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Abstract

Stochastic zeroth-order optimization algorithms have been predominantly analyzed under
the assumption that the objective function being optimized is time-invariant. Motivated by
dynamic matrix sensing and completion problems, and online reinforcement learning prob-
lems, in this work, we propose and analyze stochastic zeroth-order optimization algorithms
when the objective being optimized changes with time. Considering general nonconvex
functions, we propose nonstationary versions of regret measures based on first-order and
second-order optimal solutions, and provide the corresponding regret bounds. For the case
of first-order optimal solution based regret measures, we provide regret bounds in both the
low- and high-dimensional settings. For the case of second-order optimal solution based re-
gret, we propose zeroth-order versions of the stochastic cubic-regularized Newton’s method
based on estimating the Hessian matrices in the bandit setting via second-order Gaussian
Stein’s identity. Our nonstationary regret bounds in terms of second-order optimal solu-
tions have interesting consequences for avoiding saddle points in the nonstationary setting.

Keywords: nonstationary and nonconvex optimization, regret measures, stochastic
zeroth-order algorithms, online cubic-Newton method

1. Introduction

Consider the canonical optimization problem of minimizing a function f(x) = Eξ[F (x, ξ)]
using an iterative algorithm. In the stochastic zeroth-order setup, for each iteration t, the
optimizer has a guess xt for the minimum value, based on which we obtain noisy function
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evaluations of the form F (xt, ξt) at the point xt. Based on this feedback received, the
point xt is updated so that it is closer to the minimum value of f(x), or the algorithm
is terminated if we are already sufficiently close to the minimizer. Such stochastic zeroth-
order optimization algorithms have been studied for several decades. We refer the interested
reader to Spall (2005); Conn et al. (2009); Brent (2013); Zabinsky (2013); Audet and Hare
(2017); Larson et al. (2019) for details regarding more recent progress, and applications
to statistical machine learning, simulation-based optimization and operations research. An
important aspect of the above stochastic zeroth-order optimization setup is the stationarity
aspect – the objective function being optimized stays fixed during the course of the iterative
optimization process.

A practical variant of the above setup is that of nonstationary stochastic zeroth-order
optimization, where we have a sequence of functions ft(x) = Eξ[Ft(x, ξ)] to be optimized
with the corresponding minimizers defined as

x∗t := argmin
x∈X

{ft(x) = Eξ[Ft(x, ξ)]} . (1)

Here, ft : Rd → R and X ⊂ Rd is convex and compact. In each iteration, the optimizer picks
a point xt and observes (several) noisy function evaluations Ft(xt, ξt) at the picked point,
a posteriori. The goal of the optimizer is then to select points xt eventually to minimize
the so-called regret, which compares the accumulated error over all T rounds, against the
error suffered by a certain oracle optimal rule that could be computed only knowing all the
functions, a priori. In the most well-studied setting of this sequential stochastic optimization
problem, the functions ft are assumed to be convex and the oracle decision rule compared
against, is chosen to be a fixed rule x̄∗ := argminx∈X

∑T
t=1 ft(x). In this case, a natural

notion of regret is given byR =
∑T

t=1 ft(xt)−
∑T

t=1 ft(x̄
∗). It is easy to see that the regret of

any non-trivial decision rule should grow sub-linearly in T and several algorithms exists for
attaining such regret – we refer the reader to Flaxman et al. (2005); Cesa-Bianchi and Lugosi
(2006); Hazan et al. (2007); Agarwal et al. (2010, 2011); Saha and Tewari (2011); Bubeck
et al. (2012); Shamir (2013, 2017); Bubeck et al. (2017) for a non-exhaustive overview of
such algorithms and their optimality properties under different assumptions on ft. Another
natural way to measure the performance of sequential stochastic optimization algorithms
is to compare against the sequence of minimal vectors {x∗t }Tt=1 directly. In this case, the
nonstationary regret is defined as R =

∑T
t=1 ft(xt)−

∑T
t=1 ft(x

∗
t ) (Bousquet and Warmuth,

2002; Hazan and Seshadhri, 2009; Besbes et al., 2014, 2015; Hall and Willett, 2015; Yang
et al., 2016). Indeed, to obtain sub-linear regret in this setting, typically the degree of
allowed nonstationarity in terms of either the functions or the minimal vectors needs to be
bounded; see, for example Besbes et al. (2015); Yang et al. (2016).

In this paper, we consider stochastic zeroth-order optimization under both nonstationary
and nonconvexity. Several issues arise when considering such problems. The fundamental
one is that of defining an appropriate notion of regret under both nonstationarity and non-
convexity. Note that when the objective functions are nonconvex, it is computationally hard
to obtain a globally optimal value; see for example Murty and Kabadi (1987). Furthermore,
even ignoring the computational hardships and allowing for unbounded computational re-
sources, in the stochastic zeroth-order setting, without further assumptions, the number
of function queries required to obtain a (approximate) global minimizer scales exponential
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in the dimensionality (Novak, 2006; Novak and Woźniakowski, 2008). Hence, the notion
of function value based regret discussed above for the case of convex functions is not so
meaningful from a computational and statistical point of view in this case. As a way for-
ward, it becomes important to define notions of regret that convey computationally and
statistically meaningful information by leveraging the structure available in the problem.
In this work, we propose local optimality based regret measures – specifically ones that are
based on approximate first- or second-order optimal solutions – considering general smooth
nonconvex function. Our proposal is motivated by the use of such measures in the stochastic
nonconvex optimization literature (Nesterov and Spokoiny, 2017; Ghadimi and Lan, 2013;
Balasubramanian and Ghadimi, 2021). In order to obtain meaningful bounds for such local
optimality based regret measures, it turns out that, similar to the convex case, controlling
the allowed degree of nonstationarity in a delicate manner becomes crucial. It is worth re-
marking here that Hazan et al. (2017) considered first and second-order optimization under
nonstationarity and nonconvexity, and showed that only trivial regret bounds are possible
without controlling the allowed degree of nonstationarity. For the above mentioned no-
tions of local convergence based nonstationary regret, in this work, we propose and analyze
stochastic zeroth-order algorithms and characterize the precise dependence of the regret
bounds of the algorithms on the allowed degree of nonstationarity. To our knowledge, our
work provides the first non-trivial regret bounds for stochastic zeroth-order optimization
under both nonstationarity and nonconvexity. We next provide some motivating examples
for our proposed regret measures.

Motivating Application I: Dynamic Matrix Completion. Low-rank matrix factoriza-
tion and completion arise in a variety of signal processing and machine learning applications.
In the simplest setting, the problem is to recover an unknown matrix X ∈ Rn1×n2 which is
assumed to be of rank r � min(n1, n2), given m observations through a (linear) random
operator A : Rn1×n2 → Rm. If we let y ∈ Rm to be the ouput of this linear operator A,
then the matrix X is recovered by minimizing ‖y −A(X)‖22 over all rank-r matrices. Due
to the nonconvexity of the low-rank constraint, a popular approach is to re-parametrize
the problem as X = UV > for U ∈ Rn1×r and V ∈Rn2×r. Then, several recent works have
shown that for the objective ‖y − A(UV >)‖22, all local-minimzers are approximate global
minimizers under certain regularity conditions on the operator A. See Ge et al. (2016); Chi
et al. (2019); Zhu et al. (2021); Zhang (2021); Zhang et al. (2021) for details.

A main application of the above problem setup is recommendation systems. Here, n1

users give ratings to a random subset of n2 items, which are put together in the form an
incomplete matrix. Then using matrix completion techniques, new items are recommended
to the users. However, as noted in several works, user’s preference change over time (Xu
and Davenport, 2016; Gultekin and Paisley, 2018; Xu and Davenport, 2017; Lee et al., 2016;
Fattahi et al., 2020). A more practical variant of the above matrix completion problem,
which takes explicitly the variations into account, is applicable to recommendation prob-
lems arising in practice. In this setup, we are given a sequence of T matrices X1, . . . XT

which are observed through time-varying linear random operators A1, . . . ,AT . Denoting
the corresponding outputs as y1, . . . , yT , the nonconvex and nonstationary version of the
matrix completion problem is given an optimization problem where the objective function
ft = ‖yt − At(UtV >t )‖22 changes over time. Indeed, it is natural to assume here that the
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objective functions ft do not change too abruptly as user’s preferences invariably change
smoothly over time. Hence, the problem discussed above fits the setup that we consider in
this paper thereby serving as motivating example. The results we provide in Section 3.2, in
combination with landscape results discussed above would lead to global sub-linear regret
bounds for the time-varying matrix completion problem. A detailed investigation of this is
left as future work.

Motivating Application II: Deep Markov Decision Process. Another motivating
application for the nonstationary nonconvex setting that we consider is the problem of
Markov Decision Process (MDP) that arise in reinforcement learning, a canonical sequential
decision making problem (Sutton and Barto, 2018). An MDP M is parametrized by the
tuple (S,A,P, c). Here, S ⊂ Rb and A ⊂ Rp denote the state and action space respectively,
P : S ×A×S → [0, 1] denotes be the transition probability kernel and c(s, a) : S ×A → R
denotes the cost function. The goal of an agent working with the MDP M , at a given time
step t, is to choose an action at based on data {si, ai, c(si, ai)}t−1

i=1 and st. The agent does
so by minimizing the cost (given by c) over time. Based on the actions chosen, the process
moves to state st+1 with probability P(st+1|at, st). To formulate the problem precisely, we
introduce the so-called policy function, πθ(a|s) ≡ πθ(a, s) : A × S → [0, 1], which denotes
the probability of taking action a in state s. Here, θ ∈ Rd is a parameter vector of the
policy function. Then, the precise formulation of the problem describing the goal of the
agent is given by the following offline optimization problem.

θ∗ = min
θ∈Θ

{
J(θ) = Es [Vθ(s)] = Es

[
E

(
t∑
i=1

c(si, ai)

∣∣∣∣s1 = s

)]}
,

where ai ∼ πθ(·|si) and si+1 ∼ P(·|si, ai), for all 1 ≤ i < t and Es represents the (fixed)
initial distribution of the states. The quantity Vθ(s) is called as the value function and it is
indexed by θ to represent the fact that it depends the policy function πθ. Policy gradient
method (Williams, 1992; Sutton and Barto, 2018) is a popular algorithm for solving the
above problem. Recently, it has been realized that parametrizing πθ by a deep neural
network leads to better results empirically; see, for example Haarnoja et al. (2017); Li
(2017).

In the online nonstationary version of the MDP problem above, there are two significant
changes to the above setup (Neu et al., 2010; Arora et al., 2012; Guan et al., 2014; Dick et al.,
2014). First, the cost function c is assumed to change with time and is hence indexed by ct.
Next, the interaction protocol of the agent is changed so that at time t, the agent receives
st and selects action at based on which it receives the cost ct(st, at). The probability kernel
P is typically assumed to be known in Online MDP problems (Neu et al., 2010; Dick et al.,
2014). The goal in online nonstationary MDP is to come up with a sequence of policies πθ∗t
to minimize an appropriately defined notion of static or dynamic (nonstationary) regret.
Clearly this falls under the category of sequential decision making problem described in
Equation 1. If the objective function is convex, then existing results on nonstationary
online convex optimization could be leveraged to provide regret bounds in this setting. But
if the optimization problem involved is nonconvex, there is a lack of a clear notion of regret
to work with, to the best of our knowledge. The results we provide in Sections 3.2, in
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combination with landscape results about neural networks (for example, Kawaguchi et al.
(2019)) would lead to global sub-linear regret bounds for nonconvex online MDP problems
(which is the case when the policies πθ are parametrized by deep neural networks). A
detailed investigation of this is left as future work.

We end this section with the following remark. For both the motivating examples, it
might be possible to obtain refined bounds taking into account and leveraging the structure
specific to the respective problem. Our results in this paper are provided for any general
functions that satisfy mild smoothness assumptions. The provided results extend similar
general results in the stochastic zeroth-order optimization literature to the nonconvex and
nonstationary setting.

2. Assumptions and Contributions

We first outline the basic notations that we use in this paper. For a function f : Rd → R,
we denote the sup-norm as ‖f‖∞ := supx∈Rd |f(x)|. Furthermore, we denote the gradient
vector and the Hessian matrix at a point x ∈ Rd as ∇f(x) ∈ Rd and ∇2f(x) ∈ Rd×d. For
the stochastic function F (x, ξ), we denote its partial gradient and Hessian with respect to
x by ∇F (x, ξ) and ∇2F (x, ξ), respectively. For a vector a ∈ Rd, we use ‖a‖, and ‖a‖∗ to
denote a norm and the corresponding dual norm on Rd. For a matrix A ∈ Rd×d, we use
‖A‖F and ‖A‖op to denote the Frobenius norm and operator norm respectively. We also use
λmin(A) to denote the minimum eigenvalue of A. In the rest of this section, we first discuss
the assumptions we use in this work, after which we introduce the stochastic zeroth-order
gradient and Hessian estimators that we use in this work. Next, we introduce the notions
of regret that we propose in this work. We conclude the section by highlighting the main
contributions that we make in this work regarding the regret bounds.

