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Abstract

Localized support vector machines solve SVMs on many spatially defined small chunks and
besides their computational benefit compared to global SVMs one of their main charac-
teristics is the freedom of choosing arbitrary kernel and regularization parameter on each
cell. We take advantage of this observation to derive global learning rates for localized
SVMs with Gaussian kernels and hinge loss. It turns out that our rates outperform un-
der suitable sets of assumptions known classification rates for localized SVMs, for global
SVMs, and other learning algorithms based on e.g., plug-in rules or trees. The localized
SVM rates are achieved under a set of margin conditions, which describe the behavior of
the data-generating distribution, and no assumption on the existence of a density is made.
Moreover, we show that our rates are obtained adaptively, that is without knowing the
margin parameters in advance. The statistical analysis of the excess risk relies on a simple
partitioning based technique, which splits the input space into a subset that is close to the
decision boundary and into a subset that is sufficiently far away. A crucial condition to
derive then improved global rates is a margin condition that relates the distance to the
decision boundary to the amount of noise.

Keywords: classification, margin conditions, hinge loss, support vector machines, spatial
decomposition, Gaussian kernel

1. Introduction

Experimental results show that support vector machines (SVMs) handle small- and medium-
sized datasets in supervised learning tasks (see Fernandez-Delgado et al., 2014; Meister and
Steinwart, 2016; Thomann et al., 2017; Klambauer et al., 2017). Recently, it was shown that
they even outperform self-normalizing neural-networks (SNNs) for such datasets (see Klam-
bauer et al., 2017). However, many learning tasks, e.g., diagnostics of diseases on patient
data, demand learning methods that handle large-scale datasets, where observations have
high dimensions and/or the number of observations is large. At this point global SVMs and
more generally kernel methods suffer from their computational complexity, which for SVMs
is at least quadratically in space and time. To reduce this complexity Meister and Steinwart
(2016) propose a data decomposition strategy, called localized SVMs, which solve SVMs on
many spatially defined chunks and which leads to improved time and space complexities.
Experimental results with liquidSVM (Steinwart and Thomann, 2017) show that localized
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SVMs can even tackle datasets with 32 million of training samples (see Thomann et al.,
2017).

One aspect of this paper is to show that localized SVMs do not only have computa-
tional advantages compared to global SVMs, as shown in (Thomann et al., 2017). Under
reasonable assumptions we prove theoretically an advantage of those methods in terms of
(faster) learning rates. Localized SVM global (classfication) rates have already been proven
in (Thomann et al., 2017) but the results only showed that the learning rates match the
global SVM rates and roughly speaking that one do not loose accuracy by localization.
Our results in this paper instead verify a common intuition: Due to localization, classifiers
should adapt better to the underlying target function compared to classifiers produced by
global algorithms. Intuitively, this should reflect in theoretical results and this is exactly
what we prove with our results in terms of global learning rates. The existing global con-
vergence rates can be improved by assuming certain margin parameters, which describe the
behaviour of the data-generating distribution and by applying localized training on decom-
posed input spaces. Further below, we describe these parameters and the applied technique
in more detail. But first, we share a methodical overview.

In literature many approaches have been proposed that aim to reduce complexities for
large-scale datasets. Approaches that as well base on data partitioning are for example
random chunks (see Bottou and Vapnik, 1992), or distributed learning algorithms (see
Zhang et al., 2015; Lin et al., 2017a; Mücke and Blanchard, 2018). Some other approaches
apply strategies that are based on gradient approximation such as stochastic gradient decent
algorithms (e.g., Lin and Rosasco, 2017; Pillaud-Vivien et al., 2018), or that are based on
kernel matrices approximations such as Nyström Method (e.g., Williams and Seeger, 2001;
Rudi et al., 2015), or Random Fourier Features (e.g., Rahimi and Recht, 2008; Rudi and
Rosasco, 2017).

Most of the papers previously mentioned have in common that the authors usually
consider least-squares regression in their theoretical analysis. Furthermore, they assume
that the true regression function f∗ is contained in some subspace of the chosen reproducing
kernel Hilbert space H. Since for Gaussian kernels we have [L2, H]β,2 ⊂ C∞ with 0 < β < 1
the latter is a rather hard assumption for this type of kernel. Typically, the regularization
parameters of these algorithms as well as the learning rates depend on unknown parameters,
as the smoothness parameter or as a parameter that describes the decay of the eigenvalues
of the associated kernel operator. Algorithms that are adaptive to these parameters are
solely sketched if given and adaptive rates are not yet proven theoretically.

It is well known that least-squares regression results can be used to obtain learning rates
for classification by applying a so-called calibration inequality in which the least-square re-
gression classifier serves as a plug-in rule. In other words, to solve a classification problem a
regression problem is solved in a first step. Fast rates can be achieved if a margin condition,
namely the Tsybakov noise exponent (see Mammen and Tsybakov, 1999) is used. This ex-
ponent measures the amount of noise in the input space, where noise equals the probability
of wrongly labelling some given input x ∈ X. Under the assumption of Tsybakov’s noise
exponent and some smoothness assumption on the regression function, fast rates for plug-in
classifier are achieved in (Audibert and Tsybakov, 2007; Kohler and Krzyzak, 2007), and
(Belkin et al., 2018) or for tree-based classifiers in (Binev et al., 2014). Some of the men-
tioned authors additionally make assumptions on the density of the marginal distribution
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PX to improve their rates that were achieved without density assumptions. However, it is
well known that boundedness assumptions on the density of PX together with smoothness
and noise exponent assumptions substantially limit the class of considered distributions (see
Audibert and Tsybakov, 2007; Kohler and Krzyzak, 2007; Binev et al., 2014).

Another possibility to solve the (binary) classification problem is to solve the optimiza-
tion problem with respect to the hinge loss. This loss function has a natural connection to
the classification loss, see Zhang’s inequality (e.g., Steinwart and Christmann, 2008, Theo-
rem 2.31). In fact, the Bayes classification function f∗Lclass,P

:= sign(2P (y = 1| · ) − 1) is a
minimizer of the hinge excess risk. Clearly, this is not the case for the least-square excess
risk. Following this path learning rates for SVMs are achieved in (Steinwart and Scovel,
2007; Steinwart and Christmann, 2008; Lin et al., 2017b; Thomann et al., 2017) without
assumptions on the existence on the density of PX or smoothness assumptions on the Bayes
decision function, but with an additional margin condition that takes also the amount of
mass around the decision boundary into consideration.

In this paper, we investigate the statistical properties of localized SVM classifiers with
Gaussian kernels and hinge loss. Recently, it became more popular to analyze localized
SVMs theoretically. For example, based on possible overlapping regions or decomposition
with k-nearest neighbor universal consistency and/or robustness for these classifiers is shown
in (Dumpert and Christmann, 2018) and (Hable, 2013). Meister and Steinwart (2016)
achieve optimal learning rates for localized SVMs with Gaussian kernel and least-squares
loss, whereas Mücke (2019) presents rates for localized SVMs with least-squares loss under
assumptions on the eigenvalue decay of the kernel integral operator. Moreover, Thomann
et al. (2017) derive learning rates for localized SVMs with Gaussian kernel and hinge loss.
In contrast, there exist also several results that are rather experimentally investigated such
as localized SVMs with a partition based on clusters (Cheng et al., 2007), decision trees
(Bennett and Blue, 1998), or k-nearest-neighbors (Zhang et al., 2006).

Our aim is to derive global learning rates for localized SVMs with Gaussian kernel and
hinge loss under a set of margin conditions. We show that these outperform or match under
suitable assumptions the rates of several learning algorithms mentioned in the previous
paragraphs. It turns out that the improvements result essentially from a margin condition
that relates the distance to the decision boundary to the amount of noise. Descriptively,
this condition restricts the location of noise, that means, if we have noise for some x ∈ X,
this x has to be close to the decision boundary. Note that Blaschzyk and Steinwart (2018)
showed recently under this condition together with a mild regularity assumption that rates
for the simple histogram rule can be obtained, which under a suitable set of assumptions
even outperform known rates for global SVMs.

To obtain classification rates for localized SVMs under margin conditions, we derive
finite sample bounds on the excess classification risk by applying the splitting technique
developed in (Blaschzyk and Steinwart, 2018). That means, we split the input space into
two sets that depend on a splitting parameter s > 0, one that is close to the decision
boundary and one that is sufficiently far away from the decision boundary, and analyze the
excess risk separately on these sets. By a standard decomposition into a stochastic and
an approximation error we derive in a first step local finite sample bounds. Compared to
the technique in (Blaschzyk and Steinwart, 2018), which is applied on the histogram rule,
we make the observation that it is necessary to refine the analysis of the approximation
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error for localized SVMs. More precisely, on the set that has cells sufficiently close to the
decision boundary we have to distinguish carefully between cells that intersect the decision
boundary and those that do not. The result is an analysis on three rather than two sets.
Based on local finite sample bounds on these sets we derive rates by taking advantage of the
great flexibility local SVMs enable us by definition, that is, that kernel and regularization
parameters can be chosen on each cell individually. Remarkably, our analysis shows that
the individual regularization parameters λn,i for i ∈ {1, . . . ,m} have only a marginal effect
on the stochastic error and that they may decay with an arbitrary polynomial rate without
effecting the overall error rate. Note that this effect also occurs in global SVM error bounds
(e.g., Steinwart and Christmann, 2008, Theorem 7.23) but has been overlooked for several
years. By choosing in a final step the splitting parameter s appropriately, we then derive
global learning rates that depend on the margin parameters. We emphasize that the splitting
parameter s is no additional hyper-parameter and appears in the proof solely. Moreover,
we show that training validation support vector machines (TV-SVMs) achieve the same
learning rates adaptively, that is, without knowing the margin parameters in advance.

The paper is organized as follows. In Section 2 we briefly describe the localized SVM
ansatz, introduce notation and close with theoretical assumptions. Section 3 is divided
up into several subsections: In Section 3.1 we present our main result followed by a de-
tailed discussion on the choice of parameters and on some proof details in Section 3.2. We
show that the presented learning rates can be achieved adaptively in Section 3.3. In Sec-
tion 3.4 we compare our rates carefully with other known rates. The proofs of our main
results are contained in Section 4. The results on individual sets, that is, bounds on the
approximation error, oracle inequalities and learning rates, on predefined sets can be found
in Subsection 4.4.1 up to Subsection 4.4.3. Some results on margin conditions and some
technical results can be found in the appendix.

2. Preliminaries

Given a dataset D := ((x1, y1), . . . , (xn, yn)) of observations, where yi ∈ Y := {−1, 1}, the
learning target in classification is to find a decision function fD : X → Y such that for new
data (x, y) we have fD(x) = y with high probability. We assume that xi ∈ B`d2 , where B`d2
denotes the closed unit ball of the d-dimensional Euclidean space `d2 and assume that our
data D is generated independently and identically by a probability measure P on Rd × Y .
We denote by PX the marginal distribution on Rd, write X := supp(PX), and assume
X ⊂ B`d2 and PX(∂X) = 0.

We briefly describe the localized SVM approach in a generalized manner. Given a
dataset D local SVMs construct a function fD by solving SVMs on spatially defined small
chunks of D. To be more precise, let A := (Aj)j=1,...,m be an arbitrary partition of B`d2

. We

define for every j ∈ {1, . . . ,m} the index set

Ij := {i ∈ {1, . . . , n} : xi ∈ Aj}

with
∑m

j=1 |Ij | = n, that indicates the samples of D contained in Aj and we define the
corresponding local data set Dj by

Dj := ((xi, yi) ∈ D : i ∈ Ij) .
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Then, one learns an individual SVM on each cell by solving the optimization problem

fDj ,λj = arg min
f∈Hj

λj‖f‖2Hj +
1

n

∑
xi,yi∈Dj

L(xi, yi, f(xi)) (1)

for every j ∈ {1, . . . ,m}, where λj > 0 is a regularization parameter, where Hj is a reproduc-
ing kernel Hilbert space (RKHS) over Aj with arbitrary reproducing kernel kj : Aj×Aj → R
(see Steinwart and Christmann, 2008, Chap. 4), and where L : X × Y × R → [0,∞) is a
measurable function, called loss function, describing our learning goal. The final decision
function fD,λ : X → R is then defined by

fD,λ(x) :=

m∑
j=1

1Aj (x)fDj ,λj (x), (2)

where λ := (λ1, . . . , λm) ∈ (0,∞)m. We make the following assumptions.

(H) For every j ∈ {1, . . . ,m} let kj : Aj × Aj → R be the Gaussian kernel with width
γj > 0, defined by

kγj (x, x
′) := exp

(
−γ−2

j ‖x− x
′‖22
)
, (3)

with corresponding RKHS Hγj over Aj and denote by Ĥj := {1Ajf : f ∈ Hj} the
extended RKHS over B`d2

. For some J ⊂ {1, . . . ,m} define the joint RKHS HJ over

B`d2
by HJ :=

⊕
j∈J Ĥj , see (Meister and Steinwart, 2016, Sec. 3).

We write fDj ,λj ,γj for the local SVM predictor in (1) to remember its local dependency on the
kernel parameter γj and the regularization parameter λj on each cell Aj for j ∈ {1, . . . ,m}.
Clearly, we are free to choose different kernel and regularization parameters on each cell,
since the predictors in (1) are computed independently on each cell. Moreover, we write
fD,λ,γ for the final decision function in (2), where γ := (γ1, . . . , γm) ∈ (0,∞)m. Note

that we have immediately fD,λ,γ ∈ HJ for J = {1, . . . ,m} since 1AjfDj ,λj ,γj ∈ Ĥj for
every j ∈ J . To measure the quality of the predictor locally, we define a (local) loss
Lj : X × Y × R→ [0,∞) by

Lj(x, y, t) := 1Aj (x)L(x, y, t).

Moreover, we define for an arbitrary index set J ⊂ {1, . . . ,m} the set T :=
⋃
j∈J Aj and

the associated loss LJT : X × Y × R→ [0,∞) by

LJT (x, y, t) := 1T (x)L(x, y, t),

where we sometimes use the abbreviation LT := LJT to avoid multiple subscripts. A typical
loss function is the classification loss Lclass : Y × R→ [0,∞), defined by

Lclass(y, t) := 1(−∞,0](y signt),
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where sign 0 := 1. For (local) SVMs the optimization problem is not solvable for the
classification loss. A suitable convex surrogate is for example the hinge loss Lhinge : Y ×R→
[0,∞), defined by

Lhinge(y, t) := max{0, 1− yt}

for y = ±1, t ∈ R. Note that for convex losses the existence and uniqueness of (1) are
secured, see e.g. (Steinwart and Christmann, 2008, Chap. 5.1) or (Meister and Steinwart,
2016). Since we are not interested in the loss of single labels, we consider the expected loss
and define for a loss function L the L-risk of a measurable function f : X → R by

RL,P (f) =

∫
X×Y

L(x, y, f(x)) dP (x, y).

Moreover, we define the optimal L-risk, called Bayes risk, with respect to P and L, by

R∗L,P := inf {RL,P (f) | f : X → R measurable}

and call a function f∗L,P : X → R attaining the infimum, Bayes decision function. For
the classification loss, a Bayes decision function is given by f∗Lclass,P

(x) := sign(2P (y =
1|x) − 1), x ∈ X. A well-known result by Zhang (see Steinwart and Christmann, 2008,
Theorem 2.31) shows that the excess classification-risk is bounded by the excess hinge-risk,
that is,

RLclass,P (f)−R∗Lclass,P
≤ RLhinge,P (f)−R∗Lhinge,P

for all functions f : X → R. Hence, we restrict our analysis to the hinge loss and we write
in the following L := Lhinge. Since a short calculation in (Steinwart and Christmann, 2008,
Example 2.27) shows that

L(y,max{−1,min{f(x), 1}) ≤ L(y, f(x))

for all f : X → R and y ∈ {−1, 1}, it suffices to consider the loss and thus the risk for
functions values restricted to the interval [−1, 1]. Thus, we define the clipping operator byÛt := max{−1,min{t, 1}}

for t ∈ R, which restricts values of t to [−1, 1] (see Steinwart and Christmann, 2008,
Chap. 2.2). For our decision function in (2) this means that the clipped decision func-

tion ÛfD,λ,γ : X → [−1, 1] is then defined by the sum of the clipped empirical solutionsÛfDj ,λj ,γj since for all x ∈ X there is exactly one fDj ,λj ,γj with fDj ,λj ,γj (x) 6= 0.
In order to derive learning rates for the localized SVM predictor in (2) that measure

the speed of convergence of the excess risk RL,P (fD,λ,γ) − R∗L,P it is necessary to specify
our partition A. To this end, we denote the ball with radius r > 0 and center s ∈ B`d2 by

Br(s) := { t ∈ Rd | ‖t− s‖2 ≤ r } with Euclidean norm ‖ · ‖2 in Rd and we define the radius
rA of a set A ⊂ B`d2 by

rA = inf{r > 0 : ∃s ∈ B`d2 such thatA ⊂ Br(s)}.
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(A) Let A := (Aj)j=1,...,m be a partition of B`d2
and r > 0 such that we have Åj 6= ∅

for every j ∈ {1, . . . ,m}, and such that there exist z1, . . . , zm ∈ B`d2 such that Aj ⊂
Br(zj), and ‖zi − zj‖2 ≥ r

2 , i 6= j, and

rAj < r ≤ 16m−
1
d , f.a. j ∈ {1, . . . ,m} (4)

are satisfied.

Note that if one considers a Voronoi partition (Aj)j=1,...,m ofB`d2
based on a r-net z1, . . . , zm ∈

B`d2
with r ≤ 16m−

1
d and ‖zi − zj‖2 ≥ r

2 , i 6= j, the assumptions above are immediately

satisfied (see Meister and Steinwart, 2016).

Besides the assumption on the partition above, we need some assumptions on the proba-
bility measure P itself. To this end, we recall some notions from (Steinwart and Christmann,
2008, Chap. 8). Let η : X → [0, 1], defined by η(x) := P (y = 1|x), x ∈ X, be a version of the
posterior probability of P , which means that the probability measures P ( · |x) form a regu-
lar conditional probability of P . Clearly, if we have η(x) = 0 resp. η(x) = 1 for x ∈ X we
observe the label y = −1 resp. y = 1 with probability 1. Otherwise, if e.g., η(x) ∈ (1/2, 1)
we observe the label y = −1 with the probability 1− η(x) ∈ (0, 1/2) and we call the latter
probability noise. In the worst case we observe both labels with equal probability 1/2 and
we define the set containing the corresponding x ∈ X by X0 := {x ∈ X : η(x) = 1/2 }.
Furthermore, we write

X1 := {x ∈ X : η(x) > 1/2 },
X−1 := {x ∈ X : η(x) < 1/2 }.

