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Abstract

We propose a method for simultaneous estimation and variable selection of an additive
quantile regression model that can be used with high dimensional data. Quantile regres-
sion is an appealing method for analyzing high dimensional data because it can correctly
model heteroscedastic relationships, is robust to outliers in the response, sparsity levels can
change with quantiles, and it provides a thorough analysis of the conditional distribution of
the response. An additive nonlinear model can capture more complex relationships, while
avoiding the curse of dimensionality. The additive nonlinear model is fit using B-splines
and a nonconvex group penalty is used for simultaneous estimation and variable selection.
We derive the asymptotic properties of the estimator, including an oracle property, under
general conditions that allow for the number of covariates, pn, and the number of true
covariates, qn, to increase with the sample size, n. In addition, we propose a coordinate
descent algorithm that reduces the computational cost compared to the linear program-
ming approach typically used for solving quantile regression problems. The performance
of the method is tested using Monte Carlo simulations, an analysis of fat content of meat
conditional on a 100 channel spectrum of absorbances and predicting TRIM32 expression
using gene expression data from the eyes of rats.

Keywords: Quantile Regression; Oracle Property; Nonparametric Regression; Splines;
nonconvex penalty.

1. Introduction

We consider the sample {yi, zi}ni=1 where yi ∈ R and zi = (zi1, . . . , zipn)> ∈ Rpn . The τth
conditional quantile, τ ∈ (0, 1), of y given z is defined asQy|z(τ) = inf{t : F (t|z) ≥ τ}, where
F (·|z) is the conditional distribution function of y given z. There are pn potential variables,
but only qn(τ) of these variables are needed to model the τth conditional quantile. Without
loss of generality we assume the first qn(τ) of these variables are active and the remaining
pn−qn(τ) are inactive. The index n allows the set of active and inactive variables to increase
with n, including the ultra-high dimensional case where pn increase at an exponential rate
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of n. For a given τ we consider the following sparse model for the conditional quantile

Qy|z(τ) = g0(z, τ) = α0(τ) +

pn∑
j=1

g0j(zj , τ) = α0(τ) +

qn(τ)∑
j=1

g0j(zj , τ), (1)

and for identifiability we assume E[g0j(zj , τ)] = 0 for all j ∈ {1, . . . , qn(τ)}. The model is a
high-dimensional, sparse, nonparametric model that provides great flexibility. We assume
an additive model to avoid the curse of dimensionality. The active variables, intercept, and
additive functions are indexed by τ as the model allows for these values to change with τ .
For simplicity of notation the τ symbol will be dropped throughout the remaining of the
paper, but we emphasize here that the model allows for the nonlinear relationships and
sparsity structure to change with τ . We propose using B-splines to model the nonlinear
relationships and a group nonconvex penalty to correctly identify the covariates that have
a relationship with the response at the given conditional quantile.

Tibshirani (1996) proposed the lasso penalty for simultaneous estimation and model
selection, but strong conditions are required for model selection consistency (Zhao and Yu,
2006). Our focus is on model selection and our results will depend on using nonconvex
penalty functions such as SCAD (Fan and Li, 2001) and MCP Zhang (2010) functions,
which provide oracle estimators, a stronger result than model selection consistency, under
milder conditions. When using splines multiple coefficients will be associated with a single
covariate and thus we will use a group penalty, see Huang et al. (2012) for a review of group
penalties in high-dimensional models. Previous works have proposed using splines with a
group penalty for estimating an additive conditional mean function (Huang et al., 2010;
Lin and Zhang, 2006; Meier et al., 2009; Xue, 2009). The work most similar to ours is Xue
(2009) and Huang et al. (2010). Xue (2009) proposed using a group SCAD penalty and
derived model consistency results for fixed q and p. Huang et al. (2010) proposed using a
group adaptive lasso (Zou, 2006) and proved model selection consistency with fixed q, but
allowing p to increase with n. Unlike these works, our focus is on estimating (1) instead of
an additive conditional mean function.

Since Koenker and Bassett (1978) proposed linear quantile regression there have been
many extensions, including work on nonlinear quantile regression. For a univariate covariate
He and Shi (1994) demonstrated that using B-splines for nonlinear quantile regression has
the same optimal rate of convergence as nonlinear mean regression (Stone, 1982). Moti-
vated by the work of Stone (1985) (additive mean regression) and Stone (1986) (generalized
additive models), De Gooijer and Zerom (2003) proposed a kernel based method for esti-
mating an additive nonlinear conditional quantile model and demonstrated that for fixed
p, additive quantile regression achieves the same rate of convergence found in He and Shi
(1994) and thus theoretically alleviates the curse of dimensionality, although the proposed
method requires bias correction for p ≥ 5. Horowitz and Lee (2005) proposed a two-stage
estimator for additive quantile regression that achieves the optimal rate of convergence and
does not require a bias correction. Takeuchi et al. (2006) provided finite sample bounds for
nonparametric quantile regression and discussed how to handle constraints such as mono-
tonicity and non-crossing quantiles. Splines offer great flexibility in modeling conditional
quantiles and have been proposed in a variety of conditional quantile models including,
but not limited to, varying coefficients (Kim, 2007), growth curves (Wei et al., 2006) and
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semiparametric models (He and Shi, 1996; He et al., 2002; Maidman and Wang, 2018; Wang
et al., 2009b).

Quantile regression is a robust method which estimates a conditional quantile of interest.
Our proposed method estimates conditional quantiles while allowing the sparsity structure
to vary with τ , which has been stated as another example of the flexibility quantile regression
provides for analyzing high-dimensional data (He et al., 2013; Wang et al., 2012). Previous
work in penalized quantile regression includes using the lasso penalty (Belloni and Cher-
nozhukov, 2011) and the nonconvex penalties MCP and SCAD (Wang et al., 2012) for es-
timating linear quantile regression with high-dimensional covariates. The high-dimensional
linear quantile model has been relaxed to a partially linear model, where variable selection
is only done on the high-dimensional linear terms (Sherwood, 2016; Sherwood and Wang,
2016). Other work proposed using splines with a group penalty for simultaneous estimation
and variable selection of additive quantile regression. Kato (2012) proposed using a group
lasso penalty, their work focused on convergence rates, while our work focuses on deriving
an estimator with the oracle property which is asymptotically equivalent to the estimator
that would be fit if we a priori knew the active covariates. Zhao and Lian (2016) consid-
ered the case where p is fixed and proposed using a nonconvex group penalty with the L2

norm, while we allow p to increase with n and use the L1 norm in our group penalty. Lin
et al. (2013) proposed a smoothing spline ANOVA method that focuses on computational
aspects and does not contain asymptotic results. Lv et al. (2018) considered estimation of
(1) where the univariate functions reside in a reproducing kernel Hilbert space. Their work
focused on estimation bounds, while our work focuses on deriving an oracle estimator, and
they proposed a different penalty function than the one presented here.

Penalized quantile regression is not as commonly used as penalized least squares, but
recent work has shown an interest in simultaneously estimating a conditional quantile and
performing model selection. Essl et al. (2017) used penalized quantile regression to model
extremes for the reserve capacity in the Australian electricity market, using time of day,
year and week variables along with other forecast variables. Palma et al. (2020) modeled
the age of a brain using MRI data for cognitively normal patients to better understand
brain decay for cognitively impaired individuals. Quantile regression was used to model
the .05, .5 and .95 quantiles, while the penalty was used to select the useful information
from the MRI data. Motivated by the desire to identify counterfeit drugs, Ibrahim et al.
(2020) used penalized quantile regression as a robust approach to model the amount of a
certain chemical in a drug using spectroscopy data. Nonlinear or partially linear additive
models with penalties have been used to simultaneously perform model selection and provide
nonparametric estimates of conditional means. Examples include modeling stock returns
given firm characteristics (Freyberger et al., 2020), predicting gene expression using DNA
motifs (Lian et al., 2012), and constructing graphical models for frillice lettuce attributes
and average environmental data during the cultivation period (Fujimoto et al., 2019). These
are some examples of applications of penalized quantile regression and penalized additive
models, but is by no means complete. In this paper we propose the penalized additive
quantile model as a useful model for complex data. We demonstrate that this is a robust,
theoretically sound model with few assumptions. To the best of our knowledge there are not
many, or any, public applications of penalized additive nonlinear quantile models. However,
given the flexibility of additive nonlinear quantile regression, we believe this can be a useful
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tool for data analysis. To bridge the gap between theory and application, we discuss how
to compute this model. In addition, our implementation is publicly available on CRAN
(Sherwood and Maidman, 2020).

Theoretical challenges include dealing with a nonsmooth loss function, a nonconvex
penalty function, approximation of nonlinear functions, and the number of covariates in-
creasing with the sample size. Our asymptotic results allow for qn to increase with n, which
is challenging to deal with because both the number of predictors and basis functions in-
crease to infinity with n. In addition, previous work on deriving oracle results for high
dimensional quantile regression estimators have used the fact that a quantile regression
objective function with a SCAD or MCP penalty can be written as a difference of convex
functions (Sherwood, 2016; Sherwood and Wang, 2016; Wang et al., 2012). The theoretical
results depend on demonstrating that asymptotically the oracle estimators satisfy proper-
ties about local minimizers of difference of convex functions provided by Tao and An (1997).
Our proofs are more akin to the general approach taken by Fan and Lv (2011), where we
only use some very general conditions about the penalty function. Results from Fan and
Lv (2011) were for likelihood based methods and assumed that the objective function was
differentiable. In their proofs they used a Taylor approximation of the penalized objective
function, which is not possible for the non-differentiable quantile objective function. In
this paper we show that the approach of Fan and Lv (2011) can be extended to quantile
regression by replacing the Taylor approximation with Knight’s identity, a common tool
for theoretical results about quantile regression (Knight, 1998; Koenker, 2005). It is worth
noting that previous work for adaptive lasso quantile regression, which has a convex ob-
jective function, used Knight’s identity when establishing oracle properties (Wang et al.,
2007; Zheng et al., 2015). We believe the approach provided here will be useful for future
theoretical results because working with Knight’s identity is easier than dealing with the
subdifferential functions, which is required when using the properties of difference of convex
functions. In addition, the results provided here are more general because they work with
a large class of non-convex penalty functions and are not limited to the SCAD or MCP
functions.

In addition to being theoretically challenging, high-dimensional quantile regression is
a challenging computational problem. Koenker and Bassett (1978) showed that quantile
regression can be solved by linear programming and many have found that minimizing penal-
ized quantile regression objective functions can be framed as linear programming problems
(Belloni and Chernozhukov, 2011; Sherwood and Wang, 2016; Wang et al., 2012; Wu and
Liu, 2009). However, recent work has shown that in high dimensions alternative approaches
can sacrifice little in terms of accuracy, while providing large computational gains. Peng
and Wang (2015) proposed a coordinate descent algorithm for quantile regression with a
non-convex penalty. Gu et al. (2018) proposed an alternating direction method of multiplier
(ADMM) algorithm for quantile regression with lasso, adaptive lasso or a folded concave
penalty. Yu et al. (2017) proposed an ADMM algorithm for nonconvex penalized quantile
regression that can be computed in parallel. Yi and Huang (2017) proposed semismooth
Newton coordinate descent algorithm for elastic-net penalized quantile regression that ap-
proximates the quantile loss function with a Huber loss function, creates a strong rule for
discarding covariates, and uses a coordinate descent algorithm to update the remaining
coefficients. None of the algorithms discussed use group penalties. We contribute to the
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literature by proposing a coordinate descent algorithm for quantile regression with a non-
convex group penalty. Lv et al. (2018) also proposed a coordinate descent algorithm for
penalized quantile regression. They approximated the quantile loss function with a smooth
function and their penalty function is convex. In contrast, we do not approximate the
quantile loss function and have a nonconvex penalty function.

The rest of the article is organized as follows. In Section 2 we discuss estimating the
additive quantile regression model, when the active covariates are known a priori. We
refer to this model as the oracle model and asymptotic properties of the oracle model are
presented in Section 2. In Section 3 we present a group nonconvex penalty and present
a theorem demonstrating that under reasonable conditions the group penalized method is
asymptotically equivalent to the oracle model. In Section 4 we propose our new algorithm.
In Section 5 we compare the proposed method using Monte Carlo simulations and in Section
6 we implement the proposed method to model fat content of meat using a 100 channel
spectrum of absorbances and model TRIM32 expression using other gene expression data
from the eyes of 120 twelve-week old male rats. We conclude with a summary in Section 7.

2. Oracle Model

To estimate (1) we propose first transforming the covariates using B-splines and then ap-
plying a group penalty method to simultaneously perform estimation and variable selection.
In this section we assume that the active covariates are known a priori and thus are only
estimating the model

Qy|z(τ) = g0(z) = α0 +

qn∑
j=1

g0j(zj). (2)

The work in this section establishes convergence rates for the optimal local minimum of
the penalized estimator. To estimate the nonlinear functions we use B-splines of order
m + 1 (degree m) with kn quasi-uniform internal knots for (kn + m + 1) spline functions.
Let Jn = kn + m, for j ∈ {1, . . . , pn} the jth covariate has Jn + 1 corresponding func-
tions of [bj,0(·), . . . , bj,Jn(·)] of order m + 1 with kn quasi-uniform internal knots on [0, 1]
for a total of 2(m + 1) + kn knots, (tj,−m, . . . , tj,kn+m+1). Define hj = max

s
|tj,s − tj,s+1|,

the largest distance between knots for the jth covariate, and h = max
j
hj , the largest

distance between knots for all covariates. A property of spline functions is that for any
zij it follows that

∑Jn
s=0 bj,s(zij) = 1 and to avoid collinearity we drop the first term

when fitting the model. See Schumaker (1981) for more details about the construction
of B-splines. The ith observation of the jth covariate will have a corresponding vector of
πj(zij) = [bj,1(zij), ..., bj,Jn(zij)]

> ∈ RJn . Define

ΠA(zi) =
[
1,π1(zi1)>, . . . ,πqn(ziqn)>

]>
∈ RJnqn+1,

as the B-splines vector of active covariates and

Π(zi) =
[
1,π1(zi1)>, . . . ,πpn(zipn)>

]>
∈ RJnpn+1,
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as the B-splines vector for all covariates. B-splines can be used to approximate smooth func-
tions and the following definitions help provide a formal definition of the class of functions
for g0(z).

Definition 1 Let r ≡ m + v, where m is a positive integer and v ∈ (0, 1]. Define Hr as
the collection of functions h(·) on [0, 1] whose mth derivative h(m)(·) satisfies the Hölder
condition of order v. That is, for any h(·) ∈ Hr, there exists some positive constant C such
that ∣∣∣h(m)(z′)− h(m)(z)

∣∣∣ ≤ C ∣∣z′ − z∣∣v , ∀ 0 ≤ z′, z ≤ 1. (3)

Definition 2 Given z = (z1, ..., zqn)>, the function g(z) is said to belong to the class of
functions Gr if it has the representation g(z) = α +

∑qn
j=1 gj(zj) where α ∈ R and for all

j ∈ {1, . . . , qn}, gj ∈ Hr, E[gj(zj)] = 0 and E[gj(zj)
2] < M , for some positive constant M .

Definition 3 Denote G̃n as the space of additive functions spanned by [Π(zi)]
n
i=1.

B-splines can approximate any function h(·) ∈ Hr. That is, there exists γ0j ∈ RJn such

that sup
z∈[0,1]

∣∣g0j(z)− πj(z)>γ0j

∣∣ = O (k−rn ) (Schumaker, 1981). Thus, a function g0(·) ∈ Gr

can be approximated by a function from G̃n, specifically there exists γA0 = (α0,γ
>
01, . . . ,γ

>
0qn)> ∈

RqnJn+1 such that
sup

z∈[0,1]qn

∣∣∣g0(z)−ΠA(z)>γA0

∣∣∣ = O
(
qnk
−r
n

)
. (4)

The quantile loss function is defined as ρτ (u) = u[τ − I(u < 0)]. The oracle estimator only
relies on the active covariates and is defined as

γ̂A = argmin
γA∈RqnJn+1

n∑
i=1

ρτ [yi −ΠA(zi)
>γA]. (5)

The estimator of g0(zi) is ĝ(zi) = ΠA(zi)
>γ̂A. The proposed estimator is a robust estimator

and will be robust to outliers in the response. Similar to a univariate estimate of a quantile,
if values of {yi}ni=1 are changed but the signs of residuals remain the same then the estimator
ĝ(zi) remains unchanged. See Theorem 2.4 and the discussion surrounding this theorem
from Koenker (2005) for a detailed discussion of this property of quantile regression.

