
Journal of Machine Learning Research 21 (2020) 1-5 Submitted 6/18; Revised 3/20; Published 3/20

GraKeL: A Graph Kernel Library in Python

Giannis Siglidis yiannis.siglidis@lip6.fr

LIP6, UPMC Université Paris 6, Sorbonne Universités

Paris, France

Giannis Nikolentzos nikolentzos@lix.polytechnique.fr

Stratis Limnios stratis.limnios@polytechnique.edu

Christos Giatsidis giatsidis@lix.polytechnique.fr

Konstantinos Skianis kskianis@lix.polytechnique.fr

LIX, École Polytechnique

Palaiseau, France

Michalis Vazirgiannis mvazirg@lix.polytechnique.fr

LIX, École Polytechnique

Palaiseau, France

and

Department of Informatics, Athens University of Economics and Business

Athens, Greece

Editor: Antti Honkela

Abstract

The problem of accurately measuring the similarity between graphs is at the core of many
applications in a variety of disciplines. Graph kernels have recently emerged as a promising
approach to this problem. There are now many kernels, each focusing on different structural
aspects of graphs. Here, we present GraKeL, a library that unifies several graph kernels
into a common framework. The library is written in Python and adheres to the scikit-learn
interface. It is simple to use and can be naturally combined with scikit-learn’s modules
to build a complete machine learning pipeline for tasks such as graph classification and
clustering. The code is BSD licensed and is available at: https://github.com/ysig/

GraKeL.

Keywords: graph similarity, graph kernels, scikit-learn, Python

1. Introduction

In recent years, graph-structured data has experienced an unprecedented growth in many
domains, ranging from social networks to bioinformatics. Several problems of increasing
interest involving graphs call for the use of machine learning techniques. Measuring the
similarity or distance between graphs is a key component in many of those machine learning
algorithms. Graph kernels have emerged as an effective tool for tackling the graph similarity
problem. A graph kernel is a function that corresponds to an inner-product in a Hilbert
space, and can be thought of as a similarity measure defined directly on graphs. The main
advantage of graph kernels is that they allow a large family of machine learning algorithms,
called kernel methods, to be applied directly to graphs.

c©2020 Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and Michalis
Vazirgiannis.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-370.html.

https://github.com/ysig/GraKeL
https://github.com/ysig/GraKeL
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-370.html


Siglidis, Nikolentzos, Limnios, Giatsidis, Skianis, and Vazirgiannis

GraKeL is a package that provides implementations of several graph kernels. The library
is BSD licensed, and is publicly available on a GitHub repository encouraging collaborative
work inside the machine learning community. The library is also compatible with scikit-
learn, a standard package for performing machine learning tasks in Python (Pedregosa
et al., 2011). Given scikit-learn’s current inability to handle graph-structured data, the
proposed library was built on top of one of its templates, and can serve as a useful tool
for performing graph mining tasks. At the same time, it enjoys the overall object-oriented
syntax and semantics defined by scikit-learn. Note that graphs are combinatorial structures
and lack the convenient mathematical context of vector spaces. Hence, algorithms defined
on graphs exhibit increased diversity compared to the ones defined on feature vectors.
Therefore, bringing together all these kernels under a common framework is a challenging
task, and the main design decisions behind GraKeL are presented in the following sections.

2. Underlying Technologies

Inside the Python ecosystem, there exist several packages that allow efficient numerical and
scientific computation. GraKeL relies on the following technologies for implementing the
currently supported graph kernels:
• NumPy: a package that offers all the necessary data structures for graph representation.
Furthermore, it offers numerous linear algebra operations serving as a fundamental tool for
achieving fast kernel calculation (Walt et al., 2011).
• SciPy: Python’s main scientific library. It contains a large number of modules, ranging
from optimization to signal processing. Of special interest to us is the support of sparse
matrix representations and operations (Virtanen et al., 2020).
• Cython: allows the embedding of C code in Python. It is used to address efficiency issues
related to non-compiled code in high-level interpreted languages such as Python, as well as
for integrating low-level implementations (Behnel et al., 2011).
• scikit-learn: a machine learning library for Python. It forms the cornerstone of GraKeL
since it provides the template for developing graph kernels. GraKeL can also interoperate
with scikit-learn for performing machine learning tasks on graphs (Pedregosa et al., 2011).
• BLISS: a tool for computing automorphism groups and canonical labelings of graphs. It
is used for checking graph isomorphism between small graphs (Junttila and Kaski, 2007).
• CVXOPT (optional): a package for convex optimization in Python. It is used for solving
the semidefinite programming formulation that computes the Lovász number ϑ of a graph
(Andersen et al., 2013).

