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Abstract

We show that a simple community detection algorithm originated from stochastic block-
model literature achieves consistency, and even optimality, for a broad and flexible class of
sparse latent space models. The class of models includes latent eigenmodels (Hoff, 2008).
The community detection algorithm is based on spectral clustering followed by local refine-
ment via normalized edge counting. It is easy to implement and attains high accuracy with
a low computational budget. The proof of its optimality depends on a neat equivalence
between likelihood ratio test and edge counting in a simple vs. simple hypothesis testing
problem that underpins the refinement step, which could be of independent interest.
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1. Introduction

Network is a prevalent form of relational data. A central theme in learning network data
is community detection (Goldenberg et al., 2010; Fortunato, 2010). Community detection
seeks to partition the nodes of a network into several disjoint subsets (a.k.a. communities)
upon observing the adjacency matrix (Girvan and Newman, 2002). The underlying assump-
tion is that nodes within the same community share some commonalities in their connection
patterns. To understand and to motivate algorithms for community detection, statisticians,
probabilists and theoretical computer scientists have studied stochastic blockmodels (SBMs,
Holland et al., 1983) extensively. To date, researchers have obtained a thorough understand-
ing of the fundamental limits and the behavior of various algorithms under SBMs. For more
details, we refer interested readers to the review papers Abbe (2017); Moore (2017) and
the references therein. A major shortcoming of SBMs is that nodes within the same com-
munity must have exactly the same degree profile, and hence SBMs cannot model degree
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heterogeneity which is commonly observed in real world networks. To mitigate this issue,
researchers have proposed degree-corrected blockmodels (DCBMs) where an extra sequence
of degree correction parameters was used to lend more flexibility to individual node degrees
(Karrer and Newman, 2011). In the regimes of strong consistency (when perfect recovery of
community structure is possible) and weak consistency (when perfect recovery except for a
vanishing proportion of nodes is possible), it is known that spectral clustering followed by
certain local algorithm could achieve the best possible accuracy (Abbe, 2017; Gao and Ma,
2020).

In a separate line of literature, statisticians have proposed and studied a class of network
models called latent space models (Hoff et al., 2002; Hoff, 2003; Handcock et al., 2007; Hoff,
2008; Krivitsky et al., 2009; Shalizi and Asta, 2021). We may view this class of models
as a natural extension of generalized linear models to network setting. In this paper, we
consider the following generative model for entries of the observed adjacency matrix A. For
any positive integer m, let [m] = {1,...,m}. First, we exclude self-loops and so A;; = 0 for
all 7 € [n]. In addition, conditional on unobserved values of {a;}]; and {z}]" ;, we assume
that the Bernoulli random variables {A;; = Aj; : 1 <14 < j < n} are mutually independent,
and for each pair ¢ < 7,

Bij = P(Aij =1 | {as, zi}i=1) = 1= P(Aij = 0 [ {e, zi}ilq)
exp(a; + aj + 2] Hz;) (1)
1+exp(a; +aj + 2z Hzj)'

Model (1) is a generalization of the logistic regression model to the binary network setting.
Here {o;}]", is a sequence of degree parameters. Nodes with larger values of a;’s are expected
to have larger degrees. Furthermore, {z}'; < R¢ are the latent positions of the nodes in
a d-dimensional latent space (a.k.a. “social space” in the latent space model literature),
and H an unobserved d x d symmetric matrix that moderates how the latent positions
affect edge formation. To impose a community structure, let there be k& communities. Let
{L.1,...,L,} be k different probability distributions defined on the latent space RY. We
assume that there is an unknown deterministic community label vector o = (01,...,0,)" €
[k]". For each node i, o; = j means the ith node belongs to the jth community. In this
case z; is a random vector generated from L, ;,, and all the z;’s are mutually independent.
Our goal is to infer ¢ from the observed adjacency matrix A.

The latent space model (1) not only models community structures but is also flexible for
modeling degree heterogeneity. The particular form (1) can be identified as the latent eigen-
model in Hoff (2008) which was shown to possess more flexibility and modeling power than
many other latent space models and various blockmodels. In particular, degree-corrected
blockmodel reduces to a special case of model (1) with {£,; : 1 < j < k} each assigning
probability one on a distinct point. Ma et al. (2020) studied fitting methods for this model
when H is the identity matrix and «;’s and z;’s are considered deterministic. See also Wu
et al. (2017). Their study also revealed appealing numerical properties for clustering esti-
mated latent positions after fitting such a special case of (1), which has partially motivated
the study reported in this manuscript. Nevertheless, to the best of our limited knowledge,
the literature of community detection for latent space models has been scarce. A sound
understanding of community detection is crucial to applications of such models, as it pro-
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vides theoretical foundations to community discoveries in modeling real-world networks with
latent space models. The present manuscript aims to take a first step along this direction.

1.1 Main contributions

The main contributions of this manuscript are twofold.

e From an algorithmic viewpoint, we establish consistency of SpecLoRe, a simple and
intuitive community detection method for latent space model (1) in a stylized setting.
The method is based on spectral clustering followed by a local edge counting refinement
step. It was first proposed for blockmodels and its properties for the broader class of
latent space models, especially in the generality of latent eigenmodels, were previously
unknown. Our new consistency result suggests that the method enjoys a certain level
of universal applicability on exchangeable network models.

The community detection method aims only at estimating community structure while
not trying to find estimates of latent positions or their distributions. Thus, it is
different in nature from most algorithms developed for latent space models in the
literature which fit specific latent space models and estimate model parameters. See,
for instance, Ma et al. (2020),Wu et al. (2017), and Zhang et al. (2018). As estimation
of latent positions usually involves solving a computationally expensive optimization
problem, our method bypasses it and attains comparable or even better accuracy for
community detection with considerably lower computational cost.

e From a theoretical viewpoint, our consistency result sheds light on a better under-
standing of community detection for latent space models. Our explicit upper bounds
on rates of convergence exhibit an interesting interplay between signal-to-noise ratio
affected by network sparsity and that affected by latent positions and the quadratic
form matrix H in (1). In a more restrictive setting, we could even show that the re-
sulting estimator achieves nearly optimal rates of convergence in some minimax sense.

The key insight comes from the investigation of a special simple vs. simple hypothesis
testing problem which underpins the local refinement step in our method. We study
error rates of a simple edge counting procedure for this testing problem. By a seemingly
intuitive yet elegant exploitation of symmetry inherent to our model, we are able to
show that the simple testing method is equivalent to the optimal likelihood ratio test
under mild assumptions. The equivalence, being the major novelty of our manuscript,
paves the way for establishing optimality of our algorithm.

1.2 Relation to prior work

The present manuscript is connected to Ma et al. (2020) and Wu et al. (2017) which studied
efficient fitting methods for model (1) when the z;’s are treated as deterministic. Ma et al.
(2020) also touched community detection for (1). However, the method was a “plug-in” one
which ran k-means clustering on estimated latent positions. As we shall show empirically,
its computational efficiency is far inferior to the method we consider in this paper while
community detection accuracies are comparable.

Moreover, Handcock et al. (2007) and Krivitsky and Handcock (2008) proposed Bayesian
algorithms for community detection in a latent distance model which is different from (1)
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but can be approximated by it (Ma et al., 2020). Their study emphasized the algorithmic
and computational perspective, and theoretical properties of the proposed methods were not
considered.

In addition to the community detection literature for blockmodels that we have men-
tioned earlier, there have been extensive studies of community detection for random dot-
product graph models, especially via spectral methods. See the review papers Athreya
et al. (2017) and the references therein. These models relax SBMs and their variants such
as DCBMs and mixed membership blockmodels. However, these studies have also mostly
focused on “plug-in” methods and community detection is conducted through clustering esti-
mated latent positions. There has been little investigation on methods designed specifically
for community detection, and there is little understanding on fundamental limits of such an
inference goal.

1.3 Organization of paper

The rest of the manuscript is organized as follows. Section 2 presents the method and a
variant of it for which we shall establish theoretical results. Section 3 states all theoretical
results in an idealized setting for model (1) and the method. We demonstrate numerical
prowess of the method on simulated and real data examples in Sections 4 and 5, respectively.
After a brief discussion in Section 6, the appendices present detailed proofs of theoretical
results.

1.4 Notation

Let S(-) be the sigmoid function S : z — 1/(1+e~"), which is the inverse of the logit function
D — log{p/(l — p)} Let 1(E) be the indicator function of E, where F may be an event or
a set. Recall [m] := {1,...,m} and Sy contains the two permutations of [2]. ||A]2 is the
usual operator norm of A: |A|a = sup,q |Ax|2/|x|2. The Frobenius norm |Alr of matrix
A = (Aij)ie[n) je[m) 1s defined as [|Allp = (3; X; Agj)l/Q. For vector v = (v1,...,v4)" € RY,

[vlp = (Zf;l v [P) VP for p = 1,2. 15 and 04 denote a d-dimensional column vector with
all entries equal to 1 and 0, respectively. For notational simplicity in asymptotics, for two
deterministic sequences a,, and b,, we define the following notations: a, < (X)b, if and
only if there exists a constant C' > 0 such that a,, < (=) Cby; a, < (») b, if and only if
an /by, — 0(o0) as n — . We also write a,, = O(b,) when a, < b,, and a, = o(b,) when
an < by,.

2. Method

We consider a two-stage procedure, consisting of an initialization stage and a refinement
stage. The algorithm was first proposed in Gao et al. (2018) as a community detection
method for DCBMs. In what follows, we introduce the two stages separately for self-
completeness.
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2.1 A practical version

We first introduce a practical version of our method which we shall refer to as SpecLoRe (spectral

clustering followed by local refinement) in the rest of this paper. It is obtained by running
Algorithm 2 with initial value given by Algorithm 1. It relies on Algorithm 1 to process
the adjacency matrix for an initial guess 6° and on Algorithm 2 to further refine the crude
yet informative initial guess to obtain the final estimator. Here and after, we assume the
number of communities k is known.

Initialization We summarize the initialization stage as Algorithm 1. In this stage, we
first compute the best rank-k approximation P to the observed adjacency matrix A where k
is the number of clusters. Note that this is easily achieved by the celebrated singular value
decomposition. Then we apply weighted k-median clustering on normalized rows of p.
While running weighted k-median clustering, we only seek a constant-factor approximation
solution to ensure that the output could be produced within polynomial time complexity
(Charikar et al., 2002; Chen et al., 2018). Here ¢ is required to be an absolute constant.

Algorithm 1: Initialization

1: Input: Adjacency matrix: A; latent dimension d; number of clusters k.
2: Find the solution to the following optimization problem

P = argmin |A — P|3.
rank(P)<k

3: Let P; be the ith row. Define Jo = {i € [n] | | P;|; = 0}. For i e J§, define
P, = B;/|P;|1. Put 69 = 0 for i € Jp.
4: Find a (1 + ¢) approximate weighted k-median solution for clustering (F;)? ;. That

find labels 6° = {57}?_, € [k]" and centers ©; € R¥,l = 1,--- , k, such that
k N N k N -
min P1||1P; —0y]1 < (1+¢) min min B || P; — vi|1.
I R F T IR

Refinement We then state the local refinement procedure in Algorithm 2. Starting with
an initial estimator 6%, we refine it by the following simple and intuitive majority voting rule.
For node i, we look at all communities prescribed in 6° and calculate the relative connecting
frequency from ¢ to each community. Then we recalibrate the community label of node 7 to
be that of the community to which it most likely connects. Since the refinement is strictly
local, it can be easily carried out in a parallel fashion on each node. As the process only
involves counting edges, a crude inspection of the algorithm puts the computational cost of
one round of refinement at O(n?). Moreover, as simulated and real world examples reported
in Sections 4 and 5 suggest, one typically only needs to run an O(1) round of refinement to
arrive at a stable estimator.

is,
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Algorithm 2: Local Refinement

1: Input: Adjacency matrix: A; number of clusters k; an initial label vector &
of iterations R.

0: number

2: Initialize 6°'4 := 59,
3: fort— 1to R do
4: fori<—1tondo
5: Update the labels
~new 1
0,V = argmax ——————— Z Aij.

uelk] {7 : a;;ld = u}| (j:5°M =y}
g

6 end for

7. gold . gnew
8: end for

9: OQutput: 7 := o™V,

2.2 A theoretically justifiable variant

In this part, we state a theoretically justifiable variant of SpecLoRe, summarized as Algo-
rithm 3, for which we will establish an upper bound in Section 3. As an artifact of our
proof techniques (see the proof of Theorem 8), we are unable to present a cleaner theory
for SpecLoRe. As a remedy, the new comprehensive Algorithm 3 has two stages as well and
combines both Algorithms 1 and 2, albeit not in a simple consecutive fashion.

The first part of Algorithm 3 (lines 2-7) does a separate initialization on each node by
performing Algorithm 1 on the network excluding node i, leading to a vector 5(~%0). It then
applies Algorithm 2 on (%0 to obtain a refined estimate for node i, denoted by 3§_i’0).
The separate initializations dissolve an issue in the proof. However, since each initialization
could end up with a different permutation of community labels, the second part of Algorithm
3 (lines 8-11) aligns all label permutations with that of 5(~1.0),

Algorithm 3 has at most polynomial time complexity. We do not emphasize its compu-
tational efficiency though, since we view it more as a proof device rather than a practical

replacement of SpecLoRe in the previous subsection.

3. Theoretical results

We present decision theoretic results for Algorithm 3 on model (1). We focus on the balanced
two community case, i.e., we consider the case where k = 2 and the two communities have
roughly equal sizes. The need to consider Algorithm 3 is due to proof technique, and we
show in later sections that there is little numerical difference between its accuracy and that
of SpecLoRe in Section 2.1.