The following conditions were used to prove the rate of convergence of n−1
∑n

i=1[ĝ(zi)−
g0(zi)]

2.

Condition 1 (Conditions on the random error) The random error εi has the conditional
distribution function Fi(· | zi), continuous conditional density function fi(· | zi), and f ′i(· |
zi) is the derivative of the conditional density function. The density functions are uniformly
bounded away from 0 and infinity in a neighborhood of zero and there exists a positive
constant cf such that |f ′i(· | zi)| ≤ cf for all i ∈ {1, . . . , n}.

Condition 2 (Conditions on the covariates) Let zij ∈ [0, 1] for all i ∈ {1, . . . , n} and for
all j ∈ {1, . . . , pn}. The joint density of the predictors is absolutely continuous and the
density, fz(z), is bounded away from zero and infinity by positive constants. In addition,
define fzj (z) as the density function for the jth covariate. There exist positive constants c1

and c2 such that c1 < fzj (z) < c2 for all z ∈ [0, 1] and j ∈ {1, . . . , pn}.
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Condition 3 (Conditions on the splines) There exists a positive constant c3 such that

max
j∈{1,...,pn}

max
s

(tj,s+1 − tj,s)

min
s

(tj,s+1 − tj,s)
≤ c3.

For the internal knots kn ≈ (qnn)1/(2r+1), h ≈ (qnn)−1/(2r+1) and for all j ∈ {1, . . . , pn}
hj
h ≈ 1, where a ≈ b means both a and b have the same order.

Condition 4 (Condition on the size of the model) For the active variables qn = o[log(n)].

Condition 5 (Condition on the unknown functions) For r = m+ v > 3 we assume g0(·) ∈
Gr.

Condition 1 has been used for asymptotic results of a fixed dimensional linear quantile
regression model (Koenker, 2005) and is a weaker condition than the Gaussian or sub-
Gaussian conditions that are common for penalized, high-dimensional models (Negahban
et al., 2012). Condition 1 reflects the robust properties of quantile regression as it does not
assume that any moments exist for the distribution of the errors, and thus the results will
hold for heavy tailed distributions that have no moments such as the Cauchy distribution.
Under Condition 2 there is no collinearity between the predictors. Stone (1985) introduced
Condition 2 to provide a lower bound for the standard deviation of the additive function. It
is also used to provide a lower bound for the minimum eigenvalue for the covariance matrix
of the B-splines transformation of the active predictors (Chen et al., 2018b; Zhou et al.,
1998). In addition, standard B-spline results depend on the covariates having a bounded
support and without loss of generality, Condition 2 assumes the support to be the interval
[0, 1]. The assumption that the density functions have a common lower and upper bound
is frequent in work involving splines because the bounds allow for a direct application of
Theorem 5.4.2 from Devore and Lorentz (2005). Condition 3 assumes that the distance
between the internal knots are not drastically different, which holds in practice as long as
the distributions of the covariates are not greatly skewed, and is a common assumption in
work with splines (Huang, 1998a,b; Xue and Yang, 2006). In addition for fixed qn, the rate
for kn is equivalent to the optimal rate found in Stone (1985). Condition 4 governs the rate
at which qn can increase with n. Though the rate is slow because kn also needs to increase
with n, most work in additive models assume q is fixed. The rate in Condition 4 is the
same rate used by others that have considered an increasing number of true covariates when
estimating additive models (Wang et al., 2014a). Condition 5 provides that only reasonably
smooth functions can be estimated by the proposed method. The above conditions are used
to prove the following theorem about the rate of convergence of ĝ(·). These conditions are
sufficient for proving our results but are not necessarily the weakest conditions needed.

Define ΠA = [ΠA(z1), . . . ,ΠA(zn)]> ∈ Rn×qnJn+1. Note that our conditions lack an
explicit assumption about bounds on the eigenvalues for the sample covariance matrix of
the active predictors, 1

n

∑n
i=1 ΠA(zi)ΠA(zi)

>, which is common in work that derives an
oracle property for high-dimensional data (Fan and Lv, 2011; Loh and Wainwright, 2015;
Wang et al., 2012; Zheng et al., 2015). Using the properties of B-splines and Conditions 1 -
3, the following lemma provides these bounds and insight into why the rate of qn provided
in Condition 4 is so small.
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Lemma 4 Assume Conditions 1-3 hold. For a ∈ RqnJn+1 where ||a||2 = 1, there exist
positive constants b1 > 0, B1 > 0 and δ ∈ (0, 1) with δqn = [(1 − δ)/2]qn/2 such that for
sufficiently large n that b1δ

2
qnk
−1
n ≤ a> 1

nΠ>AΠAa ≤ B1qn.

Proof of Lemma 4 is provided in the Appendix. Stone (1985) first introduced a lower
bound that depended on a term similar to δqn and is very common in the additive model
literature. If qn is fixed then the term δqn is a constant and can be easily dealt within
the asymptotic analysis. However, in the setting of qn increasing with n, the term has
to be dealt with more care. Specifically, the proof of the the next theorem depends on
n−1/2(qnkn)1/2δ−1

qn converging to zero and thus the need for Condition 4.

Theorem 5 If Conditions 1-5 hold, then

n−1
n∑
i=1

[ĝ(zi)− g0(zi)]
2 = OP

(
qnkn/n+ q2

nk
−2r
n

)
.

Thus, under Condition 3 and for fixed q, the estimator ĝ(zi) reaches the optimal rate
of convergence found by Stone (1985) and extends to fixed dimensional quantile regression
additive models (De Gooijer and Zerom, 2003; He and Shi, 1994; Horowitz and Lee, 2005).
To the best of our knowledge, this is the first result that considers the rate of convergence
for an additive quantile model with qn increasing with n. Proof of Theorem 5 is provided
in the Appendix.

3. Variable Selection

In the previous section we established that the oracle estimator is an optimal estimator
but it requires a priori knowledge about the covariates that may not be known in practice.
Define γ = (α,γ>1 , . . . ,γ

>
pn)> ∈ RJnpn+1, where γj ∈ RJn is the coefficient vector for the

B-spline functions of the jth covariate. For a vector a we define ||a||q as the Lq norm of
a. To fit a sparse model that accounts for the groups of spline functions, we propose the
following objective function

Q(γ) =
1

n

n∑
i=1

ρτ [yi −Π(zi)
>γ] +

pn∑
j=1

pλ,a
(
||γj ||1

)
. (6)

A group penalty is used to incorporate the group structure of the splines. Similar
penalties have been used for mean additive models (Huang et al., 2010; Xue, 2009). Zhao
and Lian (2016) consider a similar model for additive quantile regression, but use an L2

norm inside the penalty function and their theoretical results assume a fixed q and p.
The L1 norm is used instead of the L2 norm for computational convenience. The L1

norm fits naturally with quantile regression and in the next section we discuss some of
the computational conveniences it provides. Whether an L1 or L2 norm is used the oracle
properties for group concave penalties are similar (Sherwood et al., 2020). Define the oracle

estimator as γ̂ =
[
γ̂>A,0

>
Jn(pn−qn)

]>
, the estimator that only uses relevant groups. To derive

an oracle property we use a general class of nonconvex functions for pλ and will prove that
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with probability going to one that γ̂ is a local minimum of Q(γ). Two commonly used
penalty functions are SCAD and MCP. For the SCAD penalty function

pλ(x) = λ|x|I(0 ≤ |x| < λ) +
aλ|x| −

(
x2 + λ2

)
/2

a− 1
I(λ ≤ |x| ≤ aλ)

+
(a+ 1)λ2

2
I(|x| > aλ), for some a > 2,

and for the MCP penalty function,

pλ(x) = λ

(
|x| − x2

2aλ

)
I(0 ≤ |x| < aλ) +

aλ2

2
I (|x| ≥ aλ) , for some a > 1.

For both penalty functions, the tuning parameter λ controls the complexity of the selected
model and goes to zero as n increases to infinity. The other tuning parameter a controls
how quickly p′λ,a(x) goes to zero, but is considered fixed in the asymptotics.

Our model selection consistency proofs use the following conditions about the penalty
function and the strength of signal from a group of B-spline coefficients for an active co-
variate.

Condition 6 The function pλ,a(x) is increasing, concave, and has a continuous positive
derivative, p′λ,a(x) for x ∈ [0,∞). Also, p′λ,a(x) is increasing with respect to λ for λ > 0,
p′λ,a(0+) = λ and p′λ,a(x) = 0 for |x| > aλ.

Condition 7 (Condition on the signal) There exist positive constants c4 and c5 such that
4/(2r + 1) < c4 < (2r − 1)/(2r + 1) and n(1−c4)/2 min

j∈{1,...,qn}
||γ0j ||1 ≥ c5.

Both the SCAD and MCP satisfy Condition 6, which is very similar to Condition 1 from
Fan and Lv (2011). Condition 7 is a strength of signal condition that is very common in
high-dimensional linear models, for instance see Kim et al. (2008), Kim et al. (2012) and
Wang et al. (2012). The upper and lower bounds for c4 are sensible by Condition 5. Again,
these conditions are sufficient for proving our results, but are not necessarily the weakest
conditions needed.

Theorem 6 Assume Conditions 1 - 7 hold, λ = o
[
n−(1−c4)/2

]
, log(pn) = o(nλ2k−1

n ),

n−1/2k2
n log(n) = o(λ) and nλ2 → ∞. Let Mn(λ) be the set of local minima of the pe-

nalized objective function Q(γ), defined in (6), for tuning parameter value λ then

P [γ̂ ∈Mn(λ)]→ 1.

The conditions on λ are satisfied for λ = Cn−1/2+b, where b ∈
(

2
2r+1 ,

c4
2

)
and C is any

positive constant, where 2/(2r + 1) < c4/2 is guaranteed by Condition 7. The motivation
for using concave penalties is that with probability approaching one, for the correct value
of λ, the oracle estimator is a local minimum of the penalized objective function. Thus,
the optimal value of λ needs to properly balance over-fitting and under-fitting the model.
The upper bound depends on c4, which depends on the function that provides the smallest
signal. Smaller values of c4 indicate a weaker minimum signal and thus smaller values

9



SHERWOOD AND MAIDMAN

of λ are needed to avoid under-fitting. The lower bound depends on r and for smoother
functions λ can be smaller. The intuition here is that for smoother functions it should be
easier to separate the signal from the noise and thus smaller values of λ are needed. Finally,
the oracle property holds for ultra-high dimensional predictors because the rates allow for
pn = o

{
exp

[
nb−1/(2r+1)

]}
.

Theorem 6 proves that with probability going to one the oracle estimator is a local
minimizer of Q(γ), but provides no guarantee that the oracle estimator is the global min-
imizer. Nor does it provide any guarantees about other potential local minimizers. The
next theorem provides a bound on the l2 norm of the difference between a sufficiently sparse
local minimizer and the oracle estimator. However, an additional condition is used for that
proof.

Condition 8 If γ̄ is a local minimizer of Q(γ), where ||γ̄||0 = un then
∑n

i=1 I[yi =
Π(zi)

>γ̄] = O(un) and there exists γ̄0 such that ||γ̄ − γ̄0||2 = oP (1).

Condition 8 protects against pathological cases. It assumes that the local minimizer γ̄,
converges in probability to some fixed value γ̄0, but does not assume that γ̄0 is equal to γ0,
the coefficients that provide the best approximation to the unknown additive function. In
addition, it provides a bound on the number of zero-valued residuals. Consider an unpenal-
ized linear quantile regression estimator with p predictors. Of the n residuals corresponding
to this estimator, with probability one there will be exactly p+1 zero-valued residuals if the
errors have a density with respect to a Lebesgue measure. See section 2.2.2 of (Koenker,
2005) for a more detailed discussion of this topic. Using the same notation as Condition
8, let un be the number of nonzero coefficients for a weighted lasso estimator. Then the
weighted lasso quantile regression model will have at most un zero-valued residuals with
probability one. This is because the weighted lasso quantile regression problem has a linear
programming formulation similar to the standard quantile regression problem. Therefore,
we believe the assumption is reasonable for the SCAD and MCP for two reasons. First, it
will hold for unpenalized quantile regression and the motivation for both the SCAD and
MCP is to approximate an unpenalized estimator. Second, it holds for the weighted lasso
estimator which is the approximation we use for (6), see (7) in Section 4.

Theorem 7 Define γ̄ as a local minimizer of Q(γ) and define E = {j ∈ {1, . . . , pn}|||γ̄j ||∞ 6=
0 or ||γ̂j ||∞ 6= 0} as the set of groups that have a non-zero entry in γ̄ or γ̂. Let wn = |E| =
o[log(n)], assume Conditions 1-8 hold and that λ = n−1/2+b, where b ∈

(
2

2r+1 ,
c4
2

)
, where

2
2r+1 <

c4
2 , then

||γ̄ − γ̂||2 = OP

[
log(n)δ−2

wn
kn

(√
wn
n

+ λ
√
wnkn + knwnn

−1
√

1 + wn

)]
.

Corollary 8 Under the conditions of Theorem 7 with λ = n−1/2+b where b ∈
(

2
2r+1 ,

r−1
2r+1

)
then

||γ̄ − γ̂||2 = oP (1) and ||γ̄ − γ0||2 = oP (1).

Corollary 8 provides that any sufficiently sparse local minimizer of Q(γ) will be a con-
sistent estimator.
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4. Algorithm

The objective function Q(γ) is non-convex and for high-dimensional data a grid search
approach is not reasonable. Algorithms exist for finding estimators with good statistical
properties for a wide class of nonconvex problems, but they assume the loss function is
differentiable, which is not the case for quantile regression (Loh and Wainwright, 2015;
Wang et al., 2014b). Zou and Li (2008) proposed a local linear approximation (LLA) that
provides a convex approximation to a non-convex objective function. Let γ̂tj represent the

estimate of γ0j at iteration t, with γ̂0 = 0, then the LLA of Q(γ) is

Qt(γ) =
1

n

n∑
i=1

ρτ [yi −Π(zi)
>γ] +

pn∑
j=1

p′λ

(
||γt−1

j ||1
)
||γj ||1. (7)

For τ ∈ (0, 1), ρτ (u) + ρτ (−u) = |u| and thus the above problem can be restated as a
weighted quantile regression problem with augmented data (Sherwood, 2016; Sherwood
and Wang, 2016; Wang et al., 2012). In this approach the final estimates are derived once
the estimates converge or a maximum number of iterations has been made. At each iteration
minimizing (7) becomes a linear programming problem, however linear programming can be
quite slow for high dimensional problems. If the traditional L2 norm was used then solving
(7) becomes a second-order cone programming problem, but these tend to be even slower
than linear programming problems. In addition, using the L1 norm allows us to build on
existing computational approaches for penalized quantile regression. Peng and Wang (2015)
proposed the quantile iterative coordinate descent (QICD) algorithm for solving (7) for the
standard SCAD or MCP penalty, where γj is a scalar, which greatly reduces computational
complexity without sacrificing estimation in accuracy. We propose an extension of the
QICD algorithm for the group penalty setting, where γj is a vector.

The QICD algorithm is a two-step process that first majorizes the objective function and
then uses a coordinate descent algorithm to solve each iteration of the majorization step.
The coordinate descent algorithm is responsible for faster convergence. The key difference
is our algorithm includes an L1 grouping of coefficients and to minimize (6), we modify the

QICD algorithm to allow for group penalties. Let γ
(k)
js denote the value of γjs after the kth

iteration, k = 1, 2, . . . and γ
(k)
j =

[
γ

(k)
j1 , . . . , γ

(k)
Jn

]>
for j ∈ {1, . . . , pn} and s ∈ {1, . . . , Jn}.

