
Journal of Machine Learning Research 23 (2022) 1-50 Submitted 9/20; Revised 4/22; Published 10/22

Community detection in sparse latent space models

Fengnan Gao fngao@fudan.edu.cn
School of Data Science, Fudan University and
Shanghai Center for Mathematical Sciences
N202 Zibin, 220 Handan Road, Shanghai 200433, China

Zongming Ma zongming@wharton.upenn.edu
Department of Statistics and Data Science
University of Pennsylvania
265 South 37th Street, Philadelphia, PA 19104, USA

Hongsong Yuan yuan.hongsong@shufe.edu.cn
Research Institute for Interdisciplinary Sciences and
School of Information Management and Engineering
Shanghai University of Finance and Economics
777 Guoding Road, Shanghai 200433, China

Editor: Edo Airoldi

Abstract

We show that a simple community detection algorithm originated from stochastic block-
model literature achieves consistency, and even optimality, for a broad and flexible class of
sparse latent space models. The class of models includes latent eigenmodels (Hoff, 2008).
The community detection algorithm is based on spectral clustering followed by local refine-
ment via normalized edge counting. It is easy to implement and attains high accuracy with
a low computational budget. The proof of its optimality depends on a neat equivalence
between likelihood ratio test and edge counting in a simple vs. simple hypothesis testing
problem that underpins the refinement step, which could be of independent interest.

Keywords: blockmodel, eigenmodel, minimax rates, social network, spectral clustering

1. Introduction

Network is a prevalent form of relational data. A central theme in learning network data
is community detection (Goldenberg et al., 2010; Fortunato, 2010). Community detection
seeks to partition the nodes of a network into several disjoint subsets (a.k.a. communities)
upon observing the adjacency matrix (Girvan and Newman, 2002). The underlying assump-
tion is that nodes within the same community share some commonalities in their connection
patterns. To understand and to motivate algorithms for community detection, statisticians,
probabilists and theoretical computer scientists have studied stochastic blockmodels (SBMs,
Holland et al., 1983) extensively. To date, researchers have obtained a thorough understand-
ing of the fundamental limits and the behavior of various algorithms under SBMs. For more
details, we refer interested readers to the review papers Abbe (2017); Moore (2017) and
the references therein. A major shortcoming of SBMs is that nodes within the same com-
munity must have exactly the same degree profile, and hence SBMs cannot model degree
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heterogeneity which is commonly observed in real world networks. To mitigate this issue,
researchers have proposed degree-corrected blockmodels (DCBMs) where an extra sequence
of degree correction parameters was used to lend more flexibility to individual node degrees
(Karrer and Newman, 2011). In the regimes of strong consistency (when perfect recovery of
community structure is possible) and weak consistency (when perfect recovery except for a
vanishing proportion of nodes is possible), it is known that spectral clustering followed by
certain local algorithm could achieve the best possible accuracy (Abbe, 2017; Gao and Ma,
2020).

In a separate line of literature, statisticians have proposed and studied a class of network
models called latent space models (Hoff et al., 2002; Hoff, 2003; Handcock et al., 2007; Hoff,
2008; Krivitsky et al., 2009; Shalizi and Asta, 2021). We may view this class of models
as a natural extension of generalized linear models to network setting. In this paper, we
consider the following generative model for entries of the observed adjacency matrix A. For
any positive integer m, let rms “ t1, . . . ,mu. First, we exclude self-loops and so Aii “ 0 for
all i P rns. In addition, conditional on unobserved values of tαiuni“1 and tziuni“1, we assume
that the Bernoulli random variables tAij “ Aji : 1 ď i ă j ď nu are mutually independent,
and for each pair i ă j,

Pij “ PpAij “ 1 | tαi, ziu
n
i“1q “ 1´ PpAij “ 0 | tαi, ziu

n
i“1q

“
exppαi ` αj ` z

J
i Hzjq

1` exppαi ` αj ` zJi Hzjq
.

(1)

Model (1) is a generalization of the logistic regression model to the binary network setting.
Here tαiuni“1 is a sequence of degree parameters. Nodes with larger values of αi’s are expected
to have larger degrees. Furthermore, tziuni“1 Ă Rd are the latent positions of the nodes in
a d-dimensional latent space (a.k.a. “social space” in the latent space model literature),
and H an unobserved d ˆ d symmetric matrix that moderates how the latent positions
affect edge formation. To impose a community structure, let there be k communities. Let
tLz,1, . . . ,Lz,ku be k different probability distributions defined on the latent space Rd. We
assume that there is an unknown deterministic community label vector σ “ pσ1, . . . , σnq

J P

rksn. For each node i, σi “ j means the ith node belongs to the jth community. In this
case zi is a random vector generated from Lz,σi , and all the zi’s are mutually independent.
Our goal is to infer σ from the observed adjacency matrix A.

The latent space model (1) not only models community structures but is also flexible for
modeling degree heterogeneity. The particular form (1) can be identified as the latent eigen-
model in Hoff (2008) which was shown to possess more flexibility and modeling power than
many other latent space models and various blockmodels. In particular, degree-corrected
blockmodel reduces to a special case of model (1) with tLz,j : 1 ď j ď ku each assigning
probability one on a distinct point. Ma et al. (2020) studied fitting methods for this model
when H is the identity matrix and αi’s and zi’s are considered deterministic. See also Wu
et al. (2017). Their study also revealed appealing numerical properties for clustering esti-
mated latent positions after fitting such a special case of (1), which has partially motivated
the study reported in this manuscript. Nevertheless, to the best of our limited knowledge,
the literature of community detection for latent space models has been scarce. A sound
understanding of community detection is crucial to applications of such models, as it pro-
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vides theoretical foundations to community discoveries in modeling real-world networks with
latent space models. The present manuscript aims to take a first step along this direction.

1.1 Main contributions

The main contributions of this manuscript are twofold.

• From an algorithmic viewpoint, we establish consistency of SpecLoRe, a simple and
intuitive community detection method for latent space model (1) in a stylized setting.
The method is based on spectral clustering followed by a local edge counting refinement
step. It was first proposed for blockmodels and its properties for the broader class of
latent space models, especially in the generality of latent eigenmodels, were previously
unknown. Our new consistency result suggests that the method enjoys a certain level
of universal applicability on exchangeable network models.
The community detection method aims only at estimating community structure while
not trying to find estimates of latent positions or their distributions. Thus, it is
different in nature from most algorithms developed for latent space models in the
literature which fit specific latent space models and estimate model parameters. See,
for instance, Ma et al. (2020),Wu et al. (2017), and Zhang et al. (2018). As estimation
of latent positions usually involves solving a computationally expensive optimization
problem, our method bypasses it and attains comparable or even better accuracy for
community detection with considerably lower computational cost.

• From a theoretical viewpoint, our consistency result sheds light on a better under-
standing of community detection for latent space models. Our explicit upper bounds
on rates of convergence exhibit an interesting interplay between signal-to-noise ratio
affected by network sparsity and that affected by latent positions and the quadratic
form matrix H in (1). In a more restrictive setting, we could even show that the re-
sulting estimator achieves nearly optimal rates of convergence in some minimax sense.
The key insight comes from the investigation of a special simple vs. simple hypothesis
testing problem which underpins the local refinement step in our method. We study
error rates of a simple edge counting procedure for this testing problem. By a seemingly
intuitive yet elegant exploitation of symmetry inherent to our model, we are able to
show that the simple testing method is equivalent to the optimal likelihood ratio test
under mild assumptions. The equivalence, being the major novelty of our manuscript,
paves the way for establishing optimality of our algorithm.

1.2 Relation to prior work

The present manuscript is connected to Ma et al. (2020) and Wu et al. (2017) which studied
efficient fitting methods for model (1) when the zi’s are treated as deterministic. Ma et al.
(2020) also touched community detection for (1). However, the method was a “plug-in” one
which ran k-means clustering on estimated latent positions. As we shall show empirically,
its computational efficiency is far inferior to the method we consider in this paper while
community detection accuracies are comparable.

Moreover, Handcock et al. (2007) and Krivitsky and Handcock (2008) proposed Bayesian
algorithms for community detection in a latent distance model which is different from (1)
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but can be approximated by it (Ma et al., 2020). Their study emphasized the algorithmic
and computational perspective, and theoretical properties of the proposed methods were not
considered.

In addition to the community detection literature for blockmodels that we have men-
tioned earlier, there have been extensive studies of community detection for random dot-
product graph models, especially via spectral methods. See the review papers Athreya
et al. (2017) and the references therein. These models relax SBMs and their variants such
as DCBMs and mixed membership blockmodels. However, these studies have also mostly
focused on “plug-in” methods and community detection is conducted through clustering esti-
mated latent positions. There has been little investigation on methods designed specifically
for community detection, and there is little understanding on fundamental limits of such an
inference goal.

1.3 Organization of paper

The rest of the manuscript is organized as follows. Section 2 presents the method and a
variant of it for which we shall establish theoretical results. Section 3 states all theoretical
results in an idealized setting for model (1) and the method. We demonstrate numerical
prowess of the method on simulated and real data examples in Sections 4 and 5, respectively.
After a brief discussion in Section 6, the appendices present detailed proofs of theoretical
results.

1.4 Notation

Let Sp¨q be the sigmoid function S : x ÞÑ 1{p1`e´xq, which is the inverse of the logit function
p ÞÑ log

 

p{p1´ pq
(

. Let 1pEq be the indicator function of E, where E may be an event or
a set. Recall rms :“ t1, . . . ,mu and S2 contains the two permutations of r2s. }A}2 is the
usual operator norm of A: }A}2 “ supx‰0 }Ax}2{}x}2. The Frobenius norm }A}F of matrix
A “ pAijqiPrns,jPrms is defined as }A}F “ p

ř

i

ř

j A
2
ijq

1{2. For vector v “ pv1, . . . , vdq
J P Rd,

}v}p “
`
řd
i“1 |vi|

p
˘1{p for p “ 1, 2. 1d and 0d denote a d-dimensional column vector with

all entries equal to 1 and 0, respectively. For notational simplicity in asymptotics, for two
deterministic sequences an and bn, we define the following notations: an À pÁq bn if and
only if there exists a constant C ą 0 such that an ď pěqCbn; an ! p"q bn if and only if
an{bn Ñ 0 p8q as n Ñ 8. We also write an “ Opbnq when an À bn, and an “ opbnq when
an ! bn.

2. Method

We consider a two-stage procedure, consisting of an initialization stage and a refinement
stage. The algorithm was first proposed in Gao et al. (2018) as a community detection
method for DCBMs. In what follows, we introduce the two stages separately for self-
completeness.
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2.1 A practical version

We first introduce a practical version of our method which we shall refer to as SpecLoRe (spectral
clustering followed by local refinement) in the rest of this paper. It is obtained by running
Algorithm 2 with initial value given by Algorithm 1. It relies on Algorithm 1 to process
the adjacency matrix for an initial guess pσ0 and on Algorithm 2 to further refine the crude
yet informative initial guess to obtain the final estimator. Here and after, we assume the
number of communities k is known.

Initialization We summarize the initialization stage as Algorithm 1. In this stage, we
first compute the best rank-k approximation pP to the observed adjacency matrix A where k
is the number of clusters. Note that this is easily achieved by the celebrated singular value
decomposition. Then we apply weighted k-median clustering on normalized rows of pP .
While running weighted k-median clustering, we only seek a constant-factor approximation
solution to ensure that the output could be produced within polynomial time complexity
(Charikar et al., 2002; Chen et al., 2018). Here ε is required to be an absolute constant.

Algorithm 1: Initialization
1: Input: Adjacency matrix: A; latent dimension d; number of clusters k.
2: Find the solution to the following optimization problem

pP “ arg min
rankpP qďk

}A´ P }2F. (2)

3: Let pPi be the ith row. Define J0 “ ti P rns | } pPi}1 “ 0u. For i P Jc0 , define
rPi “ pPi{} pPi}1. Put pσ0

i “ 0 for i P J0.
4: Find a p1` εq approximate weighted k-median solution for clustering p rPiqni“1. That is,

find labels pσ0 “ tpσ0
i u
n
i“1 P rks

n and centers pvl P Rk, l “ 1, ¨ ¨ ¨ , k, such that

k
ÿ

l“1

min
vlPRn

ÿ

tiPJc0 :σ̂0
i“lu

} pPi}1} rPi ´ pvl}1 ď p1` εq min
σPrksn

k
ÿ

l“1

min
vlPRk

ÿ

ti:σi“lu

} pPi}1} rPi ´ vl}1.

5: Output: pσ0.

Refinement We then state the local refinement procedure in Algorithm 2. Starting with
an initial estimator pσ0, we refine it by the following simple and intuitive majority voting rule.
For node i, we look at all communities prescribed in pσ0 and calculate the relative connecting
frequency from i to each community. Then we recalibrate the community label of node i to
be that of the community to which it most likely connects. Since the refinement is strictly
local, it can be easily carried out in a parallel fashion on each node. As the process only
involves counting edges, a crude inspection of the algorithm puts the computational cost of
one round of refinement at Opn2q. Moreover, as simulated and real world examples reported
in Sections 4 and 5 suggest, one typically only needs to run an Op1q round of refinement to
arrive at a stable estimator.
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Algorithm 2: Local Refinement
1: Input: Adjacency matrix: A; number of clusters k; an initial label vector pσ0; number

of iterations R.
2: Initialize pσold :“ pσ0.
3: for tÐ 1 to R do
4: for iÐ 1 to n do
5: Update the labels

pσnew
i :“ arg max

uPrks

1

|tj : pσold
j “ uu|

ÿ

tj:pσold
j “uu

Aij .

6: end for
7: pσold :“ pσnew.
8: end for
9: Output: pσ :“ pσnew.

2.2 A theoretically justifiable variant

In this part, we state a theoretically justifiable variant of SpecLoRe, summarized as Algo-
rithm 3, for which we will establish an upper bound in Section 3. As an artifact of our
proof techniques (see the proof of Theorem 8), we are unable to present a cleaner theory
for SpecLoRe. As a remedy, the new comprehensive Algorithm 3 has two stages as well and
combines both Algorithms 1 and 2, albeit not in a simple consecutive fashion.

The first part of Algorithm 3 (lines 2–7) does a separate initialization on each node by
performing Algorithm 1 on the network excluding node i, leading to a vector pσp´i,0q. It then
applies Algorithm 2 on pσp´i,0q to obtain a refined estimate for node i, denoted by pσ

p´i,0q
i .

The separate initializations dissolve an issue in the proof. However, since each initialization
could end up with a different permutation of community labels, the second part of Algorithm
3 (lines 8–11) aligns all label permutations with that of pσp´1,0q.

Algorithm 3 has at most polynomial time complexity. We do not emphasize its compu-
tational efficiency though, since we view it more as a proof device rather than a practical
replacement of SpecLoRe in the previous subsection.

3. Theoretical results

We present decision theoretic results for Algorithm 3 on model (1). We focus on the balanced
two community case, i.e., we consider the case where k “ 2 and the two communities have
roughly equal sizes. The need to consider Algorithm 3 is due to proof technique, and we
show in later sections that there is little numerical difference between its accuracy and that
of SpecLoRe in Section 2.1.

3.1 A decision-theoretic framework

We shall establish uniform high probability error bounds for Algorithm 3. To this end, we
first define classes of models for which uniform error bounds are to be obtained.
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Algorithm 3: A provable version of latent space model community detection
method

1: Input: Adjacency matrix: A; latent dimension d; number of clusters k.
2: for iÐ 1 to n do
3: Let Ap´iq P t0, 1upn´1qˆpn´1q be the matrix obtained from removing the ith row and

the ith column of A;
4: Apply Algorithm 1 on Ap´iq to obtain pσp´i,0q P rksn´1;
5: Augment pσp´i,0q to an n-dimensional vector by inserting 0 in the ith position;
6: Update

pσ
p´i,0q
i “ arg max

uPrks

1

|tj : pσp´i,0qj “ uu|

ÿ

tj:pσ
p´i,0q
j “uu

Aij .

7: end for
8: Define pσ1 “ pσ

p´1,0q
1 .

9: for iÐ 2 to n do
10: Let

pσi “ arg max
uPrks

ˇ

ˇ

ˇ
tj : pσ

p´1,0q
j “ uu X tj : pσ

p´i,0q
j “ pσ

p´i,0q
i u

ˇ

ˇ

ˇ
.

11: end for
12: Output: pσ “ ppσ1, . . . , pσnq

J P rksn.

Uniformity class Let the adjacency matrix be A “ pAijq “ AJ P t0, 1unˆn. Given a
deterministic community label vector σ P r2sn, we suppose that the edges are generated in
the following way:

αi
iid
„ Fα, zi

ind
„ Fz,σi , i P rns,

Aij “ Aji | αi, αj , zi, zj
ind
„ BernoullipPijq, i, j P rns,

logitpPijq “ αi ` αj ` z
J
i Hzj .