3.1 A decision-theoretic framework

We shall establish uniform high probability error bounds for Algorithm 3. To this end, we
first define classes of models for which uniform error bounds are to be obtained.
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Algorithm 3: A provable version of latent space model community detection
method
1: Input: Adjacency matrix: A; latent dimension d; number of clusters k.
2: for i — 1 ton do
3. Let AY e {0,1}(»=Dx(=1) he the matrix obtained from removing the ith row and
the ith column of A;
Apply Algorithm 1 on A9 to obtain 6(—+0) e [k]"~!;
5. Augment 679 to an n-dimensional vector by inserting 0 in the ith position;

Update
~(—4,0 1
Uz'( W0) arg max e =0 | Z Ajj.
ue[k] J:0y {jfr](fi,o):u}
7: end for
8: Define 01 = 85_1’0).
9: for i — 2 ton do
10:  Let 4 '
6; = argmax |{j : 50 " =u}n {j: 50 =570
uelk]
11: end for
12: Output: ¢ = (51,...,5,)" € [k]™

Uniformity class Let the adjacency matrix be A = (4;;) = AT € {0,1}"*". Given a
deterministic community label vector o € [2]™, we suppose that the edges are generated in
the following way:

iid ind )
a ~Fy, 2z~ F,,, i€][n],

Aij = Aji ‘ Q, Oy 24, 25 iQd Bernoulli(Pij), i,j € [n], (3)
logit(Pij) =0 +aj + ZZTHZJ
Here F, is a distribution from which the «;’s are generated, and H is a symmetric n x n

matrix. The two distributions {F} ; : j = 1,2} generate each latent position z; depending
on the value of ¢;. For most of theoretical results below, we further assume that

d i .
F.; & Ny((=1)7 ', m21y), j=1,2. (4)

In other words, we assume that the latent positions within each community are generated
according to an isotropic multivariate Gaussian distribution with shared covariance structure
and different mean vector depending on the community label'. Here and after, I; is the
d x d identity matrix. For identifiability of u, 7 and H, we assume that

|H[2 = 1. (5)

1. In view of Lemma 2 later, the same lower and upper bounds hold if the two component mean vectors are
in general positions p1 and pe with |uif2 = [|p2]2 instead of being symmetric about origin. We choose
the symmetric version mainly for convenience of arguments.
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In what follows, we denote such a model by M, (o, H, i, T, Fy,). For each o € [2]" and
each j € [2], let nj = nj(o) = |{i : 0; = j}|. The uniformity classes of interest are of the
form
n

PulH, 1,7, Fa) = { Ma(0 H 1,7, Fo) 1 mj(0) € | (1= 80) 5.

1+ 5n)g] = 1,2}, (6)
where 6, = o(1) is some vanishing sequence. In the rest of this section, we treat H and pu
as fixed parameters, while 7 and F,, scale with n.

Estimation and loss function Our goal is to estimate the community labels {o; : i € [n]}
based on the observed adjacency matrix A. Since permutation of community labels does
not change the partition of nodes, we use the following misclustering proportion as the loss

function
n

¢(0,0) = min 1 E 1(6; # w(0y))- (7)
meSa N
=1

3.2 Assumptions on model parameters

For convenience of reference, we collect and explain various assumptions used in main results
here.

Assumption 1 For i € [n], a; = @ + w;, with @ deterministic, w; i.i.d. with E(w;) = 0,
E(e?%1) < C for some constant C > 0, and

—w<w; <W, (8)

where w > 0 is a constant but w' is allowed to grow to oo with n. Asn — o, a and w’
jointly satisfy all the following conditions

a+w — —ow, 9)
ne®® /(logn)'/? - oo, (10)
e‘”l/min {ne**,n/logn} — 0. (11)

Furthermore, for some constants L > 0 and C; > 0, the empirical fourth moment of e
satisfies the condition

p{(1 3 o) >L} <n 0¥ forue [2]. (12)

In this overarching assumption on F,, equation (9) ensures that the network is sparse in
the sense that the maximum degree scales at an o(n) rate. Equations (8) and (10) jointly
imply that the minimum degree grows at a rate no slower than (log n)l/ 2. Equation (11)
guarantees that the maximum degree grows at a slower rate than squared minimum degree.
Moreover, it imposes the restriction that the ratio of maximum over minimum degrees grows
at a slower rate than n/logn. Finally, (12) puts some technical tail bounds on the empirical
fourth moments of e*¢ within each community.

Assumption 2 There exists a positive constant ¢ such that T(logn)'/? < c.
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Even if we directly observe the latent positions {z;}]",, we always suffer the Bayes
error for clustering two normal distributions with identical covariance structure. Write
®(t) = P{N(0,1) = t}. Under model (3)-(4), simple calculation shows that the Bayes error
is at the rate ®(|pl2/7) < exp{—|pl3/(272)}7/|u|2 as n — oo. Since p is fixed, by varying
¢, Assumption 2 allows us to consider any case where the Bayes error scales at an O(n=%)

rate for any a > 0.
Assumption 3 For H in (1) and p in (4), p" Hp > 0.

This is an assortativity assumption. With this assumption, we make certain that, given
the same «; values, nodes within the same community are more likely to be connected than
nodes from two different communities. It can hold even when H is not positive semi-definite.

Assumption 4 For H in (1) and p in (4), p is an eigenvector of H associated with some
positive eigenvalue.

This assumption is a strengthened version of Assumption 3. It is trivially true when
H = I; is the identity matrix. We only need this assumption when minimax lower bounds
are concerned.

Remark 1 We take the following simple example to see what Assumption 4 entails. Let
H= diag(l;lrl, _1§—d1)' The inner product defined by H results in P;j = S(ou + +z§1>z;1) —
zf)z](?)), where the superscript (1) and (2) indicate the vector made of the first dy coordinates
and the last d — dy coordinates of z, respectively. Possible 1’s, allowing the above argument
to work, can take value in the dy-dim. subspace such as p = ((,u(l))T, ngdl)T. This means
the latent variable z can be decomposed into two components, the signal component zV and

the noise component z,

L (z“’ ~ pu® + Ny, (O,Id1)>
2® ~ Ng_gq,(0,14_q,)

The signal component enhances the clustering and the noise reduces signal-to-noise ratio. In
effect, this allows some additional flexibility in adding some noise in the latent variable.

3.3 A closely related testing problem

We first consider the following testing problem, which applies to slightly more general set-
tings than the model setup that we usually take in the rest of the manuscript.

Suppose that we observe a network of size 2m + 1, with m nodes 1,...,m having known
labels 1 and m nodes m + 1,...,2m having labels 2. Suppose that node 0 has the only
unknown label og. Further, assume that we have some base distribution F' with density f
and write F), as its shifted version by v with density f,, i.e., fu(2) = f(z — v). In addition,
we assume that for nodes in the first community, z; are i.i.d. and follow distribution F},,
and for those in the second, z; are i.i.d. and follow distribution F},,. We proceed to consider
testing the following hypotheses

Hy:00=1, versus Hj:o0p=2. (13)
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Let Ag; = 1 if there is an edge between nodes 0 and 7, and otherwise 0. Under our modeling
assumption, conditional on the realization of the a’s and the z’s, {Ag; : i =1,...,2m} are
independent Bernoulli random variables with success probability Py; = .S (z(—)r Hz + ap+ ).

Define Aél) =", Ap; and Aéz) = ZQm Ay .

i=m+1

3.3.1 LIKELIHOOD RATIO TEST AND EDGE COUNTING

The following lemma connects the likelihood ratio test for (13) and edge counting. The
proof hinges on symmetry in likelihoods under null and alternative hypotheses, which in
turn results from the fact that integrating over symmetric latent distributions keeps the
symmetry in place. We keep its proof in the main text as it may cast light on models of a
larger class, when capitalizing on similar symmetries in latent distributions is possible.

For any z € R?, define the Householder reflection mapping about the hyperplane {z:
zTv = 0} for some unit vector v by z + 2™ where 2™ = (I; — 2vv')z. Note (2™)™ = z.
Lemma 2 Consider the hypothesis testing problem (13). Suppose |u1]2 = |p2l2. Suppose
that f satisfies that f(z1) = f(z2) for ||z1]l2 = |22]2 and that fu,(2) > fu.(z) on {z :
2T (1 — p2) > 0}. Suppose that H satisfies z] Hzg = (27*)TH2" for all z1 and 2o and
{z: 2 H(uy — po) >0} = {z: 2T (ug — pa) > 0}. Suppose that {o; : 0 < i < n} are i.i.d.
Then the likelihood ratio test which reject Hy when the likelihood ratio of alternative over
null is larger than 1 is equivalent to the simple edge counting test where we reject Hy when

AL < 4D,

Proof Define v := (1 — o) /|1 — pizll2. Simee |2 = [palla, {2+ (2 = (1 + 2)/2) " (112 —
po) = 0} = {2z : 2"v = 0}, whence we may define the Householder transformation z +> 2™
by 2™ = (I — 2vv")z. Note that |z — p1]2 = [|2™ — u2ll2.

To simplify notation, write Fi(-) and F5(-) as shorthands of F,, and F),, respectively,
and fi(-) and fa(-) the corresponding densities. Let F, be the distribution of a’s. Define
the following quantities

(o, 20) = JJS(ZJHZ + o + a)dF, (a)dFy(2), (14)
g0, 20) — J J S(od Hz + ap + a)dFa(a)dF(2). (15)

Noticing that dF1(z) = f(z—pu1)dz = f(z™—p2)dz = dFa(2™) as ||z—u1 ]2 = |2 — pall2,
we have by assumption that

q(ap, 20) = JJS((Z(T)THZWL + ap + a)dFy(o)dFs(2)
_ f f S TH=™ + ag + 0)dFa(a)dF1 (2™) = plag, ).

The first equality holds since (2§*)T Hz™ = 2] Hz for all 29 and z. Conditioned on zy and
ag, by Fubini’s theorem, we obtain the conditional likelihood

) ) ©) A®
g(a,20) = {p(ao,zo)}Ao {1—p(a,20)} 4o {Q(amzo)}Ao {1—q(aw,20)} Ao

10
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We obtain g(ao, 2i") by plugging in z(* in the preceding display and noticing p(ao, ") =
q(a0, 20)
A0 e
g(ao, 28") = {qla0, 20)} ™ {1 —qlao,20)}" " { (a0,20)} 70 {1 — p(a, 20)
The full likelihood under Hy, denoted by I; (as o9 = 1), minus the full likelihood under Hy,
IQ (as gy = 2),

}m—Ag)

Il — I2 = ffg(ao, ZQ)dFa(Oéo)dFl(Zo) — Jfg(ag, Z())dFa(ao)ng(Zo)

= [[ frotan.0) = stan. g aatan)| asi o

We define the above integrand inside the square brackets to be G(zy) and write p and ¢ as
shorthands of ¢(a, 29) and p(ao, 20), respectively. So

G(20)
AW e 4D e
p 0 q ’ q 0 p 0
| la-pma—gm{(-L- ) (L . Fo(o).
J t-prti—a (1—p> (1—q> (1—Q> (1—13) 4Fa (o)
Moreover, since p(ag, 2)") = q(ao, 20), we have G(z27') = —G(z). If A[()l) = A(()g), the

preceding display is 0 and I; = I, whence we may not differentiate between Hy and Hj.
For the rest of this proof, we consider A(()l) > AE)Q).
Define £1 := {z: 2" H(u1 — p2) > 0} and Lo := {2 : 2" H(u1 — p2) < 0}. On zg € L1, by

the monotonicity of S : z — €%/(1 + €%),
p(ap, 20) = f S(zg H(z + p2) + 29 H(u1 — p2) + ag + a)dFy(a)dF(2)

US o H(z + po) + o + @) dF,(0)dF(z) = q(ao, 20),

where we use Fi(z) = F(z — p1) and Fs(2) = F(z — p2). By monotonicity of the mapping

x— x/(1 —2x) for z € (0,1), p/(1 —p) > q/(1 —q) on L;. We obtain [{p/(l —p)}/{q/(1 —

(1) _ 4(2)
q)}]AO A 1, whence we conclude that G(zy) > 0 for zg € £;. Finally, we have

L -1, = G(Zo)dFl(Zo) + G(Zo)dFl(Zo)
L1 £2

= G(Zo)dFl(Zo) - G(Zo)ng(Zo)
L1 L1

= Jﬁ G(Zo){fl (Z()) — fg(Zo)}dZo > 0.

The first equality holds by the assumption that £1 = {z : 2" (u1 — p2) > 0} and {z™ : z €
L1} = Lo. The last inequality holds as fi(z9) > f2(20) on 29 € £1 by assumption. The
(2)

proof is complete after applying the same argument to the case A(()l) < Ay, which implies
I << IQ. |
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Remark 3 If uy — po is an eigenvector of H associated with a positive eigenvalue \ as in
Assumption 4, then the two hyperplanes {z : 2T H (1 — pa) = 0} and {z : 27 (u1 — p2) = 0}
coincide, and for all z such that z" (uy — p2) > 0, 2" H(py — p2) = Az' (1 — po) > 0.
Furthermore, defining v = (u1 — p2)/||p1 — pel2 as in the proof of Lemma 2, we have

(2P H2D = 2/ (I — 200" ) H(I — 200" )29 = 2] Hzs.

Remark 4 If we can write the density as f(z) = r(||z|2) for some monotone decreasing
function r : Ry — Ry, the conditions on the density in Lemma 2 are satisfied.

In light of the above remarks, we arrive at the fundamental testing lemma for our setup.
We only need «a’s being i.i.d. for Lemma 5 to hold; here the distributional restrictions of «
in (8)—(12) of Assumption 1 are superfluous.

