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Abstract

Fairness of classification and regression has received much attention recently and various,
partially non-compatible, criteria have been proposed. The fairness criteria can be enforced
for a given classifier or, alternatively, the data can be adapted to ensure that every classifier
trained on the data will adhere to desired fairness criteria. We present a practical data
adaption method based on quantile preservation in causal structural equation models. The
data adaptation is based on a presumed counterfactual model for the data. While the coun-
terfactual model itself cannot be verified experimentally, we show that certain population
notions of fairness are still guaranteed even if the counterfactual model is misspecified. The
nature of the fulfilled observational non-causal fairness notion (such as demographic parity,
separation or sufficiency) depends on the structure of the underlying causal model and the
choice of resolving variables. We describe an implementation of the proposed data adap-
tation procedure based on Random Forests (Breiman, 2001) and demonstrate its practical
use on simulated and real-world data.

Keywords: Supervised learning, Fairness in machine learning, Causality, Graphical mod-
els, Counterfactual fairness

1. Introduction

Care needs to be taken when applying machine learning techniques in socially sensitive
domains, because algorithms are sometimes capable of learning societal biases we might
not want them to learn. For example, women tend to be disadvantaged in credit score
ratings, partially due to the fact that women are currently perceived to have lower income
on average (Blau and Kahn, 2003). A credit scoring rating fair with respect to gender
would be desirable. However, the precise notion of fairness one would like to achieve is
often debatable. Various different notions exist and these notions can often be incompatible
(Corbett-Davies and Goel, 2018).

Current approaches for building fair predictors broadly fall into three categories. Pre-
processing methods focus on transforming the data in order to remove any unwanted bias
(Zemel et al., 2013; Calmon et al., 2017). In-processing methods attempt to build in fairness
constraints into the training step (Fish et al., 2016; Zafar et al., 2017; Donini et al., 2018).
Post-processing methods focus on transforming an already constructed predictor (Hardt
et al., 2016). Our work falls into the pre-processing category (although it could also be
viewed as a post-processing step applied after learning the causal graph of the data).
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In particular, our work

1. Provides a practical implementation of fair data adaption based on Random Forests
and an underlying causal model which is assumed to be known. This allows to incor-
porate resolving variables (Kilbertus et al., 2017). The software is provided as an R
package fairadapt.

2. Presumes a specific counterfactual model. We can show that a counterfactual notion
of fairness is satisfied if the model is correct (unfortunately not verifiable), but that
certain population fairness notions are satisfied in any case, even if the counterfactual
model is wrong.

3. Combines the two existing notions of counterfactual fairness and resolving variables
into a single fairness criterion that can depend on the causal graph. This might
facilitate discussions about a suitable fairness notion, provided people can agree on
the structure of the underlying causal graph (and a discussion about the appropriate
structure might also be fruitful in itself).

We also demonstrate the empirical value of our approach.

1.1 Setup

Let random variable Y, taking values in ), be the outcome of interest that one would
like to predict in the future in a fair way. We mostly assume binary classification so
that ) = {0,1}, but we believe extending this approach to other settings is also possible,
but requires some further work. The binary outcome Y represents perhaps recidivism
whilst on parole or repayment of a loan. In this work, we are not considering the issues of
selective labels (for instance not being able to observe who recidivates among people not
given parole) or wrong labels (that is we assume there are no undiscovered cases of recidivism
among people given parole). Let A be the protected attribute such as race or gender and
X = (Xy,...,X,) € RP be predictor variables for the outcome of interest. We assume we
have access to n i.i.d. samples (4;, X;,Y;), ¢ = 1,...,n coming from a distribution Fs xy.
For the majority of the exposition we assume that A has two levels {0, 1}. Most ingredients
for extending our work to non-binary A are given in the discussion, but recent work suggests
this generalization might not be straightforward (Kearns et al., 2017). The key goal is to
provide a data-projection or data-adaptation

T:RPxY—RP x ).

The projection should be such that if we train a classifier with the adapted data
T((X:,Y3), i=1,...,n

instead of the original data {(X;,Y;), i = 1,...,n}, we want to be able to automatically

guarantee appropriate fairness criteria. At the same time, we want the change induced by
the data adaptation to be minimal in an appropriate sense.
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1.2 Causal framework

We mainly use a standard non-parametric structural equation model (NPSEM) for Z =
(A, X,Y) € RP*2 as in Pearl (2000) and let each variable Zj be defined as

Zi = gk(Zpay, Uk), (1)

where U € RPT? is a latent variable that determines the realization of the variable Z
and pa,, is the set of parents of the variable Z;. We assume that the components of U
are independent, that is we assume lack of confounding, also known as the Markovian
assumption in (Pearl, 2009). By writing Z(U = u) we refer to a specific instance of Z
obtained by plugging in the latent quantiles U = wu into the system of equations in (1). We
also use the potential outcomes notation and write Z(A = a) for the potential outcome under
a do(A = a) intervention'. Further, we denote by fi(2k | 2pa,) the density corresponding
to Zi. If the random variables Zj are continuous and a density exists, without limitation
of generality, we can assume that

(C1) for each fixed value of Z, = z the function

9k (2, u)
is strictly increasing in wu,
(C2) each Uy follows a uniform UJ0, 1] distribution.

These assumptions are discussed further in Appendix J. Random variables Uj can be in-
terpreted as the quantile of the k-th variable, conditional on the value of its parents Z,, .
There exists a one-to-one mapping between the value of z and u. The important case of
discrete random variables, where the deterministic relationship between z and wu breaks
down, is addressed in Section 5. Throughout the paper, we use the standard counterfactual
assumptions found in (Pearl, 2009, Chapter 7.3).

1.3 Fair Twins

Consider the following example. Variable A is the protected attribute, in this case race
(A = 0 corresponding to females, A = 1 to males). Let E be educational achievement
(measured for example by grades achieved in school) and T' the result of an admissions test
for further education. Let Y be the outcome of interest (final score) upon which admission
to further education is decided. Edges in the graph indicate how variables affect each other.

The main problem is that the attribute A, gender, has a causal effect on variables E, T
and Y. We want to find a data projection that makes the data ‘look’ the same for males

1. Z(A = a,U = u) denotes a specific realization of the potential outcome variable under a do(A = a)
intervention and latent variables U = u.
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and females, in the sense that the conditional distribution of (E,T,Y") is identical for both
levels of A. We should emphasize that this goal is just one of many possible fairness criteria
one would like to achieve and we discuss different options later. We start from an

observational distribution: (A, E,T,Y) ~ F(obs),

For each individual with observed values (a,e,t,y) from the observational distribution
F(os) e want to transform the data and compute his/her ‘fair twin’ as

(a(fp), e(Ip) 4(Ip), y(fp)) =FP(a,e,t,y).

If we sample (A, E,T,Y) ~ F(°) then the transformed data FP(A, E,T,Y) will follow the
so-called fair-projection distribution FUP) The simple idea for the fair-projection is that
we want all individuals to have the same protected attribute after the fair twin projection
(in the example the baseline is AP = 0; all females) and the distribution of the projected
(EUP) T(P) y(fP)) should match the conditional distribution of

(E,T,Y)| A=0

in the observational distribution.

Subject to this, we also want to minimize the distortion in the data coming from the
projection and preserve the relative achievements as much as possible. More explicitly, for
a male person with education value e, we give it the transformed value e(fP) chosen such
that

PO E>e|A=1)=P)(E>IP | A=0).

The main idea is that the relative educational achievement within the subgroup would stay
the same if we changed someone’s gender. If you are male and you have a higher educational
achievement than 60% of all males in the dataset, we assume you would be better than 60%
of females had you been female. After computing everyone’s education (in the ‘female’
world), we continue by computing the transformed test score values T(P). The approach is
again similar, but this time we condition on educational achievement. That is, a male with
values (E,T) = (e, t) is assigned a test score t(/P) such that

P)NT >t | E=e) = P)(T > tUP) | B =Py,

where the value e(/?) was obtained in the previous step. This way of counterfactual cor-
rection is known as recursive substitution (Pearl, 2009, Chapter 7). In the last step, the
outcome variable Y needs to be adjusted. The adaptation is based on the values of gender,
education and the test score. The transformed value y/?) of Y = y would satisfy

PO (Y >y |E=eT=tA=1)=P) (Y >yUp) | B =cUP) T =1UP) A =0). (2)

The distribution of the transformed data is identical to the distribution under the do(A =
0) intervention in the context of the structural model. We have induced a coupling between
the distributions F(°*%) and FP), since we keep the quantiles U identical for the fair-twin
version of an individual. If one were not interested in the coupling, one could use the
formal framework of single-world intervention graphs (SWIGs) introduced in Richardson
and Robins (2013).
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However, it could be argued, in the example above, that the test score T' should not be
adapted. In that case, we would call T" a resolving variable. If so, the transformed test score
value would simply equal the observed one, that is t(P) = ¢. Furthermore, the transformed
value of the label y would also be different as a result. The adapted value y/?) would in
this case satisfy

PO Y >y |E=e,T=tA=1)=P) (Y >¢yUP) | E=¢eUP) T =t A=0), (3)

instead of Equation (2). The difference is in the conditioning on 7" = ¢ on the RHS of the
equation, as we now keep the test score fixed.

The fair-twin projection can be easily achieved in the context of a causal structural
model by a do-intervention. We set A to its baseline value and reuse the same latent
quantiles as for the original data. Then, under the random value of A we obtain a draw
from the empirical distribution F(©**) whereas by setting do(A = 0) and keeping the same
quantiles we obtain the fair twin of the same individual.

Definition 1 (Quantile preservation assumption (QPA)) The conditional quantiles
Uy defined by the SCM in Equation (1) remain unchanged under the fair-twin projection
for all variables that are neither the protected attribute nor a resolver. Let (z, zpa, ) be the

realization of (Zi, Zpa, ). Then the realization (z,gfp), zéj;f)) satisfies

]P(obs)(Zk < Z](cfp) | Zpa, = Z}()éi)) - ]p(obs)(Zk < 21 | Zpa, = Zpay)-
After rewriting the SCM in Equation (1) so that conditions (C1)-(C2) hold, the assump-
tion in Definition 1 simply states that the realizations of latent quantiles U = u remain
unchanged under the fair-twin projection?.