Moreover, the function ∆η : X → [0,∞] defined by

∆η(x) :=


d(x,X1) ifx ∈ X−1,

d(x,X−1) ifx ∈ X1,

0 otherwise,

(5)

where d(x,A) := infx′∈A d(x, x′), is called distance to the decision boundary.

In the following, we introduce various exponents that describe the behavior of the data-
generating distribution P and that are typically used to derive learning rates in classifi-
cation. The probably most known exponent is the (Tsybakov) noise exponent introduced
in (Mammen and Tsybakov, 1999). We say that P has (Tsybakov) noise exponent (NE)
q ∈ [0,∞] if there exist a constant cNE > 0 such that

PX({x ∈ X : |2η(x)− 1| < ε}) ≤ (cNEε)
q (6)

for all ε > 0 (c.f. Steinwart and Christmann, 2008, Def. 8.22). Note that a common name
for (6) is margin exponent but we call it noise exponent since it measures the amount of
critical noise and does not locate the noise. Obviously, in the best case P has NE q = ∞
and hence, η is bounded away from 1/2.
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Figure 1: Three examples of η (red line) with different values of LC ζ. The blue bar on the x-axis shows the
set containing x of X with noise close to the critical level 1/2. Figure from (Blaschzyk, 2020, Figure 2.3).

Moreover, we introduce an exponent that describes the existence of noise around the
decision boundary. We say that P has margin-noise exponent (MNE) β ∈ (0,∞] if there
exists a version η and a constant cMNE > 0 such that∫

{∆η(x)<t}
|2η(x)− 1| dPX(x) ≤ (cMNEt)

β (7)

for all t > 0. That is, we have a large margin-noise exponent, if we have low mass and/or a
large amount of noise around the decision boundary. In Section 3.4, we introduce another
exponent that is closely related to the margin-noise exponent, the so-called margin exponent.
Since we do not apply this exponent in our analysis and since we need it only for comparison
reasons we skip its definition here.

Next, we introduce an exponent that explicitly relates the amount of noise to its location.
We say that the distance to the decision boundary ∆η controls the noise from below if there
exist a ζ ∈ [0,∞), a version η, and a constant cLC > 0 such that

∆ζ
η(x) ≤ cLC|2η(x)− 1| (8)

for PX -almost all x ∈ X. Descriptively, if η(x) is close to 1/2 for some x ∈ X, then this x is
close to the decision boundary. In Figure 1, we describe the dependence of different values
of η(x) and the location of large noise which is close to the critical level 1/2.

Moreover, a simple calculation in (8) shows that η is bounded away from 1/2 if ζ = 0 (see
Blaschzyk, 2020, Section 2.3.1). This indicates that small values of ζ are maybe preferable
for learning and in Section 3.2 we will see that this is indeed the case. In Appendix A, we
show that the lower control condition can be related to the reverse Hölder continuity of η
and that it can be related to the noise exponent if P has some margin exponent, see (26).
For a more detailed description of the lower control condition (8) we refer the reader to
(Blaschzyk, 2020, Section 2.3.1) and to (Blaschzyk and Steinwart, 2018, Fig. 1).

For examples of typical values of the exponents above and relations between them we
refer the reader to (Steinwart and Christmann, 2008, Chap. 8 and Exercises), (Blaschzyk
and Steinwart, 2018, Section 4), (Hamm and Steinwart, 2021, Ex. 4.5) and to Section 3.4.

Finally, we define some mild geometrical assumption on the decision boundary. To
this end, we say according to (Federer, 1969, Sec. 3.2.14(1)) that a general set T ⊂ X is
m-rectifiable for an integer m > 0, if there exists a Lipschitzian function mapping some
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bounded subset of Rm onto T . Furthermore, we denote by ∂XT the relative boundary of T
in X and we denote by Hd−1 the (d−1)-dimensional Hausdorff measure on Rd, see (Federer,
1969, Introduction). Then, we state the following assumptions on the decision boundary.

(G) Let η : X → [0, 1] be a fixed version of the posterior probability of P . Let X0 =
∂XX1 = ∂XX−1 and let X0 be (d− 1)-rectifiable with Hd−1(X0) > 0 .

Remember that under assumption (G) we have Hd−1(X0) < ∞. In particular, Blaschzyk
and Steinwart (2018) show under assumption (G) how to measure the d-dimensional Lebesgue
measure λd of a certain set in the vicinity of the decision boundary. More precisely,
Blaschzyk and Steinwart (2018, Lemma 2.1) show that there exists a δ∗ > 0 and a constant
cd > 0 such that

λd({∆η(x) ≤ δ}) ≤ cd · δ, f.a. δ ∈ (0, δ∗]. (9)

We remark that for some sequences an, bn ∈ R we write an ' bn if there exists constants
c1, c2 > 0 such that an ≤ c1bn and an ≥ c2bn for sufficiently large n.

3. Classification Rates

3.1 Learning Rates for localized SVMs

In this section, we derive global learning rates for local SVMs with Gaussian kernel and
hinge loss. We apply the splitting technique developed in (Blaschzyk and Steinwart, 2018),
that is, we analyze the excess risk separately on overlapping sets that consists of cells that
are close to and sufficiently far away from the decision boundary. By choosing individual
kernel parameters on these sets we obtain local learning rates that we balance out in a last
step to derive global learning rates. To this end, we define for s > 0 and a fixed version η
of the posterior probability of P the set of indices of cells near the decision boundary by

JsN := { j ∈ {1, . . . ,m} | ∀x ∈ Aj : ∆η(x) ≤ 3s }

and the set of indices of cells that are sufficiently far away by

JsF := { j ∈ {1, . . . ,m} | ∀x ∈ Aj : ∆η(x) ≥ s }.

Moreover, we write

N s :=
⋃
j∈JsN

Aj and F s :=
⋃
j∈JsF

Aj . (10)

Clearly, by dividing our input space into the two overlapping sets defined above we have
to be sure to capture all cells in the input space and to assign the cells in F s either to
the class X−1 or to X1. The following lemma gives a sufficient condition on our separation
parameter s. Since the proof is almost identical to the one in (Blaschzyk and Steinwart,
2018, Lemma 3.1) we skip it here.

Lemma 1 Let (Aj)j=1,...,m be a partition of B`2d
such that for every j ∈ {1, . . . ,m} we have

Åj 6= ∅ and (4) is satisfied for some r > 0. For s ≥ r define the sets N s and F s by (10).
Moreover, let X0 = ∂XX1 = ∂XX−1. Then, we have
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i) X ⊂ N s ∪ F s,

ii) either Aj ∩X1 = ∅ or Aj ∩X−1 = ∅ for all j ∈ JsF .

To prevent notational overload, we omit in the sets (of indices) defined above the de-
pendence on s for the rest of this paper, while keeping in mind that all sets depend on this
separation parameter.

Based on an analysis on the sets defined above, we present in the subsequent theorem our
main result that yields global learning rates for localized SVMs under margin conditions.
The result is remarkable in three ways. First, it shows that the regularization parameters
λn,i can decay arbitrarily fast in a polynomial way to achieve the presented rate, see also
Section 3.2 for more details. Second, we will see in Section 3.3 that the theoretical rate
presented below can be achieved adaptively for a subclass of the considered P . Third, we
will show that localized SVMs do not only have computational advantages compared to
global SVMs, but the theoretical rates outperform rates of SVMs and of other algorithms
under suitable sets of assumptions, see Section 3.4.

Theorem 2 Let P be a probability measure on Rd × {−1, 1} for which P has MNE β ∈
(0,∞], NE q ∈ [0,∞] and LC ζ ∈ [0,∞) and let (G) be satisfied for one η. Define
κ := q+1

β(q+2)+d(q+1) . Let assumption (A) be satisfied for mn and define

rn := n−ν ,

where ν satisfies

ν ≤

{
κ

1−κ if β ≥ (q + 1)(1 + max{d, ζ} − d),
1−βκ

βκ+max{d,ζ} else,
(11)

and assume that (H) holds. Define for J = {1, . . . ,mn} the set of indices

JN1 := { j ∈ J | ∀x ∈ Aj : ∆η(x) ≤ 3rn and PX(Aj ∩X1) > 0 and PX(Aj ∩X−1) > 0 },

as well as

γn,j '

{
rκnn

−κ for j ∈ JN1 ,

rn else,

λn,j ' n−σ
(12)

for some σ ≥ 1 and for every j ∈ J . Moreover, let τ ≥ 1 be fixed and define for δ∗ considered

in (9), n∗ := max{4,
(
4−1δ∗

)− 1
ν ,
(
4−1δ∗

)− 1
α }. Then, for all ε > 0 there exists a constant

cβ,d,ε,σ,q > 0 such that for all n ≥ n∗ the localized SVM classifier satisfies

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P ≤ cβ,d,ε,σ,qτ · n
−βκ(ν+1)+ε (13)

with probability Pn not less than 1− 9e−τ .

10
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Remark 3 The exponents of rn in (11) match for β = (q+1)(1+max{d, ζ}−d). Moreover,
a short calculation shows that in the case β > (q + 1)(1 + max{d, ζ} − d) the best possible
rate is achieved for ν := κ

1−κ and equals

n
− β(q+1)
β(q+2)+(d−1)(q+1)

+ε

In the other case, β < (q + 1)(1 + max{d, ζ} − d), the best possible rate is achieved for
ν := 1−βκ

βκ+max{d,ζ} and equals

n
−βκ[1+max{d,ζ}]

βκ+max{d,ζ} +ε
.

Remark 4 The rates in Theorem 2 are better the smaller we choose the cell sizes rn. The
smaller rn the more cells mn are considered and training localized SVMs is more efficient.
To be more precise, the complexity of the kernel matrices or the time complexity of the solver
are reduced (see Thomann et al., 2017). However, (11) gives a lower bound on rn = n−ν .
For smaller rn we do achieve rates for localized SVMs, but, we cannot ensure that they
learn with the rate (13). Indeed, we achieve slower rates. We illustrate this for the case
β < (q + 1)(1 + max{d, ζ} − d). The proof of Theorem 2 shows that if(

q + 1

q + 2

)
(1 + max{d, ζ} − d) < β < (q + 1)(1 + max{d, ζ} − d)

we can choose some ν ∈
[

1−βκ
βκ+max{d,ζ} ,

κ
1−κ

]
such that the localized SVM classifier learns for

some ε > 0 with rate

n−(1−νmax{d,ζ})+ε.

A short calculation shows that this rate is indeed slower than (13) for the given range of ν
and matches the rate in (13) only for ν := 1−βκ

βκ+max{d,ζ} . In the worst case, that is, ν := κ
1−κ

the rate equals

n−(1−νmax{d,ζ}) =n
−
(

1−κmax{d,ζ}
1−κ

)
=n
−
(

1− (q+1) max{d,ζ}
β(q+2)+(d−1)(q+1)

)
=n
−β(q+2)+(q+1)(d−1−max{d,ζ})

β(q+2)+(d−1)(q+1)

up to ε in the exponent, where the numerator is positive since β >
(
q+1
q+2

)
(1+max{d, ζ}−d).

3.2 Proof Details and Choice of Kernel and Regularization Parameters

To follow the arguments that lead to the various choices of the parameters in (11) and (12)
we give a brief overview of the main effects influencing the proof of the previous theorem
and of the main steps we have taken. Learning rates are derived from finite sample bounds
on the excess risk which follow a typical decomposition into a bound on the approximation
error and on the stochastic error. A key property to bound the stochastic error is to have
a variance bound, that is a bound of the form

EP (L ◦ f − L ◦ f∗L,P )2 ≤ V · (EP (L ◦ f − L ◦ f∗L,P ))θ (14)

11
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with exponent θ ∈ (0, 1] and some constant V > 0. Descriptively, a function whose risk is
close to f∗L,P has low variance. Clearly, the best exponent is θ = 1 and is obtained e.g.,
for the least-squares loss (see Steinwart and Christmann, 2008, Example 7.3). Moreover,
under the assumption that P has NE q ∈ [0,∞] it can be shown for the hinge loss that
θ = q

q+1 (see Steinwart and Christmann, 2008, Theorem 8.24). Thus, we obtain θ = 1 only
in the special case q =∞. However, we show in the next lemma that it is still possible for
the hinge loss to obtain the best possible variance bound θ = 1 on sets that are sufficiently
far away from the decision boundary by using the lower control condition in (8). We take
advantage of this fact in the analysis over the sets in (10).

Lemma 5 Let η : X → [0, 1] be a fixed version of the posterior probability of P . Assume
that the associated distance to the decision boundary ∆η controls the noise from below by
the exponent ζ ∈ [0,∞) and define the set F := F s as in (10). Furthermore, let L := Lhinge
be the hinge loss and let f∗L,P : X → [−1, 1] be a fixed Bayes decision function. Then, there
exists a constant cLC > 0 independent of s such that for all measurable f : X → R we have

EP (LF ◦ Ûf − LF ◦ f∗L,P )2 ≤ 2cLC

sζ
EP (LF ◦ Ûf − LF ◦ f∗L,P ).

Besides the stochastic error, we have to bound the approximation error. More precisely,
we aim to find an appropriate f0 ∈ HJ such that the bound on∑

j∈J
λj‖1Ajf0‖2Ĥj +RLJ ,P (f0)−R∗LJ ,P

is small. Obviously, we control the error above if we control both, the norm and the excess
risk.

The excess risk is small if f0 ∈ HJ is close to a Bayes decision function since its risk is
then close to the Bayes risk. Note that we cannot assume the Bayes decision function to
be contained in the RKHS HJ , since HJ does not contain functions that are constant on
an open ball (see Steinwart and Christmann, 2008, Corollary 4.44). Nonetheless, we find a
function f0 ∈ HJ that is similar to a Bayes decision function. To this end, we define f0 on
every cell A as the convolution of functions Kγ : Rd → R and f ∈ L2(Rd) so that

(Kγ ∗ f)|A ∈ H(A),

and choose f as a function that is similar to a Bayes decision function on a ball containing
A. Doing this, we observe the following cases. If a cell A has no intersection with the
decision boundary and e.g., A ∩ X1 6= ∅, but A ∩ X−1 = ∅, we have for all x ∈ A ∩ X1

that f∗Lclass,P
(x) = 1. Otherwise, if the cell intersects the decision boundary we find for the

decision function that f∗Lclass,P
:= sign(2η − 1). Note, that this discontinuous step function

makes classification harder than regression, where usually smoothness of the Bayes decision
function is assumed. In order to approximate f∗Lclass,P

by the convolution above, we choose
f as constant if the considered cell has no intersection with the decision boundary and as
sign(2η−1) otherwise. Both depicted cases can occur on the set N , see (10), and motivates
to divide the set of indices JN into

JN1 := { j ∈ JN |PX(Aj ∩X1) > 0 and PX(Aj ∩X−1) > 0 },
JN2 := { j ∈ JN |PX(Aj ∩X1) = 0 or PX(Aj ∩X−1) = 0 },

(15)
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leading to an overall analysis on the corresponding sets N1, N2, and on the set F .
Concerning the norm, we make the observation that we are able to control the norm by

choosing the regularization parameters λn sufficiently small on each set N1, N2, and F , and
down below, we illustrate this for N1.

We refer the reader for a more detailed analysis on the approximation error bounds
on the sets N1, N2 and F to Section 4.4.1. In Sections 4.4.2 and 4.4.3, we combine the
bounds on the approximation and stochastic error and present bounds on the excess risks
on N1, N2 and F . These sections also include the learning rates for the mentioned sets and
in the following, we take a closer look at those learning rates and start with the set N1.

By applying the tools above and under the assumption that P has MNE β and NE q
we derive learning rates on the set N1 on the basis of the excess risk bound in Theorem 17,
which has for some p ∈ (0, 1

2) with high probability the form

RLN1
,P ( ÛfD,λn,γn)−R∗LN1

,P �
λnrn
γdn

+ γβn +

(
rnλ
−p
n γ−dn
n

) q+1
q+2−p

+
( τ
n

) q+1
q+2

, (16)

where we already made some slight modifications, e.g. we set λn := λn,j and γn := γn,j for
all j ∈ JN1 as at beginning of the proof of Theorem 18. Note that the fist two terms on the
right-hand side result from bounding the approximation error, norm and excess risk, while
the other terms result from bounding the stochastic error.

First, we observe that the regularization parameters λn influence the first and third
term in the right-hand side of (16). We set λn ' n−σ for some σ ≥ 1 and observe that λn
in the third term can be bounded by

λ
−p
(

q+1
q+2−p

)
n ' npσ

(
q+1
q+2−p

)
≤ nε̃,

where ε̃ ≥ pσ(q+1)
q+2 . This means we can choose σ arbitrary large since we are able to choose

the parameter p sufficiently small. In other words, we are able to choose the decay of λn in
an arbitrarily fast polynomial way, see (12), and the regularization parameters λn influence
the stochastic error only marginally. However, in practice λn should be chosen carefully
since a larger σ makes the constant in the excess risk bounds larger.

Remark 6 The effect that the regularization parameters λn may decay with an arbitrarily
fast polynomial rate without affecting the global error rate also occurs for global SVMs. To
see that, we remark that the general oracle inequality for global SVMs given in (Steinwart
and Christmann, 2008, Theorem 7.23) has exactly the form of (16) for rn = 1 and hence,
our considerations for the regularization parameters λn in the previous paragraph are still
valid. In particular, this means that this effect even occurs for multiple types of SVM
regression (with rn = 1 and q =∞) such as least-squares or quantile regression (see Eberts
and Steinwart, 2013), or as expectile regression (Farooq and Steinwart, 2019).

Second, in (16) we observe a different behavior in terms of γn. While the second term
on the right-hand side tends to zero for γn → 0, the bound on the stochastic error behaves
in γn exactly the opposite way. Motivated by the approximation of the Bayes decision
function discussed above we choose appropriately small kernel parameters γn on N1, see
(12), leading to convolutions with steep kernels.
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Both explained choices for the regularization parameters λn and kernel parameters γn
lead on the set N1 with high probability to the bound

RLN1
,P ( ÛfD,λn,γn)−R∗LN1

,P � rβkn n−βk

for lower bounded rn, see Theorem 18. Note that the restriction on rn guarantees that
the kernel parameters γn satisfy the condition γn ≤ rn, which is required to measure the
capacity of the underlying Gaussian RKHSs by entropy numbers, see Section 4.4.