2.1 Assumptions

We now state the assumption on the stochastic zeroth-order oracle we make in this work.

Assumption 2.1 (Zeroth-order oracle) For any x ∈ Rd, the zeroth order oracle outputs
an estimator F (x, ξ) of f (x) such that

E [F (x, ξ)] = f (x) , E [∇F (x, ξ)] = ∇f (x) , E
[
∇2F (x, ξ)

]
= ∇2f (x) ,

E
[
‖∇F (x, ξ)−∇f (x) ‖2∗

]
≤ σ2, and E

[
‖∇2F (x, ξ)−∇2f (x) ‖4F

]
≤ κ4,

where all the expectations are w.r.t ξ.

Note that in the deterministic case, we have access to f (x),∇f (x), and ∇2f (x) instead of
their noisy approximations. Hence, in the deterministic case, σ = 0, and κ = 0. The choice
of the (Euclidean) norms will be fixed later in the individual sections. The above set of
assumptions are common in the literature of stochastic zeroth-order optimization (Nesterov
and Spokoiny, 2017; Ghadimi and Lan, 2013; Duchi et al., 2015; Balasubramanian and
Ghadimi, 2021).

We next require the following assumptions, characterizing smoothness properties of the
function being optimized, that are standard in the optimization literature Bubeck et al.
(2012); Nesterov (2018).
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Assumption 2.2 (Lipschitz Function) The functions Ft are L-Lipschitz, almost surely
for any ξ, i.e., |Ft (x, ξ)−Ft (y, ξ) | ≤ L ‖x− y‖. We defer the specific choices of the norms
to the main results.

Assumption 2.3 (Lipschitz Gradient) The functions Ft have Lipschitz continuous gra-
dient, almost surely for any ξ, i.e., ‖∇Ft (x, ξ)−∇Ft (y, ξ)‖ ≤ LG‖x− y‖∗. Note that this
also implies |Ft (y, ξ)− Ft (x, ξ)− 〈∇Ft (x, ξ) , y − x〉| ≤ LG

2 ‖y − x‖
2. We defer the specific

choices of the norms to the main results.

Note that the above assumption also implies that the function ft has Lipschitz continuous
gradient with the same constant. We now state an analogous assumption for the Hessians
which is required for obtaining second-order optimal solution based regret guarantees.

Assumption 2.4 (Lipschitz Hessian) The functions ft have Lipschitz continuous Hes-
sian, i.e.,

∥∥∇2ft (x)−∇2ft (y)
∥∥
op
≤ LH ‖x− y‖2, .

The above assumptions lead to regret bounds that are polynomially dependent on the
dimensions. In order to obtain regret bounds that are only logarithmically dependent on
the dimension (thereby facilitating high-dimensional stochastic zeroth-order optimization
under nonstationarity), we also make the following structural sparsity assumption on the
functions.

Assumption 2.5 (Sparse Functions) The functions ft (x) are s-sparse. That is, they
depend only on s of the d co-ordinates, where s � d. As a consequence, we have the
gradients to be s-sparse as well, i.e., ‖∇ft (x)‖0 ≤ s, where ‖y‖0 denotes the number of
non-zero coordinates in y.

Functions that satisfy Assumption 2.5 are common in the fields of constructive approxi-
mation (DeVore et al., 2011; Han and Yuan, 2020; Wojtaszczyk, 2011) and non-parametric
statistics (Han and Yuan, 2020; Raskutti et al., 2012; Tyagi et al., 2018), as they extend
the idea of compressed sensing (Donoho, 2006) to the functional or non-parametric setting.
Furthermore, there are also several practical situations in which a function depending only
on a few of the coordinates needs to be optimized, for example, hyperparameter tuning
in deep learning (Snoek et al., 2012). We also remark that recently Wang et al. (2018)
and Balasubramanian and Ghadimi (2021) used similar assumptions in the context of sta-
tionary stochastic zeroth-order optimization. Furthermore, sparsity assumptions are also
explored in the context of contextual bandits Kim and Paik (2019); Bastani and Bayati
(2020); Wang et al. (2020) and reinforcement learning (Hao et al., 2021). Finally, it has
been observed in several practical machine learning problems that often times the gradient
are approximately sparse (Cai et al., 2020; Elibol et al., 2020). While in this work, we
assume exactly sparse functions and hence gradients, it is worth mentioning that the above
assumption is extendable to the approximately sparse case in a straightforward manner.

Next, we define the so-called uncertainty sets corresponding to the functions {ft}Tt=1

that capture the degree of nonstationarity allowed, following Besbes et al. (2015).
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Definition 1 (Besbes et al. (2015)) For a given WT ≥ 0, the uncertainty set DT of
functions is defined as

DT
def
=

{
{ft}Tt=1 :

T−1∑
t=1

‖ft − ft+1‖∞ ≤WT

}
. (2)

We emphasize here that, though the amount of nonstationarity is bounded by WT , WT is
allowed to increase with the horizon T . This definition of nonstationarity can accommodate
different types of temporal pattern in the data, e.g., variable rates of change, constant
changes, periodic changes, and discrete shocks; see Besbes et al. (2015) for details.

2.2 The Zeroth-Order Methodology

We now briefly describe our stochastic zeroth-order gradient and Hessian estimation method-
ology, both of which are based on Gaussian Stein’s identity. Following Spall (1998); Nesterov
and Spokoiny (2017); Balasubramanian and Ghadimi (2021); Duchi et al. (2015), we define
the Gaussian Stein’s identity based gradient estimator of ∇ft (xt) as,

Gνt (xt, ut, ξt) =
Ft (xt + νut, ξt)− Ft (xt, ξt)

ν
ut, (3)

where ut ∼ N (0, Id). It is well-known (see e.g., Nesterov and Spokoiny (2017)) that
E [Gνt (xt, ut, ξt)] = ∇fνt (x), where fνt is a Gaussian approximation of ft defined as

fν(x) =
1

(2π)d/2

∫
f(x+ νu) e−

‖u‖22
2 du = E [f(x+ νu)] . (4)

The results below outline some properties of fν and its gradient estimator, and provide
some preliminary results on the bias and variance that are used in the rest of the paper.

Lemma 2 (Nesterov and Spokoiny (2017)) Let fνt and Gνt be defined in (4) and (3),
respectively. If Assumption 2.2 holds with ‖ · ‖ = ‖ · ‖2 for ft (x), for any x ∈ Rd, we have

|fνt (x)− ft(x)| ≤ νL
√
d, and E

[
‖Gνt (x, u, ξ)‖22

]
≤ L2 (d+ 4)2 . (5)

Lemma 3 (Nesterov and Spokoiny (2017) ) Let the gradient estimator be defined as
(3) and let Assumption 2.3 hold with ‖ · ‖ = ‖ · ‖2 for ft (x). Then we have for any x ∈ Rd,

‖E [Gνt (x, u, ξ)]−∇ft (x)‖2 ≤
ν

2
LG (d+ 3)

3
2 , (6)

E
[
‖Gνt (x, u, ξ)‖22

]
≤ ν2

2
L2
G (d+ 6)3 + 2 (d+ 4)

(
‖∇ft (x) ‖22 + σ2

)
. (7)

The stochastic zeroth-order Hessian estimator is given by

Hν
t (xt, ut, ξt) =

Ft (xt + νut, ξt) + Ft (xt − νut, ξt)− 2Ft (xt, ξt)

2ν2

(
utu
>
t − Id

)
, (8)

where Id ∈ Rd×d is the identity matrix. The above estimator of the Hessian was proposed
recently by Balasubramanian and Ghadimi (2021), and is based on second-order Gaussian
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Stein’s identity. A theoretical analysis of the bias and variance of the Hessian estimator
was also provided in Balasubramanian and Ghadimi (2021) – we defer a discussion of such
results to the proofs later, as they are involved.

One-point versus Multi-point feedback: We emphasize that we consider the so-
called two- and three-point feedback settings for the zeroth-order gradient and Hessian
estimators, respectively in (3) and (8). That is, for a given random vector ξ, we assume
that the stochastic function F (·, ξ) could be evaluated at any point x ∈ X, and one or
two perturbed points, respectively, for estimating the gradient vector and the Hessian ma-
trix. Multi-point bandit feedback has been explored before extensively in the literature on
stochastic zeroth-order optimization and bandit optimization. For example, it is used in on-
line convex/strongly-convex optimization (Agarwal et al., 2010; Liu et al., 2017; Gorbunov
et al., 2018; Shames et al., 2019); zeroth-order convex and nonconvex optimization (Conn
et al., 2009; Larson et al., 2019; Audet and Hare, 2017; Duchi et al., 2015; Ghadimi and
Lan, 2013; Nesterov and Spokoiny, 2017; Balasubramanian and Ghadimi, 2021); online non-
stationary convex optimization (Chiang et al., 2013); online linear regression (Yuan et al.,
2019); supervised page-rank learning (Bogolubsky et al., 2016); reserve price optimization
in the context of auction (Feng et al., 2021); online boosting (Brukhim and Hazan, 2021).
This is primarily due to the sub-optimal oracle complexity of one-point feedback based
stochastic zeroth-order optimization methods in the stationary setting, either in terms of
the approximation accuracy or dimension dependency.

The use of one-point feedback for stochastic zeroth-order optimization could be traced
back to Nemirovsky and Yudin (1983). Motivated by this, there have been several works
in the machine learning community focusing on obtaining regret bounds for online convex
optimization. Specifically, considering the class of convex functions (without any further
smoothness assumptions) and adversarial noise (i.e., roughly speaking, with noise vectors
not necessarily assumed to be independent and identically distributed (i.i.d.)), Bubeck et al.
(2017) proposed a polynomial-time algorithm with a sample complexity of O(d21/ε2) which
was recently improved to O(d5/ε2) in Lattimore (2020). For Lipschitz smooth convex func-
tions, Belloni et al. (2015) and Gasnikov et al. (2017), in the i.i.d noise case, obtained a
sample complexity of O(d7.5/ε2) and O(d/ε3), respectively. The best known lower bound
in this case is known to be O(d2/ε2), which was established by Shamir (2013). Further
assuming (β − 1) differentiable derivatives, for β > 2, Bach and Perchet (2016) obtained
sample complexities of O(d2/ε2β/(β−1)) and O(d2/ε(β+1)/(β−1)), respectively for the convex
and strongly-convex setting, with i.i.d. noise case. See also Akhavan et al. (2020); Dani
et al. (2008); Hu et al. (2016); Saha and Tewari (2011) for other related works with in the
one-point feedback setting focusing on online convex optimization. In contrast to the above
discussion, with two-point feedback it is possible to obtain much improved oracle complex-
ities (i.e., linear in dimension and optimal in ε) for stochastic zeroth-order optimization, as
illustrated in Agarwal et al. (2010); Duchi et al. (2015); Ghadimi and Lan (2013); Nesterov
and Spokoiny (2017). However, in some practical settings, it might be impossible to work
with multi-point feedbacks. Hence, in Section 3.3, we also provide results in the one-point
setting.
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2.3 Regret Measures

We are now ready to introduce the regret measures that we propose and analyze in this
work. Our first proposal is based on the notion of first-order optimal solutions or stationary
points, motivated by the use of similar performance measures in stationary nonconvex
optimization (Nesterov, 2018).

Definition 4 (Expected Gradient-size Regret) The expected gradient-size regret of a
randomized online algorithm is defined as (with ‖ · ‖p denoting the Lp norm of a vector)

R
(p)
G (T ) :=

T∑
t=1

E
[
‖∇ft (xt)‖2p

]
, (9)

where the expectation is taken with respect to all the randomness in the algorithm.

The above notion of regret is to be considered under the assumption that the functions
{ft}Tt=1 are general smooth nonconvex functions (that each satisfy Assumptions 2.2 and 2.3),
but satisfying the condition in Definition 1. It has been shown in stochastic first-order
setting by Hazan et al. (2017) that for general smooth nonconvex functions (that satisfy
Assumptions 2.2, and 2.3), under a further boundedness assumption, the order of the above
gradient-size based regret is Ω (T ). This motivates us to consider the notion of regret in
Definition 4 under a controlled degree of nonstationarity as in Definition 1. It is also worth
emphasizing the connection between gradient-size based regret measure in Definition 4 and
the path-length of stochastic gradient descent algorithm for offline optimization. Specifi-
cally, for offline optimization, when the functions ft are the same, Oymak and Soltanolkotabi
(2018) show that gradient descent follows an almost direct trajectory to the nearest global
optima by showing that the path-length is bounded for offline optimization problems. Our
results bounds in Theorem 6 on the notion of regret in Definition 4, provides a natural
extension of the results of Oymak and Soltanolkotabi (2018) for the online setting, where
the functions do change over time. We next consider the following notion of regret, based
on second-order optimal solutions.

