity to that perturbation. We measured the sensitivity
using two measures. The first, which we call “P(Top-1 change)” is the probability of change
in the network’s top-1 prediction following a one pixel perturbation. The second, which we
call “mean absolute change” measures the average absolute change in the probability calcu-
lated by the network following a one pixel perturbation for the top class (i.e. the class that
had highest probability in the first of the two frames). We use both measures throughout
the paper since they capture different notions of stability: the first measure is invariant to
any monotonic transformation of the output of final layer of the network, while the second

3

Azulay, Weiss

0.00 0.05 0.10 0.15
VGG16

ResNet50

InceptionResNetV2

0.00 0.02 0.04

Translation - Cropping

0.0 0.1 0.2
VGG16

ResNet50

InceptionResNetV2

0.000 0.025 0.050 0.075 0.100

Translation - Embedding - Black

0.0 0.1 0.2 0.3
VGG16

ResNet50

InceptionResNetV2

0.00 0.05 0.10

Translation - Embedding - Inpainting

0.0 0.1 0.2 0.3
P(Top-1 change)

VGG16

ResNet50

InceptionResNetV2

0.00 0.05 0.10
Mean absolute change

Scale - Embedding - Black

Figure 2: Quantifying the sensitivity of modern CNNs. We tested four different protocols
for one pixel perturbations (pairs of images shown on the right, animations of
the transformations available at https://github.com/AzulEye/CNN-Failures/
blob/master/GIFS.md) on 1000 randomly chosen images from the ImageNet val-
idation set. For some of the protocols, the chance that a one pixel perturbation
will change the output approaches 30%.

4

https://github.com/AzulEye/CNN-Failures/blob/master/GIFS.md
https://github.com/AzulEye/CNN-Failures/blob/master/GIFS.md

Why do deep convolutional networks generalize so poorly to small image transformations?

measure helps us rule out the possibility that changes in the top-1 prediction are due to
very small differences between the most likely class and the second most likely class.

In order to perturb the input image by a single pixel, we tested four different protocols.
All of these protocols are based on the fact that modern CNNs expect their input to be
of a particular size (typically 224x224) while the actual image can be of very different
dimensions.

In the first protocol, which we call the “crop” protocol we follow the procedure described
in (Szegedy et al., 2015) for training CNNs. We choose a random square within the original
image and resize the square to be 224x224. The size and location of the square are chosen
randomly according to the distribution described in (Szegedy et al., 2015). We then shift
that square by one pixel diagonally to create a second image that differs from the first one
by translation by a single pixel. In the second protocol, which we call “embedding”, we
downscale the image so that its minimal dimension is of size 100 while maintaining aspect
ratio, and embed it in a random location within the 224x224 image, while filling in the rest
of the image with black pixels. We then shift the embedding location by a single pixel,
again creating two images that are identical up to a shift by a single pixel. In the third
protocol, we repeat the embedding experiment but rather than filling in the rest of the
image with black pixels we use a simple inpainting algorithm (each black pixel is replaced
by a weighted average of the non black pixels in its neighborhood. Code available at
https://github.com/AzulEye/CNN-Failures). The fourth protocol is identical to the second
protocol, but rather than shifting the embedding location, we keep the embedding location
fixed and change the size of the embedded image by a single pixel (e.g from size 100x100 to
size 101x101 pixels).

Each of these protocols has its advantages and disadvantages. The cropping protocol
by definition removes visual information that was present in the original image and could
be important for discrimination. Furthermore, even though the two frames differ only by
a one pixel translation, each of them has slightly different amounts of information in the
border pixels. The embedding protocol has the advantage that all the information in the
original images is preserved in both frames, but may give atypical appearance of the border
pixels (although some images in ImageNet already have black borders). By examining the
pairs of images shown in figure 2 we note the following two properties:

• In all four protocols, the difference between the two images is imperceptible to a
human.

• In all four protocols, the identity of the objects in the image are recognizable to a
human to the same degree as they were in the original image.

Figure 2 shows the two measures of sensitivity for the three Keras networks tested and
for the four protocols (table 1 shows that similar numbers are obtained using the networks
in the PyTorch package). Despite the fact that the difference between the two frames is
imperceptible, the chance of a network changing its prediction can be as high as 30%. In
other words, the reports of lack of invariance in previous papers were not isolated examples
but can happen with high frequency.

In order to calibrate the significance of a failure probability of 0.3, note that unlike the
case of adversarial examples (e.g. (Szegedy et al., 2013; Engstrom et al., 2017a)), the per-

5

Azulay, Weiss

VGG16 ResNet50 DenseNet121

P(top-1 change)

Crop 0.062 (0.05) 0.061 (0.14) 0.068
Black 0.18 (0.11) 0.20 (0.29) 0.19

MAC

Crop 0.038 (0.027) 0.04 (0.058) 0.045
Black 0.06 (0.03) 0.086 (0.093) 0.079

Table 1: A comparison of the failure probability in images that were trained as part of the
PyTorch package and the Keras package. The numbers show P(top1 change) and
mean absolute change (MAC) for three networks trained in the PyTorch package
for two of the protocols. The numbers in parenthesis are the analogous numbers
for the Keras package. Although the numbers vary, the failures are common across
packages and architectures.

turbation is fixed and the same for all images. We are not searching for a perturbation that
will fool the network, but rather applying a fixed one-pixel perturbation and measuring the
probability that it will fool the network. The fact that a fixed, imperceptible perturbation
fools modern networks 30% of the time illustrates their brittleness.