(3)

Here Fα is a distribution from which the αi’s are generated, and H is a symmetric n ˆ n
matrix. The two distributions tFz,j : j “ 1, 2u generate each latent position zi depending
on the value of σi. For most of theoretical results below, we further assume that

Fz,j
d
“ Ndpp´1qj´1µ, τ2Idq, j “ 1, 2. (4)

In other words, we assume that the latent positions within each community are generated
according to an isotropic multivariate Gaussian distribution with shared covariance structure
and different mean vector depending on the community label1. Here and after, Id is the
dˆ d identity matrix. For identifiability of µ, τ and H, we assume that

}H}2 “ 1. (5)

1. In view of Lemma 2 later, the same lower and upper bounds hold if the two component mean vectors are
in general positions µ1 and µ2 with }µ1}2 “ }µ2}2 instead of being symmetric about origin. We choose
the symmetric version mainly for convenience of arguments.
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In what follows, we denote such a model by Mnpσ,H, µ, τ, Fαq. For each σ P r2sn and
each j P r2s, let nj “ njpσq “ |ti : σi “ ju|. The uniformity classes of interest are of the
form

PnpH,µ, τ, Fαq “
!

Mnpσ,H, µ, τ, Fαq : njpσq P
”

p1´ δnq
n

2
, p1` δnq

n

2

ı

, j “ 1, 2
)

, (6)

where δn “ op1q is some vanishing sequence. In the rest of this section, we treat H and µ
as fixed parameters, while τ and Fα scale with n.

Estimation and loss function Our goal is to estimate the community labels tσi : i P rnsu
based on the observed adjacency matrix A. Since permutation of community labels does
not change the partition of nodes, we use the following misclustering proportion as the loss
function

`pσ, pσq “ min
πPS2

1

n

n
ÿ

i“1

1ppσi ‰ πpσiqq. (7)

3.2 Assumptions on model parameters

For convenience of reference, we collect and explain various assumptions used in main results
here.

Assumption 1 For i P rns, αi “ α ` ωi, with α deterministic, ωi i.i.d. with Epω1q “ 0,
Epe2ω1q ď C for some constant C ą 0, and

´ω ď ωi ď ω1, (8)

where ω ą 0 is a constant but ω1 is allowed to grow to 8 with n. As n Ñ 8, α and ω1

jointly satisfy all the following conditions

α` ω1 Ñ ´8, (9)

ne2α{plog nq1{2 Ñ8, (10)

eω
1L

min
 

ne2α, n{ log n
(

Ñ 0. (11)

Furthermore, for some constants L ą 0 and C1 ą 0, the empirical fourth moment of eωi
satisfies the condition

P

#

´ 1

nu

ÿ

σi“u

e4ωi
¯1{4

ą L

+

ď n´p1`C1q, for u P r2s. (12)

In this overarching assumption on Fα, equation (9) ensures that the network is sparse in
the sense that the maximum degree scales at an opnq rate. Equations (8) and (10) jointly
imply that the minimum degree grows at a rate no slower than plog nq1{2. Equation (11)
guarantees that the maximum degree grows at a slower rate than squared minimum degree.
Moreover, it imposes the restriction that the ratio of maximum over minimum degrees grows
at a slower rate than n{ log n. Finally, (12) puts some technical tail bounds on the empirical
fourth moments of eωi within each community.

Assumption 2 There exists a positive constant c such that τplog nq1{2 ď c.
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Even if we directly observe the latent positions tziuni“1, we always suffer the Bayes
error for clustering two normal distributions with identical covariance structure. Write
Φ̄ptq “ PtNp0, 1q ě tu. Under model (3)–(4), simple calculation shows that the Bayes error
is at the rate Φ̄p}µ}2{τq À exp

 

´}µ}22{p2τ
2q
(

τ{}µ}2 as nÑ 8. Since µ is fixed, by varying
c, Assumption 2 allows us to consider any case where the Bayes error scales at an Opn´aq
rate for any a ą 0.

Assumption 3 For H in (1) and µ in (4), µJHµ ą 0.

This is an assortativity assumption. With this assumption, we make certain that, given
the same αi values, nodes within the same community are more likely to be connected than
nodes from two different communities. It can hold even when H is not positive semi-definite.

Assumption 4 For H in (1) and µ in (4), µ is an eigenvector of H associated with some
positive eigenvalue.

This assumption is a strengthened version of Assumption 3. It is trivially true when
H “ Id is the identity matrix. We only need this assumption when minimax lower bounds
are concerned.

Remark 1 We take the following simple example to see what Assumption 4 entails. Let
H “ diagp1Jd1 ,´1Jd´d1q. The inner product defined by H results in Pij “ Spαi`αj`z

p1q

i zp1qj ´

zp2qi zp2qj q, where the superscript p1q and p2q indicate the vector made of the first d1 coordinates
and the last d´ d1 coordinates of z, respectively. Possible µ’s, allowing the above argument
to work, can take value in the d1-dim. subspace such as µ “ p

`

µp1q
˘J
, 0Jd´d1q

J. This means
the latent variable z can be decomposed into two components, the signal component zp1q and
the noise component zp2q,

z “

ˆ

zp1q „ µp1q `Nd1p0, Id1q
zp2q „ Nd´d1p0, Id´d1q

˙

.

The signal component enhances the clustering and the noise reduces signal-to-noise ratio. In
effect, this allows some additional flexibility in adding some noise in the latent variable.

3.3 A closely related testing problem

We first consider the following testing problem, which applies to slightly more general set-
tings than the model setup that we usually take in the rest of the manuscript.

Suppose that we observe a network of size 2m` 1, with m nodes 1, . . . ,m having known
labels 1 and m nodes m` 1, . . . , 2m having labels 2. Suppose that node 0 has the only
unknown label σ0. Further, assume that we have some base distribution F with density f
and write Fν as its shifted version by ν with density fν , i.e., fνpzq “ fpz ´ νq. In addition,
we assume that for nodes in the first community, zi are i.i.d. and follow distribution Fµ1
and for those in the second, zi are i.i.d. and follow distribution Fµ2 . We proceed to consider
testing the following hypotheses

H0 : σ0 “ 1, versus H1 : σ0 “ 2. (13)
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Let A0,i “ 1 if there is an edge between nodes 0 and i, and otherwise 0. Under our modeling
assumption, conditional on the realization of the α’s and the z’s, tA0,i : i “ 1, . . . , 2mu are
independent Bernoulli random variables with success probability P0i “ SpzJ0 Hzi`α0`αiq.

Define Ap1q0 “
řm
i“1A0,i and A

p2q
0 “

ř2m
i“m`1A0,i.

3.3.1 Likelihood ratio test and edge counting

The following lemma connects the likelihood ratio test for (13) and edge counting. The
proof hinges on symmetry in likelihoods under null and alternative hypotheses, which in
turn results from the fact that integrating over symmetric latent distributions keeps the
symmetry in place. We keep its proof in the main text as it may cast light on models of a
larger class, when capitalizing on similar symmetries in latent distributions is possible.

For any z P Rd, define the Householder reflection mapping about the hyperplane tz :
zJv “ 0u for some unit vector v by z ÞÑ zm where zm “ pId ´ 2vvJqz. Note pzmqm “ z.

Lemma 2 Consider the hypothesis testing problem (13). Suppose }µ1}2 “ }µ2}2. Suppose
that f satisfies that fpz1q “ fpz2q for }z1}2 “ }z2}2 and that fµ1pzq ą fµ2pzq on tz :
zJpµ1 ´ µ2q ą 0u. Suppose that H satisfies zJ1 Hz2 “ pzm1 q

JHzm2 for all z1 and z2 and
tz : zJHpµ1 ´ µ2q ą 0u “ tz : zJpµ1 ´ µ2q ą 0u. Suppose that tαi : 0 ď i ď nu are i.i.d.
Then the likelihood ratio test which reject H1 when the likelihood ratio of alternative over
null is larger than 1 is equivalent to the simple edge counting test where we reject H1 when
A
p1q
0 ă A

p2q
0 .

Proof Define v :“ pµ1´µ2q{}µ1´µ2}2. Since }µ1}2 “ }µ2}2, tz :
`

z´ pµ1`µ2q{2
˘J
pµ1´

µ2q “ 0u “ tz : zJv “ 0u, whence we may define the Householder transformation z ÞÑ zm

by zm “ pI ´ 2vvJqz. Note that }z ´ µ1}2 “ }z
m ´ µ2}2.

To simplify notation, write F1p¨q and F2p¨q as shorthands of Fµ1 and Fµ2 , respectively,
and f1p¨q and f2p¨q the corresponding densities. Let Fα be the distribution of α’s. Define
the following quantities

ppα0, z0q “

ĳ

SpzJ0 Hz ` α0 ` αqdFαpαqdF1pzq, (14)

qpα0, z0q “

ĳ

SpzJ0 Hz ` α0 ` αqdFαpαqdF2pzq. (15)

Noticing that dF1pzq “ fpz´µ1qdz “ fpzm´µ2qdz “ dF2pz
mq as }z´µ1}2 “ }z

m´µ2}2,
we have by assumption that

qpα0, z0q “

ĳ

Sppzm0 q
JHzm ` α0 ` αqdFαpαqdF2pzq

“

ĳ

Sppzm0 q
JHzm ` α0 ` αqdFαpαqdF1pz

mq “ ppα0, z
m
0 q.

The first equality holds since pzm0 qJHzm “ zJ0 Hz for all z0 and z. Conditioned on z0 and
α0, by Fubini’s theorem, we obtain the conditional likelihood

gpα0, z0q “
 

ppα0, z0q
(A

p1q
0
 

1´ ppα0, z0q
(m´A

p1q
0
 

qpα0, z0q
(A

p2q
0
 

1´ qpα0, z0q
(m´A

p2q
0 .

10
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We obtain gpα0, z
m
0 q by plugging in zm0 in the preceding display and noticing ppα0, z

m
0 q “

qpα0, z0q

gpα0, z
m
0 q “

 

qpα0, z0q
(A

p1q
0
 

1´ qpα0, z0q
(m´A

p1q
0
 

ppα0, z0q
(A

p2q
0
 

1´ ppα0, z0q
(m´A

p2q
0 .

The full likelihood under H0, denoted by I1 (as σ0 “ 1), minus the full likelihood under H1,
I2 (as σ0 “ 2), is

I1 ´ I2 “

ĳ

gpα0, z0qdFαpα0qdF1pz0q ´

ĳ

gpα0, z0qdFαpα0qdF2pz0q

“

ż
„
ż

tgpα0, z0q ´ gpα0, z
m
0 qudFαpα0q



dF1pz0q.

We define the above integrand inside the square brackets to be Gpz0q and write p and q as
shorthands of qpα0, z0q and ppα0, z0q, respectively. So

Gpz0q

“

ż

»

–p1´ pqmp1´ qqm

$

&

%

ˆ

p

1´ p

˙A
p1q
0

ˆ

q

1´ q

˙A
p2q
0

´

ˆ

q

1´ q

˙A
p1q
0

ˆ

p

1´ p

˙A
p2q
0

,

.

-

fi

fl dFαpα0q.

Moreover, since ppα0, z
m
0 q “ qpα0, z0q, we have Gpzm0 q “ ´Gpz0q. If Ap1q0 “ A

p2q
0 , the

preceding display is 0 and I1 “ I2, whence we may not differentiate between H0 and H1.
For the rest of this proof, we consider Ap1q0 ą A

p2q
0 .

Define L1 :“ tz : zJHpµ1´ µ2q ą 0u and L2 :“ tz : zJHpµ1´ µ2q ă 0u. On z0 P L1, by
the monotonicity of S : x ÞÑ ex{p1` exq,

ppα0, z0q “

ĳ

S
`

zJ0 Hpz ` µ2q ` z
J
0 Hpµ1 ´ µ2q ` α0 ` α

˘

dFαpαqdF pzq

ą

ĳ

S
`

zJ0 Hpz ` µ2q ` α0 ` α
˘

dFαpαqdF pzq “ qpα0, z0q,

where we use F1pzq “ F pz ´ µ1q and F2pzq “ F pz ´ µ2q. By monotonicity of the mapping
x ÞÑ x{p1 ´ xq for x P p0, 1q, p{p1 ´ pq ą q{p1 ´ qq on L1. We obtain

“

tp{p1 ´ pqu{tq{p1 ´

qqu
‰A
p1q
0 ´A

p2q
0 ą 1, whence we conclude that Gpz0q ą 0 for z0 P L1. Finally, we have

I1 ´ I2 “

ż

L1
Gpz0qdF1pz0q `

ż

L2
Gpz0qdF1pz0q

“

ż

L1
Gpz0qdF1pz0q ´

ż

L1
Gpz0qdF2pz0q

“

ż

L1
Gpz0q

 

f1pz0q ´ f2pz0q
(

dz0 ą 0.

The first equality holds by the assumption that L1 “ tz : zJpµ1 ´ µ2q ą 0u and tzm : z P
L1u “ L2. The last inequality holds as f1pz0q ą f2pz0q on z0 P L1 by assumption. The
proof is complete after applying the same argument to the case Ap1q0 ă A

p2q
0 , which implies

I1 ă I2.

11
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Remark 3 If µ1 ´ µ2 is an eigenvector of H associated with a positive eigenvalue λ as in
Assumption 4, then the two hyperplanes tz : zJHpµ1 ´ µ2q “ 0u and tz : zJpµ1 ´ µ2q “ 0u
coincide, and for all z such that zJpµ1 ´ µ2q ą 0, zJHpµ1 ´ µ2q “ λzJpµ1 ´ µ2q ą 0.
Furthermore, defining v “ pµ1 ´ µ2q{}µ1 ´ µ2}2 as in the proof of Lemma 2, we have

pzm1 q
JHzm2 “ zJ1 pI ´ 2vvJqHpI ´ 2vvJqz2 “ zJ1 Hz2.

Remark 4 If we can write the density as fpzq “ rp}z}2q for some monotone decreasing
function r : R` Ñ R`, the conditions on the density in Lemma 2 are satisfied.

In light of the above remarks, we arrive at the fundamental testing lemma for our setup.
We only need α’s being i.i.d. for Lemma 5 to hold; here the distributional restrictions of α
in (8)–(12) of Assumption 1 are superfluous.

Lemma 5 Consider the testing problem in (13) with F being Ndp0, τ
2Idq and µ1 “ µ and

µ2 “ ´µ. Suppose that Assumptions 1 and 4 hold. Then the likelihood ratio test for the
above hypothesis testing problem (13) is equivalent to the simple edge counting test where we
reject H0 when Ap1q0 ă A

p2q
0 .

3.3.2 Error rates for edge counting

We derive the error rates for edge counting. Consider the testing problem (13) with F “

Ndp0, τ
2Idq, where F` “ Ndpµ, τ

2Idq is the latent distribution for the first community and
F´ “ Ndp´µ, τ

2Idq for the second. From now on, write A0,` “ A
p1q
0 “

řm
i“1A0,i and

A0,´ “ A
p2q
0 “

ř2m
i“m`1A0,i. Let νn be the probability of making type I+II errors of the

test that rejects H0 in (13) when A0,` ă A0,´. For any fixed α0 and z0, let ppα0, z0q and
qpα0, z0q be defined as in (14) and (15) respectively, and let

Ipα0, z0q “ ´2 log
´

tppα0, z0qqpα0, z0qu
1{2 ` rt1´ ppα0, z0qut1´ qpα0, z0qus

1{2
¯

(16)

be the Rényi divergence of order 1{2 between two Bernoulli distributions Bernoullipppα0, z0qq

and Bernoullipqpα0, z0qq. The projection distance from µ to the hyperplane tz : zJHµ “ 0u
is then

ρ “
µJHµ

pµJH2µq1{2
. (17)

Furthermore, for any positive integer n and any fixed ε ą 0, define

νεn “ Eα0,z0
H0

”

1pz0 P Bεq exp
!

´
n

2
p1´ εqIpα0, z0q

)ı

` exp

"

´p1´ εq
ρ2

2τ2

*

, (18)

νεn “ Eα0,z0
H0

”

1pz0 P Bεq exp
!

´
n

2
p1` εqIpα0, z0q

)ı

` exp

"

´p1` εq
ρ2

2τ2

*

, (19)

where Bε “ tz0 : }z0´µ}2 ď p1´ε{4q
1{2ρu and the notation Eα0,z0

H0
means taking expectation

over α0 and z0 when the null hypothesis in (13) is true. We have ν0
n “ ν0

n if we generalize

12
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both (18) and (19) to allow ε “ 0. There are two terms in both (18) and (19). The first
term involving the Rényi divergence has previously appeared in the blockmodel community
detection literature (Zhang and Zhou, 2016; Jog and Loh, 2015). It reflects the average
influence on signal-to-noise ratio from the difference in Bernoulli sampling probabilities of
edges connecting nodes within the same or between two different communities. Since the
Bernoulli sampling probabilities depend on the realized latent positions, the term collects
indirect influence on signal-to-noise ratio from the latent space. The second term depends
on the distributions of z’s and the quadratic form matrix H only, and it sums up the direct
influence on signal-to-noise from the latent space.

