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Abstract

We propose a multiple-splitting projection test (MPT) for one-sample mean vectors in high-
dimensional settings. The idea of projection test is to project high-dimensional samples
to a 1-dimensional space using an optimal projection direction such that traditional tests
can be carried out with projected samples. However, estimation of the optimal projection
direction has not been systematically studied in the literature. In this work, we bridge the
gap by proposing a consistent estimation via regularized quadratic optimization. To retain
type I error rate, we adopt a data-splitting strategy when constructing test statistics. To
mitigate the power loss due to data-splitting, we further propose a test via multiple splits
to enhance the testing power. We show that the p-values resulted from multiple splits are
exchangeable. Unlike existing methods which tend to conservatively combine dependent p-
values, we develop an exact level α test that explicitly utilizes the exchangeability structure
to achieve better power. Numerical studies show that the proposed test well retains the
type I error rate and is more powerful than state-of-the-art tests.

Keywords: Exchangeable p-values; High-dimensional mean tests; Multiple data-splitting;
Optimal projection direction; Regularized quadratic optimization.

1. Introduction

Hypothesis testing on mean vectors is a fundamental problem in statistical inference theory
and attracts considerable interest in numerous scientific applications. For example, neuro-
scientists make inferences on the average signals of fMRI data to monitor brain activities
and diagnose abnormal tissues (Ginestet et al., 2017). Geneticists analyze gene expression
levels to understand the mechanism of how genes are related to diseases (Wang et al., 2015).
In these applications, the data dimension p is typically comparable with or much larger than
sample size n, making traditional tests ineffective or practically infeasible. In this work, we
study the problem of testing whether a population mean µ equals to some known vector
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µ0 under high-dimensional regime where p ą n. Without loss of generality, we set µ0 “ 0
throughout the paper. To formally formulate the problem, let X “ px1, . . . ,xnq

J be a ran-
dom sample from a p-dimensional population x with mean µ and covariance Σ. Of interest
is to test

H0 : µ “ 0 versus H1 : µ ‰ 0. (1)

The Hotelling’s T 2 test has been well studied when p ă n and p is fixed. As p exceeds n,
the sample covariance matrix becomes singular and hence T 2 is not well-defined. Even in
the case p ă n, the testing power of T 2 is largely defective if p{n Ñ c P p0, 1q (Bai and
Saranadasa, 1996).

Three types of tests have been developed in efforts to handle the high-dimensional chal-
lenge. The first type is quadratic-form test, which replaces the singular sample covariance
matrix with an invertible matrix (e.g., identity matrix) (Bai and Saranadasa, 1996; Chen
et al., 2011; Chen and Qin, 2010). These tests tend to neglect the dependence among
covariates and may suffer from low power when covariates are strongly correlated. The
second type is known as extreme-type test, which utilizes the extreme value of a sequence
of marginal test statistics, see Cai et al. (2014); Zhong et al. (2013). Such extreme-type
statistics typically converge to some extreme value distribution and are generally disad-
vantaged by slow convergence, making it hard to control the type I error when n is small.
The third type is projection test (Lopes et al., 2011; Huang, 2015; Liu and Li, 2020; Li
and Li, 2021), which maps the high-dimensional sample to a low-dimensional space, and
subsequently applies traditional methods (e.g., Hotelling’s T 2) to the projected sample.
Intuitively, the projection procedure seeks to transform the data in such a way that the
dimension is reduced, while the statistical distance between H0 and H1 is mostly preserved
through the transformed distributions.