Lemma 5 Consider the testing problem in (13) with F being Ng(0,7%1;) and py = p and
o = —p. Suppose that Assumptions 1 and 4 hold. Then the likelihood ratio test for the
above hypothesis testing problem (13) is equivalent to the simple edge counting test where we

reject Hy when Aél) < AE)Q).

3.3.2 ERROR RATES FOR EDGE COUNTING

We derive the error rates for edge counting. Consider the testing problem (13) with F' =
Ny(0,721y), where F, = Ny(u,721y) is the latent distribution for the first community and
F_ = Ny(—u,721;) for the second. From now on, write Aoy = A(()l) = > Ap; and
Ay = A((]2) = ZZ m+1 Ao Let v, be the probability of making type I-+II errors of the

test that rejects Hp in (13) when Ag 4+ < Ap—. For any fixed o and zp, let p(a, z0) and
q(ag, zp) be defined as in (14) and (15) respectively, and let

I, 20) = ~2log ({p(ao, 20)a(a0, 200} + [{1 = plao, 20)H1 — ala0, 20)}]"?)  (16)

be the Rényi divergence of order 1/2 between two Bernoulli distributions Bernoulli(p (ao, 20))
and Bernoulli(¢(ag, 29)). The projection distance from y to the hyperplane {z : 2T Hu = 0}
is then
-
__ p Hp
S EnE o

Furthermore, for any positive integer n and any fixed ¢ > 0, define

v, =Ep” [l(zo € B.) exp {—%(1 —e)I (o, zo)}] + exp {—(1 - 6)2/):2} , (18)
v, =Ex” [1(20 € B.) exp {—g(l +¢e)I(ap, zo)}] + exp { (I+e¢) 2p22} (19)

where Be = {20 : |20 — pill2 < (1—¢/4)"?p} and the notation E% ™ means taking expectation

0

over o and zp when the null hypothesis in (13) is true. We have 79 = /¥ if we generalize
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both (18) and (19) to allow € = 0. There are two terms in both (18) and (19). The first
term involving the Rényi divergence has previously appeared in the blockmodel community
detection literature (Zhang and Zhou, 2016; Jog and Loh, 2015). It reflects the average
influence on signal-to-noise ratio from the difference in Bernoulli sampling probabilities of
edges connecting nodes within the same or between two different communities. Since the
Bernoulli sampling probabilities depend on the realized latent positions, the term collects
indirect influence on signal-to-noise ratio from the latent space. The second term depends
on the distributions of z’s and the quadratic form matrix H only, and it sums up the direct
influence on signal-to-noise from the latent space.
With the foregoing definitions, the following lemma controls v, from both sides.

Lemma 6 Suppose that Assumptions 1 and 8 hold. Let n = 2m + 1 and that z i

Ny(p, 721y) fori=1,...,m and z Z31]\701(—/L,721'd) fori=m+1,...,2m, where 7 — 0 as
n — 0. Further, assume that 79 — 0 as n — oo, then for any € € (0,1/2), there is an n.
such that for all m > ne,

VS < vy < T (20)

The proof of Lemma 6 can be found in Appendix A.

3.4 Rates of convergence

In this subsection, we present rates of convergence on errors of our initial and refined esti-
mators.

Upper bounds The following proposition gives upper bounds for estimators obtained
from Algorithm 1.

Proposition 7 Suppose that Assumptions 1, 2 and 3 hold. Assume that the n nodes have
true labels o, where o; =1 fori =1,...,n1, 0; =2 fori =n1+1,...,n, and for no = n—ny,
ni,ng € [(1 = 6)n/2, (1 + 6,)n/2]. Let 6° be the output of Algorithm 1. Let w; and w be
defined as in Assumption 1. Then for any v > 0, some constant C > 0 and all sufficiently
large n, we have

P{t(0,6°) <7} > P( Do < e—w7n> > 1 -~ (1420)
{i:oﬁé&?}

We present the proof of Proposition 7 in Appendix B.
The following theorem gives our main upper bounds on the output of Algorithm 3.

Theorem 8 Let k = 2 and Py, = Pn(H, u, 7, F,). Suppose that Assumptions 1, 2 and 3
hold. For any € € (0,1/2), let U%, be defined as in (18). Suppose V2 — 0 as n — . Then
for any fixed € > 0, the output & of Algorithm 5 satisfies

limsupsup P {¢(0,5) > 7} = 0.

n—ow P,

13
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The high probability upper bound in Theorem 8 consists of two terms as on the right hand
side of (18). In view of the discussion following (18), the first term summarizes influence on
the clustering error from the network signal, averaged over realizations of degree sequence
and latent positions. Hence we regard it as the network term. The second term collects
immediate influence on clustering error by signal from latent space as it depends only on H
and the latent position distributions, which could be viewed as the latent space term.

Lower bounds We conclude this section with the following minimax lower bounds
when Assumption 4 holds, which implies Assumption 3. The lower bounds match the upper
bounds in Theorem 8 up to some arbitrarily small perturbation of the exponents.

Theorem 9 Let k = 2 and P, = Pp(H, pu, 7, F,). Suppose that Assumptions 1, 2 and /
hold. Suppose 70 — 0 as n — o0. For any € € (0,1/2), define 5, as in (19), then the
minimazx Tisk satisfies

infsupE{l(c,0)} 2 v5,. (21)

n
G P,
The proofs of Theorems 8 and 9 are given in Appendix C.

Remark 10 In view of the discussion following (4), in the anisotropic case where F, ; =
Na((=1)7 1y, 72%), Theorems § holds with p redefined by p = (u' Hp)/(n" HXSHp)"? and
B redefined by Be = {z0 : |27Y%(20 — p)|2 < (1 — €/4)'/2p} in (18) and (19). Theorem 9
holds with the same redefinitions of p and B, and Assumption 4 replaced by that p is an
etgenvector of X H associated with some positive eigenvalue.

4. Simulation studies

In this section, we evaluate numerical performance of both SpecLoRe and Algorithm 3 on
simulated examples generated according to four different parameter specifications of the
latent space model. All reported results were obtained on a Windows 7 PC with two Intel
Xeon Processors (E5-2630 v3@2.40GHz) and 64G RAM.

Specification 1 We first consider the case where H is positive semi-definite. In this
case, we compare both SpecL.oRe and Algorithm 3 with the LSCD method.

We set up model (1) with latent space dimension d = 3 and size n = 1000. The nodes
were split into two clusters of sizes n; = no = 500. For i = 1,...,ny, we generated i.i.d. z; ~
Ng(p, 7%13), where p = (0.5,1,0)", and for i = ny + 1,...,n, we generated ii.d. z ~
Ng(—p, 7%14). We varied 7 € {0.75,0.5,0.25}. In addition, we let H = diag(1,1,0.5), and

generated o; = @ + w;, where @ = —2.49 (so that the median degree ne?® = logn) and

wj N (0,1). We have designed the setting so that p is an eigenvector of H with positive
eigenvalue 1. In each repetition, we generated one copy of the adjacency matrix A with
diagonals A;; = 0 for ¢ € [n]. Then we applied the SpecLoRe method with R = 1 and
R = 10 rounds of local refinement to cluster nodes. We also ran Algorithm 3 to investigate
its numerical difference from SpecLoRe. For LSCD, we used Algorithm 3 in Ma et al. (2020)
as the initializer, then applied Algorithm 1 in Ma et al. (2020) with 800 iterations followed
by k-means clustering.

Table 1 reports average misclustering proportions (7) over 100 repetitions and aver-
age runtimes (in seconds) of SpecLoRe (denoted “SpecLoRe” with subscripts R = 1 and
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R = 10), Algorithm 3 and LSCD. The runtime of SpecLoRe included time spent on spec-
tral initialization by Algorithm 1. It also reports average degrees (namely the average of
(1/n) >0, Z?:l A;; over 100 repetitions). Furthermore, it reports theoretical Bayes risks,
which are the best possible misclustering errors if we observe the latent positions directly
and know the underlying distributions that generated the z;’s. Bayes risk is only attainable
by reconstructing the underlying distributions based on infinite samples directly observed
from the latent variable distributions. Finally, the “Initial” column reports the average errors
of the initial estimates obtained from Algorithm 1.

Avg Bayes LSCD Algo3 | Initial | SpeclLoRer—1 | SpecLoRegr=1¢

4 degree risk error time error | error | error time | error time
0.75 | 47.68 6.80% 8.03% 179.29 | 8.27% | 8.33% | 8.21% 2.10 | 8.20% 2.72
0.5 | 35.28 1.27% 2.93% 184.31 | 3.20% | 3.44% | 3.18% 2.07 | 3.18%  2.63
0.25 | 29.51 | 3.87E-4% | 0.82% 182.72 | 0.84% | 1.36% | 0.85% 2.02 | 0.83%  2.63

Table 1: Misclustering proportions and runtimes in Specification 1.

For all three values of 7, misclustering errors of SpecLoRe with R = 10 and LSCD were
close, but runtimes of the former method were only tiny proportions of those of the latter.
We also observe that misclustering errors of SpecLoRe with R = 1 were nearly identical
to those of Algorithm 3. This reassures that repeated initializations in Algorithm 3 were
only needed for technical reasons in proofs, and justifies the use of SpecLoRe in practice.
Furthermore, for 7 = 0.75, the misclustering errors of SpecLoRe were close to Bayes risk,
while for 7 = 0.25 the misclustering errors of SpecLoRe were much larger than Bayes risk.
This suggests that when 7 is large, the signal-to-noise ratio affected by the latent positions
dominates the error rate, while when 7 is small, the signal-to-noise ratio affected by the
network sparsity dominates.

Specification 2 In the second study, we kept the same settings as in the first case
except that we set H = diag(1,1, —0.5) which is no longer positive semi-definite, while p
is still an eigenvector of H with eigenvalue 1. In this case, the LSCD method cannot be
directly applied, and so we did not report its results in this case. Table 2 reports all the
other columns in Table 1 in the present setting. Overall, misclustering errors and runtimes
of various algorithms in this setting were almost identical to those in the first study.

Avg Bayes Algo3 | Initial | SpecLoRer—1 | SpecLoRegr=1¢

g degree risk error | error | error time | error  time
0.75 | 47.85 6.80% 8.25% | 8.28% | 8.18% 2.13 | 8.16%  2.68
0.5 | 3541 1.27% 3.16% | 3.44% | 3.16% 2.18 | 3.14%  2.73
0.25 | 29.51 | 3.87TE-4% | 0.82% | 1.31% | 0.85% 2.12 | 0.79%  2.65

Table 2: Misclustering proportions and runtimes in Specification 2.
Specification 3 In the third study, the settings remained the same as in the first study

except that we fixed 7 = 0.5 and let @ € {—2.14, —2.49, —2.83}, which calibrated the median
degree of networks to be around {2, 1, 0.5} xlog n, respectively. Table 3 reports the results for
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all three different @’s. As |@| grows, the average degree decreases significantly. Misclustering
errors of SpecL.oRe with R = 10 were slightly worse than those of the LSCD method, but
were always within 110% of the LSCD errors. On the other hand, runtimes of SpecLoRe
with R = 10 were of smaller order of magnitude than those of LSCD. Misclustering errors of
SpecLoRe were comparable to Bayes risk when @ = —2.14, and became more sizeable relative
to Bayes risk for larger @. This suggests that network sparsity becomes the dominating factor
in error rate as |a| grows.

_ Avg | Bayes LSCD Algo3 | Initial | SpecLLoRer—1 | SpecLoRegr-19
@ degree | risk error time error | error | error time | error  time
-2.14 | 58.86 | 1.27% | 2.04% 219.92 | 2.24% | 2.27% | 2.25% 2.04 | 2.23%  2.59
-2.49 | 35.28 | 1.27% | 2.93% 211.29 | 3.20% | 3.44% | 3.18% 2.31 | 3.17%  2.86
-2.83 | 20.30 | 1.27% | 4.58% 213.31 | 4.94% | 6.04% | 4.91% 2.26 | 4.88%  2.85

Table 3: Misclustering proportions and runtimes in Specification 3.

Specification 4 Finally, we repeated the last two studies with H = diag(1, 1, —0.5) and
p=(1.25/1.29)4/2(0.5,1,0.2) ". In this case, x is no longer an eigenvector of H but |y is
the same as in specifications 1-3 to make the results more comparable. Table 4 summarizes
the relevant results for all different combinations of 7 and @ values. We observe that the
first three rows had slightly larger misclustering errors than those in Tables 1 and 2, and
the last three rows had slightly larger misclustering errors than those in Table 3. Such a
difference conforms with our theory since quantity p (defined in (17)) in (18)—(19) becomes
smaller when g is no longer an eigenvector of H with maximum possible eigenvalue 1 under
(5), resulting in larger error rates.

. - Avg Bayes Algo3 | Initial | SpecLoRer—1 | SpecLoRegr—1g
degree risk error error error time | error time

0.75 | -2.49 | 46.34 6.80% 8.89% | 8.89% | 8.83% 2.27 | 8.80% 2.82
0.5 | -2.49 | 34.09 1.27% 3.63% | 3.93% | 3.62% 2.16 | 3.62% 2.71
0.25 | -2.49 | 28.55 | 3.87E-4% | 0.97% | 1.56% | 1.01% 2.11 | 1.00%  2.68
0.5 | -2.14 | 57.64 1.27% 2.55% | 2.60% | 2.53% 2.07 | 2.53%  2.63
0.5 | -2.49 | 34.09 1.27% 3.51% | 3.93% | 3.62% 2.16 | 3.62% 2.71
0.5 | -2.83 | 19.72 1.27% 5.35% | 6.45% | 5.33% 2.15 | 5.27%  2.73

Table 4: Misclustering proportions and runtimes in Specification 4.