The defined counterfactual cross-world model (an assumption about the joint distribu-
tion of random variables under different interventions) is not empirically verifiable. We
will try to make clear where we use single-world and where we use cross-world assump-
tions throughout the text. The QPA will, for example, be appealing in situations where
the latent noise variables measure individual effort that is not explainable by the observed
variables and there is reason to believe that the relative strength of the individual effort or
achievement is something immutable for this individual. By equalizing the distributions for
subgroups defined by the protected attribute A, all subgroups are treated in the same way,
in the sense that any decision we make based on the transformed data will have the same
distribution across all groups. The situation is somewhat more involved in the presence of
resolving variables, though.

Another assumption we make is that the protected attribute A is a root node of the
causal graph G. A consequence of this is that the do(A = a) intervention is equivalent to
conditioning on A = a. This idea, which is easily shown using the 2nd rule of do-calculus
(Pearl, 2009), shows up frequently in our discussion. This assumption poses a limitation,
since non-root sensitive attributes (like socio-economic status or education) are not in the

2. An alternative view would be that the fair-twin projection is obtained under a do-intervention of the
form do(A =0,U = u((’bs))7 where A is set to its baseline value and the realization of the quantiles U is
kept fixed (note that the latent quantiles can be determined from the observed Z(°*®) = (b)),
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scope of this paper. We believe that extending our approach to non-root A is a technical
challenge which we leave open for future work.

We find the lack of hidden confounding assumption to be the biggest limitation. It
is not hard to construct examples in which, with presence of confounding, the adaptation
procedure we propose does not work, that is it fails to eliminate discrimination. However,
if A is a root node, the effect of the do(A = a) intervention is still identifiable under quite
general assumptions (Tian and Pearl, 2002; Shpitser and Pearl, 2008). Therefore, there is
hope for solving the problem in general, but this is beyond the scope of this manuscript.

After the adaptation procedure, the projected data can be used to construct a classi-
fier and we will discuss which fairness conditions are guaranteed with such an approach.
Generally, the projection we are describing is carried out using Quantile Regression Forests
(Meinshausen, 2006). A full implementation of this method for a general situation is avail-
able in the fairadapt package on CRAN. The aim of this paper is to formalize all of the
ideas above mathematically.

Note that the fair projection can be used for fair-twin inspection - for every individual,
we can compute his/hers “fair-twin” version, corresponding to the same person but with
the baseline value of the protected attribute A. Fair-twin inspection can be used to help
justify fair decisions on an individual level.

1.4 Structure of the paper

In Section 2 causal notions of resolving variables and counterfactual fairness are discussed.
In Section 3 the adaptation procedure is introduced and we formalize its aim. Notions of
resolved fairness are discussed, and in particular how they depend (or do not depend) on
the assumptions used. The Section also describes the population level adaptation procedure
(under no estimation error). The quantile preservation assumption that is used is also briefly
discussed. We further illustrate how our desired notion of resolved fairness amounts to a
single linear constraint in the simplest linear additive setting. In Section 4 the relation
of our work to previously proposed methods and criteria is analyzed. Section 5 goes in
depth about discussing the practical aspects of our method. Most importantly, the problem
handling of discrete variables in the adaptation procedure is given much attention. After
applying the data projection, there are several reasonable options for the training step and
these are discussed. Two possible methodological extensions are discussed in the end of
the section. In Section 6 empirical performance of our method is demonstrated both on
simulated and real-world data (namely the COMPAS and Adult datasets).

2. Causal notions of fairness

We look at two counterfactual notions of fairness that play an important role in our method-
ology.

2.1 Counterfactual fairness

Counterfactual fairness was first introduced as a notion by Kusner et al. (2017).
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Definition 2 (Counterfactual fairness, Kusner et al. (2017)) A predictor? is coun-
terfactually fair if

~

Y(A=a)|A=a,X =2 4 Y(A=d)|A=a,X =z Va,d,x, 4)
where f/(a = a) is the potential outcome off/ when setting A to value a.

Here and throughout we think of A = 0 as the baseline value of the protected attribute.
The idea behind this notion is that if we intervene to change someone’s race or gender, this
should not affect the prediction they obtain.

A weaker form of counterfactual fairness would just require that the distribution of Y under
an intervention on the protected attribute remains unchanged, that is

Definition 3 (Population fairness) A predictor Y is said to satisfy population fairness

if

?(A:a) LY Va.

The distributional equivalence from Definition 3 does not rest on cross-world assumptions
and is equal to the observational criterion of demographic parity, in the case when A is a
root node in the causal graph (shown later in Proposition 9). In contrast, a much stronger
notion can be defined as follows

Definition 4 (Strong counterfactual fairness) A predictor Y is said to satisfy strong
counterfactual fairness if

?(A:a,U:u):f/(U:u) Va,u .

Definition 4 requires the counterfactual prediction to be identical when setting the protected
attribute to any value. Note that this is an individual level fairness notion.

2.2 Resolving variables

Kilbertus et al. (2017) discuss that in some situations the protected attribute A can affect
variables in a non-discriminatory way. For instance, in the Berkeley admissions dataset
(Bickel et al., 1975) we observe that females often apply for departments with lower ad-
mission rates and consequently have a lower admission probability. However, we perhaps
would not wish to account for this difference in the adaptation procedure if we were to argue
that department choice is a choice everybody is free to make. This motivated the following
definition:

Definition 5 (Resolving variables, Kilbertus et al. (2017)) Let G be the causal graph
of the data generating mechanism. Let the descendants of variable A be denoted by de(A).
A wvariable R is called resolving if

(i) R € de(A)

(ii) the causal effect of A on R is considered to be non-discriminatory
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The idea is that the value of a resolving variable, or a resolver, R should not change under
our adaptation procedure. More generally, we can consider a set of resolving variables R.
The desired counterfactual fairness criteria with respect to this definition can now be stated
as

Population resolved: Y (4 = a, R = R®»)) 4 Y(A=d,R=R)) Va,d (5)
Strong resolved: ?(A =a,R=r0 U= u("bs)) = ?(A =d,R=r) U= u(Obs)) Va,a', u®)
(6)

where 7(°%%) is the value naturally attained by R under quantiles U = u(°?%).

In the presence of resolving variables, we additionally keep the resolving variables to
the value they have attained naturally, by writing do(R = R(°**)) (or do(R = r(°%)) if we
refer to a specific individual with a realized value r("bs)). The strong notion requires that
the counterfactual predictions remain unchanged under a do-intervention on the protected
attribute. Note that by using resolving variables we allow for some additional flexibility in
the exact fairness criterion. This notion, however, is not flexible enough to treat path-specific
effects. More about this is discussed in Section 5.5.

It is not immediately clear which variables should be considered as resolving. It can even
happen that the same variable can be resolving or non-resolving in different applications.
For instance, when recruiting students for an athletics training programme, we perhaps do
not wish to give males an advantage based on physical ability. In this case, physical strength
is not a resolving variable. However, if we are hiring workers for a physical job, we might
want to consider physical strength as a resolving variable.

3. Adaptation

The main goal of this paper is to combine the two causal notions given in Sections 2.1 and
2.2 to describe a preprocessing procedure which gives a fair representation of the data. After
this, any method can be used to construct a fair classifier Y. A more detailed discussion of
the training step is given in Section 5.4.

Adaptation aim. We want to find a projection FP(Z) = FP(A, X,Y") such that using
the projected data automatically guarantees certain fairness notions. In absence of resolv-
ing variables, we discussed already that for an individual z drawn from the observational
distribution F(°%) we define z(/?) = FP(z) as the value obtained under the causal struc-
tural model if setting A to its baseline value 0 and keeping the values of the latent quantiles
U = u(°) constant.

Suppose now that the features are decomposed into non-resolvers N and resolvers R,
X = (N, R). Let FPs(S) be the transformed values of a subset S. With slight abuse of
notation, we drop the subscript S in the notation and write only FP(.S). The data projection
works as follows. For the protected attribute, we have that FP(a) = 0, since we set it to
the baseline value A = 0. The resolving variables R are unaffected by the projection, that
is FP(r) = r. We also evaluate the quantiles u and keep them constant. The non-resolvers
N and target Y are then obtained by evaluating the SCM while setting (A, R,U) equal to
(a,r,u). That means we: (i) keep the latent quantile variables U identical®; (ii) set the

3. A different view on this would be that the latent quantiles U are in fact resolving variables.
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protected attribute A to its baseline value; (iii) keep the value of the resolvers equal to their
naturally attained values R under no intervention. Note that under this construction, the
fair projection satisfies

FP(FP(z)) = FP(z),

that is the projection is idempotent. The idempotent property guarantees the strong coun-
terfactual notion of fairness (6). If Y = goFP(a,x) for any real-valued function g, we have
that Y (a,z) = Y (FP(a,z)) for all (a,z). We call this a counterfactual property because
it compares an individual z with its counterfactual fair-projected value FP(z). Even if
the counterfactual model from Definition 1 is misspecified, we still achieve the population
fairness notion. We can hence summarize the goal as in the following table.

population strong
firess counterfactual
fairness
f 1
counterfactua v v
model true
counterfactual
model false v X

An interesting special case is when there are no resolvers, R = (). In this case FP(X) 1 A
and Y = goFP(A, X) guarantees that demographic parity (also known as separation) holds,
YILA.

The above formulation requires that the quantiles U can be identified from the observed
data. This is possible in the case of continuous random variables that permit a density. We
get back to the need for randomization in the case of discrete random variables.