For the sets N2 and F , which have no intersection with the decision boundary, we derive
learning rates on the basis of the corresponding excess risk bounds, see Theorems 19 and
21 as described for the set N1. Since the considerations on the behavior of λn we made
above are also true for the bounds on the sets N2 and F , we skip this discussion here but
we remark at this point that λn ' n−σ with σ ≥ 1 is an appropriate choice for all three
sets and justifies the choice of the regularization parameters in (12). Concerning the kernel
parameters γn, the bounds in Theorems 19 and 21 again show a trade-off in γn. Motivated
by the approximation of the Bayes decision function discussed above we choose for the sets
N2 and F appropriately large kernel parameters γn leading to convolutions with flat kernels.
Note that this means to choose λn equally to rn, see (12).

Both explained choices for the regularization parameters λn and kernel parameters γn
lead on the set N2 and F with high probability to bounds of the form

RLN2
,P ( ÛfD,λn,γn)−R∗LN2

,P �
(
sn
rdn

) q+1
q+2

n
− q+1
q+2

and

RLF ,P ( ÛfD,λn,γn)−R∗LF ,P � max{r−dn , s−ζn } · n−1+ε,

see Theorems 20 and 22. We observe that these bounds do not tend to zero for rn → 0,
as the bound on N1. Moreover, both bounds depend in an opposite way on the separation
parameter sn. In (Blaschzyk and Steinwart, 2018) this is handled by a straightforward
optimization over the parameter sn. Unfortunately, in our case the optimal s∗ does not
fulfil the basic requirement rn ≤ s∗ that results from Lemma 1. We bypass this difficulty
by choosing sn = rn in the proof of our main Theorem 2. This choice has two effects. First,
the rates on N2 are always better than the rates on N1. Second, for the rates on N1 and F
the combination of our considered margin parameters and the dimension d affects the speed
of the rates. This leads to the differentiation of rn in (11). If β ≥ (q+ 1)(1 + max{d, ζ}−d)
the rate on N1 dominates the one on F and ν has to fulfil ν ≤ κ

1−κ . In the other case, if

β ≤ (q + 1)(1 + max{d, ζ} − d), the rate on F dominates N1, but only if ν ≤ 1−βκ
βk+max{d,ζ} .

Unfortunately, we find in the latter case 1−βκ
βk+max{d,ζ} ≤

κ
1−κ such that rn cannot be chosen

that small as in the other case in order to learn with rate n−βκ(ν+1). Larger rn would lead
to a worse learning rate. In summary, the interplay of the considered margin conditions
together with the dimension d affects the rate presented in Theorem 2.

3.3 Adaptive Learning Rates for Localized SVMs

Before comparing our rates in (13) with rates obtained by other algorithms in the next
section, we show that our rates are achieved adaptively by a training validation approach.
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That means, without knowing the MNE β, the NE q and LC ζ in advance. To this end,
we briefly describe the training validation support vector machine ansatz given in (Meister
and Steinwart, 2016). We define Λ := (Λn) and Γ := (Γn) as sequences of finite subsets
Λn ⊂ (0, n−1] and Γn ⊂ (0, rn]. For a dataset D := ((x1, y1), . . . , (xn, yn)) we define

D1 := ((x1, y1), . . . , (xl, yl)),

D2 := ((xl+1, yl+1), . . . , (xn, yn)),

where l := bn2 c+ 1 and n ≥ 4. Moreover, we split these sets into

D
(1)
j :=

(
(xi, yi)i∈{1,...,l} : xi ∈ Aj

)
, j ∈ {1, . . . ,mn},

D
(2)
j :=

(
(xi, yi)i∈{l+1,...,n} : xi ∈ Aj

)
, j ∈ {1, . . . ,mn},

and define lj := |D(1)
j | for all j ∈ {1, . . . ,mn} such that

∑mn
j=1 lj = l. We use D

(1)
j as a

training set by computing a local SVM predictor

f
D

(1)
j ,λj ,γj

:= arg min
f∈Ĥγj (Aj)

λj‖f‖2Ĥγj (Aj)
+R

Lj ,D
(1)
j

(f)

for every j ∈ {1, . . . ,mn}. Then, we use D
(2)
j to determine (λj , γj) by choosing a pair

(λD2,j , γD2,j) ∈ Λn × Γn such that

RLj ,D2( Ûf
D

(1)
j ,λD2,j

,γD2,j
) = min

(λj ,γj)∈Λn×Γn
R
Lj ,D

(2)
j

( Ûf
D

(1)
j ,λj ,γj

).

Finally, we call the function fD1,λD2
,γD2

, defined by

fD1,λD2
,γD2

:=

mn∑
j=1

1AjfD(1)
j ,λD2,j

,γD2,j
, (17)

training validation support vector machine (TV-SVM) w.r.t Λ and Γ. We remark that the
parameter selection is performed independently on each cell and leads to m · |Λ| · |Γ| many
candidates. For more details we refer the reader to (Meister and Steinwart, 2016, Sec. 4.2).

The subsequent theorem shows that the TV-SVM, defined in (17), achieves the same
rates as the local SVM predictor in (2).

Theorem 7 Let the assumptions of Theorem 2 be satisfied with

rn ' n−ν

for some ν > 0. Furthermore, fix an ρn-net Λn ⊂ (0, n−1] and an δnrn-net Γn ⊂ (0, rn] with
ρn ≤ n−2 and δn ≤ n−1. Assume that the cardinalities |Λn| and |Γn| grow polynomially in
n. Let τ ≥ 1. If

ν ≤

{
κ

1−κ if β ≥ (q + 1)(1 + max{d, ζ} − d),
1−βκ

βκ+max{d,ζ} else.
(18)

15



Blaschzyk and Steinwart

then, for all ε > 0 there exists a constant cd,β,q,ε > 0 such that the TV-SVM, defined in
(17), satisfies

RLJ ,P (fD1,λD2
,γD2

)−R∗LJ ,P ≤ cd,β,q,ετ · n
−βκ(ν+1)+ε

with probability Pn not less than 1− e−τ .

Remark 8 The previous result shows two aspects. First, it reveals a trade-off between the
“range of adaptivity” and “computational complexity”: On the one hand, the smaller we
choose ν the bigger the set of P for which we learn with the correct learning rate without
knowing the margin parameters β, q and ζ. On the other hand, smaller values of ν lead to
bigger cells and hence, training is more costly. This trade-off also appears in the result for
Training-Validation-Voronoi-Partition-SVMs using least squares loss and Gaussian kernels
in (Meister and Steinwart, 2016, Thm. 7).

Second, it shows that by choosing ν as large as it is computationally feasible in prac-
tice, we achieve adaptivity for a large class of various distributions described by the margin
parameters β, q and ζ but unfortunately not for all combinations of these margin param-
eters as in the global training-validation approach (see Steinwart and Christmann, 2008,
Thm. 8.26). At a first glance this might seem restrictive. However, adaptivity results for
common approaches that also aim to reduce complexities of certain algorithms, also need
assumptions on P . For example, the eigenvalue decay of kernel operators has to be known
(see Zhang et al., 2015).

3.4 Comparison of Rates

In this section, we compare the results for localized SVMs with Gaussian kernel and hinge
loss from Theorem 2 to the results from various classifiers, we mentioned in the introduction.
We compare the rates to the ones obtained by global and local SVMs with Gaussian kernel
and hinge loss in (Thomann et al., 2017, Theorem 3.2), (Steinwart and Christmann, 2008,
(8.18)) and (Lin et al., 2017b). Moreover, we make comparisons with the rates achieved by
various plug-in classifier in (Kohler and Krzyzak, 2007; Audibert and Tsybakov, 2007; Binev
et al., 2014; Belkin et al., 2018), and by the histogram rule in (Blaschzyk and Steinwart,
2018). We remark that in all comparisons we try to find reasonable sets of assumptions
such that both, our conditions and the conditions of the compared methods are satisfied.
This means in particular that our rates as well as the other rates are achieved under less
assumptions. We emphasize that the rates for localized SVMs in Theorem 2 do not need
an assumption on the existence of a density of the marginal distributions.

Throughout this section we assume (A) for some rn := n−ν , (G) for some η, and (H)
to be satisfied. Moreover, we denote by (i), (ii) and (iii) the following assumptions on P :

(i) P has MNE β ∈ (0,∞],

(ii) P has NE q ∈ [0,∞],

(iii) P has LC ζ ∈ [0,∞).

Note that under the just mentioned assumptions the assumptions of Theorem 2 for localized
SVMs using hinge loss are satisfied. First, we compare the rates to the known ones for local
and global SVMs.
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Local and global SVM. Under assumptions (i) and (ii), (Steinwart and Christmann,
2008, (8.18)) show that global SVMs using hinge loss and Gaussian kernels learn with the
rate

n−βκ = n
− β(q+1)
β(q+2)+d(q+1) . (19)

We remark, that in the special case that (i) is satisfied for β =∞ this rate is also achieved
for the same method in (Lin et al., 2017b). The rate is also matched by localized SVMs in
(Thomann et al., 2017) using hinge loss and Gaussian kernel as well as cell sizes rn = n−ν

for some ν ≤ κ. We show now that under a mild additional assumption our derived rates
for localized SVMs outperform the one above. To this end, we assume (iii) in addition to
(i) and (ii). Then, the rate in (13) is satisfied and better by νβκ for all ν our analysis is
applied to. According to Remark 3 the improvement is at most q + 1 in the denominator
if β ≥ (q + 1)(1 + max{d, ζ} − d). In the other case, we obtain the fastest rate with
ν := 1−βκ

βκ+max{d,ζ} such that the exponent of our rate in (13) equals

βκ(1+max{d,ζ})
βκ+max{d,ζ} = β(q+1)(1+max{d,ζ})

β(q+1)+max{d,ζ}(β(q+2)+d(q+1)) = β(q+1)

β(q+2)+d(q+1)− β+d(q+1)
1+max{d,ζ}

. (20)

Compared to (19) we then have at most an improvement of β+d(q+1)
1+max{d,ζ} in the denominator.J

The main improvement in the comparison above results from the strong effect of the
lower-control condition (iii). Descriptively, (iii) restricts the location of noise in the sense
that if we have high noise for some x ∈ X, that is η(x) ≈ 1/2, then, (iii) forces this x
to be located close to the decision boundary. Note that this does not mean that we have
no noise far away from the decision boundary. It is still allowed to have noise η(x) ∈
(0, 1/2 − ε] ∪ [1/2 + ε, 1) for x ∈ X and some ε > 0, only the case that η(x) = 1/2 is
prohibited. We refer the interested reader to a more precise description of this effect to
(Blaschzyk and Steinwart, 2018) and proceed with our next comparison.

In the following, we compare our result with results that make besides assumption (ii)
some smoothness condition on η, namely that

(iv) η is Hölder-continuous for some ρ ∈ (0, 1].

This assumption can be seen as a strong reverse assumption to (iii) since it implies that the
distance to the decision boundary controls the noise from above, which means that there
exists a ρ and a constant c̃ > 0 such that c̃|2η(x)− 1| ≤ ∆ρ

η(x) for all x ∈ X (see Blaschzyk
and Steinwart, 2018, Lemma A.2). In particular, if (iii) and (iv) are satisfied, then ρ ≤ ζ.
Note that we observe vice versa that a reverse Hölder-continuity assumption implies (iii) if
η is continuous, see Lemma 23.

If we assume (iii) in addition to (ii) and (iv) we satisfy the assumptions for localized
SVMs in Theorem 2 since we find with (Blaschzyk and Steinwart, 2018, Lemma A.2) and
(Steinwart and Christmann, 2008, Lemma 8.23) that the MNE equals β = ρ(q + 1). We
observe that

β = ρ(q + 1) ≤ (q + 1)(1 + max{d, ζ} − d) (21)

and according to Theorem 2 the localized SVMs learn with the rate

n−βκ(ν+1) (22)
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for arbitrary ν ≤ 1−βκ
βκ+max{d,ζ} . In particular, this rate is upper bounded by

n−βκ(ν+1) < n−βκ = n
− ρ(q+1)
ρ(q+2)+d . (23)

Plug-in classifier I. Under assumption (ii), (iv) and the assumption that the support
of the marginal distribution PX is included in a compact set, the so called “Hybrid” plug-in
classifiers in (Audibert and Tsybakov, 2007, Eq. (4.1)) learn with the optimal rate

n
− ρ(q+1)
ρ(q+2)+d (24)

(see Audibert and Tsybakov, 2007, Theorem 4.3). If we assume in addition (iii), the localized
SVM rate again equals (22) and satisfies (23) such that our rate is faster for arbitrary
ν ≤ 1−βκ

βκ+max{d,ζ} . For ν := 1−βκ
βκ+max{d,ζ} we find for the exponent in (22) that

βκ(ν + 1)= βκ(1+max{d,ζ})
βκ+max{d,ζ} = ρ(q+1)

ρ(q+1)+max{d,ζ}(ρ(q+2)+d)
1+max{d,ζ}

= ρ(q+1)

ρ(q+2)+d− ρ+d
1+max{d,ζ}

such that we have at most an improvement of ρ+d
1+max{d,ζ} in the denominator.J

In the comparison above the localized SVM rate outperforms the optimal rate by making
the additional assumption (iii). This is not surprising, since the assumptions we made imply
the assumptions of (Audibert and Tsybakov, 2007). We emphasize once again that our rates
as well as the other rates are achieved under less assumptions.

Tree-based and Plug-in classifier. Assume that (ii) and (iv) are satisfied. Then,
the classifiers resulting from the tree-based adaptive partitioning methods in (Binev et al.,
2014, Sec. 6) yield under assumptions (ii) and (iv) the rate

n
− ρ(q+1)
ρ(q+2)+d

(see Binev et al., 2014, Theorems 6.1(i) and 6.3(i)). In fact the rate is achieved under milder
assumptions, namely (ii) and some condition on the behavior of the approximation error
w.r.t. P , however, by (Binev et al., 2014, Prop. 4.1) the latter is immediately satisfied under
(ii) and (iv). Moreover, (Kohler and Krzyzak, 2007, Theorems 1, 3, and 5) showed that
plug-in-classifiers based on kernel, partitioning and nearest neighbor regression estimates
learn with rate

n
− ρ(q+1)
ρ(q+3)+d . (25)

Actually, this rate holds under a slightly weaker assumption than (ii), namely that there
exists a c̄ > 0 and some α > 0 such that for all δ > 0 the inequality

E(|η − 1/2| · 1{|η−1/2|≤δ}) ≤ c̄ · δ1+α

is satisfied, but this is implied by (ii) (see Döring et al., 2015, Sec. 5). To compare our rates
we add (iii) to (ii) and (iv). Then, the localized SVM rate again equals (22) and is faster
for all ν our analysis is applied to. The improvement to the rate from (Binev et al., 2014) is
equal to the improvement in the previous comparison, whereas compared to the rate from
(Kohler and Krzyzak, 2007) the improvement is at least better by ρ in the denominator.J
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The three comparisons above have in common that rates are solely improved by assump-
tion (iii). This condition was even sufficient enough to improve the optimal rate in (24). It
is to emphasize that neither for the rates from Theorem 2 or the rates from the mentioned
authors above nor in our comparisons assumptions on the existence of a density of the
marginal distribution PX have to be made. As mentioned in the introduction assumptions
without conditions on the density of distributions are preferable, however, to compare our
rates we find subsequently assumption sets that do contain those.

Plug-in classifier II. Let us assume that (ii) and (iv) are satisfied and that PX has
a uniformly bounded density w.r.t. the Lebesgue measure. Then, Audibert and Tsybakov
(2007, Theorem 4.1) show that plug-in classifiers learns with the optimal rate

n
− ρ(q+1)
ρ(q+2)+d .

If we assume in addition (iii), the localized SVM rate again equals (22) and satisfies (23)
such that our rate is faster for arbitrary ν ≤ 1−βκ

βκ+max{d,ζ} . J
Before we proceed, we define another margin condition that measures the amount of

mass close to the decision boundary and we say according to (Steinwart and Christmann,
2008, Definition 8.6) that P has margin exponent (ME) α ∈ (0,∞], if there exists a constant
cME > 0 such that

PX({∆η(x) < t}) ≤ (cMEt)
α (26)

for all t > 0. Descriptively, large values of α reflect a low concentration of mass in the
vicinity of the decision boundary.

Plug-in classifier III. Let us assume that (ii), (iv) are satisfied and that that PX has
a density with respect to the Lebesgue measure that is bounded away from zero. Then,
the authors in Belkin et al. (2018) show that plug-in classifiers based on a weighted and
interpolated nearest neighbor scheme obtain the rate

n
− ρq
p(q+2)+d . (27)

Under the same conditions, Kohler and Krzyzak (2007) improved for plug-in-classifier based
on kernel, partitioning, and nearest neighbor regression estimates the rate in (25) to

n
− ρ(q+1)

2ρ+d . (28)

To compare results we add (iii) to (ii) and (iv). Then, the localized SVM rate equals (22)
and satisfies (23) such that our rate is obviously faster than the rate in (27) for all possible
choices of ν. The improvement compared to (27) is at least ρ

ρ(q+2)+d . In order to compare

our rate with (28) we take a closer look on the rate and the margin parameters under the
stated conditions. A short calculation shows for the exponent of the rate in (22) that

βκ(ν + 1) = ρ(q+1)
ρ(q+2)+d

(ν+1)

= ρ(q+1)

2ρ+d+
ρ(q+2)−2ρ(ν+1)+d−d(ν+1)

(ν+1)

and its easy to derive that our exponent is only larger than the one in (28) or equals it if
ν ≥ pq

2ρ+d . We show that the largest ν we can choose satisfies this bound if ρ = 1 and derive
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a rate for this case. Since PX has a density with respect to the Lebesgue measure that is
bounded away from zero, we restrict ourselves to the case that ρq ≤ 1 and hence q ≤ 1,
see Remark 25. Moreover, Blaschzyk and Steinwart (2018, Lemma A.2) and Steinwart and
Christmann (2008, Lemma 8.23) yield α = ρq = q. Furthermore, we find by Lemma 24
that q = α

ζ and we follow ζ = ρ = 1. Thus, a short calculation shows that

ν := 1−βκ
βκ+max{d,ζ} = 1−βκ

βκ+d = ρ+d
ρ(q+1)+d(ρ(q+2)+d) = 1+d

q+1+d(q+2+d) ≥
q

2+d

is satisfied for all q ≤ 1. By inserting this ν into the exponent of the localized SVM rate in
(22) we find

βκ(ν + 1)= βκ(1+d)
βκ+d = ρ(q+1)

ρ(q+2)+d+
ρ(q+1)−(ρ(q+2)+d)

1+d

= q+1

q+2+d+
q+1−(q+2+d)

1+d

= q+1
q+1+d .