5. Real data examples

We now demonstrate performance of the proposed algorithm on some real data examples.
More detailed comparison of Algorithm 3 with Algorithms 1+2 and other methods on care-
fully constructed simulated examples can be found in Section 4 of the appendices.

We consider five datasets. The first three datasets are political blog with 1222 nodes,
16714 edges, and 2 communities (Adamic and Glance, 2005), Simmons College with 1137
nodes, 24257 edges, and 4 communities and Caltech data with 590 nodes, 12822 edges, and 8
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communities (Traud et al., 2011, 2012). For Simmons College and Caltech data, we followed
the same pre-processing steps as in Chen et al. (2018). These datasets have been studied
extensively in the blockmodel community detection literature.

The fourth dataset is a manufacturing company network from Cross and Parker (2004),
which was studied in Weng and Feng (2022). Questions were asked to pairs of employees on
their ties in work, and weights were assigned on a 0—6 scale where higher weights correspond
to closer ties. Following Weng and Feng (2022), we used the weights to create an adjacency
matrix: We set A;; = Aj; = 1 if and only if both edges from ¢ to j and from j to ¢ have
weights larger than 3. Otherwise, A;; = Aj; = 0. This resulted in an undirected network
with 74 nodes and 235 edges. Four communities were formed according to the “location”
value of each node which is the most assortative among three available nodes attributes in
this data.

The fifth dataset is a French high school friendship network (Mastrandrea et al., 2015).
This dataset recorded friendship relations and contacts among 329 students in a Marseilles
high school. To construct an adjacency matrix, we took the first contact information which
recorded active contacts between students during 20-second intervals of the data collection
process over a measuring infrastructure. We set A;; = Aj = 1 if and only if there were
contacts recorded between ¢ and j. The resulting network has 5818 edges. Each student
belonged to one of nine classes which we regarded as nine true communities.

We compare Algorithm 1 + one-round Algorithm 2 refinement (SpecLoRer—1) and Al-
gorithm 1 + ten-round Algorithm 2 refinement (SpecLoRer—19) to LSCD in Ma et al. (2020)
(initialized by Algorithm 3 in Ma et al., 2020 followed by Algorithm 1 in Ma et al., 2020
with 800 iterations). Algorithm 3 has essentially the same level of accuracy as SpecLoRe
with R = 1, which we have illustrated in detail in Section 4. The LSCD methods func-
tioned as the benchmark. Comparison of LSCD to several other state-of-the-art methods
(SCORE (Jin, 2015), OCCAM (Zhang et al.), and CMM (Chen et al., 2018)) on the first
three datasets was conducted in Ma et al. (2020). LSCD was shown to be a top performer,
and so we omit comparison to other methods on the first three datasets. We set latent space
dimension equal to number of communities for LSCD.

LSCD Initial | SpecLoRegr—1 | SpecLoRer—19

Dataset # Clusters error  time error error time error time
Political blog 2 4.91% 4331 | 5.32% | 4.66% 0.62 | 4.66% 0.97
Simmons 4 11.87% 39.90 | 13.54% | 11.61% 1.94 | 11.17%  2.65
Caltech 8 18.14% 11.85 | 21.69% | 17.46% 0.87 | 14.58% 1.29
Company 4 1.35% 0.83 | 5.41% | 2.70% 0.01 | 1.35% 0.02
High school 9 0.61% 529 | 061% | 061% 0.13 | 0.61% 0.24

Table 5: A summary of performances on five datasets. Each “error” column reports pro-
portions of misclustered nodes. Each “time” column reports runtime of the corre-
sponding method in seconds (including initialization).

Table 5 presents performances of both versions of SpecLoRe and those of LSCD in
terms of accuracy and speed. For reported speed of SpecLoRe, we have included time spent
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SCORE OCCAM CMM
Dataset error time error time error time

Company | 8.11% 0.27 | 1.35% 0.84 | 2.70% 0.28
High school | 0.61% 0.62 | 0.61% 4.90 | 1.82% 2.98

Table 6: A summary of performances of three other community detection methods (SCORE,
OCCAM, and CMM) on manufacturing company and French high school datasets.
Each “error” column reports proportions of misclustered nodes. Each “time” column
reports runtime of the corresponding method in seconds.

on spectral initialization. In addition, it also reports accuracy of spectral initialization
(Algorithm 1). On these five datasets, SpecLoReg—19 and LSCD were comparable in terms
of accuracy while SpecLoRer—19p was significantly faster (and slightly more accurate in
most examples). This is not surprising because it aims only at clustering nodes while
LSCD fits all parameters. SpecLLoRer—1 was the fastest due to a single round of refinement
which incurred the cost of slightly inferior accuracy. However, it still notably improved
the accuracy of spectral clustering. For benchmarking purpose, the performances of three
competitive community detection methods, namely, SCORE, OCCAM, and CMM, on the
fourth (Company) and the fifth (High school) datasets are reported in Table 6. Compared
with the last two rows in Table 5, SpecLoRegr—19 continues to be the best when both accuracy
and speed are taken into account. All reported results were obtained on a Windows 7 PC
with two Intel Xeon Processors (E5-2630 v3@2.40GHz) and 64G RAM.

6. Discussions

In this paper, we study theoretical and empirical performances of a simple community de-
tection algorithm in the context of sparse latent space models. We establish consistency
and rates of convergence of the method for sparse latent eigenmodels with two balanced
communities. Under an additional eigenvector assumption (Assumption 4), we further ar-
gue that our rate has sharp exponent in a minimax sense. Although we have centered our
theoretical investigations on balanced two community case, the method performs well em-
pirically in more general scenarios encountered in real world data examples. Under current
setup, an immediate future research direction is to see whether the same upper bound can
be established for Algorithms 1 and 2 directly.

It is natural to extend the current theoretical framework to cases where k > 2, all
communities have roughly equal sizes, and each component of the latent mixture distribution
is sub-Gaussian and isotropic. We expect an analogous error rate of our proposed algorithm
to hold with a possibly gruesome but direct analysis by generalizing Lemma 6 to the case
k > 2, and then subsequently Theorem 8. If ||;||2 for all i € [k] are all the same and 1; — p;
for 1 < ¢ < j < k are all eigenvectors of H associated with positive eigenvalues, we may
employ the key Lemma 2 to carry out pairwise analysis for each community pair (ji,j2)
(1 < j1 < j2 < k), which gives us the equivalence between the optimal (pairwise) likelihood
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ratio tests and edge counting. This would pave the way for matching lower bound by a
generalized version of Theorem 9.

A more challenging future research direction is to generalize the current framework to
handle non-homogeneous mixture distributions of latent variables. For instance, if we assume
that the latent variable z ~ Ngy(u, £1) when the node is in community 1 and z ~ Ng(—p, X2)
in community 2 with 31 # 3o, the problem becomes more difficult where new understandings
and techniques need to be discovered. First, the upper bound analysis will be more entangled
after losing homogeneity (and isotropy) as our analysis exploits various symmetries whenever
possible. Moreover, it is even less clear whether it is possible to establish something akin
to Lemma 2, which bridges the edge-counting procedure and the optimal likelihood ratio
test so that a matching lower bound would be in sight. The reason is that the proof of
the current Lemma 2 relies crucially on exploiting subtle symmetric structures, which is no
longer true when the latent space is distorted by the non-homogeneity.

We have focused on the case where one only observes a network structure among n
nodes. An important advantage of latent space models is the convenience to further include
node and/or edge covariates (Hoff et al., 2002). Though it is beyond the scope of the
present paper, it is nonetheless desirable to understand how the presence of covariates could
affect community detection on nodes. Furthermore, whether there is covariate or not, it
is of interest to explore information-theoretic limits and optimal algorithms for community
detection when Assumption 4 fails.
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Appendix A. Proof of Lemma 6
By Jensen’s inequality, for any fixed € € (0,1/2),

as n — 00. By symmetry, we have

Vp = PH() (AO’JF < Aoﬁ) + PH1 (Ao
= PH() (AO’JF < Aoﬁ) + PH() (Ao

0,—)

0,-)-

424
+s4
Hence,
Pr,(Ao,+ < Ao—) < vy < 2Py, (Ao < Ao-). (22)
Upper bound By law of total expectation,
Py (Ao+ < Ao—) = Ez ™ {P(Ao+ < Ao— | a0, 20) }-
Let

m 2m
Q= {{aoji}%ﬁ 1ap; € {0, 1} for 1 <i < 2m, Z ap,; < Z aoﬂ'} .
‘ . 1
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We then have

P(Ao+ < Ao— | a0, 20)

)

= Z P(Ao1 = ao1,---,A02m = ao2m | @0, 20)

{ao,i}7m e

.12
= Z E{O‘“zl}i;ﬂl{P(Ao,l = a1, .., Aoom = ao2m | @0, 20, {0, )70 }

{(l()ﬂ‘ }?;”169

2m
— Z gloi,zi}im {H P(Ao; = ao, | a0, 20, o, ZZ)}

{ao,i}7m e i=1

2m
= 2 TIE"*{P(A0i = ao.i | ao, 20, @i, ) }.

{a()’i }f;”leQ i=1

Here E** means the expectation over a; and z; (under Hp). In the last equality, we have
used the mutual independence of {«, z;} for 1 < i < 2m. By the discussion preceding (13)
and the definition in (14) and (15), we have

, l<i<m,
Eai,zi{P(Aw =1 04072’07%‘72’1‘)} _ p(ag, 20) t m
q(ap, z0), m+1<i<2m.
By definition, p(ao, 20) and gq(ap, z0) can be written as
plag, 20) = E*18(2d Hzy + ag + o), (23)
q(a, 20) = EOm+12m1 S (2 Hzp i1 + g + Qupst)
= EVA1S(—zd Hzy + o + aq). (24)

Here o; id Fu, 21 ~ N(u,7213) and zpy,.1 ~ N(—p,721;), and they are mutually indepen-
dent. Define £, = {20 : 2 Hu > 0} and L_ = {20 : 2z Hu < 0}. Conditional on ag and 2o,
the distribution of zJ H(z; — p) is symmetric about zero and is independent of a;. Since
S is a monotone increasing function, together with (23) and (24), this observation implies
that p(ao, 20) = q(ao, 2z0) when zp € L4 and p(ap, 20) < g, 20) when zp € L_.
For any zg € B¢, we have
2o Hp =p " Hp+ (20 — ) ' Hps

>p" Hp— (20 — p) " Hpl

>u Hy — [Hpll2l20 — 2

>p Hy— (n" Hp) (1 — ¢/4)"%p

= {1 —(1- 6/4)1/2} w Hpy

>ep' Hyu/8. (25)

Here the second equality holds due to (17). Thus, B. < L£,. See Figure 1 for a graphical
illustration.
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A
latent space

Y

2THp=0

Figure 1: An illustration of a Be-ball in the latent space: pp is the orthogonal projection of
p onto the hyperplane {z : 2" Hy = 0} with the distance between p and up equal
to p defined in (17). Given € > 0, B, is the ball in red with radius (1 — ¢/4)1/2p.

Next, we derive uniform bounds of p(ag, 20), q(o, 20) and I (g, z0) for all zg € B.. To
this end, define

ezJH(zl —p)+wo+wi efz(;'—H(zlfu)eroerl
D, (wyp, zg) =E¥1** D,(wg, zg) = E¥*1 .
p( 0 0) 1 4 QZJHZI+2E+UJO+UJ1 ) q( 0> 0) 1 + e—ZJH21+2a+WO+W1

By (23) and (24), we have
plaw, z0) =e* e 1D (wp, 20) (26)
q(a, 20) zeme*ZOTH“Dq(wo,zo). (27)
To find upper bounds for Dy,(wo, 29) and Dy(wo, 20), we define
D(wo, z9) =E“**! {eZOTH(Zl’“)*‘”O*“’l} = e”OE(e*t)EX {eZOTH(Zl’“)} .
Then we have
Dp(wo, 20) <E“0* {ezOTH(Zl_“)*wOJrM} = D(wo, 20) (28)
Dgy(wo, z0) <E¥1* {e*ZJH(Zlf“H“O*”l} = D(wo, 20). (29)

where the last equality holds since the distribution of z; — g is symmetric about zero.
By Assumption 1, E(e*!) < {E(62°’1)}1/2 < CV2. This inequality, combined with the
boundedness of zy for zg € B, and (8) of Assumption 1 implies that

y—

0 <e D < D(wp, 20) < e D, (30)
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where D and D are constants.
On the other hand, to find lower bounds for Dy (2o, wp) and Dg(20,wp), we define

D2(WO, ZO) —Ew1:21 {GQZJH(Zl—,u)—i-Qwo—i-le} _ €2wOE(€2w1)EZ1 {EQzE]rH(Z1—;L)} .