With the foregoing definitions, the following lemma controls νn from both sides.

Lemma 6 Suppose that Assumptions 1 and 3 hold. Let n “ 2m ` 1 and that zi
iid
„

Ndpµ, τ
2Idq for i “ 1, . . . ,m and zi

iid
„ Ndp´µ, τ

2Idq for i “ m` 1, . . . , 2m, where τ Ñ 0 as
n Ñ 8. Further, assume that ν0

n Ñ 0 as n Ñ 8, then for any ε P p0, 1{2q, there is an nε
such that for all n ą nε,

νεn ď νn ď νεn. (20)

The proof of Lemma 6 can be found in Appendix A.

3.4 Rates of convergence

In this subsection, we present rates of convergence on errors of our initial and refined esti-
mators.

Upper bounds The following proposition gives upper bounds for estimators obtained
from Algorithm 1.

Proposition 7 Suppose that Assumptions 1, 2 and 3 hold. Assume that the n nodes have
true labels σ, where σi “ 1 for i “ 1, . . . , n1, σi “ 2 for i “ n1`1, . . . , n, and for n2 “ n´n1,
n1, n2 P

“

p1 ´ δnqn{2, p1 ` δnqn{2
‰

. Let σ̂0 be the output of Algorithm 1. Let ωi and ω be
defined as in Assumption 1. Then for any γ ą 0, some constant C ą 0 and all sufficiently
large n, we have

Pt`pσ, σ̂0q ď γu ě P

ˆ

ÿ

ti:σi‰σ̂0
i u

eωi ď e´ωγn

˙

ě 1´ n´p1`2Cq.

We present the proof of Proposition 7 in Appendix B.
The following theorem gives our main upper bounds on the output of Algorithm 3.

Theorem 8 Let k “ 2 and Pn “ PnpH,µ, τ, Fαq. Suppose that Assumptions 1, 2 and 3
hold. For any ε P p0, 1{2q, let νεn be defined as in (18). Suppose ν0

n Ñ 0 as n Ñ 8. Then
for any fixed ε ą 0, the output pσ of Algorithm 3 satisfies

lim sup
nÑ8

sup
Pn

P t`pσ, pσq ą νεnu “ 0.

13
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The high probability upper bound in Theorem 8 consists of two terms as on the right hand
side of (18). In view of the discussion following (18), the first term summarizes influence on
the clustering error from the network signal, averaged over realizations of degree sequence
and latent positions. Hence we regard it as the network term. The second term collects
immediate influence on clustering error by signal from latent space as it depends only on H
and the latent position distributions, which could be viewed as the latent space term.

Lower bounds We conclude this section with the following minimax lower bounds
when Assumption 4 holds, which implies Assumption 3. The lower bounds match the upper
bounds in Theorem 8 up to some arbitrarily small perturbation of the exponents.

Theorem 9 Let k “ 2 and Pn “ PnpH,µ, τ, Fαq. Suppose that Assumptions 1, 2 and 4
hold. Suppose ν0

n Ñ 0 as n Ñ 8. For any ε P p0, 1{2q, define νεn as in (19), then the
minimax risk satisfies

inf
pσ

sup
Pn

Et`pσ, pσqu Á νεn. (21)

The proofs of Theorems 8 and 9 are given in Appendix C.

Remark 10 In view of the discussion following (4), in the anisotropic case where Fz,j “
Ndpp´1qj´1µ, τ2Σq, Theorems 8 holds with ρ redefined by ρ “ pµJHµq{pµJHΣHµq1{2 and
Bε redefined by Bε “ tz0 : }Σ´1{2pz0 ´ µq}2 ď p1 ´ ε{4q1{2ρu in (18) and (19). Theorem 9
holds with the same redefinitions of ρ and Bε, and Assumption 4 replaced by that µ is an
eigenvector of ΣH associated with some positive eigenvalue.

4. Simulation studies

In this section, we evaluate numerical performance of both SpecLoRe and Algorithm 3 on
simulated examples generated according to four different parameter specifications of the
latent space model. All reported results were obtained on a Windows 7 PC with two Intel
Xeon Processors (E5-2630 v3@2.40GHz) and 64G RAM.

Specification 1 We first consider the case where H is positive semi-definite. In this
case, we compare both SpecLoRe and Algorithm 3 with the LSCD method.

We set up model (1) with latent space dimension d “ 3 and size n “ 1000. The nodes
were split into two clusters of sizes n1 “ n2 “ 500. For i “ 1, . . . , n1, we generated i.i.d. zi „
Ndpµ, τ

2Idq, where µ “ p0.5, 1, 0qJ, and for i “ n1 ` 1, . . . , n, we generated i.i.d. zi „
Ndp´µ, τ

2Idq. We varied τ P t0.75, 0.5, 0.25u. In addition, we let H “ diagp1, 1, 0.5q, and
generated αi “ α ` ωi, where α “ ´2.49 (so that the median degree ne2α “ log n) and
ωi

iid
„ Np0, 1q. We have designed the setting so that µ is an eigenvector of H with positive

eigenvalue 1. In each repetition, we generated one copy of the adjacency matrix A with
diagonals Aii “ 0 for i P rns. Then we applied the SpecLoRe method with R “ 1 and
R “ 10 rounds of local refinement to cluster nodes. We also ran Algorithm 3 to investigate
its numerical difference from SpecLoRe. For LSCD, we used Algorithm 3 in Ma et al. (2020)
as the initializer, then applied Algorithm 1 in Ma et al. (2020) with 800 iterations followed
by k-means clustering.

Table 1 reports average misclustering proportions (7) over 100 repetitions and aver-
age runtimes (in seconds) of SpecLoRe (denoted “SpecLoRe” with subscripts R “ 1 and
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R “ 10), Algorithm 3 and LSCD. The runtime of SpecLoRe included time spent on spec-
tral initialization by Algorithm 1. It also reports average degrees (namely the average of
p1{nq

řn
i“1

řn
j“1Aij over 100 repetitions). Furthermore, it reports theoretical Bayes risks,

which are the best possible misclustering errors if we observe the latent positions directly
and know the underlying distributions that generated the zi’s. Bayes risk is only attainable
by reconstructing the underlying distributions based on infinite samples directly observed
from the latent variable distributions. Finally, the “Initial” column reports the average errors
of the initial estimates obtained from Algorithm 1.

τ
Avg Bayes LSCD Algo3 Initial SpecLoReR“1 SpecLoReR“10

degree risk error time error error error time error time
0.75 47.68 6.80% 8.03% 179.29 8.27% 8.33% 8.21% 2.10 8.20% 2.72
0.5 35.28 1.27% 2.93% 184.31 3.20% 3.44% 3.18% 2.07 3.18% 2.63
0.25 29.51 3.87E-4% 0.82% 182.72 0.84% 1.36% 0.85% 2.02 0.83% 2.63

Table 1: Misclustering proportions and runtimes in Specification 1.

For all three values of τ , misclustering errors of SpecLoRe with R “ 10 and LSCD were
close, but runtimes of the former method were only tiny proportions of those of the latter.
We also observe that misclustering errors of SpecLoRe with R “ 1 were nearly identical
to those of Algorithm 3. This reassures that repeated initializations in Algorithm 3 were
only needed for technical reasons in proofs, and justifies the use of SpecLoRe in practice.
Furthermore, for τ “ 0.75, the misclustering errors of SpecLoRe were close to Bayes risk,
while for τ “ 0.25 the misclustering errors of SpecLoRe were much larger than Bayes risk.
This suggests that when τ is large, the signal-to-noise ratio affected by the latent positions
dominates the error rate, while when τ is small, the signal-to-noise ratio affected by the
network sparsity dominates.

Specification 2 In the second study, we kept the same settings as in the first case
except that we set H “ diagp1, 1,´0.5q which is no longer positive semi-definite, while µ
is still an eigenvector of H with eigenvalue 1. In this case, the LSCD method cannot be
directly applied, and so we did not report its results in this case. Table 2 reports all the
other columns in Table 1 in the present setting. Overall, misclustering errors and runtimes
of various algorithms in this setting were almost identical to those in the first study.

τ
Avg Bayes Algo3 Initial SpecLoReR“1 SpecLoReR“10

degree risk error error error time error time
0.75 47.85 6.80% 8.25% 8.28% 8.18% 2.13 8.16% 2.68
0.5 35.41 1.27% 3.16% 3.44% 3.16% 2.18 3.14% 2.73
0.25 29.51 3.87E-4% 0.82% 1.31% 0.85% 2.12 0.79% 2.65

Table 2: Misclustering proportions and runtimes in Specification 2.

Specification 3 In the third study, the settings remained the same as in the first study
except that we fixed τ “ 0.5 and let α P t´2.14,´2.49,´2.83u, which calibrated the median
degree of networks to be around t2, 1, 0.5uˆlog n, respectively. Table 3 reports the results for
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all three different α’s. As |α| grows, the average degree decreases significantly. Misclustering
errors of SpecLoRe with R “ 10 were slightly worse than those of the LSCD method, but
were always within 110% of the LSCD errors. On the other hand, runtimes of SpecLoRe
with R “ 10 were of smaller order of magnitude than those of LSCD. Misclustering errors of
SpecLoRe were comparable to Bayes risk when α “ ´2.14, and became more sizeable relative
to Bayes risk for larger α. This suggests that network sparsity becomes the dominating factor
in error rate as |α| grows.

α
Avg Bayes LSCD Algo3 Initial SpecLoReR“1 SpecLoReR“10

degree risk error time error error error time error time
-2.14 58.86 1.27% 2.04% 219.92 2.24% 2.27% 2.25% 2.04 2.23% 2.59
-2.49 35.28 1.27% 2.93% 211.29 3.20% 3.44% 3.18% 2.31 3.17% 2.86
-2.83 20.30 1.27% 4.58% 213.31 4.94% 6.04% 4.91% 2.26 4.88% 2.85

Table 3: Misclustering proportions and runtimes in Specification 3.

Specification 4 Finally, we repeated the last two studies with H “ diagp1, 1,´0.5q and
µ “ p1.25{1.29q1{2 p0.5, 1, 0.2qJ. In this case, µ is no longer an eigenvector of H but }µ}2 is
the same as in specifications 1–3 to make the results more comparable. Table 4 summarizes
the relevant results for all different combinations of τ and α values. We observe that the
first three rows had slightly larger misclustering errors than those in Tables 1 and 2, and
the last three rows had slightly larger misclustering errors than those in Table 3. Such a
difference conforms with our theory since quantity ρ (defined in (17)) in (18)–(19) becomes
smaller when µ is no longer an eigenvector of H with maximum possible eigenvalue 1 under
(5), resulting in larger error rates.

τ α
Avg Bayes Algo3 Initial SpecLoReR“1 SpecLoReR“10

degree risk error error error time error time
0.75 -2.49 46.34 6.80% 8.89% 8.89% 8.83% 2.27 8.80% 2.82
0.5 -2.49 34.09 1.27% 3.63% 3.93% 3.62% 2.16 3.62% 2.71
0.25 -2.49 28.55 3.87E-4% 0.97% 1.56% 1.01% 2.11 1.00% 2.68
0.5 -2.14 57.64 1.27% 2.55% 2.60% 2.53% 2.07 2.53% 2.63
0.5 -2.49 34.09 1.27% 3.51% 3.93% 3.62% 2.16 3.62% 2.71
0.5 -2.83 19.72 1.27% 5.35% 6.45% 5.33% 2.15 5.27% 2.73

Table 4: Misclustering proportions and runtimes in Specification 4.

5. Real data examples

We now demonstrate performance of the proposed algorithm on some real data examples.
More detailed comparison of Algorithm 3 with Algorithms 1+2 and other methods on care-
fully constructed simulated examples can be found in Section 4 of the appendices.

We consider five datasets. The first three datasets are political blog with 1222 nodes,
16714 edges, and 2 communities (Adamic and Glance, 2005), Simmons College with 1137
nodes, 24257 edges, and 4 communities and Caltech data with 590 nodes, 12822 edges, and 8
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communities (Traud et al., 2011, 2012). For Simmons College and Caltech data, we followed
the same pre-processing steps as in Chen et al. (2018). These datasets have been studied
extensively in the blockmodel community detection literature.

The fourth dataset is a manufacturing company network from Cross and Parker (2004),
which was studied in Weng and Feng (2022). Questions were asked to pairs of employees on
their ties in work, and weights were assigned on a 0–6 scale where higher weights correspond
to closer ties. Following Weng and Feng (2022), we used the weights to create an adjacency
matrix: We set Aij “ Aji “ 1 if and only if both edges from i to j and from j to i have
weights larger than 3. Otherwise, Aij “ Aji “ 0. This resulted in an undirected network
with 74 nodes and 235 edges. Four communities were formed according to the “location”
value of each node which is the most assortative among three available nodes attributes in
this data.

The fifth dataset is a French high school friendship network (Mastrandrea et al., 2015).
This dataset recorded friendship relations and contacts among 329 students in a Marseilles
high school. To construct an adjacency matrix, we took the first contact information which
recorded active contacts between students during 20-second intervals of the data collection
process over a measuring infrastructure. We set Aij “ Aji “ 1 if and only if there were
contacts recorded between i and j. The resulting network has 5818 edges. Each student
belonged to one of nine classes which we regarded as nine true communities.

We compare Algorithm 1 + one-round Algorithm 2 refinement (SpecLoReR“1) and Al-
gorithm 1 + ten-round Algorithm 2 refinement (SpecLoReR“10) to LSCD in Ma et al. (2020)
(initialized by Algorithm 3 in Ma et al., 2020 followed by Algorithm 1 in Ma et al., 2020
with 800 iterations). Algorithm 3 has essentially the same level of accuracy as SpecLoRe
with R “ 1, which we have illustrated in detail in Section 4. The LSCD methods func-
tioned as the benchmark. Comparison of LSCD to several other state-of-the-art methods
(SCORE (Jin, 2015), OCCAM (Zhang et al.), and CMM (Chen et al., 2018)) on the first
three datasets was conducted in Ma et al. (2020). LSCD was shown to be a top performer,
and so we omit comparison to other methods on the first three datasets. We set latent space
dimension equal to number of communities for LSCD.

LSCD Initial SpecLoReR“1 SpecLoReR“10

Dataset # Clusters error time error error time error time
Political blog 2 4.91% 43.31 5.32% 4.66% 0.62 4.66% 0.97
Simmons 4 11.87% 39.90 13.54% 11.61% 1.94 11.17% 2.65
Caltech 8 18.14% 11.85 21.69% 17.46% 0.87 14.58% 1.29
Company 4 1.35% 0.83 5.41% 2.70% 0.01 1.35% 0.02
High school 9 0.61% 5.29 0.61% 0.61% 0.13 0.61% 0.24

Table 5: A summary of performances on five datasets. Each “error” column reports pro-
portions of misclustered nodes. Each “time” column reports runtime of the corre-
sponding method in seconds (including initialization).

Table 5 presents performances of both versions of SpecLoRe and those of LSCD in
terms of accuracy and speed. For reported speed of SpecLoRe, we have included time spent
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SCORE OCCAM CMM
Dataset error time error time error time
Company 8.11% 0.27 1.35% 0.84 2.70% 0.28
High school 0.61% 0.62 0.61% 4.90 1.82% 2.98

Table 6: A summary of performances of three other community detection methods (SCORE,
OCCAM, and CMM) on manufacturing company and French high school datasets.
Each “error” column reports proportions of misclustered nodes. Each “time” column
reports runtime of the corresponding method in seconds.

on spectral initialization. In addition, it also reports accuracy of spectral initialization
(Algorithm 1). On these five datasets, SpecLoReR“10 and LSCD were comparable in terms
of accuracy while SpecLoReR“10 was significantly faster (and slightly more accurate in
most examples). This is not surprising because it aims only at clustering nodes while
LSCD fits all parameters. SpecLoReR“1 was the fastest due to a single round of refinement
which incurred the cost of slightly inferior accuracy. However, it still notably improved
the accuracy of spectral clustering. For benchmarking purpose, the performances of three
competitive community detection methods, namely, SCORE, OCCAM, and CMM, on the
fourth (Company) and the fifth (High school) datasets are reported in Table 6. Compared
with the last two rows in Table 5, SpecLoReR“10 continues to be the best when both accuracy
and speed are taken into account. All reported results were obtained on a Windows 7 PC
with two Intel Xeon Processors (E5-2630 v3@2.40GHz) and 64G RAM.