Hence, the localized SVM rate is faster than the rate in (28) for all q < 1 and matches it if
q = 1. J

Under assumptions that contained that PX has a density w.r.t. Lebesgue measure that
is bounded away from zero, we improved in the previous comparison the rates from (Belkin
et al., 2018) and in the case that η is Lipschitz, the rates from (Kohler and Krzyzak, 2007).
We remark that under a slight stronger density assumption Audibert and Tsybakov (2007)
showed that certain plug-in classifier achieve the optimal rate in (28).

Finally, we compare our rates to the ones derived for the histogram rule in (Blaschzyk
and Steinwart, 2018), where we also considered a set of margin conditions and a simi-
lar strategy to derive their rates. Note that under a certain assumption set the authors
showed that the histogram rule outperformed the global SVM rates from (Steinwart and
Christmann, 2008, (8.18)) and the localized SVM rates from (Thomann et al., 2017).

Histogram rule. Let us assume that (i) and (iii) are satisfied and that

(v) P has ME α ∈ (0,∞],

see (26). Then, we find by Lemma 24 that we have NE q = α
ζ and according to (Blaschzyk

and Steinwart, 2018, Theorem 3.5) the histogram rule then learns with rate

n
− β(q+1)

β(q+1)+d(q+1)+
βζ

1+ζ (29)

as long as β ≤ (1 + ζ)(q + 1). Under these assumptions the localized SVM learns with the
rate from Theorem 2 that is

n−βκ(ν+1),

where our rate depends on ν. To compare our rates we have to pay attention to the range
of β that provides a suitable ν, see (11). If we have that (q + 1)(1 + max{d, ζ} − d) ≤ β ≤
(q + 1)(1 + ζ), then a short calculation shows that our local SVM rate in (13) is faster if ν
is not too small, that is if ν satisfies

β ((β + d)(q + 1)(ζ + 1) + βζ)−1 ≤ ν ≤ κ
1−κ
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According to Remark 3 the best possible rate is achieved for ν := κ
1−κ and has then

exponent

β(q+1)
β(q+2)+(d−1)(q+1) = β(q+1)

β(q+1)+d(q+1)+ βζ
(1+ζ)

+β−(q+1)− βζ
1+ζ

= β(q+1)

β(q+1)+d(q+1)−
(
q+ ζ

1+ζ

)
such that compared to (29) we have an improvement of q+ ζ

1+ζ in the denominator. In the
other case, that is, if β ≤ (q+ 1)(1 + max{d, ζ}−d) a short calculation shows that our local
SVM rate is better for all choices

β ((β + d)(q + 1)(ζ + 1) + βζ)−1 ≤ ν ≤ 1−βκ
βk+max{d,ζ} ,

In this case we find due to Remark 3 that the best possible rate is achieved for ν :=
1−βκ

βk+max{d,ζ} and has exponent

βκ(1+max{d,ζ})
βk+max{d,ζ} = β(q+1)

β(q+1)+d(q+1)+
βmax{d,ζ}−d(q+1)

1+max{d,ζ}
= β(q+1)

β(q+1)+d(q+1)+ βζ
1+ζ
−
(
d(q+1)−βmax{d,ζ}

1+max{d,ζ} + βζ
1+ζ

) .
Compared to (29) the rate is better by d(q+1)−βmax{d,ζ}

1+max{d,ζ} + βζ
1+ζ > 0 in the denominator.

We remark that the lower bound on ν is not surprising since if ν → 0 our rate matches
the global rate in (19) and Blaschzyk and Steinwart (2018) showed that under a certain
assumption set the rate of the histogram classifier is faster than the one of the global SVM.
Moreover, we remark that our rates in Theorem 2 hold for all values of β and not only for
a certain range of β. J
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4. Proofs

In this section we state the proofs of Section 3. We define γmax := maxj∈J γj and γmin :=
minj∈J γj w.r.t. some J ⊂ {1, . . . ,m}.

4.1 Proof of Theorem 2

Proof [Proof of Theorem 2] By Theorem 1 for sn := n−ν we find that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P
≤ RLN ,P ( ÛfD,λn,γn)−R∗LN ,P +RLF ,P ( ÛfD,λn,γn)−R∗LF ,P
≤ RLN1

,P ( ÛfD,λn,γn)−R∗LN1
,P +RLN2

,P ( ÛfD,λn,γn)−R∗LN2
,P +RLF ,P ( ÛfD,λn,γn)−R∗LF ,P .

(30)

In the subsequent steps we bound the excess risks above separately for both choices of
ν by applying Theorems 18, 20 and 22 for α := ν. First, we consider the case β ≥
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(q+ 1)(1 + max{d, ζ}− d) and check some requirements for the mentioned theorems. Since
β ≥ q+1

q+2(1 + max{d, ζ} − d) we have

ν ≤ κ
1−κ = q+1

β(q+2)+(d−1)(q+1) ≤
1

max{d,ζ} .

Moreover,

1 + ν(1− d) ≥ 1− κ(d−1)
1−κ = 1− (q+1)(d−1)

β(q+2)+(d−1)(q+1) = β(q+2)
β(q+2)+(d−1)(q+1) > 0.

Hence, we apply Theorem 18 and Theorems 20, 22 with α := ν. That means, together with

βκ(ν + 1) ≤ βκ
1−κ = (q+1)β(q+2)

(q+2)(β(q+2)+(d−1)(q+1)) = q+1
q+2

(
1− κ(d−1)

1−κ

)
≤ (q+1)(1−ν(d−1))

q+2 (31)

and

βκ(ν + 1) ≤ β(q+1)
β(q+2)+(d−1)(q+1) = 1− (d−1)(q+1)+β

β(q+2)+(d−1)(q+1) ≤ 1− (q+1) max{d,ζ}
β(q+2)+(d−1)(q+1) ≤ 1− κmax{d,ζ}

1−κ
(32)

so that βκ(ν + 1) ≤ 1 − νmax{d, ζ} for ν ≤ κ
1−κ , we obtain in (30) for ε1, ε2, ε3 > 0 and

with probability Pn not less than 1− 9e−τ that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P
≤ RLN1

,P ( ÛfD,λn,γn)−R∗LN1
,P +RLN2

,P ( ÛfD,λn,γn)−R∗LN2
,P +RLF ,P ( ÛfD,λn,γn)−R∗LF ,P

≤ c1τ

(
n−βκ(ν+1)nε1 + n

− (q+1)(1+α−νd)
q+2 nε2 + n−(1−max{νd,αζ})nε3

)
≤ c2τn

ε
(

2n−βκ(ν+1) + n−(1−νmax{d,ζ})
)

≤ c3τn
−βκ(ν+1)+ε,

(33)

holds for some ε := max{ε1, ε2, ε3} and some constants c1 depending on d, β, q, ξ, ε1, ε2, ε3, σ,
and c2, c3 > 0 depending on d, β, q, ξ, ε, σ.

Second, we consider the case β < (q + 1)(1 + max{d, ζ} − d) and check again the
requirements on ν ≤ 1−βκ

βk+max{d,ζ} for the theorems applied above. We have

ν ≤ 1−βκ
βκ+max{d,ζ} = β+d(q+1)

β(q+1)+max{d,ζ}(β(q+2)+d(q+1)) ≤
q+1

β(q+2)+(d−1)(q+1) = κ
1−κ , (34)

and

ν ≤ 1−βκ
βκ+max{d,ζ} ≤

1−βκ
max{d,ζ} ≤

1
max{d,ζ} .

Moreover,

1 + ν(1− d) ≥ 1− (1−βκ)(d−1)
βκ+max{d,ζ} = max{d,ζ}−d(1−βκ)+1

βκ+max{d,ζ} ≥ max{d,ζ}−d+1
βκ+max{d,ζ} > 0.

Again, we apply Theorem 17 and Theorems 19, 21 for α := ν. Together with (34) we find
similar to (31) and (32) that

βκ(ν + 1) ≤ βκ
1−κ = q+1

q+2

[
1− κ(d−1)

1−κ

]
≤ q+1

q+2

[
1− (1−βκ)(d−1)

βk+max{d,ζ}

]
≤ (q+1)(1−ν(d−1))

q+2 ,
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and

βκ(ν + 1) ≤ βκ(1+max{d,ζ})
βκ+max{d,ζ} = 1− max{d,ζ}(1−βκ)

βκ+max{d,ζ} ≤ 1− νmax{d, ζ}

such that we obtain in (30) that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P
≤ RLN1

,P ( ÛfD,λn,γn)−R∗LN1
,P +RLN2

,P ( ÛfD,λn,γn)−R∗LN2
,P +RLF ,P ( ÛfD,λn,γn)−R∗LF ,P

≤ c1τ

(
nε1n−βκ(ν+1) + nε2n

− (q+1)(1+α−νd)
q+2 + nε3n−(1−νmax{d,ζ})

)
≤ c2τn

ε
(

2n−βκ(ν+1) + n−(1−νmax{d,ζ})
)

≤ c3τn
−βκ(ν+1)+ε,

holds with probability Pn not less than 1− 9e−τ .

4.2 Proof of Lemma 5

Proof [Proof of Lemma 5] Since Ûf : X → [−1, 1] we consider functions f : X → [−1, 1].
Then, an analogous calculation as in the proof of (Steinwart and Christmann, 2008, The-
orem 8.24) yields (LF ◦ f − LF ◦ f∗L,P )2 = f − f∗L,P . Following the same arguments as in
(Blaschzyk and Steinwart, 2018, Lemma 3.4) we find for all x ∈ F with the lower-control
assumption that

1 ≤ cLC

sζ
|2η(x)− 1|.

Then, we have

EP (LF ◦ f − LF ◦ f∗L,P )2 =

∫
F
|f(x)− f∗L,P (x)|2dPX(x)

≤ 2

∫
F
|f(x)− f∗L,P (x)|dPX(x)

≤ 2cLC

sζ

∫
F
|f(x)− f∗L,P (x)||2η(x)− 1|dPX(x)

≤ 2cLC

sζ
EP (LF ◦ f − LF ◦ f∗L,P ).

4.3 Proof of Theorem 7

Proof [Proof of Theorem 7] We assume n ≥ n∗ := max{4,
(
4−1δ∗

)− 1
ν ,
(
4−1δ∗

)− 1
α } with-

out loss of generality. For n < n∗ the equation in (18) is immediately satisfied with

constant c̃d,β,q,ε := (n∗)βκ(ν+1)−ε and with probability 1. We analyze the excess risk
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RLJ ,P (fD1,λD2
,γD2

) − R∗L,P by applying the splitting technique described in Section 3.1

and by applying a generic oracle inequality for ERM given in (Steinwart and Christmann,
2008, Theorem 7.2) on each set. To this end, we define sn := rn and find by Theorem 1
that

RLJ ,P (fD1,λD2
,γD2

)−R∗LJ ,P
≤ RLN ,P (fD1,λD2

,γD2
)−R∗LN ,P +RLF ,P (fD1,λD2

,γD2
)−R∗LF ,P

≤ RLN1
,P (fD1,λD2

,γD2
)−R∗LN1

,P +RLN2
,P (fD1,λD2

,γD2
)−R∗LN2

,P

+RLF ,P (fD1,λD2
,γD2

)−R∗LF ,P .

(35)

First of all, we analyze RLN1
,P (fD1,λD2

,γD2
)−R∗LN1

,P . Note that

RLN1
,P (fD1,λD2

,γD2
) =

∑
j∈JN1

RLj ,P (fD1,λD2,j
,γD2,j

).

According to (Steinwart and Christmann, 2008, Theorem 8.24) we have on the set N1

variance bound θ = q
q+1 with constant V := 6c

q
q+1

NE . Then, for fixed data set D1 and

τN1
n := τ + ln(1 + |Λn × Γn||JN1

|),

as well as n− l ≥ n/4 for n ≥ 4, and l := bn2 c+ 1, we find by (Steinwart and Christmann,
2008, Theorem 7.2) with probability Pn−l not less than 1− e−τ that

RLN1
,P (fD1,λD2

,γD2
)−R∗LN1

,P (36)

≤ 6

(
inf

(λ,γ)∈(Λn×Γn)
|JN1

|
RLN1

,P (fD1,λ,γ)−R∗LN1
,P

)

+ 4

48c
q
q+1

NE (τ + ln(1 + |Λn × Γn||JN1
|)

n− l


q+1
q+2

≤ 6

(
inf

(λ,γ)∈(Λn×Γn)
|JN1

|
RLN1

,P (fD1,λ,γ)−R∗LN1
,P

)
+cq

(
τN1
n

n

) q+1
q+2

.

By Theorem 17 for p ∈ (0, 1
2) we obtain with probability P l not less than 1 − 3|Λn ×

Γn||JN1
|e−τ that

RLN1
,P (fD1,λ,γ)−R∗LN1

,P

≤ c1

( ∑
j∈JN1

λjr
d

γdj
+ max
j∈JN1

γβj +
(rn
n

) q+1
q+2−p

( ∑
j∈JN1

λ−1
j γ

− d
p

j PX(Aj)

) p(q+1)
q+2−p

+
( τ
n

) q+1
q+2

)
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holds for all (λ,γ) ∈ Λ
|JN1

|
n ×Γ

|JN1
|

n simultaneously and some constant c1 > 0 depending on
d, β, p, q. Then, Lemma 28 i) for all ε1 > 0 yields

inf
(λ,γ)∈(Λn×Γn)

|JN1
|
RLN1

,P (fD1,λ,γ)−R∗LN1
,P (37)

≤ inf
(λ,γ)∈(Λn×Γn)

|JN1
|
c1

( ∑
j∈JN1

λjr
d

γdj
+ max
j∈JN1

γβj

+

((rn
n

) 1
p
∑
j∈JN1

λ−1
j γ

− d
p

j PX(Aj)

) p(q+1)
q+2−p

+
( τ
n

) q+1
q+2

)

≤ c2

(
n−βκ(ν+1)+ε1 + τ

q+1
q+2n

− q+1
q+2

)

where c2 > 0 is a constant depending on d, β, q and ε1. By inserting (37) into (36) we have
with probability Pn not less than 1− (1 + 3|Λn × Γn||JN1

|)e−τ that

RLN1
,P (fD1,λD2

,γD2
)−R∗LN1

,P

≤ 6

(
inf

(λ,γ)∈(Λn×Γn)
|JN1

|
RLN1

,P (fD1,λ,γ)−R∗LN1
,P

)
+cq

(
τN1
n

n

) q+1
q+2

≤ c2

(
n−βκ(ν+1)+ε1 + τ

q+1
q+2n

− q+1
q+2

)
+ cq

(
τN1
n

n

) q+1
q+2

.

Analogously to the calculations at the beginning of the poof of Theorem 17, we find by
Lemma 26 for t = 2rn that |JN1 | ≤ cdrnr

−d
n . Thus, we obtain with the inequalities (31)

25



Blaschzyk and Steinwart

resp. (34) that

RLN1
,P (fD1,λD2

,γD2
)−R∗LN1

,P (38)

≤ c2

(
n−βκ(ν+1)+ε1 + τ

q+1
q+2n

− q+1
q+2

)
+ cq

(
τ + ln(1 + |Λn × Γn||JN1

|)

n

) q+1
q+2

≤ c3

(
n−βκ(ν+1)+ε1 + τ

q+1
q+2n

− q+1
q+2 +

( τ
n

) q+1
q+2

+

(
ln(1 + |Λn × Γn||JN1

|)

n

) q+1
q+2
)

≤ c3

(
n−βκ(ν+1)+ε1 + 2τ

q+1
q+2n

− q+1
q+2 +

(
|JN1 | ln(2|Λn × Γn|)

n

) q+1
q+2

)

≤ c3

(
n−βκ(ν+1)+ε1 + 2τ

q+1
q+2n

− q+1
q+2 +

(
cdrn ln(2|Λn × Γn|)

rdnn

) q+1
q+2

)

= c3

(
n−βκ(ν+1)+ε1 + 2τ

q+1
q+2n

− q+1
q+2 +

(
cd ln(2|Λn × Γn|)

n1−ν(d−1)

) q+1
q+2

)
≤ c4

(
2n−βκ(ν+1)+ε̂1 + 2τ

q+1
q+2n

− q+1
q+2

)
,

where ε̂1 > 0 and where c3, c4 > 0 are constants depending on d, β, q, ε1 resp. d, β, q, ε̂1. A
variable transformation in τ together with Lemma 26 yields

RLN1
,P (fD1,λD2

,γD2
)−R∗LN1

,P ≤ c5τ
q+1
q+2 · n−βκ(ν+1)+ε̃1 (39)

for some ε̃1 > 0 with probability Pn not less than 1 − e−τ , where c5 > 0 is a constant
depending on d, β, q, ε̃1.