3.1 Population level adaptation

The input of our procedure is the causal graph G, a choice of resolving variables R and data
(Ag, Xk, Yi)k=1.n = (A, X, Y). Even though we are describing the procedure on population
level (meaning we are ignoring finite sample estimation errors) we still work with data
samples to emphasize our counterfactual construction. We also assume that the densities
fr(zx | pa(zy)) of the SCM in Equation (1) are known. The output of our procedure is
the projected data FP(X,Y’). In Section 5.3 we explain how the procedure is carried out
non-parametrically on sample level. We note that Algorithms 1 and 2 (given later) produce
the same result for any valid topological ordering, due to the Markov property of directed
acyclic graphs (DAGs). We show that the procedure in Algorithm 1 satisfies the desired
fairness criteria in the following theorem:

Theorem 6 (Population and strong resolved fairness) Let F'P(-) be the projection from
Algorithm 1. Suppose f is any classtifier built based on the transformed data FP(X,Y). Then
we have that the classifier Y = f o FP(-) satisfies population resolved fairness, that is

Y(A=a,R=R)) £ Y(A=d R=R") Va,d.

©
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Algorithm 1: POPULATION FAIRNESS ADAPTATION
Input: causal graph G, density of the data generating mechanism

f(z1,...,xx) =[] f(xi | pa(x;)), choice of resolving variables R, data
(A Xk, Yi)k=1:n = (A, X, Y)
Output: adapted data FP(X,Y)
FP(Aj) < 0 for each k
FP(Ry) < Ry for each k
for V € de(A) \ R in topological order do
using the density f(v | pa(v)) obtain the inverse quantile function gy of V', such
that V = gy (UVY), pa(V))
obtain the latent quantile U, ,EV) of V. for each k
6 obtain the transformed value FP(V}) using the transformed values of its parents

(obtained in previous steps), by setting FP(V}) « gv(U,gV)7 FP(pa(Vy)))

return FP(X,Y)

B W N =

11

~

Further, under the quantile preservation assumption (QPA) Y satisfies strong resolved fair-
ness,

Y(A=a,R=r“)U=u") = Y(A=d R=r)U=u) Vaa, ul"

The main idea of the proof is to show that the FP(-) projection is equivalent to the do(A =
0, R = R(°)) intervention and to use the counterfactual construction to show that the
stronger fairness notion is satisfied as well. The full proof is given in Appendix A. Note
that our procedure also outputs the adapted labels FP(Y") that are to be used in the training
step. The reader might wonder if original labels Y could also be used. This is discussed in
Appendix B.

Obtaining the (inverse) quantile function and latent quantiles. In line 4 of Algo-
rithm 1, we obtain the inverse quantile function gy of V. More precisely, we first obtain
the quantile function Qv (V;pa(V)) using quantile regression forests (Meinshausen, 2006),
after which gy is obtained by inverting Qv (V;pa(V)). The latent quantiles in line 5 are
also obtained using quantile regression forests. Even though tree ensemble methods might
perform worse in presence of heteroscedastic noise, we focus on this option because of its
computational tractability. Alternative options for the quantile step are linear methods
(Koenker, 2013) and neural network approaches (Cannon, 2018). All of the mentioned
methods are available within the fairadapt package. An empirical comparison of these
methods can be found in Appendix D.

Discussion of the assumptions. The quantile preservation assumption (QPA) from
Definition 1 is used for constructing a joint cross-world distribution. The assumption is
equivalent to the equal noise assumption used in the NPSEM-IE framework of Pearl (2009)
in cases where the noise is additive in the structural equations. This assumption has been
much debated in the causal community in its different forms. See, for instance, (Dawid,

10
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2000) or (Pearl, 2000). The assumption is indeed not testable, not even in principle. We
offer some thoughts on why QPA might be sensible in the fairness context:

(a) If we consider two continuous distributions with cumulative functions Fx, and Fx, and
p > 1, the Wasserstein distance W, (Fx,, Fi,) is minimized* by the optimal transport
map Fgll o F,, as shown by Cuesta-Albertos et al. (1993). This mapping precisely
represents quantile matching. We can see how QPA arises naturally as minimizing the
distance between counterfactual worlds.

(b) The quantile preservation assumption ensures that we retain the original ordering of the
values. Namely, if for a variable V' two individuals have equal values for all an(V'), then
QPA guarantees their counterfactual values V(A = 0) will retain the original ordering.

(¢) In mathematical modeling, we often use noise to describe variations which are not
explained by the data. This does not necessarily mean these are completely random,
but could be a result of certain unobserved variables, which possibly cannot even be
measured in practice. For instance, in the hypothetical intervention “What would have
happened had this female been born a male?”, there are a number of genetic, parenting
and societal factors that would have remained the same.

For these reasons, it seems that if we consider individuals with high quantiles U (very
successful individuals), it would be hard to argue how it could be fair that these quantiles
do not stay the same in the counterfactual world, as this would change the relative ranking
within a group (where the group is defined by levels of the protected attribute A).

Linear additive case. The following theorem is intended to provide intuition about what
the resolved fairness condition ensures in the simplest linear additive case.

Theorem 7 (Strong resolved fairness for linear additive SEMs) Assume that we have
an additive, linear structural equation model for variables (A, X1, ..., Xk, Y) and that A €
{0,1} is a root node in the causal graph

X0y BV +ni(U),
Vepa,

Y Y BV ny(Uy).
Vepa(Y)

where ni,ny are any monotonic functions. The noise terms n;(U;) are assumed to be
independent and U are the latent quantiles. Let R be the set of the resolving variables.
If Y = apr A+ Ele @i XD s a linear predictor for Y then the strong resolved fairness
condition (6) implies that

k
Zaix Z H Bm +ay =0. (7)
i=1

paths A—X; me path
disjoint from R

4. We note that this minimization is achieved uniquely in the case where p > 1, since the cost function is
strictly convex.

11
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Proof In the proof we suppress the notation U = u to indicate that the quantiles are
unchanged under the do(A = a, R = R(°*)) intervention. We can expand

XD(A=1,R=R")) - XO(4=0R=R®) =

S B2(V(A=1,R=R) - V(A=0,R=R))
Vepa,;

By recursively expanding the sum on the RHS we obtain that

XD(A=1,R=R"))-XO(A=0,R=R"))=}" II 8 ®

paths A—X; k& path
disjoint from R

Finally, we know that
}/}(A =1,R= R(Obs)) _ }/}(A =0,R= R(obs)) _

k
QA +Za,~ [X(i)(A =1,R= R(Obs)) —X(i)(A =0,R= R(obs)):| _
=1

aﬁizk;aix( 3 Hﬁm)

paths A—X; me path
disjoint from R

which should be equal to 0 by condition (6). Therefore, the constraint (7) holds. |

Notice that resolved fairness in the linear additive case amounts to a single linear constraint
on the coeflicients of Y.
Lastly, we summarize the main advantages of our method:

(i) it does not throw away information contained in de(A) which is potentially useful for
prediction, as proposed in some previous works (Kusner et al., 2017),

(ii) it takes the causal perspective into account and therefore ensures that fairness criteria
are not satisfied spuriously,

(iii) it allows us to relax demographic parity (achieved when R = ()) by introducing re-
solving variables, since demographic parity could be a prohibitively strong notion in
certain applications. In Section 6 we discuss how enlarging the set of resolving vari-
ables improves the calibration of the constructed predictor.

4. Relation to existing work

In this section we discuss the relation of fair adaptation to previous work on fairness.

4.1 Observational notions of fairness

For sake of brevity, we do not mention all the definitions of fairness proposed so far. We
only review the most important observational notions. By observational notions we refer
to all notions that only focus on the observational distribution of the data, without taking
the generating causal mechanism into account.

12
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(i) One of the first observational notions, called demographic parity, goes all the way back

(i)

to Darlington (1971).
Definition 8 (Demographic parity) A predictor Y satisfies demographic parity if
Y ILA. (9)

In the special context of binary predicted labels, Y e {0,1}, demographic parity is
equivalent to P(Y =1| A=0) =P(Y =1| A =1). In words, this definition requires
that our prediction is independent of the protected attribute. We now show that our
population fairness criterion (5) is equivalent to demographic parity in the case when

A is a root node in the causal graph:

Proposition 9 Suppose that the protected attribute A is a root node in the causal
graph G. If Y is a binary predictor for the outcome Y, then we have that

4

YIA < Yd=a) £ Y Va (10)

In words, if A is a root node, then population fairness is equivalent to demographic
parity.

Proof By applying the Action/Observation exchange rule (2nd rule of do-calculus),
found in (Pearl, 2009) we have

=D
b
Il
&
IS
=
b
Il
S

4

Therefore, if lA/(A =a) Y Va, then for any a,d’,

4

VIiA=d YA=d) £ YAd=a) £ Y |A=a

implying demographic parity. The reverse implication works analogously. |

Another population definition of fairness is equality of odds, first proposed by Hardt
et al. (2016).

Definition 10 (Equality of odds) A predictor Y satisfies equality of odds if

Y1AL|Y.

For binary response Y and prediction Y (the original context in which it was proposed),
equality of odds is equivalent to ]P(l/} =1|Y=y, A=0)= ]P(lAf =1|Y=y, A=1)
for y € {0,1}. Only taking the equality above for y = 1 gives equality of opportunity.
In words, this definition requires our prediction to be independent of the protected
attribute, given the true outcome.

13
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Table 1: Examples that describe the intrinsic relation of observational criteria to counter-
factual fairness.

Example Causal graph Observational criterion achieved

(a) V1A

X not resolving

©

Y resolving

(b) @ @ YIUA|Y
@ O,

O,

YUA|Y

X resolving

(iii) The last observational notion we wish to mention is calibration, originally discussed
by Chouldechova (2017) and Pleiss et al. (2017). Here, it is assumed that Y is an
estimator of the true conditional probability of Y = 1. Calibration is defined as
follows.

Definition 11 (Calibration) A prediction Y satisfies calibration if

YIA|Y.