Furthermore, let p′λ(x+) be the limit of p′λ(y) as y → x from above. Then, in the kth
iteration,

φγ(k−1)
j

(
γj
)

= p′λ

(
||γ(k−1)

j ||1+
) Jn∑
s=1

|γjs| − p′λ
(
||γ(k−1)

j ||1+
) Jn∑
s=1

|γ(k−1)
js |

+ pλ

(
||γ(k−1)

j ||1
) (8)

majorizes the penalty function pλ
(
||γj ||1

)
for k ∈ {1, 2, . . . ,K}, where K is a user de-

fined value for the maximum number of iterations, and j ∈ {1, . . . , pn}. More specifically,

φγ(k−1)
j

(
γj
)
≥ pλ

(
||γj ||1

)
for all γj with equality when γj = γ

(k−1)
j . Thus, the objective

11
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function Q(γ) defined in (6) is majorized by

Qγ(k−1)(γ) =
1

n

n∑
i=1

ρτ [yi −Π(zi)
>γ] +

pn∑
j=1

φγ(k−1)
j

(
γj
)
. (9)

The majorizing function in (9) is similar to the majorizing function in Peng and Wang
(2015). However, in our setting, coefficients for spline functions associated with the same

covariate all have the same weight p′λ

(
||γ(k−1)

j ||1+
)

.

For each k = 1, 2, . . ., the update for γ is

γ(k) = arg min
γ

Qγ(k−1)(γ). (10)

This iteration scheme decreases the value of the objective function in (6) for each γ(k).
Additionally, the solution to the original nonconvex minimization problem can now be
found by solving a sequence of convex minimization problems.

Coordinate descent can be used to solve the convex minimization problem in (10). In
the following coordinate descent algorithm, each coefficient γjs is updated one-at-a-time
until convergence. For the dth iteration of the coordinate descent step and the kth iteration
of the majorization step, let

ω
(k)(d)
js =

(
γ

(k)(d+1)
11 , . . . , γ

(k)(d+1)
js−1 , γ

(k)(d)
js , . . . , γ

(k)(d)
pnJn

)>
,

be the vector of coefficients that contains updates for the first js − 1 coefficients, but not
the remaining ones. We update each coefficient in the coordinate descent step as

γ
(k)(d)
js = arg min

γjs
Qγ(k−1)

(
ω

(k)(d)
js

)
. (11)

We omit the complete derivation of the coordinate descent algorithm as it is very similar
to Peng and Wang (2015). The algorithm converges when for some specified tolerance
ε, ||γk − γk−1||2 < ε or k equals K, the maximum number of iterations allowed. In the
following data analysis we used K = 20 and ε = .00001.

It is important to have appropriate starting values for the algorithm to converge. We
recommend using the estimates from lasso penalized quantile regression with the lasso
penalty applied individually to each coefficient (i.e., ignoring the group penalty) as the

starting values for γ
(0)
js . The algorithm is implemented in the R package rqPen (Sherwood

and Maidman, 2020).

5. Simulations

We consider three different simulation settings. In the first setting the response is generated
from an additive model where each function is nonlinear. The purpose of this setting is
to demonstrate the effectiveness of the proposed method compared to other approaches
for modeling nonlinear functions. This setting also includes comparisons of the QICD
algorithm to a linear programming approach. In the second setting we use the proposed

12
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approach where it might not be optimal. This setting includes a linear model, partially
linear model and a non-additive model. In this setting we compare the proposed approach
to linear models to test if the proposed approach is competitive with simpler methods. In
the last setting, to verify results of Theorem 6, we test the model selection properties of the
proposed approach for varying values of n, qn, Jn and pn.

In all settings the covariates are generated in two steps. For each observation a p-
dimensional vector is generated by x ∼ N(0p,Σp) with σjk being the entry for the jth
row and kth column of Σp and σjk = .5|j−k|. For a vector a = (a1, . . . , ap)

> ∈ Rp define

Φ(a) = {Φ(a1), . . . ,Φ(ap)}> ∈ Rp, where Φ(·) is the normal CDF. Then the p-dimensional
covariate vector is generated by z = Φ(x). In the first two sections we consider a sample
size of n = 500 and the number of covariates as p = 100, 300 or 600. More details about
the third simulation will be provided later which includes different values of n, pn, Jn and
qn.

For the first two settings, models are fit using 500 training samples. Then 1000 testing
samples are generated from the same model. All models are fit using B-splines with the
training and testing covariates transformed using cubic B-splines with Jn = 3. Let y∗i
and ŷ∗i (τ) represent the observed value and the predicted τth quantile for the ith testing
sample, where the prediction comes from a model that was fit only using the training data.
A covariate is considered selected if any of its corresponding spline coefficients are non-zero.
Models are compared using the following criteria.

1. Mean squared prediction error (MSPE), 1
1000

∑1000
i=1 [y∗i − ŷ∗i (τ)]2.

2. Mean absolute prediction error (MAPE), 1
1000

∑1000
i=1 |y∗i − ŷ∗i (τ)|.

3. Mean check prediction error (MCPE), 1
1000

∑1000
i=1 ρτ [y∗i − ŷ∗i (τ)].

4. True positives (TP), the number of active covariates selected.

5. False positives (FP), the number of nonactive covariates selected.

6. Proportion smaller (PS), the proportion of testing responses smaller than their pre-
dicted value.

For consistent methods the value of PS should be close to τ . When modeling the median,
MAPE and MCPE differ only by a multiple of 2. Thus, we only report MCPE in settings
where we fit models for non-median quantiles. In the first two settings 100 replications are
run for each simulation setting, while in the last setting 50 replications are run for each
setting.

Setting I: Additive Model

In Setting I we consider the proposed quantile additive model where pλ,a(·) is the SCAD
penalty function. We implement both the coordinate descent (QA-SCAD CD) and linear
programing (QA-SCAD LP) algorithms. We compare the method to the quantile additive
model with the lasso penalty (QA-LASSO), QA-LASSO minimizes (6) with pλ,a(x) = λ|x|.
In addition, we consider the mean additive model with the group SCAD (MA-SCAD) and
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group lasso (MA-LASSO) penalty. The mean regression methods use the same B-spline
transformation and minimize

1

n

n∑
i=1

[yi −Π(zi)
>γ]2 +

p∑
j=1

pλ,a
(
||γj ||2

)
, (12)

where for MA-LASSO pλ,a(x) = λ|x| and for MA-SCAD pλ,a(·) is the SCAD penalty func-
tion. For both MA-SCAD and QA-SCAD we set a = 3.7. Let, γ̃λ be the coefficient
vector for a given value of λ and q̃λ be the number of nonzero coefficients. For the quantile
regression methods λ is selected by minimizing,

log

{
n∑
i=1

ρτ [yi −Π(zi)
>γ̃λ]

}
+ q̃λ

log(n)

2n
.

Let `(γ) represent the Gaussian log-likelihood evaluated at γ. For the mean regression
methods λ is selected by minimizing

−2`(γ̃λ) + q̃λ log(n).

The quantile and mean regression models are fit using the R packages rqPen (Sherwood
and Maidman, 2020) and grpreg (Breheny and Zeng, 2017), respectively. Theoretically,
using BIC may not be optimal for high-dimensional variables. There exist challenges to
demonstrating that BIC will select the true model when the number of predictors grows
with the sample size that remain unsolved (Wang et al., 2009a; Lee et al., 2014). For additive

quantile regression models, Lee et al. (2014) suggested replacing q̃λ
log(n)

2n with Cnq̃λ
log(n)

2n ,
where Cn → ∞, and provide theoretical justifications. The R package rqPen allows for
implementing this high dimensional BIC. We used the standard BIC as our preliminary
results found that approach to work better, but the approach of Lee et al. (2014) has been
shown to be superior in other settings.

The response is generated under three different settings. For the first two settings we
consider the model

y = −1 + 2z3
1 + sin(2πz2) + 8(z3 − .5)2 + ε, (13)

with homoscedastic errors of ε ∼ N(0, 1) (Setting IA) or ε ∼ T3 (Setting IB). In the third
setting we consider the following heteroscedastic errors model

y = sin(2πz2) + 8(z3 − .5)2 + (.5 + z3
1)ε, (14)

with ε ∼ N(0, 1) (Setting IC).
For Settings IA and IB the methods estimate the median, τ = .5, while in Setting

IC the methods estimate the .9 quantile, τ = .9. The quantile regression methods can
directly model the .9 quantile, but the mean regression methods do not directly provide
non-median estimates. To estimate ŷ∗i (τ) for the mean regression methods we propose a
naive estimate of the conditional quantile based on estimation of the conditional quantile
in the linear mean model when the error terms are normally distributed and p is small.
Define Y = (y1, . . . , yn)> ∈ Rn as the vector of observed responses. For an estimate γ̂,
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define ŷ(γ̂) ∈ Rn as the vector of fitted values, q(γ̂) as the number of nonzero entries in

γ̂, Π(zi, γ̂) ∈ Rq(γ̂) as the vector of basis functions that have non-zero coefficients in γ̂

and σ̂(γ̂) = 1√
n−q(γ̂)

∣∣∣∣∣∣Y − Ŷ(γ̂)
∣∣∣∣∣∣

2
. Let t∗d,τ be the τ quantile of a T-distribution with d

degrees of freedom. For a vector of covariates z∗i with estimate of the conditional mean, ŷ∗i ,
the naive estimate of the τth conditional quantile is

ŷ∗i (τ) = ŷ∗i + t∗
n−q(γ̂),τ

σ̂(γ̂)

√√√√1 + Π(z∗i , γ̂)>

[
n∑
i=1

Π(zi, γ̂)Π(zi, γ̂)>

]−1

Π(z∗i , γ̂). (15)

The above estimator is the standard prediction interval estimator of a conditional quantile
using ordinary least squares. If the errors are i.i.d. and normally distributed then the
estimator is the MLE for the conditional quantile. However, it is naive because it is a fixed
dimensional solution to a high-dimensional problem. Even in the fixed dimension setting
it will be an inconsistent estimate if the errors are not normally distributed or if there is
nonconstant variance.

The means (and standard deviations) across the 100 simulations for the previously
defined six summary statistics are provided in Tables 1-3 for Settings IA-IC. For p = 100
and p = 300 the tables include two versions of QA-SCAD. The linear programming (LP)
approach to solving (7), using the Barrodale and Roberts (1974) algorithm for regression
quantiles (Koenker and D’Orey, 1987, 1994), and the coordinate descent (CD) approach
described in Section 4. The summary statistics between the two algorithms are almost
identical in Settings IA and IB, except that the coordinate descent approach tends to select
more false positives. In Setting IC the LP approach provides better results. Figure 1
compares the computational speed for the two algorithms, in the different settings when
p = 100 or p = 300. For Settings IA and IB the QICD algorithm is noticeably faster for
p = 100 or p = 300. For Setting IC, the QICD algorithm is slower at p = 100, but faster at
p = 300. For p = 600 only the QICD algorithm was used, due to the excessive computational
time of the linear programming approach. The rest of the simulations only consider the
QICD algorithm because of the computational advantages over the linear programming
approach.

Results in Table 1 show that the group SCAD approaches are fitting smaller models
that all contain the true covariates and are doing a better job in terms of prediction. For
the different values of p the MA-SCAD approach does the best in terms of prediction error,
but this is not surprising as we expect a method using a squared error loss function to
perform well when the errors are homoscedastic and normally distributed. In Setting IB,
presented in Table 2, the QA-SCAD methods perform the best in terms of model selection
and prediction accuracy. The linear mean methods are selecting more false positives because
of the extra noise from the heavier tailed error distribution, T3. For Setting IC, presented in
Table 3, the largest difference can be seen in terms of TP. In this model z1 is only an active
variable for τ 6= .5 and thus the mean regression methods do not consistently select this
variable. Also, the PS results are slightly better for QA-SCAD approaches than the mean
regression methods, which we expect because the mean regression methods for estimating
the .9 quantile do not correctly account for the nonconstant variance. In all the results we
see the SCAD methods picking smaller models than their LASSO counterparts, but still
getting accurate results in terms of selecting the correct number of active covariates.
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Figure 1: Computation Time comparison of coordinate descent method (QICD) and linear
programming (LP) for 100 simulations with p = 100.

Method p MSPE MAPE TP FP PS

MA-LASSO 100 1.08 (0.06) 0.83 (0.02) 3 (0) 9.16 (2.4) 0.5 (0.02)
MA-SCAD 100 1.03 (0.05) 0.81 (0.02) 3 (0) 2.38 (2.48) 0.5 (0.02)
QA-LASSO 100 1.2 (0.09) 0.88 (0.03) 3 (0) 11.79 (5.45) 0.5 (0.03)
QA-SCAD CD 100 1.05 (0.06) 0.82 (0.02) 3 (0) 1.23 (0.69) 0.5 (0.03)
QA-SCAD LP 100 1.04 (0.06) 0.82 (0.02) 3 (0) 1.23 (0.78) 0.5 (0.03)

MA-LASSO 300 1.09 (0.06) 0.83 (0.02) 3 (0) 18.14 (2.67) 0.51 (0.02)
MA-SCAD 300 1.03 (0.05) 0.81 (0.02) 3 (0) 10.29 (3.15) 0.51 (0.02)
QA-LASSO 300 1.29 (0.1) 0.91 (0.04) 3 (0) 14.17 (6.91) 0.5 (0.03)
QA-SCAD CD 300 1.05 (0.05) 0.82 (0.02) 3 (0) 2.01 (1.55) 0.51 (0.03)
QA-SCAD LP 300 1.04 (0.05) 0.81 (0.02) 3 (0) 1.6 (1.34) 0.51 (0.03)

MA-LASSO 600 1.11 (0.06) 0.84 (0.02) 3 (0) 28.06 (4.23) 0.5 (0.02)
MA-SCAD 600 1.04 (0.05) 0.81 (0.02) 3 (0) 20 (4.89) 0.5 (0.02)
QA-LASSO 600 1.43 (0.13) 0.95 (0.04) 3 (0) 13.58 (8.26) 0.49 (0.03)
QA-SCAD CD 600 1.07 (0.05) 0.82 (0.02) 3 (0) 2.7 (1.9) 0.5 (0.02)

Table 1: Simulation results for homoscedastic N(0,1) errors (Setting IA)

Setting II: Non-optimal Models

The previous section demonstrated the computational advantages of the CD algorithm so
for this setting we only consider the coordinate descent implementation of the proposed
approach (QA-SCAD CD). In this section the response is generated from a model where
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Method p MSPE MAPE TP FP PS

MA-LASSO 100 3.19 (2.2) 1.18 (0.06) 2.99 (0.1) 7.66 (2.12) 0.51 (0.03)
MA-SCAD 100 3.1 (2.19) 1.15 (0.06) 2.99 (0.1) 6.76 (2.92) 0.5 (0.03)
QA-LASSO 100 3.28 (2.2) 1.21 (0.06) 3 (0) 8.48 (4.47) 0.51 (0.03)
QA-SCAD CD 100 3.03 (2.19) 1.12 (0.06) 3 (0) 1.59 (1.22) 0.5 (0.03)
QA-SCAD LP 100 3.02 (2.19) 1.12 (0.06) 3 (0) 1.25 (0.77) 0.51 (0.03)

MA-LASSO 300 3.05 (0.64) 1.18 (0.06) 3 (0) 15.74 (2.8) 0.5 (0.03)
MA-SCAD 300 2.97 (0.65) 1.15 (0.06) 3 (0) 15.16 (4.09) 0.5 (0.03)
QA-LASSO 300 3.31 (0.65) 1.26 (0.07) 2.96 (0.24) 7.24 (5.32) 0.51 (0.03)
QA-SCAD CD 300 2.89 (0.62) 1.13 (0.05) 3 (0) 2.52 (2.28) 0.5 (0.03)
QA-SCAD LP 300 2.88 (0.63) 1.12 (0.06) 3 (0) 2.04 (1.77) 0.5 (0.03)

MA-LASSO 600 3.16 (0.96) 1.19 (0.07) 2.98 (0.14) 25.96 (4.69) 0.5 (0.03)
MA-SCAD 600 4.99 (5.42) 1.45 (0.73) 2.98 (0.14) 40.37 (35.56) 0.5 (0.03)
QA-LASSO 600 3.52 (0.95) 1.3 (0.08) 2.82 (0.5) 5.67 (5.68) 0.5 (0.03)
QA-SCAD CD 600 2.99 (0.95) 1.14 (0.07) 3 (0) 3.32 (3) 0.5 (0.03)

Table 2: Simulation results for homoscedastic T3 errors (Setting IB)