Next, we analyze RLN2
,P (fD1,λD2

,γD2
) −R∗LN2

,P by the same procedure. According to

(Steinwart and Christmann, 2008, Theorem 8.24) we have on the set N2 variance bound

θ = q
q+1 with constant V := 6c

q
q+1

NE . Then, for fixed data set D1 and

τN2
n := τ + ln(1 + |Λn × Γn||JN2

|),

as well as n− l ≥ n/4 for n ≥ 4, and l := bn2 c+ 1, we find by (Steinwart and Christmann,
2008, Theorem 7.2) with probability Pn−l not less than 1− e−τ that

RLN2
,P (fD1,λD2

,γD2
)−R∗LN2

,P (40)

≤ 6

(
inf

(λ,γ)∈(Λn×Γn)
|JN2

|
RLN2

,P (fD1,λ,γ)−R∗LN2
,P

)
+cq

(
τN2
n

n

) q+1
q+2

.
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By Theorem 19 for sn = rn, p ∈ (0, 1
2) and ε̂ > 0 we obtain with probability Pn not less

than 1− (1 + 3|Λn × Γn||JN2
|)e−τ that

RLN2
,P (fD1,λ,γ)−R∗LN2

,P

≤ c6

((
rn

minj∈JN2
γj

)d ∑
j∈JN2

λjn
ε̂

+
(rn
n

) q+1
q+2−p

( ∑
j∈JN2

λ−1
j γ

− d
p

j PX(Aj)

) p(q+1)
q+2−p

+
( τ
n

) q+1
q+2

)

holds for all (λ,γ) ∈ Λ
|JN2

|
n ×Γ

|JN2
|

n simultaneously and some constant c6 > 0 depending on
d, β, p, q and ε̂. Then, Lemma 28 ii) for all ε2 > 0 yields

inf
(λ,γ)∈(Λn×Γn)

|JN2
|
RLN2

,P (fD1,λ,γ)−R∗LN2
,P (41)

≤ inf
(λ,γ)∈(Λn×Γn)

|JN2
|
c6

((
rn

minj∈JN2
γj

)d ∑
j∈JN2

λjn
ε̃

+

((rn
n

) 1
p
∑
j∈JN2

λ−1
j γ

− d
p

j PX(Aj)

) p(q+1)
q+2−p

+
( τ
n

) q+1
q+2

)

≤ c7

(
nε2
(
rd−1
n n

)− q+1
q+2

+ τ
q+1
q+2 · n−

q+1
q+2

)
,

where c7 > 0 is a constant depending on d, β, q and ε2. We insert (41) into (40) and obtain

RLN2
,P (fD1,λD2

,γD2
)−R∗LN2

,P

≤ c7

(
nε2
(
rd−1
n n

)− q+1
q+2

+ τ
q+1
q+2 · n−

q+1
q+2

)
+ cq

(
τN2
n

n

) q+1
q+2

.

with probability Pn not less than 1− (1 + 3|Λn×Γn||JN2
|)e−τ . An analogous calculation as

in (38) yields

RLN2
,P (fD1,λD2

,γD2
)−R∗LN2

,P

≤ c8

(
nε2
(
rd−1
n n

)− q+1
q+2

+ 2τ
q+1
q+2 · n−

q+1
q+2 +

(
cd ln(2|Λn × Γn|)

n1−ν(d−1)

) q+1
q+2

)

≤ c8

(
nε2
(
n1−ν(d−1)

)− q+1
q+2

+ 2τ
q+1
q+2 · n−

q+1
q+2 +

(
cd ln(2|Λn × Γn|)

n1−ν(d−1)

) q+1
q+2

)

≤ c9

(
nε̂2
(
n1−ν(d−1)

)− q+1
q+2

+ τ
q+1
q+2 · n−

q+1
q+2

)
,
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where ε̂2 > 0 and where c8, c9 > 0 are constants depending on d, β, q, ε2 resp. d, β, q, ε̂2. A
variable transformation in τ together with Lemma 26 then yields

RLN2
,P (fD1,λD2

,γD2
)−R∗LN2

,P ≤ c10τ
q+1
q+2 · nε̃2

(
n1−ν(d−1)

)− q+1
q+2

(42)

with probability Pn not less than 1−e−τ , where c10 > 0 is a constant depending on d, β, q, ε̃2.

Next, we analyze RLF ,P (fD1,λD2
,γD2

)−R∗LF ,P . According to Theorem 5 we have on the

set F the best possible variance bound θ = 1 with constant V := 2cLCr
−ζ
n . Then, for fixed

data set D1 and

τFn := τ + ln(1 + |Λn × Γn||JF |),

as well as n− l ≥ n/4 for n ≥ 4, and l := bn2 c+ 1, we find by (Steinwart and Christmann,
2008, Theorem 7.2) with probability Pn−l not less than 1− e−τ that

RLF ,P (fD1,λD2
,γD2

)−R∗LF ,P (43)

≤ 6

(
inf

(λ,γ)∈(Λn×Γn)|JF |
RLF ,P (fD1,λ,γ)−R∗LF ,P

)
+

2cLCτ
F
n

rζnn
.

Then, Theorem 21 for sn = rn, p ∈ (0, 1
2) and ε̃ > 0 yields

RLF ,P (fD1,λ,γ)−R∗LF ,P

≤ c10

((
rn

minj∈JF γj

)d ∑
j∈JF

λjn
ε̃ +

( ∑
j∈JF

λ−1
j γ

− d
p

j PX(Aj)

)p
n−1 +

τ

rζn

)
,

with probability P l not less than 1 − 3|Λn × Γn||JF |e−τ and for all (λ,γ) ∈ Λ
|JF |
n × Γ

|JF |
n

simultaneously and some constant c10 > 0 depending on d, p and ε̃. Again, Lemma 28 iii)
for all ε3 > 0 yields

inf
(λ,γ)∈(Λn×Γn)|JF |

RLF ,P (fD1,λ,γ)−R∗LF ,P (44)

≤ inf
(λ,γ)∈(Λn×Γn)|JF |

c10

((
rn

minj∈JF γj

)d ∑
j∈JF

λjn
ε̃

+

( ∑
j∈JF

λ−1
j γ

− d
p

j PX(Aj)

)p
n−1 +

τ

rζnn

)

≤ c11

(
max{r−dn , r−ζn } · n−1+ε3 + τ · r−ζn n−1

)
,
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where c11 > 0 is a constant depending on d and ε3. By inserting (44) into (43) we find

RLF ,P (fD1,λD2
,γD2

)−R∗LF ,P (45)

≤ 6

(
inf

(λ,γ)∈(Λn×Γn)|JF |
RLF ,P (fD1,λ,γ)−R∗LF ,P

)
+

2cLCτ
F
n

rζnn

≤ c12

(
max{r−dn , r−ζn } · n−1+ε3 + τ · r−ζn n−1 +

τ + ln(1 + |Λn × Γn||JF |)
rζnn

)

≤ c12

(
max{r−dn , r−ζn } · n−1+ε3 + 2τ · r−ζn n−1 +

|JF | ln(2|Λn × Γn|)
rζnn

)
≤ c12

(
max{r−dn , r−ζn } · n−1+ε3 + 2τ · r−ζn n−1 +

mn ln(2|Λn × Γn|)
rζnn

)
≤ c13

(
max{r−dn , r−ζn } · n−1+ε3 + 2τ · r−ζn n−1 +

ln(2|Λn × Γn|)
rdnr

ζ
nn

)
≤ c14

(
max{r−dn , r−ζn } · n−1+ε̂3 + 2τ · r−ζn n−1

)
,

where ε̂3 > 0 and where c12, c13, c14 > 0 are constants depending on d, ε3 resp. d, ε̂3. A
variable transformation in τ then yields

RLF ,P (fD1,λD2
,γD2

)−R∗LF ,P ≤ c15τ ·max{r−dn , r−ζn } · n−1+ε̃3 (46)

with probability Pn not less than 1− e−τ , where c15 > 0 is a constant depending on d and
ε̃3.

Finally, we compose (39), (42), (46) and insert these inequalities into (35). We obtain
with probability Pn not less than 1− 3e−τ that

RLJ ,P (fD1,λD2
,γD2

)−R∗LJ ,P
≤ RLN1

,P (fD1,λD2
,γD2

)−R∗LN1
,P +RLN2

,P (fD1,λD2
,γD2

)−R∗LN2
,P

+RLF ,P (fD1,λD2
,γD2

)−R∗LF ,P

≤ c16τ

(
n−βκ(ν+1)+ε̃1 + nε̃2

(
n1−ν(d−1)

)− q+1
q+2

+ max{r−dn , r−ζn } · n−1+ε̃3

)
≤ c16τn

ε
(

2n−βκ(ν+1) + max{r−dn , r−ζn } · n−1
)

≤ c17τn
ε · n−βκ(ν+1),

where in the last step we applied βκ(ν+1) ≤ 1−νmax{d, ζ} analogously to the calculations
in the proof of Theorem 2, where ε := max{ε̃1, ε̃2, ε̃3} and where c16, c17 > 0 are constants
depending on d, β, q and ε.

4.4 Oracle Inequalities and Learning rates on predefined sets

In this subsection, we state the theorems leading to the proof of our main result in Theorem
2. They show the individual oracle inequalities and learning rates on the sets defined in
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(10) resp. (15). We present first the general oracle inequality for localized SVMs on that
all results are based on and discuss some necessary results concerning entropy numbers of
localized Gaussian kernels. After that we decompose our analysis in the following way. We
derive in Section 4.4.1 bounds on the approximation error on our predefined sets. Then, in
Sections 4.4.2 and 4.4.3 we present the oracle inequalities and learning rates on the sets N1

resp. N2 and F .

Note that in this section, for some measure µ we denote by L2(µ) the Lebesgue spaces
of order 2. We write DX for the empirical measure w.r.t. the x-samples of D and we write
PX|A for restriction of the marginal distribution PX onto some set A ⊂ X.

Before we state a more general oracle inequality in the next theorem, we recall the
definition of so-called entropy numbers, see (Carl and Stephani, 1990) or (Steinwart and
Christmann, 2008, Definition A.5.26), which are necessary to measure the capacity of the
underlying RKHS. For normed spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ), as well as an integer i ≥ 1,
the i-th (dyadic) entropy number of a bounded, linear operator S : E → F is defined by

ei(S : E → F ) := ei(SBE , ‖ · ‖F )

:= inf

{
ε > 0 : ∃s1, . . . , s2i−1 ∈ SBE such that SBE ⊂

2i−1⋃
j=1

(sj + εBF )

}
,

where we use the convention inf ∅ :=∞, and BE as well as BF denote the closed unit balls
in E and F , respectively.

Theorem 9 (Oracle Inequality for Localized SVMs) Let L : X × Y × R → [0,∞)
be the hinge loss. Based on a partition (Aj)j=1,...,m of B`d2

, where Åj 6= ∅ for every j ∈
{1, . . . ,m}, we assume (H). Furthermore, for an arbitrary index set J ⊂ {1, . . . ,m}, we
assume that for θ ∈ [0, 1] to be the exponent of the variance bound (14) w.r.t. the loss LJ .
Assume that for fixed n ≥ 1 there exist constants p ∈ (0, 1) and aJ > 0 such that

EDX∼PnXei(id : HJ → L2(DX)) ≤ aJ i−
1
2p , i ≥ 1 . (47)

Finally, fix an f0 ∈ HJ with ‖f0‖∞ ≤ 1. Then, for all fixed τ > 0, λ := (λ1, . . . , λm) > 0,
and a := max{aJ , 2} the localized SVM predictor given by (2) using Ĥ1, . . . , Ĥm and LJ
satisfies∑

j∈J
λj‖ ÛfDj ,λj‖2Ĥj +RLJ ,P ( ÛfD,λ)−R∗LJ ,P

≤ 9

∑
j∈J

λj‖1Ajf0‖2Ĥj+RLJ ,P (f0)−R∗LJ ,P

+C

(
a2p

n

) 1
2−p−θ+θp

+3

(
72V τ

n

) 1
2−θ

+
30τ

n

with probability Pn not less than 1 − 3e−τ , where C > 0 is a constant only depending on
p, V, θ.

Proof We apply (Eberts and Steinwart, 2015, Theorem 5). The hinge loss is Lipschitz
continuous and can be clipped at M = 1. Since ‖f0‖∞ ≤ 1 we have ‖L ◦ f0‖∞ ≤ 2 such
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that B0 = 2. A look into the proof of (Eberts and Steinwart, 2015, Theorem 5) shows that
two things can be slightly modified. First, it suffices to assume to have average entropy
numbers of the form in (47). Second, it suffices to consider the individual RKHS-norms on
the local set J ⊂ {1, . . . ,m} instead of the whole set J = {1, . . . ,m}. By combining these
observations yields the result.

We remark that the constant C > 0 in Theorem 9 is exactly the constant from (Steinwart
and Christmann, 2008, Theorem 7.23). As the following two lemmata shows, we obtain a
bound of the form (47).

Lemma 10 Let A ⊂ B`d2 be such that Å 6= ∅ and A ⊂ Br(z) with r > 0, z ∈ X. Let Hγ(A)

be the RKHS of the Gaussian kernel kγ over A. Then, for all p ∈ (0, 1
2) there exists a

constant cd,p > 0 such that for all γ ≤ r and i ≥ 1 we have

ei(id : Hγ(A)→ L2(PX|A)) ≤ cd,p
√
PX(A) · r

d
2pγ
− d

2p i
− 1

2p ,

where cd,p := (3cd)
1
2p

(
d+1
2ep

) d+1
2p

.

Proof Following the lines of (Meister and Steinwart, 2016, Theorem 12) we consider the
commutative diagram

Hγ(A)
id //

I−1
Br
◦IA

��

L2(PX|A)

Hγ(Br)
id

// `∞(Br)

id

OO

where the extension operator IA : Hγ(A) → Hγ(Rd) and the restriction operator I−1
Br

:

Hγ(Rd) → Hγ(Br), defined in (Steinwart and Christmann, 2008, Theorem 4.37), are iso-
metric isomorphisms such that ‖I−1

Br
◦ IA : Hγ(A)→ Hγ(Br)‖ = 1. According to (Steinwart

and Christmann, 2008, (A.38) and (A.39)) we then have

ei(id : Hγ(A)→ L2(PX|A))

≤ ‖I−1
Br
◦ IA : Hγ(A)→ Hγ(Br)‖ · ei(id : Hγ(Br)→ `∞(Br)) · ‖ id : `∞(Br)→ L2(PX|A)‖,

(48)

where we find for f ∈ `∞(Br) that

‖ id : `∞(Br)→ L2(PX|A)‖ ≤ ‖f‖∞
√
PX(A) (49)

since

‖f‖L2(PX|A) =

(∫
X

1A(x)|f(x)|2dPX(x)

) 1
2

≤ ‖f‖∞ ·
(∫

X
1A(x)dPX(x)

) 1
2

≤ ‖f‖∞
√
PX(A).
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Furthermore, by (Steinwart and Christmann, 2008, (A.38) and (A.39)) and (Farooq and
Steinwart, 2019, Theorem 5) we obtain

ei(id : Hγ(Br)→ `∞(Br)) ≤ ei(id : H γ
r
(r−1B)→ `∞(r−1B)) ≤ cd,p · r

d
2pγ
− d

2p i
− 1

2p , (50)

where cd,p := (3cd)
1
2p

(
d+1
2ep

) d+1
2p

. Plugging (49) and (50) into (48) yields

ei(id : Hγ(A)→ L2(PX|A)) ≤ cd,p
√
PX(A) · r

d
2pγ
− d

2p i
− 1

2p .

Lemma 11 Based on a partition (Aj)j=1,...,m of B`d2
, where Åj 6= ∅ and Aj ⊂ Br(zj) for

r > 0, zj ∈ B`d2 for every j ∈ {1, . . . ,m}, we assume (H). Then, for all p ∈ (0, 1
2) there

exists a constant c̃d,p > 0 such that for all γj ≤ r and i ≥ 1 we have

ei(id : HJ → L2(DX)) ≤ c̃d,p|J |
1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j DX(Aj)

 1
2

i
1
2p , i ≥ 1,

and, for the average entropy numbers we have

EDX∼PnXei(id : HJ → L2(DX)) ≤ c̃d,p|J |
1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

 1
2

i
1
2p , i ≥ 1.

The proof shows that the constant is given by c̃d,p := 2 (9 ln(4)cd)
1
2p

(
d+1
2ep

) d+1
2p

.

Proof We define aj := cd,p
√
DX(Aj) · r

d
2pγ
− d

2p

j . By Lemma 10 we have

ei(id : Hγj (Aj)→ L2(DX|Aj
)) ≤ aji−

1
2p

for j ∈ J, i ≥ 1. Following the lines of the proof of (Meister and Steinwart, 2016, Theo-
rem 11) we find that

ei(id : HJ → L2(DX)) ≤ 2|J |
1
2

3 ln(4)
∑
j∈J

λ−pj a2p
j

 1
2p

i
1
2p .
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By inserting aj and by applying ‖ · ‖p
`
|J|
p

≤ |J |1−p‖ · ‖p
`
|J|
1

we obtain

ei(id : HJ → L2(DX)) ≤ 2|J |
1
2

3 ln(4)
∑
j∈J

λ−pj a2p
j

 1
2p

i
1
2p

= 2|J |
1
2 (3 ln(4))

1
2p

∑
j∈J

λ−pj

(
cd,p

√
DX(Aj) · r

d
2pγ
− d

2p

j

)2p
 1

2p

i
1
2p

= cd,p2(3 ln(4))
1
2p |J |

1
2 r

d
2p

∑
j∈J

(
λ−1
j γ

− d
p

j DX(Aj)

)p 1
2p

i
1
2p

≤ c̃d,p|J |
1
2 r

d
2p |J |

1−p
2p

∑
j∈J

λ−1
j γ

− d
p

j DX(Aj)

 1
2

i
1
2p

= c̃d,p|J |
1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j DX(Aj)

 1
2

i
1
2p ,

where c̃d,p := cd,p2(3 ln(4))
1
2p and cd,p is the constant from Lemma 10. Finally, by consider-

ing the above inequality in expectation yields

EDX∼PnXei(id : HJ → L2(DX)) ≤ c̃d,p|J |
1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j EDX∼PnXDX(Aj)

 1
2

i
1
2p

≤ c̃d,p|J |
1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

 1
2

i
1
2p .

4.4.1 Bounds on Approximation Error

We define for an f0 : X → R the function

A
(γ)
J (λ) :=

∑
j∈J

λj‖1Ajf0‖2Ĥj +RLJ ,P (f0)−R∗LJ ,P . (51)

Recall that we aim to find an f0 ∈ HJ such that both, the norm and the approximation error

in A
(γ)
J (λ) are small. We show in the following that a suitable choice for f0 is a function

that is constructed by convolutions of some f ∈ L2(Rd) with the function Kγ : Rd → R,
defined by

Kγ(x) =

(
2

π1/2γ

)d/2
e−2γ−2‖x−·‖22 . (52)
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Note that Kγ ∗f(x) = 〈Φγ(x), f〉L2(Rd) for x ∈ Rd, where Φγ is a feature map of a Gaussian
kernel (see Steinwart and Christmann, 2008, Lemma 4.45). The following lemma shows
that a restriction of the convolution is contained in a local RKHS and that we control the
individual RKHS norms in (51).

Lemma 12 (Convolution) Let A ⊂ Br(z) for some r > 0, z ∈ B`d2
. Furthermore, let

Hγ(A) be the RKHS of the Gaussian kernel kγ over A with γ > 0 and let the function
Kγ : Rd → R by defined as in (52). Moreover, for ρ ≥ r define the function fργ : Rd → R by

fργ (x) := (πγ2)−d/4 · 1Bρ(z)(x) · f̃(x),

where f̃ : Rd → R is some function with ‖f̃‖∞ ≤ 1. Then, we have ‖Kγ ∗ fργ ‖∞ ≤ 1 and
1A(Kγ ∗ fργ ) ∈ Ĥγ(A) with

‖1A(Kγ ∗ fργ )‖2
Ĥγ(A)

≤
(
ρ2

πγ2

)d/2
vold(B).