A natural criticism of these results is that some of our protocols (e.g. the procedure
of resizing the image and then embedding it into a larger image), was something that we
introduced during testing and not during the training of the networks (we actually used
pretrained networks which we downloaded from the Keras and Pytorch websites). In this
respect, it is helpful to distinguish between two types of “invariant” recognition systems:

• A fully translation invariant recognition system will give the same output to any
pattern and a translated version of that pattern. An example of such a classifier is
one which bases its output only on the power spectrum of the input image.

• A partially translation invariant recognition system will give the same output to a
pattern and a translated version of that pattern, provided that pattern appeared in the
training set (or was similar to a training pattern). An example of such a classifier is
an SVM that is trained with data augmentation: by construction it is invariant to
translations of the training patterns, but not to translations of different patterns.

Clearly, our results indicate that modern CNNs are not fully translation invariant (using
the first definition) and can give very different outputs to a pattern and a translation of
that pattern by a single pixel.

3. Ignoring the Sampling Theorem

The failure of CNNs to generalize to image translations is particularly puzzling. Intuitively,
it would seem that if all layers in a network are convolutional then the representation
should simply translate when an image is translated. If the final features for classification
are obtained by a global average pooling operation on the representation (as is done for

6

Why do deep convolutional networks generalize so poorly to small image transformations?

A

B

La
ye
r
8

La
ye
r
3
7

La
ye
r
1

La
ye
r
10
0

La
ye
r
1

La
ye
r
1

La
ye
r
13

La
ye
r
5

La
ye
r
4
9

La
ye
r
17

La
ye
r
2
0
0

La
ye
r
4
8

V
G
G
16

R
es
N
et
5
0

D
en
se
N
et
20
1

Figure 3: The deeper the layer, the less shiftable are its feature maps. A) A vertical shift of
the object in the image plane. B) Examples of feature maps from three different
network architectures in response to the translated image. Layer depth assign-
ments reflect the number of trainable convolutional layers preceding the selected
layer. The last layer is always the last convolutional layer in each network.

7

Azulay, Weiss

example in ResNet50 and InceptionResNetV2) then these features should be invariant to
translation. Where does this intuition fail?

This intuition ignores the subsampling operation which is prevalent in modern CNNs,
also known as “stride”. This failure of translation invariance in systems with subsampling
was explicitly discussed in (Simoncelli et al., 1992) who wrote “We cannot literally expect
translation invariance in a system based on convolution and subsampling: translation of
the input signal cannot produce simple translations of the transform coefficients, unless the
translation is a multiple of each of the subsampling factors in the system”. Since deep
networks often contain many subsampling operations, the subsampling factor of the deep
layers may be very large so that “literal” translation invariance only holds for very special
translations. In InceptionResnetV2, for example, the subsampling factor is 60, so we expect
exact translation invariance to hold only for 1

602
of possible translations. Indeed in Zhang

(2019), it was shown that invariance for modern CNNs does hold when the input pattern
is shifted exactly by a multiple of the subsampling factors.

Simoncelli et al. also defined a weaker form of translation invariance, which they called
“shiftability” and showed that it can hold for systems with subsampling (this is related to
weak translation invariance as defined by (Lenc and Vedaldi, 2015), see also (Esteves et al.,
2017; Cohen and Welling, 2014) for related ideas applied to neural networks). Here we
extend the basic shiftability result to show that when shiftability holds, then global average
pooling will indeed yield invariant representations.

We define r(x) as the response of a feature detector at location x in the image plane.
We say that this response is “convolutional” if translating the image by any translation
δ yields a translation of the response by the same δ. This definition includes cases when
the feature response is obtained by convolving the input image with a fixed filter, but also
includes combinations of linear operations and nonlinear operations that do not include any
subsampling.

We start by a trivial observation:

Observation: If r(x) is convolutional then global pooling r =
∑

x r(x) is translation
invariant.

Proof: This follows directly from the definition of a convolutional response. If r(x)
is the feature response to one image and r2(x) is the feature response to the same image
translated, then

∑
x r(x) =

∑
x r2(x) since the two responses are shifts of each other.

We emphasize that the claim above guarantees that a CNN where the stride is always
one, will be fully translation invariant: it will give the same output to any pattern and a
translated version of that pattern, regardless of whether such a pattern is similar to one
that it saw during training. We now show that this can also be achieved with subsampling,
provided the representations are “shiftable”.

Definition: A feature detector r(x) with subsampling factor s is called “shiftable” if
for any x the detector output at location x can be linearly interpolated from the responses
on the sampling grid:

r(x) =
∑
i

B(x− xi)r(xi)

where xi are located on the sampling grid for subsampling factor s and B(x) is the basis
function for reconstructing r(x) from the samples.

8

Why do deep convolutional networks generalize so poorly to small image transformations?

The classic Shannon-Nyquist theorem tells us that r(x) will be shiftable if and only if
the sampling frequency is at least twice the highest frequency in r(x).

Claim: If r(x) is shiftable then global pooling on the sampling grid r =
∑

i r(xi) is
translation invariant.