3. Code Design

In GraKeL, all graph kernels are required to inherit the Kernel class which inherits from
the scikit-learn’s TransformerMixin class and implements the following four methods:
1. fit: Extracts kernel dependent features from an input graph collection.

2. fit transform: Fits and calculates the kernel matrix of an input graph collection.
3. transform: Calculates the kernel matrix between a new collection of graphs and the one
given as input to fit.
4. diagonal: Returns the self-kernel values of all the graphs given as input to fit along

2



GraKeL: A Graph Kernel Library in Python

with those given as input to transform, provided that this method has been called. This
method is used for normalizing kernel matrices.

All kernels are unified under a submodule named kernels. They are all wrapped in a
general class called GraphKernel which also inherits from scikit-learn’s TransformerMixin.
Besides providing a unified interface, it is also useful for applying other operations such
as the the Nyström method, while it also facilitates the use of kernel frameworks that are
currently supported by GraKeL. Frameworks like the Weisfeiler Lehman algorithm (Sher-
vashidze et al., 2011) can use any instance of the Kernel class as their base kernel.

The input is required to be an Iterable collection of graph representations. Each graph
can be either an Iterable consisting of a graph representation object (e. g., adjacency
matrix, edge dictionary), vertex attributes and edge attributes or a Graph class instance.
The vertex and edge attributes can be discrete (a.k.a. vertex and edge labels in the literature
of graph kernels) or continuous-valued feature vectors. Note that some kernels cannot
handle vector attributes, while others assume unlabeled graphs. Furthermore, through its
datasets submodule, GraKeL facilitates the application of graph kernels to several popular
graph classification datasets contained in a public repository (Kersting et al., 2016).

4. Comparison to Other Software

In the past years, researchers in the field of graph kernels have made available small col-
lections of graph kernels. These kernels are written in various languages such as Matlab
and Python, and do not share a general common structure that would provide an ease for
usability. In the absence of software packages to compute graph kernels, the graphkernels

library was recently developed (Sugiyama et al., 2017). All kernels are implemented in
C++, while the library provides wrappers to R and Python. The above packages and the
graphkernels library exhibit limited flexibility since kernels are not wrapped in a mean-
ingful manner and their implementation does not follow object-oriented concepts. GraKeL,
on the other hand, is a library that employs object-oriented design principles encouraging
researchers and developers to integrate their own kernels into it.

Moreover, the graphkernels library contains only a handful of kernels, while several
state-of-the-art kernels are missing. On the other hand, GraKeL provides implementations
of a larger number of kernels. In a quick comparison, the graphkernels library provides
variations of 5 kernels and 1 kernel framework, while GraKeL provides implementations of
15 kernels and 2 kernel frameworks. Moreover, GraKeL is compatible with the scikit-learn
pipeline allowing easy and fast integration inside machine learning algorithms. In addition,
given the diversities in the evaluation of machine learning methods, GraKeL provides a
common ground for comparing existing kernels against newly designed ones. This can be of
great interest to researchers trying to evaluate kernels they have come up with. It should
also be mentioned that GraKeL is accompanied by detailed documentation including several
examples of how to apply graph kernels to real-world data.

Furthermore, even though GraKeL is implemented in Python, as shown in Figure 1
below, several of its kernels are more efficient than the corresponding implementations in
graphkernels. Due to space limitations, we only present the results for a single benchmark
dataset (i. e. ENZYMES). The rest of the results can be found in the documentation1.