Proof Obviously, fργ ∈ L2(Rd) such that we find

‖fργ ‖2L2(Rd) =

∫
Rd
|(πγ2)−d/4 · 1Bρ(z)(x)f̃(x)|2dx

≤ (πγ2)−d/2
∫
Rd
|1Bρ(z)(x)|2dx

= (πγ2)−d/2
∫
Bρ(z)

1dx

= (πγ2)−d/2 vold(Bρ(z))

=

(
ρ2

πγ2

)d/2
vold(B).

(53)

Since the map Kγ ∗ · : L2(Rd)→ Hγ(A) given by

Kγ ∗ g(x) :=

(
2

π1/2γ

)d/2 ∫
Rd
e−2γ−2‖x−y‖22 · g(y)dy, g ∈ L2(Rd), x ∈ A

is a metric surjection (see Steinwart and Christmann, 2008, Proposition 4.46), we find

‖(Kγ ∗ fργ )|A‖
2
Hγ(A) ≤ ‖f

ρ
γ ‖2L2(Rd). (54)

Next, Young’s inequality (see Steinwart and Christmann, 2008, Theorem A.5.23) yields

‖Kγ ∗ fργ ‖∞ =

(
2

πγ2

)d/2
‖kγ ∗ (1Bρ(z)f̃)‖∞ ≤

(
2

πγ2

)d/2
‖kγ‖1‖f̃‖∞ ≤ 1. (55)

Hence, with (54) and (53) we find

‖1A(Kγ ∗ fργ )‖2
Ĥγ(A)

= ‖(Kγ ∗ fργ )|A‖
2
Hγ(A) ≤ ‖f

ρ
γ ‖2L2(Rd) ≤

(
ρ2

πγ2

)d/2
vold(B).
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In order to bound the excess risks in (51) over the sets N1, N2 and F we apply Zhang’s
equality given by

RLJ ,P (f0)−R∗LJ ,P =

∫
⋃
j∈J Aj

|f0 − f∗Lclass,P
||2η − 1|dPX (56)

(see Steinwart and Christmann, 2008, Theorem 2.31). We begin with an analysis on the
set N1, whose cells have no intersection with the decision boundary. For such cells the
subsequent lemma presents a suitable function f0 and its difference to f∗Lclass,P

that occurs
in (56). In particular, the function f0 is a convolution of Kγ with 2η − 1 since we have
f∗Lclass,P

(x) = 2η(x)− 1 for x ∈ Aj with j ∈ JsN1
as mentioned in Section 3.2.

Lemma 13 (Convolution on N1 and its difference to f∗Lclass,P
) Let the assumptions of

Lemma 12 be satisfied with A ∩ X1 6= ∅ and A ∩ X−1 6= ∅. We define the function
f3r
γ : Rd → R by

f3r
γ (x) := (πγ2)−d/4 · 1B3r(z)∩(X1∪X−1)(x) sign(2η(x)− 1). (57)

Then, we find for all x ∈ A that

|Kγ ∗ f3r
γ (x)− f∗Lclass,P

(x)| ≤ 2

Γ(d/2)

∫ ∞
2∆2

η(x)γ−2

e−ttd/2−1dt,

where Kγ is the function defined in (52).

Proof Let us consider w.l.o.g. x ∈ A ∩X1. Then,

∆η(x) = inf
x̄∈X−1

‖x− x̄‖2 ≤ diam(Br(z)) = 2r. (58)

Next, we denote by B̊ the open ball and show that B̊∆η(x)(x) ⊂ B3r(z) ∩ X1. For x′ ∈
B̊∆η(x)(x) we have ‖x′ − x‖2 < ∆η(x) such that x′ ∈ X1. Furthermore, (58) yields ‖x′ −
zj‖2 ≤ ‖x′ − x‖2 + ‖x− zj‖2 < ∆η(x) + r ≤ 2r + r = 3r and hence x′ ∈ B3r(z). We find

Kγ ∗ f3r
γ (x) =

(
2

π1/2γ

)d/2 ∫
Rd
e−2γ−2‖x−y‖22(πγ2)−d/41B3r(z)∩(X1∪X−1)(y)sign (2η(y)− 1) dy

=

(
2

πγ2

)d/2 ∫
Rd
e−2γ−2‖x−y‖22 · 1B3r(z)∩(X1∪X−1)(y)sign (2η(y)− 1) dy

=

(
2

πγ2

)d/2(∫
B3r(z)∩X1

e−2γ−2‖x−y‖22 dy −
∫
B3r(z)∩X−1

e−2γ−2‖x−y‖22 dy

)

≥
(

2

πγ2

)d/2(∫
B̊∆η(x)(x)

e−2γ−2‖x−y‖22 dy −
∫
Rd\B̊∆η(x)(x)

e−2γ−2‖x−y‖22 dy

)

= 2

(
2

πγ2

)d/2 ∫
B̊∆η(x)(x)

e−2γ−2‖x−y‖22 dy − 1.
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Since f∗Lclass,P
(x) = 1 we obtain by Lemma 12 for ρ = 3r and f̃ = 1X1∪X−1 sign(2η−1), and

by Lemma 27 that

|Kγ ∗ f3r
γ (x)− f∗Lclass,P

(x)| = |Kγ ∗ f3r
γ (x)− 1|

= 1−Kγ ∗ f3r
γ (x)

≤ 2− 2

(
2

πγ2

)d/2 ∫
B̊∆η(x)(x)

e−2γ−2‖x−y‖22 dy

= 2− 2

Γ(d/2)

∫ 2∆2
η(x)γ−2

0
e−ttd/2−1dt

=
2

Γ(d/2)

(∫ ∞
0

e−ttd/2−1dt−
∫ 2∆2

η(x)γ−2

0
e−ttd/2−1dt

)

=
2

Γ(d/2)

∫ ∞
2∆2

η(x)γ−2

e−ttd/2−1dt.

(59)

The case x ∈ A∩X0 is clear and for x ∈ A∩X−1 the calculation yields the same inequality,
hence (59) holds for all x ∈ A.

Under the assumption that P has some MNE β we immediately obtain in the next
theorem a bound on the approximation error on the set N1.

Theorem 14 (Approximation Error on N1) Let (A) and (H) be satisfied and let P
have MNE β ∈ (0,∞]. Define the set of indices

J := { j ∈ {1, . . .m} |Aj ∩X1 6= ∅ and Aj ∩X−1 6= ∅ }.

and the function f0 : X → R by

f0 :=
∑
j∈J

1Aj

(
Kγj ∗ f3r

γj

)
,

where the functions Kγ and f3r
γj are defined in (52) and (57). Then, f0 ∈ HJ and ‖f0‖∞ ≤ 1.

Moreover, there exist constants cd, cd,β > 0 such that

A
(γ)
J (λ) ≤ cd ·

∑
j∈J

λjr
d

γdj
+ cd,β ·max

j∈J
γβj .

Proof By Lemma 12 for ρ = 3r and f̃ = 1X1∪X−1 sign(2η − 1) we have immediately that
f0 ∈ HJ as well as ‖f0‖∞ = ‖Kγ ∗ f3r

γ ‖∞ ≤ 1. Moreover, Lemma 12 yields∑
j∈J

λj‖1Ajf0‖2Ĥj =
∑
j∈J

λj‖1Aj (Kγj ∗ f3r
γj )‖2

Ĥj
≤ cd ·

∑
j∈J

λjr
d

γdj

for some constant cd > 0. Next, we bound the excess risk of f0. To this end, we fix w.l.o.g.
an x ∈ Aj ∩X1 and find

∆η(x) = inf
x̄∈X−1

‖x− x̄‖2 ≤ diam(Br(z)) = 2r
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such that Aj ⊂ {∆η(x) ≤ 2r} for every j ∈ J . Together with Zhang’s equality (see Steinwart
and Christmann, 2008, Theorem 2.31), and Lemma 13 we then obtain

RLJ ,P (f0)−R∗LJ ,P

=
∑
j∈J

∫
Aj

|(Kγj ∗ f3r
γj )(x)− f∗Lclass,P

(x)||2η(x)− 1|dPX(x)

≤ 2

Γ(d/2)

∑
j∈J

∫
Aj

∫ ∞
2∆2

η(x)γ−2
j

e−ttd/2−1dt|2η(x)− 1|dPX(x)

=
2

Γ(d/2)

∑
j∈J

∫
Aj

∫ ∞
0

1[2∆2
η(x)γ−2

j ,∞)(t)e
−ttd/2−1dt|2η(x)− 1|dPX(x)

=
2

Γ(d/2)

∑
j∈J

∫
Aj

∫ ∞
0

1
[0,
√
t/2γj)

(∆η(x))e−ttd/2−1dt|2η(x)− 1|dPX(x)

=
2

Γ(d/2)

∫ ∞
0

∑
j∈J

∫
Aj

1
[0,
√
t/2γj)

(∆η(x))|2η(x)− 1|dPX(x)e−ttd/2−1dt

≤ 2

Γ(d/2)

∫ ∞
0

∫
{∆η(x)≤2r}

1
[0,
√
t/2γmax)

(∆η(x))|2η(x)− 1|dPX(x)e−ttd/2−1dt

≤ 2

Γ(d/2)

∫ ∞
0

∫
{∆η(x)≤min{2r,

√
t/2γmax}}

|2η(x)− 1|dPX(x)e−ttd/2−1dt.

Next, a simple calculation shows that

min
{

2r,
√
t/2γmax

}
=

{
2r, if t ≥ 8r2γ−2

max,√
t/2γmax, if else.
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and that 1 ≤
(
tγ2

max
8r2

)β/2
for t ≥ 8r2γ−2

max. Finally, the definition of the margin-noise

exponent β yields

RLJ ,P (f0)−R∗LJ ,P

≤ 2

Γ(d/2)

∫ ∞
0

∫
{∆η(x)≤min{2r,

√
t/2γmax}}

|2η − 1|dPXe−ttd/2−1dt

≤
2cβMNE

Γ(d/2)

∫ ∞
0

(
min{2r,

√
t/2γmax}

)β
e−ttd/2−1dt

=
2cβMNE

Γ(d/2)

(∫ 8r2γ−2
max

0
γβmax

(
t

2

)β/2
e−ttd/2−1dt+

∫ ∞
8r2γ−2

max

(2r)βe−ttd/2−1dt

)

≤
2cβMNE

Γ(d/2)

(
γβmax

2β/2

∫ 8r2γ−2
max

0
e−tt(d+β)/2−1dt+ (2r)β

∫ ∞
8r2γ−2

max

e−ttd/2−1dt

)

≤
2cβMNE

Γ(d/2)

(
γβmax

2β/2

∫ 8r2γ−2
max

0
e−tt(d+β)/2−1dt+ (2r)β

(
γ2

max

8r2

)β/2 ∫ ∞
8r2γ−2

max

e−tt(d+β)/2−1dt

)

=
2cβMNE

Γ(d/2)

γβmax

2β/2

(∫ 8r2γ−2
max

0
e−tt(d+β)/2−1dt+

∫ ∞
8r2γ−2

max

e−tt(d+β)/2−1dt

)

=
21−β/2cβMNEΓ((d+ β)/2)

Γ(d/2)
γβmax.

In the next step we develop bounds on the approximation error on sets that have no
intersection with the decision boundary, that is, N2 and F . Recall that we apply (56) and
again, the subsequent lemma presents a suitable function f0 and its difference to f∗Lclass,P

that occurs in (56). Note that on those sets we have f∗Lclass,P
(x) = 1 for x ∈ Aj with j ∈ JsN2

or j ∈ JsF and hence, we we choose a function f0 ∈ HJ that is a convolution of Kγ , defined
in (52), with a constant function that we have to cut off to ensure that it is an element
of L2(Rd). Unfortunately, we will always make an error on such cells since (Steinwart and
Christmann, 2008, Corollary 4.44) shows that Gaussian RKHSs on an open ball do not
contain constant functions. In order to make the convoluted function as flat as possible on
a cell, we choose the radius ω+ of the ball on which f is a constant arbitrary large, that is
ω+ > r. We remark that although the radius is arbitrary large we receive by convolution a
function that is still contained in a local RKHS over a cell Aj .

Lemma 15 (Difference to f∗Lclass,P
on cells in N2 or F ) Let the assumptions of Lemma

12 be satisfied with A ∩X1 = ∅ or A ∩X−1 = ∅. For ω− > 0 we define ω+ := ω− + r and
the function f

ω+
γ : Rd → R by

fω+
γ (x) :=

{
(πγ2)−d/4 · 1Bω+ (z)∩(X1∪X0)(x), if x ∈ A ∩ (X1 ∪X0),

(−1) · (πγ2)−d/4 · 1Bω+ (z)∩X−1
(x), else.

(60)
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Then, we find for all x ∈ A that

|(Kγ ∗ fω+
γ )(x)− f∗Lclass,P

(x)| ≤ 1

Γ(d/2)

∫ ∞
(ω−)22γ−2

e−ttd/2−1dt,

where Kγ is the function defined in (52).

Proof We assume w.l.o.g. that x ∈ A ∩ (X1 ∪X0) and show in a first step that B̊ω−(x) ⊂
Bω+(z). To this end, consider an x′ ∈ B̊ω−(x). Since A ⊂ Br(z) we find

‖x′ − z‖2 ≤ ‖x′ − x‖2 + ‖x− z‖2 < ω− + r = ω+

and hence, x′ ∈ Bω+(z). Next, we obtain with Lemma 27 that

Kγ ∗ fω+
γ (x) =

(
2

π1/2γ

)d/2 ∫
Rd
e−2γ−2‖x−y‖22(πγ2)−d/4 · 1Bω+ (z)dy

=

(
2

πγ2

)d/2 ∫
Bω+ (z)

e−2γ−2‖x−y‖22 dy

≥
(

2

πγ2

)d/2 ∫
B̊ω− (x)

e−2γ−2‖x−y‖22 dy

=
1

Γ(d/2)

∫ 2(ω−)2γ−2

0
e−ttd/2−1dt.

Since f∗Lclass,P
(x) = 1, we finally obtain with Lemma 12 for ρ = ω+ and f̃ := 1X1∪X0 that

|(Kγ ∗ fω+
γ )(x)− f∗Lclass,P

(x)| = |(Kγ ∗ fω+
γ )(x)− 1|

= 1− (Kγ ∗ fω+
γ )(x)

≤ 1− 1

Γ(d/2)

∫ 2(ω−)2γ−2

0
e−ttd/2−1dt

=
1

Γ(d/2)

∫ ∞
2(ω−)2γ−2

e−ttd/2−1dt.

For x ∈ A ∩X−1 the latter calculations yields with f̃ := 1X−1 the same results and hence,
the latter inequality holds for all x ∈ A.

In the next theorem we state bounds on the approximation error over the sets F and
N2. We obtain directly a bound for the set F , however, to obtain a bound on N2 we need
the additional assumption that P has MNE β.

Theorem 16 (Approximation Error on F and N2) Let (A) and (H) be satisfied and
define the set of indices

J := { j ∈ {1, . . .m} |Aj ∩X1 = ∅ or Aj ∩X−1 = ∅ }.
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For some ω− > 0 define ω+ := ω− + r > 0 and let the function f
ω+
γj for every j ∈ J be

defined as in (60). Moreover, define the function f0 : X → R by

f0 :=
⋃
j∈J

1Aj

(
Kγj ∗ fω+

γj

)
.

Then, f0 ∈ HJ and ‖f0‖∞ ≤ 1. Furthermore, for all ξ > 0 there exist constants cd, cd,ξ > 0
such that

A
(γ)
J (λ) ≤ cd ·

∑
j∈J

λj

(
ω+

γj

)d
+ cd,ξ

(
maxj∈J γj

ω−

)2ξ∑
j∈J

PX(Aj).

In addition, if P has MNE β ∈ (0,∞] and we have Aj ⊂ {∆η(x) ≤ s} for every j ∈ J , then

A
(γ)
J (λ) ≤ cd ·

∑
j∈J

λj

(
ω+

γj

)d
+ cd,ξ

(
maxj∈J γj

ω−

)2ξ

(cMNE · s)β

Proof By Lemma 12 with ρ = ω+ and f̃ := 1X1∪X0 resp. f̃ := 1X−1 we have immediately
f0 ∈ HJ and ‖f0‖∞ = ‖Kγj ∗ f

ω+
γj ‖∞ ≤ 1. Moreover, Lemma 12 yields

∑
j∈J

λj‖1Ajf0‖2Ĥj =
∑
j∈J

λj‖1Aj (Kγj ∗ fω+
γj )‖2

Ĥj
≤ cd ·

∑
j∈J

λj

(
ω+

γj

)d

for some constant cd > 0. Next, we bound the excess risk of f0. We find by applying Zhang’s
equality (e.g., Steinwart and Christmann, 2008, Theorem 2.31), Lemma 15 and (Steinwart
and Christmann, 2008, Lemma A.1.1) for some arbitrary ξ > 0 that

RLJ ,P (f0)−R∗LJ ,P =
∑
j∈J

∫
Aj

|(Kγj ∗ fω+
γj )− f∗Lclass,P

||2η − 1|dPX

≤
∑
j∈J

∫
Aj

1

Γ(d/2)

∫ ∞
(ω−)22γ−2

j

e−ttd/2−1dt|2η − 1|dPX

≤ 1

Γ(d/2)

∫ ∞
2(ω−)2γ−2

max

e−ttd/2−1dt
∑
j∈J

∫
Aj

|2η − 1|dPX

≤
Γ
(
d/2, 2(ω−)2γ−2

max

)
Γ(d/2)

∑
j∈J

∫
Aj

|2η − 1|dPX

≤ 2−ξΓ(d/2 + ξ)

Γ(d/2)

(
γmax

ω−

)2ξ

·
∑
j∈J

PX(Aj).

If in addition P has MNE β and Aj ⊂ {∆η ≤ s} for every j ∈ J we modify the previous
calculation of the excess risk. Then, we obtain again with Zhang’s equality, Lemma 15 and
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(Steinwart and Christmann, 2008, Lemma A.1.1) for some arbitrary ξ > 0 that

RLJ ,P (f0)−R∗LJ ,P ≤
∑
j∈J

∫
Aj

1

Γ(d/2)

∫ ∞
(ω−)22γ−2

j

e−ttd/2−1dt|2η − 1|dPX

≤ 1

Γ(d/2)

∫ ∞
(ω−)22γ−2

max

e−ttd/2−1dt

∫
{∆η≤s}

|2η − 1|dPX

≤
cβMNEΓ(d/2, (ω−)22γ−2

max)

Γ(d/2)
· sβ

≤
cβMNE2−ξΓ(d/2 + ξ)

Γ(d/2)

(
γmax

ω−

)2ξ

sβ.