Definition 5 (Expected Second Order Regret) The expected second-order regret of a
randomized online algorithm is defined as

RENC (T ) =
T∑
t=1

E [rNC (t)] =
T∑
t=1

E

[
max

(
‖∇ft(xt)‖2,

(
− 2

LH
λmin

(
∇2ft (xt)

))3
)]

,

(10)

where the expectation is taken with respect to all the randomness in the algorithm.

Similar to the case above, this notion of regret is also to be considered under the assump-
tion that the functions {ft}Tt=1 are general smooth nonconvex functions (that each satisfy
Assumptions 2.2 and 2.4), but satisfying the condition in Definition 1. The scaling 2/LH is
used mainly for convenience of theoretical analysis and is also used in stationary nonconvex
optimization analysis (Nesterov, 2018). The above regret is motivated by the problem of
escaping saddle-points in nonconvex optimization. In other words, considering stationary

9
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stochastic nonconvex minimization, while the first-order optimal solutions might include
maxima, minima or saddle point, second-order optimal solutions are purely local minima
avoiding saddle points. Indeed the second term inside the max function in (10) measure the
curvature of the Hessian matrix at the solution thereby characterizing the local minimizers.
Such local minimizers turn out to be (near) global minimizers and have favorable statisti-
cal properties in a several practical machine learning problems (Haeffele and Vidal, 2015;
Kawaguchi, 2016; Jin et al., 2017; Nguyen and Hein, 2017; Roy et al., 2020). The above
definition, extends this idea of avoiding saddle points to the nonstationary setting that we
consider in this work.

A word is in order regarding our notations of regret above and function-value based
regret measures for general nonconvex function from the Multi-Armed Bandits (MAB) lit-
erature. As mentioned in the introduction without further assumptions on the function
being optimized, finding the global minimizer in the stochastic zeroth-order setting suffers
from curse of dimensionality even with unbounded computation (Novak, 2006; Novak and
Woźniakowski, 2008). Nevertheless, in the literature on continuum armed bandit problems,
function-value based regret bounds are studied in the stationary setting. For example,
Bubeck et al. (2011b) shows that when the function f is L-lipschitz continuous where L is
unknown, then the minimax optimal order for stationary regret, i.e., regret with respect to

the fixed best action, is O
(
L

d
d+2T

d+1
d+2

)
. Kleinberg et al. (2008) shows that for Lipschitz

MAB on metric spaces, the expected stationary regret is upper bounded by O
(
T

d+1
d+2

+c
)

where d is the max-min-covering dimension, and c > 0 is arbitrarily close to 0. MAB with
continuum of arms has also been studied in Kleinberg (2005); Auer et al. (2007); Bubeck
et al. (2011a). Tyagi and Gärtner (2013) extends the work of Kleinberg et al. (2008) to the
high-deimnsional setting where the reward function is assumed to be ϑ-Hölder continuous
and to depend on at most s < d coordinates. They show that the expected stationary

regret is O
(
T

ϑ+s
2ϑ+s (log T )

ϑ
2ϑ+sC(s, d)

)
, where C(s, d) depends at most polynomially on s

and sub-logarithmically in d. Under same sparsity assumption, in Bayesian optimization

literature, Chen et al. (2012) establishes a high-probability bound of O
(√

T (log T )
s
2

+1
)

on

the expected stationary regret where the function is assumed to be bounded and sampled
from a zero-mean Gaussian Process with squared exponential kernel. When these meth-
ods are combined with algorithms designed for nonstationary MAB problems, e.g., Rexp3
(Besbes et al., 2019), Exp3.S (Auer et al., 2002), or other related methods (Besbes et al.,
2014; Allesiardo et al., 2017), one can hope to achieve function-value based regret bounds
under nonstationarity. Nevertheless, such regret bounds will still suffer from the curse of
dimensionality. In this context, our proposed regret measures are based on exploiting the
underlying structure of the problem, and are based on meaningful local optimal solutions
for which one can obtain improved and practical dependency on the dimensionality of the
problem.

2.4 Our Contributions

Our main contribution in this work is on obtaining upper bounds for the above introduced
notions of regret. Our regret bounds discussed below have an explicit characterization of

10
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Algorithm
(Reference)

Structure Regret bound
Regret
Notion

GZGD
(Theorem 6)

Asmp. 2.3 O
((
d + σ2

) √
T WT

)
R
(2)
G (T )

Asmp. 2.2, 2.3 O
(√

d T WT
(
1 + σ2

))

GZGD
(Theorem 10)

Asmp. 2.3, 2.5 O
((

(s log d)2 + σ2
)√

T WT

)
R
(1)
G (T )

Asmp. 2.2, 2.3, 2.5 O
(
s log d

(
1 + σ2

)√
T WT

)
Algorithm 1

(Hazan et al. (2017))
Bounded function, Asmp. 2.2, 2.3 O (T ) (Deterministic 1st-Order) R

(2)
G (T )

OCRN
(Theorem 12)

Asmp. 2.3, 2.4 O

(
T
2
3

(
1 +W

1
3
T

)
+ T

2
3
(
σ + κ3

)
+ T

5
9 W

2
9
T κ2

)
RENC (T )

ZCRN
(Theorem 15)

Asmp. 2.3, 2.4 O

(
T
2
3

(
1 +W

1
3
T

)(
1 + σ + σ

3
2

))
RENC (T )

Algorithm 3
(Hazan et al. (2017))

Bounded function, Asmp. 2.2, 2.3, 2.4 O (T ) (Deterministic 2nd-Order) R̂NC (T )

One-point GZGD
(Theorem 18)

Asmp. 2.3,3.1 O

((
1 + σ2

)
d T

2
3 W

1
3
T

)
R
(2)
G (T )

Asmp. 2.2, 2.3, 3.1 O

((
1 + σ2

)
d
1
2 T

2
3 W

1
3
T

)

One-point ZCRN
(Theorem 22)

Asmp. 2.3, 2.4, 3.1, 3.2 O

(
T
2
3

(
1 +W

1
3
T

)(
1 + σ2 (WT/T )

1
9 + σ

√
σ1

))
RENC (T )

Table 1: A list of regret bounds obtained in this work for nonstationary nonconvex optimiza-
tion. One-point GZGD and One-point ZCRN denote Algorithms GZGD (Algorithm 1) and
ZCRN (Algorithm 3) respectively with one-point gradient and hessian estimators instead
of two-point gradient and hessian estimators. The results from Hazan et al. (2017) are for
the 1st and 2nd order settings, without controlling the degree of nonstationarity. They are
provided in the table above just for the sake of comparison. Here σ1 = max(σ4, σ′) where
E
[
‖ξ‖42

]
≤ σ′.

the time horizon T , the degree of nonstationarity WT and the dimensionality of the problem
d. The precise rates obtained are summarized in Table 1 for convenience.

• First-order regret: Considering nonconvex functions ft whose degree of nonstation-
arity is bounded in the sense of Definition 1, in Section 3.1, we first establish sub-linear

11
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regret bounds for first-order optimal solution based regret measures proposed in Defi-
nition 4. We quantify the dependence of this regret on the dimensionality d (which is
polynomial in d). This setting is referred to as the low-dimensional setting. Next, we
address the issue of dimensionality in this regret bound. Specifically, we consider the
case when the functions ft depend only on s of the d coordinates (see Assumption 2.5)
and provide regret bound that only depends poly-logarithmically on the dimension. We
refer to such a scenario as the high-dimensional setting.
• Second-order regret: Next, we consider the notion of second-order optimal solution

based regret in the sense of Definition 5, when the nonconvex functions ft are assumed to
be nonstationary in the sense of Definition 1. In Section 3.2, we then propose and analyze
online and bandit versions of cubic-regularized Newton method and establish sub-linear
bounds for the above mentioned regret measures. To the best of our knowledge, we pro-
vide the first analysis of cubic-regularized Newton method for stochastic zeroth-order
optimization under both nonconvexity and nonstationarity, and demonstrate sub-linear
regret bounds. The proposed stochastic zeroth-order cubic-Newton method is motivated
by the recently proposed zeroth-order Hessian estimator with three-point feedback mech-
anism from Balasubramanian and Ghadimi (2021) and is based on second-order Gaussian
Stein’s identity.
• One-point setting: While the above contributions are in the multi-point feedback

setting, in Section 3.3, we also provide the corresponding regret bounds in the one-point
setting and highlight the subtle differences that occur in this setting.

3. Main Results on Regret Bounds

In this section, we present out main results on the regret bounds. We first focus on the first-
order optimal solution based regret measure as in Definition 4 and provide regret bounds
in both the low and high-dimensional setting. We next focus on the second-order optimal
solution based regret measure as in Definition 5. For this case, we first provide a regret
bounds in the stochastic second order setting assuming access to both noisy gradients and
Hessians, after which we provide our regret bound in the stochastic zeroth-order setting.
These regret bounds are based on online versions of cubic-Newton method. We next focus
on a normalized version of regret to account for the multi-point feedback that we use in our
gradient and Hessian estimators, and show that the normalized version of regret is of the
same order as the one in Definitions 4 and 5. Finally, we focus on the one-point setting and
show how the bounds deteriorate gracefully in this setting.

3.1 Nonstationary First-order Regret Bounds

In order to establish the gradient size or first-order optimal solutions based regret bounds,
we consider a zeroth-order version of stochastic gradient descent algorithm adapted to
handle nonstationarity. The detailed method is given in Algorithm 1. In each iteration, the
gradient is computed based on the zeroth-order gradient estimator defined in Equation 3.
We remark Algorithm 1 or its variants is widely used in the literature on stochastic zeroth-
order optimization and bandit convex optimization.

12
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Algorithm 1 Gaussian Zeroth-order Gradient Descent (GZGD)

Input: Horizon T , η and ν.
for t = 1 to T do
Sample standard Gaussian vector ut ∼ N (0, Id)
Query the function ft at points xt and xt + νut and receive noisy evaluations Ft (xt, ξt)
and Ft (xt + νut, ξt)
Estimate the gradient as

Gνt (xt, ut, ξt) =
Ft (xt + νut, ξt)− Ft (xt, ξt)

ν
ut.

Update
xt+1 = xt − ηGt (xt, ut, ξt) ,

end for

3.1.1 Low-dimensional Setting

We now provide the regret bounds achieved by Algorithm 1 in the low dimensional setting
in Theorem 6 below.

Theorem 6 Let {xt}Tt=1 be generated by Algorithm 1, and Assumption 2.3 holds with ‖·‖ =
‖ · ‖2 for any sequence of {ft}T1 ∈ DT .

(a) Choosing

ν =
1√

TLG(d+ 6)
, η =

√
WT

4LG (d+ 4)
√
T
, (11)

we have

R
(2)
G (T ) ≤ O

((
d+ σ2

)√
TWT

)
. (12)

In the deterministic case, as σ = 0, choosing η = 1
4LG(d+4) , we get

R
(2)
G (T ) ≤ O (dWT ) . (13)

(b) Additionally, if Assumption 2.2 holds with ‖ · ‖ = ‖ · ‖2, by choosing

ν = min

 L

LG(d+ 6)
,

1

(TL3
Gd

5)
1
4

 , η =

√
WT

L
√
TLG (d+ 4)

, (14)

we have

R
(2)
G (T ) ≤ O

(√
dTWT

(
1 + σ2

))
. (15)

For the deterministic case σ = 0.

13
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Remark 7 Theorem 6, shows that as long as WT ≤ o(T ) it is possible to achieve a sub-

linear regret for R
(2)
G (T ). In other words, one could obtain meaningful regret bounds even in

the nonstationary setting, as long as the degree of nonstationarity grows sub-linearly. It is
worth recalling that Hazan et al. (2017) showed that in the (deterministic) first-order setting

it is impossible to achieve sub-linear rate for R
(2)
G (T ), when the degree of nonstationarity is

arbitrary.

We now present the high-level outline of the proof of Theorem 6 and defer the detailed
proof to Appendix A. First we show that at every time point t, if we ignore the bias and the
variance of the gradient estimator which was introduced in (3), the term η ‖∇ft (xt)‖22 /2 is
upper bounded by ft(xt)− ft(xt+1) in expectation. Now we want to form a telescopic sum
to bound the sum of the gradient sizes. But due to nonstationarity, at every time step t,
an additional term appears of the form ft(xt) − ft−1(xt). Observe that the sum of these
additional terms can be bounded by WT . Hence, in the general case we use Lemma 2 to
bound the variance, and Lemma 3 to bound the bias of the gradient estimator. Finally, we
pick η, and ν suitably to establish the rates.