Proof: This follows from the fact that global pooling on the sampling grid is (up to a
constant) the same as global pooling for all x.∑

x

r(x) =
∑
x

∑
i

r(xi)B(x− xi) (1)

=
∑
i

r(xi)
∑
x

B(x− xi) (2)

= K
∑
i

r(xi) (3)

where K =
∑

xB(x− xi) and K does not depend on xi.
While the claim focuses on a global translation, it can also be extended to piecewise

constant transformations.
Corollary: Consider a set of transformations T that are constant on a set of given

image subareas. If r(x) is shiftable and for a given image, the support of r(x) and its
receptive field is contained in the same subregion for all transformations in T , then global
pooling on the sampling grid is invariant to any transformation in T .

Proof: This follows from the fact that applying any transformation in T to an image
has the same effect on the feature map r(x) as translating the image.

To illustrate the importance of the sampling theorem in guaranteeing invariance in
CNNs, consider a convolutional layer in a deep CNN where each unit acts as a localized
“part detector” (this has been reported to be the case for many modern CNNs (Zeiler and
Fergus, 2014; Zhou et al., 2014)). Each such part detector has a spatial tuning function and
the degree of sharpness of this tuning function will determine whether the feature map can
be subsampled while preserving shiftability or not. For example, consider a part detector
that fires only when the part is exactly at the center of its receptive field. If there is no
subsampling, then as we translate the input image, the feature map will translate as well,
and the global sum of the feature map is invariant to translation. But if we subsample by
two (or equivalently use a stride of two), then there will only be activity in the feature map
when the feature is centered on an even pixel, but not when it is centered on an odd pixel.
This means that the global sum of the feature map will not be invariant to translation.

In the language of Fourier transforms, the problem with a part detector that fires only
when the part is exactly at the center of the receptive field is that the feature map contains
many high frequencies and hence it cannot be subsampled while preserving shiftability. On
the other hand, if we have a part detector whose spatial tuning function is more broad, it
can be shiftable and our claim (above) shows that the global sum of activities in a feature
map will be preserved for all translations, even though the individual firing rates of units
will still be different when the part is centered at an odd pixel or an even pixel. Our
corollary (above), shows the importance of shiftability to other smooth transformations: in
this case each “part detector” will translate with a different translation but it is still the
case that nonshiftable representations will not preserve the global sum of activities as the
image is transformed, while shiftable representations will.

9

Azulay, Weiss

25% 50% 75% 100%
Depth (percent of model depth)

0.02

0.03

0.04

0.05

0.06

0.07

P(
to

p1
 c

ha
ng

e)

VGG16
ResNet50
DenseNet201

25% 50% 75% 100%
Depth (percent of model depth)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
ab

so
lu

te
 c

ha
ng

e

Figure 4: The deeper the representation, the higher the probability for a change in the
top-1 prediction (left) and the mean absolute change (right) following a 1-pixel
translation (using the cropping protocol). Shown are trained readout layers of
three different CNNs at different depths (relative to each CNN).

Figure 3 examines the extent to which the representations learned by modern CNNs are
invariant or shiftable. The top row shows an image that is translated vertically, while the
bottom three rows show typical representations in different layers for the three CNNs we
consider. For VGG16 the representations appears to shift along with the object, including
the final layer where the blurred pattern of response is not a simple translation of the original
response, but seems to preserve the global sum for this particular image. For the two more
modern networks, the responses are sharper but lose their shiftability in the later layers. In
particular, the final layers show approximate invariance to one special translation but no
response at all to another translation, suggesting that the many layers of subsampling yield
a final response that is not shiftable.

To gain a more quantitative measure of how shiftability changes in modern networks as
a function of depth, we took the pretrained modern networks and trained a readout layer
to classify ImageNet images from intermediate layers. For example, the InceptionResNetV2
network has 134 layers, but we can train a readout layer to classify images based on each
of the preceding 133 layers. After training these readout layers, we measure whether a one
pixel shift of the input would cause a change in the networks output which allows us to
quantify the amount of translation invariance in the different layers.

Results are shown in figure 4: when we train classifiers based on the early layers in the
input, the chance of a one pixel shift changing the output is below 5% but as we go deeper
and deeper into the network, the subsampling operations and the nonlinearities make the
representations not shiftable and the network loses its invariance.

How can we guarantee that representations in CNNs will be shiftable? As explained
above, we need to make sure that any feature map that uses stride does not contain fre-
quencies above the Nyquist frequency. If CNNs were purely linear, we could simply blur
the input images so that they would not include any frequencies higher than the Nyquist
limit determined by the final sampling factor of the network. But since CNNs also include
nonlinearities, they can add high frequencies that were not present in the input.

Observation 2: Let r(x) be a representation obtained by first subsampling an image
by a factor of s and then applying a series of convolutions and pointwise nonliearities. Let

10

Why do deep convolutional networks generalize so poorly to small image transformations?

r2(x) be a representation obtained without subsampling the image, and then applying the
same series of convolutions and pointwise nonlinearities, but where all convolution kernels
are dilated by a factor of s. Then subsampling r2(x) by a factor of s yields r(x).

Proof: This follows directly from the definition of convolution.

Corollary: Consider a layer in a CNN with stride s. For any subsequent layer in the
CNN, r(x), consider the equivalent r2(x) as defined in observation 2. If r2(x) contains
frequencies above the Nyquist frequency of s, then r(x) is not shiftable.

Proof: This follows from observation 2, which states that we can calculate r(x) by first
computing r2(x) and then subsampling by a factor of s.