6. Discussions

In this paper, we study theoretical and empirical performances of a simple community de-
tection algorithm in the context of sparse latent space models. We establish consistency
and rates of convergence of the method for sparse latent eigenmodels with two balanced
communities. Under an additional eigenvector assumption (Assumption 4), we further ar-
gue that our rate has sharp exponent in a minimax sense. Although we have centered our
theoretical investigations on balanced two community case, the method performs well em-
pirically in more general scenarios encountered in real world data examples. Under current
setup, an immediate future research direction is to see whether the same upper bound can
be established for Algorithms 1 and 2 directly.

It is natural to extend the current theoretical framework to cases where k ą 2, all
communities have roughly equal sizes, and each component of the latent mixture distribution
is sub-Gaussian and isotropic. We expect an analogous error rate of our proposed algorithm
to hold with a possibly gruesome but direct analysis by generalizing Lemma 6 to the case
k ą 2, and then subsequently Theorem 8. If }µi}2 for all i P rks are all the same and µi´µj
for 1 ď i ă j ď k are all eigenvectors of H associated with positive eigenvalues, we may
employ the key Lemma 2 to carry out pairwise analysis for each community pair pj1, j2q
(1 ď j1 ă j2 ď k), which gives us the equivalence between the optimal (pairwise) likelihood
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ratio tests and edge counting. This would pave the way for matching lower bound by a
generalized version of Theorem 9.

A more challenging future research direction is to generalize the current framework to
handle non-homogeneous mixture distributions of latent variables. For instance, if we assume
that the latent variable z „ Ndpµ,Σ1q when the node is in community 1 and z „ Ndp´µ,Σ2q

in community 2 with Σ1 ‰ Σ2, the problem becomes more difficult where new understandings
and techniques need to be discovered. First, the upper bound analysis will be more entangled
after losing homogeneity (and isotropy) as our analysis exploits various symmetries whenever
possible. Moreover, it is even less clear whether it is possible to establish something akin
to Lemma 2, which bridges the edge-counting procedure and the optimal likelihood ratio
test so that a matching lower bound would be in sight. The reason is that the proof of
the current Lemma 2 relies crucially on exploiting subtle symmetric structures, which is no
longer true when the latent space is distorted by the non-homogeneity.

We have focused on the case where one only observes a network structure among n
nodes. An important advantage of latent space models is the convenience to further include
node and/or edge covariates (Hoff et al., 2002). Though it is beyond the scope of the
present paper, it is nonetheless desirable to understand how the presence of covariates could
affect community detection on nodes. Furthermore, whether there is covariate or not, it
is of interest to explore information-theoretic limits and optimal algorithms for community
detection when Assumption 4 fails.

Acknowledgements

FG’s research was supported in part by NSFC grants 11701095 and 11690013.

Appendix A. Proof of Lemma 6

By Jensen’s inequality, for any fixed ε P p0, 1{2q,

νεn ď pν
0
nq

1´ε Ñ 0,

as nÑ8. By symmetry, we have

νn “ PH0pA0,` ă A0,´q ` PH1pA0,` ě A0,´q

“ PH0pA0,` ă A0,´q ` PH0pA0,` ď A0,´q.

Hence,

PH0pA0,` ď A0,´q ď νn ď 2PH0pA0,` ď A0,´q. (22)

Upper bound By law of total expectation,

PH0pA0,` ď A0,´q “ Eα0,z0
H0

 

PpA0,` ď A0,´ | α0, z0q
(

.

Let

Ω “

#

ta0,iu
2m
i“1 : a0,i P t0, 1u for 1 ď i ď 2m,

m
ÿ

i“1

a0,i ď

2m
ÿ

i“m`1

a0,i

+

.
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We then have

PpA0,` ď A0,´ | α0, z0q

“
ÿ

ta0,iu2mi“1PΩ

PpA0,1 “ a0,1, . . . , A0,2m “ a0,2m | α0, z0q

“
ÿ

ta0,iu2mi“1PΩ

Etαi,ziu
2m
i“1

 

PpA0,1 “ a0,1, . . . , A0,2m “ a0,2m | α0, z0, tαi, ziu
2m
i“1q

(

“
ÿ

ta0,iu2mi“1PΩ

Etαi,ziu
2m
i“1

#

2m
ź

i“1

PpA0,i “ a0,i | α0, z0, αi, ziq

+

“
ÿ

ta0,iu2mi“1PΩ

2m
ź

i“1

Eαi,zi
 

PpA0,i “ a0,i | α0, z0, αi, ziq
(

.

Here Eαi,zi means the expectation over αi and zi (under H0). In the last equality, we have
used the mutual independence of tαi, ziu for 1 ď i ď 2m. By the discussion preceding (13)
and the definition in (14) and (15), we have

Eαi,zi
 

PpA0,i “ 1 | α0, z0, αi, ziq
(

“

#

ppα0, z0q, 1 ď i ď m,

qpα0, z0q, m` 1 ď i ď 2m.

By definition, ppα0, z0q and qpα0, z0q can be written as

ppα0, z0q “ Eα1,z1SpzJ0 Hz1 ` α0 ` α1q, (23)

qpα0, z0q “ Eαm`1,zm`1SpzJ0 Hzm`1 ` α0 ` αm`1q

“ Eα1,z1Sp´zJ0 Hz1 ` α0 ` α1q. (24)

Here αi
iid
„ Fα, z1 „ Npµ, τ2Idq and zm`1 „ Np´µ, τ2Idq, and they are mutually indepen-

dent. Define L` “ tz0 : zJ0 Hµ ě 0u and L´ “ tz0 : zJ0 Hµ ă 0u. Conditional on α0 and z0,
the distribution of zJ0 Hpz1 ´ µq is symmetric about zero and is independent of α1. Since
S is a monotone increasing function, together with (23) and (24), this observation implies
that ppα0, z0q ě qpα0, z0q when z0 P L` and ppα0, z0q ă qpα0, z0q when z0 P L´.

For any z0 P Bε, we have

zJ0 Hµ “µ
JHµ` pz0 ´ µq

JHµ

ěµJHµ´ |pz0 ´ µq
JHµ|

ěµJHµ´ }Hµ}2}z0 ´ µ}2

ěµJHµ´ pµJH2µq1{2p1´ ε{4q1{2ρ

“

!

1´ p1´ ε{4q1{2
)

µJHµ

ěεµJHµ{8. (25)

Here the second equality holds due to (17). Thus, Bε Ă L`. See Figure 1 for a graphical
illustration.
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latent space

O

µ

´µ

zJHµ “ 0

µP Bε

Figure 1: An illustration of a Bε-ball in the latent space: µP is the orthogonal projection of
µ onto the hyperplane tz : zJHµ “ 0u with the distance between µ and µP equal
to ρ defined in (17). Given ε ą 0, Bε is the ball in red with radius p1´ ε{4q1{2ρ.

Next, we derive uniform bounds of ppα0, z0q, qpα0, z0q and Ipα0, z0q for all z0 P Bε. To
this end, define

Dppω0, z0q “Eω1,z1

#

ez
J
0 Hpz1´µq`ω0`ω1

1` ez
J
0 Hz1`2α`ω0`ω1

+

, Dqpω0, z0q “ Eω1,z1

#

e´z
J
0 Hpz1´µq`ω0`ω1

1` e´z
J
0 Hz1`2α`ω0`ω1

+

.

By (23) and (24), we have

ppα0, z0q “e
2αez

J
0 HµDppω0, z0q (26)

qpα0, z0q “e
2αe´z

J
0 HµDqpω0, z0q. (27)

To find upper bounds for Dppω0, z0q and Dqpω0, z0q, we define

Dpω0, z0q “Eω1,z1
!

ez
J
0 Hpz1´µq`ω0`ω1

)

“ eω0Epeω1qEz1
!

ez
J
0 Hpz1´µq

)

.

Then we have

Dppω0, z0q ďEω1,z1
!

ez
J
0 Hpz1´µq`ω0`ω1

)

“ Dpω0, z0q (28)

Dqpω0, z0q ďEω1,z1
!

e´z
J
0 Hpz1´µq`ω0`ω1

)

“ Dpω0, z0q. (29)

where the last equality holds since the distribution of z1 ´ µ is symmetric about zero.
By Assumption 1, Epeω1q ď

 

Epe2ω1q
(1{2

ď C1{2. This inequality, combined with the
boundedness of z0 for z0 P Bε and (8) of Assumption 1 implies that

0 ă e´2ωD ď Dpω0, z0q ď eω
1

D, (30)
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where D and D are constants.
On the other hand, to find lower bounds for Dppz0, ω0q and Dqpz0, ω0q, we define

D2pω0, z0q “Eω1,z1
!

e2zJ0 Hpz1´µq`2ω0`2ω1

)

“ e2ω0Epe2ω1qEz1
!

e2zJ0 Hpz1´µq
)

.

By Assumption 1, Epe2ω1q ď C. Further by (8) of Assumption 1 and boundedness of z0,
D2pω0, z0q also has an upper bound e2ω1D2 where D2 is a constant. Then

Dpω0, z0q ´Dppω0, z0q “Eω1,z1

"

ez
J
0 Hpz1´µq`ω0`ω1

ˆ

1´
1

1` ez
J
0 Hz1`2α`ω0`ω1

˙*

“e2αez
J
0 HµEω1,z1

#

e2zJ0 Hpz1´µq`2ω0`2ω1

1` ez
J
0 Hz1`2α`ω0`ω1

+

ďe2αez
J
0 HµEω1,z1

!

e2zJ0 Hpz1´µq`2ω0`2ω1

)

“e2αez
J
0 HµD2pω0, z0q

ďe2α`2ω1ez
J
0 HµD2. (31)

Let 0 ă κ ă 1 be any fixed constant. By (9) of Assumption 1 and the boundedness of z0

within Bε, the inequality e2α`2ω1 exppzJ0 HµqD2 ď κe´2ωD holds for all sufficiently large n.
By (30),

e2α`2ω1ez
J
0 HµD2 ď κe´2ωD ď κDpω0, z0q. (32)

Combining (31) and (32), we have

Dppω0, z0q ě p1´ κqDpω0, z0q. (33)

By the same argument, we can also get

Dqpω0, z0q ě p1´ κqDpω0, z0q. (34)

We now derive a lower bound for Ipα0, z0q. By definition, we have

Ipα0, z0q “ ´ 2 log
´

tppα0, z0qqpα0, z0qu
1{2 ` rt1´ ppα0, z0qut1´ qpα0, z0qus

1{2
¯

ě´ 2 log

„

tppα0, z0qqpα0, z0qu
1{2 ` 1´

1

2
tppα0, z0q ` qpα0, z0qu



ě´ 2tppα0, z0qqpα0, z0qu
1{2 ` ppα0, z0q ` qpα0, z0q

“e2αez
J
0 Hµ

”

tDppω0, z0qu
1{2 ´ e´z

J
0 HµtDqpω0, z0qu

1{2
ı2
,

where the last inequality is due to logp1´ xq ď ´x for 0 ă x ă 1. We let

Cpω0, z0q “ ez
J
0 Hµ

”

tDppω0, z0qu
1{2 ´ e´z

J
0 HµtDqpω0, z0qu

1{2
ı2
,
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and let κ “ 1´ t1` expp´εµJHµ{8qu2{4. Then by (25), (29) and (33) we get

Cpω0, z0q ěe
ε
8
µJHµ

”

tp1´ κqDpω0, z0qu
1{2 ´ e´z

J
0 HµtDpω0, z0qu

1{2
ı2

“e
ε
8
µJHµDpω0, z0q

!

p1´ κq1{2 ´ e´z
J
0 Hµ

)2

ěe
ε
8
µJHµDpω0, z0q

"

1

2

´

1` e´
ε
8
µJHµ

¯

´ e´z
J
0 Hµ

*2

ěe
ε
8
µJHµDpω0, z0q

"

1

2

´

1` e´
ε
8
µJHµ

¯

´ e´
ε
8
µJHµ

*2

“e
ε
8
µJHµDpω0, z0q

"

1

2

´

1´ e´
ε
8
µJHµ

¯

*2

ěe
ε
8
µJHµe´2ωD

"

1

2

´

1´ e´
ε
8
µJHµ

¯

*2

.

We denote the right-hand side of the last inequality as C. Since D and ω are both constants,
C ą 0 is also a constant. In summary, for z0 P Bε, we have established

Ipα0, z0q ě e2αC, (35)

where C is some constant depending on ε.
In view of the foregoing discussion, we can write

PH0pA0,` ď A0,´q “Eα0,z0
H0

t1pz0 P BεqPpA0,` ď A0,´ | α0, z0qu

` Eα0,z0
H0

t1pz0 P BcεqPpA0,` ď A0,´ | α0, z0qu . (36)

Conditional on α0 and z0, we can generate independent random variablesWi „ Bernoullipppα0, z0qq

for i “ 1, . . . ,m and Wi „ Bernoullipqpα0, z0qq for i “ m` 1, . . . , 2m. Then we have

PpA0,` ď A0,´ | α0, z0q “ P

˜

m
ÿ

i“1

Wi ď

2m
ÿ

i“m`1

Wi

¸

.

For any α0 and any z0 P Bε, aside from ppα0, z0q ą qpα0, z0q, we can also get from (26),
(27), (28), (29), (30), z0 bounded, and (9) of Assumption 1 that as nÑ8,

ppα0, z0q Ñ 0, qpα0, z0q Ñ 0.

We then obtain from the calculation in Gao et al. (2017) and Gao and Ma (2020) that

P

˜

m
ÿ

i“1

Wi ď

2m
ÿ

i“m`1

Wi

¸

ď exp r´mt1` η1pα0, z0quIpα0, z0qs ,

in which η1pα0, z0q “ Op1{tmIpα0, z0qu
1{2q. By (35) and (10) of Assumptions 1, we have

1{tmIpα0, z0qu
1{2 ď 1{pme2αCq1{2 Ñ 0. Then ´η1pα0, z0q ď ε{2 for all sufficiently large n.

Therefore,

P

˜

m
ÿ

i“1

Wi ď

2m
ÿ

i“m`1

Wi

¸

ď exp
!

´m
´

1´
ε

2

¯

Ipα0, z0q

)

.
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Since z0 „ Npµ, τ2Iq under H0, we have }z0 ´ µ}
2
2{τ

2 „ χ2pdq. Since τ Ñ 0 as nÑ 8,
the inequality below holds for all sufficiently large n:

´

1´
ε

4

¯ ρ2

τ2
ě d` 2

"

d
´

1´
ε

2

¯ ρ2

2τ2

*1{2

`

´

1´
ε

2

¯ ρ2

τ2
.

Then by Lemma 1 of Laurent and Massart (2000), we can get

PH0pz0 P Bcεq “PH0

"

1

τ2
}z0 ´ µ}

2
2 ą

´

1´
ε

4

¯ ρ2

τ2

*

ďPH0

«

1

τ2
}z0 ´ µ}

2
2 ě d` 2

"

d
´

1´
ε

2

¯ ρ2

2τ2

*1{2

`

´

1´
ε

2

¯ ρ2

τ2

ff

ď exp

"

´

´

1´
ε

2

¯ ρ2

2τ2

*

. (37)

Therefore by (36),

PH0pA0,` ď A0,´q

ď Eα0,z0
H0

”

1pz0 P Bεq exp
!

´m
´

1´
ε

2

¯

Ipα0, z0q

)ı

` PH0pz0 P Bcεq

ď Eα0,z0
H0

”

1pz0 P Bεq exp
!

´m
´

1´
ε

2

¯

Ipα0, z0q

)ı

` exp

"

´

´

1´
ε

2

¯ ρ2

2τ2

*

. (38)

Combining (38) with the second inequality of (22), we get

νn ď2Eα0,z0
H0

”

1pz0 P Bεq exp
!

´m
´

1´
ε

2

¯

Ipα0, z0q

)ı

` 2 exp

"

´

´

1´
ε

2

¯ ρ2

2τ2

*

ďEα0,z0
H0

r1pz0 P Bεq exp t´mp1´ εqIpα0, z0qus ` exp

"

´p1´ εq
ρ2

2τ2

*

.

Here the last inequality holds because ε{2 ą log 2{pme2αCq ě log 2{tmIpα0, z0qu by (10) of
Assumption 1 and ε{2 ą p2τ2 log 2q{ρ2 for all sufficiently large n.

Lower bound For the lower bound, when z0 P Bε, we apply the Chernoff argument in
Gao et al. (2017) and Gao and Ma (2020) to get

PpA0,` ď A0,´ | α0, z0q ě exp r´mt1` η2pα0, z0quIpα0, z0qs .

in which η2pα0, z0q “ Op1{tmIpα0, z0qu
1{2q. By (35) and (10) of Assumption 1, we get

η2pα0, z0q ď ε for all sufficiently large n. Therefore,

P

˜

m
ÿ

i“1

Wi ď

2m
ÿ

i“m`1

Wi

¸

ě exp t´mp1` εqIpα0, z0qu .