For binary outcomes calibration is equivalent to P(Y =1 | Y=y A= 0)=PY =
1Y =y, A=1) for y € [0,1]. Calibration states that, given our prediction, the
protected attribute should not provide us with additional information about the true
outcome.

4.2 Adaptation and observational criteria

We discuss the relation between the observational criteria and our adaptation method.
Consider the examples given in Table 1, in which we consider a classifier Y to be a function
of the adapted data FP(X). For understanding the examples, it suffices to think of a non-
resolving variable as adapted to contain no effect of A. In the table we discuss the possibility
of Y being a resolving variable, which might seem confusing. By Y being resolving we simply
mean that the true outcome is considered fair as it is. In the given examples we consider
X to be a single feature, although the conclusions remain the same for multiple features.
We first provide a formal statement about Table 1.

Theorem 12 (Fairness criteria) Assume that for ezamples (a) and (b) from Table 1 we
are building a classifier Y based on appropriately adapted data FP(X,Y) which satisfies the
condition (5) for the choice of resolvers R given in the table. In example (c) we are building
a predictor of the positive outcome probability S(x) = P(Y =1 | X = x). For the given
examples, in the population level case (infinite samples), we have the following:

14
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(a) for Y built based on FP(X,Y) we have Y 1LA

(b) for Y built based on FP(X,Y) = (X,Y) we have Y 1LA | Y

(c) for Y = E[Y | X = z] built based on FP(X,Y) = (X,Y) we have that Y 1L A | Y.

Proof Consider the following:

(a)

(b)

The values of X and Y are trAansformed to FP(X,Y’) which are independent of A, by
condition (5). Any predictor Y which is a function of FP(X) must also be independent
of A.

Consider the following graph where the predictor Y is included in the causal graph
OGRS

where the parent set pa( ) = {X} indicates that only X is used for the predictor (in
particular, A is not fed into the predictor). In this case, we have that Y d-separates
A and Y and the conclusion follows.

In this example we can view the causal representation to be expanded as follows:
@O—O——0

where S(z) = P(Y = 1| X = z) is the true probability of positive outcome. For the
infinite sample case, we have that Y = S, which implies that Y d- separates A and Y.

We can now clarify the core ideas of observational notions discussed in this section. Note
that in the toy examples from Table 1 we have that:

(a)

(b)

()

Demographic parity is achieved when X or Y are considered to be non-resolving. We
can see that in some sense demographic parity is a criterion that requires us to treat
all subpopulations as exactly the same, regardless of what is observed in the data.

Equality of odds is achieved when Y is considered to be resolving. In this case the
adaptation procedure does not change the values of X,Y. The idea that the true
outcomes Y are fair is in the heart of this notion.

Calibration can be® achieved when X is considered to be resolving. In this case our
adaptation procedure does not change the values of X, Y. Calibration is a criterion
that ensures we do not discriminate any subpopulation beyond the differences ob-
served in the data. Calibration should often come as a result of a good unconstrained
predictor optimized for accuracy.

5. It might be valuable to note that calibration does not necessarily have to arise in this case. The criterion
is still dependent on how we build our classifier.
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For examples (b) and (c), the fair projection F'P is the identity. However, the examples
illustrate that starting from the resolved fairness criterion (5) and the causal graph, all
three observational notions can arise in these simple cases.

4.3 Mediation and path-specific methods

Fairness methods based on mediation analysis (Zhang and Bareinboim, 2018a,b) build on
some ideas that are related to our work. However, the two most similar methods to ours are
the path specific counterfactual methods (Nabi and Shpitser, 2018; Chiappa, 2019), which
we now discuss.

Chiappa (2019) aims to eliminate the mean effect of the protected attribute along the
causal pathways which are considered as unfair. We write

V(A =a,X(AZ )

for the potential outcome variable obtained by setting the protected attribute to a along
the unfair pathways and setting it to o’ along the fair ones (for a precise clarification we
refer the reader to the original paper). The path-specific effect is then defined as

PSE=E[Y(A=a,X(A2 d)]-E[Y(A=d)

and should be removed, as it is considered unfair. This is achieved by introducing a vari-
ational autoencoder for each variable whose counterfactual value we wish to compute. We
refer to this approach as PSCF. The two main advantages of fairadapt compared to PSCF
are computational speed and stability, together with absence of tuning parameters. The
main advantage of PSCF, however, is the ability to remove the dependence of the encoder’s
latent projection and the protected attribute A, which can come as a result of hidden
confounding. However, this flexibility comes at the expense of an additional term in the
autoencoder objective which has an associated tuning parameter. There is unfortunately
no canonical way for choosing this parameter and the authors emphasize that the addi-
tional term can cause instability and loss of information. Additionally, the PSCF method
is slightly more flexible, since it can remove path-specific effects. We provide an implemen-
tation of the PSCF method and make an empirical comparison to fairadapt in Appendix
I

Further, Nabi and Shpitser (2018) start with the joint distribution p(X,Y") and define
discrimination as ¢(p(X,Y)), where ¢ is some functional of the distribution. After that,
their goal is to find another distribution p*(X,Y") which is close to the original p(X,Y’) and
satisfies |p(p*(X,Y))| < e. One possible choice of ¢ they work with is the natural direct
effect (NDE) which is defined as

NDE =E[Y(A=a,R=R(d)) - Y(A=d)].

The NDE can be interpreted as the total causal effect of the protected attribute on the
outcome that does not go through resolving variables. If we use the transformed distribution
FP(X,Y) as the p*(X,Y), we can relate their approach to our method as follows. If the
condition (5) holds, that is if

VY(A=a,R=R") £ Y(A=d R=R") Va,d,
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then it follows that
E[Y(A=a,R=R(d))-Y(A=d)] =0.

The short proof of this fact is omitted. We conclude that condition (5), which our method
achieves, is sufficient for the NDE to vanish for the transformed distribution. However, it
is not necessary, since the NDE is defined using the mean of the difference whereas the fair
adaptation places a requirement on the whole distribution.

5. Practical aspects and extensions

After explaining the main ideas and fairness criteria our method achieves, we turn to dis-
cussing the practical aspects and extensions of our method.

5.1 Categorical (and discrete) variables

An important practical aspect of our method is dealing with variables that take values on
a discrete domain. There is an immediate problem we encounter in this case. If we think
about the mapping u — V(U = u), we can see that different values of u can correspond to
the same value of V(U = u) = v, that is the mapping is no longer injective (as opposed to
the continuous case). In short, the conditional distribution U | V' = v is deterministic in
the continuous case, and non-deterministic in the discrete case.

Ordered categorical and discrete variables. As a starting point, we describe our
method for a binary variable V' € {0,1}. Consider the probabilities py := P(V = 0 |
pa(V), A=0) and p{, :=P(V =0] pa(V), A=1). Assume without losing generality that
V = 0. Then we compute the transformed value FP(V) as:

e if p{, < pp then FP(V) =0
e if p{, > pp then

0 with probability 22
FP(V) = Po

1 with probability plop;,po
0

We need to generalize this approach to non-binary, discrete variables V. Suppose now that
V takes values in {1,...,m}. Similarly as above, define p = (p1, ..., pm) and p’ = (p), ..., p,)
where:

These probabilities can, for example, be estimated using probability random forests (Malley
et al., 2012). Motivated by the quantile matching assumption, which arises as a solution
that induces minimal change in the counterfactual world, we want to find a joint density
for p, p’ that minimizes some transport cost. This can be done by solving the following
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optimization problem:

min Tr(I1C)
eRM*m
m
s.t. I, =p; Vie{l,...m
Z ij = Di { } (13)
7=1
m
ZHU :p;- Vj € {1, ,m}
i=1
where the cost matrix C' has entries Cj; = |i — j|P. The exact value of p does not really

matter, since any p > 1 will give the same (unique) solution. When V' = i, we sample FP(V')
from the distribution given by Hl, the i*" row of the optimal transport matrix. In particular
Hz needs to be normalized, and we let Fﬁi be the corresponding cumulative distribution
function. We then have

FP(V) = Flil(U), where U ~ U[0, 1] (14)

Notice that FP(V) is not necessarily deterministic. It can happen that ﬁz has multiple
non-zero entries, meaning that the value V = ¢ is coupled with multiple counterfactual
outcomes. The reason for this was already mentioned, namely the fact that the conditional
distribution U | V' = v is non-deterministic in the discrete case.

Unordered categorical variables. Let V' be categorical and unordered. We first ob-
tain an ordering for it. Suppose V takes values Ci,...,C;. We then find a bijection
o:{Cy,...,C;} = {1,...,1} such that

0(C) <o(C;)) = PY=1|V=C; A=0)<PY =1|V=Cj, A=0) (15)

Then simply define V' = o(V') and use it as a replacement for V. Note that the condition
(15) implies that the marginal probability P(Y = 1| V' = v, A = 0) is increasing in v.
Implicitly, we assume that the same holds for A = 1. That is, we assume that P(Y =1 |
V' =wv, A =1) is also increasing in v. Then we can again apply the approach used for
discrete variables.

If there is no meaningful ordering, or we have reason to believe that imposing an ordering
does not make sense, a slightly different approach is needed. We define p, p’ the same way
as above, with p;, = P(V = C; | pa(V), A = 0) and p}, := P(V = C; | pa(V),4A = 1).
We again solve the optimization problem (13), but with a different cost matrix C, namely

Cij = 1(i # ]) When V = (j, the distribution of FP(V') is given by the (appropriately
normalized) i*" column of .

5.2 Inherent limitation of the discrete case

In Section 3.1 we gave an optimal transport interpretation of the quantile preservation
assumption (QPA). In particular, we state that for two random variables X,Y with distri-
bution functions Fy, Fy the Wasserstein distance W,(X,Y") is minimized by matching the
quantiles, that is using the optimal transport map given by Fy 1o Fyx. This map is the
optimal transport map for every p > 1 and also a unique optimal transport map for p > 1,
since the cost function then becomes strictly convex.
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The quantile matching is the greedy solution. Note that this approach also extends to
the discrete case - a greedy solution® is optimal whenever the cost function is strictly convex
(Santambrogio, 2015, chap. 2). However, there is a major difference between the continuous
and the discrete case.