Method p MSPE MAPE MCPE TP FP PS
MA-LASSO 100 1.88 (0.14) 1.17 (0.05) 0.15 (0.01) 2.22 (0.42) 6.86 (2.19) 0.92 (0.01)
MA-SCAD 100 1.78 (0.13) 1.14 (0.05) 0.15 (0.01) 2.04 (0.2) 2.08 (2.53) 0.92 (0.01)
QA-LASSO 100 1.85 (0.36) 1.09 (0.12) 0.16 (0.01) 2.97 (0.17) 28.88 (16.28) 0.86 (0.03)
QA-SCAD CD 100 1.89 (0.35) 1.1 (0.11) 0.15 (0.01) 2.92 (0.27) 2.9 (2.78) 0.89 (0.02)
QA-SCAD LP 100 1.76 (0.21) 1.05 (0.06) 0.14 (0.01) 3 (0) 2.32 (2.19) 0.89 (0.02)
MA-LASSO 300 1.97 (0.17) 1.21 (0.06) 0.15 (0.01) 2.17 (0.38) 14.92 (2.98) 0.93 (0.01)
MA-SCAD 300 1.85 (0.15) 1.17 (0.06) 0.15 (0.01) 2.1 (0.3) 9.93 (3.78) 0.93 (0.01)
QA-LASSO 300 1.9 (0.25) 1.11 (0.09) 0.16 (0.01) 3 (0) 45.61 (12.11) 0.86 (0.02)
QA-SCAD CD 300 2.05 (0.49) 1.15 (0.14) 0.15 (0.02) 2.83 (0.4) 4.13 (4.39) 0.89 (0.02)
QA-SCAD LP 300 1.75 (0.19) 1.04 (0.06) 0.14 (0.01) 3 (0) 6.13 (5.65) 0.88 (0.02)
MA-LASSO 600 2.06 (0.18) 1.24 (0.06) 0.15 (0.01) 2.12 (0.33) 25.23 (4.49) 0.93 (0.01)
MA-SCAD 600 1.92 (0.17) 1.2 (0.06) 0.15 (0.01) 2.08 (0.27) 19.94 (4.55) 0.93 (0.01)
QA-LASSO 600 2 (0.3) 1.14 (0.1) 0.18 (0.01) 3 (0) 54.23 (16.41) 0.85 (0.02)
QA-SCAD CD 600 2.06 (0.52) 1.16 (0.16) 0.16 (0.02) 2.74 (0.46) 5.87 (9.1) 0.88 (0.02)

Table 3: Simulation results for heteroscedastic errors (Setting IC)

the proposed approach is not optimal, either because it is too complex or not complex
enough. The settings are

Setting IIA (linear model) y = 1 + z1 − z2 + 3z3 + ε;

Setting IIB (partially linear model) y = 1 + z1 + 2 sin(4πz2) + 2(z3 − .5)3 + ε;

Setting IIC (nonadditive model) y = −1 + 2z3
1 [sin(2πz2) + 1] + 8(z3 − .5)2 + ε.

In each setting ε ∼ T3. The QA-SCAD CD model is compared to simpler linear models.
We consider linear mean and quantile regression with the SCAD (ML-SCAD, QL-SCAD)
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and lasso (ML-LASSO, QL-LASSO) penalty. For the linear models the objective functions
are

1

n

n∑
i=1

mτ (yi − z>i β) +

p∑
j=1

pλ,a (|βj |) . (16)

Where mτ (x) = x2 for the mean models and mτ (x) = ρτ (x) for the quantile regression
models and pλ,a = λ|x| for lasso and for SCAD pλ,a(·) is the SCAD penalty function. For
these simulations we consider the case of τ = .5. For all models λ is selected using BIC
similar to what was described in the previous section and for the SCAD penalties a is fixed
to 3.7. For Setting IIB Jn was set to 5, while in all other settings we fixed Jn = 3. The
ML-LASSO and ML-SCAD models were fit using glmnet (Friedman et al., 2008) and ncvreg
(Breheny and Huang, 2011), respectively. All the quantile regression models were fit using
rqPen (Sherwood and Maidman, 2020).

Results for the simulations are reported in Tables 4-6. The QA-SCAD approach is
competitive for both the linear and partially linear setting. In setting IIB it does best at
selecting the true variables when p is large, p ∈ {300, 600}. For Setting IIC it dominates
with respect to all metrics, except PS, which all do well at, and FP, where QL-LASSO does
the best. This demonstrates that the proposed additive model has benefits compared to
simpler models even when the true model is not additive.

Method p MSPE MAPE TP FP PS
ML-LASSO 100 3.09(2.21) 1.14(0.06) 1.73(0.62) 1.84(2.42) 0.5(0.03)
ML-SCAD 100 3.06(2.21) 1.13(0.05) 1.66(0.83) 2.25(3.85) 0.5(0.03)
QA-SCAD CD 100 3.07(2.21) 1.14(0.06) 2.21(0.41) 1.06(0.34) 0.51(0.03)
QL-LASSO 100 3.08(2.21) 1.14(0.05) 1.71(0.61) 1.88(1.7) 0.5(0.03)
QL-SCAD 100 3.05(2.2) 1.13(0.05) 2.42(0.81) 2.97(1.76) 0.51(0.03)
ML-LASSO 300 2.95(0.63) 1.14(0.05) 1.51(0.52) 2.36(3.61) 0.5(0.03)
ML-SCAD 300 2.91(0.64) 1.13(0.06) 1.39(0.58) 1.87(3.89) 0.5(0.03)
QA-SCAD CD 300 2.91(0.63) 1.13(0.05) 2.3(0.46) 1.3(0.96) 0.5(0.03)
QL-LASSO 300 2.93(0.63) 1.14(0.05) 1.7(0.48) 1.98(1.28) 0.5(0.03)
QL-SCAD 300 2.9(0.63) 1.13(0.05) 1.9(0.72) 2.05(1.31) 0.5(0.03)
ML-LASSO 600 3.05(0.81) 1.16(0.05) 1.5(0.51) 1.84(2.85) 0.5(0.03)
ML-SCAD 600 3.01(0.82) 1.14(0.05) 1.16(0.37) 0.94(1.73) 0.5(0.04)
QA-SCAD CD 600 3(0.84) 1.14(0.05) 2.26(0.44) 1.12(0.48) 0.5(0.03)
QL-LASSO 600 3.02(0.82) 1.15(0.05) 1.7(0.51) 2.7(1.81) 0.5(0.03)
QL-SCAD 600 2.99(0.82) 1.14(0.05) 1.22(0.46) 1.04(0.2) 0.5(0.03)

Table 4: Simulation results for Setting IIA (linear model).

Setting III: Model Selection Performance

To validate the results of Theorem 6 we consider the model selection performance of QA-
SCAD CD for qn, Jn, and pn increasing with n. The responses in this section are generated
from the model

y = −1 + 2z3
1 + sin(2πz2)I(qn > 1) + 8(z3 − .5)2I(qn > 2) + 2z3

11I(qn > 3)

+ sin(2πz12)I(qn > 4) + 8(z13 − .5)2I(qn = 6) + ε,
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Method p MSPE MAPE TP FP PS

ML-LASSO 100 3.09(2.21) 1.14(0.06) 1.73(0.62) 1.84(2.42) 0.5(0.03)
ML-SCAD 100 3.06(2.21) 1.13(0.05) 1.66(0.83) 2.25(3.85) 0.5(0.03)
QA-SCAD CD 100 3.07(2.21) 1.14(0.06) 2.21(0.41) 1.06(0.34) 0.51(0.03)
QL-LASSO 100 3.08(2.21) 1.14(0.05) 1.71(0.61) 1.88(1.7) 0.5(0.03)
QL-SCAD 100 3.05(2.2) 1.13(0.05) 2.42(0.81) 2.97(1.76) 0.51(0.03)

ML-LASSO 300 2.95(0.63) 1.14(0.05) 1.51(0.52) 2.36(3.61) 0.5(0.03)
ML-SCAD 300 2.91(0.64) 1.13(0.06) 1.39(0.58) 1.87(3.89) 0.5(0.03)
QA-SCAD CD 300 2.91(0.63) 1.13(0.05) 2.3(0.46) 1.3(0.96) 0.5(0.03)
QL-LASSO 300 2.93(0.63) 1.14(0.05) 1.7(0.48) 1.98(1.28) 0.5(0.03)
QL-SCAD 300 2.9(0.63) 1.13(0.05) 1.9(0.72) 2.05(1.31) 0.5(0.03)

ML-LASSO 600 3.05(0.81) 1.16(0.05) 1.5(0.51) 1.84(2.85) 0.5(0.03)
ML-SCAD 600 3.01(0.82) 1.14(0.05) 1.16(0.37) 0.94(1.73) 0.5(0.04)
QA-SCAD CD 600 3(0.84) 1.14(0.05) 2.26(0.44) 1.12(0.48) 0.5(0.03)
QL-LASSO 600 3.02(0.82) 1.15(0.05) 1.7(0.51) 2.7(1.81) 0.5(0.03)
QL-SCAD 600 2.99(0.82) 1.14(0.05) 1.22(0.46) 1.04(0.2) 0.5(0.03)

Table 5: Simulation results for Setting IIB (partially linear model).

Method p MSPE MAPE TP FP PS

ML-LASSO 100 3.61(2.2) 1.3(0.05) 1.12(0.57) 1.67(2.58) 0.52(0.03)
ML-SCAD 100 3.6(2.19) 1.3(0.05) 1.26(0.65) 3.02(4.3) 0.52(0.03)
QA-SCAD CD 100 3.21(2.2) 1.18(0.06) 2.95(0.22) 1.51(1.11) 0.5(0.03)
QL-LASSO 100 3.63(2.21) 1.31(0.06) 1.86(0.49) 0.49(1) 0.51(0.03)
QL-SCAD 100 3.62(2.19) 1.31(0.06) 2.51(0.52) 2.01(1.85) 0.51(0.03)

ML-LASSO 300 3.48(0.62) 1.3(0.05) 0.79(0.43) 1.56(2.76) 0.52(0.03)
ML-SCAD 300 3.47(0.62) 1.3(0.05) 0.85(0.54) 2.18(3.84) 0.52(0.03)
QA-SCAD CD 300 3.07(0.63) 1.18(0.06) 2.88(0.33) 1.84(1.72) 0.5(0.03)
QL-LASSO 300 3.48(0.62) 1.31(0.05) 1.67(0.47) 0.5(0.93) 0.51(0.03)
QL-SCAD 300 3.54(0.63) 1.32(0.06) 2.38(0.58) 4.38(3.41) 0.5(0.03)

ML-LASSO 600 3.55(0.93) 1.31(0.06) 0.86(0.45) 2.22(3.98) 0.51(0.03)
ML-SCAD 600 3.55(0.93) 1.31(0.06) 0.85(0.48) 2.36(3.95) 0.51(0.03)
QA-SCAD CD 600 3.19(0.93) 1.2(0.07) 2.82(0.41) 2.73(3.14) 0.5(0.03)
QL-LASSO 600 3.56(0.92) 1.31(0.06) 1.59(0.49) 0.41(1.2) 0.5(0.03)
QL-SCAD 600 3.53(0.93) 1.3(0.06) 2.01(0.44) 1.93(2.84) 0.5(0.03)

Table 6: Simulation results for Setting IIC (nonadditive model).

where ε ∼ N(0, 1). We fit the QA-SCAD model in 3 different settings where Jn, qn, or
pn vary. In all the settings we fit models with sample size of 100, 300, 600 and 1000. In
Setting IIIA we fit the model with Jn ∈ {3, 4, 5}. In setting IIIB models are fit with qn ∈
{1, 2, 3, 4, 5, 6}. Finally, in Setting IIIC models are fit with pn ∈ {100, 300, 500, 1000, 2000}.
When they are not varying we fix Jn = 3, qn = 3 and pn = 300. For instance, in Setting
IIIA we fix qn = 3 and pn = 300 and consider performance of QA-SCAD CD with different
values of Jn and n. The purpose of these simulations is to corroborate the model selection
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Figure 2: True positive and false positive rates by n with varying Jn from Setting IIIA

properties presented in Theorem 6 and thus we only consider the QA-SCAD CD model. In
addition, performance is evaluated with respect to the TP and FP rates, number of true
or false covariates selected divided by the number of true or false potential covariates, to
account for the fact that qn and pn can vary. Again to duplicate the settings of Theorem
6 we fix λ = n−1/10/4 which for the given additive functions satisfies the potential valid
choices of λ outlined after Theorem 6. Figures 2-5 present how the average true positive and
false positive rates vary with n in the different settings across the 50 replications. Figure
2 presents how the false and true positives vary with n and Jn. The relationship between
Jn and correct model selection is not straightforward. From a theoretical perspective larger
values of Jn will provide a better approximation of the functions and thus we could reason
that for larger value of Jn the true positive rate should go up and false positive rate should
go down. However, from a practical perspective larger values of Jn cause the size of the
grouped coefficients to increase where the intuition is this could lead to an increase in
the false positive rate. Figure 2 reflects some of this uncertainty, but also shows that as
n increases, no matter the value of Jn, the active covariates tend to be selected and the
inactive covariates tend to be dropped. Figure 3 demonstrates that the larger the value of
qn the harder it is to select the correct variables. We also see that for large values of n
that, no matter the value of qn, with high probability the active covariates are selected and
the inactive covariates are discarded. Figures 4 and 5 present the false and true positives,
respectively, as functions of n and n/ log(pn). The n/ log(pn) is used to verify that pn can
grow exponentially with n. Both figures demonstrate that settings with large values of pn
are doing worse for smaller n, but for the larger values of n the true covariates tend to be
selected and the noise covariates are removed from the models.
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Figure 3: True positive and false positive rates by n with varying qn from Setting IIIB
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Figure 4: True positive rates by n and n/log(pn) for varying pn from Setting IIIC
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Figure 5: False positive rates by n and n/log(pn) for varying pn from Setting IIIC

6. Data Analysis

6.1 Fat content of ground pork

Borggaard and Thodberg (1992) measured the fat content and 100 channel spectrum of
absorbances from 240 ground pork meat samples. Our analysis is limited to the 215 samples
available from the R package faraway (Faraway, 2016) and we removed 5 observations with
outlying values leaving us with 210 samples. We analyze this data using the QA-SCAD
model and consider both the CD and LP algorithms. We compare these approaches to three
other models: (1) MA-SCAD discussed in simulation Setting I; (2) ML-SCAD discussed in
simulation Setting II; and (3) QL-SCAD discussed in simulation Setting II. For the linear
models no B-spline transformation is done and each coefficient is penalized individually
using the SCAD penalty. For the nonlinear additive models a B-spline transformation is
used and group penalties are used for coefficients. The channel spectrum is scaled and
centered to have a mean of zero and a standard deviation of one. The fat content data is
first log transformed and then scaled and centered to have a mean of zero and a standard
deviation of one.

To compare the methods we randomly sample 200 of the 210 samples as training data
and the other 10 samples are used as testing data. The channel spectrum data is highly
correlated. Following an approach similar to the one outlined in Meier et al. (2009), we
transform the predictors by using the first 30 principal components. The principal compo-
nents are centered and scaled to have mean zero and a standard deviation of one. The five
models are fit using the 30 principal components as covariates to model log of fat content.
For the nonlinear models the principal components are transformed using cubic B-splines
with Jn = 3.
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Fitting a quantile regression model requires a choice of τ . Choosing τ = .5 provides a
robust estimate of central tendencies. Two values of τ can be used to create a prediction
interval that does not require a parametric assumption about the errors. For instance,
models with τ = .1 and τ = .9 can be used to create an 80% prediction interval. If the
whole conditional distribution is of interest then a wide range values of τ could be used.
To estimate the whole conditional distribution, and test the proposed method for several
values of τ , models are fit for values of τ ∈ T ≡ {.1, .2, .3, .4, .5, .6, .7, .8, .9}. The tuning
parameter λ is selected using BIC, as outlined in the previous section, and we set a = 3.7.
The mean models estimate the conditional quantiles using the naive procedure outlined
in the previous section. The testing covariates are transformed using the rotation defined
by the first 30 principal components from the testing data. The 30 covariates are then
centered and scaled by the sample mean and standard deviation from the testing data. For
the nonlinear models the testing covariates are transformed by the B-spline functions used
on the training data. Using this transformed data, predictions from the six methods are
made for the log fat content. This process is repeated 100 times.