3.1.2 High-dimensional Setting

We now bound the gradient size based regret for the high-dimensional case under the as-
sumption that the functions being optimized have s-sparse gradient. We need the following
two results similar to Lemma 3 to control the ∞-norm of the bias and the second moment
of the gradient estimator.

Lemma 8 Let Assumption 2.2 be satisfied with ‖ · ‖ = ‖ · ‖∞. Then for any x, and some
constant C > 0 we have,

|fνt (x)− ft(x)| ≤ νLC
√

2 log d, (16)

E
[
‖Gνt (x, u, ξ)‖2∞

]
≤ 4CL2(log d)2. (17)

Proof [Proof of Lemma 8] Using Assumption 2.2 with respect to ∞-norm, we have,

|fνt (x)− ft(x)| ≤ E [|ft(x+ νu)− ft(x)|] ≤ νLE [‖u‖∞] , (18)

‖Gνt (x, u, ξ)‖2∞ =

∥∥∥∥ft(x+ νu)− ft(x)

ν
u

∥∥∥∥2

∞
≤ L2‖u‖4∞, (19)

which together with the fact that E
[
‖u‖k∞

]
≤ C(2 log d)k/2 due to Balasubramanian and

Ghadimi (2021), imply the result.

Lemma 9 (Balasubramanian and Ghadimi (2021)) Let Assumption 2.3 be satisfied
with ‖ · ‖ = ‖ · ‖∞. Then for any x, and some constant C > 0 we have,

‖E [Gνt (x, u, ξ)]−∇ft (x)‖∞ ≤ CνLG
√

2 (log d)
3
2 , (20)

E
[
‖Gνt (x, u, ξ)‖2∞

]
≤ 4C(log d)2

[
ν2L2

G log d+ 4‖∇ft(x)‖21
]
. (21)
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Now we present the main result on the gradient size regret bound in the high-dimensional
sparse setting.

Theorem 10 Let Assumption 2.3 be satisfied with ‖ · ‖ = ‖ · ‖∞ and Assumption 2.5 hold
for any sequence of {ft}T1 ∈ DT . Then for Algorithm 1,

(a) By choosing

ν =
1√
2T

min

{√
1

CLG log d
, s

√
C log d

LG

}
, η =

√
WT

32CLGs (log d)2
√
T
, (22)

we have

R
(1)
G (T ) ≤ O

((
(s log d)2 + σ2

)√
TWT

)
. (23)

In the deterministic case, setting σ = 0, we get

R
(1)
G (T ) ≤ O

(
(s log d)2

√
TWT

)
. (24)

(b) If, in addition, Assumption 2.2 holds with ‖ · ‖ = ‖ · ‖∞, by choosing

ν =

[
1

2Ts2C3LGL2 (log d)4

]1
4
, η =

√
WT

2
√
TCLGL log d

, (25)

we obtain

R
(1)
G (T ) ≤ O

(
s log d

(
1 + σ2

)√
TWT

)
. (26)

In the deterministic case, setting σ = 0, we get

R
(1)
G (T ) ≤ O

(
s log d

√
TWT

)
. (27)

Remark 11 Compared to the regret bounds obtained in Theorem 6, the ones in Theorem 10
have only a poly-logarithmic dependency on the dimension d. The dependency on the sparsity
parameter s, is quadratic and linear without and with Assumption 2.2 respectively. We
believe this dependency could potentially be improved (to linear and square-root respectively),
however it seems to be outside the scope of our current proof technique, which is provided
Appendix A.

3.2 Nonstationary Second-Order Regret Bounds

While gradient-size based regret (in Definition 4) controls first-order optimal solutions, it
does not allows us to avoid saddle-points that are prevalent in nonconvex optimization
problems arising in machine learning and game theory Dauphin et al. (2014); Hazan et al.
(2017). Hence, we now consider the notion of second-order optimal solution based regret
(Definition 5), and propose online and bandit versions of cubic regularized Newton method
to obtain the respective nonstationary regret bounds.

15



Roy, Balasubramanian, Ghadimi and Mohapatra

Algorithm 2 Online Cubic-Regularized Newton Algorithm (OCRN)

Input: Horizon T , M , mt, bt
for t = 1 to T do
Set Ḡt = 1

mt

∑mt
i=1∇Ft

(
xt, ξ

G
i,t

)
Set H̄t = 1

bt

∑bt
i=1∇2Ft

(
xt, ξ

H
i,t

)
Update

xt+1 = argmin
y

f̃t
(
xt, y, Ḡt, H̄t,M

)
, (28)

where

f̃t
(
xt, y, Ḡt, H̄t,M

)
= Ḡ>t (y − xt) +

1

2
〈H̄t (y − xt) , (y − xt)〉+

M

6
‖y − xt‖32 . (29)

end for

3.2.1 Online Cubic-regularized Newton Method

The standard cubic-regularized Newton method Nesterov and Polyak (2006) has been
recently extended to the stochastic setting in Tripuraneni et al. (2018) and to the zeroth-
order setting in Balasubramanian and Ghadimi (2021). In Algorithm 2, we consider it in
the online setting. Note that Hazan et al. (2007) used online Newton method previously
in the context of online convex optimization to obtain logarithmic regret bounds under
certain assumptions and Hazan et al. (2017) used a modified online Newton method in the
context of online nonconvex optimization. The following theorem provides a regret bound
for RENC (T ) using the online cubic-regularized Newton method.

Theorem 12 Let us choose the parameters for Algorithm 2 as follows:

M = LH

(
T

WT

)2
9
, mt =

(
T

WT

)8
9
, bt =

(
T

WT

)2
9
. (30)

Moreover, suppose that Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, and Assumption 2.4 hold for any
sequence of functions {ft}T1 ∈ DT . Then, for all WT ≤ T , Algorithm 2 with the choice of
M ≥ LH produces updates such that

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

)
+ T

2
3
(
σ + κ3

)
+ T

5
9W

2
9
T κ2

)
, (31)

where the second-order regret RENC is defined in (10). As σ = κ = 0 in the deterministic
case, mt = bt = 1 is sufficient to get

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

))
. (32)

The proof outline is similar to that of the more general Theorem 15 which we discuss in
Section 3.2.2. The detailed proof of Theorem 12 is in Appendix B.
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Remark 13 The total number of function calls
∑T

t=1 (mt + bt) over a horizon T is upper

bounded as O
(
T

17
9 + T

11
9

)
.

Remark 14 We now compare our second-order regret bound to that in Hazan et al. (2017),
which is given by

R̂NC (T ) :=

T∑
t=1

r̂NC (t) =

T∑
t=1

max

(
‖∇ft(xt)‖22,−

4LG
3L2

H

λmin(∇2ft(xt))
3

)
≤ O(T ). (33)

This bound is obtained by assuming each loss function ft is bounded instead of assuming
their total gradual variation is bounded as we have in Definition 1. Noting that rNC (t) ≤
O
(√

r̂NC (t) + r̂NC (t)
)

, we can bound our regret by using the second-order method in

Hazan et al. (2017) such that

RENC (T ) = RNC (T ) :=
T∑
t=1

rNC ≤ O
(√

T R̂NC (T ) + R̂NC (T )

)
≤ O(T ),

where the first equality and inequality follow under the deterministic setting and from
Hölder’s inequality, respectively. We immediately see that an improved second-order regret
bound in achieved in (31), in comparison to Hazan et al. (2017).

3.2.2 Zeroth-order Cubic-regularized Newton Method

We now extend the online cubic-regularized Newton method to the zeroth-order setting. In
order to do so, we leverage the three-point feedback based Hessian estimation technique,
proposed in Balasubramanian and Ghadimi (2021), which is based on Gaussian Stein’s
identity. The zeroth-order cubic-regularized Newton method is provided in Algorithm 3.
The following theorem states the bound for expected second order regret using zeroth-order
cubic regularized Newton method.

Theorem 15 Let us choose the parameters for Algorithm 3 as follows:

M = LH

(
T

WT

)2
9
, νG = νH = ν =

1

T
4
9d

5
2

,

mt = (d+ 5)

(
T

max(1,WT )

)8
9
, bt = 4 (1 + 2 log 2d) (d+ 16)4

(
T

max(1,WT )

)4
9
. (37)

Moreover, let Assumption 2.2—2.3 with ‖ · ‖ = ‖ · ‖2, and Assumption 2.4 hold. Then, for
all WT ≤ T , for any sequence of such functions {ft}T1 ∈ DT , Algorithm 3 produces updates
for which RENC (T ) is bounded by,

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

)(
1 + σ + σ

3
2

))
. (38)

In the deterministic case, setting σ = 0, we obtain

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

))
, (39)
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Algorithm 3 Zeroth-order Cubic Regularized Newton Algorithm (BCRN)

Input: Horizon T , M ,mt,bt
for t = 1 to T do
Generate u

G(H)
t =

[
u
G(H)
t,1 , u

G(H)
t,2 , · · · , uG(H)

t,mt(bt)

]
where u

G(H)
t,i ∼ N (0, Id)

Set

Ḡt =
1

mt

mt∑
i=1

Ft

(
xt + νuGt,i, ξ

G
t,i

)
− Ft

(
xt, ξ

G
t,i

)
νG

uGt,i (34)

Set

H̄t =
1

bt

bt∑
i=1

Ft

(
xt + νuHt,i, ξ

H
t,i

)
+ Ft

(
xt − νuHt,i, ξHt,i

)
− 2Ft

(
xt, ξ

H
t,i

)
2ν2
H

(
uHt,i
(
uHt,i
)> − Id)

(35)

Update

xt+1 = argmin
y

f̃t
(
xt, y, Ḡt, H̄t,M

)
, (36)

where f̃t
(
xt, y, Ḡt, H̄t,M

)
is defined in Equation 29.

end for

Here we present here the high-level outline of the proof of Theorem 15 while deferring the
detailed proof to Appendix A. First we show that at every time point t, if we ignore the

terms ‖∇t − Ḡt‖2, ‖∇2
t − H̄t‖2op, and ‖∇2

t − H̄t‖3op, rNC(t) = max
(
‖∇t‖2,− 8

L3
H
λ3
t,min

)
is

upper bounded by the cube of the `2 norm of the difference of consecutive iterates xt+1−xt,
‖ht‖3 (Lemma 32). Then we show that M‖ht‖3/36 is bounded by ft(xt)−ft(xt+1) ignoring

the terms ‖∇t− Ḡt‖3/22 , and ‖∇2
t − H̄t‖3op. Now we want to form a telescopic sum to bound

RENC(t) =
∑T

t=1 rNC(t) in expectation. But since this is a nonstationary environment,
similar to the proof of Theorem 6, at every time step t an additional term appears of the
form ft(xt)−ft−1(xt). Note that the sum of these additional terms can be bounded by WT .
Now observe that the terms we have been ignoring so far are different moments of gradient
and hessian estimation error. We use Lemma 30, and Lemma 31 to bound there moments.
Finally, one needs to choose M , ν, mt, and bt suitably to establish the rates. The detailed
proof of Theorem 15 is in Appendix C.

Remark 16 Although, the bound obtained in Theorem 15 is independent of dimension, we
emphasize that we are sampling the function at multiple points during each time step. The
total number of function calls is hence,

∑T
t=1 (mt + bt) over a horizon T is upper bounded as

O
(
d(T/max(1,WT ))

17
9 + (log d) d4(T/max(1,WT ))

13
9

)
. Reducing dimension dependency

of this query-complexity is a challenging open-problem.
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Remark 17 Recall that our results are based on estimating gradients and Hessian matrix
based on Gaussian Stein’s identities. It is common in the literature to also consider gradient
estimators based on random vectors in the unit sphere; see for example Nemirovsky and
Yudin (1983); Flaxman et al. (2005). Hence, it is natural to ask if Hessian estimators
could be constructed based on random vectors on the unit sphere. Here we provide an
approach for estimating Hessian matrix of a deterministic function; we leave the analysis
and algorithmic applications of such estimators as future work. Let Sd−1, and Bd denote
the unit d dimensional ball, and the unit d-sphere respectively. We will use S, and B instead
of Sd−1, and Bd respectively where the dimension is understood clearly. Let u1, and u2 are
chosen randomly on Sd−1 and v1, and v2 are chosen randomly from Bd.

E
[
f (x+ νu1 + νu2)u1u

>
2

]
=C1

∫∫
S

f (x+ νu1 + νu2)u1u
>
2 du1 du2

=C2

∫
S

∫
νS

f (x+ νu2 + z1) z1 dz1 u
>
2 du2

=C3

∫
S

∇
∫
νB

f (x+ νu2 + v1) dv1 u
>
2 du2.