In the continuous case, using the quantile preservation assumption, we are able to com-
pute the counterfactual values exactly. Richness of the ambient space allows for the optimal
transport map to be deterministic, whereas in the discrete setting this is never the case.
The solution of the problem (13) gives us a non-deterministic distribution over the coun-
terfactual outcomes. The reason for this is that it is impossible to distinguish individuals
which have the same value of a variable V' - in some sense, the information coming from
the quantiles is compressed.

A possible solution which first comes to mind is to perhaps take the expectation over
this randomness. But even if we consider the simplest example, we run into a problem.
Consider using a single binary predictor X € {0, 1} distributed as P(X =1| A =0) =0.5
and P(X = 1| A= 1) = 04. Suppose that the outcome Y simply equals X. After
solving the optimal transport problem, all individuals with A = 1, X = 0 would have the
counterfactual distribution

1
P(XUP =1[A=1X=0)=1-PXP =0[A=1X=0)=

and all other individuals would retain the values they have. But when taking the expectation
over this randomness, we have that

EWWHA:LX:N:%

meaning we get no additional information to distinguish between individuals with A =
1,X = 0. To treat everyone equally, we would have to either assign everyone X = 1
or X = 0, neither of which options is desirable. Therefore, we use randomization, which
in this case chooses a “lucky” 1/6 of the individuals with A = 1, X = 0 and sets their
counterfactual values X(/?) to 1. For some regression applications integrating outcomes
over different counterfactual worlds is meaningful. In that case, taking expectation over the
assignment randomness might be sensible. For classification, where labels are either 0 or 1,
this might fail, as shown above.

Further, consider two variables X; ~ N(0,1) and Xy = 1(X; > 0). If we only have
the variable Xy available, then it is impossible to distinguish between individuals that
have Xo = 1. However, if we use X; instead, then no two individuals will be the same
- we will always be able to distinguish them. When going from X; to X2, we see that
quantiles are compressed and they can only be determined up to an interval. This causes
the counterfactual value to be non-deterministic. *

Finally, we clarify the difference in approach for different types of variables taking values
on discrete domains. There are two cases we consider:

6. A reader familiar with optimal transport will recognize that here we are talking about solutions satisfying
the c-monotonicity property.

7. The result of this is that if we have discrete variables, the strong notion (6) is no longer fulfilled, but
the slightly weaker notion holds instead, namely that Y (A = a,R = R“*)) | A=a,X =z < Y(A =
/,R=R)) | A=qa,X =z for all a,z .
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(a) Discrete and ordered categorical variables:

We solve the optimization problem (13) with the cost matrix Cj; = |i — j|P corre-
sponding to /p-loss. The cost matrix reflects the fact that, due to an inherent ordering
of the values, we wish to penalize larger changes more. For any p > 1 the greedy
solution is the unique optimal solution.

(b) Unordered categorical variables:

We also solve the optimization problem (13), but with the cost matrix Cy; = 1(i #
j). This cost matrix corresponds to £p-loss. Since in this case we do not have an inherent
ordering structure of the values, we penalize all changes equally. The optimal solution
in this case is not unique.

5.3 Sample-level adaptation

Let G be the causal graph and let R be a choice of resolving variables. Further, let f(V |
pa(V)) be the density corresponding to variable V. Let g(pa(V), U")) represent the
inverse quantile function of the distribution of V', that is V = g(pa(V), U")). Sample level
fair adaptation is given in Algorithm 2. Notice that our procedure treats the response Y
separately. The only reason for this is that Y is unavailable on the test set. The quantile
regression step can be done either using random forests (Meinshausen, 2006) or by using
an optimal transport approach (Carlier et al., 2016).

5.4 About the training step

We mentioned in Section 3.1 the possibility of using the original labels Y together with
the transformed data FP(X) in the training step. Appendix B discusses this possibility
in depth and introduces an additional criterion, called the parity gap condition, given in
Equation (17) (this criterion is, however, optional). Here we describe two training options
we recommend for the training step.

(A) train the classifier on the original data (Ag, Xj, Yy)@2in
(B) train with the adapted data and the adapted labels FP(Ag, Xp, Yk)tkr:allnn

For both methods, all of the features of X are used and also the attribute A (leaving out
features at training time could cause a violation of condition (17)). Note that, however,
for method (B) the attribute FP(Ax) = 0 for everyone, so this feature is not useful. The
adapted test data FP(Ay, Xj, Y;)i . should always be used to produce the predictions
for the test set. A proof showing that methods (A) and (B) satisfy the parity gap condition
(17) is given in Appendix B.

An empirical comparison of the two methods on the synthetic examples introduced in
Section 6 is given in Appendix G. We note that the two methods perform similarly over a
range of different examples and class imbalance settings. Therefore, the better of the two
should be chosen via cross-validation as the one with better fairness-accuracy trade-off. For
experimental results in Section 6 we by default use training method (B).
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Algorithm 2: FAIRNESS ADAPTATION

Input: Data (Ag, Xk, Yx)k=1.n, causal graph G, choice of resolving variables R.
Output: Adapted data FP(Agx, X, Yi)k=11n

8 for V € de(A) \ R in topological order do

9
10

11

12
13
14

15
16

17
18

19
20
21
22
23

=t

if V' continuous then

estimate the quantiles (ﬁév))kzlzn of V' in the distribution f(V | pa(V))
using quantile regression on the data (Vi, pa(Vk))k=1.n
using (Vi, pa(Vi), ﬁ,ﬁv))kzlzn obtain an estimator g(pa(V), UV)) of
g(pa(V), UW)
Ise
case 1. V discrete and V #Y do
estimate the probability distributions p(pa(V%))k=1., as in Equations
(11)-(12)
obtain the transformed probability distributions p(FP(pa(Vk)))k=1.n
Vk solve the optimal transport problem (13) between p(pa(V})) and

| B(FP(pa(Vi))) with £,-loss to get (IF)—1.,
case 2. V=Y do

L perform case 1. restricted to the training set

or all k with A, =1 and V}, known do

if V' continuous then

| FP(Vi) ¢ §FP(pa(Vi)), U;")

else

L FP(V}) < sample from the distribution H{“/k as in Equation (14)

24 return FP(Ag, Xk, Yi)k=1n
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5.5 Method extensions

There are two methodological extensions of our approach that we briefly discuss, leaving
out some of the detail.

Is there really a baseline? So far we have considered the subpopulation A = 0 to be
the baseline. This choice is somewhat arbitrary. We briefly comment on the implications
of choosing a baseline.

Firstly, the choice of the baseline can influence the number of positive outcomes predicted
by Y. Imagine that we are trying to predict recidivism on parole, with race being the
protected attribute. If we adapt the data using the white subpopulation as baseline, then
our predictor would predict fewer recidivism outcomes (compared to using the non-white
population as baseline), since the currently measured base rates of recidivism are unequal
between the groups in favor of the white population.

Secondly, if we have discrete variables, then our procedure will include some random-
ization. There is no randomization for the baseline population, but there is for the rest. If
the baseline is the advantaged group, then randomization can serve as positive discrimina-
tion and might be seen as acceptable. However, we might want to consider an approach in
which both subpopulations are randomized equally. We briefly discuss how we might split
the burden of randomization between the subpopulations.

A non-baseline approach. We previously discussed adapting the data to the A = 0
baseline using Algorithm 2, which gives us the pre-processed version of the data, which we
here label X(/P):A=0_ Of course, the same procedure can be applied to obtain the version
corresponding to the A = 1 baseline, which we label X(P)4=1" Then we can use the
following approach:

1. Obtain (X /P)»A=0y (/p),A=0) and (X (/P):A=1y(/P):A=1) ysing Algorithm 2.
2. Concatenate the two versions to obtain
X* = (XxUP)A=0_ x(Jp).A=1y,
3. Build predictors 74=0(z*), #4=1(2*) that estimate the probabilities P(Y (/P):A=0 — 1 |

X* =g%), P(YUPhA=1 = 1 | X* = 2*) respectively.

*

4. For any test observation with X7 = 2z}, return the predicted probability of

%Azo(x:—est) + 7?A:l('x:—est)

%(x:est) = 2 .

We offer an interpretation of the approach above. First we combine the information from
the two worlds in which A = 0 and A = 1. We then use the joint information to predict
probabilities of positive outcomes in both of these worlds. In the final step, we combine the
probabilities from the two worlds by simply taking the mean probability. In this way, we
obtain probability estimates for positive outcomes, which can then be used to construct a
classifier by thresholding.
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Edge specific extension. We quickly mention another possible extension of our method.
So far we discussed resolving variables, on which the effect of A is deemed fair. Sometimes
deciding if a variable is resolving might not be straightforward. For example, we might see
the causal effect of several causal parents as being fair, but of several as being unfair. In
some sense, our method so far was focused on the nodes in the causal graph G. An extension
of this, which focuses more on specific edges in G is possible. The edge-specific case could
be seen as a special case of path-specific discrimination removal, discussed in (Chiappa,
2019). In this context, already known algorithms for identifying path-specific effects could
also be useful (Shpitser, 2013). A short discussion of the edge-specific case, motivated by
an example, is given in Appendix E.

6. Experimental results

An implementation of our method, which uses tree ensembles for the quantile learning
step, is available as the fairadapt package on CRAN. Our experimental results consist
of two parts. In the first part, we look at synthetic examples which demonstrate how
our methodology offers flexibility compared to possibly prohibitively strong demographic
parity. In the second part, we look at the method performance on two real world datasets,
comparing it to several different baseline methods.

