Journal of Machine Learning Research 21 (2020) 1-5 Submitted 9/19; Revised 4/20; Published 5/20

Cornac: A Comparative Framework for Multimodal
Recommender Systems

Aghiles Salah ASALAH@SMU.EDU.SG
Quoc-Tuan Truong QTTRUONG.2017@SMU.EDU.SG
Hady W. Lauw HADYWLAUW@SMU.EDU.SG

Singapore Management University
School of Information Systems, 80 Stamford Road, Singapore 178902

Editor: Andreas Mueller

Abstract

Cornac is an open-source Python framework for multimodal recommender systems. In
addition to core utilities for accessing, building, evaluating, and comparing recommender
models, Cornac is distinctive in putting emphasis on recommendation models that leverage
auxiliary information in the form of a social network, item textual descriptions, product im-
ages, etc. Such multimodal auxiliary data supplement user-item interactions (e.g., ratings,
clicks), which tend to be sparse in practice. To facilitate broad adoption and community
contribution, Cornac is publicly available at https://github.com/PreferredAl/cornac,
and it can be installed via Anaconda or the Python Package Index (pip). Not only is it
well-covered by unit tests to ensure code quality, but it is also accompanied with a detailed
documentation?, tutorials, examples, and several built-in benchmarking data sets.

Keywords: comparison, multimodality, recommendation algorithms, software

1. Introduction

A longstanding practice in recommender systems is to rely on observed preference data —
such as ratings, clicks, purchases — to model and subsequently estimate unseen user-item
interactions (Mnih and Salakhutdinov, 2008). One major challenge to this practice is the
sparsity of preference data, which poses model estimation and generalization difficulties.
In recent times, the community has taken major steps towards the promising direction of
alleviating sparsity by leveraging auxiliary data, i.e., information beyond user-item interac-
tions, which can hold additional clues on how users consume items. For instance, an item
may have textual content (Wang and Blei, 2011; Wang et al., 2015), descriptive images (He
and McAuley, 2016), or other related items (Salah and Lauw, 2018), while users may have
social networks (Chaney et al., 2015). Auxiliary data are also referred to as modalities.
Hereinafter, “multimodal recommender systems” broadly refer to models relying on other
modalities — in addition to preference information — to improve recommendations.

Cornac is an open-source Python framework tailored for multimodal recommender sys-
tems, whose objectives are two-fold. First, to contribute towards the academic community’s
effort in advancing further research in this direction, via providing a simple and handy en-
vironment for developing, evaluating, and comparing various multimodal recommender al-

1. https://cornac.readthedocs.io

(©2020 Aghiles Salah, Quoc-Tuan Truong and Hady W. Lauw.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-805.html.

https://github.com/PreferredAI/cornac
https://cornac.readthedocs.io
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-805.html

SALAH, TRUONG AND LAUW

auxiliary data 3 cornac.data cornac.models
! Text Models: CTR, CDL, CDR, ConvMF, CVAE Unimodal:
Ima e Data i Image Modalit Image Models: VBPR, VMF MF, PMF, BPR, CF,
- - v : Y 2 VAECF, COE, HPF, IBPR,
x 7 Graph Modality Graph Models: SoRec, C2PF, MCF, PCRL, SBPR SKM, Online IBPR

cornac.eval_methods cornac.experiment cornac.metrics

Ratio Split Rating: MAE, RMSE, MSE
Cross Validation Ranking: Recall, Precision, F1,
NDCG, NCRR, MRR, AUC
F 1gure 1: Cornac’s infrastructure. Thick arrows represent the interaction flow between the main modules when run-

ning an experiment. Thin arrows illustrate cross-modality transformations/utilizations, more discussion
on this aspect in the Multimodality Support paragraph.

import cornac

feedback = cornac.datasets.citeulike.load feedback() # preference data
docs, item_ids = cornac.datasets.citeulike.load _text() # item texts