The last equality follows from Stoke’s theorem. Now, let

∇
∫
B

f (x+ νu2 + νv1) dv1 = [g1 (x+ νu2) , g2 (x+ νu2) , · · · , gd (x+ νu2)]> ,

and x =
[
x1, x2, · · · , xd

]>
. Then, using Stoke’s theorem again, we have∫

S

g1 (x+ νu2)u>2 du2 =C4∇
∫
νB

g1 (x+ v2) dv2

=C5∇Ev2 [g1 (x+ νv2)]

=C6∇Ev2

[
∂

∂x1
Ev1 [f (x+ νv1 + νv2)]

]
=C7∇

∂

∂x1
Ev2 [Ev1 [f (x+ νv1 + νv2)]] .

So we can write,

∇2E [f (x+ νv1 + νv2)] = E
[
C7f (x+ νu1 + νu2)u1u

>
2

]
,

where Ci for i = 1, 2, · · · , 7 are constants. Hence, we have a bandit Hessian estimator, as
this relates the Hessian of the function to point queries of the function.

3.3 Regret bounds under One-Point Feedback

While estimating the gradient as in (3), we assume that the function can be evaluated at
both the points xt+νut and xt with the same realization of the noise ξt. But when the noise
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is additive, i.e., we have F (x, ξ) = f(x) + ξ, then the above assumption implies we have a
noise-free gradient estimator because then F (xt + νu, ξt)− F (xt, ξt) = f(xt + νu)− f(xt).
A similar observation is also true for the Hessian estimator in (8). In this section we
consider the case where the noise for each function evaluation is different. Following Bach
and Perchet (2016), we refer to this setting as the one-point setting. As we demonstrate
next, the variance of the gradient and Hessian estimator in this one-point setting is higher
than the previous setting. To counteract this, in this one-point setting we use a mini-batch
gradient and hessian estimator:

Ḡt =
1

mt

mt∑
i=1

Ft (xt + νGut,i, ξt,i)− Ft
(
xt, ξ

′
t,i

)
νG

ut,i, (40)

H̄t =
1

bt

bt∑
i=1

Ft

(
xt + νHut,i, ξ

′′
t,i

)
+ Ft

(
xt − νHut,i, ξ

′′′
t,i

)
− 2Ft

(
xt, ξ

′′′′
t,i

)
2ν2
H

(
ut,i (ut,i)

> − Id
)
,

(41)

where ξt,i, ξ
′
t,i, ξ

′′
t,i, ξ

′′′
t,i, ξ

′′′′
t,i are independent. We also require the following additional as-

sumption to control the variance of the gradient estimator.

Assumption 3.1 (Lipschitz Function) The functions Ft(x, ·) are L′-Lipschitz for any
x, i.e., |Ft (x, ξ)− Ft (x, ξ′) | ≤ L′ ‖ξ − ξ′‖2.

Using Lemma 4.1 of Roy et al. (2021) and young’s inequality, in this setting (7) changes to

E
[∥∥Ḡt∥∥2

2

]
≤ ν2

2
L2
G (d+ 6)3 + 2 (d+ 4) ‖∇ft (x) ‖22 +

4dσ2L′2

mν2
. (42)

Correspondingly, we have the following analogue to Theorem 6, the proof of which is in
Appendix D.

Theorem 18 Let {xt}T1 be generated by Algorithm 1 with one-point gradient estimator, and
Assumption 2.3 with ‖ ·‖ = ‖ ·‖2, and Assumption 3.1 hold for any sequence of {ft}T1 ∈ DT .

(a) Choosing

ν =
W

1
6
T

T
1
6 (d+ 6)

√
LG

, η =
W

2
3
T

4LG (d+ 4)T
2
3

, m = d, (43)

we have

R
(2)
G (T ) ≤ O

(
dT

2
3W

1
3
T

(
1 + σ2

))
. (44)

(b) Additionally, if Assumption 2.2 holdswith ‖ · ‖ = ‖ · ‖2, by choosing

ν = min

 L

LG(d+ 6)
,

W
1
6
T

T
1
6 (L3

Gd
5)

1
4

 , η =
W

2
3
T

LT
2
3
√
LG (d+ 4)

, m = d
5
2 (45)
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we have

R
(2)
G (T ) ≤ O

((
1 + σ2

)
d

1
2T

2
3W

1
3
T

)
. (46)

For the deterministic case σ = 0.

Remark 19 In the one-point setting we cannot choose the ν parameter to be as small as
the two-point setting in Theorem 6 since the variance of the gradient estimator is not
longer monotnically decreasing with ν. Also note that in the one-point setting, we need a
minibatch gradient estimator with mini-batch size m = d to average out the larger variance
of the gradient estimator whereas in the two-point setting, m = 1. Not that if one allows mt

to depend on T , and WT , it is possible to match the regret bounds obtained for the two-point
setting in Theorem 6 at the expense of larger oracle complexity.

Assumption 3.2 (Bounded fourth moment of the noise) The noise satisfied the fol-
lowing fourth moment condition: E

[
‖ξ‖42

]
≤ σ′.

In the one-point setting, we have the following two lemmas which establish bounds on the
moments of gradient and Hessian estimation errors in the one-point setting.

Lemma 20 Let Assumptions 2.2—2.3, and Assumption 3.1 be true. Then we have

E
[
‖Ḡt −∇t‖22

]
≤ 4dσ2L′2

mtν2
+ 3ν2L2

G (d+ 3)3 +
8
(
L2 + σ2

)
(d+ 5)

mt
. (47)

The proof of Lemma 20 is in Appendix D.

Lemma 21 For bt ≥ 4 (1 + 2 log 2d), under Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, Assumption
2.4, Assumption 3.1, and Assumption 3.2 we have

E
[
‖H̃t −∇2

t ‖2op
]
≤6L2

H (d+ 16)5 ν2 +
256 (1 + 2 log 2d) (d+ 16)4 L2

G

3bt
+

256L2σ2d(1 + 2 log 2d)

btν4
.

(48a)

E
[
‖H̃t −∇2

t ‖3op
]
≤44L3

H (d+ 16)
15
2 ν3 +

160
√

1 + 2 log 2d (d+ 16)6 L3
G

b
3
2
t

+

(
K2L

′6σ1σ
2(1 + 2 log 2d)d3

b3t ν
12

)1
2

.

(48b)

where σ1 = max(σ4, σ′).

We remark here that Lemma 20, and Lemma 21 are crucial to our proofs of the results in
the one-point setting. We present an overview of the proofs of these two Lemma here and

21



Roy, Balasubramanian, Ghadimi and Mohapatra

defer the detailed proofs to Appendix D. The proof of Lemma 20 follows from the following
decomposition

E
[
‖Ḡt −∇t‖22

]
≤ 2E


∥∥∥∥∥∥ 1

mt

mt∑
i=1

Ft

(
xt + νGut,i, ξ

′
t,i

)
− Ft

(
xt, ξ

′
t,i

)
νG

ut,i −∇t

∥∥∥∥∥∥
2

2


+ 2E

 1

m2
t

mt∑
i=1

∥∥∥∥∥∥
Ft (xt + νut,i, ξt,i)− Ft

(
xt + νut,i, ξ

′
t,i

)
ν

ut,i

∥∥∥∥∥∥
2

2

 ,
where the first term on the RHS is bounded using the two-point setting bounds and the
second term can be bounded using Lipschitz continuity of Ft in the variable ξt,i (Assump-
tion 3.1), and the fact that ut,i is a standard gaussian random vector.

To establish the bounds on the moments of hessian estimation error we first consider
the following decomposition:

H̃ =
1

bt

bt∑
i=1

F (x+ νui, ξi,+) + F (x− νui, ξi,−)− 2F (x, ξi,0)

2ν2

(
uiu
>
i − Id

)
= H̄ + τ̄ ,

where

τi =
F (x+ νui, ξi,+) + F (x− νui, ξi,−)− F (x+ νui, ξi,0)− F (x− νui, ξi,0)

2ν2

(
uiu
>
i − Id

)
,

and τ̄ =
∑bt

i=1 τi/bt. Then one can write

‖H̃ −∇2‖2op = ‖H̄ + τ̄ −∇2‖2op ≤ 2‖H̄ −∇2‖2op + 2‖τ̄‖2op. (49)

Note that τi and τj are independent for all i 6= j. Also,

E [τi] = E [E [τi|x, ui]] = 0. (50)

Use of Theorem 1 of Tropp (2016) followed by some simple calculation shows,

E
[
‖τ̄‖2op

]
≤ 32L′2σ2dC(d)

btν4
, (51)

where C(d) = 4(1 + 2 log 2d). To upper bound the third moment we use the following
inequality,

E
[
‖τ̄‖3op

]
≤ E

[
‖τ̄‖op‖τ̄‖2F

]
≤
(
E
[
‖τ̄‖2op

]
E
[
‖τ̄‖4F

])1
2 . (52)

Now we upper bound E
[
‖τ̄‖4F

]
to get the final bound on E

[
‖τ̄‖3op

]
. Now combining the

above results gives the final bounds on E
[
‖H̃t −∇2

t ‖2op
]
, and E

[
‖H̃t −∇2

t ‖3op
]
.

Lemma 20 and Lemma 21 show that in the one-point setting, the variance of the gradient
and hessian estimators does not decrease monotonically with ν unlike the two-point setting.
In (47), (48a), and (48b), one needs to select the mini-batch size correctly to counter the
effect of ν in the denominator. Since, the dependence of the variance of Ḡt and H̃t on ν
are different, and the minibatch size required depends on ν, for the one-point setting, we
allow for different ν parameters, νG and νH for Ḡt and H̃t respectively. We now present
the bound on the second-order non stationary regret in the one-point setting.
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Theorem 22 Let us choose the parameters for Algorithm 3 as follows:

M = LH

(
T

WT

)2
9
, νG =

W
1
3
T

T
4
9d

3
2

, νH =
W

1
9
T

T
1
9d

5
2

,

mt =
T

16
9

max(1,WT )
4
3

d4, bt =

(
T

max(1,WT )

)2
3
d11 (1 + 2 log 2d) . (53)

Moreover, let Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, Assumption 2.4, Assumption 3.1, and
Assumption 3.2 hold. Then, for all WT ≤ T , for any sequence of such functions {ft}T1 ∈ DT ,
Algorithm 3 with one-point gradient and hessian estimators produces updates for which
RENC (T ) is bounded by,

RENC (T ) ≤ O

T 2
3

(
1 +W

1
3
T

)1 + σ2

(
WT

T

)1
9

+ σ
√
σ1

 . (54)

In the deterministic case, setting σ = 0, we obtain

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

))
. (55)

Given the variance bounds in Lemma 21, proof of Theorem 22 is very similar to Theorem 15.

Remark 23 As pointed out earlier, in the one-point setting ν cannot be made as small as
the two-point setting because the variance of the gradient estimator does not monotonically
decrease with ν in the on-point setting unlike the two-point setting. Indeed in Theorem 15
for the two-point setting we choose νG = νH = ν = 1/

(
T 4/9d5/2

)
whereas in the one-point

setting we choose νG = W
1/3
T /

(
T 4/9d3/2

)
, νH = W

1/9
T /

(
T 1/9d5/2

)
. Moreover, to control the

larger variance the oracle-complexity also increases to

T∑
t=1

(mt + bt) = O
(
d4(T 25/9/max(1,WT )7/3) + (log d) d11(T/max(1,WT ))5/3

)
whereas in the two-point setting it was O

(
d(T/max(1,WT ))17/9 + (log d) d4(T/max(1,WT ))13/9

)
.

3.4 A Note on Multi-point Feedbacks and Our Regret Measures

Note that our Algorithms 1 and 3 use multiple function evaluations in each iteration. In-
deed Algorithm 1 uses m noisy evaluations (m = 2 for Theorem 6, and Theorem 10) and
Algorithm 3.2.2 uses 2mt + 3bt noisy evaluations in each iteration. A potential source of
contention regarding the regret measure that we proposed in Definitions 4 and 5 could
be that they are not taking into account that our the algorithms are using multi-point
feedbacks. However, as we show below, a normalized version of the regret measure that
takes into account explictly the effect of multi-point feedback is of the same order as our
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original regret measure in Definitions 4 and 5. Specifically, our normalized regret measure,
following Agarwal et al. (2010) are as follows:

R̄
(2)
G (T ) =

T∑
t=1

1

2mt

mt∑
j=1

(
E
[
‖∇ft (xt + νut,j)‖22

]
+ E

[
‖∇ft (xt)‖22

])
.

Recall that for the zeroth-order cubic-regularized Newton method we call the zeroth-order
oracle 2mt times to evaluate Ḡt, and 3bt times to evaluate H̄t. Then, expected second-order
regret can also be defined as

R̄ENC (T ) =

T∑
t=1

1

2mt + 3bt

(
(mt + bt)E

[
max

(
‖∇ft(xt)‖2,

(
− 2

LH
λmin

(
∇2ft (xt)

))3
)]

+

mt+2bt∑
j=1

E

[
max

(
‖∇ft(xt + νut,j)‖2,

(
− 2

LH
λmin

(
∇2ft (xt + νut,j)

))3
)] .