It is clear that L´ Ă Bcε . When z0 P L´, we have ppα0, z0q ă qpα0, z0q, so

PpA0,` ď A0,´ | α0, z0q ě
1

2
.
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Also,

PH0pz0 P L´q “PH0

 

pz0 ´ µq
JHµ ă ´µJHµ

(

“Φ

ˆ

´
µJHµ

τpµJH2µq1{2

˙

ě exp

"

´

´

1`
ε

2

¯ ρ2

2τ2

*

,

where the last inequality is due to Mill’s ratio. Therefore, by (36) again,

PH0pA0,` ď A0,´q

ě Eα0,z0
H0

r1pz0 P Bεq exp t´mp1` εqIpα0, z0qus `
1

2
PH0pz0 P L´q

ě Eα0,z0
H0

r1pz0 P Bεq expp´mp1` εqIpα0, z0qqs `
1

2
exp

"

´

´

1`
ε

2

¯ ρ2

2τ2

*

ě Eα0,z0
H0

r1pz0 P Bεq exp t´mp1` εqIpα0, z0qus ` exp

"

´p1` εq
ρ2

2τ2

*

. (39)

Here the last inequality holds because ε{2 ě p2τ2 log 2q{ρ2 for sufficiently large n. Combining
(39) and the first inequality in (22), we obtain the first inequality in (20).

Appendix B. Proof of Proposition 7

The following lemma will be useful in the proof of Proposition 7.

Lemma 11 Suppose a d-dimensional random vector z „ Npµ, τ2Idq. Let M be a positive
constant. Conditional on the event }z ´ µ}2 ď η with η{τ Ñ 8 and τ Ñ 0, we have, for
}t}2 ďM ,

rEtexppzJtqu “ exp

ˆ

µJt`
τ2tJt

2

˙

 

1´ op1q
(

,

where C is a constant and rE denotes the expectation taken over the conditional measure of
z on }z ´ µ}2 ď η.

Proof Without loss of generality, we assume µ “ 0. We calculate

rEtexppzJtqu “

ş

}z}2ďη
exppzJtq exp

 

´zJz{p2τ2q
(

{
`

2πτ2
˘d{2

dz
ş

}z}2ďη
exp

 

´zJz{p2τ2q
(

{
`

2πτ2
˘d{2

dz

“ exppτ2tJt{2q

ş

}z`τt}2ďη{τ
exp

`

´zJz{2
˘

{
`

2π
˘d{2

dz
ş

}z}2ďη{τ
expp´zJz{2q{

`

2π
˘d{2

dz
.

Denote the probability measure of Np0, Idq by P0 and we define

A “

ż

}z`τt}2ďη{τ
exp

`

´zJz{2
˘

{
`

2π
˘d{2

dz “ P0p}z ` τt}2 ď η{τq,

B “

ż

}z}2ďη{τ
expp´zJz{2q{

`

2π
˘d{2

dz “ P0p}z}2 ď η{τq “ Ptχ2
d ď pη{τq

2u.
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We have that

P
 

χ2
d ď pη{τ ´ τ}t}2q

2
(

“ P0p}z}2 ď η{τ ´ τ}t}2q ď A ď P0p}z}2 ď η{τq “ P
 

χ2
d ď pη{τq

2
(

.

As a result, we bound

1 ě
A

B
ě

P
 

χ2
d ď pη{τ ´ τ}t}2q

2
(

P
 

χ2
d ď pη{τq

2
( “ 1´ op1q.

The last equality comes from the trivial bound of χ2 distribution after choosing η{τ suffi-
ciently large such that

P
 

pη{τq2 ď χ2
d ď pη{τ ´ τ}t}q

2
(

P
 

χ2
d ď pη{τq

2
( ď 2fdpη{τ ´ τMqτM ď CτM,

where fd is the density function of χd and C “ 2 supx fdpxq.

Proof [Proof of Proposition 7] First, by law of total expectation,

Pt`pσ, σ̂0q ą γu “ Etαi,ziu
n
i“1

“

P
 

`pσ, σ̂0q ą γ | tαi, ziu
n
i“1

(‰

.

Given tαi, ziuni“1, the probability matrix P is deterministic. Let µi be the mean value of zi,
that is, µi “ µ for i “ 1, . . . , n1 and µi “ ´µ for i “ n1`1, . . . , n. Let ξij “ EtexppzJi Hzjqu
for i ‰ j and ξii “ EtexppzJ1 Hz2qu. Define

Bij “ eαi`αjξij . (40)

We further denote ξ` “ EtexppzJ1 Hz2qu and ξ´ “ EtexppzJ1 Hzn1`1qu “ Etexpp´zJ1 Hz2qu,
then Bij “ eαi`αjξ` if σi “ σj and Bij “ eαi`αjξ´ otherwise. It is clear that B is a matrix
of rank 2, and we will show the proximity of B and pP on a high-probability event.

Step 1: Finding a high probability event. Define D “ tpω1, . . . , ωnq : p1{nuq
ř

ti:σi“uu
e4ωi ď

L
4

for u “ 1, 2u. By (12) of Assumption 1,

Ptpω1, . . . , ωnq P Dcu ď 2n´p1`C1q ď n´p1`C1{2q. (41)

Let η “ τp12 log nq1{2, then by Assumption 2, η ď 121{2c. Define

Bη “ tpz1, . . . , znq : }zi ´ µi}2 ď η, 1 ď i ď nu.

Since η2{τ2 ą d` 2tdη2{p4τ2qu1{2 ` η2{p2τ2q when n is large, by Lemma 1 of Laurent and
Massart (2000),

Pp}zi ´ µi}2 ą ηq “ P

ˆ

1

τ2
}zi ´ µi}

2
2 ą

η2

τ2

˙

ă P

#

1

τ2
}zi ´ µi}

2
2 ´ d ą 2

ˆ

d
η2

4τ2

˙1{2

`
η2

2τ2

+

ď exp

ˆ

´
η2

4τ2

˙

.
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Therefore,

PpBcηq ď n exp

ˆ

´
η2

4τ2

˙

“ n´2. (42)

Assume pz1, . . . , znq P Bη, then zJi Hzj ď µJi Hµj`η}Hµi}2`η}Hµj}2`η
2}H}2 ď µJi Hµj`

121{2c}Hµi}2 ` 121{2c}Hµj}2 ` 12c2}H}2 which is a constant. Hence there is a positive
constant ξ such that on Bη

ez
J
i Hzj ď ξ. (43)

Let fij “
 

exppzJi Hzjq ´ ξij
(2, and define the set

Cr “
!

pz1, . . . , znq :
ÿ

1ďi‰jďn

fij ď 4r2npn´ 1q{plog nq1´ε1
)

for any small constant ε1 P p0, 0.01q and some fixed constant r ą 0. We will specify the
choice of r later. Since ξij , η and }H}2 are all constants, by (43), fij has a uniform constant
upper bound for all 1 ď i ‰ j ď n on Bη, which we denote by f . Write Φ`η as the measure
of zi conditioned on }zi ´ µ}2 ď η for i P rn1s, and Φ´η for n1 ` 1 ď i ď n. The conditional
distribution of tziu1ďiďn on Bη is

Φ`η ˆ ¨ ¨ ¨ ˆ Φ`η
loooooooomoooooooon

n1

ˆΦ´η ˆ ¨ ¨ ¨ ˆ Φ´η
loooooooomoooooooon

n2

,

where ˆ denotes the product measure. In particular, zi’s are still mutually independent
conditioned on Bη. Hence, for any particular i P rns, fij p1 ď j ď n, j ‰ iq are independent,
and follow one of two distributions, depending on whether node j is in the same community
as node i. Thus, we define

fi` “rE
zj pfij | ziq p1 ď j ď n1, j ‰ iq,

fi´ “rE
zj pfij | ziq pn1 ` 1 ď j ď n, j ‰ iq,

f`` “rE
zipfi`q p1 ď i ď n1q,

f´` “rE
zipfi`q pn1 ` 1 ď i ď nq,

f`´ “rE
zipfi´q p1 ď i ď n1q,

f´´ “rE
zipfi´q pn1 ` 1 ď i ď nq,

where rEzj p¨ | ziq in the first two equations denotes expectation with respect to the distri-
bution of zj conditional on zi and }zj ´ µj}2 ď η, and rEzip¨q in the last four equalities
means expectation with respect to the distribution of zi conditional on }zi ´ µi}2 ď η. By
Bernstein’s inequality, we obtain

rP

#

n
ÿ

j‰i

fij ´
n
ÿ

j‰i

rEzj pfij | ziq ą r2 n´ 1

plog nq1´ε1
| zi

+

ď exp

#

´
r4pn´ 1q2{plog nq2p1´ε1q

2
ř

j‰i
ĄVar

zj
pfij | ziq `

2
3fr

2pn´ 1q{plog nq1´ε1

+

,
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where rP and ĄVar
zj
p¨q are taken over the distribution of zj conditional on }zj ´µj}2 ď η. By

direct calculation we have

ĄVar
zj
pfij | ziq “ ĂM

p4q
ij ´ 4ξijĂM

p3q
ij ` 4ξ2

ij
ĂM
p2q
ij ` 4ξijĂM

p1q
ij

ĂM
p2q
ij ´ pĂM

p2q
ij q

2 ´ 4ξ2
ijp

ĂM
p1q
ij q

2,

where ĂM
plq
ij “

rEzjtexpplzJi Hzjq | ziu. Let ζij “ zJi Hµj and ιi “ zJi H
2zi. Since }Hzi}2 is

upper bounded by a constant, by Lemma 11, ĂM plq
ij “ exp

`

lζij ` τ
2l2ιi{2

˘

t1´op1qu. Further
calculation leads to

ĄVar
zj
pfij | ziq

“peτ
2ιi ´ 1qe2ζij`τ

2ιi
!

e2ζij`3τ2ιipeτ
2ιi ` 1qpe2τ2ιi ` 1q ´ 4ξije

ζij`
3
2
τ2ιipeτ

2ιi ` 1q ` 4ξ2
ij

)

t1` op1qu,

which is upper bounded by c1τ
2 with some constant c1 ą 0, since ξij , ζij and ιi are up-

per bounded by constants. By Assumption 2, we have 2
ř

j‰i
ĄVar

zj
pfij | ziq ď 2c2c1pn ´

1q{ log n ď fr2pn´ 1q{t3plog nq1´ε1u for large n. Consequently,

rP

#

n
ÿ

j‰i

fij ´
n
ÿ

j‰i

rEzj pfij | ziq ą r2 n´ 1

plog nq1´ε1
| zi

+

ď exp

"

´
r2pn´ 1q

fplog nq1´ε1

*

ď n´p2`C2q (44)

for some constant C2 ą 0.
Recall that

n
ÿ

j‰i

rEzj pfij | ziq “

#

pn1 ´ 1qfi` ` n2fi´, 1 ď i ď n1,

n1fi` ` pn2 ´ 1qfi´, n1 ` 1 ď i ď n.

Since fi`, fi´ ď f on Bη for any 1 ď i ď n, by Bernstein’s inequality again, we obtain

rP

#

n1
ÿ

i“1

fi` ´ n1f`` ą r2 n1

plog nq1´ε1

+

ď exp

#

´
r4n2

1{plog nq2p1´ε1q

2n1
ĄVar

z1
pf1`q `

2
3fr

2n1{plog nq1´ε1

+

.

We further bound the right hand side of the above display. By definition, we have

f1` “ rEzj pf1j | z1q “ ĂM
p2q
1j ´ 2ξ`ĂM

p1q
1j ` ξ

2
` p1 ď j ď n1q,

the variance of which is ĄVar
z1
pĂM

p2q
1j q ` 4ξ2

`
ĄVar

z1
pĂM

p1q
1j q ´ 4ξ`ĄCov

z1
pĂM

p2q
1j ,

ĂM
p1q
1j q. Since z1 is

bounded by constants and τ2 Ñ 0, we can find a constant c11 ą 0 such that 1 ď expp4τ2ι1q ď
1` c11τ

2. Then we get

ĄVar
z1
pĂM

p2q
1j q “

"

rEz1e4ζ1j`4τ2ι1 ´

´

rEz1e2ζ1j`2τ2ι1
¯2
*

t1` op1qu

ď 2

"

p1` c11τ
2qrEz1e4ζ1j ´

´

rEz1e2ζ1j
¯2
*

“ 2
!

p1` c11τ
2qe4µJ1 Hµj`8τ2µJj H

2µj ´ e4µJ1 Hµj`4τ2µJj H
2µj

)

t1` op1qu

ď 4e4µJ1 Hµj`4τ2µJj H
2µj

´

e4τ2µJj H
2µj ´ 1` τ2c11e

4τ2µJj H
2µj

¯

ď c12τ
2,
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for some constant c12 ą 0. The last inequality is again due to τ2 Ñ 0. We can use similar
argument to get ĄVar

z1
pĂM

p1q
1j q ď c13τ

2 and ĄCov
z1
pĂM

p2q
1j ,

ĂM
p1q
1j q ď c14τ

2. Therefore, we have
ĄVarpf1`q ď c2τ

2 ď c2c2{ log n ď fr2{t6plog nq1´ε1u, where c2 ą 0 is a constant. This
implies

rP

#

n1
ÿ

i“1

fi` ´ n1f`` ą r2 n1

plog nq1´ε1

+

ď exp

"

´
r2n1

fplog nq1´ε1

*

ď n´p3`C3q (45)

for some constant C3 ą 0. Similarly, we also obtain

rP

#

n1
ÿ

i“1

fi´ ´ n1f`´ ą r2 n1

plog nq1´ε1

+

ď n´p3`C3q (46)

rP

#

n
ÿ

i“n1`1

fi` ´ n2f´` ą r2 n2

plog nq1´ε1

+

ď n´p3`C3q (47)

rP

#

n
ÿ

i“n1`1

fi´ ´ n2f´´ ą r2 n2

plog nq1´ε1

+

ď n´p3`C3q. (48)

Next we bound f`´, f`´, f´`, and f´´. Since z1 is bounded by constants and τ2 Ñ 0,
we can find constants c21 ą 0 such that expp2τ2ι1q ď 1` c21τ

2. Then

f`` “ rEz1
´

ĂM
p2q
12 ´ 2ξ`ĂM

p1q
1j ` ξ

2
`

¯

“

"

rEz1pe2ζ12`2τ2ι1q ´ 2ξ`rE
z1peζ12`

τ2

2
ι1q ` ξ2

`

*

p1` op1qq

ď 2
!

p1` c21τ
2qrEz1pe2ζ12q ´ 2ξ`rE

z1peζ12q ` ξ2
`

)

“ 2

"

p1` c21τ
2qe2µJHµ`2τ2µJH2µ ´ 2ξ`e

µJHµ` τ2

2
µJH2µ ` ξ2

`

*

t1` op1qu (49)

ď 4

"

p1` c21τ
2qe2µJHµ`2τ2µJH2µ ´ 2ξ`e

µJHµ` τ2

2
µJH2µ ` ξ2

`

*

. (50)

Here equality (49) is due to Lemma 11. By the definition of ξ`, we have

ξ` “ Ez1
!

Ez2
´

ez
J
1 Hz2 | z1

¯)

“ Ez1
ˆ

ez
J
1 Hµ`

τ2

2
zJ1 H

2z1

˙

.

Let z1 “ µ` τy1. Direct calculation leads to

ξ` “ eµ
JHµ` τ2

2
µJH2µ E

"

e
τ4

2
yJ1 H

2y1`τµJHpI`τ2Hqy1

*

“
 

detpI ´ τ4H2q
(´1{2

exp

„

µJHµ`
τ2

2

 

µJH2µ` µJHpI ` τ2HqpI ´ τ4H2q´1pI ` τ2HqHµ
(



.

By Taylor expansion, we have detpI ´ τ4H2q “ 1´ τ4TrpH2q ` opτ4q. Further, since H2 is
p.s.d., then 1 ď

 

detpI ´ τ4H2q
(´1{2

ď 1 ` c22τ
2 for some constant c22 ą 0. In addition, as

τ Ñ 0,
µJH2µ` µJHpI ` τ2HqpI ´ τ4H2q´1pI ` τ2HqHµÑ 2µJH2µ.
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Therefore, we have

1 ď exp

„

τ2

2

 

µJH2µ` µJHpI ` τ2HqpI ´ τ4H2q´1pI ` τ2HqHµ
(



ď p1` c23τ
2q

for some constant c23 ą 0. Therefore, we can find a constant c24 ą 0 such that

eµ
JHµ ď ξ` ď p1` c

2
4τ

2qeµ
JHµ.