Let yij represent the scaled and centered log fat content of the ith sample from the
jth testing data set and ŷτij represent its corresponding estimate for the τth quantile. Let
I(a ≤ b) take a value of one if a ≤ b and zero otherwise. The models are compared using

1. MSPE, 1
10

∑10
i=1(yij − ŷ.5ij)2.

2. MAPE, 1
10

∑10
i=1 |yij − ŷ.5ij |.

3. MCPE, 1
10

∑
τ∈T

∑10
i=1 ρτ (yij − ŷτij).

4. Quantile Bias (QB),
∑

τ∈T

∣∣∣ 1
1000

∑100
j=1

∑10
i=1 I(yij ≤ ŷτij)− τ

∣∣∣.
Methods that correctly model the τth quantile will have

1

1000

100∑
j=1

10∑
i=1

I(yij ≤ ŷτij) ≈ τ.

Thus, QB is providing a summary of how accurate the conditional quantile estimates are
across all partitions and all values of τ . The statistic QB and means (and standard devia-
tions) of the other three statistics are reported in Table 7.

In this data set we are comparing the linear and nonlinear approaches to see if there is
justification for fitting the more complex nonlinear models. In addition, quantile and mean
models are compared to see if the quantile models are providing a better description of the
conditional distribution. One of the two nonlinear quantile algorithms has the best average
results for MAPE, MCPE and QB. For MSPE the linear quantile approach does the best
and the linear mean approach also does better than the nonlinear quantile approach. The
superiority of the nonlinear quantile approach in terms of MCPE and QB suggests that the
more complex nonlinear quantile models are providing useful predictions for non-central
tendencies. Performance of the CD and LP algorithms is similar.
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Method MSPE MAPE MCPE QB

ML-SCAD 0.66(0.41) 0.59(0.19) 0.24(0.07) 0.37
QL-SCAD 0.65(0.41) 0.58(0.19) 0.24(0.07) 0.32
MA-SCAD 0.96(1.56) 0.66(0.25) 0.28(0.1) 0.41
QA-SCAD CD 0.7(0.68) 0.58(0.22) 0.24(0.07) 0.21
QA-SCAD LP 0.71(0.61) 0.57(0.22) 0.23(0.08) 0.22

Table 7: Means (and standard deviations) of statistics from the Monte Carlo randomization
results for the ground pork data.

6.2 Modeling TRIM32 expression levels

The previous example provides some evidence that nonlinear quantile regression can provide
a less biased estimate of a conditional quantile, but does not demonstrate a dramatic differ-
ence between linear and nonlinear quantile regression in terms of prediction accuracy. This
section presents an example where the additive quantile regression model outperforms the
linear quantile regression model in terms of prediction accuracy. Huang et al. (2010) pre-
sented an analysis of modeling high-dimensional genomics data, from Scheetz et al. (2006),
where a nonlinear additive mean model improved upon the prediction performance of a
linear mean model. We consider the same data set for modeling the conditional median.
Scheetz et al. (2006) used 31,042 different probe sets to analyze RNA from the eyes of
120 twelve-week old male rats. Similar to Huang et al. (2010) we model the expression of
gene TRIM32, because Chiang et al. (2006) identified TRIM32 as a Bardet-Biedl syndrome
gene and one symptom of Bardet-Biedl syndrome is retinal degeneration. Scheetz et al.
(2006) note that many of the probes were not expressed in the eye. Thus, following Huang
et al. (2010) we limit our analysis to the 500 genes that have the highest absolute Pearson’s
correlation with the TRIM32 expression.

To demonstrate that this is a setting where the nonlinear quantile model improves
prediction accuracy over the linear counterpart we consider the QL-SCAD and QA-SCAD
CD approaches using Monte Carlo randomization. All variables are log transformed and
the predictors are further transformed to have a minimum value of zero and maximum
value of one. First the data is randomly partitioned into a training set of 100 observations
and a testing set of 20 observations. We fit the models using the 100 training observations
and make prediction of TRIM32 expression on the remaining 20 testing observations. For
the nonlinear model we set Jn = 4. This process was repeated 100 times and the MAPE
recorded at each iteration. Figure 6 presents the MAPE of the two methods, demonstrating
that the nonlinear model tends to be more accurate. In addition, in 69 of the 100 iterations
the nonlinear model had a lower MAPE than the linear model.

7. Conclusions

We proposed an additive nonlinear model to provide a flexible model. However, it is possible
that too complex a model will be fit. For instance, if some of the true functions are
linear than the model being fit will be more complex than necessary. To balance model
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Figure 6: Monte Carlo randomization MAPE of TRIM32 for the genomics data. The non-
linear model tends to perform better and in 69 of the 100 Monte Carlo iterations
had the lower MAPE.

complexity and ease of interpretation Lou et al. (2016) proposed a penalized approach for
mean regression that does both variable selection and automatic assignment of a covariate
to a linear or nonlinear term. However, even this approach has some rigidity as, similar
to our work, it requires preset definitions of the basis splines including the number and
placement of knots. Desire for flexibility has resulted in methods which use adaptive knots
(Petersen et al., 2016; Sadhanala and Tibshirani, 2019) and adaptive knot assignment and
classification of predictors as linear or nonlinear (Petersen and Witten, 2019). However, all
the cited work has focused on mean regression. Developing adaptive methods for quantile
regression would be a useful contribution to this line of research.
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8. Appendix

Throughout the proofs C is used to represent a generic positive constant that can change
in value from line to line. We start by presenting some useful equalities that are used
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throughout the proofs. For u 6= 0, Knight (1998) introduced the equality of

|u− v| − |u| = −u[I(u > 0)− I(u < 0)] + 2

∫ v

0
[I(u ≤ s)− I(u ≤ 0)]ds. (17)

Define ψτ (u) = τ − I(u < 0). As ρτ (u) = 1/2[|u|+ (2τ − 1)u], Koenker (2005) generalized
(17) and for u 6= 0 presented Knight’s identity as

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0
I(u ≤ s)− I(u ≤ 0)ds. (18)

Knight’s identity also provides that

ρτ (u− a− v)− ρτ (u− v) =

∫ −(a+v)

−v
ψτ (u+ s)ds =

∫ a+v

v
[I(u < s)− τ ]ds, (19)

which is an intuitive result as ψτ (u) is the derivative of ρτ (u) where it is defined.
The following definitions are used throughout the proof

uni = ΠA(zi)
>γA0 − g0(zi),

Dn = diag[f1(0 | z1), . . . , fn(0 | zn)] ∈ Rn×n,
W 2
D = Π>ADnΠA ∈ RqnJn+1×qnJn+1,

θ = WD(γA − γA0),

W̃(zi) = W−1
D ΠA(zi),

Qi(θ) = ρτ [εi − W̃(zi)
>θ − uni],

Ez(x) = E (x | z) ,
Di(θ) = Qi(θ)−Qi(0)− Ezi [Qi(θ)−Qi(0)] + W̃(zi)

>θψτ (εi),

θ̂ = argmin
θ∈RqnJn+1

n∑
i=1

ρτ [εi − W̃(zi)
>θ − uni].

Notice that θ̂ = WD(γ̂A − γA0) and W̃(zi)
>θ̂ = ΠA(zi)

>γ̂A for all i ∈ {1, . . . , n}.
Define dj,s = (tj,s+1 − tj,s−m)/(m+ 1). The following Lemma is restating Corollary 1 from
de Boor (1976) and provided here for convenience.

Lemma 9 (Corollary 1 from de Boor (1976).) For 1 ≤ p < ∞ and for all j ∈ {1, . . . , qn}
and s ∈ {0, . . . , Jn}

(m+ 1)1/p

m+ 1
≤
[∫ 1

0
d−1
j,s |bj,s(z)|

p dx

]1/p

≤ 1.

8.1 Proof of Lemma 4

Proof The majority of the proof for the lower bound follows work done in proof of Lemma
1 from Chen et al. (2018a). The major difference is the constant term, corresponding to the
intercept, is accounted for in these results while the results from Chen et al. (2018a) ignore
the intercept because it can be removed in mean regression by centering the predictors and
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response to be mean zero. However, for quantile regression an intercept is still required
after such transformations. Define Πj ∈ Rn×Jn , as the matrix of splines associated with the
jth predictor, such that ΠA = [1n,Π1, . . . ,Πqn ] and a = (a0,a

>
1 , . . . ,a

>
qn)>, where aj ∈ RJn

for all j ∈ {1, . . . , qn}. Notice that a>Π>AΠAa = ||a01n+Π1a1 + . . .+Πqnaqn ||22. By Lemmas
S.5 from Chen et al. (2018b) and that ||Πjaj ||2 ≥ 0 it follows that

||a01n + Π1a1 + . . .+ Πqnaqn ||22 ≥
(

1− δ
2

)qnna2
0 +

qn∑
j=1

||Πjaj ||22

 .

From Lemma 6.2 of Zhou et al. (1998), for any j ∈ {1, . . . , qn} there exists a positive
constant C such that λmin(Π>j Πj) ≥ CJ−1

n n. Therefore,

(
1− δ

2

)qnna2
0 +

qn∑
j=1

||Πjaj ||22

 ≥ C

(
1− δ

2

)qnna2
0 + CJ−1

n n

qn∑
j=1

a>j aj


≥ C

(
1− δ

2

)qn
J−1
n n.

It immediately follows that there exists a positive constant b1 such that b1δ
2
qnk
−1
n ≤ a> 1

nΠ>AΠAa.

For the upper bound, using the Cauchy-Schwarz inequality and that
∑Jn

s=0 bj,s(zij) = 1
and that bj,s(z) ≥ 0 for all z ∈ [0, 1], j ∈ {1, . . . , pn} and s ∈ {0, . . . , Jn},

1

n

n∑
i=1

[a>ΠA(zi)]
2 ≤ ||a||22

1

n

n∑
i=1

1 +

qn∑
j=1

Jn∑
s=1

bj,s(zij)
2

 ≤ qn + 1.

Set B1 = 2 and the result immediately follows.

The following lemma provides some bounds on the vector and matrices of B-splines.

Lemma 10 Under Conditions 1-4 and for sufficiently large n the following properties hold.

(1) For a ∈ RqnJn+1 where ||a||2 = 1, there exist positive constants b2 and B2 such that
for sufficiently large n that b2δ

2
qnk
−1
n ≤ a> 1

nW
2
Da ≤ B2qn.

(2) There exists a constant b3 such that max
i
||W̃(zi)||2 ≤ b3δ−1

qn

√
knqn
n .

(3) There exist constants m1 < M1 such that for all j ∈ {1, . . . , qn} and s ∈ {0, . . . , Jn}

m1k
−1
n ≤

∫ 1

0
b2j,s(z)dz ≤M1k

−1
n .

(4) For all j ∈ {1, . . . , qn} and all s ∈ {0, . . . , Jn} there exist positive constants m2 < M2

such that
m2k

−1
n ≤ E[bj,s(zij)

2] ≤M2k
−1
n .

27



SHERWOOD AND MAIDMAN

Proof

(1) Follows from Condition 1, providing uniform upper and lower bounds for fi(0) for all
i ∈ {1, . . . , n}, and Lemma 4.

(2) By Lemma 10 (1), it follows that

||W̃(zi)||22 ≤ b2δ−2
qn knn

−1||ΠA(zi)||22 = b2δ
−2
qn knn

−1

1 +

qn∑
j=1

Jn∑
s=1

bj,s(zij)
2

 ≤ Cδ−2
qn knn

−1qn.

(3) Using Lemma 9 with p = 2, squaring all terms and moving dj,s to the upper and lower
bounds it follow that

(m+ 1)−1dj,s ≤
∫ 1

0
|bj,s(z)|2 dx ≤ dj,s. (20)

By Condition 3 and the definition of h there exist positive constants c∗ < C∗ such
that for all j ∈ {1, . . . , qn} and s ∈ {0, . . . , Jn} that

c∗k−1
n ≤ dj,s ≤ C∗k−1

n . (21)

Proof is complete by combining equations (20) and (21).

(4) Using c1 and c2 from Condition 2 it follows that for all j ∈ {1, . . . , qn} and s ∈
{0, . . . , Jn}

c1

∫ 1

0
b2j,s(z)dz ≤

∫ 1

0
b2j,s(z)fzj (z)dz ≤ c2

∫ 1

0
b2j,s(z)dz. (22)

Proof is complete by combining (22) with Lemma 10 (3).

Lemma 11 Under Condition 4, for any positive constants a and b, δ−aqn = o
(
nb
)
.

Proof Condition 4 provides that qn = o[log(n)]. Therefore,

δ−aqn
nb

= exp (log(n) {aqn/[2 log(n)] log[2/(1− δ)]− b}) = o(1).

The following lemma is central to our proof of Theorem 5.

Lemma 12 For some positive constant L

sup
||θ||

2
≤L,θ∈RqnJn+1

(qnkn)−1

∣∣∣∣∣
n∑
i=1

Di(
√
qnknθ)

∣∣∣∣∣ = oP (1).
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Proof Define W̃n = max
i
||W̃(zi)||2. Let Fn1 denote the event W̃n < C1n

−1/2(qnkn)1/2δ−1
qn

and Fn2 denote the event max
i
|uni| < C2qnk

−r
n . Combining Lemma 10 and (4) it follows

that there exist positive constants C1 and C2 such that P (Fn1, Fn2) → 1. Thus, to prove
Lemma 12 it is sufficient to show that ∀ ε > 0

P

 sup
||θ||

2
≤1, θ∈RqnJn+1

(qnkn)−1

∣∣∣∣∣
n∑
i=1

Di(L
√
qnknθ)

∣∣∣∣∣ > ε, Fn1 ∩ Fn2

→ 0.

Define Θ ≡
{
θ | ||θ||2 ≤ 1, θ ∈ RqnJn+1

}
. We can partition Θ as a union of disjoint

regions Θ1, ...,ΘMn , such that the diameter of each region does not exceed m0 =
εδqn

4C1L
√
n

.

Then, following the proof of Lemma 3.2 in He and Shi (1994), Mn ≤
(
2
√
qnJn + 1/m0 + 1

)qnJn+1
.

Let θ∗1, ...,θ
∗
Mn

be arbitrary points in Θ1, ...,ΘMn . Then

P

 sup
||θ||

2
≤1

(qnkn)−1

∣∣∣∣∣
n∑
i=1

Di(L
√
qnknθ)

∣∣∣∣∣ > ε, Fn1 ∩ Fn2

 ≤ Mn∑
k=1

P

{
(qnkn)−1

∣∣∣∣∣
n∑
i=1

Di(L
√
qnknθ

∗
k)

∣∣∣∣∣
+ sup
θ∈Θk

(qnkn)−1

∣∣∣∣∣
n∑
i=1

[
Di(L

√
qnknθ)−Di(L

√
qnknθ

∗
k)
]∣∣∣∣∣ > ε, Fn1 ∩ Fn2

}
.

We will next show that

sup
θ∈Θk

(qnkn)−1

∣∣∣∣∣
n∑
i=1

[
Di(L

√
qnknθ)−Di(L

√
qnknθ

∗
k)
]∣∣∣∣∣ I (Fn1 ∩ Fn2) ≤ ε/2.

From definition of Di(θ) and Qi(θ) and that ρτ (u) = 1
2 |u|+

(
τ − 1

2

)
u for fixed θ and θ∗

Di(
√
qnknθ)−Di(

√
qnknθ

∗) =
1

2

[∣∣∣εi −√qnknW̃(zi)
>θ − uni

∣∣∣− ∣∣∣εi −√qnknW̃(zi)
>θ∗ − uni

∣∣∣]
− 1

2
Ezi

[∣∣∣εi −√qnknW̃(zi)
>θ − uni

∣∣∣− ∣∣∣εi −√qnknW̃(zi)
>θ∗ − uni

∣∣∣]+
√
qnknW̃(zi)

>[θ − θ∗]ψτ (εi).

Then using the above equality, the triangle inequality and the definition of m0

sup
θ∈Θk

(qnkn)−1

∣∣∣∣∣
n∑
i=1

[
Di(L

√
qnknθ)−Di(L

√
qnknθ

∗
k)
]∣∣∣∣∣ I (Fn1 ∩ Fn2)

≤ 2nLm0(qnkn)−1/2W̃nI (Fn1 ∩ Fn2) ≤ 2
√
nLm0C1δ

−1
qn = ε/2.