Proposition 24 Consider the setup, and choice of ν of Theorem 6, and Theorem 18. In
both cases we have,

R̄
(2)
G (T ) = O

(
R

(2)
G (T )

)
.

Under the setup, and choice of ν of Theorem 10, we have,

R̄
(1)
G (T ) = O

(
R

(1)
G (T )

)
.

Under the setup, and choice of νG, and νH of Theorem 15, and Theorem 22, we have,

R̄ENC (T ) = O (RENC (T )) .

The proof of Proposition 24 is in Appendix E. From Proposition 24 one can see that when
the first-order and second-order regrets are adapted to the multi-point feedbacks, the same
regret bounds holds.

4. Experiments

In this section we illustrate our results on nonstationary nonconvex optimization through
simulation, and compare the performance of zeroth-order methods with their higher-order
counterparts. For i = 1, 2, 3, · · · , consider the functions

ft(x) =

{
SIWT

2T sin(ωx) 2(i− 1)SI + 1 ≤ t ≤ (2i− 1)SI

−SIWT
2T sin(ωx) (2i− 1)SI + 1 ≤ t ≤ 2iSI

These functions belong to the uncertainty set DT since,

T−1∑
t=1

‖ft − ft+1‖2 =
2SIWT

2T
× T

SI
= WT .
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(a) Two-point Setting
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(b) One-point Setting

Figure 1: Cumulative first-order regret R
(2)
G (T ) using Algorithm 1. Here, SI = 12, ω =

22, x0 = 0.078, and σ = 0.5. Here FO and ZO stand for First-Order and Zeroth-Order
respectively.
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(a) Two-point Setting
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(b) One-point Setting

Figure 2: Cumulative second-order regret RENC(T ) using Algorithm 2 and Algorithm 3.
Here, SI = 12, ω = 22, x0 = 0.078, and σ = 0.5. Here HO and ZO stand for Higher-Order
and Zeroth-Order respectively.

For the two-point setting, we assume that the multiplicative noise ξ in the function eval-
uation is sampled from a uniform distribution U [1 − σ, 1 + σ]. It is easy to see that
Ft(x, ξ) = ξft(x) satisfies Assumptions 2.1–2.4 ∀t = 1, 2, · · · , T . For the one-point set-
ting, we sample the additive noise ξ from N (0, σ2). Then Assumption 3.1, in addition
to Assumptions 2.1–2.4, holds true for Ft(x, ξ) = ft(x) + ξ. For this experiment we set
SI = 12, ω = 22, x0 = 0.078, σ = 0.5. Since in this paper we are interested in the expected
regret, Figure 1 and Figure 2 show curves averaged over 50 simulations. In Figure 1 we show

the evolution of R
(2)
G (T ) over a horizon of T = 2000 with WT =

√
T using Algorithm 1.

Figure 1a and 1b present the results for the two-point and one-point settings respectively.
All the algorithm parameters are chosen as described in Theorem 6 and Theorem 18 in
the corresponding cases. In both cases the performance of Algorithm 1 is comparable to
the first-order variant, i.e., when the stochastic gradient is available. Theoretical rates ob-
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tained in Theorem 6 and Theorem 18 are also shown (red, dashed line) for comparison
purpose. In Figure 2 we show RENC(T ) over a horizon of T = 1000 with WT =

√
T using

Algorithm 2 and 3. Figure 2a and 2b presents the result for the two-point and one-point
setting respectively. For the two-point setting, all the algorithm parameters are chosen as
described in Theorem 12 and Theorem 15 in the higher-order(HO) and zeroth-order(ZO)
cases respectively. For the one-point setting the algorithm parameters are chosen as stated
in Theorem 22. One can see that the performances of Algorithm 3 is comparable to Al-
gorithm 2 where the higher-order information is available. Theoretical rate for RENC(T )
obtained in Theorem 12, Theorem 15 and Theorem 22 is also shown (red, dashed line) for
comparison purpose.

5. Discussion

In this paper, we provide regret bounds for nonstationary nonconvex optimization prob-
lems in the stochastic zeroth-order setting. We make the following specific contributions:
(i) provide low and high-dimensional regret bounds in terms of gradient-size for general non-
convex function with bounded nonstationarity, (ii) provide, to the best of our knowledge,
the first analysis of cubic regularized Newton method for bounding second-order station-
ary solution based nonstationary regret in the zeroth-order and higher-order settings, and
(iii) explore the relationship between the multi-point and one-point feedbacks for the above
regret bounds.

There are several avenues for future work: (i) obtaining lower bounds for the regrets
considered is challenging, (ii) defining other notions of uncertainty set that capture more
general nonstationary environment is also interesting, (iii) obtaining parameter-free algo-
rithms, similar to the convex setting (see for example, Jadbabaie et al. (2015); Luo and
Schapire (2015); Cheung et al. (2018); Auer et al. (2019) ) is intriguing and (iv) establish-
ing connections between online nonparametric regression and nonstationary regret bounds
(see, for example, Baby and Wang (2019)) is interesting.

Appendix A. Proofs of Section 3.1

Proof [Proof of Theorem 6] First note that under Assumption 2.3 with ‖ · ‖ = ‖ · ‖2 we
have

ft (xt+1) ≤ft (xt) +∇ft (xt)
> (xt+1 − xt) +

LG
2
‖xt+1 − xt‖22

=ft (xt)− η∇ft (xt)
>Gνt (xt, ut, ξt) +

η2LG
2
‖Gνt (xt, ut, ξt)‖22

=ft (xt)− η ‖∇ft (xt)‖22 + η∇ft (xt)
> (∇ft (xt)−Gνt (xt, ut, ξt)) +

η2LG
2
‖Gνt (xt, ut, ξt)‖22 .

Define Ft to be the σ-algebra generated by the randomness in the iterates till time-step t.
Taking conditional expectation on both sides of the above equation, we obtain

E [ft (xt+1) |Ft] ≤ft (xt)− η ‖∇ft (xt)‖22 + η‖∇ft (xt) ‖2‖∇ft (xt)−E [Gνt (xt, ut, ξt) |Ft] ‖2

+
η2LG

2
E
[
‖Gνt (xt, ut, ξt)‖22 |Ft

]
.
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Now, by invoking Young’s inequality we have

E [ft (xt+1) |Ft] ≤ft (xt)− η ‖∇ft (xt)‖22 +
η

2
‖∇ft (xt)‖22 +

η

2
‖∇ft (xt)−E [Gνt (xt, ut, ξt) |Ft]‖22

+
η2LG

2
E
[
‖Gνt (xt, ut, ξt)‖22 |Ft

]
. (56)

Note that the third, and the fourth term of (56) are the bias and the second moment of the
gradient estimator. Re-arranging the terms and noting Lemma 3, we obtain

η

2
‖∇ft (xt)‖22 ≤ ft (xt)−E [ft (xt+1) |Ft] +

η

8
ν2L2

G (d+ 3)3

+
η2LG

2

(
ν2

2
L2
G (d+ 6)3 + 2 (d+ 4)

(
‖∇ft (xt)‖22 + σ2

))
.

Summing from t = 1 to T , and using Definition 1 we get

T∑
t=1

E
[
‖∇ft (xt)‖22

]
≤2

η
(f1 (x1)−E [fT (xT+1)] +WT ) +

T

4
ν2L2

G (d+ 3)3

+ ηT
ν2

2
L3
G (d+ 6)3 + 2ηLG (d+ 4)

T∑
t=1

E
[
‖∇ft (xt)‖22 + σ2

]
. (57)

Now we split the proof in two parts corresponding to the parts in Theorem 6.

(a) From (57) by rearranging terms we obtain

T∑
t=1

(1− 2ηLG (d+ 4)) E
[
‖∇ft (xt)‖22

]
≤2

η
(f1 (x1)−E [fT (xT+1)] +WT ) +

T

4
ν2L2

G (d+ 3)3

+ ηT
ν2

2
L3
G (d+ 6)3 + 2ηTLG (d+ 4)σ2.

Now by choosing ν and η according to (11), we get (12).

(b) It is possible to improve the dependence of the regret bound on the problem dimension
assuming that the loss functions are Lipschitz continuous. In this case, we have
‖∇ft (xt) ‖ ≤ L which together with (57), imply that

T∑
t=1

E
[
‖∇ft (xt)‖22

]
≤2

η
(f1 (x1)−E [fT (xT+1)] +WT ) +

T

4
ν2L2

G (d+ 3)3

+ ηTLG

(
ν2

2
L2
G (d+ 6)3 + 2 (d+ 4)

(
L2 + σ2

))
. (58)

Now by choosing ν and η according to (14), we obtain (15).
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Proof [Proof of Theorem 10] Under Assumption 2.3 w.r.t l∞-norm and similar to (56), we
get

E [ft (xt+1) |Ft] ≤ft (xt)− η ‖∇ft (xt)‖22 +
η

2s
‖∇ft (xt)‖21 +

ηs

2
‖∇ft (xt)−E [Gνt (xt, ut, ξt) |Ft]‖2∞

+ η2LG
2

E
[
‖Gνt (xt, ut, ξt)‖2∞ |Ft

]
.

Noting Lemma 9, the fact that ‖∇ft(xt)‖1 ≤
√
s‖∇ft(xt)‖2 under Assumption 2.5 and after

re-arranging the terms, we obtain

η

2s

[
1− 16CηLGs(log d)2

]
‖∇ft (xt)‖21 ≤ft (xt)−E [ft (xt+1) |Ft]

+ CηLG (log d)2 [sν2CLG log d+ 2η
(
ν2L2

G log d+ 4σ2
)
].

Summing up both sides of the above inequality, noting (22) and Definition 1 we get (23).
Noting Lemma 8 under Assumption 2.2, part (b) follows similarly.

Appendix B. Proof of Section 3.2.1

In order to prove Theorem 12, we require the following result from Nesterov and Polyak
(2006).

Lemma 25 (Nesterov and Polyak (2006)) Let {xt} be generated by Algorithm 2 with
M ≥ LH . Then, we have

Ḡt + H̄tht +
M

2
‖ht‖2 ht = 0. (59a)

H̄t +
M

2
‖ht‖2 Id < 0. (59b)

Ḡ>t ht ≤ 0. (59c)

The following two lemma bounds the variance of the gradient and the Hessian estimators.

Lemma 26 Under Assumption 2.2 with ‖ · ‖ = ‖ · ‖2, and Assumption 2.3 with ‖ · ‖ = ‖ · ‖2
we have

E
[
‖Ḡt −∇t‖22

]
≤ σ2

mt
. (60)

Lemma 27 Under Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, and Assumption 2.4 we have

E
[
‖H̄t −∇2

t ‖2op
]
≤ κ2

bt
. (61a)

E
[
‖H̄t −∇2

t ‖3op
]
≤ 2κ3

b
3
2
t

. (61b)

28



Stochastic Nonstationary Nonconvex Optimization

Lemma 26 and 27 are essentially simplified versions of Lemma 2.1, and Lemma 4.4 from
Balasubramanian and Ghadimi (2021), and hence their proofs are omitted here.

In the rest of the proof we use ∇t, ∇2
t , ht, and λt,min to denote ∇ft (xt), ∇2ft (xt),

(xt+1 − xt), and the minimum eigenvalue of ∇2ft(xt) respectively. First, in Lemma 28 we

show that M‖ht‖3/36 is bounded by ft(xt)− ft(xt+1) ignoring the terms ‖∇t− Ḡt‖3/22 , and
‖∇2

t − H̄t‖3op. Then, in (66) we show that at every time point t, if we ignore the terms

‖∇t − Ḡt‖2, ‖∇2
t − H̄t‖2op, and ‖∇2

t − H̄t‖3op, rNC(t) = max
(
‖∇t‖2,− 8

L3
H
λ3
t,min

)
is upper

bounded by a cubic polynomial of the `2 norm of the difference of consecutive iterates
ht = xt+1 − xt. Combining these two results we want to form a telescopic sum to bound
RENC(t) =

∑T
t=1 rNC(t) in expectation. But since this is a nonstationary environment,

similar to the proof of Theorem 6, at every time step t an additional term appears of the
form ft(xt)− ft−1(xt) (see (69), (70)). Note that the sum of these additional terms can be
bounded by WT . Now observe that the terms we have been ignoring so far are different
moments of gradient and hessian estimation error. We use Lemma 26, and Lemma 27 to
bound there moments. Finally, one needs to choose M , ν, mt, and bt as in (30) to establish
the rates.

Lemma 28 Under Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, and Assumption 2.4, for M ≥ LH ,
the points generated by Algorithm 3 satisfy the following

M

36
‖ht‖32 ≤ ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op. (62)

Proof [Proof of Lemma 28] If M ≥ LH , using Assumption 2.4 we obtain

ft (xt+1) ≤ft (xt) +∇>t ht +
1

2
〈∇2

tht, ht〉+
M

6
‖ht‖32

≤ft (xt) + Ḡ>t ht +
1

2
〈H̄tht, ht〉+ ‖∇t − Ḡt‖2‖ht‖2 +

1

2
‖∇2

t − H̄t‖op‖ht‖22 +
M

6
‖ht‖32 .