S SOIURN R

6 tm = cornac.data.TextModality(corpus=docs, ids=item_ids, max_vocab=8000)

7 rs = cornac.eval_methods.RatioSplit(data=feedback, test_size=0.2, item_text=tm)
8 cdl = cornac.models.CDL(k=>50, autoencoder_structure=[200], max_iter=30)

9 recall = cornac.metrics.Recall(k=[10, 50, 100])

10

11 cornac.Experiment(eval_method=rs, models=[cdl], metrics=[recall]).run()

Figure 2: An example illustrating how to fit and evaluate the CDL model on CiteULike data set.

gorithms. Second, to facilitate broader adoption of multimodal recommendation algorithms
by practitioners in academia and industry, via providing open access to a rich and growing
collection of state-of-the-art models?. Towards achieving these objectives, we design Cornac
based on a number of principles, namely rich abstraction, low coupling, and cross-modality,
i.e., transformations across modalities, as well as cross-utilization of models designed for a
specific modality (e.g., images) to work with a different one (e.g., text).

2. Framework and Key Features

Figure 1 depicts the five main modules of Cornac, while Figure 2 shows a concrete example
of how to run an experiment in Cornac.

Main Modules. First, to handle preference and auxiliary data, cornac.data mod-
ule provides, for different preference data formats as well as multiple types of modalities,
reading, formatting, parsing, and transformation utilities. Cornac also offers ready access
to popular benchmarks via cornac.datasets (Figure 2). Second, to access a collection of
recommender models, cornac.models module implements both multimodal and unimodal
algorithms. The third and fourth modules support the evaluation of recommendation mod-
els. cornac.eval methods supports data sampling schemes, such as k-fold cross validation
and train/validation/test splitting. cornac.metrics features various commonly used mea-
sures, such as Root Mean Squared Error, Recall, etc. The fifth module cornac.experiment
brings together other modules to perform an evaluation and organize the results, empha-
sizing the ease of comparisons across models or settings.

2. https://github.com/PreferredAl/cornac/blob/master/README.md#models

https://github.com/PreferredAI/cornac/blob/master/README.md#models

CoORNAC: A COMPARATIVE FRAMEWORK FOR MULTIMODAL RECOMMENDER SYSTEMS

Multimodality Support. A cornerstone of Cornac’s design is to facilitate working
with auxiliary data. To this end, the cornac.data module provides three main modality
classes. TextModality implements the necessary routines to process raw texts and out-
put different representations (e.g., sequences, bag-of-words) depending on specific needs.
ImageModality supports image data (e.g., product images). GraphModality concerns data
encoding pairwise relations between users/items. These classes encompass various auxiliary
data types, e.g., social network, item images, descriptions, and reviews.

As illustrated by the thin arrows in Figure 1, Cornac enables some transformations/uti-
lization across modalities, i.e., from Text, Image to Graph. For example, one can instantiate
GraphModality using textual information; under the hood, a nearest-neighbor graph for
items that encode their textual similarities will be constructed. Moreover, when the model
of interest relies on a vector-based representation of auxiliary information, cross-utilizations
of models designed for one modality (e.g., images) to work with a different modality (e.g.,
texts) are supported. Cornac makes this use case convenient by implementing a generic
class, namely FeatureModality, generalizing the modality classes.

Scalability. To ease stochastic optimization, Cornac provides a number of iterators
allowing one to perform mini-batch sampling over users, items, (user, item)-pairs, or even
(user, item, negative item)-triplets for ranking-based models. Cornac also harnesses the
Python ecosystem, e.g., NumPy and Scipy, for efficient random number generation and fast
computations over arrays and sparse matrices, or Cython for reaching comparable perfor-
mance to compiled languages, and seamlessly wrapping existing C/C++ implementations.