The proof is complete if it can be shown that

Mn∑
k=1

P

(∣∣∣∣∣
n∑
i=1

Di(L
√
qnknθ

∗
k)

∣∣∣∣∣ > qnknε/2, Fn1 ∩ Fn2

)
→ 0. (23)

We will use Bernstein’s inequality to prove the above result. First we need upper bounds
for the maximum and the second moment for the left side of the above inequality. Note
that for any θ
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Di(θ) =
1

2

[∣∣∣εi − W̃(zi)
>θ − uni

∣∣∣− |εi − uni|]−1

2
Ezi

[∣∣∣εi − W̃(zi)
>θ − uni

∣∣∣− |εi − uni|]+W̃(zi)
>θψτ (εi).

Then using the triangle inequality and the above equality we have,

max
i

∣∣∣Di(L
√
qnknθ

∗
k)
∣∣∣ I (Fn1 ∩ Fn2) ≤ 2L

√
qnknW̃nI (Fn1 ∩ Fn2) ≤ 2LC1δ

−1
qn qnknn

−1/2.

Define Vi(θ) = Qi(θ)−Qi(0) + W̃(zi)
>θψτ (εi). Notice that Di(θ) = Vi(θ)−Ez[Vi(θ)],

and that
∑n

i=1 Var [Di(θ)I (Fn1 ∩ Fn2) | zi] ≤
∑n

i=1E
[
V 2
i (θ)I (Fn1 ∩ Fn2) | zi

]
.Using Knight’s

identity

Vi(L
√
qnknθ

∗
k) = L

√
qnknW̃(zi)

>θ∗k [I(εi − uni < 0)− I(εi < 0)]

+

∫ L
√
qnknW̃(zi)

>θ∗k

0
[I(εi − uni < s)− I(εi − uni < 0)] ds ≡ Vi1 + Vi2.

We have

n∑
i=1

Ezi

[
V 2
i1I (Fn1 ∩ Fn2)

]
≤ Cqnkn

n∑
i=1

Ezi

[
W̃2

nI (0 < |εi| < |uni|) I (Fn1 ∩ Fn2)
]

≤ Cδ−2
qn (qnkn)2n−1

n∑
i=1

∫ |uni|

−|uni|
fi(s | zi)dsI (Fn1 ∩ Fn2) ≤ Cδ−2

qn q
3
nk

2
nk
−r
n ,

where the last inequality uses Condition 1. Noting that Vi2 is always non-negative and

that there exists a positive constant C such that max
i

∣∣∣√qnknLW̃(zi)
>θ∗k

∣∣∣ I (Fn1 ∩ Fn2) ≤

Cδ−1
qn qnknn

−1/2, we have

n∑
i=1

Ezi

[
V 2
i2I (Fn1 ∩ Fn2)

]
≤ max

i

∣∣∣√qnknL [W̃(zi)
>θ∗k

]∣∣∣
×

n∑
i=1

E

{∫ √qnknL[W̃(zi)
>θ∗k]

0

[
I(εi − uni < s)− I(εi − uni < 0)

]
ds
∣∣∣zi} I (Fn1 ∩ Fn2)

≤ Cδ−1
qn qnknn

−1/2
n∑
i=1

∫ √qnknLW̃(zi)
>θ∗k

0
[Fi(s+ uni | zi)− Fi(uni | zi)] I (Fn1 ∩ Fn2) ds

≤ Cδ−1
qn qnknn

−1/2
n∑
i=1

∫ √qnknLW̃(zi)
>θ∗k

0
[fi(0 | zi) + o(1)][s+O(s2)]ds

≤ Cδ−1
qn (qnkn)2n−1/2θ∗k

>
[

n∑
i=1

fi(0 | zi)W̃(zi)W̃(zi)
>

]
θ∗k[1 + o(1)]

= Cδ−1
qn (qnkn)2n−1/2||θ∗k||22[1 + o(1)] ≤ Cδ−1

qn (qnkn)2n−1/2[1 + o(1)].
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Where the last equality follows because
∑n

i=1 fi(0 | zi)W̃(zi)W̃(zi)
> = W−1

D W 2
DW

−1
D = I.

Therefore, for sufficiently large n,

n∑
i=1

Var [Di(θ)I (Fn1 ∩ Fn2)] ≤ Cδ−1
qn (qnkn)2

(
δ−1
qn qnk

−r
n + n−1/2

)
.

By Bernstein’s inequality, for all n sufficiently large,

Mn∑
k=1

P

[∣∣∣∣∣
n∑
i=1

Di

(
θ∗k, L

√
qnkn/n

)∣∣∣∣∣ > qnknε/2, Fn1 ∩ Fn2

∣∣∣∣∣zi
]

≤ 2

Mn∑
k=1

exp

{
−(qnkn)2ε2/4

Cδ−1
qn (qnkn)2

[
δ−1
qn qnk

−r
n + n−1/2

]
+ Cεδ−1

qn qnknn
−1/2

}

≤ 2Mnexp

(
−ε2

Cδ−2
qn qnk

−r
n

)
≤ C

[
C
√
nqnJn(εδqn)−1 + 1

]qnJn+1
exp

(
−ε2

Cδ−2
qn qnk

−r
n

)
≤ Cexp

{
Cqnkn log

[
C
√
nqnkn(εδqn)−1

]
− Cε2δ2

qnq
−1
n krn

}
≤ Cexp

[
Cqnkn log(n)− Cε2δ2

qnq
−1
n krn

]
.

By taking the expected value of the initial conditional probability and the final upper
bound it follows that
Mn∑
k=1

P

(∣∣∣∣∣
n∑
i=1

Di(θ
∗
k, L

√
qnkn/n)

∣∣∣∣∣ > qnknε/2, Fn1 ∩ Fn2

)
≤ Cexp

[
Cqnkn log(n)− Cε2δ2

qnq
−1
n krn

]
.

Where the upper bound goes to zero because by Conditions 3-4 and Lemma 11 it follows

that δ2
qnq
−1
n krn →∞ and

q2nδ
−2
qn kn log(n)
krn

→ 0.

8.2 Proof of Theorem 5

Proof We will first prove that for all η > 0, there exists an L > 0 such that

P

 inf
θ∈RqnJn+1∣∣∣∣∣∣∣∣θ∣∣∣∣∣∣∣∣

2
=L

1

qnkn

n∑
i=1

[
Qi(
√
qnknθ)−Qi(0)

]
> 0

 ≥ 1− η. (24)

Define

Gn1(θ) = (qnkn)−1
n∑
i=1

Di

(√
qnknθ

)
,

Gn2(θ) = (qnkn)−1
n∑
i=1

Ezi

[
Qi

(√
qnknθ

)
−Qi(0)

]
,

Gn3(θ) = −(qnkn)−1/2
n∑
i=1

W̃(zi)
>θψτ (εi),
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and note that (qnkn)−1
∑n

i=1

[
Qi(
√
qnknθ)−Qi(0)

]
=
∑3

k=1Gnk(θ). From Lemma 12 we
have that sup||θ||

2
≤L |Gn1| = oP (1). For Gn3, first notice that E(Gn3) = 0. From Condition

1 there exists a positive constant c∗ such that min
i
fi(0 | zi) ≥ c∗ and thus

E[G2
n3] ≤ C(qnkn)−1

n∑
i=1

E

{
fi(0 | zi)

c∗

[
W̃(zi)

>θ
]2
}

≤ C(qnkn)−1θ>E

[
W−1
D

n∑
i=1

fi(0 | zi)ΠA(zi)ΠA(zi)
>W−1

D

]
θ = C(qnkn)−1||θ||22.

Therefore, sup||θ||
2
≤LGn3(θ) = OP

[
(qnkn)−1/2 ||θ||2

]
. We will complete the proof by prov-

ing that inf||θ||
2
≤LGn2(θ) has a positive asymptotic lower bound that does not converge

to zero. Applying (19)

Gn2(θ) = (qnkn)−1
n∑
i=1

Ezi

{∫ √qnknW̃(zi)
>θ+uni

uni

[I(εi ≤ s)− I(εi ≤ 0)]ds

}

= (qnkn)−1
n∑
i=1

fi(0 | zi)
1

2

{
qnkn

[
W̃(zi)

>θ
]2

+ uni
√
qnknW̃(zi)

>θ

}
[1 + o(1)]

= C||θ||22[1 + o(1)] + (qnkn)−1/2
n∑
i=1

fi(0 | zi)uniW̃(zi)
>θ[1 + o(1)].

Define un = (un1, . . . , unn)> ∈ Rn, by Condition 3 it follows that

sup
||θ||

2
≤L

∣∣∣∣∣(qnkn)−1/2
n∑
i=1

fi(0 | zi)uniW̃(zi)
>θ

∣∣∣∣∣
≤ sup
||θ||

2
≤L

(qnkn)−1/2||u>nD1/2
n ||2||D1/2

n ΠAW
−1
D ||2||θ||2 = OP (||θ||2).

Proof of (24) is completed by noticing that for sufficiently large L, inf||θ||
2
≤LGn2(θ) has

a dominating, positive lower bound of ||θ||22. By the corollary to Theorem 25 in Eggleston
(1958) (p.47) and the convexity of Qi(·), (24) implies ||θ̂||2 = OP (

√
qnkn). From the defini-

tion of θ̂, it follows that ||WD(γ̂A − γA0)||2 = OP
(√
qnkn

)
. Condition 5 and (4) guarantee

that uni = O(qnk
−r
n ) and therefore

n−1
n∑
i=1

fi(0 | zi) [ĝ(zi)− g0(zi)]
2 = n−1

n∑
i=1

fi(0 | zi)
[
ΠA(zi)

>(γ̂A − γA0)− uni
]2

≤ 2n−1 (γ̂A − γA0)>W 2
D (γ̂A − γA0) +OP

(
q2
nk
−2r
n

)
= OP

(
n−1qnkn + q2

nk
−2r
n

)
.

By Condition 1, which provides a constant uniform lower bound for fi(0) for all i ∈
{1, . . . , n}, n−1

∑n
i=1 [ĝ(zi)− g0(zi)]

2 = OP
(
n−1qnkn + q2

nk
−2r
n

)
.

The following lemmas are used to prove Theorem 6
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Lemma 13 If Conditions 1-4 hold, then

||γ̂A − γA0||2 = OP

(
knδ
−1
qn

√
qn
n

)
.

Proof The proof of Theorem 5 shows ||WD(γ̂−γA0)||2 = OP (
√
qnkn). While from Lemma

10 it follows that ||γ̂ − γA0||2 ≤ b
−1/2
2

√
kn
n δ
−1
qn ||WD(γ̂ − γA0)||2.

Lemma 14 If the Conditions of Theorem 6 hold then

P

(
max

qn+1≤j≤pn

1

n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

πj(zij) {I [Yi − g0(zi) ≤ 0]− τ}

∣∣∣∣∣
∣∣∣∣∣
1

> λ/4

)
→ 0.

Proof Recall that πj(zij) = [bj,1(zij), ..., bj,Jn(zij)]
>. Note, maxj,s,i |bj,s(zij) {I [Yi − g0(zi) ≤ 0]− τ}| ≤

1 and E
[
b2j,s(zij) {I [Yi − g0(zi) ≤ 0]− τ}2

]
≤ Ck−1

n , see Theorem 10 (4) for the latter. For

sufficiently large n, using Bernstein’s inequality,

P

(∣∣∣∣∣
n∑
i=1

bj,s(zij) {I [Yi − g0(zi) ≤ 0]− τ}

∣∣∣∣∣ > nk−1
n λ/4

)
≤ 2exp

(
− λ2n2k−2

n /32

Cnk−1
n + λnk−1

n /12

)
≤ 2exp

(
−Cλ2nk−1

n

)
.

Therefore,

P

(
max

qn+1≤j≤pn

1

n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

πj(zij) {I [Yi − g0(zi) ≤ 0]− τ}

∣∣∣∣∣
∣∣∣∣∣
1

> λ/4

)

≤ P

(
Ckn max

qn+1≤j≤pn
max

1≤s≤Jn
n−1

∣∣∣∣∣
n∑
i=1

bj,s(zij) {I [Yi − g0(zi) ≤ 0]− τ}

∣∣∣∣∣ > λ/4

)
≤ Cpnknexp(−Cnk−1

n λ2) = Cexp(log pn + log kn − Cnk−1
n λ2)→ 0.

Where the limit holds using the rates of pn and λ provided in Theorem 6.

Lemma 15 Assume the Conditions of Theorem 6 hold

P

(
max

qn+1≤j≤pn
sup

||γA−γA0||2≤Cknδ
−1
qn q

1/2
n n−1/2

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
I[Yi −Π(zi)

>
AγA ≤ 0]

−I[Yi − g0(zi) ≤ 0]− P [Yi −Π(zi)
>
AγA ≤ 0 | zi] + P [Yi − g0(zi) ≤ 0 | zi]

}∣∣∣∣∣
∣∣∣∣∣
1

> λ/8

)
→ 0.
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Proof Extending results from Welsh (1989) and Wang et al. (2012), we consider the set

Z ≡
{
γA : ||γA − γA0||2 ≤ Cknδ−1

qn q
1/2
n n−1/2

}
. The set Z can be covered by balls with

radii Cknδ
−1
qn q

1/2
n n−5/2 and cardinality N ≡ |Z| ≤ C̃n4k2nδ

−2
qn qn , for some positive constant

C̃. Denote the N balls by γA(u1), ...,γA(uN ), where the ball γA(ul) is centered at ul for
l ∈ {1, . . . , N}. Let εi(γA) = Yi − ΠA(zi)

>γA, εi = Yi − g0(zi) and mi(a, b) = I(a ≤
0)− I(b ≤ 0). Then

P

 sup
||γA−γA0||2≤Cknδ

−1
qn q

1/2
n n−1/2

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

πj(zij)
(
mi[εi(γA), εi]− E{mi[εi(γA), εi] | zi}

)∣∣∣∣∣
∣∣∣∣∣
1

> nλ/8


≤

N∑
l=1

P

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

πj(zij)
(
mi[εi(ul), εi]− E{mi[εi(ul), εi] | zi}

)∣∣∣∣∣
∣∣∣∣∣
1

> nλ/16

]

+

N∑
l=1

P

[
sup

||γ̃A−ul||2≤Cknδ
−1
qn q

1/2
n n−5/2

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

πj(zij)
{
mi [εi(γ̃A), εi(ul)]

−E {mi [εi(γ̃A), εi(ul)] | zi}
}∣∣∣∣∣
∣∣∣∣∣
1

> nλ/16

]
≡ Inj1 + Inj2.

Notice that

Inj1 ≤
N∑
l=1

Jn∑
s=1

P

[∣∣∣∣∣
n∑
i=1

bj,s(zij) (mi [εi(ul), εi]− E {mi [εi(ul), εi] | zi})

∣∣∣∣∣ > nλ

16Jn

]
.

To evaluate Inj1, define νijls = bj,s(zij) (mi [εi(ul), εi]− E {mi [εi(ul), εi] | zi}) , which
are bounded, independent mean-zero random variables. Note that

Var (νijls | zi) = bj,s(zij)
2
(
E{mi [εi(ul), εi]

2 | zi} − E {mi [εi(ul), εi] | zi}2
)
.

Then using Condition 1

E{mi [εi(ul), εi]
2 | zi} − E{mi [εi(ul), εi] | zi}2

= Fi(0 | zi)[1− Fi(0 | zi)] + 2Fi(0 | zi)Fi[ΠA(zi)
>(ul − γA0) + uni | zi]

+Fi[ΠA(zi)
>(ul − γA0) + uni | zi]

{
1− Fi[ΠA(zi)

>(ul − γA0) + uni | zi]
}

−2Fi

{
min[0,ΠA(zi)

>(ul − γA0) + uni] | zi
}
≤ C

∣∣∣ΠA(zi)
>(ul − γA0) + uni

∣∣∣ .
Applying the Cauchy-Schwarz inequality and Lemma 10 it follows that

n∑
i=1

Var(νijl | zi) ≤ Cn

{
n−1

∑
i

[
ΠA(zi)

>(ul − γA0) + uni

]2
}1/2

≤ C
(
n
√
||ul − γA0||22qn + nqnk

−r
n

)
≤ C

(
knδ
−1
qn qnn

1/2 + nqnk
−r
n

)
.
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Recall that νijl is bounded, then applying Bernstein’s inequality and using the assumed
rates of λ, kn and qn it follows that

P

[∣∣∣∣∣
n∑
i=1

νijl

∣∣∣∣∣ > nλ/(16Jn)

∣∣∣∣∣zi
]
≤ exp

[
−C n2λ2k−2

n(
knδ
−1
qn qnn

1/2 + nqnk
−r
n

)
+ nλk−1

n

]
≤ exp

(
−Cnλk−1

n

)
.

