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mvlearn: Multiview Machine Learning in Python
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Abstract

As data are generated more and more from multiple disparate sources, multiview data sets,
where each sample has features in distinct views, have grown in recent years. However,
no comprehensive package exists that enables non-specialists to use these methods easily.
mvlearn is a Python library which implements the leading multiview machine learning
methods. Its simple API closely follows that of scikit-learn for increased ease-of-use.
The package can be installed from Python Package Index (PyPI) and the conda package
manager and is released under the MIT open-source license. The documentation, detailed
examples, and all releases are available at https://mvlearn.github.io/.
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1. Introduction

Multiview data (sometimes referred to as multi-modal, multi-table, or multi-block data),
in which each sample is represented by multiple views of distinct features, are often seen
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in real-world data and related methods have grown in popularity. A view is defined as
a partition of the complete set of feature variables (Xu et al., 2013). Depending on the
domain, these views may arise naturally from unique sources, or they may correspond
to subsets of the same underlying feature space. For example, a doctor may have an MRI
scan, a CT scan, and the answers to a clinical questionnaire for a diseased patient. However,
classical methods for inference and analysis are often poorly suited to account for multiple
views of the same sample, since they cannot properly account for complementing views that
hold differing statistical properties (Zhao et al., 2017). To deal with this, many multiview
learning methods have been developed to take advantage of multiple data views and produce
better results in various tasks (Sun, 2013; Hardoon et al., 2004; Chao et al., 2017; Yang
et al., 2014).

Although multiview learning techniques are increasingly seen in the literature, no open-
source Python package exists which implements an extensive variety of methods. The
most relevant existing package, multiview (Kanaan-Izquierdo et al., 2019), only includes
3 algorithms with an inconsistent API. mvlearn fills this gap with a wide range of well-
documented algorithms that address multiview learning in different areas, including clus-
tering, semi-supervised classification, supervised classification, and joint subspace learning.
Additionally, mvlearn preprocessing tools can be used to generate multiple views from a
single original data matrix, expanding the use-cases of multiview methods and potentially
improving results over typical single-view methods with the same data (Sun, 2013). Sub-
sampled sets of features have notably led to successful ensembles of independent single-view
algorithms (Ho, 1998) but can also be taken advantage of jointly by multiview algorithms to
reduce variance in unsupervised dimensionality reduction (Foster et al., 2008) and improve
supervised task accuracy (Nigam and Ghani, 2000). The last column of Table 1 details
which methods may be useful on single-view data after feature subsampling. mvlearn has
been tested on Linux, Mac, and PC platforms, and adheres to strong code quality principles.
Continuous integration ensures compatibility with past versions, PEP8 style guidelines keep
the source code clean, and unit tests provide over 95% code coverage at the time of release.

2. API Design

The API closely follows that of scikit-learn (Pedregosa et al., 2011) to make the package
accessible to those with even basic knowledge of machine learning in Python (Buitinck
et al., 2013). The main object type in mvlearn is the estimator object, which is modeled
after scikit-learn’s estimator. mvlearn changes the familiar method fit(X, y) into a
multiview equivalent, fit(Xs, y), where Xs is a list of data matrices, corresponding to a
set of views with matched samples (i.e. the ith row of each matrix represents the features
of the same ith sample across views). Note that Xs need not be a third-order tensor as each
view need not have the same number of features. As in scikit-learn, classes which make
a prediction implement predict(Xs), or fit predict(Xs, y) if the algorithm requires
them to be performed jointly, where the labels y are only used in supervised algorithms.
Similarly, all classes which transform views, such as all the embedding methods, implement
transform(Xs) or fit transform(Xs, y).
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Module Algorithm (Reference)
Maximum

Views

Useful on
Constructed
Data from a

Single
Original View

Decomposition AJIVE (Feng et al., 2018) 2 7

Decomposition Group PCA/ICA (Calhoun et al., 2001) ≥ 2 7

Decomposition Multiview ICA (Richard et al., 2020) ≥ 2 7

Cluster MV K-Means (Bickel and Scheffer, 2004) 2 3

Cluster MV Spherical K-Means (Bickel and Scheffer, 2004) 2 3

Cluster MV Spectral Clustering (Kumar and Daumé, 2011) ≥ 2 3

Cluster Co-regularized MV Spectral Clustering (Kumar et al., 2011) ≥ 2 3

Semi-supervised Co-training Classifier (Blum and Mitchell, 1998) 2 3

Semi-supervised Co-training Regressor (Zhou and Li, 2005) 2 3

Embed CCA (Hotelling, 1936) 2 7

Embed Multi CCA (Tenenhaus and Tenenhaus, 2011) ≥ 2 7

Embed Kernel Multi CCA (Hardoon et al., 2004) ≥ 2 7

Embed Deep CCA (Andrew et al., 2013) 2 7

Embed Generalized CCA (Afshin-Pour et al., 2012) ≥ 2 7

Embed MV Multi-dimensional Scaling (MVMDS) (Trendafilov, 2010) ≥ 2 7

Embed Omnibus Embed (Levin et al., 2017) ≥ 2 7

Embed Split Autoencoder (Wang et al., 2015) 2 7

Table 1: Multiview (MV) algorithms offered in mvlearn and their properties.