By Assumption 1, E(e?*!) < C. Further by (8) of Assumption 1 and boundedness of 2,
Dy (wp, z0) also has an upper bound GQwIEQ where D5 is a constant. Then

1
. _Ew1,21 2d H(z1—p)+wo+wi o
D(wo’ ZO) Dp(w(], ZO) E {6 ’ <1 1+ 6onHzl-i-Qa-&-uJo-i-o.n > }

2zJH(zl —p)+2wo+2w1

:eQEezOTHuEwl,zl €
14+ ez(-)er1 +2a+wo+wi
<€266z0THuEw1,21 {eZZOTH(zl —p)+2wo+2wq }

:emeonH“Dg(wo, 20)
<e?&+2w’ez0THuﬁ2. (31)
Let 0 < k¥ < 1 be any fixed constant. By (Qlof Assumption 1 and the boundedness of z
within Be, the inequality e2®+2+' exp(zg Hp)Da < ke~ %D holds for all sufficiently large n.
By (30),
202 o2 HiDy < ke 22D < kD (wo, 20). (32)
Combining (31) and (32), we have
D, (wo, 20) = (1 — k)D(wo, 20)- (33)
By the same argument, we can also get

Dgy(wo, 20) = (1 — k)D(wo, 20). (34)

We now derive a lower bound for I(ag, z9). By definition, we have

I(ao, 29) = — 2log ({p(ao, 20)q(@0, 20)}"/* + [{1 = p(a, 20) H1 — g(a, ZO)}]1/2>
>~ 210 | {p(a0s 20)a(a0. 20012 + 1= 5 {plaa, ) + alan, )|

> — 2{p(aw, z0)a(cv0, 20)}*'* + pla, 20) + qlavo, 20)

_ 2
=252 1 | (D, 20)} 2 = D, (wo, 20)}2 |
where the last inequality is due to log(1l —z) < —z for 0 < z < 1. We let

2
C(wo, 20) = €% ¥ [{Dp(wo,zo)}1/2 - e_ZOTH”{Dq(wo,Zo)}I/Q] ;

22
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and let kK = 1 — {1 + exp(—eu' Hu/8)}2/4. Then by (25), (29) and (33) we get
s 2
C'(wo, 20) Sesn He [{(1 — k)D(wo, zo)}1/2 — e*ZOTH“{D(wO, zo)}l/z]
. 2
:eél‘TH“D(wo, 20) 3 (1 — /1)1/2 - e_ZJH“}

2
<1 + efé“TH“> — eZJH“}

{
{
>esH 11D (wy, 2) {
{

N~ N~ N~

We denote the right-hand side of the last inequality as C. Since D and w are both constants,
C > 0 is also a constant. In summary, for zy € B, we have established

I(ap, 20) = 2°C, (35)

where C' is some constant depending on e.
In view of the foregoing discussion, we can write

PHO (A(]’Jr < AO,,) ZE%I%’ZO {1(Z0 € Be)P(Ao,Jr < Aoﬁ | o, ZO)}
+Ef ™ {1(20 € BE)P(Ao,+ < Ao, | g, 20)} - (36)

Conditional on o and zg, we can generate independent random variables W; ~ Bernoulli(p(ay, 29))
for i =1,...,m and W; ~ Bernoulli(q(ag, 20)) for i = m + 1,...,2m. Then we have

m 2m
P(A()ﬁ. < A(),_ | ao,ZQ) =P (Z W; < Z Wz) .
=1 i=m+1

For any ag and any zg € B,, aside from p(ag, z9) > q(«o, z0), we can also get from (26),
(27), (28), (29), (30), zp bounded, and (9) of Assumption 1 that as n — o,

p(ag, z0) = 0,  gq(ao,20) — 0.

We then obtain from the calculation in Gao et al. (2017) and Gao and Ma (2020) that

m 2m
P (Z wi< ). W1> < exp [=m{1 + m (a0, z0) }H (a0, 20)] ,
i=1

t=m+1

in which 71 (ag, 20) = O(1/{mI(ag,z)}"?). By (35) and (10) of Assumptions 1, we have
1/{mI(ag, 20)}/? < 1/(me**C)Y2 — 0. Then —n; (g, z0) < €/2 for all sufficiently large n.
Therefore,

(= 8 ) comfon (- oo

=1 i=m+1
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Since 29 ~ N(u, 72I) under Hy, we have |zo — p|3/7% ~ x?(d). Since 7 — 0 as n — o,
the inequality below holds for all sufficiently large n:

2 2~ 1/2 9
€ p € p € p
1-) G zarela(1-7) 2 (1-9)%.
( 4) 72 * { 2 27-2} + 9) 72
Then by Lemma 1 of Laurent and Massart (2000), we can get
1 e\ p
P & B) =Py { gl — il > (1-5) 5
/2 2
1 9 e\ p 1 e\ p
<Pm, [ﬂzo—ﬂ|2>d+2{d<l—2) 272} +(1_§>ﬁ

<exp{_(l_;)§2}. (37)
Therefore by (36),
P, (Ao < Ao-)
< EOI%’ZO [1(20 € B,) exp {—m (1 — %) I(ayp, Zo)}] + Pry (20 € Be)
< [1oeB)en{-m(1- §) e} e - (1-5) £} 69

Combining (38) with the second inequality of (22), we get

vn <2E30% [l(zo € B.) exp {—m (1 - %) I(ao,zo)}] + 2exp {— (1 - %) ;;}

2
<Efiy " [1(z0 € Be) exp {=m(1 = €)1 (a0, 20)}] + exp {‘(1 - e>2pTz} |

Here the last inequality holds because ¢/2 > log 2/(me?*C) = log 2/{mI (g, 20)} by (10) of
Assumption 1 and €/2 > (272 log 2)/p? for all sufficiently large n.

Lower bound For the lower bound, when zg € B., we apply the Chernoff argument in
Gao et al. (2017) and Gao and Ma (2020) to get

P(Ao,+ < Ao | a0, 20) = exp [=m{1 + n2(ao, 20) } (0, 20)] -

in which 72(ag, 20) = O(1/{mI(ag,2)}"?). By (35) and (10) of Assumption 1, we get
n2(p, z0) < € for all sufficiently large n. Therefore,

m 2m
P (Z W; < Z WZ> = exp {—m(l + E)I(ao, Zo)} .
i=1 i=m-+1

It is clear that £_ < BE. When 2y € £_, we have p(«ag, 20) < ¢(a, 20), SO

1
P(Ao,+ < Ao | 2, 20) = 3

24



COMMUNITY DETECTION IN LATENT SPACE MODELS

Also,

P, (20 € L) =P, {(20 — p) T Hpy < —HTHM}
T 2
p Hp ( 6) P
(MR Nl (145 20
( T(NTH2M)1/2> eXp{ "2 272}

where the last inequality is due to Mill’s ratio. Therefore, by (36) again,

Py (Ao + < Ap,—)

1
> Ejfy ™ [1(z0 € B) exp {=m(1 + Ol (a0, 20)}] + 5P, (0 € £-)

T

> E3 [1(20 € Be) exp(—m(1 + €)I(ap, 20))] + ;GXP{ ( %) ;2}
2
> B ™ [1(z0 € Be) exp {—m(1 + €)I(ao, 20)}] + exp { (1+e pz} (39)

Here the last inequality holds because /2 > (272 log 2)/p? for sufficiently large n. Combining
(39) and the first inequality in (22), we obtain the first inequality in (20).

Appendix B. Proof of Proposition 7
The following lemma will be useful in the proof of Proposition 7.

Lemma 11 Suppose a d-dimensional random vector z ~ N(u,7214). Let M be a positive
constant. Conditional on the event ||z — pl2 < n with n/7 — © and 7 — 0, we have, for

[t]e < M
24Ty

E{exp(z"t)} = exp (uTt +

5 ) (1= o),

where C is a constant and E denotes the expectation taken over the conditional measure of
2 on |z =l <.

Proof Without loss of generality, we assume p = 0. We calculate

S||zH2 exp(z't) exp{ 2T2/(212) }/(27r7 ) 92,
S”ZH2<77 exp{—zTz/(272)}/(277?) W24,
S\\Z+TtH2<77/T exp(—2'2/2)/(2 )d/QdZ
Fjetanr oxp(=2T2/2)/ (2m) " dz

Denote the probability measure of N(0, I;) by Py and we define

Efexp(=Tt)} =

= exp(r2t"t/2)

A | exp(~2"2/2)/(2m) V2 dz = Po(|z + Tt < n/r).
|z+7t[2<n/T

B- exp(—2"2/2)/(2m)"2dz = Po(|2]}2 < n/7) = P3G < (n/7)%).

lzl2<n/=
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We have that

P{xZ < (/7= 7lt]2)?} = Po(llzl2 < /7 = 7t]2) < A < Po(l2]2 < n/7) = P{xg < (n/7)*}.

As a result, we bound

A PLG < (= 7lth)?)
BT T Pg <)

The last equality comes from the trivial bound of x? distribution after choosing n/7 suffi-
ciently large such that

P/ <3 < (nfr — 7} _
P{x2 < (n/7)?} b

where f; is the density function of x4 and C' = 2sup, fq(z). |

=1-o0(1).

2fq(n/T —TM)TM < CTM,

Proof |Proof of Proposition 7| First, by law of total expectation,

P{(5,6°) >~} = El#i [P {U(0,6°) > v | {cu, 2}, }] -

Given {a;, 7}~ 1, the probability matrix P is deterministic. Let z; be the mean value of z;,
that is, p; = pfori=1,...,ny and y; = —p fori =ny+1,...,n. Let &; = E{exp(z;, Hz;)}
for i # j and &; = E{exp(z{ Hz)}. Define

Bij = eai+a'j fzj (40)

We further denote &, = E{exp(z] Hz2)} and ¢ = E{exp(z{ Hzp,+1)} = E{exp(—2{ Hzs)},
then B;; = e**t% ¢, if 0; = 0j and B;; = e* T ¢_ otherwise. It is clear that B is a matrix
of rank 2, and we will show the proximity of B and Pona high-probability event.
Step 1: Finding a high probability event. Define D = {(w1,...,wy) : (1/n4) Z{i:o‘i:u} etvi <

T for u = 1,2}. By (12) of Assumption 1,

P{(wi,...,wn) € DY} < 2n~ (10O ¢ p=(1+CL/2) (41)
Let 7 = 7(12logn)/2, then by Assumption 2, n < 12'/2¢. Define

By ={(21,...,2n) : |2zi — pi2 <m,1 <i<n}.

Since n%/72 > d + 2{dn?/(47%)}"? + n%/(272) when n is large, by Lemma 1 of Laurent and
Massart (2000),

1 2 772
P(lzi — pill2 >n) =P ﬁ”zi — i3 > =

2 P\ Ui
<P ZHZZ ui|\2—d>2<d42> +ﬁ gexp<—47_2>.
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Therefore,

2

n _
P(Bf]) < nexp (—47_2> =n"2 (42)
Assume (21, ...,2,) € By, then 2] Hz; < p] Hyj+n|Hpglo+n| Hpil2+n?|H|2 < pf Hyj+
121/2C|\Hgi|\2 + 12Y2¢| Hpjlla + 12¢%|H||a which is a constant. Hence there is a positive
constant § such that on B,

es M2 < €. (43)

Let fij = {exp(z;] Hz;) — &j}z, and define the set

C, = {(21, A R Z fij < 4r*n(n — 1)/(logn)1*61}

1<i#j<n

for any small constant €; € (0,0.01) and some fixed constant » > 0. We will specify the
choice of r later. Since &, n and |H | are all constants, by (43), f;; has a uniform constant
upper bound for all 1 < ¢ # j < n on B,, which we denote by f. Write CID:I“ as the measure
of z; conditioned on [z; — plla < n for i € [n1], and @ for ny +1 < i < n. The conditional
distribution of {2;}1<i<n on By, is

<I>7J7r x---x@%’x?; X ---x@i,

—/

ni n2
where x denotes the product measure. In particular, z;’s are still mutually independent
conditioned on B,. Hence, for any particular i € [n], fi; (1 < j < n,j # 1) are independent,
and follow one of two distributions, depending on whether node j is in the same community
as node 7. Thus, we define

f—+: = fH‘) m—i—lézgn),
foo =E5(fin) (1<i<m),
foo =EF(fin) (mi+1<i<n),

where E (- | 2) in the first two equations denotes expectation with respect to the distri-
bution of z; conditional on z; and |z; — pjf2 < n, and E#(-) in the last four equalities
means expectation with respect to the distribution of z; conditional on |z; — ui|e < n. By
Bernstein’s inequality, we obtain

~ e S n—1
P{Z fii = DB (fii | 20) >T2W2i}

J# VES
<expd— r4(n —1)2/(logn)?1—1)
h 23 Var (fij | zi) + 2fr2(n — 1)/(logn)t=<1 |’
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where P and Var ’ (+) are taken over the distribution of z; conditional on ||z — ijll2 < 7. By
direct calculation we have

Var” (fi5 | z) = M) — 46, M) + 40 +4g;, M M — (M) — 485 (M2,

v

where ]\Z(jl) = Ezj{exp(lziTsz) | z;}. Let Gj = 2] Huj and ; = 2] H?2;. Since |Hz|2 is
upper bounded by a constant, by Lemma 11, ]\/Zf;(]l) = exp (lCij + TQZQLZ‘/Q) {1—0(1)}. Further
calculation leads to

—~

Var” (fij | z)
:(6T2Li _ 1)62<ij+7'21,i {eQCij-i-STQLi (e'rQLi + 1)(62T2L2‘ + 1) _ 4§ijeCij+%T2Li (€T2Li + 1) + 4{12]} {1 + 0(1)}7

which is upper bounded by ¢;72 with some constant ¢; > 0, since &ij» Gij and ¢; are up-
per bounded by constants. By Assumption 2, we have 23], \f/\zﬁz](fij | 2i) < 2c2c1(n —
1)/logn < fr?(n —1)/{3(logn)*~<} for large n. Consequently,

P {i fij = i E%(fi | 1) > et Zi} < exp {—7%_1)} <n (F%) (44

i i (log n)t== f(logn)t=a

for some constant Cy > 0.
Recall that

DB (fij | ) =

J#i

(n1— 1) fiy +nafio, 1<i<ny,
nifiy +(n2 —1)fio, ni+1<i<n.