The term nλk−1
n dominates the denominator in the first inequality by combining Condi-

tions 3 and 4, Lemma 11 and the assumption that n−1/2k2
n log(n) = o(λ). Note, the upper

bound does not depend on zi and taking expectations on both sides we get

P

[∣∣∣∣∣
n∑
i=1

νijl

∣∣∣∣∣ > nλ/(2kn)

]
≤ exp

(
−Cnλk−1

n

)
.

Therefore,

Inj1 ≤ CNknexp
(
−Cnλk−1

n

)
= Cn4k2nδ

−2
qn qn+1/(2r+1)q1/(2r+1)

n exp
(
−Cnλk−1

n

)
≤ Cexp

{[
4k2

nδ
−2
qn qn + 1/(2r + 1)

]
log(n) + 1/(2r + 1) log(qn)− Cnλk−1

n

}
.

To evaluate Inj2, note that I[εi(γ̃A) ≤ 0] = I
[
εi(ul) ≤ ΠA(zi)

>(γ̃A − ul)
]
. First, we

will derive an upper bound for the sum in the probability statement. Since I(x ≤ a) is an
increasing function of a, we have

sup
||γ̃A−ul||2≤Cknδ

−1
qn q

1/2
n n−5/2

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

πj(zij)
{
mi [εi(γ̃A), εi(ul)]− E{mi [εi(γ̃A), εi(ul)] | zi}

}∣∣∣∣∣
∣∣∣∣∣
1

≤
n∑
i=1

||πj(zij)||1

{
I
[
εi (ul) ≤ Cknδ−1

qn q
1/2
n n−5/2||ΠA(zi)||2

]
− I [εi (ul) ≤ 0]

−P
[
εi (ul) ≤ Cknδ−1

qn q
1/2
n n−5/2||ΠA(zi)||2

∣∣∣zi]+ P [εi (ul) ≤ 0|zi]

}

+

n∑
i=1

||πj(zij)||1

{
P
[
εi (ul) ≤ C||ΠA(zi)||2knδ−1

qn q
1/2
n n−5/2

∣∣∣zi]
−P

[
εi (ul) ≤ −Cknδ−1

qn q
1/2
n n−5/2||ΠA(zi)||2

∣∣∣zi]}.
First, the second sum will be examined. Using Condition 1, Taylor series expansion and
that the elements of πj(zij) are bounded,

n∑
i=1

||πj(zij)||1

{
P
[
εi (ul) ≤ Cknδ−1

qn q
1/2
n n−5/2||ΠA(zi)||2

∣∣∣zi]
−P

[
εi (ul) ≤ −Cknδ−1

qn q
1/2
n n−5/2||ΠA(zi)||2

∣∣∣zi]}

≤ C
n∑
i=1

||πj(zij)||1 ||ΠA(zi)||2knδ−1
qn q

1/2
n n−5/2 ≤ Ck5/2

n δ−1
qn qnn

−3/2 = o(nλ).
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Define

αijl = ||πj(zij)||1

{
I
[
εi (ul) ≤ C||ΠA(zi)||2knn−5/2

]
− I [εi (ul) ≤ 0]

− P
[
εi (ul) ≤ C||ΠA(zi)||2knn−5/2 | zi

]
+ P [εi (ul) ≤ 0 | zi]

}
.

Then for n sufficiently large, Inj2 ≤
∑N

l=1 P

(∑n
i=1 αijl ≥

nλ
32

)
and again Bernstein’s in-

equality will be used to provide an upper bound for this probability. To evaluate αijl,
define

ωijls = |bj,s(zij)|

{
I
[
εi (ul) ≤ C||ΠA(zi)||2knn−5/2

]
− I [εi (ul) ≤ 0]

−P
[
εi (ul) ≤ C||ΠA(zi)||2knn−5/2 | zi

]
+ P [εi (ul) ≤ 0 | zi]

}
,

which are bounded, independent mean-zero random variables. Using that the elements of
||ΠA(zi)||2 are bounded for all i, it follows that

Var(ωijkl | zi) ≤ Cmax
i

∣∣∣I [εi (ul) ≤ C||ΠA(zi)||2knn−5/2
]
− I [εi (ul) ≤ 0]

∣∣∣
×E

{∣∣∣I [εi (ul) ≤ C||ΠA(zi)||2knn−5/2
]
− I [εi (ul) ≤ 0]

∣∣∣∣∣∣zi}
≤ E

{
I
[
εi (ul) ≤ C||ΠA(zi)||2knn−5/2

]
− I [εi (ul) ≤ 0]

∣∣∣zi}
= CFi

[
W(zi)

>
A(ul − γA0) + uni + C||ΠA(zi)||2knn−5/2

∣∣∣zi]
−CFi

[
W(zi)

>
A(ul − γA0) + uni

∣∣∣zi]
≤ Cmax

i
||ΠA(zi)||2knn−5/2 ≤ C√qnk3/2

n n−5/2.

Notice,

N∑
l=1

P

(
n∑
i=1

αijl ≥
nλ

32

)
≤

N∑
l=1

Jn∑
s=1

P

(∣∣∣∣∣
n∑
i=1

ωijkl

∣∣∣∣∣ ≥ nλ

32Jn

)
.

Applying Bernstein’s inequality, for some positive constants C1, C2 and C3,

N∑
l=1

Jn∑
s=1

P

(∣∣∣∣∣
n∑
i=1

ωijkl

∣∣∣∣∣ ≥ nλ

32Jn

)
≤ CNknexp

(
− C1n

2λ2k−2
n

C2
√
qnk

3/2
n n−3/2 + C3λnk

−1
n

)
≤ Cexp

{[
4k2

nδ
−2
qn qn + 1/(2r + 1)

]
log(n) + 1/(2r + 1)qn − Cnλk−1

n

}
.

Note that nλk−1
n dominates

√
qnk

3/2
n n−3/2 because

√
qnk

3/2
n n−3/2

nλk−1
n

=

√
qnk

5/2
n

n2λ
=
kn
n

√
qnk

2
n

nλ
.
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Where both fractions are o(1) by assumed rates. Note that under Condition 7, λ =
o[n−(1−c4)/2] implies λ = o(k−1

n ). To complete the proof, notice there exist positive con-
stants C1, C2, C3 and C4 such that for all n sufficiently large, the probability of interest in
the lemma is bounded by

pn∑
j=qn+1

(Inj1 + Inj2)

≤ C1exp
{

log(pn) + C2

[
k2
nδ
−2
qn qn + (2r + 1)−1

]
log(n) + C3/(2r + 1) log(qn)− C4nλk

−1
n

}
.

This upper bound converges to zero under the assumptions of this lemma and using Lemma
11.

Lemma 16 Assume the conditions of Theorem 6 hold, then

P

(
max

qn+1≤j≤pn
sup

||γA−γA0||2≤Cknδ
−1
qn q

1/2
n n−1/2

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
P
[
Yi −ΠA(zi)

>γA ≤ 0 | zi
]

−P [Yi − g0(zi) ≤ 0 | zi]
}∣∣∣∣∣
∣∣∣∣∣
1

> λ/8

)
→ 0.

Proof Define vn = knδ
−1
qn q

1/2
n n−1/2, using the Cauchy-Schwarz inequality and Lemma 10

max
qn+1≤j≤pn

sup
||γA−γA0||2≤Cvn

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)

{
P
[
Yi −ΠA(zi)

>γA ≤ 0 | zi
]
− P [Yi − g0(zi) ≤ 0 | zi]

}∣∣∣∣∣
∣∣∣∣∣
1

≤ max
qn+1≤j≤pn

sup
||γA−γA0||≤Cvn

Jn∑
s=1

√√√√ 1

n

n∑
i=1

b2j,s(zij)

√√√√ 1

n

n∑
i=1

{Fi [ΠA(zi)>(γA − γA0)− uni | zi]− Fi(0 | zi)}2

≤ max
qn+1≤j≤pn

sup
||γA−γA0||≤Cvn

C

Jn∑
s=1

√
E
[
b2j,s(zij)

]
+OP (n−1/2)

√√√√ 2

n

n∑
i=1

[ΠA(zi)>(γA − γA0)]
2

+ u2
ni

≤ C

Jn∑
s=1

√
M4k

−1
n +OP (n−1/2)

√
C(k2

nδ
−2
qn q

2
nn
−1 + q2

nk
−2r
n ) ≤ C

(
k3/2
n δ−1

qn qnn
−1/2 + qnk

1/2−r
n

)
[1 + oP (1)].

From the conditions on λ, kn and qn it can be derived that k
3/2
n δ−1

qn qnn
−1/2+qnk

1/2−r
n = o(λ),

thus completing the proof.

The following lemma is an extension of Lemma 2.2 and 2.3 from Wang et al. (2012)
which considered the linear model.
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Lemma 17 Assume the Conditions of Theorem 6 hold. Then for the oracle estimator,
γ̂,with probability approaching one

min
j∈{1,...,qn}

∣∣∣∣γ̂j∣∣∣∣1 ≥ (a+ 1/2)λ, (25)

min
j∈{qn+1,...,pn}

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

πj(zij)ψτ [yi −Π(zi)
>γ̂]

∣∣∣∣∣
∣∣∣∣∣
1

≤ λ/2. (26)

Proof Proof of (25): Note that

min
j∈{1,...,qn}

||γ̂j ||1 ≥ min
j∈{1,...,qn}

||γ0j ||1 − ||γ̂ − γA0||1. (27)

By Lemmas 11 and 13 and Conditions 3, 4 and 7, ||γ̂−γA0||1 ≤
√
Jnqn + 1||γ̂−γA0||2 =

OP

(
k

3/2
n qnn

−1/2δ−1
qn

)
= oP

[
n−(1−c4)/2

]
. Condition 7 guarantees that there exists a positive

constant c5 such that min
j∈{1,...,qn}

||γ0j ||1 ≥ c5n
−(1−c4)/2. Finally, λ = o

[
n−(1−c4)/2

]
and

therefore P

[
min

j∈{1,...,qn}
||γ̂j ||1 > (a+ 1/2)λ

]
→ 1.

Proof of (26): Define sj(γ) = 1
n

∑n
i=1 πj(zij)ψτ [yi−Π(zi)

>γ̂] andD = {i : Yi−ΠA(zi)
>γ̂A =

0}. For j ∈ {qn + 1, ..., pn},

sj(γ̂) =
1

n

n∑
i=1

πj(zij)
{
I
[
Yi −ΠA(zi)

>γ̂A ≤ 0
]
− τ
}
− 1

n

∑
i∈D

πj(zij)[a
∗
i + (1− τ)],

where a∗i ∈ [τ − 1, τ ] with i ∈ D such that sj(γ̂) = 0Jn for j ∈ {1, . . . , qn} and

1

n

n∑
i=1

{
I
[
Yi −ΠA(zi)

>γ̂A ≤ 0
]
− τ
}
− 1

n

∑
i∈D

[a∗i + (1− τ)] = 0.

From Section 2.2 of Koenker (2005) it follows that with probability one |D| ≤ qnJn + 1.
Then by Conditions 2-4 and the assumptions about the rate of λ it follows that

max
qn+1≤j≤pn

∣∣∣∣∣
∣∣∣∣∣n−1

∑
i∈D

πj(zij)[a
∗
i + (1− τ)]

∣∣∣∣∣
∣∣∣∣∣
1

= OP
(
qnknn

−1
)

= oP (λ).

Thus, it is sufficient to show that

P

(
max

qn+1≤j≤pn

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
I[Yi −ΠA(zi)

>γ̂A ≤ 0]− τ
}∣∣∣∣∣
∣∣∣∣∣
1

> λ/2

)
→ 0.
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Using Lemma 14 for the second inequality it follows that,

P

(
max

qn+1≤j≤pn

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
I[Yi −ΠA(zi)

>γ̂A ≤ 0]− τ
}∣∣∣∣∣
∣∣∣∣∣
1

> λ/2

)

≤ P
(

max
qn+1≤j≤pn

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
I[Yi −ΠA(zi)

>γ̂A ≤ 0]− I[Yi − g0(zi) ≤ 0]
}∣∣∣∣∣
∣∣∣∣∣
1

> λ/4
)

+P

(
max

qn+1≤j≤pn

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij) {I[Yi − g0(zi) ≤ 0]− τ}

∣∣∣∣∣
∣∣∣∣∣
1

> λ/4

)

≤ P

(
max

qn+1≤j≤pn
sup

||γA−γA0||2≤Cknδ
−1
qn q

1/2
n n−1/2

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
I[Yi −ΠA(zi)

>γA ≤ 0]

−I[Yi − g0(zi) ≤ 0]
}∣∣∣∣∣
∣∣∣∣∣
1

> λ/4

)
+ oP (1)

≤ P

(
max

qn+1≤j≤pn
sup

||γA−γA0||2≤Cknδ
−1
qn q

1/2
n n−1/2

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
I
[
Yi −ΠA(zi)

>γA ≤ 0
]

−I[Yi − g0(zi) ≤ 0]− P [Yi −ΠA(zi)
>γA ≤ 0 | zi] + P [Yi − g0(zi) ≤ 0 | zi]

}∣∣∣∣∣
∣∣∣∣∣
1

> λ/8

)

+P

(
max

qn+1≤j≤pn
sup

||γA−γA0||2≤Cknδ
−1
qn q

1/2
n n−1/2

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

πj(zij)
{
P
[
Yi −ΠA(zi)

>γA ≤ 0 | zi
]

−P [Yi − g0(zi) ≤ 0 | zi]
}∣∣∣∣∣
∣∣∣∣∣
1

> λ/8

)
+ oP (1).

The two probability statements go to zero by Lemmas 15 and 16. This completes the proof.

8.3 Proof of Theorem 6

Proof Define the neighborhood Xφ =
{
γ ∈ RJnpn+1

∣∣||γ̂ − γ||1 < φ < λ/2
}

. In this proof
we show that for sufficiently large n there exists a φ such that Q(γ̂) ≤ Q(γ) for all γ ∈ Xφ.
Define

W =
{
γ = (γ0, . . . , γJnpn)> ∈ RJnpn+1

∣∣∣γj = 0 for j ∈ {Jnqn + 1, . . . , Jnpn}
}

and Fφ = W ∩ Xφ. For any γ ∈ Xφ and for any j ∈ {1, . . . , qn} it follows from Lemma 17
and the definition of Xφ that with probability approaching one

||γj ||1 ≥ ||γ̂j ||1 − ||γ̂j − γj ||1 ≥ (a+ 1/2)λ− λ/2 = aλ.

By Condition 6 and Lemma 17 it follows, with probability approaching one, that for any
γ ∈ Fφ that pλ,a(||γ̂j ||1) = pλ,a(||γj ||1) for all j ∈ {1, . . . , pn}. By definition of the or-
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acle estimator and Fφ it follows that for any γ ∈ Fφ that 1
n

∑n
i=1 ρτ

[
yi −Π(zi)

>γ̂
]
≤

1
n

∑n
i=1 ρτ

[
yi −Π(zi)

>γ
]
. Therefore, for any γ ∈ Fφ it holds that Q(γ̂) ≤ Q(γ).

For any vector γ ∈ Xφ let γ̃ represent the projection of γ into Fφ. For sufficiently large
n, and thus sufficiently small λ, Q(γ̂) ≤ Q(γ̃) and thus the proof will be complete if it
can be shown that Q(γ̃) ≤ Q(γ). Let γA represent the first qnJn + 1 entries of γ and γN

the remaining Jn(pn − qn) entries such that γ =
(
γ>A,γ

>
N

)>
and γ̃ =

[
γ>A,0

>
Jn(pn−qn)

]>
.