6.1 Measures of fairness and performance

Before displaying the experimental results, we discuss all the measures that are used for
assessment of our classifiers. For measuring performance, we report on accuracy in the
simple classification tasks. It is, however, sometimes desirable to work with probability
predictions, in which case we report the area under the receiver operator characteristic
(AUC).

Fairness measures. There are two fairness measures we use. To assess demographic
parity, we use the parity gap, defined as IP(? =1A=0)— IP(S> =1| A=1). When
dealing with probability predictions, we simply report the parity gap at the 0.5 threshold.

In order to assess calibration, we need a measure for it. We introduce the k-level
inter-group calibration measure. This score is in spirit very similar to expected calibration
error (Naeini et al., 2015), but is not strictly a calibration measure. Suppose we have the
predicted positive probabilities IP(}/} = 1| X = ) and the true labels Y. We start by
splitting the individuals with A = 0 into k& groups, based on the predicted probability of
P(Y = 1| X = z). In particular, if P(Y =1 | X = 1) € [£, 1), then the individual
is assigned to group G;. In each group we compute the mean of the true outcomes Y for
that group, E[Y" | G;], which is simply the proportion of positive outcomes in the group G;.
Assume that the vector ¢4=C contains these proportions for each group. We compute ¢*=1
for the A = 1 population in the same way. The k-level inter-group calibration measure is

defined as
leA=0 — A=)

Note that for a well-calibrated score, this measure should be small.
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Synthetic A Synthetic B
A < Bernoulli(0.5)

A <+ Bernoulli(0.5) X A n 1 n for i € {1,2)
i+ ——+=-+¢ fori ,

A 1
Xi<——z+§+€i fOT’iE{l,...,5} 14 8
5 X3 + ZXQ + €3
Y Bernoulli(expit(z Xi)) 3
i=1 Y Bernoulli(expit(z X))

i=1

Table 2: Structural equation models for the two synthetic examples A and B. All the noise
variables ¢; are independent and expit(z) = 1_‘;%

(B)

Figure 1: A graphical model representation of the SEMs used for Synthetic examples A and
B.

6.2 From parity to calibration

Earlier in the text we claimed that our method can offer suitable relaxations of demographic
parity. Namely, Theorem 12 shows that in a simple case demographic parity is achieved
when none of the variables are resolving, and that calibration can be achieved if all of
the variables are resolving. Depending on the choice of the resolving variables, we can
interpolate between these two notions of fairness. Roughly speaking, the larger the resolving
set is, the larger the effect of A is in the data. In that case, the predictor Y is closer to
the unconstrained maximum accuracy y max-acc predictor (which we assume is calibrated),
meaning that we are closer to satisfying calibration. The smaller the resolving set is, the
smaller the effect of A is in the data, meaning that we are closer to demographic parity.
We demonstrate this by looking at two synthetic examples, with their structural equation
models given in Table 2. All the noise terms ¢; are independent N(0,1) variables and
expit(z) = l—i% In words, Y follows a logistic regression model based on the X;’s. The
causal graphs of the two synthetic examples are given in Figure 1. In both examples, we
analyze the AUC-parity gap and parity gap-calibration score trade-offs via the resolving
variables. Two baseline methods were implemented, to compare our results. These are
reweighing (Kamiran and Calders, 2012) and fair reductions (Agarwal et al., 2018). Both
of these methods aim to achieve demographic parity. Therefore, we should compare them
to our method with no resolving variables. More details on comparison methods are given
shortly in Section 6.3. The fair reductions approach performs poorly on both of these task
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Figure 2:  AUC-parity and parity- Figure 3:  AUC-parity and parity-

calibration score trade-off for example A.
Vertical bars represent standard devia-
tions obtained from 10 repeats.

calibration score trade-off for example B.
Vertical bars represent standard devia-
tions obtained from 10 repeats.

(for a range of parameter values e of the method), so it is not included in the final analysis
of the results (full plots including the fair reductions approach are given in Appendix H).

In example A we enlarge the set of resolving variables stepwise, including X; at step .
For example B, we try out all possible subsets of resolving variables. We run our method
ten times, with 5000 training and test samples generated from the given SCMs. A logistic
regression classifier is used after applying fairadapt. On each repeat we measure the AUC,
parity gap and the calibration score. The results are shown in Figures 2 and 3. Vertical
error bars in the figures represent the standard deviations of respective measures obtained
from the ten repeats.

Example A. In Figure 2 the AUC and the parity gap are increasing, whereas the cal-
ibration score is becoming smaller, as we enlarge the resolving set. The case R = {0}
corresponds to demographic parity. It also shows that the population level notion in Equa-
tion (5) is satisfied, even if one does not believe in using the quantile preservation assumption
(QPA). The case R = {X1, ..., X5} corresponds to calibration (since the underlying classifier
is consistent). By varying the choice of resolving variables, our method can offer a range
of fairness-accuracy trade-offs between the two notions. Finally, we note that the baseline
method of reweighing obtains better accuracy than fairadapt with R = {(}}, but fails to
eliminate discrimination fully.

Example B. Note that setting Xo to be resolving implicitly sets X3 to be resolving,
since X9 is the only parent of X3. Therefore, if X9 does not change in the adaptation
procedure, neither will Xs. Setting R = {X1, X2} has almost the same performance as
setting R = {X1, X2, X3}. Similarly, resolving sets { X2, X3} and {Xs} show very similar
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results, as expected. This example helps us to illustrate that the adapted value of a variable
V' also depends on whether some of its parents are resolving. In particular, if all variables
in pa(V) are resolving, this will implicitly set V' to be resolving as well.

6.3 Real data experiments

We next look at real data experiments. We summarize all the baseline methods against
which we benchmark our results. In the real data comparisons, we only consider the case
of demographic parity (meaning no resolving variables) as other comparisons methods are
designed to achieve precisely this notion.

Baseline methods. The comparison methods that we look at are:

e standard implementation of random forests (Wright and Ziegler, 2015), serving as a
fairness-ignorant baseline

o fairness through unawareness - RF applied to the data after excluding the protected
attribute

e the reweighing preprocessing method (Kamiran and Calders, 2012), which learns spe-
cific weights for the combinations of the class label and the protected attribute which
are then used for building a classifier (in this case we use the logistic regression clas-
sifier and the implementation from the IBM toolkit (Bellamy et al., 2018))

e the reductions approach (Agarwal et al., 2018) casts the fairness problem in a linear
programming (LP) form in order to find a sample-weighted classifier which satis-
fies the desired fairness constraint (we again use logistic regression for our classifier
that allows sample-weighting and vary the fairness constraint violation parameter
e € {0.1,0.01,0.001})

UCI Adult. The Adult dataset from the UCI machine learning repository (Lichman
et al., 2013) contains information on 48842 individuals and the outcome to be predicted
is whether an individual has a yearly income of more than 50 thousand dollars. The data
comprises of the following features®:

e gender, labeled A, which we consider to be the protected attribute

e demographic information C - including age, race and nationality

marital status M and years of education L

work related information R - job occupation, hours of work per week and work class

e a binary outcome Y representing whether a person’s income exceeds 50000 dollars a
year

The UCI Adult dataset has been previously analyzed as an application of different fairness
procedures, for instance in (Nabi and Shpitser, 2018) and (Chiappa, 2019). The proposed
causal graph for the dataset is presented in Figure 4(a). While we do agree that this causal

8. The original dataset contains a few more features, but we focus on those that have been used in previous
fairness applications.
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(a) (b)

Figure 4: (a) the causal graph (black edges) claimed to correspond to the UCI Adult
dataset. The additional red, dashed edge corresponds to a sampling bias in the data; (b)
causal graph of the COMPAS dataset.
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Figure 5: Plots of influence of sex on race (A) and age (B) in the UCI Adult dataset.

graph makes sense intuitively, care needs to be taken because the sampling bias can induce
dependencies that have no explanation in reality. This is precisely the case with the UCI
Adult dataset, which we can observe by inspecting the relation between two features in C
(age and race) and the protected attribute A. From the plots in Figure 5 we see that in
the dataset gender is not independent of age and race, as the causal graph would imply. To
solve the problem (in order to satisfy our assumption that A is a root node), we subsample
the dataset in order to mitigate the sampling bias. Details about how we pre-processed the
dataset are given in Appendix A.

COMPAS dataset. The second real dataset we analyze is the COMPAS dataset (Larson
et al., 2016) which contains the following features:

e outcome Y is recidivism whilst on parole within a two year period

e protected attribute A in this case is race (White vs. Non-White)
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e demographic information C
e juvenile offense counts J, count of prior offenses P and degree of the charge D

The causal graph that we propose is given in Figure 4(b). The reader here might disagree
that this example falls into the class of Markovian models (that is, there could be some
latent confounding).

We select several individuals in the dataset which are Non-White, male and of age 30.
We look at their values of juvenile counts and prior counts (Ji, Ja, Js3, P) before and after
applying fairadapt

> compas[id, offense.count]
juv_fel_count juv_other_count priors_count

241 0 0 4
646 0 0 8
807 0 0 17
1425 2 0 20
1470 1 2 15

> adapted_compas[id, offense.count]
juv_fel_count juv_other_count priors_count

241 0 0 3
646 0 0 5
807 0 0 13
1425 0 0 11
1470 0 2 9

We can notice that fair adaptation reduces the number of offenses for these individuals in
the adapted version, since in the dataset the baseline population (white) has fewer offenses
on average. Notice how the transformed values allow fair-twin inspection. For instance,
individual 1470 had values (1,2,15) for (Jy,Js, P). His fair-twin (in a fair world) would
have attained values (0, 2,9) instead. Hypothetical statements like “if you were white, your
juvenile offense counts would have been Ji,Js, Js3, in turn resulting in prior count of P”
now become possible. This part of our method, however, rests on the assumption from
Definition 1.