Since fit, fi— < f on By, for any 1 < i < n, by Bernstein’s inequality again, we obtain

515 n r*n?/(log n)2(1—€1)
P Z fix —nifes > T2711751 <expd— — 1/( %7) '
i=1 (logn) oy Var (fi1) + 2Fr?ny/(logn)!—=

We further bound the right hand side of the above display. By definition, we have
B (2 ~(1 .
fie =B (fiy | z1) = MY — 26, ML) + €2 (1<j<m),

the variance of which is \f/\zﬁzl(]\le(?)) + 453\72&21(]\78)) — 4§+(f]?);/zl(]\71(?), ]\71(]1)) Since 21 is

bounded by constants and 72 — 0, we can find a constant ¢; > 0 such that 1 < exp(472:1) <
1+ ¢ 72. Then we get

Var™ (M) = {Ezle‘lﬁlﬁ‘”?u - (Ezle%ﬁ%zblf} {1+0(1)}
<2 {(1 + 0’17-2)E3164g1j _ (EZ162<U>2}
=2 {(1 + 2yt Hugt8T2u oy eMlTHWHTQM]Tsz} {1+ 0(1)}

T . 2, T2, . 2, T2, . 2, T 2, .
< detnl Hpg+472 ] H2 g <€4T wHG oy p2d AT H ug)
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for some constant 5 > 0. The last inequality is again due to 72 — 0. We can use similar
argument to get %Zl(Ml(;)) < 472 and Covzl(Ml(?),Ml(;)) < d,7%. Therefore, we have
Var(fiy) < er? < cey/logn < fr?/{6(logn)'=“}, where ca > 0 is a constant. This
implies

ni 2
P o 2 ™M __m ~(3+Cs)
P {Z fie —nifey > (logn)i—a } <exp{ i — } <n 3 (45)

= logn)t—«

for some constant C's > 0. Similarly, we also obtain

~ [ & n _
P {Z fic —nifio > T2(lognl)1—€1} < n~(3+C3) (46)
=1

~ " n9 _

P{ Z 1fi+_n2f—+ >7’2(10gn)1_€1} <n (3+CS) (47)
1=n1+

~ " no _ .

P { Z+1fi - n2f77 > 7“2(10gn)1_61} <n (3+C‘3). (48)
i=ny

Next we bound f_ ,f+ ,f—4,and f__. Since z; is bounded by constants and 72 — 0,
we can find constants ¢/ > 0 such that exp(27211) < 1+ ¢{72. Then

foy =B (M( 2§+ 19 - 5+>
- {En(@omrt _ag @) 1@ (14 o)
<2{(1+ frE (e20) — 26,7 () + & |
=2 { (1+ clr2)e T HIk 2T 20 _ g ou” it T 20 53} {1+o(1)}  (49)
4{ (1 + &lr2)e2n Hutar®u H2 _ 9¢, el Hirt T uT Hou 53} . (50)
Here equality (49) is due to Lemma 11. By the definition of £, we have

2
£, =E# {E” (eleHz2 | 21)} = & <ez1THM+T2,21TH2Z1> ]

Let 21 = p + 7y1. Direct calculation leads to

2 4
€, = et Hpt T T H? i e {6T2y1TH2y1+wTH(1+T2H)y1}

2
{det(I — T4H2)}‘1/2 exp [MTH,L + % (W H*p+p"HI +7H)I -7 H*) NI + TzH)H,u,}] .

By Taylor expansion, we have det(I — 7*H?) = 1 — 74Tr(H?) + o(7*). Further, since H? is
p.s.d., then 1 < {det(] — T4H2)}_1/2 < 1+ 472 for some constant ¢ > 0. In addition, as

T — (),
p H?p+ p"H(I +72H)(I — 7*H?)"Y(I + 7H)Hp — 2u Hpu.
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Therefore, we have
2
1 <exp {7-2 {MTHQ,U, +u H(I+m?H)I - H* NI + 7°H) H,u,}] (1+ ch?)

for some constant ¢4 > 0. Therefore, we can find a constant ¢ > 0 such that
en Hu <& <(1+dr 2)e“TH“.

Plugging this into (50), we get

f++ <4{(1+C” 2) ou T Hu+272u T H? QGHTH”Q” Hp+%5 ,u TH? moy (1 —I-C” 2)2 2u H,u}

T 2, T g2
< 4e? H“(eZT"H“ 2e “H“—i-l—&-c” 2)

2
<03T,

where ¢ > 0, c3 > 0 are constants. The last two inequalities are both due to 72 - 0. We
bound f+_, f—+, f—— in similar ways. Assumption 2 then ensures that for sufficiently large
values of n,

max{fiy, fr—, fy, [~} <2r*/(logn)' L. (51)

In view of the decomposition

> fijZ{wa (n1—1 fz+—n2fz—} > {Zfij_nlfi+_(n2_1)fi—}

1<i#j<n J#i i=ni1+1 \j#i

+(n1_1)2(f2+ f++) +n22 fie = f+-)

=1 i=1
n n

1 Y, (fie—fr)+(ma=1) > (fio—f-)

i=ni1+1 i=ni1+1
+ n1 (m — 1)f++ +nnofy_ +ninof_4 + ng(ng — 1>f__

and that (51) implies

2r2n(n — 1)
(logn)t=<

9

ni(ny — 1) foq +nnefyo +nngf 4 +no(ng —1)f-_ <
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we obtain

P{(z1,...,2n) €C} | (21,...,2n) € By} = IS{ Z fij > 4r*n(n — 1)/(logn)1_61}

1<i#j<n

< FNJ { 2 fz'j - nl(nl — 1)f++ — n1n2f+_ — n1n2f_+ _ 712(712 _ 1)f—— = 2T2n(n _ 1)/(logn)1_51}
1<i

D fis— (= 1) fix —nafin > r*(n—1)/(logn)' = | z}]

<YEn {
i=1 J#i
+ Z E* [ {Z fij =mfiy — (ng — 1) fie > r*(n—1)/(logn)' = | 2 }]
i=ni+1 VES
{Z fir —mifiy > 12/ (logn) } P { S i —mfes > rPny/(logn)- }
i=1 i=1
{ Z fix —naf_y > r*ng/(logn)'™ 61} + P{ 2 fio —naf > r2n2/(logn)1€1}
i=n1+1 t=n1+1

<n —(1+C2) +4n—(3+03) < n—(l-i—CQ) + n—(l-l—Cg)'

The penultimate inequality is due to (44)—(48). We then have for large n

P{(zl,...,zn)eBnmCﬁ} <P{(z1,...,zn)eCﬁ | (zl,...,zn)eBn}

—(1+C2) 7(14»03)' (52)

<n +n

Step 2: Bounding initialization error. The next part of the proof is in line with
the proofs of Lemma 1 and Corollary 2 in Gao et al. (2018). Let B; denote the ith row of B,
which is defined by (40), and define B; = | B; Hl_lBi. Throughout this part, we conduct all the
calculation on the intersection of the events {(z1,...,2,) € B, nC¢} and {(w1,...,w,) € D}.

Step 2.1: Establishing the separation condition for the rows of B. Since
B;j = Bj when 0; = 0, we only need to lower bound ||By — Bp1. Let L, = Y, _, e for
uw=1,2. When L& + Lo < L& + La&y, we have

ni ni

5 5 = = evt e“iE_
1By~ Buli 2 [Bri — Bul = 3 [ :
i=

o L6y + Lo Lié + Lo&y
wi | L1é— + La&y

1 <
T L+ Loty ;e L&y + La&- S+ 5_‘
- Li(&y — &)
T L&+ Lot

Since
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for u =1,2, and Ly > nije ¥ > ne %/3, we obtain

3”6 (6 — & )_5+_£f

| B — Bnl1 = =
nLng 36£L€+

A similar argument holds when Li1§: + Lo§— > L1§- + L&t by using |B1 — Bn|1 =
Z?:m +1 | B1i—Buil at the beginning of the sequence of inequalities. Therefore, the separation
condition holds for B

& —¢
36ﬂZ§+ '

1 B. _ . >
min |B; = Bjfx =

Step 2.2: Bounding } o 4o, € Let v1 and D9 be the centroids from the k-median

step of Algorithm 1. Recall Jo = {i : 6; = 0} from Algorithm 1. Fill matrix V e Rvxn
with V; = v, 0 being its ith row, if i € J§ and V; = (0,...,0) if i € Jy. Let J = {i € J§ :

HV Bill1 = (§+ —&.)/(6e2LEL)}. As in Lemma 5 of Gao et al. (2018) we define

Cu={ieJ§:oi=u|Vi— Bilx < (& — &)/(6e“LEy )},

Ry ={ue{l,2}:Cy = I},

Ry ={ue{1,2}:Cy # &, foralli,jeCy 6] =53},

Ry ={ue{1,2}:Cy # &, there exist i,j € Cy,5.t. i # j, 67 # 63}

The counting argument in Lemma 5 of Gao et al. (2018) implies |R3| < |R;|. Therefore,

> < |R3|nL < |Ry|nL < 3¢L ) e,

1€UyeRg Cu e

Here the last inequality holds because } ;. ;e = 3 cp Dlicce €1 = Dlucp, gy €
|Ri|ne™/3. Hence, we have obtained

Z et < Z et + Z et + Z Z e’ + (1 4 3e%L) Z evt. (53)

&?;&o‘i i€Jo ieJ iEuueR3Cu i€eJo ieJ

Step 2.3: Bounding ), ; e and },_;e”. By definition of P from Algorithm 1,
we have

ZHPII IVi—Pli<(1+e) ZHPH |Bi — P
=1
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Then a bound for },_; | 2|1 can be established by

6e L§
P EEIIRS =BV = Bilh

ieJ €+ T ied
66£L ey A ~ ~ ~ —
< SELE S (1RIT: = Pla + 1B P - Bl
£+ =& =
6e5TE: W 5 15
< (2+¢ P I|1P; — B;ll1
( >€+_£i21u 1 IP — Bl
<@+ 6e L§+ 1Bk
- "Bl 1B
12e“ L ~
<2 +e>€*§+ 2 1B B
S+ -4 4
12e¥L ~
< 2+ 2P - B,
§+ —&-

where v means the larger of two quantities. Since [ B;[1 = e 37, e*&;; > e¥ine?® e, /3
we can bound ) ,_;e“" by

. 3 ~ ~
D¢ < e DB < g 3 (1B + 1R~ Bil)
TSt e

ieJ ieJ
3 12e¥LE, A ~ }
< ———F<2+¢e)—n|P—B|p+n|P— B|r
g {2+ ol Bl + 0l - Bl
3 12¢4T¢, } N
= —<2+e)———+ 1, |P— Blr. 94
e @ 1P Bl (54)

We also bound Zie 7, €% by

e < e DB < e 2 IR Bl < 1P Blr (659

ieJo ieJo ieJo
Combining (53), (54) and (55), we obtain
e < Y e (14 3e2L) Y e < O L %P — By (56)
{i;a'?;éo',b} i€Jy ieJ

for some constant " > 0.
Step 2.4: Bounding |P — B|r. We follow the argument of Lemma 6 in Gao et al.

(2018). By definition of P, |P — A% < |B — A|%. Then
|P= Bl = |P = Al = |B - Alf = %P - B,B—4)

<2(P-B,B—-A)|<2|P-B|r sup (K, A - B)|
K:|K|p=1:rank(K)<4

1 ~
<-|P-BJ2+4 sup (K, A— B2
4 K| K | =1Lirank(K) <4
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By rearranging terms we obtain

~ 16
P-BR<Y s (K A-B)
K:|K|p=1:rank(K)<4

Suppose K has singular value decomposition K = Z?Zl )\lululT, then

4 4
KK, A—=B)| <), IMllw] (A= B)u| < |A— B[, Y IN| < 2[4 - B,
=1 =1

Therefore, we have

8

\W—Bh<§ﬁ

A= Bl,. (57)

Define Q;; = exp(o; + o —i—z,L-Tsz) for 1 <i#j<mnand Q; =0for 1 <i<n. Bythe
triangle inequality,

|A =Bl <[A=Ply+ [P =Qf, +[Q - B, (58)

We bound the three terms on the right hand side separately. First by Example 4.1 in Latata
et al. (2018), for any v > 1 and ¢t > 0, we bound

2
P{IA — Pl > 2e/C0pV2 4 Cuel/i(ulogn)/2 +t | P} < exp(—é—) (59)
4

with some constant Cy > 0, where b = max; >;7_; P;;. Observe that }77_ | P = e® 37, e exp(z Hzj) <
g2ty €€ < ELne®™* for all i € [n]. Take t = {C4(1 + Cy)logn}'/? in (59), then
conditional on P, with probability at least 1 — n~(1+C4)

|A — P|y < C}(Ine®™ /2 4 Ch(logn)"/? (60)

for constants C] > 0 and C4 > 0.
By definition, for ¢ # j,

- - e2a+witw;+z] Hz; At %o 2190 H o P 222
|1:)ij o Q”| —e atw;twj+z; Hz; <e a+2wi+2w;+2z; Hzj <e ae w; + wjg ,

1 4 e2twitw+z] Hzj

and P;; — );; = 0. Then we obtain

n 1/2 n
IP=Qly < [P - Qlr < ( 2 845) =Y < ETne' (o)
=1

ij=1

By definition, (Q;; — Byj)? = e1@T2%it2wi f,. for i # j, and (Qy; — Bi;)? = exp(4a + 4w; +
2zZT Hz;). By Cauchy-Schwarz inequality,

1/2 1/2
Z e46+2w¢+2wjfij < ( Z €8a+4wi+4wj> ( Z ZQ]) )

1<i#j<n 1<i#j<n 1<i#j<n
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It is straightforward to obtain the bound