Plugging this into (50), we get

f`` ď 4

"

p1` c21τ
2qe2µJHµ`2τ2µJH2µ ´ 2eµ

JHµ eµ
JHµ` τ2

2
µJH2µ ` p1` c24τ

2q2e2µJHµ

*

ď 4e2µJHµ

ˆ

e2τ2µJH2µ ´ 2e
τ2

2
µJH2µ ` 1` c25τ

2

˙

ď c3τ
2,

where c25 ą 0, c3 ą 0 are constants. The last two inequalities are both due to τ2 Ñ 0. We
bound f`´, f´`, f´´ in similar ways. Assumption 2 then ensures that for sufficiently large
values of n,

maxtf``, f`´, f´`, f´´u ď 2r2{plog nq1´ε1 . (51)

In view of the decomposition

ÿ

1ďi‰jďn

fij “
n1
ÿ

i“1

#

ÿ

j‰i

fij ´ pn1 ´ 1qfi` ´ n2fi´

+

`

n
ÿ

i“n1`1

#

ÿ

j‰i

fij ´ n1fi` ´ pn2 ´ 1qfi´

+

` pn1 ´ 1q
n1
ÿ

i“1

pfi` ´ f``q ` n2

n1
ÿ

i“1

pfi´ ´ f`´q

` n1

n
ÿ

i“n1`1

pfi` ´ f´`q ` pn2 ´ 1q
n
ÿ

i“n1`1

pfi´ ´ f´´q

` n1pn1 ´ 1qf`` ` n1n2f`´ ` n1n2f´` ` n2pn2 ´ 1qf´´

and that (51) implies

n1pn1 ´ 1qf`` ` n1n2f`´ ` n1n2f´` ` n2pn2 ´ 1qf´´ ď
2r2npn´ 1q

plog nq1´ε1
,
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we obtain

P tpz1, . . . , znq P Ccr | pz1, . . . , znq P Bηu “ rP

#

ÿ

1ďi‰jďn

fij ą 4r2npn´ 1q{plog nq1´ε1

+

ď rP

#

ÿ

1ďi‰jďn

fij ´ n1pn1 ´ 1qf`` ´ n1n2f`´ ´ n1n2f´` ´ n2pn2 ´ 1qf´´ ą 2r2npn´ 1q{plog nq1´ε1

+

ď

n1
ÿ

i“1

rEzi

«

rP

#

ÿ

j‰i

fij ´ pn1 ´ 1qfi` ´ n2fi´ ą r2pn´ 1q{plog nq1´ε1 | zi

+ff

`

n
ÿ

i“n1`1

rEzi

«

rP

#

ÿ

j‰i

fij ´ n1fi` ´ pn2 ´ 1qfi´ ą r2pn´ 1q{plog nq1´ε1 | zi

+ff

` rP

#

n1
ÿ

i“1

fi` ´ n1f`` ą r2n1{plog nq1´ε1

+

` rP

#

n1
ÿ

i“1

fi´ ´ n1f`´ ą r2n1{plog nq1´ε1

+

` rP

#

n
ÿ

i“n1`1

fi` ´ n2f´` ą r2n2{plog nq1´ε1

+

` rP

#

n
ÿ

i“n1`1

fi´ ´ n2f´´ ą r2n2{plog nq1´ε1

+

ď n´p1`C2q ` 4n´p3`C3q ď n´p1`C2q ` n´p1`C3q.

The penultimate inequality is due to (44)–(48). We then have for large n

P
 

pz1, . . . , znq P Bη X Ccr
(

ď P
 

pz1, . . . , znq P Ccr | pz1, . . . , znq P Bη
(

ď n´p1`C2q ` n´p1`C3q.
(52)

Step 2: Bounding initialization error. The next part of the proof is in line with
the proofs of Lemma 1 and Corollary 2 in Gao et al. (2018). Let Bi denote the ith row of B,
which is defined by (40), and define B̄i “ }Bi}´1

1 Bi. Throughout this part, we conduct all the
calculation on the intersection of the events tpz1, . . . , znq P Bη XCcru and tpω1, . . . , ωnq P Du.

Step 2.1: Establishing the separation condition for the rows of B̄. Since
B̄i “ B̄j when σi “ σj , we only need to lower bound }B̄1 ´ B̄n}1. Let Lu “

ř

σi“u
eωi for

u “ 1, 2. When L1ξ` ` L2ξ´ ď L1ξ´ ` L2ξ`, we have

}B̄1 ´ B̄n}1 ě
n1
ÿ

i“1

|B̄1i ´ B̄ni| “
n1
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

eωiξ`
L1ξ` ` L2ξ´

´
eωiξ´

L1ξ´ ` L2ξ`

ˇ

ˇ

ˇ

ˇ

“
1

L1ξ´ ` L2ξ`

n1
ÿ

i“1

eωi
ˇ

ˇ

ˇ

ˇ

L1ξ´ ` L2ξ`
L1ξ` ` L2ξ´

ξ` ´ ξ´

ˇ

ˇ

ˇ

ˇ

ě
L1pξ` ´ ξ´q

L1ξ` ` L2ξ´
.

Since

Lu ď pnu
ÿ

i“σu

e2ωiq1{2 ď

#

nupnu
ÿ

i“σu

e4ωiq1{2

+1{2

ď nuL
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for u “ 1, 2, and L1 ě n1e
´ω ě ne´ω{3, we obtain

}B̄1 ´ B̄n}1 ě
1
3ne

´ωpξ` ´ ξ´q

nLξ`
“
ξ` ´ ξ´

3eωLξ`
.

A similar argument holds when L1ξ` ` L2ξ´ ą L1ξ´ ` L2ξ` by using }B̄1 ´ B̄n}1 ě
řn
i“n1`1 |B̄1i´B̄ni| at the beginning of the sequence of inequalities. Therefore, the separation

condition holds for B̄

min
σi‰σj

}B̄i ´ B̄j}1 ě
ξ` ´ ξ´

3eωLξ`
.

Step 2.2: Bounding
ř

σ̂0
i‰σi

eωi. Let pv1 and pv2 be the centroids from the k-median

step of Algorithm 1. Recall J0 “ ti : pσi “ 0u from Algorithm 1. Fill matrix pV P Rnˆn

with pVi “ pvσ̂0
i
being its ith row, if i P Jc0 and pVi “ p0, . . . , 0q if i P J0. Let J “ ti P Jc0 :

}pVi ´ B̄i}1 ě pξ` ´ ξ´q{p6e
ωLξ`qu. As in Lemma 5 of Gao et al. (2018) we define

Cu “ ti P Jc0 : σi “ u, }pVi ´ B̄i}1 ă pξ` ´ ξ´q{p6e
ωLξ`qu,

R1 “ tu P t1, 2u : Cu “ Hu,
R2 “ tu P t1, 2u : Cu ‰ H, for all i, j P Cu, σ̂0

i “ σ̂0
j u,

R3 “ tu P t1, 2u : Cu ‰ H, there exist i, j P Cu, s.t. i ‰ j, σ̂0
i ‰ σ̂0

j u.

The counting argument in Lemma 5 of Gao et al. (2018) implies |R3| ď |R1|. Therefore,

ÿ

iPYuPR3
Cu

eωi ď |R3|nL ď |R1|nL ď 3eωL
ÿ

iPJ

eωi .

Here the last inequality holds because
ř

iPJ e
ωi ě

ř

uPR1

ř

iPCcu
eωi “

ř

uPR1

ř

σi“u
eωi ě

|R1|ne
´ω{3. Hence, we have obtained

ÿ

σ̂0
i‰σi

eωi ď
ÿ

iPJ0

eωi `
ÿ

iPJ

eωi `
ÿ

iPYuPR3
Cu

eωi ď
ÿ

iPJ0

eωi ` p1` 3eωL̄q
ÿ

iPJ

eωi . (53)

Step 2.3: Bounding
ř

iPJ0
eωi and

ř

iPJ e
ωi. By definition of pP from Algorithm 1,

we have

n
ÿ

i“1

} pPi}1}pVi ´ P̃i}1 ď p1` εq
n
ÿ

i“1

} pPi}1}B̄i ´ P̃i}1.
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Then a bound for
ř

iPJ }
pPi}1 can be established by

ÿ

iPJ

} pPi}1 ď
6eωLξ`
ξ` ´ ξ´

ÿ

iPJ

} pPi}1}pVi ´ B̄i}1

ď
6eωLξ`
ξ` ´ ξ´

ÿ

iPJ

´

} pPi}1}pVi ´ P̃i}1 ` } pPi}1}P̃i ´ B̄i}1

¯

ď p2` εq
6eωLξ`
ξ` ´ ξ´

n
ÿ

i“1

} pPi}1}P̃i ´ B̄i}1

ď p2` εq
6eωLξ`
ξ` ´ ξ´

n
ÿ

i“1

2} pPi ´Bi}1
} pPi}1

} pPi}1 _ }Bi}1

ď p2` εq
12eωLξ`
ξ` ´ ξ´

n
ÿ

i“1

} pPi ´Bi}1

ď p2` εq
12eωLξ`
ξ` ´ ξ´

n} pP ´B}F,

where _ means the larger of two quantities. Since }Bi}1 “ eαi
řn
j“1 e

αjξij ě eωine2α´ωξ`{3,
we can bound

ř

iPJ e
ωi by

ÿ

iPJ

eωi ď
3

ne2α´ωξ`

ÿ

iPJ

}Bi}1 ď
3

ne2α´ωξ`

ÿ

iPJ

´

} pPi}1 ` } pPi ´Bi}1

¯

ď
3

ne2α´ωξ`

"

p2` εq
12eωLξ`
ξ` ´ ξ´

n} pP ´B}F ` n} pP ´B}F

*

“
3

e2α´ωξ`

"

p2` εq
12eωLξ`
ξ` ´ ξ´

` 1

*

} pP ´B}F. (54)

We also bound
ř

iPJ0
eωi by

ÿ

iPJ0

eωi ď
3

ne2α´ωξ`

ÿ

iPJ0

}Bi}1 ď
3

ne2α´ωξ`

ÿ

iPJ0

} pPi ´Bi}1 ď
3

e2α´ωξ`
} pP ´B}F. (55)

Combining (53), (54) and (55), we obtain
ÿ

ti:σ̂0
i‰σiu

eωi ď
ÿ

iPJ0

eωi ` p1` 3eωL̄q
ÿ

iPJ

eωi ď C 1e3ωL
2
e´2α} pP ´B}F (56)

for some constant C 1 ą 0.
Step 2.4: Bounding } pP ´ B}F . We follow the argument of Lemma 6 in Gao et al.

(2018). By definition of pP , } pP ´A}2F ď }B ´A}
2
F. Then

} pP ´B}2F “ }
pP ´A}2F ´ }B ´A}

2
F ´ 2x pP ´B,B ´Ay

ď 2|x pP ´B,B ´Ay| ď 2} pP ´B}F sup
K:}K}F“1:rankpKqď4

|xK,A´By|

ď
1

4
} pP ´B}2F ` 4 sup

K:}K}F“1:rankpKqď4
|xK,A´By|2.

33



Gao, Ma and Yuan

By rearranging terms we obtain

} pP ´B}2F ď
16

3
sup

K:}K}F“1:rankpKqď4
|xK,A´By|2.

Suppose K has singular value decomposition K “
ř4
l“1 λlulu

J
l , then

|xK,A´By| ď
4
ÿ

l“1

|λl||u
J
l pA´Bqul| ď }A´B}2

4
ÿ

l“1

|λl| ď 2 }A´B}2 .

Therefore, we have

} pP ´B}F ď
8

31{2
}A´B}2 . (57)

Define Qij “ exppαi ` αj ` zJi Hzjq for 1 ď i ‰ j ď n and Qii “ 0 for 1 ď i ď n. By the
triangle inequality,

}A´B}2 ď }A´ P }2 ` }P ´Q}2 ` }Q´B}2 . (58)

We bound the three terms on the right hand side separately. First by Example 4.1 in Latała
et al. (2018), for any u ě 1 and t ą 0, we bound

P
 

}A´ P }2 ą 2e1{p2uqb1{2 ` C4e
1{upu log nq1{2 ` t | P u ă exp

´

´
t2

C4

¯

(59)

with some constant C4 ą 0, where b “ maxi
řn
j“1 Pij . Observe that

řn
j“1 Pij “ eαi

řn
j“1 e

αj exppzJi Hzjq ď

e2α`ω1
řn
j“1 e

ωjξ ď ξLne2α`ω1 for all i P rns. Take t “ tC4p1 ` C4q log nu1{2 in (59), then
conditional on P , with probability at least 1´ n´p1`C4q,

}A´ P }2 ď C 11pLne
2α`ω1q1{2 ` C 12plog nq1{2 (60)

for constants C 11 ą 0 and C 12 ą 0.
By definition, for i ‰ j,

|Pij ´Qij | “ e2α`ωi`ωj`z
J
i Hzj

e2α`ωi`ωj`z
J
i Hzj

1` e2α`ωi`ωj`zJi Hzj
ď e4α`2ωi`2ωj`2zJi Hzj ď e4αe2ωi`2ωjξ

2
,

and Pii ´Qii “ 0. Then we obtain

}P ´Q}2 ď }P ´Q}F ď

˜

n
ÿ

i,j“1

e8αe4ωi`4ωjξ
4

¸1{2

“ e4α
n
ÿ

i“1

e4ωiξ
2
ď ξ

2
L

4
ne4α. (61)

By definition, pQij ´Bijq2 “ e4α`2ωi`2ωjfij for i ‰ j, and pQii´Biiq2 “ expp4α`4ωi`
2zJi Hziq. By Cauchy-Schwarz inequality,

ÿ

1ďi‰jďn

e4α`2ωi`2ωjfij ď

˜

ÿ

1ďi‰jďn

e8α`4ωi`4ωj

¸1{2 ˜
ÿ

1ďi‰jďn

f2
ij

¸1{2

.
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It is straightforward to obtain the bound

˜

ÿ

1ďi‰jďn

e8α`4ωi`4ωj

¸1{2

ď e4α
n
ÿ

i“1

e4ωi ď L
4
ne4α.

Since fij ď f , we have

˜

ÿ

1ďi‰jďn

f2
ij

¸1{2

ď f
1{2

˜

ÿ

1ďi‰jďn

fij

¸1{2

ď f
1{2  

4r2pn´ 1qn{plog nq1´ε1
(1{2

ď 2rf
1{2
n{plog nq

1´ε1
2 .

Hence, we obtain

ÿ

1ďi‰jďn

pQij ´Bijq
2 ď 2rf

1{2
L

4
n2e4α{plog nq

1´ε1
2 .

On the other hand,

n
ÿ

i“1

pQii ´Biiq
2 “ ξ2

`

n
ÿ

i“1

e4α`4ωi ď ξ2
`L

4
ne4α ď 2rf

1{2
L

4
n2e4α{plog nq

1´ε1
2 .

Then we bound }Q´B}2 by

}Q´B}2 ď }Q´B}F ď2r1{2f
1{4
L

2
ne2α{plog nq

1´ε1
4 . (62)

Step 2.5: Bounding
ř

σ̂0
i‰σi

eωi. Combining (56), (57), (58), (60), (61) and (62), we
obtain that conditional on P , with probability at least 1´ n´p1`C4q

ÿ

ti:σ̂0
i‰σiu

eωi

ď
8

31{2
C 1e3ωL

2
e´2α

!

C 11pLne
2α`ω1q1{2 ` C 12plog nq1{2 ` ξ

2
L

4
ne4α ` 2r1{2f

1{4
L

2
ne2α{plog nq

1´ε1
4

)

ď n

#

C21
1

pne2α´ω1q1{2
` C22

plog nq1{2

ne2α
` C23e

2α ` C24r
1{2 1

plog nq
1´ε1

4

+

for constants C21 , C22 , C23 , C24 ą 0. By (10) and (11) of Assumption 1, we have 1{pne2α´ω1q1{2 Ñ

0 and plog nq1{2{pne2αq Ñ 0. For any γ ą 0, we can then make r small enough such that
ř

ti:σ̂0
i‰σiu

eωi ď e´ωγn. When γ is fixed, r can still be a constant bounded away from 0.
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At last, putting (41), (42) and (52) together with the conclusion from the previous
paragraph, we obtain

P

¨

˝

ÿ

ti:σ̂0
i‰σiu

eωi ą e´ωγn

˛

‚

ď Etαi,ziu
n
i“1

$

&

%

P

¨

˝

ÿ

ti:σ̂0
i‰σiu

eωi ą e´ωγn | tαi, ziu
n
i“1

˛

‚1ppz1, . . . , znq P Bη X Cr, pω1, . . . , ωnq P Dq

,

.

-

` P tpz1, . . . , znq P Bη X Ccru ` P
 

pz1, . . . , znq P Bcη
(

` P tpω1, . . . , ωnq P Dcu

ď n´p1`C4q ` n´p1`C2q ` n´p1`C3q ` n´2 ` n´p1`C1{2q

ă n´p1`2Cq

with 0 ă C ă mintC1{4, C2{2, C3{2, C4{2, 1{2u.
Since

ř

ti:σ̂0
i‰σiu

eωi ě e´ωn`pσ, σ̂0q, we immediately get

P
 

`pσ, σ̂0q ą γ
(

ď P

¨

˝

ÿ

ti:σ̂0
i‰σiu

eωi ą e´ωγn

˛

‚ă n´p1`2Cq.