Results. For both UCI Adult and COMPAS, we split the dataset into 75% training and
25% testing randomly 20 times. Each time, we apply all the baseline methods and our
fairadapt method, measuring accuracy and the parity gap each classifier achieves. Figures
6 and 7 summarize the obtained results. For the Adult dataset, no method is better than
fairadapt on both criteria. For the COMPAS dataset, the reweighing method performs
slightly better and fairadapt is also contained within the confidence interval fair reductions
(e = 0.1). We note our method has very satisfying performance. We can also see that our
method is able to exploit the information in the descendants of the attribute A (as opposed
to some previous approaches (Kusner et al., 2017)), which is very important in practice.
On top of this, we mention that our method has the ability to relax the fairness criterion
via resolving variables, has a causal interpretation and allows fair-twin inspection (under
the QPA). Even if the QPA is not true (which is untestable), the results still show that the
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condition (5) is achieved. Achieving this condition does not rely on the QPA, as we discuss
in Section 3.

Finally, we take a look at how fairadapt affects the distribution of the positive outcome
probabilities. We plot the densities of P(Y =1 | A = a) for both levels of A for the two
cases of not applying and applying fairadapt. The results are shown in Figures 8 and
9. Note that the densities are much closer when applying fairadapt, indicating a clear
reduction in discrimination.

7. Conclusion

In the final section we revisit some of the ideas discussed previously and conclude our
argument.

About observational criteria. Causal and observational notions of fairness have an
inherent link. If the protected attribute is a root node, the intervention on A is equivalent
to conditioning on A. Causality is necessary, not just to provide new criteria, but to give
meaning to the existing observational criteria used.

About fair data adaptation. We conclude that fairadapt shows competitive perfor-
mance compared to other baseline methods in the case of demographic parity. It also gives
a causal and interpretable perspective on the data projection that is carried out. Further,
it offers various relaxations of demographic parity, all the way to the case of calibration,
which is achieved when all the variables are considered to be resolving. The output of fair
data adaptation also allows us to see which values individuals were assigned in the pro-
jection procedure. This helps justify and interpret why a certain individual was given his
prediction.

About the current datasets and methods. We emphasize that it would be beneficial
for the advancement of fairness if there were established real world datasets with agreed-
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upon causal graphs. This would allow different authors to compare their methods in a
meaningful way, demonstrating the performance and measuring different fairness criteria.
Having a benchmark for algorithm performance and fairness criteria achieved could also help
us understand how and why different methods yield different results on the same datasets.
We feel like this is not yet the case and that much more could be done on this front.

About future work. We have discussed a method which achieves certain fairness criteria
and shown how it can be used in practice. However, this is only the very first step of fairness.
A big component of the whole problem are the temporal implications of fairness criteria
on the well-being of different groups. Some interesting work on this topic we are currently
aware of includes (Liu et al., 2018; Kannan et al., 2019; Milli et al., 2019; Hu and Chen,
2018). Although many of the fairness criteria make intuitive sense and perhaps have some
philosophical backing, we have no reason to convince ourselves that they are necessarily
doing the right thing in terms of their long-term effect. This is a serious question that
requires much further consideration.
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Appendix A. Proof of Theorem 6

Proof We prove that the projection FP(:) as defined in Algorithm 1 satisfies
FP(X(U=w)) = (NA=0,R=rU=u),r)

for all u,r such that R(U = u) = r. Under the do(A = 0, R = R(°*)) intervention and the
realization of quantiles U = u the assignment equations of A and R change to

A<+ 0,
R+ r.

For any V non-descendant of A or R we have that
FP(V(U=u)=V(A=0,R=1r,U =u).

We proceed inductively. Let U(Y) be the component of U = u corresponding to variable V.
In the first step, for any V' € ch(A) \ R we can show that

V(A=0,R=r,U=u)=gpa(V)(A=0,R=rU =u),U")) (16)
= g(FP(pa(V)),U™))
=FP(V(U = u))

where the first equality holds by definition of the intervention and the quantile preservation
assumption (QPA, Definition 1), the second because we showed FP(V(U = u)) = V(A =
0,R =r,U = u) for all V€ nde(A) (here nde(A) are non-descendants of A), the third
from the definition of Algorithm 1. Using the fact that Algorithm 1 goes through variables
V' in topological order, inductively we can show FP(V(U = u)) = V(A =0,R = r,U =
u) for any V in ch(ch(A))\R and so on (sometimes called recursive substitution). This
shows that strong resolved fairness holds under the QPA. If the QPA is not used, then
the equality (16) does not hold anymore. However, even without QPA it still holds that
V(A = 0,R = R)) £ gpa(V)(A = 0,R = R@)), UV)) where UV) is a uniform
UJ0, 1] random variable independent of the quantiles U. This is enough to guarantee that
FP(N(A =a,R = R@))) £ FP(N(A = d, R = R())) Ya,d’. From this it follows that
for any classifier Y = f o FP we have that

4

?(A =a,R= R(obs)) ?(A —d.R= R(Ob8)>.

Appendix B. Resolver-induced parity gap

The reader might wonder if adapting the labels Y is necessary in our procedure. Sometimes
it is possible to obtain better performance when using the original Y labels. To discuss
this, we look at a simple example of a linear, additive regression model. The details of it
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Graphical model representation Generating mechanism (SCM)
A < Bernoulli(0.5)
a Xe%l(A:O)—i—eX
e @ R(—%l(AzO)+eR
e Y %X +€

Table 3: A full description of the example discussed in the text.

are given in Table 3. Suppose we had data coming from this model. Assume that we want
the variable R to be resolving. Then our data adaptation would change the value of X so
that

P?@):X—%uA:m

in order to remove the effect of A from X. Suppose that, after this, we want to use the
transformed values FP(X) and R to construct a predictor for Y. Since Y can in fact be
written as

1 1 1

Y=-X+e==-FP(X)+-1(A=0)+e¢

2 2 4
we can notice that Y and R are correlated. Furthermore, Y )L R | FP(X). Therefore, if we
linearly regress Y onto {FP(X), R} and obtain Y, then R will have a non-zero cocfficient.
In fact, by using R, Y will predict higher values for the A = 0 population. However, variable
R has no causal effect on Y, yet we are discriminating based on it.

We believe it is good practice to bound the maximum parity gap that can occur in the
presence of the resolving variables. The difference between subpopulations should be at
most the difference resulting from the causal effect of the resolvers (although the reader
might not think this is strictly necessary). We introduce the following definition.

Definition 13 (Resolver-induced parity gap) We say that a predictor Y for'Y satis-
fies the resolver-induced parity gap with respect to a set of resolving variables R if

E[Y(A=0)-Y(A=1)] <E[Y(A=0)-Y(A=0,R=R(A=1))]. (17)

The quantity on the LHS of criterion (17) is the parity gap of our predictor Y. The quantity
on the RHS measures the causal effect of the resolvers R on the outcome Y. We believe this
should be the maximum parity gap we allow for Y. The example above shows that using
the original labels Y can cause a violation of criterion (17).

We next show that by using the transformed labels FP(Y') we will not violate criterion
(17). If we allow Y to be a probability predictor (instead of a {0,1} classifier), then

f*(FP(X)) = E[FP(Y) | FP(X)]
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satisfies

E[f*(FP(X))] = E[E[FP(Y) | FP(X)]]
E[FP(Y)]
E

[Y(A=0,R=R")],

where the last equality comes from Theorem 6. Therefore, Y = f* o F'T satisfies
E[Y(A=a)] =E[Y(A=0,R= R

from which it follows that this Y satisfies the condition (17).
Similar reasoning can be used for training method (A), that is if f* is such that

F(X)=E[Y | X]
then for Y = f* o FT we have that

E[?(A = O,R = R(ObS))] — E[f*(X(A _ O,R _ R(obs)))]
[E Y(A = O’R = R(Obs)) ‘ X(A — O,R _ R(obs))”

= [

=E[Y(A=0,R = R")]

from which it follows that this ¥ also satisfies the condition (17). Note that consistent
classifiers f will converge to the population optimal prediction f*. For small sample sizes,
the parity gap-condition is only fulfilled modulo sampling noise. The reader might wonder
why we work with probability predictions instead of {0, 1} predictions. This is discussed
in depth in Section 5. A brief discussion related to the above argument is also given in
Appendix C.

To summarize: if the reader believes that the amount of discrimination coming from
resolving variables R should be in line with the causal of effect of R on Y, then criterion
(17) should hold and the transformed labels FP(Y) should be used. However, if the reader
does not think the discrimination level must be explained by the causal effect, both the
adapted and the unadapted labels can be used and the criterion (5) will still hold.

Appendix C. Probability predictions satisfying resolver-induced parity
gap
Take the following simple example
A < Bernoulli(0.5)
X1« %1(14 =0)+ €

2 1

Y « Bernoulli(expit(X; + X2))

where €1, ez are both N(0,02) variables with 02 = 0.05. Variable A represents gender,
with A = 0 being the male population. Suppose that X5 is resolving and X; is not.
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Figure 10: Density of the probability of positive outcome P(FP(Y) = 1).

After adaptation (assuming no estimation error) we have that FP(X;) < ¢; and FP(Y) «+
Bernoulli(expit(FP(X7) + X2)). Plot of the density of the probability of a positive outcome
P(FP(Y) = 1| A= a) are shown in Figure 10. Note that an optimal probability predictor
Y =E[FP(Y) | FP(X)] would have

E[Y(A=0)-Y(A=1)] =E[FP(Y)|A=0] —-E[FP(Y) | A =1] ~ 0.164.

However, an optimal {0, 1} classifier Y trying to minimize (for example) the Lo-loss would
simply be constructed as Y = 1(17 > 1). Note that (referring to Figure 10) for this y (p)
we have that

EY(A=0)-Y(A=1)]=~1.

Due to examples like this, the criterion (17) was defined for probability and not class
predictions. A much more involved, general discussion of this problem is given in Section
d.