Reproducibility. Cornac supports reproducible research by offering open-access to
existing algorithms and built-in data sets. For comparison at parity, it provides full control
over random number generation, allowing one to specify random seed values at different
levels — when splitting data sets into training/testing sets, initializing model parameters, or
performing mini-batch sampling for stochastic optimization.

3. Comparative Review of Recommendation Softwares

To assess the values and competitive advantages offered by Cornac, we conduct a compara-
tive review of existing platforms for recommender models. Notably, Cornac is a systematic
and deliberate effort to facilitate the integration of auxiliary data of various modalities.
Table 1 reports some key features of several existing platforms to emphasize the com-
monalities and differences between them. First, we note that some of the most established
open-access software for recommender systems have been written in a language other than
Python. MyMediaLite, written in C#, includes implementations of existing algorithms and

Feedback Type Evaluation Multimodal Multimodality
Frameworks Language . . Metrics Algorithms Support
e Explicit | Implicit Rating | Ranking | Text C%raph Image | Text Grp;lp))h Image
MyMediaLite (Gantner et al.; 2011) C# v v v v
Recommenderlab (Hahsler, 2015) R v v v
LibRec (Guo et al., 2015) Java v v v v v v
LightFM (Kula, 2015) v v v v v
TensorRec (James, 2017) v v v v v
Surprise (Hug, 2017) v v v
Im;licit (Ben, 2016) Python v v
Spotlight (Kula, 2017) v v v v
OpenRec (Yang et al., 2018) v v v v v v
Cornac [this paper| v v v v v v v v v v

Table 1: Qualitative comparison of recommender system frameworks

SALAH, TRUONG AND LAUW

Model | Library | AUC CIT)‘G“G %)PU Model | Library | R@100 01Tvll§ﬂe %)PU Model | Library | RMSE Cg‘l‘;‘eésp)U
LibRec — - — LibRec 0.343 10.3 — LibRec 0.888 0.5 —
BPR OpenRec | 0.641 115.4 24.8 WMF | OpenRec 0.351 71.6 42.6 PMF | OpenRec 0.954 | 23.4 25.0
Cornac 0.697 9.0 — Cornac 0.364 18.9 16.5 Cornac 0.838 0.8 —
LibRec — — — LibRec - - — LibRec 0.820 1.0 —
VBPR | OpenRec | 0.806 | 4805.0 2225.4 CDL OpenRec 0.415|1727.7 1193.6 SoRec | OpenRec — - -
Cornac 0.791 | 4080.2 1762.0 Cornac 0.405| 257.1 238.6 Cornac 0.818 0.9 —

Table 2: Comparison of model implementations in terms of various metrics on relevant data sets. Higher
AUC on Tradesy (left), higher recall on Citeulike (middle), and lower RMSE on FilmTrust (right)
are better. Less time implies more efficient learning.

basic routines to measure recommendation performance. In turn, LibRec is a Java library
implementing a rich collection of algorithms, several metrics, and data splitting schemes.
Recommenderlab is an R package for developing and testing recommender algorithms.

With the rise of Python for data science applications, there is a timely need for Python-
based frameworks for recommender systems. Aside from Cornac, such frameworks include
LightFM inspired by factorization machine to model interactions between user and item
features, TensorRec enabling non-linear interactions (e.g., using deep neural nets), Surprise
focusing on explicit feedback (rating prediction) such as matrix factorization techniques.
Analogously, Implicit pays attention to algorithms for implicit feedback (e.g., clicks). Spot-
light (built on PyTorch) and OpenRec (built on TensorFlow) provide a collection of building
blocks for loss functions and representations for fast prototyping of recommender models.

As evident from the right half of Table 1, a pivotal differentiator of Cornac is its multi-
modal support. This is expressed in two ways. For one, it features a number of multimodal
algorithms covering all the three modalities of concern: text, graph, and wvisual. For an-
other, it offers native support for this family of models. Some frameworks (e.g., LibRec),
though not designed for multimodality specifically, include several social and text-based
recommender models. Nevertheless, they leave the burden of handling auxiliary data to
model-level implementations. As a limitation, their data processing pipelines are not as
standardized as in Cornac. This standardization is crucial to Cornac’s flexibility in en-
abling fast development/integration of new multimodal recommender systems, cross-modal
utilization of these models, as well as objective comparisons across models and modalities.