1. https://ysig.github.io/GraKeL/latest/benchmarks/comparison.html

3

https://ysig.github.io/GraKeL/latest/benchmarks/comparison.html


Siglidis, Nikolentzos, Limnios, Giatsidis, Skianis, and Vazirgiannis

10−3

10−2

10−1

100

T
im

e
(i

n
se

co
n

d
s)

Vertex
Histogram

10−3

10−2

10−1

100

Edge
Histogram

102

103

104

Geometric
Random Walk

100

102

104

Shortest
Path

10−2

10−1

100

Weisfeiler-Lehman
Subtree

GraKeL

graphkernels

Figure 1: Running time (in seconds) for kernel computation on the ENZYMES dataset
using the GraKeL and graphkernels libraries.

5. Sample Code

The most common use of a graph kernel is the one where given a collection of training
graphs Gn (of size n) and a collection of test graphs Gm (of size m), the goal is to compute
two separate kernel matrices: (1) an n × n matrix between all the graphs of Gn, and (2)
a m × n matrix between the graphs of Gm and those of Gn. This can be accomplished by
running the fit transform method on Gn, and then the transform method on Gm. Then,
these matrices can be passed on to the SVM classifier to perform graph classification. The
following example demonstrates the use of GraKeL for performing graph classification on a
standard dataset.

>>> from grakel.datasets import fetch_dataset

>>> from sklearn.model_selection import train_test_split

>>> from grakel.kernels import ShortestPath

>>> from sklearn.svm import SVC

>>> from sklearn.metrics import accuracy_score

>>>

>>> MUTAG = fetch_dataset("MUTAG", verbose=False)

>>> G, y = MUTAG.data , MUTAG.target

>>> G_train , G_test , y_train , y_test = train_test_split(G, y, test_size=0.1,

random_state=42)

>>>

>>> sp_kernel = ShortestPath ()

>>> K_train = sp_kernel.fit_transform(G_train)

>>> K_test = sp_kernel.transform(G_test)

>>>

>>> clf = SVC(kernel=’precomputed ’).fit(K_train , y_train)

>>> y_pred = clf.predict(K_test)

>>> print("accuracy: %2.2f %%" %(accuracy_score(y_test , y_pred)*100))

accuracy: 84.21 %

6. Conclusion

GraKeL is a library that implements several state-of-the-art graph kernels, while remaining
user-friendly. It relies on the scikit-learn’s pipeline, and it can thus be easily integrated into
various machine learning applications.

4



GraKeL: A Graph Kernel Library in Python

Acknowledgments

We would like to thank the editor and the anonymous reviewers for their constructive
comments. This work was supported by the Labex DigiCosme “Grakel” project.

References

Martin S Andersen, Joachim Dahl, and Lieven Vandenberghe. CVXOPT: A Python package
for convex optimization. Available at cvxopt. org, 2013.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and
Kurt Smith. Cython: The Best of Both Worlds. Computing in Science & Engineering,
13(2):31–39, 2011.

Tommi Junttila and Petteri Kaski. Engineering an Efficient Canonical Labeling Toolfor
Large and Sparse Graphs. In Proceedings of the 9th Workshop on Algorithm Engineering
and Experiments and the 4th Workshop on Analytic Algorithms and Combinatorics, pages
135–149, 2007.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neu-
mann. Benchmark Data Sets for Graph Kernels, 2016. URL http://graphkernels.cs.

tu-dortmund.de.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12(Oct):2825–2830,
2011.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning
Research, 12(Sep):2539–2561, 2011.

Mahito Sugiyama, M Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borgwardt.
graphkernels: R and Python packages for graph comparison. Bioinformatics, 34(3):530–
532, 2017.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al.
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods,
pages 1–12, 2020.

Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30,
2011.

5

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

	Introduction
	Underlying Technologies
	Code Design
	Comparison to Other Software
	Sample Code
	Conclusion