3. Library Overview

mvlearn includes a wide breadth of method categories and ensures that each offers enough
depth so that users can select the algorithm that best suits their data. The package is
organized into the modules listed below which includes the multiview algorithms in Table
1 as well as various utility and preprocessing functions. The modules’ summaries describe
their use and fundamental application.

Decomposition: mvlearn implements the Angle-based Joint and Individual Variation
Explained (AJIVE) algorithm (Feng et al., 2018), an updated version of the JIVE al-
gorithm (Lock et al., 2013). This was originally developed to deal with genomic data
and characterize similarities and differences between data sets. mvlearn also imple-
ments multiview independent component analysis (ICA) methods (Calhoun et al.,
2001; Richard et al., 2020), originally developed for fMRI processing.

Cluster: mvlearn contains multiple algorithms for multiview clustering, which can
better take advantage of multiview data by using unsupervised adaptations of co-
training. Even when the only apparent distinction between views is the data type
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of certain features, such as categorical and continuous variables, multiview clustering
has been very successful (Chao et al., 2017).

Semi-supervised: Semi-supervised classification (which includes fully-supervised clas-
sification as a special case) is implemented with the co-training framework (Blum and
Mitchell, 1998), which uses information from complementary views of (potentially)
partially labeled data to train a classification system. If desired, the user can specify
nearly any type of classifier for each view, specifically any scikit-learn-compatible
classifier which implements a predict proba method. Additionally, the package offers
semi-supervised regression (Zhou and Li, 2005) using the co-training framework.

Embed: mvlearn offers an extensive suite of algorithms for learning latent space em-
beddings and joint representations of views. One category is canonical correlation
analysis (CCA) methods, which learn transformations of two views such that the out-
puts are highly correlated. Many software libraries include basic CCA, but mvlearn

also implements several more general variants, including multiview CCA (Tenenhaus
and Tenenhaus, 2011) for more than two views, Kernel multiview CCA (Hardoon
et al., 2004; Bach and Jordan, 2003; Kuss and Graepel, 2003), Deep CCA (Andrew
et al., 2013), and Generalized CCA (Afshin-Pour et al., 2012) which is efficiently
parallelizable to any number of views. Several other methods for dimensionality
reduction and joint subspace learning are included as well, such as multiview multi-
dimensional scaling (Trendafilov, 2010), omnibus embedding (Levin et al., 2017), and
a split autoencoder (Wang et al., 2015).

Compose: Several functions for integrating single-view and multiview methods are
implemented, facilitating operations such as preprocessing, merging, or creating mul-
tiview data sets. If the user only has a single view of data, view-generation algorithms
in this module such as Gaussian random projections and random subspace projec-
tions allow multiview methods to still be applied and may improve upon results from
single-view methods (Sun, 2013; Nigam and Ghani, 2000; Ho, 1998).

Data sets and Plotting: A synthetic multiview data generator as well as dataloaders
for the Multiple Features Data Set (Breukelen et al., 1998) in the UCI repository
(Dua and Graff, 2017) and the genomics Nutrimouse data set (Martin et al., 2007) are
included. Also, plotting tools extend matplotlib and seaborn to facilitate visualizing
multiview data.

4. Conclusion

mvlearn introduces an extensive collection of multiview learning tools, enabling anyone to
readily access and apply such methods to their data. As an open-source package, mvlearn
welcomes contributors to add new desired functionality to further increase its applicability
and appeal. As data are generated from more diverse sources and the use of machine learning
extends to new fields, multiview learning techniques will be more useful to effectively extract
information from real-world data sets. With these methods accessible to non-specialists,
multiview learning algorithms will be able to improve results in academic and industry
applications of machine learning.
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Abhishek Kumar, Piyush Rai, and Hal Daumé. Co-regularized multi-view spectral clus-
tering. In International Conference on Neural Information Processing Systems, page
1413–1421. Curran Associates Inc., 2011.

Malte Kuss and Thore Graepel. The Geometry Of Kernel Canonical Correlation Analysis.
Technical Report 108, Max Planck Institute for Biological Cybernetics, May 2003.

Keith Levin, Avanti Athreya, Minh Tang, Vince Lyzinski, Youngser Park, and Carey E.
Priebe. A central limit theorem for an omnibus embedding of multiple random dot
product graphs. In IEEE International Conference on Data Mining Workshops, pages
964–967, 2017.

Eric F Lock, Katherine A Hoadley, James Stephen Marron, and Andrew B Nobel. Joint
and individual variation explained (jive) for integrated analysis of multiple data types.
The Annals of Applied Statistics, 7(1):523–542, 2013.

6

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://repository.upenn.edu/statistics_papers/150


mvlearn: Multiview Machine Learning in Python
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