Appendix D. Empirical comparison of quantile regression methods

The fairadapt package allows for three different quantile regression methods: quantile
regression forests, linear quantile regression and monotone composite quantile regression
neural network. All three methods are applied to Synthetic B (given in Section 6) and
Synthetic C examples. We use 5000 training and testing samples and no resolving variables.
Each experiment is repeated 10 times. Synthetic C example is constructed to demonstrate
how a more complex, non-parametric case could be handled with fairadapt. The causal
graph is shown in Figure 11 and the SCM is given in Table 4. The performances of different
methods are given in Figures 12 and 13, respectively.

Example B shows that if the underlying generating mechanism of the data is linear,
the linear quantile regression approach will perform well. We recommend using it for cases
where linear approximation works well. This approach is also computationally efficient. The
neural network based approached will not perform much worse (in a linear setting), but is
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Synthetic C
A + Bernoulli(0.5)
Xi+1(A=0)+u; forie{l,2}
X3 X1 Xo+ X2+ 3

1
X4+ ZX§ +2X3 + ¢4
1 4
Y Bernoulh(explt(Q(; Xi—17)))
1=

Table 4: Structural equation model for the two synthetic C example. Noise variables
u1,uz are uniform U[0, 1] and e3, €4 are N(0,1). All noise variables are independent and

expit(x) = l—i%

Figure 11: A graphical model representation of the SCM for Synthetic C example.
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Figure 14: (a) example that motivates the edge extension of the idea of resolving variables;
(b) example where an edge specific extension might arise naturally.

much more computationally intensive. Example C shows that for a non-linear setting, the
linear method has trouble fully eliminating discrimination. The non-parametric methods
still perform well, though. Generally, we recommend using the forest based approach,
because of the non-parametric nature and computational speed. However, we note that for
smaller sample sizes, the neural network approach might in fact be the best option.

Appendix E. Edge specific extension

Consider a dataset consisting of the following features®:

e protected attribute A, in this case race

e information about amount of policing the person experiences, P (given explicitly or
perhaps implicitly through a ZIP code)

e information about prior convictions C'
e recidivism outcome Y when the person is released on parole

A possible causal graph for this dataset is given in Figure 14(a). One approach could be to
treat the variable C' as resolving. If, however, information about policing is available, we
might want to account for this. Suppose that the difference in prior convictions between the
black and white population was partly due to the fact that black people experience more
policing. We would, in this case, consider this effect unfair. Therefore, we need to find a
way to remove the A — P — C effect, but keep the direct A — C' effect (removal of path-
specific effects as this is discussed in Nabi and Shpitser (2018)). This example demonstrates
that sometimes we perhaps want to have partially resolving variables.

We argue that sometimes it is hard to choose if a variable is simply resolving or non-
resolving. Going back to the case of policing from Figure 14, it would be difficult to
determine whether the prior convictions variable C' is resolving or non-resolving. In some

9. This example, not surprisingly, is motivated by COMPAS.
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sense, both choices would be wrong. We therefore think the approach of choosing which
edges to remove allows for some additional flexibility with modeling.

Another way in which the edge extension might arise naturally is the following. Imagine
that the path A — C was actually going through some unmeasured variable W, as shown
in Figure 14(b). If we considered W as resolving, keeping the effect of A on C' captures
what we want to achieve with our adaptation.

For every variable V' we need to define its adaptation parent set, aps(V') C pa(V'), which
is the subset of parents of V' that mediate unwanted bias coming from A. For a resolving
variable R, aps(R) = (). All the effect of A to R going through pa(R) is considered to be
ok. For a non-resolving variable X we have that aps(X) = pa(X), that is all the effect of
A on X going through pa(X) is seen as unfair. In the example from Figure 14(a) we have
would have aps(C') = P. This would mean, as described above, that we wish to remove the
A — P — C effect (since policing is a form of bias), while at the same time keeping the
direct A — C effect (which might be seen as permissible).

The main difference from the original version is in line 6 of Algorithm 1, in which we
assign the transformed value as

FP (Vi) < gv (U, FP(pa(V4))). (18)

In the edge specific case, instead of using transformed values of all the parents pa(V') in the
assignment (18), we use the original values of parents in pa(V')\aps(V') and the transformed
values FP(aps(V)) of the parents in aps(V).

Appendix F. UCI Adult dataset

We give more details about how we preprocessed the UCI Adult dataset. The prelimi-
nary cleaning of the dataset is similar to that of Zhu (2016). In particular, the following
operations on the features are performed:

e variables “relationship”, “final weight”, “education” (categorical), “capital gain” and
“capital loss” were removed
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e levels of variable “work class” were merged, so that we obtain four different levels -
Government, Self-Employed, Private and Other/Unknown

e levels of the variable “marital status” were merged so that we obtain two levels -
Married and Not-Married

e levels of variable “native country” were merged so that we obtain two levels - US and
Non-US

Categorical variables that are descendants of gender A were given an ordering, so that the
probability of success P(Y = 1| F = f) is marginally increasing in levels of F'. This is
described more precisely in Section 5.1.

From Figure 5 we see that females in the dataset are much more likely to be in their early
twenties and are also more likely to be black than males. Since we do believe that additional
edges between A and C' are present only due to sampling, we propose a subsampling method
to resolve the problem and obtain a dataset for which the causal graph in Figure 4(a) is
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Synthetic A: AUC with varying class imbalance
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Figure 15: AUC and parity gap at the
0.5 threshold for example A and training
options (A) and (B) with varying class
imbalance. Confidence bounds represent
standard deviations of values obtained
from 10 repeats.

Synthetic B: AUC with varying class imbalance
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Figure 16: AUC and parity gap at the
0.5 threshold for example B and training
options (A) and (B) with varying class
imbalance. Confidence bounds represent
standard deviations of values obtained
from 10 repeats.

valid. In particular, we take only the white subpopulation. Since there are strictly more
males than females for every age value, we subsample the males randomly so that we achieve
exact matching in the age distributions between genders. In this way, we avoid the problem
of biased sampling. The dataset still consists of 26052 individuals, which is a sufficient
amount of data.

Appendix G. Empirical comparison of training options (A) and (B)

We show the empirical performance of training methods (A) and (B) (described in Section
5.4) on the two synthetic examples used in Section 6. We focus only on the case of no
resolving variables (R = )) and we vary the class imbalance (that is we vary the proportion
po of the A = 0 instances in the data, py € {0.1,0.2,...,0.9}). For each value of py we
generate 5000 training and 5000 testing samples and run both methods (A) and (B) (this
process is repeated 10 times). We measure the AUC and the parity gap at the 0.5 threshold.
The results are shown in Figures 15 and 16. The confidence bounds represent the standard
deviations of the values obtained from the 10 repeats. We note that both training methods
in this case (and a variety of other cases) exhibit fairly similar performance. Therefore, we
do not explicitly recommend using one or the other. For a specific problem, the better of
the two can be chosen via cross-validation.
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Synthetic A - discrimination removal with resolvers
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Appendix H. Complete performance plots for the synthetic examples

In Section 6, for the synthetic examples, the fair reductions comparison method was removed
to improve the readability of the plots. We provide the full plots in Figures 17 and 18.

Appendix I. Fairadapt and Path-Specific Counterfactual Fairness

We empirically compare fairadapt to path-specific counterfactual fairness (PSCF) of Chi-
appa (2019) on UCI Adult and COMPAS datasets. Dataset descriptions are given in Section
6.3 and the respective causal graphs are given in Figure 4. We provide a PyTorch imple-
mentation of the PSCF method, which can be found in our Github repository. We follow
the implementation description of the authors as closely as possible. The PSCF method
has an additional tuning parameter $ which determines the degree of independence between
the protected attribute A and the latent encoder embedding (for details we refer the reader
to the original paper). We note that in our comparison, the PSCF method gives similar
results over a range of parameters 8 (we note we are using a subsampled version of the UCI
Adult dataset) and for large values of 8 the behavior becomes unstable.

For the UCI Adult dataset, we set the work-related variables R to be resolving (in the
PSCF view, every A — Y path through R is fair and every path not through R is unfair).
The accuracy and parity gap of different methods are given in Figure 19. Additionally, we
include the normal Random Forest applied to the original data. The runtime of fairadapt
on a single 2.8GHz CPU is 23 seconds, compared to 396 seconds for a single value of 3 for
PSCF (excluding any hyperparameter search).
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Figure 20: Accuracy and parity gap
of different methods for the COMPAS
dataset with D resolving. Vertical bars
represent standard deviations obtained
from 10 bootstrap samples of the testing
set.

Figure 19: Accuracy and parity gap of
different methods for the Adult dataset
with R resolving. Vertical bars repre-
sent standard deviations obtained from
10 bootstrap samples of the testing set.

For the COMPAS dataset, we set the charge degree D to be resolving. The accuracy
and parity gap of different methods are given in Figure 20. The runtime of fairadapt on a
single 2.8GHz CPU is 8 seconds, compared to 102 seconds for a single value of § for PSCF.

In terms of performance metrics, neither of the methods outperforms the other in both
accuracy and fairness. Both methods eliminate discrimination at the small expense of
accuracy and provide slightly different, but competitive results.

Appendix J. NPSEM transformation

Suppose we start with a non-parametric structural equation model (NPSEM) defined as

Zk = gk(Zpak> Uk)a (19)

Fix the value of Z,, = z. Define g* as g*(u) = gx(z,u). Let U be a random variable which
has the same distribution as Uy. Cumulative distribution of ¢g* is defined as:

F(z) =P(g"(U)) < x).

The function F' : R — [0, 1] is invertible since the variables Z, are assumed to be continuous.

Therefore, we can write
g (U) = FH(F(g"(U))).

The argument F(g*(U)) within the function F~! satisfies:
P(F(g*(U)) < u) = P(g"(U) < F~}(u)
=F(F () =u,
showing that U = F(g*(U)) has a uniform U[0, 1] distribution. We further define g(u) =
F~1(u). Note that writing Z = g(U) gives the same assignment equation as (19) for
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Zpa, = 2. The only difference is that multiple values (but always a set of measure 0) of Uy
can correspond to a single value of U.
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