Observation 2 and its corollary highlight an important difference between CNNs and
linear systems. In a linear system, we can always avoid aliasing by blurring before subsam-
pling. The blur removes frequencies above the Nyquist limit, so that the subsampling does
not cause aliasing. Furthermore, since all subsequent operations are linear, they cannot in-
troduce frequencies that were zeroed out by the blur, hence all subsequent representations
are shiftable. But in nonlinear systems, this no longer holds. Even if we are careful to
remove all frequencies above the Nyquist limit before sampling, there is no guarantee that
the subsequent representations will remain shiftable.

Translated to the language of neural networks the principle of blurring before subsam-
pling means that stride (i.e. subsampling) should always be combined with pooling (i.e.
blurring) in the preceding layer. Indeed if we have an arbitrarily deep CNN where all the
layers use stride=1 followed by one layer that has a stride greater than one, then by choos-
ing the pooling window appropriately we can guarantee that the final layer will still be
shiftable. If we do not use appropriate pooling then there is no guarantee that this layer
will be shiftable. Even if we use appropriate pooling that ensures that a given layer is
shiftable, the subsequent nonlinearities in a CNN may not preserve the shiftability, as the
nonlinearities may again introduce high frequencies. The recent paper of (Zhang, 2019) re-
ports on experiments that add blur prior to subsampling in modern CNNs (specifically they
add the blur after the ReLU operation). We will examine the extent that such antialiasing
helps invariance in section 5.1.

4. Why don’t modern CNNs learn to be invariant from data
augmentation?

While the preceding discussion suggests that the CNN architecture will not yield translation
invariance “for free”, there is still the possibility that the CNN will learn a translation
invariant prediction from the training examples, i.e. by learning representations that satisfy
the conditions for shiftability. This can be achieved by the network learning filters whose
Fourier transform is predominantly concentrated in low frequencies. We would expect the
network to learn such filters when they are trained using data augmentation. As mentioned
previously, the input to the networks were obtained using a random crop of a training image,
so that the network was equally likely to see a particular image and a one pixel translation
of that image. Why doesn’t this cause the network to learn a discriminant function that is
invariant to one pixel translations?

One possible answer to this question is that the network can drive the training error
to zero by learning a discriminant function that is only invariant to translations of the

11

Azulay, Weiss

0 100 200
X position

0

100

200

Y
 p

os
iti

on

0 100 200
Interpupillary Distance

0

20

40

of

 Im
ag

es

P > 10 10 P < 10 100

250

500

750

1000

of

 C
at

eg
or

ie
s

Figure 5: Photographer’s biases in the ImageNet dataset. Left: Example of the hand-
labeling procedure of the Tibetan terrier category. Middle: Location and His-
togram of distances between the dogs eyes. Notice the bias in both the objects
position and scale. Right: Quantitative results for all ImageNet categories (Chi-
squared test).

100

220 100 120 140 160 180 200 220
0.0

0.1

0.2

0.3

P(
To

p-
1

ch
an

ge
) Translation - Embedding - Black

VGG16
ResNet50
InceptionResNetV2

100 120 140 160 180 200 220
Window Size

0.00

0.05

0.10

0.15

M
AC

100 120 140 160 180 200 220
0.0

0.1

0.2

0.3

P(
To

p-
1

ch
an

ge
) Scale - Embedding - Black

100 120 140 160 180 200 220
Window Size

0.00

0.05

0.10

0.15

M
AC

Figure 6: The effect of the embedding window size on the observed failures. When the
embedding size is different from the size that the network expects, the lack of
invariance increases. MAC stands for the mean absolute change measure.

12

Why do deep convolutional networks generalize so poorly to small image transformations?

Typical Atypical
Weimaraner 0.9478 0.8984 0.8906 0.888 0.883 Weimaraner 0.674 0.625 0.621 0.6196 0.6143

guacamole 0.92 0.916 0.9155 0.913 0.9106 guacamole 0.5806 0.5757 0.549 0.5405 0.533

umbrella 0.91 0.9077 0.86 0.853 0.8477 umbrella 0.5107 0.479 0.468 0.464 0.4614

cauliflower 0.9663 0.9663 0.9663 0.966 0.965 cauliflower 0.5254 0.5093 0.5034 0.501 0.4983

castle 0.9004 0.886 0.884 0.8765 0.8735 castle 0.659 0.6543 0.65 0.643 0.635

basketball 0.925 0.9185 0.918 0.9155 0.9146 basketball 0.595 0.57 0.5654 0.554 0.5522

Figure 7: Our definition of typical images (i.e. ones that satisfy photographer’s bias). Ex-
amples of randomly chosen, center cropped validation images, for which we cal-
culate the normalized correlation of representation in the global-average-pooling
layer of ResNet50, to the same representation of the entire ImageNet training
set. Left: Images with a high mean correlation for their top 10 nearest neighbors
from the training set (top 5 NN are shown on the right of each validation image,
together with their correlation to the validation image). Right: The same as the
left side, but with images with a low mean correlation for their top 10 nearest
neighbors from the training set.

training images. There is nothing in the training loss to encourage it to learn a discriminant
function that is invariant to the translation of any input image. Of course we expect the
network to generalize what it learned to images that it did not see during training, but this
generalization may be limited to images that are similar to those seen during training.