1/2 "

— ) . a5 . —4 a5

< Z 68a+4w1+4w]> < 64a Z e4w1 <L ne4a'
=1

1<i#j<n

Since fi; < f, we have

1/2
2
1<i#j<n

A

1/2
2
1<i#j<n

1/2 {47“ — 1)n/(log n)lfq}

< 2rf n/(log n)l_%

1/2

Hence, we obtain

1—e

Z (Qij — Bi]) < 2r fl/ L n264o‘/(logn) =,

On the other hand,

n n
Z(Q” o Bii)2 _ 53_ Z 646-&-4%- < 53_1471646 < 2T?1/QZ n2€4a/(log n) 1 . 1—eg
i=1 i=1

Then we bound ||QQ — B||, by

1—e

1Q — B|, < |Q — Blr <2r'2F*T’ne? /(logn) . (62)

Step 2.5: Bounding ;0 e“. Combining (56), (57), (58), (60), (61) and (62), we
obtain that conditional on P, with probability at least 1 — n~(1+C4)

2
{i'é‘oidi}

w —2a T a+w’ 2254 o —-1/452 a 1e
3170/ 3T e 2 {C{(LneQ N2 4 Ot (logn)Y? + € L net +2r1/2f/L e*@ /(logn) 41}

1/2
“{Ci’mezaiw)m + Y O 1)1q}
ogn) 12

for constants CY,C%, C%, C% > 0. By (10) and (11) of Assumption 1, we have 1/(ne?*+")1/2 —
0 and (log n)1/2/(ne2a) — 0. For any v > 0, we can then make r small enough such that
Z{Z 69%0;} € “i < e ¥yn. When + is fixed, r can still be a constant bounded away from 0.
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At last, putting (41), (42) and (52) together with the conclusion from the previous
paragraph, we obtain

P Z e > e “yn

{i:69+#0;}

< Eleazhia I p Z et > e “yn | {ay, ziti—y | 1((21,...,20) € By n Cpy (Wi, ...,wpn) € D)

{i:&?;éai}
+P{(z1,...,20) €BynCi} + P{(21,...,2,) € By} + P{(w1,...,w,) € D°}
< n—(1+C4) + n7(1+02) + n7(1+03) + n—2 + n—(1+01/2)

< - (1420)

with 0 < C < min{Cl/éL, 02/2,03/2, 04/2, 1/2}

Since 350 40,y €7 = € “nl(o, 69), we immediately get

P {¢(o, %) > 7} <P Z e > eWn | < n~(1420),
{i:69+#0;}

This completes the proof. |

Appendix C. Proofs of Theorems 8 and 9

C.1 Combining the initial error and edge counting

Let 6(-19 be an n-dimensional vector one obtains after line 7 of Algorithm 3. The following

Proposition 12 gives an error bound for 5(—1:0).

Proposition 12 Suppose that Assumptions 1, 2 and 3 hold. Let p(ai,z1) and (o, z1) be
quantities defined in (14) and (15) respectively, and

I(a1,21) = —2log ({P(ahzl)Q(OﬂaZl)}m + [{1 = plar, 20) {1 — Q(al,zl)}]m) :

Assume ni,ng € [(1 = 6,)n/2, (1 + 0,)n/2]. For any e > 0, define Be = {z1 : |21 — pl2 <
(1 —€/4)'2p}. Then there is an n, such that for all n > n.,

P ((35_1’0) # 01)
2

a1,z n 1Y —
< E{;Fll} [1(21 € B.) exp {—5(1 - e)I(al,zl)}] + exp {—(1 — 6)27_2} +n~1+0) (63)

for some constant C > 0.
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Proof We start with some notation. Let J, = {i : 0 = u,2 < i < n}, ny, = |Jul,
Jo={i: 60" = w2 < i <n},my = Tl for ue {1,2}, and Sy, = {i: 67 =

ul,0p = u2,2 <1 <N}, Myyuy = |Jujug| for ui, us € {1,2}. For convenience, we suppress the

superscript (—1,0) from (71(71’0) in the rest of this proof.

Recall the definitions of P;; in (3) and p(«, 2) and ¢(«, 2) in (14) and (15). Define events

Cr = { oax [z — pully < n},

2<i<n

D, = Z et < efgg(n —-1) 7,
{i:&i_l’o)yﬁai}

< nle'p(al,zl)} N {

E1=ClﬂDlﬁF1,

> P —mip(as, 21)

i€Jy

> Py —nag(ar, 21)

i€y

< n2€/Q(041, Zl)} 3

|

where n = 7(12logn)*/# as in the proof of Proposition 7, v > 0 and ¢’ > 0 are fixed constants
that will be specified later. It is worth mentioning that Cq, D1, F; and FE; are all measurable
with respect to the o-algebra generated by {ay, z;}I* ; and A | The proof of Proposition 7
implies that P(Cy) = 1—(n—1)"2 > 1-n"%2 and P(Dy) = 1—(n—1)"(1+2C1) > 1~ (1+C1)
for some constant C7 > 0 that depends on ~.

Conditional on a; and z; € B, we provide a probabilistic bound for F; on event Cj.
With slight abuse of notation, let E denote the expectation with respect to the measure of
z’s restricted on C;. When ¢ € J; and o1 = 1, we have

1/2

E(P2 | o1, 21) < €2 E{exp(20y + 22] Hz) | o1, 21}
= 620‘1+25_2Z1TH“E(62“")E [exp{22] H(z; +p)} | 2]
Cfeonta exp(TzHHle%/Q)

<
< 05620114-25(1 + 7_2)7

for n sufficiently large. The first inequality in the preceding display holds as a result of
S(x) < e® for x € R. In the second inequality, we use Assumption 1 to bound E(e?“#), apply
Lemma 11 and consider the fact that both z; and z; are bounded on C; and {z; € B¢}. The
last inequality holds for n sufficiently large as 7 — 0 as n — o0. We proceed to bound Py;
on ai, 2 € B,

P < exp(ag +a+w') exp(leHzi) < Chexp(a; +a +w'),

where we again apply S(z) < e® for x € R and z; is finite on {z; € B.}. On Cy n {z1 € B},
by Assumption 1, we bound ¢ from below by

q(ai, z1) = Cyexp(ag + @ —w), for n sufficiently large.
We apply Bernstein’s inequality and obtain

t2

> Pri—nag(an, 21)

i€Jo

>t | a1,21} < Qexp{—2n20562a1+2a(1 T 72) + (2/3)Chemraret

|
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Take t = noe’'q(aq, 21) = Cinge’e® T2 and we further obtain, for some proper constants
% and Oy,
61/2,,?/2 6/26—2g
P Pii — nag(aq, z1)| = neé'q(aq, 2 1,21 <2expi — 4 ;
{ Z 1 — n2q(aa, 21) 2e'q(ar,z1) | an 1} p{ 2011+ 72) + (2/3)CLC e
’LEJ2

< 2exp (*CETLQG/@_H_M,)
< %n—(uczx

(64)
The second inequality in the preceding display holds as ¥’ =% = 1 by Assumption 1. We
apply (11) in Assumption 1 to obtain the last inequality. A similar argument yields that
conditional on Cq, for z1 € B,

|

Combining (64) and (65), we obtain that conditional on «; and z; € B,

P(FS | Cp) < n~(1FC2),

1 _
Z P —nip(ag, 21)| = nieplag, z1) | al,zl} < §n (1+C2), (65)

’iEJ1

Together with the probabilistic bound on Cy, for some constant C¥, we have conditional on
o1 and 21 € B,

P(F{) < P(F{ [ C1)P(Cy) + P(F7 | CT)P(CT) < P(F{ | C1) + P(CY)
< n—(l-’rCz) + n—3/2 < n—(1+C§’)’ (66)

~

Inspection of the above argument reveals that as long as z; € B, the constant C4 in the
preceding display does not depend on «; and z;, whence we obtain

P(ES | 21 € Be) < P(CY) + P(D§) + P(F§) < n= %2 4+ n~(0F0) 4 n=(5C2) < p=(HO) - (67)
with 0 < C < min{1/2,Cy, CJ}. It will be useful at the end of the proof to give a probabilistic
bound on E; without conditioning on {z; € B¢}

2
P(EF) < P(Bf | 21 € B) +P(s1 € B) <n U0 rexp{~(1-¢/2) 25}, (68)

where the last inequality follows from (37) in Lemma 6.
Next observe that

P{al:l}(a'l =2 and E1>

1 1
= P{a1:1} E Z A < 7772 Z Ay and By

iEJl iejg
1 (69)
_ 91,21 T T X
E{Ul 1} Zl € B i 2 Al’L SS o Z Al,z and E1 | aq, 21
7,6]1 i€
+ E7LA BS)P ! A ! A and E
{o1=1} 1(z1 € 72 11\72 1; and By | o, 21
mq mo ==
ieJy 1€J2
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We deal with the first term in the above display. Assume z; € B, in the following. We then
have

1
ZAlz\mfZAlz and By | ar, 2

’L€J1 €2

—E Z A < — Z Avi | [ {as, zi}imq ¢ o1, 21

zejl 7,6J2
e E{ ( S el Y 12+2Ah>uaz,zz}l }y]
L Z€J11 ma i€J22 i€Ja1

(70)
The equality holds because of the tower property of conditional expectations. We now

consider the conditional expectation inside the round brackets in the preceding display.
Conditional on {a;, 2}, we define for i € [n]

w; Bernoulli(Py;).

Contionally on {o, 2;}7;, (A1i)2<i<n are mutually independent and independent of ACD,
whence we have, for any ¢ > 0 measurable with respect to the o-algebra generated by
{a;, 2}, and A,

E{ ( ZAlz\WlLZAlz+2A11)|{alvzl}z 1}

Z€J11 2 ZEJQQ 7,€J21
1
=E<1(FE S - an
{ ( Z W m Z W + Z W> {alazl}z=1}
zeJll ieJag Z€J21
=E|1(E1)E { < Z Wi < Z Wi +7 2 W) | {ai, zi}iog, A )} ‘ {O‘hzi}?_l]
’LEJH ZGJQQ Z€J21

N

E {1(E1) H (Pliet/mQ +1- P12> H (Pliet/m2 +1- Plz) H (Plieit/ml +1-— Plz) ‘ {057;, Zi}?—l}

iGJQQ iE]Ql iE]ll

1(E1)exp{ DPue™ — 1)+ Y Pue™ — 1)+ Y Pr(e™ - 1)} | {ai,zi}?zll :

iGJQQ iGJQl ’iEJll
(71)

<E

The second equality in the preceding display holds by the tower property of conditional
expectations and because F; is measurable with respect to the c-algebra generated by
{ai, 2} | and A1 In the first inequality, we apply the Chernoff bound and consider the
fact that mq, me, Py;’s and (JuluQ)ulme[Q] are all measurable with respect to the o-algebra

generated by {ay, z;}7_, and AV, The second inequality holds as 1+ z < e” for all z € R.

39



GAO, MA AND YUAN

Write p = p(aq, 21) and ¢ = q(aq, z1) as shorthands. Define the following quantities

K1 = exp{ma(e'/™ — 1)q + my(e”"/™ — 1)p},

Ky = exp{(et/m2 — 1)( Z Py _mQQ)}a

i€Jao
K3 =exp {(e_t/m1 — 1)( Z P - mlP) } )
€11
K, = exp{(et/m2 - 1) Z Ph-}.
1€J21

It is clear that (71) is the same as E[1(E1) K1 K2 K3Ky | {o, 2}, |. Set t = mymglog(p/q)/(m1+
ms). Next we deal with K7, Ky, K3 and K, separately.
Before we proceed, we mention the following useful facts. For any fixed v > 0, we make
n sufficiently large so that 0, < 7. Hence, ni,no € [(1 —7v)n/2,(1+ v)n/2]. On event
Ei < Dy, we have

2

. A(-1,0 )
ol "D 2o} <e2 Y e%<4n-1)<%n.

\V)

{i:6(71’0>7&0i}

i

Therefore, we get mia < yn/2, mo; < yn/2, and hence my, mg € [(1 — 27v)n/2, (1 + 2v)n/2].
Furthermore, for z1 € B, the lower bound (25) holds for z{ Hu. We denote ¢ = exp(eu” Hu/8).
For z1 € Be, on event Ej, both exp(z] Hz;) and exp(z{ Hyu) are bounded above by some
constant &, which is larger than 1 since z{ Hu > 0 when 2 € B.

First we deal with the main term Kj. Since (26), (27), (28), (29), (30), (33) and (34)
continue to hold for p and ¢, we obtain

(1= K)e* e TED(wy, 21) < p < 2T B D(wy, 21), (72)
(1-— m)eQae_ZlTH“D(wl, 21) < q < 62&6_21TH“D(W17 21), (73)

where K =1— (1+£71)2/4€ (0,1) and 0 < e™%D < D(wy, 21) < e’ D. For this particular
choice of k, we have

—_

(1 )2 1z L petye 1o %(é— 1) > 0. (74)

[\)

By direct calculation,

maq(e!™ — 1) + myp(e ™ — 1) = — {mlp + Mg — (M1 + ma)p™tE g }
il
n P
<-3 {p +q—2y(p—q)—2 <q> (pq)1/2} . (75)

We aim to show that the term inside the round brackets of the last display and —nl(a;, 21)/2
are close. To this end, first we have

pra-2p—a) =2/ (a)"? _ , pP+d? (N 1 ()
(P72 — g1/2)2 7p1/2 g2 q (p172 — g1/2)2
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Using (72), (73) and (74), we obtain

9 P2 + ¢1/? <9 ez Hi =32 Hp _5 es1 Hin <4 £-1
7 = 7(1—&)1/26'22—1{”—1 D 75—17

p1/2 _ q1/2 7(1 _ Ku)l/ge%zITHu _ 6—%21TH/4 3
o7 ZIH,U, ol =2 v
<p> el U8 ~1,
q (1—-k)e ™ Hy 1—-k

(b0)"? 1 T 5

< = < .
<p1/2 _ q1/2)2 {(1 o K/)l/ze%z;H,u . ef%zIH,u}g {(1 _ 16)1/2621TH” - 1}2 (é _ 1)2

We choose v such that the second last and third last displays are sufficiently small. Hence,
for sufficiently small constant v > 0,
p+a+2y(p—q) —2(p/9) (pa)"/? ¢

(p'/2 — ¢1/2)2 >1- 4 (76)

We also have

I(on, 21) = — 2log {1 - %(pl/2 —q'?)? - %{(1 —p)?—(1- Q)1/2}2] :
Let
B= 30—+ {1 ) — (1 g) PP
R TR ESY Y (p'/% + ¢'/%)?
_2(20 q’") [1+{(1—p)1/2+(1—q)1/2}2 .