Quantitative Comparisons. Table 2 reports the performance of several models, in-
cluding Bayesian Personalised Ranking (BPR) and its visual extension VBPR, Weighted
Matrix Factorization for implicit feedback (WMF) and its textual extension CDL, Proba-
bilistic Matrix Factorization (PMF) and its social network extension SoRec. We compare
the Cornac implementations with those from other libraries LibRec and OpenRec. For each
model, we retain the hyperparameters used in its corresponding research paper, while se-
lecting the learning rate and number of the iterations based on held-out validation set due
to the difference in terms of optimization procedures. Search spaces for the latter parame-
ters are respectively {le™3,5¢73,...,1e7 '} and {50, 100,...,500}. In addition to accuracy
measures, we also report the training time on both CPU and GPU environments (Intel Xeon
E5-2650 v4 and Nvidia Tesla P100). Missing results (—) are due to non-availability of im-
plementation at the point of writing, except for BPR in LibRec where the AUC evaluation
did not scale (out-of-memory) to the Tradesy data set. Overall, Cornac implementations
offer competitive performance while requiring less training time in most cases. Cornac also
has better coverage and support in terms of different types of auxiliary data.

CoORNAC: A COMPARATIVE FRAMEWORK FOR MULTIMODAL RECOMMENDER SYSTEMS

Acknowledgments

This research is supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its NRF Fellowship Programme (Award No. NRF-NRFF2016-07).

References

Frederickson Ben. Collaborative filtering for implicit datasets. https://github.com/
benfred/implicit, 2016.

Allison JB Chaney, David M Blei, and Tina Eliassi-Rad. A probabilistic model for using
social networks in personalized item recommendation. In RecSys, pages 43-50, 2015.

Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. My-
MediaLite: A free recommender system library. In ACM RecSys, 2011.

Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. Librec: A java library for recom-
mender systems. In UMAP Workshops, volume 4, 2015.

Michael Hahsler. recommenderlab: A framework for developing and testing recommendation
algorithms. Technical report, 2015.

Ruining He and Julian McAuley. Vbpr: Visual bayesian personalized ranking from implicit
feedback. In AAAI pages 144-150, 2016.

Nicolas Hug. Surprise, a Python library for recommender systems. http://surpriselib.
com, 2017.

Kirk James. A tensorflow recommendation algorithm and framework in python. https:
//github.com/jfkirk/tensorrec, 2017.

Maciej Kula. Metadata embeddings for user and item cold-start recommendations. In Toine
Bogers and Marijn Koolen, editors, ACM RecSys Workshop., pages 14-21, 2015.

Maciej Kula. Spotlight. https://github.com/maciejkula/spotlight, 2017.

Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In NIPS,
pages 1257-1264, 2008.

Aghiles Salah and Hady W. Lauw. A bayesian latent variable model of user preferences
with item context. In IJCAI pages 2667-2674, 2018.

Chong Wang and David M Blei. Collaborative topic modeling for recommending scientific
articles. In KDD, pages 448-456, 2011.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender
systems. In Proceedings of the 21th ACM SIGKDD, pages 12351244, 2015.

Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and Deborah
Estrin. Openrec: A modular framework for extensible and adaptable recommendation
algorithms. In ACM WSDM, pages 664672, 2018.

https://github.com/benfred/implicit
https://github.com/benfred/implicit
http://surpriselib.com
http://surpriselib.com
https://github.com/jfkirk/tensorrec
https://github.com/jfkirk/tensorrec
https://github.com/maciejkula/spotlight

	Introduction
	Framework and Key Features
	Comparative Review of Recommendation Softwares