The notion of “images similar to those seen during training” is particularly relevant
if the training set includes significant bias. Consistent with previous results on “dataset
bias” (Simon et al., 2007; Raguram and Lazebnik, 2008; Berg and Berg, 2009; Torralba and
Efros, 2011; Weyand and Leibe, 2011; Mezuman and Weiss, 2012) we find that the ImageNet
dataset is extremely biased in terms of the available sizes and locations of objects. As one
illustration, figure 5 shows the distribution of the locations and distances between the eyes
of a “Tibetan terrier”. Note that almost all images of that category show a centered closeup
of the dog’s face. Thus a network can drive the training error to zero, by being invariant

13

Azulay, Weiss

H
ou

rg
la
ss

Average correlation to 10 nearest neighbours

P
ig

B
an
an
a

0 1

0.5 0.6 0.7 0.8 0.9
Average correlation to 10NN

0.0

0.1

0.2

0.3

0.4

P(
to

p-
1

ch
an

ge
)

VGG16
ResNet50
DenseNet121

0.5 0.6 0.7 0.8 0.9
Average correlation to 10NN

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
ab

so
lu

te
 c

ha
ng

e

Figure 8: CNN sensitivity to one pixel perturbations depends on how typical the images
are. We plot our two measures of sensitivity as a function of typicality for 1000
randomly chosen, center cropped images. Both measures of sensitivity depend
strongly on the typicality of the images: when images obey the bias of photogra-
phers, sensitivity is low. Error bars represent the standard error of the mean.

14

Why do deep convolutional networks generalize so poorly to small image transformations?

to translations within that narrow range of possible sizes. If this is the case, then we would
expect the learned invariance to fail once we present the network with examples of terriers
of different sizes. Indeed, the difference in results in figure 2 is consistent with this view.
When we use the crop protocol, then the object sizes are similar to what was observed
during training, but when the embedding protocol is used, the sizes may be very different.
Is the higher sensitivity in the embedding protocol due to the fact that this causes images
to be less similar to the training images, or is there something intrinsic to the embedding
protocol that makes networks more sensitive to perturbations?

Figure 6 summarizes experiments that suggest that the important effect is the similarity
to the training images. We used the same protocol as was used in figure 2: we randomly
chose images from the ImageNet validation set, resized them, and embedded them in a
larger image. We systematically varied the size of the embedded images: when the em-
bedded size is close to the input the network expects (224 for VGG16 and ResNet50,299
for InceptionResNetV2) then the resizing operation yields images that are similar to those
that the network saw during training. However, when the embedded size is very different
from the size that the network expects, then the resizing operation yields images that are
less similar to the ones that the network saw during training. If most of the translation
invariance we see in modern CNNs is due to the network learning partial invariance during
its training, then we should expect the network to be more invariant for large embedded
images and less invariant for small embedded images.

Figure 6 shows this intuition to be correct. For embedded sizes close to 220, a one pixel
shift or scaling of an image causes a change in the network prediction approximately 10% of
the time, while for embedded sizes close to 100, this probability increases to approximately
30% for the modern networks.

For a more direct test of the hypothesis that the networks only learn invariance to images
that are similar to what it saw during training, we quantified the sensitivity as a function of
the typicality of an input image. Typicality is defined via the “perceptual similarity” of an
image to the 10 nearest neighbors in the training set, where“perceptual similarity” between
the two images is the normalized correlation between the features in the penultimate layer
of ResNet50. Various authors have shown that this definition of perceptual similarity is
invariant to the particular network that is used to define the features (Zhang et al., 2018).

Figure 7 shows examples of typical and atypical images for various categories. When an
image is taken in a way that satisfies the bias of photographers (e.g. when a dog is captured
with a closeup that shows the face in the center of the frame) then the nearest neighbors
have a high degree of perceptual similarity. But when when the same dog is photographed
at a distance, together with several other objects, the image does not satisfy the bias of
photographers and the nearest neighbors have a much lower degree of similarity.

Figure 8 shows that this measure very clearly predicts the sensitivity of the network to
one pixel perturbations. When a test image has high perceptual similarity to the training
images, then both measures of sensitivity approach zero. But when an image has low
perceptual similarity, the average sensitivity is quite high (P(top-1 change) approaches
0.3), even though all images here use the crop protocol that was also used during data
augmentation. Note also the similarity between the probabilities of failure of the three
different networks: since they were trained using the same biased dataset, all three networks
learn to be invariant only to images that satisfy the photographer’s bias.

15

Azulay, Weiss

The similarity of an image to its most similar training examples is expected to also
change the confidence of the CNN in its prediction of the image: images that have many
similar neighbors should yield more confident predictions from the CNN. In the appendix we
show that using one CNN’s confidence also predicts the amount of invariance other CNNs
will exhibit, although the effect seems weaker than when we directly use the similarity to
training examples (figure 12).

5. Possible Solutions

To summarize, our results show that modern CNNs are not shift invariant and a one pixel
shift of an input image can drastically change the network’s output. This is despite the
convolutional architecture and the use of data augmentation during training. We now
discuss three possible solutions and examine the extent to which they solve the problem.

5.1. Antialiasing

As we discussed in section 3, an important principle of signal processing is that one should
always blur before subsampling, and modern CNN architectures do not obey this principle.
In the recent work of (Zhang, 2019), an elegant proposal was made regarding how to embody
this principle in modern CNNs. Specifically, they proposed performing the pooling operation
in two steps: a max-pool layer with stride 1, followed by a convolutional layer with stride=2.
Thus the two layers in combination perform bluring before subsampling. They showed that
by changing modern CNNs to incorporate these two layers instead of the standard max-
pool layers and then retraining, they can significantly improve the invariance of networks
trained on CIFAR10. However, for networks trained on Imagenet, the improvement was
much smaller.