This completes the proof.

Appendix C. Proofs of Theorems 8 and 9

C.1 Combining the initial error and edge counting

Let pσp´1,0q be an n-dimensional vector one obtains after line 7 of Algorithm 3. The following
Proposition 12 gives an error bound for pσp´1,0q.

Proposition 12 Suppose that Assumptions 1, 2 and 3 hold. Let ppα1, z1q and qpα1, z1q be
quantities defined in (14) and (15) respectively, and

Ipα1, z1q “ ´2 log
´

tppα1, z1qqpα1, z1qu
1{2 ` rt1´ ppα1, z1qut1´ qpα1, z1qus

1{2
¯

.

Assume n1, n2 P
“

p1 ´ δnqn{2, p1 ` δnqn{2
‰

. For any ε ą 0, define Bε “ tz1 : }z1 ´ µ}2 ď

p1´ ε{4q1{2ρu. Then there is an nε such that for all n ą nε,

P
´

σ̂
p´1,0q
1 ‰ σ1

¯

ď Eα1,z1
tσ1“1u

”

1pz1 P Bεq exp
!

´
n

2
p1´ εqIpα1, z1q

)ı

` exp

"

´p1´ εq
ρ2

2τ2

*

` n´p1`Cq (63)

for some constant C ą 0.
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Proof We start with some notation. Let Ju “ ti : σi “ u, 2 ď i ď nu, nu “ |Ju|,
pJu “ ti : σ̂

p´1,0q
i “ u, 2 ď i ď nu, mu “ | pJu| for u P t1, 2u, and Ju1u2 “ ti : σ̂

p´1,0q
i “

u1, σi “ u2, 2 ď i ď nu, mu1u2 “ |Ju1u2 | for u1, u2 P t1, 2u. For convenience, we suppress the
superscript p´1, 0q from σ̂

p´1,0q
i in the rest of this proof.

Recall the definitions of Pij in (3) and ppα, zq and qpα, zq in (14) and (15). Define events

C1 “

!

max
2ďiďn

}zi ´ µi}2 ď η
)

,

D1 “

$

’

&

’

%

ÿ

ti:σ̂
p´1,0q
i ‰σiu

eωi ď e´ω
γ

2
pn´ 1q

,

/

.

/

-

,

F1 “

#

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ1

P1i ´ n1ppα1, z1q

ˇ

ˇ

ˇ

ˇ

ď n1ε
1ppα1, z1q

+

X

#

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ2

P1i ´ n2qpα1, z1q

ˇ

ˇ

ˇ

ˇ

ď n2ε
1qpα1, z1q

+

,

E1 “ C1 X D1 X F1,

where η “ τp12 log nq1{2 as in the proof of Proposition 7, γ ą 0 and ε1 ą 0 are fixed constants
that will be specified later. It is worth mentioning that C1, D1, F1 and E1 are all measurable
with respect to the σ-algebra generated by tαi, ziuni“1 and Ap´1q. The proof of Proposition 7
implies that PpC1q ě 1´pn´1q´2 ě 1´n´3{2 and PpD1q ě 1´pn´1q´p1`2C1q ě 1´n´p1`C1q

for some constant C1 ą 0 that depends on γ.
Conditional on α1 and z1 P Bε, we provide a probabilistic bound for F1 on event C1.

With slight abuse of notation, let E denote the expectation with respect to the measure of
z’s restricted on C1. When i P J2 and σ1 “ 1, we have

EpP 2
1i | α1, z1q ď e2α1Etexpp2αi ` 2zJ1 Hziq | α1, z1u

“ e2α1`2α´2zJ1 HµEpe2ωiqE
“

exp
 

2zJ1 Hpzi ` µq
(

| z1

‰

ď C 11e
2α1`2α exp

`

τ2}Hz1}
2
2{2

˘

ď C 12e
2α1`2αp1` τ2q,

for n sufficiently large. The first inequality in the preceding display holds as a result of
Spxq ď ex for x P R. In the second inequality, we use Assumption 1 to bound Epe2wiq, apply
Lemma 11 and consider the fact that both z1 and zi are bounded on C1 and tz1 P Bεu. The
last inequality holds for n sufficiently large as τ Ñ 0 as n Ñ 8. We proceed to bound P1i

on α1, z1 P Bε

P1i ď exppα1 ` α` ω
1q exp

`

zJ1 Hziq ď C 13 exppα1 ` α` ω
1q,

where we again apply Spxq ď ex for x P R and z1 is finite on tz1 P Bεu. On C1 X tz1 P Bεu,
by Assumption 1, we bound q from below by

qpα1, z1q ě C 14 exppα1 ` α´ ωq, for n sufficiently large.

We apply Bernstein’s inequality and obtain

P

#

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ2

P1i ´ n2qpα1, z1q

ˇ

ˇ

ˇ

ˇ

ě t | α1, z1

+

ď 2 exp

"

´
t2

2n2C 12e
2α1`2αp1` τ2q ` p2{3qC 13e

α1`α`ω1t

*

.
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Take t “ n2ε
1qpα1, z1q ě C 14n2ε

1eα1`α´ω, and we further obtain, for some proper constants
C 15 and C2,

P

#

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ2

P1i ´ n2qpα1, z1q

ˇ

ˇ

ˇ

ˇ

ě n2ε
1qpα1, z1q | α1, z1

+

ď 2 exp

"

´
C 124 n2ε

12e´2ω

2C 12p1` τ
2q ` p2{3qC 13C

1
4ε
1eω1´ω

*

ď 2 exp
´

´C 15n2ε
1e´ω´ω

1
¯

ď
1

2
n´p1`C2q.

(64)
The second inequality in the preceding display holds as eω1´ω Á 1 by Assumption 1. We
apply (11) in Assumption 1 to obtain the last inequality. A similar argument yields that
conditional on C1, for z1 P Bε

P

#

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ1

P1i ´ n1ppα1, z1q

ˇ

ˇ

ˇ

ˇ

ě n1ε
1ppα1, z1q | α1, z1

+

ď
1

2
n´p1`C2q. (65)

Combining (64) and (65), we obtain that conditional on α1 and z1 P Bε,

PpFc1 | C1q ď n´p1`C2q.

Together with the probabilistic bound on C1, for some constant C22 , we have conditional on
α1 and z1 P Bε,

PpFc1q ď PpFc1 | C1qPpC1q ` PpFc1 | Cc1qPpC
c
1q ď PpFc1 | C1q ` PpCc1q

ď n´p1`C2q ` n´3{2 ď n´p1`C
2
2 q, (66)

Inspection of the above argument reveals that as long as z1 P Bε, the constant C22 in the
preceding display does not depend on α1 and z1, whence we obtain

PpEc1 | z1 P Bεq ď PpCc1q ` PpDc1q ` PpFc1q ď n´3{2 ` n´p1`C1q ` n´p1`C
2
2 q ď n´p1`Cq, (67)

with 0 ă C ă mint1{2, C1, C
2
2u. It will be useful at the end of the proof to give a probabilistic

bound on E1 without conditioning on tz1 P Bεu

PpEc1q ď PpEc1 | z1 P Bεq ` Ppz1 P Bεq ď n´p1`Cq ` exp
!

´p1´ ε{2q
ρ2

2τ2

)

, (68)

where the last inequality follows from (37) in Lemma 6.
Next observe that

Ptσ1“1upσ̂1 “ 2 and E1q

“ Ptσ1“1u

¨

˝

1

m1

ÿ

iP pJ1

A1,i ď
1

m2

ÿ

iP pJ2

A1,i and E1

˛

‚

“ Eα1,z1
tσ1“1u

$

&

%

1pz1 P BεqP

¨

˝

1

m1

ÿ

iP pJ1

A1,i ď
1

m2

ÿ

iP pJ2

A1,i and E1 | α1, z1

˛

‚

,

.

-

` Eα1,z1
tσ1“1u

$

&

%

1pz1 P BcεqP

¨

˝

1

m1

ÿ

iP pJ1

A1,i ď
1

m2

ÿ

iP pJ2

A1,i and E1 | α1, z1

˛

‚

,

.

-

.

(69)
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We deal with the first term in the above display. Assume z1 P Bε in the following. We then
have

P

¨

˝

1

m1

ÿ

iP pJ1

A1,i ď
1

m2

ÿ

iP pJ2

A1,i and E1 | α1, z1

˛

‚

“ E

»

–E

$

&

%

1pE1q1

¨

˝

1

m1

ÿ

iP pJ1

A1,i ď
1

m2

ÿ

iP pJ2

A1,i

˛

‚| tαi, ziu
n
i“1

,

.

-

| α1, z1

fi

fl

ď E

«

E

#

1pE1q1

˜

1

m1

ÿ

iPJ11

A1,i ď
1

m2

ÿ

iPJ22

A1,i `
1

m2

ÿ

iPJ21

A1,i

¸

| tαi, ziu
n
i“1

+

| α1, z1

ff

.

(70)

The equality holds because of the tower property of conditional expectations. We now
consider the conditional expectation inside the round brackets in the preceding display.
Conditional on tαi, ziuni“1, we define for i P rns

Wi
ind
„ BernoullipP1iq.

Contionally on tαi, ziuni“1, pA1iq2ďiďn are mutually independent and independent of Ap´1q,
whence we have, for any t ą 0 measurable with respect to the σ-algebra generated by
tαi, ziu

n
i“1 and Ap´1q,

E

#

1pE1q1

˜

1

m1

ÿ

iPJ11

A1,i ď
1

m2

ÿ

iPJ22

A1,i `
1

m2

ÿ

iPJ21

A1,i

¸

| tαi, ziu
n
i“1

+

“ E

#

1pE1q1

˜

1

m1

ÿ

iPJ11

Wi ď
1

m2

ÿ

iPJ22

Wi `
1

m2

ÿ

iPJ21

Wi

¸

| tαi, ziu
n
i“1

+

“ E

«

1pE1qE

#

1

˜

1

m1

ÿ

iPJ11

Wi ď
1

m2

ÿ

iPJ22

Wi `
1

m2

ÿ

iPJ21

Wi

¸

| tαi, ziu
n
i“1, A

p´1q

+

| tαi, ziu
n
i“1

ff

ď E

#

1pE1q
ź

iPJ22

`

P1ie
t{m2 ` 1´ P1i

˘

ź

iPJ21

`

P1ie
t{m2 ` 1´ P1i

˘

ź

iPJ11

`

P1ie
´t{m1 ` 1´ P1i

˘

| tαi, ziu
n
i“1

+

ď E

«

1pE1q exp

#

ÿ

iPJ22

P1ipe
t{m2 ´ 1q `

ÿ

iPJ21

P1ipe
t{m2 ´ 1q `

ÿ

iPJ11

P1ipe
´t{m1 ´ 1q

+

| tαi, ziu
n
i“1

ff

.

(71)

The second equality in the preceding display holds by the tower property of conditional
expectations and because E1 is measurable with respect to the σ-algebra generated by
tαi, ziu

n
i“1 and Ap´1q. In the first inequality, we apply the Chernoff bound and consider the

fact that m1, m2, P1i’s and pJu1u2qu1,u2Pr2s are all measurable with respect to the σ-algebra
generated by tαi, ziuni“1 and Ap´1q. The second inequality holds as 1` x ď ex for all x P R.

39



Gao, Ma and Yuan

Write p “ ppα1, z1q and q “ qpα1, z1q as shorthands. Define the following quantities

K1 “ exp
 

m2pe
t{m2 ´ 1qq `m1pe

´t{m1 ´ 1qp
(

,

K2 “ exp

#

pet{m2 ´ 1q
´

ÿ

iPJ22

P1i ´m2q
¯

+

,

K3 “ exp

#

pe´t{m1 ´ 1q
´

ÿ

iPJ11

P1i ´m1p
¯

+

,

K4 “ exp
!

pet{m2 ´ 1q
ÿ

iPJ21

P1i

)

.

It is clear that (71) is the same as E
“

1pE1qK1K2K3K4 | tαi, ziu
n
i“1

‰

. Set t “ m1m2 logpp{qq{pm1`

m2q. Next we deal with K1, K2, K3 and K4 separately.
Before we proceed, we mention the following useful facts. For any fixed γ ą 0, we make

n sufficiently large so that δn ă γ. Hence, n1, n2 P rp1´ γqn{2, p1` γqn{2s. On event
E1 Ă D1, we have

|ti : σ̂
p´1,0q
i ‰ σiu| ď eω

ÿ

ti:σ̂
p´1,0q
i ‰σiu

eωi ď
γ

2
pn´ 1q ă

γ

2
n.

Therefore, we get m12 ď γn{2, m21 ď γn{2, and hence m1,m2 P rp1´ 2γqn{2, p1` 2γqn{2s.
Furthermore, for z1 P Bε, the lower bound (25) holds for zJ1 Hµ. We denote ξ “ exppεµJHµ{8q.
For z1 P Bε, on event E1, both exppzJ1 Hziq and exppzJ1 Hµq are bounded above by some
constant ξ, which is larger than 1 since zJ1 Hµ ą 0 when z1 P Bε.

First we deal with the main term K1. Since (26), (27), (28), (29), (30), (33) and (34)
continue to hold for p and q, we obtain

p1´ κqe2αez
J
1 HµDpω1, z1q ď p ď e2αez

J
1 HµDpω1, z1q, (72)

p1´ κqe2αe´z
J
1 HµDpω1, z1q ď q ď e2αe´z

J
1 HµDpω1, z1q, (73)

where κ “ 1´ p1` ξ´1q2{4 P p0, 1q and 0 ă e´2ωD ď Dpω1, z1q ď eω
1

D. For this particular
choice of κ, we have

p1´ κq1{2ez
J
1 Hµ ´ 1 ě

1

2
p1` ξ´1qξ ´ 1 “

1

2
pξ ´ 1q ą 0. (74)

By direct calculation,

m2qpe
t{m2 ´ 1q `m1ppe

´t{m1 ´ 1q “ ´
!

m1p`m2q ´ pm1 `m2qp
m1

m1`m2 q
m2

m1`m2

)

ď´
n

2

"

p` q ´ 2γpp´ qq ´ 2

ˆ

p

q

˙γ

ppqq1{2
*

. (75)

We aim to show that the term inside the round brackets of the last display and ´nIpα1, z1q{2
are close. To this end, first we have

p` q ´ 2γpp´ qq ´ 2 pp{qqγ ppqq1{2

pp1{2 ´ q1{2q2
“1´ 2γ

p1{2 ` q1{2

p1{2 ´ q1{2
´ 2

"ˆ

p

q

˙γ

´ 1

*

ppqq1{2

pp1{2 ´ q1{2q2
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Using (72), (73) and (74), we obtain

2γ
p1{2 ` q1{2

p1{2 ´ q1{2
ď 2γ

e
1
2
zJ1 Hµ ` e´

1
2
zJ1 Hµ

p1´ κq1{2e
1
2
zJ1 Hµ ´ e´

1
2
zJ1 Hµ

“ 2γ
ez
J
1 Hµ ´ 1

p1´ κq1{2ez
J
1 Hµ ´ 1

ď 4γ
ξ ´ 1

ξ ´ 1
,

ˆ

p

q

˙γ

´ 1 ď

#

ez
J
1 Hµ

p1´ κqe´z
J
1 Hµ

+γ

´ 1 ď

˜

ξ
2

1´ κ

¸γ

´ 1,

ppqq1{2

pp1{2 ´ q1{2q2
ď

1

tp1´ κq1{2e
1
2
zJ1 Hµ ´ e´

1
2
zJ1 Hµu2

“
ez
J
1 Hµ

tp1´ κq1{2ez
J
1 Hµ ´ 1u2

ď
4ξ

pξ ´ 1q2
.

We choose γ such that the second last and third last displays are sufficiently small. Hence,
for sufficiently small constant γ ą 0,

p` q ` 2γpp´ qq ´ 2 pp{qqγ ppqq1{2

pp1{2 ´ q1{2q2
ě 1´

ε

4
. (76)

We also have

Ipα1, z1q “ ´ 2 log

„

1´
1

2
pp1{2 ´ q1{2q2 ´

1

2
tp1´ pq1{2 ´ p1´ qq1{2u2



.

Let

β “
1

2
pp1{2 ´ q1{2q2 `

1

2
tp1´ pq1{2 ´ p1´ qq1{2u2

“
1

2
pp1{2 ´ q1{2q2

«

1`
pp1{2 ` q1{2q2

tp1´ pq1{2 ` p1´ qq1{2u2

ff

.