Now by using (59a) we hence obtain

ft (xt+1) ≤ ft (xt)−
1

2
〈H̄tht, ht〉+ ‖∇t − Ḡt‖2‖ht‖2 +

1

2
‖∇2

t − H̄t‖op‖ht‖22 −
M

3
‖ht‖32 .

(63)

Combining (59a), and (59c) we get

−1

2
〈H̄tht, ht〉 −

M

3
‖ht‖32 ≤ −

M

12
‖ht‖32 ,

which combined with (63) gives

ft (xt+1) ≤ ft (xt) + ‖∇t − Ḡt‖2‖ht‖2 +
1

2
‖∇2

t − H̄t‖op‖ht‖22 −
M

12
‖ht‖32 .

Rearranging terms we then obtain

M

12
‖ht‖32 ≤ ft (xt)− ft (xt+1) + ‖∇t − Ḡt‖2‖ht‖2 +

1

2
‖∇2

t − H̄t‖op‖ht‖22.
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Now by using Young’s inequality, we have

M

12
‖ht‖32 ≤ ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op +
M

18
‖ht‖32

=⇒ M

36
‖ht‖32 ≤ ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op,

which completes the proof.

Proof [Proof of Theorem 12] First note that using Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, we
have

‖∇ft (xt) ‖2 − ‖∇ft (xt+1) ‖2 ≤ ‖∇ft (xt+1)−∇ft (xt) ‖2 ≤ LG‖ht‖2. (64)

Using, Assumption 2.4, (59a), (64), and Young’s inequality, we also have

‖∇ft (xt+1)−∇t −∇2
tht‖2 ≤

LH
2
‖ht‖22,

‖∇ft (xt+1) ‖2 ≤ ‖∇t − Ḡt‖2 + ‖∇2
t − H̄t‖op‖ht‖2 +

LH +M

2
‖ht‖22,

‖∇t‖2 ≤ LG‖ht‖2 + ‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖op
2 (LH +M)

+ (LH +M) ‖ht‖22.

Now, from (59b), we obtain

−2λt,min ≤M‖ht‖2 + 2‖∇2
t − H̄t‖op

=⇒
(
− 2

LH
λt,min

)3

≤ 32

L3
H

‖H̄t −∇2
t ‖3op +

4M3

L3
H

‖ht‖32. (65)

Now by combining (64), and (65), we obtain

rNC (t) = max

(
‖∇t‖,−

8

L3
H

λ3
t,min

)
≤LG‖ht‖2 +

1

2
(LH +M) ‖ht‖22 +

4M3

L3
H

‖ht‖32

+
32

L3
H

‖H̄t −∇2
t ‖3op + ‖∇t − Ḡt‖2 +

‖∇2
t − H̄t‖2op

2 (LH +M)
.

(66)

Now, let us consider two cases ‖ht‖2 ≤ T−
1
3W

1
3
T , and ‖ht‖2 > T−

1
3W

1
3
T .

1. When ‖ht‖2 ≤ T−
1
3W

1
3
T , we have

rNC (t) ≤LGT−
1
3W

1
3
T +

1

2
(LH +M)T−

2
3W

2
3
T +

4M3

L3
H

T−1WT

+ ‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖2op
2 (LH +M)

+
32

L3
H

‖H̄t −∇2
t ‖3op. (67)
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2. When ‖ht‖2 > T−
1
3W

1
3
T , by using (63) we get,

rNC (t) ≤
(
LGT

2
3W

−2
3

T +
1

2
(LH +M)T

1
3W

−1
3

T +
4M3

L3
H

)
‖ht‖32 + ‖∇t − Ḡt‖2

+
‖∇2

t − H̄t‖2op
2 (LH +M)

+
32

L3
H

‖H̄t −∇2
t ‖3op

≤
(

36
LG
M

+ 18

(
LH
M

+ 1

)
T−

1
3W−yT +

144M2

L3
H

T−
2
3W−2y

T

)
T

2
3W 2y

T (ft (xt)

− ft (xt+1) +
4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op
)

+ ‖∇t − Ḡt‖2

+
‖∇2

t − H̄t‖2op
2 (LH +M)

+
32

L3
H

‖H̄t −∇2
t ‖3op. (68)

Combining (67), and (68), we then have

rNC (t) ≤
(
LGT

−1
3W

1
3
T +

1

2
(LH +M)T−

2
3W

2
3
T +

4M3

L3
H

T−1WT

)
+

32

L3
H

‖H̄t −∇2
t ‖3op + ‖∇t − Ḡt‖2 +

‖∇2
t − H̄t‖2op

2 (LH +M)

+

(
36
LG
M

+ 18

(
LH
M

+ 1

)
T−

1
3W

1
3
T +

144M2

L3
H

T−
2
3W

2
3
T

)
T

2
3W

−2
3

T

(
ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op
)
. (69)

Summing both sides from t = 1, to T , taking expectation on both sides and using Definition
5 we get

RENC (T ) =

T∑
t=1

E [rNC (t)]

≤
(
LGT

2
3W

1
3
T +

1

2
(LH +M)T

1
3W

2
3
T +

4M3

L3
H

WT

)
+

T∑
t=1

(
32

L3
H

E
[
‖H̄t −∇2

t ‖3op
]

+ E
[
‖∇t − Ḡt‖2

]
+

E
[
‖∇2

t − H̄t‖2op
]

2 (LH +M)

)

+

(
36
LG
M

+ 18

(
LH
M

+ 1

)
T−

1
3W

1
3
T +

144M2

L3
H

T−
2
3W

2
3
T

)
T

2
3W

−2
3

T (f1 (x1)− fT (xT+1) +WT

+
4√
3M

T∑
t=1

E

[
‖∇t − Ḡt‖

3
2
2

]
+

24

M2

T∑
t=1

E
[
‖∇2

t − H̄t‖3op
])

. (70)

Now choosing M , mt, and bt as in (30) and Lemma 26 and Lemma 27 we get,

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

)
+ T

2
3
(
σ + κ3

)
+ T

5
9W

2
9
T κ2

)
, (71)
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which completes the proof.

Appendix C. Proofs of Section 3.2.2

Before we prove Theorem 15, we state some preliminary results that are required for the
proof.

Lemma 29 Let xt+1 = argminy f̃t
(
xt, y, Ḡt, H̄t, ht,M

)
and M ≥ LH . Then, we have

Ḡt + H̄tht +
M

2
‖ht‖2 ht = 0. (72a)

H̄t +
M

2
‖ht‖2 Id < 0. (72b)

Ḡ>t ht ≤ 0. (72c)

Lemma 29 is essentially the same as Lemma 25 but we restate it here to emphasize that
it holds for bandit cubic-regularized Newton method as well. The following two lemma
bounds the variance of the gradient and the Hessian estimators.

Lemma 30 (Balasubramanian and Ghadimi (2021)) Under Assumption 2.2 with ‖ ·
‖ = ‖ · ‖2, and Assumption 2.3 with ‖ · ‖ = ‖ · ‖2 we have

E
[
‖Ḡt −∇t‖22

]
≤ 3ν2

2
L2
G (d+ 3)3 +

4
(
L2 + σ2

)
(d+ 5)

mt
. (73)

Lemma 31 (Balasubramanian and Ghadimi (2021)) For bt ≥ 4 (1 + 2 log 2d), under
Assumption 2.3 with ‖ · ‖ = ‖ · ‖2, and Assumption 2.4 we have

E
[
‖H̄t −∇2

t ‖2op
]
≤ 3L2

H (d+ 16)5 ν2 +
128 (1 + 2 log 2d) (d+ 16)4 L2

G

3bt
. (74a)

E
[
‖H̄t −∇2

t ‖3op
]
≤ 21L3

H (d+ 16)
15
2 ν3 +

160
√

1 + 2 log 2d (d+ 16)6 L3
G

b
3
2
t

. (74b)

Before proceeding with the proof, we highlight the main steps. First we show that at every
time point t, if we ignore the terms ‖∇t − Ḡt‖2, ‖∇2

t − H̄t‖2op, and ‖∇2
t − H̄t‖3op, rNC(t) =

max
(
‖∇t‖2,− 8

L3
H
λ3
t,min

)
is upper bounded by the cube of the `2 norm of the difference of

consecutive iterates xt+1−xt, ‖ht‖3 (Lemma 32). Then we show that M‖ht‖3/36 is bounded

by ft(xt) − ft(xt+1) ignoring the terms ‖∇t − Ḡt‖3/22 , and ‖∇2
t − H̄t‖3op. Now we want to

form a telescopic sum to bound RENC(t) =
∑T

t=1 rNC(t) in expectation. But since this is
a nonstationary environment, similar to the proof of Theorem 6, at every time step t an
additional term appears of the form ft(xt)−ft−1(xt). Note that the sum of these additional
terms can be bounded by WT . Now observe that the terms we have been ignoring so far
are different moments of gradient and hessian estimation error. We use Lemma 30, and
Lemma 31 to bound there moments. Finally, one needs to choose M , ν, mt, and bt suitably
to establish the rates. The detailed proof of Theorem 15 is in Appendix C.
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Lemma 32 Under Assumption 2.2 with ‖ · ‖ = ‖ · ‖2, Assumption 2.3 with ‖ · ‖ = ‖ · ‖2,
and Assumption 2.4, the points generated by Algorithm 3 satisfy the following

rNC (t) = max

(
‖∇t‖2,−

8

L3
H

λ3
t,min

)
≤LG‖ht‖2 +

1

2
(LH +M) ‖ht‖22 +

4M3

L3
H

‖ht‖32 +
32

L3
H

‖H̄t −∇2
t ‖3op

+ ‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖2op
2 (LH +M)

. (75)

Proof Under Assumption 2.4, using (72a) and Young’s inequality, we have

‖∇ft (xt+1)−∇t −∇2
tht‖2 ≤

LH
2
‖ht‖22

=⇒ ‖∇ft (xt+1) ‖2 ≤‖∇t − Ḡt‖2 + ‖∇2
t − H̄t‖op (xt+1 − xt) +

LH +M

2
‖ht‖22

≤‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖2op
2 (LH +M)

+ (LH +M) ‖ht‖22.

Under Assumption 2.3, we get

‖∇t‖2 ≤ LG‖ht‖2 + ‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖2op
2 (LH +M)

+ (LH +M) ‖ht‖22. (76)

From (72b) we get,

−2λt,min ≤M‖ht‖2 + 2‖∇2
t − H̄t‖op

=⇒
(
− 2

LH
λt,min

)3

≤ 32

L3
H

‖H̄t −∇2
t ‖3op +

4M3

L3
H

‖ht‖32. (77)

Combining (76), and (77), and choosing M = LH we get

rNC (t) = max

(
‖∇t‖2,−

8

L3
H

λ3
t,min

)
≤LG‖ht‖2 +

1

2
(LH +M) ‖ht‖22 +

4M3

L3
H

‖ht‖32 +
32

L3
H

‖H̄t −∇2
t ‖3op

+ ‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖2op
2 (LH +M)

,

which completes the proof.

Lemma 33 Under Assumption 2.3, and Assumption 2.4, for M ≥ LH , the points generated
by Algorithm 3 satisfy the following

M

36
‖ht‖32 ≤ ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op. (78)

Proof If M ≥ LH , using Assumption 2.4

ft (xt+1) ≤ft (xt) +∇>t ht +
1

2
〈∇2

tht, ht〉+
M

6
‖ht‖32
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≤ft (xt) + Ḡ>t ht +
1

2
〈H̄tht, ht〉+ ‖∇t − Ḡt‖2‖ht‖2 +

1

2
‖∇2

t − H̄t‖op‖ht‖22 +
M

6
‖ht‖32 .

Using (72a) we get

ft (xt+1) ≤ ft (xt)−
1

2
〈H̄tht, ht〉+ ‖∇t − Ḡt‖2‖ht‖2 +

1

2
‖∇2

t − H̄t‖op‖ht‖22 −
M

3
‖ht‖32 .

(79)

Combining (72a), and (72c) we get

−1

2
〈H̄tht, ht〉 −

M

3
‖ht‖32 ≤ −

M

12
‖ht‖32 ,

which combined with (63) gives

ft (xt+1) ≤ ft (xt) + ‖∇t − Ḡt‖2‖ht‖2 +
1

2
‖∇2

t − H̄t‖op‖ht‖22 −
M

12
‖ht‖32 .

Rearranging terms we get

M

12
‖ht‖32 ≤ ft (xt)− ft (xt+1) + ‖∇t − Ḡt‖2‖ht‖2 +

1

2
‖∇2

t − H̄t‖op‖ht‖22.