Figure 9 shows that when the antialiased networks are tested using the protocols that
we investigated, then the effect of antialiasing is relatively small. In particular, when the
embedding protocol is used and the size of the embedded image is different from what the
network saw during training, a one-pixel shift can still cause the network to change its
prediction in about 15% of the time. Similarly, the bottom of figure 9 shows the same
dependence on typicality in the antialiased networks as we saw in the original networks.
When images are similar to those seen during training, then the antialiased networks are
invariant, but for atypical images there is still strong sensitivity to one pixel shifts (up to
20% chance that a one-pixel shift will change the top-1 prediction). Clearly, the antialiased
networks do not satisfy our definition of a fully translation-invariant system, which should
be invariant to the translation of any pattern.

We believe the reason for the lack of significant improvement is what we discussed in
section 3: even though blurring before subsampling is sufficient for avoiding aliasing in
linear systems, the presence of nonlinearities may introduce aliasing even in the presence
of blur before subsampling. Table 2 shows an example: when we use the bin5 filter and
a subsampling ratio of 2, a linear system is still shiftable following the subsampling. But
this is not the case when we use a ReLU nonlinearity: despite using the same filter and
the same subampling ratio, the system is no longer shiftable. In the appendix, we show a
similar example when the bin5 filter is replaced with the ideal low pass filter. This means
that the question of whether the system will be shiftable or not depends on the learnt

16

Why do deep convolutional networks generalize so poorly to small image transformations?

signal1 signal2 global sum1 global sum2

Original: (0,0,0,1,0,0,0) (0,0,1,0,0,0,0) 1 1
Blurred: (0,1,4,6,4,1,0) (1,4,6,4,1,0,0) 16 16
Sampled: (0,4,4,0) (1,6,1,0) 8 8

ReLU (bias=5): (0,0,0,0) (0,6,0,0) 0 6

Table 2: When nonlinearities are present, blurring before subsampling does not guarantee
shiftability.

weights and biases, and we cannot guarantee shiftability simply by virtue of the blurring
before subsampling.

5.2. Increased Data Augmentation

Engstrom et al. (Engstrom et al., 2017b) suggested another possible solution for the lack of
translation invariance: increased data augmentation. They first showed that networks that
were trained using the standard data augmentation protocol were not invariant when tested
with images that were resized and translated with a black background (the second protocol
in our section 2). They then showed that by training the networks with additional data
augmentation that also included the second protocol, they could increase the invariance.

Figure 10 shows experiments we have conducted using the CIFAR10 dataset that aims
to study what CNNs learn from data augmentation. Do they learn to be invariant to the
translation of any input image, or do they simply learn to be invariant for images that are
visually similar to those seen during training? The results support the second alternative:
data augmentation mainly causes an increase in translation invariance for images that were
obtained using the same protocol that was used during training. We do not see any evi-
dence of the network generalizing from augmented data to the general notion of translation
invariance.

5.3. Reducing subsampling

The simplest way to reduce aliasing artifacts is to avoid subsampling. Unfortunately this
comes with a large computational price but for small images this is possible. Figure 11
shows that when we train a subsampling-free CNN on CIFAR10 images it achieves high
accuracy and is now truly translation invariant. This does not seem feasible for larger size
images (although see (Chen et al., 2014, 2017; Yu and Koltun, 2015; Yu et al., 2017) for
ways to make this more efficient). In these experiments, we tested the network with images
that were rescaled and embedded into a black image, and the network never saw images of
this size during training. Nevertheless, the convolutional architecture without subsampling
guarantees translation invariance for any input pattern.

6. Discussion

CNN architectures were designed based on an intuition that the convolutional structure and
pooling operations will give invariance to translations and small image deformations “for

17

Azulay, Weiss

0 2 4 6 8

Translation
0.1

0.2

0.3

0.4

0.5

P(
he

n)

0 2 4 6 8

Translation

0.2

0.4

0.6

0.8

P(
gr

ee
n

m
am

ba
)

0.00 0.02 0.04 0.06 0.08
VGG16

VGG16 Antialiased
ResNet50

ResNet50 Antialiased
DenseNet121

DenseNet121 Antialiased

0.00 0.02 0.04 0.06

Translation - Cropping

0.00 0.05 0.10 0.15 0.20
P(Top-1 change)

VGG16
VGG16 Antialiased

ResNet50
ResNet50 Antialiased

DenseNet121
DenseNet121 Antialiased

0.000 0.025 0.050 0.075 0.100
Mean absolute change

Translation - Embedding - Black

0.5 0.6 0.7 0.8 0.9
Average correlation to 10NN

0.00

0.05

0.10

0.15

0.20

0.25

P(
to

p-
1

ch
an

ge
)

0.5 0.6 0.7 0.8 0.9
Average correlation to 10NN

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n
ab

so
lu

te
 c

ha
ng

e

Figure 9: Antialiasing is only a partial solution. Top: Examples of jagged predictions
following a 1-pixel translation in the “Black” and “Crop” protocols (see figure 13
for more examples). Middle: a comparison of the senstitivity measures for two
of the protocols from figure 2 with antialiased versions of three modern CNNs
(“bin-5” antialiasing taken from (Zhang, 2019)) and the non-antialiased ones.
The bottom shows sensitivity as a function of image typicality when using the
crop protocol. When images are not typical, antialiased networks still show high
degree of sensitivity to single pixel translations.