Similarly define ΠN (zi) such that Π(zi) =
[
ΠA(zi)

>,ΠN (zi)
>]>. By Knight’s identity

Q(γ)−Q(γ̃) =
1

n

n∑
i=1

ρτ [yi −Π(zi)
>γ]− ρτ [yi −Π(zi)

>γ̃] +

pn∑
j=qn+1

[
pλ,a(||γj ||1)− pλ,a(0)

]
= − 1

n

n∑
i=1

Π(zi)
>(γ − γ̃)ψτ [yi −Π(zi)

>γ̃]

+
1

n

n∑
i=1

∫ Π(zi)
>(γ−γ̃)

0
I[yi −Π(zi)

>γ̃ ≤ s]− I[yi −Π(zi)
>γ̃ ≤ 0] ds

+

pn∑
j=qn+1

[
pλ,a(||γj ||1)− pλ,a(0)

]
.

As
∑n

i=1

∫Π(zi)
>(γ−γ̃)

0 I[yi −Π(zi)
>γ̃ ≤ s]− I[yi −Π(zi)

>γ̃ ≤ 0]ds is non-negative for
all i, it will be sufficient to show that∣∣∣∣∣ 1n

n∑
i=1

Π(zi)
>(γ − γ̃)ψτ [yi −Π(zi)

>γ̃]

∣∣∣∣∣ ≤
pn∑

j=qn+1

[
pλ,a(||γj ||1)− pλ,a(0)

]
.

Notice,∣∣∣∣∣ 1n
n∑
i=1

Π(zi)
>(γ − γ̃)ψτ [yi −Π(zi)

>γ̃]

∣∣∣∣∣ ≤
pn∑

j=qn+1

||γj ||1

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

πj(zij)ψτ [yi −Π(zi)
>γ̃]

∣∣∣∣∣
∣∣∣∣∣
1

.

By the mean value theorem, for some c∗j ∈ (0, ||γj ||1)

pλ,a(||γj ||1)− pλ,a(0) = p′λ(c∗j )||γj ||1.

By Lemma 17 and Condition 6 there exists a sufficiently small φ such that for all j ∈
{qn + 1, . . . , pn} ∣∣∣∣∣

∣∣∣∣∣ 1n
n∑
i=1

πj(zij)ψτ [yi −Π(zi)
>γ̃]

∣∣∣∣∣
∣∣∣∣∣
1

≤ p′λ,a(φ).

Note that c∗j < φ, for all j, and therefore by the assumption that pλ,a(·) is concave in [0,∞),
from Condition 6, it follows that p′λ,a(φ) ≤ p′λ,a(c∗j ) for all j ∈ {qn + 1, . . . , pn}. Therefore,∣∣∣∣∣ 1n

n∑
i=1

Π(zi)
>(γ − γ̃)ψτ [yi −Π(zi)

>γ̃]

∣∣∣∣∣ ≤
pn∑

j=qn+1

||γj ||p′λ,a(φ) ≤
pn∑

j=qn+1

p′λ(c∗j )||γj ||1

=

pn∑
j=qn+1

[
pλ,a(||γj ||1)− pλ,a(0)

]
.
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8.4 Proof of Theorem 7

Proof Define the vector functions of

Q′(γ,a,v) = − 1

n

n∑
i=1

Π(zi){τ − I[yi ≤ Π(zi)
>γ]} − 1

n

n∑
i=1

Π(zi)(1− τ + ai)I[yi = Π(zi)
>γ] + v,

r(γ) =
1

n

n∑
i=1

Π(zi){I[yi ≤ Π(zi)
>γ]− τ} − E

(
1

n

n∑
i=1

Π(zi){I[yi ≤ Π(zi)
>γ]− τ}

)
,

π̃(γ1,γ2,a1,a2) =
1

n

n∑
i=1

Π(zi)(1− τ + a2i)I[yi = Π(zi)
>γ2]− 1

n

n∑
i=1

Π(zi)(1− τ + a1i)I[yi = Π(zi)
>γ1],

and r̃(γ1,γ2) = r(γ1)− r(γ2). For a ∈ Rn define the subgradient of ||a||1 as

∂||a||1 = {b ∈ Rn|bk = sgn(ak) for ak 6= 0 and bk ∈ [−1, 1] otherwise},

and define the sets

V(γ) = {b = (0,b>1 , . . . ,b
>
pn)> ∈ RpnJn+1|bj = p′λ(||γj ||)cj , where cj ∈ ∂||γj ||1, for all j ∈ {1, . . . , pn}},

A(γ) = {b = (b1, . . . , bn)> ∈ Rn|bi = 0 if yi 6= Π(zi)
>γ and bi ∈ [−1, 1] otherwise}.

By first order conditions if γ is a local minimizer of Q(γ) then there exists v ∈ V(γ) and
a ∈ A(γ) such that Q′(γ,a,v) = 0pnJn+1. Thus, there exists v̄ ∈ V(γ̄) and ā ∈ A(γ̄) such
that Q′(γ̄, ā, v̄) = 0pnJn+1. Similarly, with probability approaching one, by Theorem 6,
there exists v̂ ∈ V(γ̂) and â ∈ A(γ̂) such that Q′(γ̂, â, v̂) = 0pnJn+1. By Condition 6 and
that the first derivatives of differentiable concave functions are decreasing |p′λ(||γj ||)| ≤ λ

for all j ∈ {1, . . . , pn} and thus ||v||∞ ≤ λ for all v ∈ V(γ) and any γ ∈ RpnJn+1.
For any vector a ∈ RpnJn+1 define aE ∈ RwnJn+1 as the sub-vector from the element of E

similar to how we have defined aA ∈ RqnJn+1. For some m̃i between uni + Π(zi)
>
E (γ̄ −γ0)E

and uni + Π(zi)
>
E (γ̂−γ0)E and using Conditions 1 and 8 there exists a positive constant C

such that with probability approaching one

0 =

∣∣∣∣[Q′E(γ̄, ā, v̄)−Q′E(γ̂, â, v̂)
]> (γ̄E − γ̂E)
||γ̄E − γ̂E ||2

∣∣∣∣
=

∣∣∣∣∣∣∣
{

(γ̄E − γ̂E)
>E

[
1
n

∑n
i=1 fi(m̃i)ΠE(zi)ΠE(zi)

>]+ r̃(γ̄, γ̂) + v̄ − v̂ − π̃(γ̄, γ̂, ā, â)
}>
E

(γ̄ − γ̂)E

||γ̄E − γ̂E ||2

∣∣∣∣∣∣∣
≥ Cδ2

wn
k−1
n ||γ̄E − γ̂E ||2 − ||r̃E(γ̄, γ̂)||2 − 2λ

√
wnJn − ||π̃E(γ̄, γ̂, ā, â)||2.

Note for any γ, ||rE(γ)||2 = OP
[√

wn
n

]
by Lemma 10 (4) and thus ||r̃E(γ̄, γ̂)||2 = OP

[√
wn
n

]
.

By Condition 8 ||π̃E(γ̄, γ̂, ā, â)||2 = OP (knwnn
−1
√

1 + wn). If with probability approaching
one ||γ̄E − γ̂E ||2 has a lower bound of order

log(n)δ−2
wn
kn

(√
wn
n

+ λ
√
wnkn + knwnn

−1
√

1 + wn

)
,
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then with probability approaching one

∣∣∣∣[Q′E(γ̄, ā, v̄)−Q′E(γ̂, â, v̂)]>
(γ̄E−γ̂E)
||γ̄E−γ̂E ||2

∣∣∣∣ has a posi-

tive lower bound, which is a contradiction. Therefore,

||γ̄E − γ̂E ||2 = OP

[
log(n)δ−2

wn
kn

(√
wn
n

+ λ
√
wnkn + knwnn

−1
√

1 + wn

)]
.

References

I. Barrodale and F.D.K. Roberts. Solution of an overdetermined system of equations in the
`1 norm. Communications of the ACM, 17:319–320, 1974.

Alexandre Belloni and Victor Chernozhukov. L1-penalized quantile regression in high-
dimensional sparse models. Annals of Statistics, 39(1):82–130, 2011.

Claus Borggaard and Hans Henrik Thodberg. Optimal minimal neural interpretation of
spectra. Analytical Chemistry, 64(5):545–551, 1992.

Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex penalized
regression, with applications to biological feature selection. Annals of Applied Statistics,
5(1):232–253, 2011.

Patrick Breheny and Yaohui Zeng. grpreg: Regularization paths for regression models with
grouped covariates 3.1-2, 2017. URL https://cran.r-project.org/web/packages/

grpreg/index.html.

Zhao Chen, Jianqing Fan, and Runze Li. Error variance estimation in ultrahigh-dimensional
additive models. Journal of the American Statistical Association, 113(521):315–327,
2018a.

Zhao Chen, Jianqing Fan, and Runze Li. Supplemental material of error variance estimation
in ultrahigh-dimensional additive models. Journal of the American Statistical Association,
113(521):315–327, 2018b.

Annie P. Chiang, John S. Beck, Hsan-Jan Yen, Marwan K. Tayeh, Todd E. Scheetz, Ruth E.
Swiderski, Darryl Y. Nishimura, Terry A. Braun, Kwang-Youn A. Kim, Jian Huang,
Khalil Elbedour, Rivka Carmi, Diane C. Slusarski, Thomas L. Casavant, Edwin M. Stone,
and Val C. Sheffield. Homozygosity mapping with snp arrays identifies trim32, an e3
ubiquitin ligase, as a bardet–biedl syndrome gene (bbs11). Proceedings of the National
Academy of Sciences, 103(16):6287–6292, 2006.

Carl de Boor. Splines as linear combinations of b-splines. In Approximation Theory II,
pages 1–47. Academic Press (New York), 1976.

Jan G. De Gooijer and Dawit Zerom. On additive conditional quantiles with high-
dimensional covariates. Journal of the American Statistical Association, 98:135–146, 2003.

42

https://cran.r-project.org/web/packages/grpreg/index.html
https://cran.r-project.org/web/packages/grpreg/index.html


ADDITIVE NONLINEAR QUANTILE REGRESSION IN ULTRA-HIGH DIMENSION

Ronald A. Devore and George G. Lorentz. Constructive Approximation. Cambridge Uni-
versity Press, 2005.

Harold Gordon Eggleston. Convexity, Cambridge Tracts in Mathematics and Mathematical
Physics, No.47. Cambridge University Press, 1958.

A. Essl, A. Ortner, R. Haas, and P. Hettegger. Machine learning analysis for a flexibility
energy approach towards renewable energy integration with dynamic forecasting of elec-
tricity balancing power. In 2017 14th International Conference on the European Energy
Market (EEM), pages 1–6, 2017.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96(456):1348–1360,
2001.

Jianqing Fan and Jinchi Lv. Nonconcave penalized likelihood with np-dimensionality. IEEE
Transactions on Information Theory, 57(8):5467–5484, 2011.

Julian Faraway. faraway: Functions and datasets for books by julian faraway 1.0.7, 2016.
URL https://cran.r-project.org/web/packages/faraway/index.html.

Joachim Freyberger, Andreas Neuhierl, and Michael Weber. Dissecting Characteristics
Nonparametrically. The Review of Financial Studies, 33(5):2326–2377, 04 2020. ISSN
0893-9454.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularized paths for genearlized
linear models via coordinate descent. Journal of Statistical Software, 33(1), 2008.

Y. Fujimoto, S. Murakami, N. Kaneko, H. Fuchikami, T. Hattori, and Y. Hayashi. Machine
learning approach for graphical model-based analysis of energy-aware growth control in
plant factories. IEEE Access, 7:32183–32196, 2019.

Yuwen Gu, Jun Fan, Lingchen Kong, Shiqian Ma, and Hui Zou. Admm for high-dimensional
sparse penalized quantile regression. Technometrics, 60(3):319–331, 2018.

Xuming He and Peide Shi. Convergence rate of b-spline estimators of nonparametric con-
ditional quantile functions. Journal of Nonparametric Statistics, 3:299–308, 1994.

Xuming He and Peide Shi. Bivariate tensor-product b-splines in a partly linear model.
Journal of Multivariate Analysis, 58(2):162–181, 1996.

Xuming He, Zhong-Yi Zhu, and Wing-Kam Fung. Estimation in semiparametric model
for longitudinal data with unspecified dependence structure. Biometrika, 89(3):579–590,
2002.

Xuming He, Lan Wang, and Hyokyoung Grace Hong. Quantile-adaptive model-free nonlin-
ear feature screening for high-dimensional heterogeneous data. Annals of Statistics, 41
(1):342–369, 2013.

Joel L. Horowitz and Sokbae Lee. Nonparametric estimation of additive quantile regression
model. Journal of the American Statistical Association, 100(472):1238–1249, 2005.

43

https://cran.r-project.org/web/packages/faraway/index.html


SHERWOOD AND MAIDMAN

Jian Huang, Joel L. Horowitz, and Fengrong Wei. Variable selection in nonparametric
additive models. The Annals of Statistics, 38(4):2282–2313, 2010.

Jian Huang, Patrick Breheny, and Shuangge Ma. A selective review of group selection in
high-dimensional models. Statistical Science, 27(4):481–499, 2012.

Jianhua Z. Huang. Projection estimation in multiple regression with application to func-
tional anova models. The Annals of Statistics, 26(1):242–272, 1998a.

Jianhua Z. Huang. Functional anova models for generalized regression. Journal of Multi-
variate Analysis, 67:49–71, 1998b.

Ahmed M. Ibrahim, Hassan A.M. Hendawy, Wafaa S. Hassan, Abdalla Shalaby, and
Manal S. ElMasry. Determination of terazosin in the presence of prazosin: Different
state-of-the-art machine learning algorithms with uv spectroscopy. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, 236:1386–1425, 2020.

Kengo Kato. Group lasso for high dimensional sparse quantile regression models.
https://arxiv.org/pdf/1103.1458, March 2012.

Mi-Ok Kim. Quantile regression with varying coefficients. The Annals of Statistics, 35(1):
92–108, 2007.

Yongdai Kim, Hosik Choi, and Hee-Seok Oh. Smoothly clipped absolute deviation on high
dimensions. Journal of the American Statistical Association, 103(484):1665–1673, 2008.

Yongdai Kim, Sunghoon Kwon, and Hosik Choi. Consistent model selection criteria on high
dimensions. Journal of Machine Learning Research, 13:1037–1057, 2012.

Keith Knight. Limiting distributions for l1 regression estimators under general conditions.
The Annals of Statistics, 26(2):755–770, 1998.

Roger Koenker. Quantile Regression. Cambridge University Press, 2005.

Roger Koenker and Gilbert Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978.

Roger Koenker and Vasco D’Orey. A remark on algorithm as 229: Computing dual regres-
sion quantiles and regression rank score. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 43(2):410–414, 1994.

Roger W. Koenker and Vasco D’Orey. Computing regression quantiles. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 36(3):383–393, 1987.

Eun Ryung Lee, Hohsuk Noh, and Byeong U. Park. Model selection via bayesian information
criterion for quantile regression models. Journal of the American Statistical Association,
109(505):216–229, 2014.

Heng Lian, Xin Chen, and Jian-Yi Yang. Identification of partially linear structure in addi-
tive models with an application to gene expression prediction from sequences. Biometrics,
68(2):437–445, 2012.

44



ADDITIVE NONLINEAR QUANTILE REGRESSION IN ULTRA-HIGH DIMENSION

Chen-Yen Lin, Howard Bondell, Hao Helen Zhang, and Hui Zou. Variable selection for
nonparametric quantile regression via smoothing spline analysis of variance. Stat, 2:
255–268, 2013.

Yi Lin and Hao Helen Zhang. Component selection and smoothing in multivariate non-
parametric regression. The Annals of Statistics, 34(5):2272–2297, 2006.

Po-Ling Loh and Martin J. Wainwright. Regularized M-estimators with nonconvexity: Sta-
tistical and algorithmic theory for local optima. Journal of Machine Learning Research,
16:559–616, 2015.

Yin Lou, Jacob Bien, Rich Caruana, and Johannes Gehrke. Sparse partially linear additive
models. Journal of Computational and Graphical Statistics, 25(4):1126–1140, 2016.

Shaogao Lv, Huazhen Lin, Heng Lian, and Jian Huang. Oracle inequalities for sparse
additive quantile regression in reproducing kernel hilbert space. Ann. Statist., 46(2):
781–813, 04 2018.

Adam Maidman and Lan Wang. New semiparametric method for predicting high-cost
patients. Biometrics, 74(3):1104–1111, 2018.

Lukas Meier, Sara van de Geer, and Peter Bühlmann. High-dimensional additive modeling.
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