Using Young’s inequality

M

12
‖ht‖32 ≤ ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op +
M

18
‖ht‖32

=⇒ M

36
‖ht‖32 ≤ ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op,

which completes the proof.

Proof [Proof of Theorem 15] Let us consider two cases ‖ht‖2 ≤ (WT /T )
1
3 , and ‖ht‖2 >

(WT /T )
1
3 .

1. When ‖ht‖2 ≤ T−
1
3W

1
3
T , we have

rNC (t) ≤LGT−
1
3W

1
3
T +

1

2
(LH +M)T−

2
3W

2
3
T +

4M3

L3
H

T−1WT

+ ‖∇t − Ḡt‖2 +
‖∇2

t − H̄t‖2op
2 (LH +M)

+
32

L3
H

‖H̄t −∇2
t ‖3op. (80)

2. When ‖ht‖2 > T−
1
3W

1
3
T , using (79) we obtain,

rNC (t) ≤
(
LGT

2
3W

−2
3

T +
1

2
(LH +M)T

1
3W

−1
3

T +
4M3

L3
H

)
‖ht‖32 + ‖∇t − Ḡt‖2
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+
‖∇2

t − H̄t‖2op
2 (LH +M)

+
32

L3
H

‖H̄t −∇2
t ‖3op

≤
(

36
LG
M

+ 18

(
LH
M

+ 1

)
T−

1
3W−yT +

144M2

L3
H

T−
2
3W−2y

T

)
T

2
3W 2y

T (ft (xt)

− ft (xt+1) +
4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op
)

+ ‖∇t − Ḡt‖2

+
‖∇2

t − H̄t‖2op
2 (LH +M)

+
32

L3
H

‖H̄t −∇2
t ‖3op. (81)

Now by combining (80), and (81), we have

rNC (t) ≤
(
LGT

−1
3W

1
3
T +

1

2
(LH +M)T−

2
3W

2
3
T +

4M3

L3
H

T−1WT

)
+

32

L3
H

‖H̄t −∇2
t ‖3op + ‖∇t − Ḡt‖2 +

‖∇2
t − H̄t‖2op

2 (LH +M)

+

(
36
LG
M

+ 18

(
LH
M

+ 1

)
T−

1
3W

1
3
T +

144M2

L3
H

T−
2
3W

2
3
T

)
T

2
3W

−2
3

T

(
ft (xt)− ft (xt+1) +

4√
3M
‖∇t − Ḡt‖

3
2
2 +

24

M2
‖∇2

t − H̄t‖3op
)
. (82)

Summing both sides from t = 1, to T , taking expectation on both sides and using Definition
5 we get

RENC (T ) =

T∑
t=1

E [rNC (t)]

≤
(
LGT

2
3W

1
3
T +

1

2
(LH +M)T

1
3W

2
3
T +

4M3

L3
H

WT

)
+

T∑
t=1

(
32

L3
H

E
[
‖H̄t −∇2

t ‖3op
]

+ E
[
‖∇t − Ḡt‖2

]
+

E
[
‖∇2

t − H̄t‖2op
]

2 (LH +M)

)

+

(
36
LG
M

+ 18

(
LH
M

+ 1

)
T−

1
3W

1
3
T +

144M2

L3
H

T−
2
3W

2
3
T

)
T

2
3W

−2
3

T (f1 (x1)− fT (xT+1) +WT

+
4√
3M

T∑
t=1

E

[
‖∇t − Ḡt‖

3
2
2

]
+

24

M2

T∑
t=1

E
[
‖∇2

t − H̄t‖3op
])

. (83)

Now choosing ν, M , mt, and bt as in (37) and Lemma 30 and Lemma 31 we get

RENC (T ) ≤ O
(
T

2
3

(
1 +W

1
3
T

)(
1 + σ + σ

3
2

))
, (84)

which completes the proof.
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Appendix D. Proofs of Section 3.3

Proof [Proof of Theorem 18] In this setting (57) changes to the following

T∑
t=1

E
[
‖∇ft (xt)‖22

]
≤2

η
(f1 (x1)−E [fT (xT+1)] +WT ) +

T

4
ν2L2

G (d+ 3)3

+ ηT
ν2

2
L3
G (d+ 6)3 + 2ηLG (d+ 4)

T∑
t=1

E

[
‖∇ft (xt)‖22 +

σ2

mν2

]
.

(85)

The rest of the proof is similar to that of Theorem 6 and is hence omitted.

Proof [Proof of Lemma 20] First note that we have

E
[
‖Ḡt −∇t‖22

]
=E


∥∥∥∥∥∥ 1

mt

mt∑
i=1

Ft (xt + νut,i, ξt,i)− Ft
(
xt, ξ

′
t,i

)
ν

ut,i −∇t

∥∥∥∥∥∥
2

2


≤2E


∥∥∥∥∥∥ 1

mt

mt∑
i=1

Ft (xt + νut,i, ξt,i)− Ft
(
xt + νut,i, ξ

′
t,i

)
ν

ut,i

∥∥∥∥∥∥
2

2


+ 2E


∥∥∥∥∥∥ 1

mt

mt∑
i=1

Ft

(
xt + νut,i, ξ

′
t,i

)
− Ft

(
xt, ξ

′
t,i

)
ν

ut,i −∇t

∥∥∥∥∥∥
2

2


=2E

 1

m2
t

mt∑
i=1

∥∥∥∥∥∥
Ft (xt + νut,i, ξt,i)− Ft

(
xt + νut,i, ξ

′
t,i

)
ν

ut,i

∥∥∥∥∥∥
2

2

+ 2E
[∥∥Ḡt −∇t∥∥2

2

]

=
4dσ2L′2

mtν2
+ 3ν2L2

G (d+ 3)3 +
8
(
L2 + σ2

)
(d+ 5)

mt
.

The last inequality follows from (73), thereby completing the proof.

Proof [Proof of Lemma 21] First note that we have

H̃ =
1

bt

bt∑
i=1

F (x+ νui, ξi,+) + F (x− νui, ξi,−)− 2F (x, ξi,0)

2ν2

(
uiu
>
i − Id

)
(86)

=
1

bt

bt∑
i=1

F (x+ νui, ξi,0) + F (x− νui, ξi,0)− 2F (x, ξi,0)

2ν2

(
uiu
>
i − Id

)
+

1

bt

bt∑
i=1

τi (87)

=H̄ + τ̄ , (88)
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where

τi =
F (x+ νui, ξi,+) + F (x− νui, ξi,−)− F (x+ νui, ξi,0)− F (x− νui, ξi,0)

2ν2

(
uiu
>
i − Id

)
,

and τ̄ =
∑bt

i=1 τi/bt. Then one can write

‖H̃ −∇2‖2op = ‖H̄ + τ̄ −∇2‖2op ≤ 2‖H̄ −∇2‖2op + 2‖τ̄‖2op. (89)

Note that τi and τj are independent for all i 6= j. Also, we have

E [τi] = E [E [τi|x, ui]] = 0. (90)

Hene, we obtain

E
[
‖τ̄‖2op

]
≤4C(d)

b2t

bt∑
i=1

E
[
‖τi‖2op

]
(91)

≤2L′2C(d)

b2t

bt∑
i=1

E

[
|ξi,+ − ξi,0|2 + |ξi,− − ξi,0|2

ν4
‖uiu>i − Id‖2op

]
(92)

≤8L′2σ2C(d)

b2t ν
4

bt∑
i=1

E
[
‖uiu>i − Id‖2op

]
(93)

≤32L′2σ2dC(d)

btν4
, (94)

where C(d) = 4(1 + 2 log 2d). Furthermore, we also have

E
[
‖τ̄‖3op

]
≤ E

[
‖τ̄‖op‖τ̄‖2F

]
≤
(
E
[
‖τ̄‖2op

]
E
[
‖τ̄‖4F

])1
2 . (95)

Now we upper bound E
[
‖τ̄‖4F

]
as follows. First, we write τi = ai(uiu

>
i − Id) where

ai =
F (x+ νui, ξi,+) + F (x− νui, ξi,−)− F (x+ νui, ξi,0)− F (x− νui, ξi,0)

2ν2
.

Observe that, ai are independent for i = 1, 2, · · · , b, E [ai] = 0, E [ai|ui] = 0, and

E
[
a2
i

]
≤ 2L′2σ2

ν4
E
[
a4
i

]
≤ 16L′4σ′

ν8
.

Hence, we have

E

[
‖

bt∑
i=1

τi‖4F

]

=E

[
‖

bt∑
i=1

ai(uiu
>
i − Id)‖4F

]
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=E

tr

 bt∑
i=1

bt∑
j=1

aiaj(uiu
>
i − Id)(uju>j − Id)

2
=E

tr

(
bt∑
i=1

a2
i (uiu

>
i − Id)2

)
+ tr

 bt∑
i=1

∑
j 6=i

aiaj(uiu
>
i − Id)(uju>j − Id)

2
=E

 bt∑
i=1

a2
i ((‖ui‖22 − 2)‖ui‖22 + d) +

bt∑
i=1

∑
j 6=i

aiaj((u
>
i uj)

2 − ‖ui‖22 − ‖uj‖22 + d)

2

≤E

2bt

bt∑
i=1

a4
i ((‖ui‖22 − 2)‖ui‖22 + d)2
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I1

+ 2

 bt∑
i=1

∑
j 6=i

aiaj((u
>
i uj)

2 − ‖ui‖22 − ‖uj‖22 + d)

2

︸ ︷︷ ︸
I2

 .
(96)

Now note that E [I1] is of the order btσ
′d2L′4/ν8. Furthermore, we have

E [I2]

=2E

 bt∑
i=1

∑
j 6=i

aiaj((u
>
i uj)

2 − ‖ui‖22 − ‖uj‖22 + d)

2

=2E


bt∑
i=1

∑
j 6=i

a2
i a

2
j ((u

>
i uj)

2 − ‖ui‖22 − ‖uj‖22 + d)2

︸ ︷︷ ︸
I3

+

bt∑
i=1

∑
j 6=i

bt∑
m=1

∑
m6=n

(m,n)6=(i,j)

aiajaman((u>i uj)
2 − ‖ui‖22 − ‖uj‖22 + d)((u>mun)2 − ‖um‖22 − ‖un‖22 + d)

︸ ︷︷ ︸
I4


.

(97)

Note that E [I3] is of the order L′4σ4bt
2d2/ν8. Now, we turn to I4. Note that in each term

of I4, note that there is at least one index n for which an is independent from the other
terms in the product. Conditioning on the other terms, and taking expectation, one can
see that all the terms in E [I4] is 0. Combining (96), and (97), we have

E

[
‖

bt∑
i=1

τi‖4F

]
=
K1bt

2d2L′4σ1

ν8
. (98)
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where σ1 = max(σ4, σ′) and K1 is a constant. From (94), (95), and (98), we have,

E
[
‖τ̄‖3op

]
≤

(
K2L

′6σ1σ
2(1 + 2 log 2d)d3

bt
3ν12

)1
2

, (99)

where K2 is a constant, thereby completing the proof.

Appendix E. Proof of Section 3.4

Proof [Proof of Proposition 24] First we show that R̄
(2)
G (T ) = O

(
R

(2)
G (T )

)
. To do so,

note that we have

E
[
‖∇ft (xt + νut,j)‖22

]
≤ E

[
2 ‖∇ft (xt)‖22 + 2L2

Gν
2‖ut,j‖22

]
≤ 2E

[
‖∇ft (xt)‖22

]
+ 2dL2

Gν
2.

Then, for the choices of ν of Theorem 10, and Theorem 18, we get

R̄
(2)
G (T ) = O

(
R

(2)
G (T )

)
.

In case of Theorem 10, we get,

E
[
‖∇ft (xt + νut,j)‖21

]
≤ E

[
2 ‖∇ft (xt)‖21 + 2L2

Gν
2‖ut,j‖2∞

]
≤ 2E

[
‖∇ft (xt)‖21

]
+ 2L2

Gν
2 log d.

Here too, one can see that choosing ν as in Theorem 10 gives,

R̄
(1)
G (T ) = O

(
R

(1)
G (T )

)
.

Now we show that R̄ENC (T ) = O (RENC (T )). To do so, note that we have

E

[
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The first and second inequality follows from Lipschitz continuity of gradient and hessian
(Assumption 2.3–2.4), and Hölder’s inequality. Then,

R̄ENC (T ) ≤
T∑
t=1

E

[
max

(
‖∇ft(xt)‖2,−

(
32

L3
H

λmin

(
∇2ft (xt)

))3
)]

+ νLGT
√
d+ 32ν3T (d+ 3)

3
2

≤RENC (T ) + νLGT
√
d+ 32ν3T (d+ 3)

3
2 .

For Theorem 15, and Theorem 22, by choosing νG, and νH as in (37), and (53) respectively,
we get in both cases,

R̄ENC (T ) = O (RENC (T )) .
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