By combining the results for the norm and the excess risk yields finally the bounds on the
respective approximation error.

Both bounds in the theorem above depend on the parameter ξ > 0. However, we will
observe in the theorems in Section 4.4.3, which state the corresponding oracle inequalities,
that by setting ω− appropriately this ξ will not have an influence any more.

4.4.2 Oracle inequalities and learning rates on N1

Based on the the general oracle inequality in Section 9 and the results from the previous
section we establish in this section an oracle inequality on the set N1 and derive learning
rates.

Theorem 17 (Oracle Inequality on N1) Let P have MNE β ∈ (0,∞] and NE q ∈ [0,∞]
and let (G) and (H) be satisfied. Moreover, let (A) be satisfied for some r := n−ν with
ν > 0 and define the set of indices

J := { j ∈ {1, . . . ,m} | ∀x ∈ Aj : PX(Aj ∩X1) > 0 and PX(Aj ∩X−1) > 0 }.

Let τ ≥ 1 be fixed and define n∗ :=
(

4
δ∗

) 1
ν . Then, for all p ∈ (0, 1

2), n ≥ n∗, λ :=
(λ1, . . . , λm) ∈ (0,∞)m and γ := (γ1, . . . , γm) ∈ (0, r]m the SVM given in (2) satisfies

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P

≤ 9cd,β

∑
j∈J

λjr
d

γdj
+ max

j∈J
γβj

+ cd,p,q

( r
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ c̃p,q

( τ
n

) q+1
q+2

(61)

with probability Pn not less than 1−3e−τ and for some constants cd,β, cd,p,q > 0 and c̃p,q > 0
only depending on d, β, p, q.

Proof We apply the generic oracle inequality given in Theorem 9 and bound first of all
the contained constant a2p . To this end, we remark that an analogous calculation as in the
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proof of Theorem 14 shows that Aj ⊂ {∆η ≤ 2r} for every j ∈ J . Since

n ≥
(

4

δ∗

) 1
ν

⇔ 4r ≤ δ∗

we obtain by Lemma 26 for t = 2r that

|J | ≤ c1r
−d+1, (62)

where c1 is a positive constant only depending on d. Together with Lemma 11 we then find
that

a2p = max

c̃d,p|J | 1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

 1
2

, 2


2p

≤ c̃2p
d,p|J |r

d

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p

≤ c1c̃
2p
d,p · r

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p,

where cd,p := 2c1 (9 ln(4)cd)
1
2p

(
d+1
2ep

) d+1
2p

. Moreover, (Steinwart and Christmann, 2008,

Lemma 8.24) delivers a variance bound for θ = q
q+1 and constant V := 6c

q
q+1

NE . We de-

note by A
(γ)
J (λ) the approximation error, defined in (51). Then, we have by Theorem 9

with τ ≥ 1 that

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P

≤ 9A
(γ)
J (λ) + cp,q

(
a2p

n

) q+1
q+2−p

+ 3c
q
q+2

NE

(
432τ

n

) q+1
q+2

+
30τ

n

≤ 9A
(γ)
J (λ) + cp,q

c1c̃
2p
d,p · r

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p


q+1
q+2−p

· n−
q+1
q+2−p + cq

( τ
n

) q+1
q+2

≤ 9A
(γ)
J (λ) + cd,p,q

( r
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ cp,q4
p(q+1)
q+2−pn

− q+1
q+2 + cq

( τ
n

) q+1
q+2

≤ 9A
(γ)
J (λ) + cd,p,q

( r
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ c̃p,q

( τ
n

) q+1
q+2

holds with probability Pn not less than 1 − 3e−τ and with positive constants cd,p,q :=

cp,q

(
c1c̃

2p
d,p

) q+1
q+2−p

, cq := 2 max

{
3c

q
q+2

NE 432
q+1
q+2 , 30

}
and c̃p,q := 2 max

{
cp,q4

p(q+1)
q+2−p , cq

}
. Fi-
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nally, Theorem 14 yields for the approximation error the bound

A
(γ)
J (λ) ≤ c2

∑
j∈J

λjr
d

γdj
+ max

j∈J
γβj

 ,

where c2 > 0 is a constant depending on d and β. By plugging this into the oracle inequality
above yields the result.

Theorem 18 (Learning Rates on N1) Let the assumptions of Theorem 17 be satisfied
with mn and with

rn ' n−ν ,
γn,j ' rκnn−κ,
λn,j ' n−σ,

(63)

for all j ∈ {1, . . . ,mn}. Moreover, define κ := q+1
β(q+2)+d(q+1) and let

ν ≤ κ

1− κ
(64)

and σ ≥ 1 be satisfied. Then, for all ε > 0 there exists a constant cβ,d,ε,σ,q > 0 such that
for λn := (λn,1, . . . , λn,mn) ∈ (0,∞)m, and γn := (γn,1, . . . , γn,mn) ∈ (0, rn]mn, and all n
sufficiently large we have with probability Pn not less than 1− 3e−τ that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P ≤ cβ,d,ε,σ,q · τ
q+1
q+2 · rβκn n−βκ+ε.

In particular, the proof shows that one can even choose σ ≥ κ(β + d)(ν + 1)− ν > 0.

Proof We write λn := n−σ and γn := rκnn
−κ. As in the proof of Theorem 17 we find

|J | ≤ cdr−d+1
n

for some constant cd > 0. Together with Theorem 17 we then obtain that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P

≤ c1

∑
j∈J

λn,jr
d

γdn,j
+ max

j∈J
γβn,j +

( r
n

) q+1
q+2−p

∑
j∈J

λ−1
n,jγ

− d
p

n,j PX(Aj)


p(q+1)
q+2−p

+
( τ
n

) q+1
q+2



≤ c2

|J |λnrdn
γdn

+ γβn +
(rn
n

) q+1
q+2−p

λ−1
n γ

− d
p

n

∑
j∈J

PX(Aj)


p(q+1)
q+2−p

+
( τ
n

) q+1
q+2


≤ c2

λnrn
γdn

+ γβn +

(
rnλ
−p
n γ−dn
n

) q+1
q+2−p

+
( τ
n

) q+1
q+2


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holds with probability Pn not less than 1 − 3e−τ and for some positive constant c1, c2

depending on β, d, p and q. Moreover, with (63), σ ≥ κ(β + d)(ν + 1)− ν and (1−dκ)(q+1)
q+2 =(

β(q+2)
β(q+2)+d(q+1)

)
q+1
q+2 = βκ we find

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P

≤ c2

λnrn
γdn

+ γβn +

(
rnλ
−p
n γ−dn
n

) q+1
q+2−p

+
( τ
n

) q+1
q+2


= c2

 rn

nκ(β+d)(ν+1)−νγdn
+ rβκn n−βκ +

(
r1−dκ
n

n1−dκ

) q+1
q+2−p (

n−σ
) p(q+1)
q+2−p +

( τ
n

) q+1
q+2


≤ c3

(
n−ν

nκ(β+d)(ν+1)−νn−νdκn−dκ
+ rβκn n−βκ +

(rn
n

) (1−dκ)(q+1)
q+2−p

nε +
( τ
n

) q+1
q+2

)

≤ c3

(
n−νβκn−βκ + rβκn n−βκ +

(rn
n

) (1−dκ)(q+1)
q+2

nε +
( τ
n

) q+1
q+2

)
≤ c4

(
rβκn n−βκ+ε + τ

q+1
q+2n

− q+1
q+2

)
≤ c5τ

q+1
q+2 · rβκn n−βκ+ε,

where p is chosen sufficiently small such that ε ≥ pσ(q+1)
q+2 ≥ 0 and where the constants

c3, c4, c5 > 0 depend on β, d, ε, σ and q.

4.4.3 Oracle inequalities and learning rates on N2, F

Based on the the general oracle inequality in Section 9 and the results from the previous
section we establish in this section an oracle inequality on the set N2 and F . Moreover, we
derive learning rates.

Theorem 19 (Oracle inequality on N2) Let P have MNE β ∈ (0,∞] and NE q ∈ [0,∞]
and let (G) and (H) be satisfied. Moreover, let (A) be satisfied for some r := n−ν with
ν > 0. Define for s := n−α with α > 0 and α ≤ ν the set of indices

J := { j ∈ {1, . . . ,m} | ∀x ∈ Aj : ∆η(x) ≤ 3s and PX(Aj ∩X1) = 0 or PX(Aj ∩X−1) = 0 }.

Let τ ≥ 1 be fixed and define n∗ :=
(
4−1δ∗

)− 1
α . Then, for all ε > 0, p ∈ (0, 1

2), n ≥ n∗,
λ := (λ1, . . . , λm) ∈ (0,∞)m, and γ := (γ1, . . . , γm) ∈ (0, r]m the SVM given in (2) satisfies

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P

≤
(
cd,β,ε,q · r
minj∈J γj

)d
nε
∑
j∈J

λj + cd,p,q

( s
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ cd,β,ε,p,q

( τ
n

) q+1
q+2

(65)
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with probability Pn not less than 1−3e−τ and with constants cd,β,ε,q, cd,p,q > 0 and cd,β,ε,p,q >
0.

Proof We apply the generic oracle inequality given in Theorem 9 and bound first of all
the contained constant a2p .To this end, we remark that we find with α ≤ ν that(

4−1δ∗
)− 1

α ≤ n ⇒ δ∗ ≥ 4n−α ≥ 3n−α + n−ν = 3s+ r

such that we obtain by Lemma 26 for t = 3s that

|J | ≤ c1 · sr−d, (66)

where c1 is a positive constant only depending on d. Together with Lemma 11 we then find
for the constant a2p from Theorem 9 that

a2p = max

c̃d,p|J | 1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

 1
2

, 2


2p

≤ c̃2p
d,p · |J |r

d

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p

≤ c1c̃
2p
d,p · s

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p,

where cd,p := 2c1 (9 ln(4)cd)
1
2p

(
d+1
2ep

) d+1
2p

. Again, (Steinwart and Christmann, 2008, Lemma 8.24)

yields a variance bound for θ = q
q+1 and constant V := 6c

q
q+1

NE . We denote by A
(γ)
J (λ) the

approximation error, defined in (51), and find by Theorem 9 with τ ≥ 1 that

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P

≤ 9A
(γ)
J (λ) + cp,q

(
a2p

n

) q+1
q+2−p

+ 3c
q
q+2

NE

(
432τ

n

) q+1
q+2

+
30τ

n

≤ 9A
(γ)
J (λ) + cp,q

c1c̃
2p
d,p · s

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p


q+1
q+2−p

n
− q+1
q+2−p + cq

( τ
n

) q+1
q+2

≤ 9A
(γ)
J (λ) + cd,p,q

( s
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ cp,q4
p(q+1)
q+2−p · n−

q+1
q+2 + cq

( τ
n

) q+1
q+2

≤ 9A
(γ)
J (λ) + cd,p,q

( s
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ c̃p,q

( τ
n

) q+1
q+2

(67)
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holds with probability Pn not less than 1 − 3e−τ and with positive constants cd,p,q :=

cp,q

(
c1c̃

2p
d,p

) q+1
q+2−p

, cq := 2 max

{
3c

q
q+2

NE 432
q+1
q+2 , 30

}
and c̃p,q := 2 max

{
cp,q4

p(q+1)
q+2−p , cq

}
. Fi-

nally, Theorem 16 for ω− := γmaxn
q+1

2ξ(q+2) , where ξ > 0, and ω+ := ω− + r, yields

A
(γ)
J (λ) ≤ c2

∑
j∈J

λj

(
ω+

γj

)d
+

(
γmax

ω−

)2ξ

sβ


≤ c2

( ω+

γmin

)d∑
j∈J

λj +

(
γmax

ω−

)2ξ

sβ


= c2

(γmaxn
q+1

2ξ(q+2) + r

γmin

)d∑
j∈J

λj + n
− q+1
q+2 sβ


≤ c3

n d(q+1)
2ξ(q+2)

(
γmax + r

γmin

)d∑
j∈J

λj + n
− q+1
q+2 sβ


≤ c4

nε( r

γmin

)d∑
j∈J

λj + n
− q+1
q+2 sβ

 ,

(68)

where in the last step that we applied γmax ≤ r, and where we picked an arbitrary ε > 0
and chose ξ sufficiently large such that ε ≥ d(q+1)

2ξ(q+2) > 0. The constants c2, c3 > 0 only
depend on d, β and ξ, whereas c4 > 0 depends only on d, β, ε and q. By plugging this into
the oracle inequality above yields

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P

≤ 9c4

nε( r

γmin

)d∑
j∈J

λj + n
− q+1
q+2 sβ



+ cd,p,q

( s
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ c̃p,q

( τ
n

) q+1
q+2

≤ 9c4n
ε

(
r

γmin

)d∑
j∈J

λj + cd,p,q

( s
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p

+ cd,β,ε,p,q

( τ
n

) q+1
q+2

.
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Theorem 20 (Learning Rates on N2) Let the assumption of Theorem 19 be satisfied
for mn, s ' sn and

rn ' n−ν ,
γn,j ' rn,
λn,j ' n−σ

(69)

with some σ ≥ 1 and 1 + α − νd > 0, and for all j ∈ {1, . . . ,mn}. Then, for all ε > 0
there exists a constant cβ,d,ε,σ,q > 0 such that for λn := (λn,1, . . . , λn,mn) ∈ (0,∞)m, and
γn := (γn,1, . . . , γn,mn) ∈ (0, rn]mn, and all n sufficiently large we have with probability Pn

not less than 1− 3e−τ that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P ≤ cβ,d,ε,σ,qτ
q+1
q+2 ·

(
sn
rdn

) q+1
q+2

n
− q+1
q+2

+ε
.

Proof We write λn := n−σ and γn := rn. By Theorem 19, Lemma 26 and (69) we find
with probability Pn not less than 1− 3e−τ that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P

≤ c1

( r

γmin

)d∑
j∈J

λn,jn
ε +

(sn
n

) q+1
q+2−p

∑
j∈J

λ−1
n,jγ

− d
p

n,j PX(Aj)


p(q+1)
q+2−p

+
( τ
n

) q+1
q+2



≤ c2

|J |λnnε +

(
sn
γdnn

) q+1
q+2−p

λ−1
n

∑
j∈J

PX(Aj)


p(q+1)
q+2−p

+
( τ
n

) q+1
q+2


≤ c2

(
snλnn

ε

rdn
+

(
sn
rdnn

) q+1
q+2−p

λ
− p(q+1)
q+2−p

n +
( τ
n

) q+1
q+2

)

≤ c2

(
snn

ε

rdnn
σ

+

(
sn
rdnn

) q+1
q+2

n
pσ(q+1)
q+2−p +

( τ
n

) q+1
q+2

)

≤ c3

(
snn

ε

rdnn
+

(
sn
rdnn

) q+1
q+2

nε̂ +
( τ
n

) q+1
q+2

)

≤ c4τ
q+1
q+2nε

((
sn
rdnn

) q+1
q+2

+ n
− q+1
q+2

)

≤ c5τ
q+1
q+2

(
sn
rdn

) q+1
q+2

n
− q+1
q+2

+ε
,

where we chose p sufficiently small such that ε ≥ pσ(q+1)
q+2−p > 0. The constants c1, c2 > 0 de-

pend only on d, β, ε, p and q, whereas the constants c3, c4, c5 > 0 depend on d, β, ε, σ and q.
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Theorem 21 (Oracle Inequality on F ) Let P have LC ζ ∈ [0,∞) and let (G) and
(H) be satisfied. Moreover, let (A) be satisfied for some r := n−ν with ν > 0. Define for
s := n−α with α > 0 and α ≤ ν the set of indices

J := { j ∈ {1, . . . ,m} | ∀x ∈ Aj : ∆η(x) ≥ s }.

Furthermore, let τ ≥ 1 be fixed. Then, for all ε > 0, p ∈ (0, 1
2), n ≥ 1, λ := (λ1, . . . , λm) ∈

(0,∞)m, and γ := (γ1, . . . , γm) ∈ (0, r]m the SVM given in (2) satisfies

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P

≤
(

cd,ε · r
minj∈J γj

)d
nε
∑
j∈J

λj + cd,p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

n−1 + cd,ε,p ·
τ

sζn

(70)

with probability Pn not less than 1− 3e−τ and some constants cd,ε, cp,q, cd,ε,p > 0.

Proof We apply the generic oracle inequality given in Theorem 9. To this end, we find for
the contained constant a2p with Lemma 10 and (4) that

a2p = max

c̃d,p|J | 1
2p r

d
2p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

 1
2

, 2


2p

≤ c̃2p
d,p|J |r

d

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p

≤ c1c̃
2p
d,p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

+ 4p

(71)

where c1 > 0 is a constant depending on d. According to Lemma 5 we have variance bound
θ = 1 and constant V := 2cLCs

−ζ . We denote by A(γ)(λ) the approximation error, defined
in (51), and obtain by Theorem 9 together with (71) with probability Pn not less than
1− 3e−τ that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P

≤ 9A
(γ)
J (λ) +

cp · a2p

n
+

432cLCτ

sζn
+

30τ

n

≤ 9A
(γ)
J (λ) + cpc1c̃

2p
d,p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

n−1 +
cp4

p

n
+

432cLCτ

sζn
+

30τ

n

≤ 9A
(γ)
J (λ) + cd,p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

n−1 + ĉp
τ

sζn

(72)
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for some constants cd,p, ĉp > 0. For the approximation error Theorem 16 with ω− :=

γmaxn
1
2ξ , where ξ > 0, and ω+ := ω− + r, yields

A
(γ)
J (λ) ≤ c2

·∑
j∈J

λj

(
ω+

γj

)d
+ c4 ·

(
γmax

ω−

)2ξ

PX(F )


≤ c2

( ω+

γmin

)d∑
j∈J

λj + c4 ·
(
γmax

ω−

)2ξ


= c2

(γmaxn
1
2ξ

γmin
+

r

γmin

)d∑
j∈J

λj + n−1


= c3

nε( r

γmin

)d∑
j∈J

λj + n−1

 ,

where we applied in the last step that γmax ≤ r and where we fixed an ε and chose ξ
sufficiently large such that ε ≥ d

2ξ > 0. The constants c2 > 0 and c3 > 0 only depend on
d, ξ resp. d, ε. By combining the results above we have

RLJ ,P (fD,λn,γn)−R∗LJ ,P

≤ 9c3

nε( r

γmin

)d∑
j∈J

λj + n−1

+ cd,p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

n−1 + ĉp
τ

sζn

≤ 9c3n
ε

(
r

γmin

)d∑
j∈J

λj + cd,p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

n−1 + c4
τ

sζn

for some constant c4 > 0 depending on d, ε and p.