By (72), (73), (9) of Assumption 1, and that exppzJ1 Hµq ď ξ, we have p, q ď 3{4. Thus,

pp1{2 ` q1{2q2

tp1´ pq1{2 ` p1´ qq1{2u2
ď

e2α
´

e
1
2
zJ1 Hµ ` e´

1
2
zJ1 Hµ

¯2
Dpω1, z1q

p1{2` 1{2q2

ď e2α`ω1pξ
1{2
` ξ´1{2q2D,

which goes to 0 as 2α` ω1 Ñ ´8 by (9) of Assumption 1. Consequently,

β ď
1

2
e2α`ω1

!

e
1
2
zJ1 Hµ ´ p1´ κq1{2e´

1
2
zJ1 Hµ

)2
D

"

1` e2α`ω1
´

ξ
1{2
` ξ´1{2

¯2
D

*

ď
1

2
e2α`ω1

"

ξ
1{2
´

1

2
p1` ξ´1qξ

´1{2
*2

D
!

1` e2α`ω1
`

ξ
1{2
` ξ´1{2

˘2
D
)

,

which also goes to 0 as 2α` ω1 Ñ ´8. Since logp1´ βq ě ´β ´ β2 for all 0 ă β ă 1{2, we
obtain Ipα1, z1q ď 2β ` 2β2. Therefore,

Ipα1, z1q

pp1{2 ´ q1{2q2
ď p1` βq

«

1`
pp1{2 ` q1{2q2

tp1´ pq1{2 ` p1´ qq1{2u2

ff

.
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Since the limits of β and pp1{2 ` q1{2q2{tp1´ pq1{2 ` p1´ qq1{2u2 are both zeros, we have for
large values of n that

Ipα1, z1q

pp1{2 ´ q1{2q2
ď 1`

ε

4
. (77)

We combine (75), (76) and (77) to obtain

K1 ď exp

"

´
n

2

1´ ε{4

1` ε{4
Ipα1, z1q

*

ď exp
!

´
n

2

´

1´
ε

2

¯

Ipα1, z1q

)

. (78)

To bound K2, we have the decomposition

K2 “ exp

«

pet{m2 ´ 1q
!

ÿ

iPJ2

P1i ´ n2q ´
ÿ

iPJ12

P1i ` pn2 ´m2qq
)

ff

.

By (72) and (73), we bound et{m2 ´ 1 by a constant

et{m2 ´ 1 “

ˆ

p

q

˙

m1
m1`m2

´ 1 ď

ˆ

p

q

˙γ` 1
2

´ 1 ď

#

ez
J
1 Hµ

p1´ κqe´z
J
1 Hµ

+γ` 1
2

´ 1ď
ξ

2

1´ κ
´ 1. (79)

We then bound |
ř

iPJ2
P1i ´ n2q|,

ř

iPJ12
P1i and pn2 ´m2qq one by one. By definition, on

event E1 we have
ˇ

ˇ

ˇ

ˇ

ÿ

iPJ2

P1i ´ n2q

ˇ

ˇ

ˇ

ˇ

ď n2ε
1q ă nε1q. (80)

We use logp1´ xq ď ´x for 0 ă x ă 1 to obtain

Ipα1, z1q ě 2β “ pp1{2 ´ q1{2q2

«

1`
pp1{2 ` q1{2q2

tp1´ pq1{2 ` p1´ qq1{2u2

ff

.

By (72) and (73), we get

Ipα1, z1q

pp1{2 ´ q1{2q2
ě 1`

1

4

!

p1´ κqe2α´2ωpe
1
2
zJ1 Hµ ` e´

1
2
zJ1 Hµq2D

)

ě 1`
1

4

!

p1´ κqe2α´2ωpξ1{2 ` ξ
´1{2

q2D
)

Ñ 1, (81)

as αÑ ´8. Following (74), we also have

q

pp1{2 ´ q1{2q2
“

1
 

pp{qq1{2 ´ 1
(2 ď

1

tp1´ κq1{2ez
J
1 Hµ ´ 1u2

ď
4

pξ ´ 1q2
. (82)

Putting (79), (80), (81) and (82) together, for a suitably chosen ε1, we obtain

pet{m2 ´ 1q

ˇ

ˇ

ˇ

ˇ

ÿ

iPJ2

P1i ´ n2q

ˇ

ˇ

ˇ

ˇ

ď

˜

ξ
2

1´ κ
´ 1

¸

nε1Ipα1, z1q
pp1{2 ´ q1{2q2

Ipα1, z1q

q

pp1{2 ´ q1{2q2

ď
ε

32
nIpα1, z1q.

(83)
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Since P1i ď exppα1 ` αi ` z
J
1 Hziq ď ξe2α`ω1eωi , then on event E1 we have

ÿ

iPJ12

P1i ď ξe2α`ω1
ÿ

iPJ12

eωi ď ξe2α`ω1
ÿ

ti:σ̂
p´1,0q
i ‰σiu

eωi ď ξe2α`ω1e´ω
γ

2
pn´ 1q.

By (73), the definition of Dpω1, z1q and Assumption 1, we see q Á e2α`ω1 . In view of (81)
and (82), we make γ small enough such that

pet{m2 ´ 1q
ÿ

iPJ12

P1i ď

˜

ξ
2

1´ κ
´ 1

¸

ξe2α`ω1e´ω
γ

2
pn´ 1q

ď

˜

ξ
2

1´ κ
´ 1

¸

ξ
e2α`ω1

q

q

pp1{2 ´ q1{2q2

pp1{2 ´ q1{2q2

Ipα1, z1q
e´ω

γ

2
nIpα1, z1q

ď
ε

32
nIpα1, z1q.

(84)
Since n2 ´m2 ď 3γn{2, combining (79), (81) and (82) we obtain

pet{m2 ´ 1qpn2 ´m2qq ď

˜

ξ
2

1´ κ
´ 1

¸

3

2
γnIpα1, z1q

pp1{2 ´ q1{2q2

Ipα1, z1q

q

pp1{2 ´ q1{2q2

ď
ε

32
nIpα1, z1q (85)

for small enough γ. Combining (83), (84) and (85), we obtain

K2 ď exp

"

3ε

32
nIpα1, z1q

*

(86)

The same bound for K3 is obtained similarly to bound K2

K3 ď exp

"

3ε

32
nIpα1, z1q

*

. (87)

Lastly, the following bound for K4 is obtained by the same argument as in establishing
(84)

K4 ď exp
! ε

32
nIpα1, z1q

)

. (88)

Combining (71), (78), (86), (87), (88), we get

E

#

1pE1q1

˜

1

m1

ÿ

iPJ11

A1,i ď
1

m2

ÿ

iPJ22

A1,i `
1

m2

ÿ

iPJ21

A1,i

¸

| tαi, ziu
n
i“1

+

ď exp

"

´
n

2
p1´

15

16
εqIpα1, z1q

*

ď exp
!

´
n

2
p1´ εqIpα1, z1q

)

.

Since the rightmost side of the above display depends only on pα1, z1q, by (70) we obtain
for z1 P Bε

P

¨

˝

1

m1

ÿ

iP pJ1

A1,i ď
1

m2

ÿ

iP pJ2

A1,i and E1 | α1, z1

˛

‚ď exp
!

´
n

2
p1´ εqIpα1, z1q

)

.
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By (69), we further have

Ptσ1“1upσ̂1 “ 2 and E1q ď Eα1,z1
tσ1“1u

”

1pz1 P Bεq exp
!

´
n

2
p1´ εqIpα1, z1q

)ı

` Ptσ1“1upz1 P Bcεq

ď Eα1,z1
tσ1“1u

”

1pz1 P Bεq exp
!

´
n

2
p1´ εqIpα1, z1q

)ı

` exp

"

´p1´ ε{2q
ρ2

2τ2

*

,

where the last inequality is due to (37) in Lemma 6. Finally, in view of (68), we have

Ptσ1“1upσ̂1 “ 2q ď Ptσ1“1upσ̂1 “ 2 and E1q ` Ptσ1“1upE
c
1q

ď Eα1,z1
tσ1“1u

”

1pz1 P Bεq exp
!

´
n

2
p1´ εqIpα1, z1q

)ı

` exp

"

´p1´ εq
ρ2

2τ2

*

` n´p1`Cq.

C.2 Proof of Theorem 8

The proof strategy here is similar to that used in the proof of Theorem 2 in Gao et al.
(2017). For i P rns there is a permutation πi such that

`pσ, pσp´i,0qq “
1

n

n
ÿ

j“1

1pσj ‰ πipσ̂
p´i,0q
j qq.

Without loss of generality, we may assume that π1 “ Id is the identity permutation. Then
by Proposition 7 and Lemma 4 in Gao et al. (2017), we obtain that for some constant C ą 0,
for each i “ 2, . . . , n with probability at least 1´ n´p1`Cq,

pσi “ πippσ
p´i,0q
i q.

Together with Proposition 12, we obtain that for i “ 1, . . . , n,

Ppσi ‰ pσiq ď Ptσi ‰ πippσ
p´i,0q
i q, pσi “ πippσ

p´i,0q
i qu ` Ptpσi ‰ πippσ

p´i,0q
i qu

ď νε
1

n ` 2n´p1`Cq. (89)

Here, for any fixed ε P p0, 1{2q, we pick

ε1 “
ε

2
.

By Markov’s inequality, We have

P t`pσ, pσq ą νεnu ď
1

νεn
¨

1

n

n
ÿ

i“1

Ppσi ‰ pσiq

ď
νε
1

n

νεn
`

2n´p1`Cq

νεn
.

We divide the remaining proof into two cases depending on the relative magnitude of νεn
and n´p1`C{2q.
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Case 1 If νεn ě n´p1`C{2q, then

P t`pσ, pσq ą νεnu ď
νε
1

n

νεn
` 2n´C{2.

To control the ratio νε1n{νεn, we further divide into two subcases.
Subcase 1.1 In this subcase, we assume that

e´p1´εq
ρ2

2τ2 ! Eα0,z0
H0

!

1pz0 P Bεqe´p1´εq
n
2
Ipα0,z0q

)

. (90)

We then have

Eα0,z0
H0

!

1pz0 P Bε1qe´p1´ε
1qn

2
Ipα0,z0q

)

ď Eα0,z0
H0

!

1pz0 P Bεqe´p1´ε
1qn

2
Ipα0,z0q

)

` Ce´p1´εq
ρ2

2τ2 (91)

“ Eα0,z0
H0

!

1pz0 P Bεqe´p1´εq
n
2
Ipα0,z0qe´pε´ε

1qn
2
Ipα0,z0q

)

` Ce´p1´εq
ρ2

2τ2

“ op1q ¨ Eα0,z0
H0

!

1pz0 P Bεqe´p1´εq
n
2
Ipα0,z0q

)

` Ce´p1´εq
ρ2

2τ2 (92)

! νεn. (93)

Here, (91) holds since expt´p1´ ε1qmIpα0, z0qu ď 1 and PH0pz0 P Bε1zBεq ď PH0pz0 R Bεq ď
C expt´p1´ εqρ2{p2τ2qu. In (92), the equality holds since ε ą ε1 and nIpα0, z0q is bounded
from below uniformly when z0 P Bε by a sequence that diverges to infinity. Finally, (93)
holds since both terms in (92) are opνεnq as nÑ8 under (90). Hence,

P t`pσ, pσq ą νεnu ď
νε
1

n

νεn
` 2n´C{2 “ op1q. (94)

Subcase 1.2 In this case, we consider the situation complementary to (90), namely

Eα0,z0
H0

!

1pz0 P Bεqe´p1´εq
n
2
Ipα0,z0q

)

À e´p1´εq
ρ2

2τ2 . (95)

Equation (95) leads to

Eα0,z0
H0

!

e´p1´εq
n
2
Ipα0,z0q

)

ď Eα0,z0
H0

!

1pz0 P Bεqe´p1´εq
n
2
Ipα0,z0q

)

` PH0pz0 R Bεq

À e´p1´εq
ρ2

2τ2 . (96)

For the first term in νε1n , we have

Eα0,z0
H0

!

1pz0 P Bε1qe´p1´ε
1qn

2
Ipα0,z0q

)

“ Eα0,z0
H0

!

1pz0 P Bε1qe´p1´εq
n
2
Ipα0,z0qe´pε´ε

1qn
2
Ipα0,z0q

)

“ op1qEα0,z0
H0

!

1pz0 P Bε1qe´p1´εq
n
2
Ipα0,z0q

)

(97)

“ op1qEα0,z0
H0

!

e´p1´εq
n
2
Ipα0,z0q

)

! e´p1´εq
ρ2

2τ2 . (98)
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Here (97) holds since nIpα0, z0q is bounded from below uniformly when z0 P Bε1 by a sequence
that diverges to infinity and ε ą ε1. The bound (98) is due to (96).

Under (95), we then have

νε
1

n “ Eα0,z0
H0

!

1pz0 P Bε1qe´p1´ε
1qn

2
Ipα0,z0q

)

` e´p1´ε
1q
ρ2

2τ2 ! e´p1´εq
ρ2

2τ2 À νεn.

Hence, the desired bound (94) continues to hold.
Case 2 When

νεn ă n´p1`C{2q ă n´1, (99)

then

P t`pσ, pσq ą νεnu “ P t`pσ, pσq ą 0u

ď

n
ÿ

i“1

Ppσi ‰ pσiq

ď nνεn ` 2n´C

ď n´C{2 ` 2n´C “ op1q.

Here, the second inequality is a union bound. The third inequality is due to (89) and the
last inequality holds due to (99). This completes the proof.

C.3 Proof of Theorem 9

The lower bound can be established by adapting some arguments spelled out in Section 3
of Gao and Ma (2020). We include them below for the manuscript to be self-contained.

For any 0 ă ε2 ă ε1 ă 1{2, we have

νε1n ď νε2n ,
νε1n
νε2n

Ñ 0.

Therefore, for any fixed ε P p0, 1{2q, we may choose a fixed ε1 ą 0 and a sequence δ1 “ δ1n
such that

1

n
! δ1 ! 1, δ1 νε

1

n Á νεn. (100)

Then, we choose a σ˚ P r2sn such that nupσ˚q P rp1´ δ1qn{2, p1` δ1qn{2s for u “ 1, 2. Let
Cupσ˚q “ ti P rns : σ˚i “ uu. Then we choose some rC1 Ă C1pσ

˚q and rC2 Ă C2pσ
˚q such that

|rC1| “ |rC2| “ rp1´ δ1qn{2s. Define

T “ rC1 Y rC2, ZT “ tσ P r2sn : σi “ σ˚i for all i P T u .

The set ZT corresponds to a sub-problem that we only need to estimate the clustering labels
tσiuiPT c .

Given any σ P ZT , the values of tσiuiPT are known. Now, we define the subspace

P0
n “ tMnpσ,H, µ, τ, Fαq P Pn : σ P ZT u .
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We have P0
n Ă Pn by the construction of ZT . This gives the lower bound

inf
pσ

sup
Pn

E`pσ, pσq ě inf
pσ

sup
P0
n

E`pσ, pσq “ inf
pσ

sup
σPZT

1

n

n
ÿ

i“1

Pppσi ‰ σiq. (101)

The last equality above holds because for any σ1, σ2 P ZT , we have 1
n

řn
i“1 1pσ1

i ‰ σ2
i q “

Opδ1q “ op1q so that `pσ1, σ2q “ p1{nq
řn
i“1 1pσ1

i ‰ σ2
i q. Continuing from (101), we have

inf
pσ

sup
σPZT

1

n

n
ÿ

i“1

Pppσi ‰ σiq ě
|T c|

n
inf
pσ

sup
σPZT

1

|T c|

ÿ

iPT c

Pppσi ‰ σiq

ě
|T c|

n

1

|T c|

ÿ

iPT c

inf
pσi

ave
σPZT

Pppσi ‰ σiq. (102)

For each i P T c,

inf
pσi

ave
σPZT

Pppσi ‰ σiq ě ave
σ´i

inf
pσi

"

1

2
Ppσ´i,σi“1q ppσi ‰ 1q `

1

2
Ppσ´i,σi“2q ppσi ‰ 2q

*

. (103)

Now consider any fixed pair pPpσ´i,σi“1q,Ppσ´i,σi“2qq. Let m1 and m2 be the number of
nodes with label 1 and 2 in σ´i, respectively. Let m̄ “ m1 _m2. By the construction of
ZT , we have

ˇ

ˇ

ˇ
m̄´

n

2

ˇ

ˇ

ˇ
ď
δ1n

2
.

By data processing inequality, the total variation distance between this pair of distributions
satisfies

TVpPpσ´i,σi“1q,Ppσ´i,σi“2qq ě TVpP0
m̄,P

1
m̄q, (104)

where P0
m̄ and P1

m̄ refer to the null and the alternative distributions in (13) with m̄ obser-
vations from either community. Continuing (104), we further obtain from Lemmas 5 and 6
that

TVpPpσ´i,σi“1q,Ppσ´i,σi“2qq ě TVpP0
m̄,P

1
m̄q ě νε

2

n , for any ε2 P p0, 1{2q,

where we have used the second last display and the fact that δ1 “ op1q. Together with (101)
and (102), this implies that for any ε2 P p0, 1{2q,

inf
pσ

sup
Pn

E`pσ, pσq Á δ1 νε
2

n .

We complete the proof by observing (100).
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