18

Why do deep convolutional networks generalize so poorly to small image transformations?

15 18 21 24 27 30 33 36 39 42 45 48 51

Window Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P(
To

p-
1

ch
an

ge
)

15 18 21 24 27 30 33 36 39 42 45 48 51

Window Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
ab

so
lu

te
 c

ha
ng

e

15 18 21 24 27 30 33 36 39 42 45 48 51

Window Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Without augmentation - test
Without augmentation - train

Cropping augmentation test
Cropping augmentation train

Embedding augmentation test
Embedding augmentation train

Figure 10: Possible solution - data augmentation. Plotted are two ResNet50 CNNs trained
on the CIFAR-10 dataset: Gray - training without data augmentation. green
- training with data that is randomly downsized and translated (black back-
ground). Red - training with data that is randomly upscaled and cropped. Left
- the probability of change to the top-1 prediction following a 1-pixel translation.
Middle: the mean absolute change in prediction following a 1-pixel translation.
Right - Accuracy of the same networks. Notice that data augmentation is effec-
tive mainly in the range of transformations used during training.

15 18 21 24 27 30

Window Size

0.00

0.05

0.10

0.15

0.20

P(
To

p-
1

ch
an

ge
)

15 18 21 24 27 30

Window Size

0.00

0.05

0.10

M
ea

n
ab

so
lu

te
 c

ha
ng

e

15 18 21 24 27 30

Window Size
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Subsampling No subsampling

Figure 11: A CNN without subsampling is perfectly translation invariant. Plotted are two
Alexnet style CNNs on the CIFAR-10 dataset: with (gray) and without (red)
subsampling. The two CNNs achieve similar accuracies of about 0.8.

19

Azulay, Weiss

free”. In this paper we have shown that this intuition breaks down once subsampling, or
“stride” is used and we have presented empirical evidence that modern CNNs do not display
the desired invariances since the architecture ignores the classic sampling theorem. This
still leaves open the possibility of a CNN learning invariance from the data augmentation
procedure but we have shown that this is not the case. Rather, data augmentation teaches
the network to be invariant to translations but only for images that are visually similar to
typical images seen during training, i.e. images that obey the photographer’s bias.

In addition to pointing out these failures, the sampling theorem also suggests a way to
impose translation invariance by ensuring that all representations are sufficiently blurred to
overcome the subsampling. Alternatively, one could use specially designed features in which
invariance is hard coded or neural network architectures that explicitly enforce invariance
(Sifre and Mallat, 2013; Gens and Domingos, 2014; Cheng et al., 2016a,b; Dieleman et al.,
2016, 2015; Xu et al., 2014; Worrall et al., 2017; Cohen and Welling, 2016). However,
trying to guarantee invariance to transformation for any input pattern, may end up hurting
performance in datasets that contain significant photographer’s bias.

Acknowledgments

We thank Tal Arkushin for the helpful comments. Support by the ISF and the Gatsby
Foundation is gratefully acknowledged.

References

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly
to small image transformations? arXiv preprint arXiv:1805.12177, 2018.

Tamara L Berg and Alexander C Berg. Finding iconic images. In Computer Vision and
Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society
Conference on, pages 1–8. IEEE, 2009.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Semantic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062, 2014.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

Gong Cheng, Peicheng Zhou, and Junwei Han. Learning rotation-invariant convolutional
neural networks for object detection in vhr optical remote sensing images. IEEE Trans-
actions on Geoscience and Remote Sensing, 54(12):7405–7415, 2016a.

Gong Cheng, Peicheng Zhou, and Junwei Han. Rifd-cnn: Rotation-invariant and fisher
discriminative convolutional neural networks for object detection. In Computer Vision
and Pattern Recognition (CVPR), 2016 IEEE Conference on, pages 2884–2893. IEEE,
2016b.

20

Why do deep convolutional networks generalize so poorly to small image transformations?

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning, pages 2990–2999, 2016.

Taco S Cohen and Max Welling. Transformation properties of learned visual representations.
arXiv preprint arXiv:1412.7659, 2014.

Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional neu-
ral networks for galaxy morphology prediction. Monthly notices of the royal astronomical
society, 450(2):1441–1459, 2015.

Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry
in convolutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and
a translation suffice: Fooling cnns with simple transformations. CoRR, abs/1712.02779,
2017a. URL http://arxiv.org/abs/1712.02779.

Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation
and a translation suffice: Fooling cnns with simple transformations. arXiv preprint
arXiv:1712.02779, 2017b.

Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, and Kostas Daniilidis. Polar
transformer networks. arXiv preprint arXiv:1709.01889, 2017.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In Competition and cooperation in neural
nets, pages 267–285. Springer, 1982.

Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural
information processing systems, pages 2537–2545, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on, pages 991–999. IEEE, 2015.

Elad Mezuman and Yair Weiss. Learning about canonical views from internet image col-
lections. In Advances in Neural Information Processing Systems, pages 719–727, 2012.

21

http://arxiv.org/abs/1712.02779

Azulay, Weiss

Rahul Raguram and Svetlana Lazebnik. Computing iconic summaries of general visual
concepts. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08.
IEEE Computer Society Conference on, pages 1–8. IEEE, 2008.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering
for texture discrimination. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 1233–1240. IEEE, 2013.

Ian Simon, Noah Snavely, and Steven M Seitz. Scene summarization for online image
collections. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1–8. IEEE, 2007.

Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger. Shiftable
multiscale transforms. IEEE transactions on Information Theory, 38(2):587–607, 1992.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1521–1528. IEEE,
2011.

Tobias Weyand and Bastian Leibe. Discovering favorite views of popular places with iconoid
shift. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 1132–
1139. IEEE, 2011.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), volume 2, 2017.

Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, and Zheng Zhang. Scale-invariant
convolutional neural networks. arXiv preprint arXiv:1411.6369, 2014.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 472–480,
2017.

22

Why do deep convolutional networks generalize so poorly to small image transformations?

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

Richard Zhang. Making convolutional networks shift-invariant again. arXiv preprint
arXiv:1904.11486, 2019.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. Object
detectors emerge in deep scene cnns. CoRR, abs/1412.6856, 2014. URL http://arxiv.

org/abs/1412.6856.

23

http://arxiv.org/abs/1412.6856
http://arxiv.org/abs/1412.6856

Azulay, Weiss

Appendix A.

A.1. Pipeline for producing the bottom row of figure 1

We download this video: https://youtu.be/akseo5DuXgU using an online downloader. We
load the video frames and crop them to a 1x1 aspect ratio while making sure that the object
is visible for the entire duration of the video. After the crop, we resize the frames to 299 by
299 as used by the standard Keras applications framework (https://keras.io/applications/).
We preprocess the frames using the standard Keras preprocessing function. Finally, we use
the predictions of the InceptionResNetV2 model to demonstrate the jagged behavior shown
in figure 1.

A.2. The network architectures used in figure 2

Network Top-1 Top-5 Parameters Depth

VGG16 0.715 0.901 138,357,544 16
ResNet50 0.759 0.929 25,636,712 50
InceptionResNetV2 0.804 0.953 55,873,736 134

Table 3: The networks used (taken from (https://keras.io/applications/))

A.3. ReLU causes aliasing even with ideal low pass filter

Table 2 shows an example of how nonlinearity can destroy shiftability even if blurring is
used prior to subsampling. This example can be extended to the case when the blur filter is
the ideal low pass filter. In this case, the two blurred signals will simply be infinite signals
sinc(k/2), sinc((k−1)/2), whose central part is (0, 0.6336, 1, 0.6336, 0). After subsampling,
the first signal will be a delta function, whose central part is (0, 0, 1, 0, 0, 0) and the shifted
signal will be infinite with a central part of (−0.2122, 0.6336, 0.6336,−0.2122). The global
sum of both these signals is exactly 1, showing again that shiftability preserves the global
sum. But if we apply a ReLU with any bias between 0.6336 and 1, then the first signal will
remain the delta function, while the second signal will be zero everywhere.

A.4. CNN confidence can predict sensitivity

We have shown that the similarity of an image to its 10 most similar training examples
can predict the sensitivity to a one pixel perturbation by different CNNs. We also expect
the CNN’s confidence to vary as a function of this similarity: when an image has many
very similar training images, we expect the CNN’s confidence in its prediction to be large.
This suggests using the CNN’s confidence for a given image as a predictor of how sensitive
different networks will be to one pixel perturbations of that image. Figure 12 shows that
this can be used as a predictor, but the effect seems to be weaker than using the similarity
of an image to its most similar training examples.

A.5. More examples of failure of antialiased networks

24

https://keras.io/applications/

Why do deep convolutional networks generalize so poorly to small image transformations?

0.0 0.2 0.4 0.6 0.8 1.0
TOP1 Confidence - ResNet50

0.0

0.1

0.2

0.3

0.4
P(

to
p1

) c
ha

ng
e

VGG16
ResNet50
DenseNet121

0.0 0.2 0.4 0.6 0.8 1.0
TOP1 Confidence - ResNet50

0.02

0.04

0.06

0.08

0.10

M
AC

VGG16
ResNet50
DenseNet121

Figure 12: CNN sensitivity to one pixel perturbations depends on the confidence the net-
work assigns to the top1 prediction. We plot our two measures of sensitivity as
a function of top1 confidence for 1000 randomly chosen, center cropped images.
Error bars represent the standard error of the mean.

0 2 4 6 8

Translation

0.2

0.3

0.4

0.5

0.6

P(
fla

gp
ol

e)

0 2 4 6 8

Translation

0.1

0.2

0.3

0.4

P(
In

di
an

 c
ob

ra
)

0 2 4 6 8

Translation

0.1

0.2

0.3

0.4

0.5

P(
to

uc
an

)

0 2 4 6 8

Translation
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P(
le

tte
r o

pe
ne

r)

0 2 4 6 8

Translation

0.1

0.2

0.3

0.4

0.5

0.6

P(
fu

r c
oa

t)

0 2 4 6 8

Translation
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P(
ga

s p
um

p)

Figure 13: Additional examples of failures of antialiased networks in the “Black” and
“Crop” protocols.

25

	Introduction
	Quantifying the lack of invariance in modern CNNs
	Ignoring the Sampling Theorem
	Why don't modern CNNs learn to be invariant from data augmentation?
	Possible Solutions
	Antialiasing
	Increased Data Augmentation
	Reducing subsampling

	Discussion
	
	Pipeline for producing the bottom row of figure 1
	The network architectures used in figure 2
	ReLU causes aliasing even with ideal low pass filter
	CNN confidence can predict sensitivity
	More examples of failure of antialiased networks