Theorem 22 (Learning Rate on F ) Let the assumptions of Theorem 21 be satisfied for
mn, s ' sn and with

rn ' n−ν ,
γn,j ' rn
λn,j ' n−σ,

(73)

for all j ∈ {1, . . . ,mn} and with max{νd, αζ} < 1 and σ ≥ 1. Then, for all ε > 0 there exists
a constant cd,ε,σ > 0 such that for λn := (λn,1, . . . , λn,mn) > 0, and γn := (γn,1, . . . , γn,mn) ∈
(0, rn]mn, and all n ≥ 1 we have with probability Pn not less than 1− 3e−τ that

RLJ ,P ( ÛfD,λn,γn)−R∗LJ ,P ≤ cd,ε,στ ·max{r−dn , s−ζn }n−1+ε.
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Proof We write λn := n−σ and γn := rn. Then, we obtain by Theorem 21 and (73) with
probability Pn not less than 1− 3e−τ that

RLJ ,P ( ÛfD,λ,γ)−R∗LJ ,P ≤ c1

nε( rn
minj∈J γj

)d∑
j∈J

λn,j +

∑
j∈J

λ−1
n,jγ

− d
p

n,j PX(Aj)

p

n−1 +
τ

sζnn


≤ c2

nε|J |λn + λ−pn r−dn

∑
j∈J

PX(Aj)

p

n−1 +
τ

sζnn


≤ c2τ

(
r−dn n−σ+ε + nσpr−dn n−1 + s−ζn n−1

)
≤ c3τ

(
r−dn n−1+ε + nεr−dn n−1 + s−ζn n−1

)
≤ c3τ

(
2r−dn n−1+ε + s−ζn n−1

)
≤ c4τ ·max{r−dn , s−ζn }n−1+ε

where p is chosen sufficiently small such that ε ≥ pσ > 0 and where the constants c1, c2 > 0
depend only on d, ε, p and the constants c3, c4 > 0 only on d, ε, σ.
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Appendix A.

In this appendix we state some results on margin conditions.

Lemma 23 (Reverse Hölder yields lower control) Let (X, d) be a metric space and
P be a probability measure on X × {−1, 1} with fixed version η : X → [0, 1] of its posterior
probability. Assume that X0 = ∂XX1 = ∂XX−1. If η is reverse Hölder-continuous with
exponent ρ ∈ (0, 1], that is, if there exists a constant c > 0 such that

|η(x)− η(x′)| ≥ c · d(x, x′)ρ, x, x′ ∈ X,

then, ∆η controls the noise from below by the exponent ρ.

Proof We fix w.l.o.g. an x ∈ X−1. By the reverse Hölder continuity we obtain

c∆ρ
η(x) = c inf

x̃∈X1

(d(x, x̃))ρ ≤ inf
x̃∈X1

|η(x)− η(x̃)| ≤ inf
x̃∈X1

η(x̃)− η(x).

Since η(x̃) > 1/2 for all x̃ ∈ X1, we find by continuity of η and ∂X1 = X0 that inf x̃∈X1 η(x̃) =
1/2. Thus,

∆ρ
η(x) ≤ (2c)−1(1− 2η(x)).

Obviously, the last inequality is immediately satisfied for x ∈ X0 and for x ∈ X1 the
calculation is similar. Hence, ∆η controls the noise by the exponent ρ from below, that is,

∆ρ
η(x) ≤ cLC|2η(x)− 1|, x ∈ X,

where cLC := (2c)−1.

Lemma 24 (LC and ME yield NE) Let (X, d) be a metric space and let P be a prob-
ability measure on X × {−1, 1} that has ME α ∈ [0,∞) for the version η of its posterior
probability. Assume that the associated distance to the decision boundary controls the noise
from below by the exponent ζ ∈ [0,∞). Then, P has NE q = α

ζ .

Proof Since P has ME α ∈ [0,∞), we find for some t > 0 that

∆ζ
η(x)

cLC
≤ |2η(x)− 1| < t, x ∈ X,

and we follow that ∆η(x) ≤ (cLCt)
1
ζ . Consequently, the definition of the noise exponent

yields

PX ({x ∈ X : |2η(x)− 1| < t}) ≤ PX
(
{x ∈ X : ∆η(x) ≤ (cLCt)

1
ζ }
)

≤ cαME(cLCt)
α
ζ .
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Remark 25 i) One can show by using similar arguments as in (Blaschzyk and Stein-
wart, 2018, Lemma 2.1) together with (Steinwart, 2015, Lemma A.10.4(i)) that there
exists a δ∗ > 0 such that the lower bound

λd({x ∈ X|∆η(x) ≤ δ}) ≥ cd · δ for all δ ∈ (0, δ∗]

and some cd > 0 is satisfied.

ii) Assume that η is Hölder-smooth with exponent ρ, that P has NE q and that PX has
a density w.r.t. the Lebesgue measure that is bounded away from zero. Then, part i)
together with (Blaschzyk and Steinwart, 2018, Lemma A.2) yields

ct
1
ρ ≤ PX({∆η(x) ≤ t

1
ρ }) ≤ PX ({x ∈ X : |2η(x)− 1| < t}) ≤ cNEt

q

for some constant c > 0. Thus, ρq > 1 can never be satisfied.

Appendix B.

In this appendix we state some technical lemmata.

Lemma 26 (Number of cells) Let assumptions (A) and (G) be satisfied. Let t ≥ r
such that t+ r ≤ δ∗, where δ∗ > 0 is the constant from (9), and define

J := { j ∈ J | ∀x ∈ Aj : ∆η(x) ≤ t }.

Then, there exists a constant cd > 0 such that

|J | ≤ cd · tr−d.

Proof We define T :=
⋃
j∈J Aj and T̃ :=

⋃
j∈J Br(zj). Obviously, T ⊂ T̃ since Aj ⊂ Br(zj)

for all j ∈ J . Furthermore, we have for all x ∈ T̃ that ∆η(x) ≤ t̃, where t̃ := t + r. Then,
we obtain with (Blaschzyk and Steinwart, 2018, Lemma 2.1) that

λd(T̃ ) ≤ λd
({

∆(x) ≤ t̃
})
≤ 4Hd−1(X0) · t̃. (74)

Moreover,

λd(T̃ )=λd

⋃
j∈J

Br(zj)

≥λd
⋃
j∈J

B r
4
(zj)

= |J |λd
(
B r

4
(z)
)

= |J |
(r

4

)d
λd (B) , (75)

since B r
4
(zi) ∩ B r

4
(zj) = ∅ for i 6= j. To see the latter, assume that we have an x ∈

B r
4
(zi)∩B r

4
(zj). But then, ‖zi−zj‖2 ≤ ‖x−zj‖2 +‖x−zi‖2 ≤ r

4 + r
4 ≤

r
2 , which is not true,

since we assumed ‖zi − zj‖2 > r
2 for all i 6= j. Hence, the balls with radius r

4 are disjoint.
Finally, by (74) together with (75) and t ≥ r we find

|J |≤ 4dλd(T̃ )

rdλd (B)
≤ 22d+2Hd−1({x ∈ X|η = 1/2}) · t̃

rdλd (B)
≤ 22d+3Hd−1({x ∈ X|η = 1/2}) · t

rdλd (B)
.
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Lemma 27 Let X ⊂ Rd and γ, ρ > 0. Then, we have

(
2

πγ2

)d/2 ∫
Bρ(x)

e−2γ−2‖x−y‖22 dy =
1

Γ(d/2)

∫ 2ρ2γ−2

0
e−ttd/2−1dt.

Proof For ρ > 0 we find that

(
2

πγ2

)d/2 ∫
Bρ(x)

e−2γ−2‖x−y‖22 dy

=

(
2

πγ2

)d/2 ∫
Bρ(0)

e−2γ−2‖y‖22 dy

=

(
2

πγ2

)d/2 πd/2

Γ(d/2 + 1)

∫ ρ

0
e−2γ−2t2d · td−1dt

=

(
2

πγ2

)d/2 2πd/2

dΓ(d/2)

∫ √2ργ−1

0
e−t

2
d · td−1 · 1√

2γ−1

(
γ√
2

)d−1

dt

=
2

Γ(d/2)

∫ 2ρ2γ−2

0
e−ttd/2−1 · 1

2
dt

=
1

Γ(d/2)

∫ 2ρ2γ−2

0
e−ttd/2−1dt.

Lemma 28 Let (Aj)j=1,...,m be a partition of B`d2
. Let d ≥ 1, p ∈ (0, 1

2) and let rn ∈ (0, 1].

For ρn ≤ n−2 and δn ≤ n−1 fix a finite ρn-net Λn ⊂ (0, n−1] and a finite δnrn-net Γn ⊂
(0, rn]. Let J ⊂ {1, . . . ,mn} be an index set and for all j ∈ J let γj ∈ (0, rn], λj > 0. Define
γmax := maxj∈J , as well as analogously γmin.

i) Let β ∈ (0, 1], q ∈ [0,∞) and let |J | ≤ cdr
−d+1
n for some constant cd > 0. Then, for

all ε1 > 0 there exists a constant c̃1 > 0 such that

inf
(λ,γ)∈(Λn×Γn)|J|

(∑
j∈J

λjr
d
n

γdj
+ γβmax

+
(rn
n

) q+1
q+2−p

(∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

) p(q+1)
q+2−p

)
≤ c̃1 · n−βκ(ν+1)+ε1 .
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ii) Let β ∈ (0, 1], q ∈ [0,∞) and let |J | ≤ cdr
−d+1
n for some constant cd > 0. Then, for

all ε̃, ε2 > 0 there exists a constant c̃2 > 0 such that

inf
(λ,γ)∈(Λn×Γn)|J|

((
rn
γmin

)d∑
j∈J

λjn
ε̃

+
(rn
n

) q+1
q+2−p

(∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

) p(q+1)
q+2−p

)

≤ c̃2 · nε2
(
rd−1
n n

)− q+1
q+2

.

iii) Let |J | ≤ cdr−dn . Then, for all ε̃, ε3 > 0 there exists a constant c̃3 > 0 such that

inf
(λ,γ)∈(Λn×Γn)|J|

((
rn
γmin

)d∑
j∈J

λjn
ε̃ +

(∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

)p
n−1

)
≤ c̃3 · r−dn n−1+ε3 .

Proof We follow the lines of the proof of (Meister and Steinwart, 2016, Lemma 14). Let
us assume that Λn := {λ(1), . . . λ(u)} and Γn := {γ(1), . . . γ(v)} such that λ(i−1) < λ(i) and
γ(l−1) < γ(l) for all i = 2, . . . , u and l = 2, . . . , v. Furthermore, let γ(0) = λ(0) := 0 and
λ(u) := n−1, γ(v) := rn. Then, fix a pair (λ∗, γ∗) ∈ [0, n−1]×[0, rn]. Following the lines of the
proof of (Steinwart and Christmann, 2008, Lemma 6.30) there exist indices i ∈ {1, . . . , u}
and l ∈ {1, . . . , v} such that

λ∗ ≤ λ(i) ≤ λ∗ + 2ρn,

γ∗ ≤ γ(l) ≤ γ∗ + 2δnrn.
(76)

i) With (76) we find

inf
(λ,γ)∈(Λn×Γn)|J|

∑
j∈J

λjr
d
n

γdj
+ γβmax +

(rn
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p



≤
∑
j∈J

λ(i)rdn(
γ(l)
)d +

(
γ(l)
)β

+
( r
n

) q+1
q+2−p

∑
j∈J

(
λ(i)
)−1 (

γ(l)
)− d

p
PX(Aj)


p(q+1)
q+2−p

≤ |J | λ
(i)rdn(
γ(l)
)d +

(
γ(l)
)β

+

(
rn
(
λ(i)
)−p (

γ(l)
)−d

n

) q+1
q+2−p

∑
j∈J

PX(Aj)


p(q+1)
q+2−p

≤ (λ∗ + 2ρn)rn
(γ∗)d

+ (γ∗ + 2δnrn)β +

(
rn(λ∗)−p

(γ∗)dn

) q+1
q+2−p

≤ c1

(
λ∗rn(γ∗)−d + (γ∗)β +

(
rn(λ∗)−p

(γ∗)dn

) q+1
q+2−p

+ ρnrn(γ∗)−d + (δnrn)β
)
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for some c1 > 0. We define λ∗ := n−σ for some σ ∈ [1, 2] and γ∗ := rκnn
−κ. Obviously,

λ∗ ∈ [0, n−1]. Moreover, we have γ∗ ∈ [0, rn] since ν ≤ κ
1−κ . Then, we obtain

with ρn ≤ n−2 and δn ≤ n−1, and together with 1 ≥ κ(β + d)(ν + 1) − ν > 0 and
(1−dκ)(q+1)

q+2−p > (1−dκ)(q+1)
q+2 =

(
β(q+2)

β(q+2)+d(q+1)

)
q+1
q+2 = βκ that

c1

(
λ∗rn(γ∗)−d + (γ∗)β +

(
rn(λ∗)−p

(γ∗)dn

) q+1
q+2−p

+ ρnrn(γ∗)−d + (δnrn)β
)

≤ c1

n−σrnr−dκn ndκ + rβκn n−βκ +

(
r1−dκ
n (λ∗)−p

n1−dκ

) q+1
q+2−p

+ n−2rn(γ∗)−d +
(
rnn

−1
)β

≤ c2

(
r−1+(β+d)κ
n n−(β+d)κrnr

−dκ
n ndκ + rβκn n−βκ +

(
rnn

−1
) (1−dκ)(q+1)

q+2−p n
pσ(q+1)
q+2−p +

(
rnn

−1
)β)

≤ c2

(
rβκn n−βκ + rβκn n−βκnε1 +

(
rnn

−1
)β)

≤ c3 · n−βκ(ν+1)+ε1

holds for some constants c2, c3 > 0 and where p is chosen sufficiently small such that
ε1 ≥ pσ(q+1)

q+2−p > 0.

ii) With (76) we find

inf
(λ,γ)∈(Λn×Γn)|J|

( rn
γmin

)d∑
j∈J

λjn
ε̃ +

(rn
n

) q+1
q+2−p

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)


p(q+1)
q+2−p



≤
(
rn

γ(l)

)d∑
j∈J

λ(i)nε̃ +
(rn
n

) q+1
q+2−p

∑
j∈J

(
λ(i)
)−1 (

γ(l)
)− d

p
PX(Aj)


p(q+1)
q+2−p

≤
(
rn

γ(l)

)d
|J |λ(i)nε̃ +

(
rn(

γ(l)
)d
n

) q+1
q+2−p (

λ(i)
)− p(q+1)

q+2−p

∑
j∈J

PX(Aj)


p(q+1)
q+2−p

≤ c4
rnλ

(i)nε̃(
γ(l)
)d +

(
rn(

γ(l)
)d
n

) q+1
q+2−p (

λ(i)
)− p(q+1)

q+2−p

≤ c4
rn(λ∗ + 2ρn)nε̃

(γ∗)d
+

(
rn

(γ∗)d n

) q+1
q+2−p

(λ∗)
− p(q+1)
q+2−p

≤ c4
rnλ
∗nε̃

(γ∗)d
+

(
rn

(γ∗)d n

) q+1
q+2−p

(λ∗)
− p(q+1)
q+2−p + 2c4

ρnrnn
ε̃

(γ∗)d
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for some constant c4 > 0 depending on d. We define γ∗ := rn and λ∗ := n−σ for some
σ ∈ [1, 2]. Then, we obtain with ρn ≤ n−2 that

c4
rnλ
∗nε̃

(γ∗)d
+

(
rn

(γ∗)d n

) q+1
q+2−p

(λ∗)
− p(q+1)
q+2−p + 2c4

rnρnn
ε̃

(γ∗)d

= c4
n−σnε̃

rd−1
n

+

(
1

rd−1
n n

) q+1
q+2−p

n
pσ(q+1)
q+2−p + 2c4

ρnn
ε̃

rd−1
n

≤ c4
n−1nε̃

rd−1
n

+
(
rd−1
n n

)− q+1
q+2

nε̂ + 2c4
ρnn

ε̃

rd−1
n

≤ c5n
ε2

((
rd−1
n n

)−1
+
(
rd−1
n n

)− q+1
q+2

+ n−2
(
rd−1
n

)−1
)

≤ c6n
ε2
(
rd−1
n n

)− q+1
q+2

,

where c5, c6 > 0 are constants depending on d and where p is chosen sufficiently small
such that ε̂ ≥ pσ(q+1)

q+2−p and ε2 := max{ε̃, ε̂}.

iii) We find with (76) that

inf
(λ,γ)∈(Λn×Γn)|J|

nε̃( rn
γmin

)d∑
j∈J

λj +

∑
j∈J

λ−1
j γ

− d
p

j PX(Aj)

p

n−1


≤ nε̃

(
rn
γmin

)d∑
j∈J

λ(i) +

∑
j∈J

(
λ(i)
)−1 (

γ(l)
)− d

p
PX(Aj)

p

n−1

≤ nε̃
(
rn
γmin

)d
|J |λ(i) +

(
λ(i)
)−p (

γ(l)
)−d∑

j∈J
PX(Aj)

p

n−1

≤ c7n
ε̃
(
γ(l)
)−d

λ(i) +
(
λ(i)
)−p (

γ(l)
)−d

n−1

≤ c7n
ε̃ (γ∗)−d (λ∗ + 2ρn) + (λ∗)−p (γ∗)−d n−1

= c7n
ε̃ (γ∗)−d λ∗ + (λ∗)−p (γ∗)−d n−1 + 2ρnc7n

ε̃ (γ∗)−d

holds for some constant c7 > 0 depending on d. We define γ∗ := rn and λ∗ := n−σ

for some σ ∈ [1, 2]. Then, we obtain with ρn ≤ n−2

c7n
ε̃ (γ∗)−d λ∗ + (λ∗)−p (γ∗)−d n−1 + 2ρnc7n

ε̃ (γ∗)−d

≤ c7n
ε̃r−dn n−σ + npσr−dn n−1 + 2c7n

ε̃r−dn n−2

≤ c7n
ε̃r−dn n−1 + nε̂r−dn n−1 + 2c7n

ε̃r−dn n−2

≤ c8 · r−dn n−1+ε3

for some constant c8 > 0 depending on d and where p is chosen sufficiently small such
that ε̂ ≥ pσ > 0. Here, ε3 := max{ε̃, ε̂}.
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