By (72), (73), (9) of Assumption 1, and that exp(z{ Hu) < &, we have p,q < 3/4. Thus,

_ 2
(p1/2 n q1/2>2 e (6%21TH“ + eféleH”) D(w1,21)
{(1—p)V2+ (1 -2 (1/2+1/2)?
< 626+w/(gl/2 +§71/2)25’

which goes to 0 as 2a + w’ — —o0 by (9) of Assumption 1. Consequently,

B < %62a+w/ {e%leHu —(1— ,.;)1/26_%sz#}2§ {1 R, <gl/2 . 5_1/2>2D}

2
< %em*“’/ {51/2 - %(1 + 5‘1)5_1/2} D{1+ e (€7 4 ¢72)°D}

which also goes to 0 as 2a + w’ — —o0. Since log(1 — B) = —3 — % for all 0 < B < 1/2, we
obtain I(ay,21) < 28 + 26%. Therefore,

I(Oél, Zl)
(p1/2 _ q1/2)2

<<1+5>[1+ Lakh s ]

{A=p) 2+ (1 -2}
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Since the limits of 8 and (p*/? + ¢/?)2/{(1 — p)'/2 + (1 — q)"/2}? are both zeros, we have for
large values of n that

I(Oél, 21) €
(pl/2 — ¢1/2)2 <1+ 4 (77)

We combine (75), (76) and (77) to obtain

nl—e/d

21-}-6/111(&1,21)} <‘3Xp{—g (1—%) I(a1,21)}. (78)

K < exp{—

To bound K>, we have the decomposition

ngexp[ t/m?'— {Z P —nog — Z Py + nQ—m2>Q}]-

1€Jo i€J12

By (72) and (73), we bound €%/ — 1 by a constant

e v+i 2] Hu s 72
et/m2_1:<p> 1+2_1<<p> 2_1< LT - 1< 3 —1. (79)
q q (1 — r)e = Hu -k

We then bound | )]
event 7 we have

icg, Pri = n2ql, e, Pri and (n2 — ma)q one by one. By definition, on

nae'q < né'q. (80)

2P11_n2q

ZEJQ

We use log(1 —x) < —z for 0 < x < 1 to obtain

(p1/2 + q1/2)2

{@—MW+u—mel

I(on,z1) =20 = (p1/2 _ q1/2)2 [1 n

y (72) and (73), we get

I(Oél, 21)
(p1/2 _ q1/2)2

1.7

—1/2.9

>1+ % {(1 ) [ (S Q} -1, (81)

as @ — —oo. Following (74), we also have

q _ 1 - 1 <4 (82)
(pL/2 — ¢1/2)2 {(p/a)? — 1}2 T {1 —k)V2er Hr )2 T (E—1)%

Putting (79), (80), (81) and (82) together, for a suitably chosen €, we obtain

=2
§ N e i
Py —noq| < | —— — 1| nél(ay, 1)
;2 <1 - Iaz1) (P2 —a'2)? (g3

t/mz _

< Snlay, ).
32n (a1, 21)
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Since Py; < exp(aq + o + 2] Hz;) < £e?H%1e¥i | then on event F; we have

Z P, < 5625+w1 Z evi < 5825%01 Z evi < EeZEerle*g%(n _ 1)_

i€J12 i€Ji2 {iia',g_l’O)#O'i}

By (73), the definition of D(ws,21) and Assumption 1, we see ¢ = €2®t¥1. In view of (81)
and (82), we make v small enough such that

—2
t/mQ — Z P < (15_ P 1) 5625“"1679%(71 -1)

Z€J12
72 _e2atw 1/2 _ 1/2)2
< ( < >5 1 b —a) e Inl(ar, 21)

l—r (P2 = q"%)?  I(on,21)
€
ﬁnf(cn7 21).
(84)
Since ng — ma < 3yn/2, combining (79), (81) and (82) we obtain
=2
3 (p"/? — ¢/%)? q
tm2 _ 1) (ny — <[ 1) 3
(e )(n2 —ma)q (1 — S (a1, 21) I(a,21)  (p2 — q12)2
€
—nl
32n (a1, 21) (85)
for small enough ~. Combining (83), (84) and (85), we obtain
Ks < exp {??:271[(041, 21)} (86)
The same bound for K3 is obtained similarly to bound Ky
3e
K3 <exp {32711(@1, zl)} (87)

Lastly, the following bound for Ky is obtained by the same argument as in establishing
(84)

Ky <exp {3%71[(@1, zl)} (88)

Combining (71), (78), (86), (87), (88), we get

E{ ( ZAIZ\iZ 12+ZA11> |{O‘iazi}?—1}

ZEJH ’iEJQQ lEJQl

< exp {—’;(1 - 126)[(041,2:1)} < exp {-%(1 - e)I(al,zl)}.

Since the rightmost side of the above display depends only on (aq,z1), by (70) we obtain
for z1 € Be

1 1 n
mil Z Al,i < miz Z A17i and El ’ a1,21 | < exp{—§(1 - e)I(aljzl)}.

€Jq €2
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By (69), we further have

P{alzl}(&l = 2 and El) < Eal’zzll} [1(2’1 € Be) exp {—

(o (1= (o1, 21) || + Pioy iy (21 € BY)

(1- 5)1(041,21)}] + eXP{ (1- 6/2)102}

o3 o3

< E?;l’il} [1(,21 € Be) exp {—

where the last inequality is due to (37) in Lemma 6. Finally, in view of (68), we have
P{Ul:l}(a'l =2) < P{Ul:l}(a‘l =2 and Ep) + P{Ul:l}(Ef)

< E?;’le} [ (21 € Bo) exp{—g(l — e)[(al,zl)}] + exp{ (1— 6)2/)

T2

2
} +n~(1H0O),

C.2 Proof of Theorem 8

The proof strategy here is similar to that used in the proof of Theorem 2 in Gao et al.
(2017). For i € [n] there is a permutation 7; such that

(o, _1 Z (0j # mi(o —&0 )))

3

Without loss of generality, we may assume that m; = Id is the identity permutation. Then
by Proposition 7 and Lemma 4 in Gao et al. (2017), we obtain that for some constant C' > 0,

for each ¢ = 2,...,n with probability at least 1 — n~(+¢),
5, = m(6Y),

Together with Proposition 12, we obtain that for ¢ =1,...,n

)

P(o; #6;) < mm¢m(“mxa_m(ﬂ0”+m@¢m(<m”

Here, for any fixed € € (0,1/2), we pick

By Markov’s inequality, We have

I 18
P <S—-— ) Ploi#07;
(0.3)> 7} < 5o 3 P(i £ 3)

1=
—€' 9~ (1+C)

< -+

S

77€
VTL

N
3

We divide the remaining proof into two cases depending on the relative magnitude of 7,
and n~(1+C/2)
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Case 1 If 7 > n~(+C/2) then
¢

P{l(0,6) > 75} < 2% +2m O/,
n

To control the ratio Pf; /U5, we further divide into two subcases.
Subcase 1.1 In this subcase, we assume that

2
P

e 17927 « g {1(zo € Be)e_(l_e)%l(ao’z(’)}- (90)
We then have
EG™ {120 € Bo)e (1) E 10}
nn —(1— o?
<ER™ {1(,20 e B)e 1 )51(0‘0’20)} +Ce 17932 (91)

2
=Ep™ {1(z0 € Be)ef(l’e)%I(QO’ZO)G*(FE/)%I(QO’ZO)} + Ce 017952

2

— o(1) - E30 0 {1(z0 e Be)e—u—e)%nao,m)} L e (-9E (92)

Here, (91) holds since exp{—(1 — €')mI(ap,z0)} < 1 and Py, (20 € Bo\Be) < P, (20 ¢ Be) <
Cexp{—(1 —€)p?/(27%)}. In (92), the equality holds since ¢ > ¢ and nl(ag, 29) is bounded
from below uniformly when zo € B, by a sequence that diverges to infinity. Finally, (93)
holds since both terms in (92) are o(7f,) as n — oo under (90). Hence,

/

P{l(0,5) > 75} < ;—“ + 20702 = o(1). (94)

n

Subcase 1.2 In this case, we consider the situation complementary to (90), namely

2

Eop0 {1(20 € B)e Ul )} < =094, (95)
Equation (95) leads to
B {em(1m98 00} < B0 {120 € B)e (1798100} 1 Py, (2 ¢ B)
< e_(l_e)zri?. (96)
For the first term in ¢, we have
Ef {1(20 € Bef)e_(l_el)%[(o‘o’zo)}
_ E?}oo,zo {1(20 c Bd)ef(lfe)%I(ao,zo)ef(efe’)%l(ao,zn)}
— o(1) E5 {1(20 € Bo)em (1795 o0 0)} (97)
=o(1) E?{‘%’ZO {67(176)%1((10"20)}

~(1-9 £
Le 272 | (98)
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Here (97) holds since nl (g, zg) is bounded from below uniformly when zg € B¢ by a sequence
that diverges to infinity and € > €. The bound (98) is due to (96).
Under (95), we then have

2 2
’ _(1—\2 —(1—€) L —(1—€) 2~ _
e :E%‘L’ZO {1(20686/)6 (1 E)2I(°‘°’Z°)}+e 1=z « e 17952 < p

Hence, the desired bound (94) continues to hold.
Case 2 When

76 <n 02 <t (99)

)

then
P{l(o,0) > vy} = P{l(o,0) > 0}
< ) P(o; #3))
i=1

v+ 2n ¢

n
<n 92 4+ 2n7% = o(1).

Here, the second inequality is a union bound. The third inequality is due to (89) and the
last inequality holds due to (99). This completes the proof.

C.3 Proof of Theorem 9

The lower bound can be established by adapting some arguments spelled out in Section 3
of Gao and Ma (2020). We include them below for the manuscript to be self-contained.
For any 0 < ez < €1 < 1/2, we have

€1

1%

€1 €2 =n
Vy SV, e — 0.

zn

Therefore, for any fixed € € (0,1/2), we may choose a fixed € > 0 and a sequence §' = 9/,
such that

1 /
~« 8«1, &,z (100)

Then, we choose a o* € [2]" such that ny(0*) € [(1 = ")n/2, (1 +")n/2] for u = 1,2. Let
Cu(c*) = {i € [n] : o} = u}. Then we choose some C; < Ci(c*) and Ca < Ca(c*) such that
IC1] = |Ca| = [(1 — 0")n/2]. Define

T=CuCy, Zp={cec[2]":0i=0fforallicT}.
The set Z1 corresponds to a sub-problem that we only need to estimate the clustering labels
{O'i}ieTC-

Given any o € Zp, the values of {0;};er are known. Now, we define the subspace

7)2 = {Mn(avHauﬂ-aFa)e,PnZO'EZT}.
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We have PY < P,, by the construction of Z7. This gives the lower bound

n

1
inf supEl(0,0) > infsupEl(o,0) = inf sup — 2 P(ai # 0i). (101)

G Py & po G oeZr Mo

Lo} #0}) =

The last equality above holds because for any o', 0% € Zp, we have %Z?
(101), we have

O(8') = o(1) so that £(c!, %) = (1/n) X" | 1(c} # 0?). Continuing from

Te
1nfsuprPUz7fal)/| |'A ZPO’l#UZ
0 geZp N i1 n o OEZT 'LETC
|T¢| 1
> T Z  inf ave P(6i # ). (102)
For each ¢ € T,
. ~ . 1 ~ 1 N
inf ave P(O’Z # Ui) > aveinf fP(U; oi=1) (O’Z‘ #* 1) + fP(U; 0i=2) (O’Z‘ #* 2) . (103)
0; 0€EZ o oy 2 B 2 0%

Now consider any fixed pair (P(thi:l), P(o‘,i,ai=2))' Let my and mo be the number of
nodes with label 1 and 2 in o_;, respectively. Let m = mj v mo. By the construction of
Zr, we have
'n
5"

By data processing inequality, the total variation distance between this pair of distributions
satisfies

-t tm

TV(P(s_,.0=1)s Plo_s.0=2)) = TV(PY, PL), (104)

where P2 and PL refer to the null and the alternative distributions in (13) with m obser-
vations from either community. Continuing (104), we further obtain from Lemmas 5 and 6
that

TV(P(o_,0=1):Plo_soi=2)) = TV(PY,,PL) = 15, for any €’ € (0,1/2),

where we have used the second last display and the fact that 6’ = o(1). Together with (101)
and (102), this implies that for any €” € (0,1/2),

inf sup E((0,5) 2 ' L5, .
G P,

We complete the proof by observing (100).
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