Recently, Huang (2015) proved that the optimal choice of projection direction is Σ´1µ.
To facilitate a data-driven decision regarding the projection direction, Huang (2015) also
proposed a projection test based on a data-splitting procedure, i.e., half of the sample is
employed to estimate the optimal projection direction, while the other half is used to perform
the test. However, there are two main drawbacks with this data-splitting projection test.
First, a ridge-type estimator is used to estimate the projection direction. Their power
analysis relies on the assumption that the ridge-type estimator is consistent, which is no
longer true in high-dimensional settings. Secondly, the single data-splitting procedure is
often criticized as only half of the sample is used to perform the test, which inevitably
results in power loss. These two drawbacks actually reveal two existing unsolved issues
with the projection test based on a data-splitting procedure:

1. How to estimate the optimal projection direction with statistical guarantee?

2. How to mitigate the power loss caused by the data-splitting procedure?

In this paper, we propose a multiple-splitting projection test for high-dimensional mean
vectors. Our proposed test addresses the aforementioned issues in the following two ways:
(1) the optimal projection is estimated via a regularized quadratic optimization such that
a consistent estimator is obtained; and (2) a multiple data-splitting procedure is proposed
to improve the testing power. The main contributions can be summarized in three folds.

First, we propose a consistent estimation of the optimal projection direction via non-
convex regularized quadratic programming. Non-asymptotic error bounds are established,
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which hold for all stationary points with high probability. In other words, we do not need
to solve the global solution to the nonconvex optimization problem as any stationary point
has desirable statistical guarantee.

Second, we prove that p-values constructed from a multiple data-splitting procedure are
exchangeable. Furthermore, we generalize the exchangeability of p-values proposition to a
more general permutation framework. As an extension, the methodology proposed in this
work can be further applied to many statistical inference problems.

Third, an exact level α test is proposed to combine multiple p-values which explic-
itly utilizes the exchangeability of these p-values. Such exchangeability is often neglected
in traditional combination approaches. By doing so, our test is more powerful than the
single-splitting test as well as existing combination approaches. To the best of our knowl-
edge, this is the first work that exploits the exchangeability of p-values and utilizes such
exchangeability in developing high-dimensional hypothesis testing.

The rest of this paper is organized as follows. In Section 2, we introduce a new estimation
of the optimal projection direction via regularized quadratic programming. In Section 3, we
investigate the dependency structure of p-values resulted from a multiple-splitting procedure
and propose an exact level α multiple-splitting projection test. In Section 4, we conduct
numerical studies to compare the proposed MPT with existing tests as well as other p-value
combination methods. We conclude this paper with discussion on potential applications of
this multiple-splitting framework to other statistical inference problems in Section 5.

2. Estimation of Optimal Projection Direction

In this section, we introduce a consistent estimation of the optimal projection direction for
projection tests. Section 2.1 provides a brief introduction to projection tests. Section 2.2
presents the estimator as a stationary point of a regularized quadratic optimization problem
and establishes its non-asymptotic error bounds.

2.1 Background on Projection Tests

The idea of projection test is to project the high-dimensional vector x P Rp onto a space of
low dimension such that traditional tests can be applied. Let P be a pˆ q full column-rank
projection matrix (or vector if q “ 1) with q ă n and define yi “ PJxi P Rq, i “ 1, . . . , n.
Under H0, Epyiq “ 0 and Hotelling’s T 2 test can be applied to the q-dimensional projected
sample yi’s,

T 2
P “ nsxJPpPJ pΣPq´1PJsx,

where sx and pΣ are the sample mean and sample covariance matrix. Under H0, T
2
P converges

to χ2
q distribution as nÑ8.

The projection test pivots the attention to the question on how to effectively construct
the projection matrix P. Various approaches have been developed with respect to different
choices of P. A data-dependent method was proposed in Lauter (1996) by setting P “ d,
where d is a p ˆ 1 vector depending on data only through XJX. Lopes et al. (2011)
proposed a random projection test in which the entries in P are randomly drawn from
standard normal distribution. More recently, Huang (2015) proved that under normality
assumption, the optimal choice q is 1 and the optimal projection direction is of the form
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P “ Σ´1µ in the sense that the power of T 2
P is maximized. For non-Gaussian samples, the

direction P “ Σ´1µ is still asymptotically optimal as long as the sample mean of projected
sample is asymptotically normal.

The estimation of the optimal projection direction has not been systematically studied
yet, leaving a gap between theory and practice for projection tests. In what follows, we
propose a new estimating procedure such that a consistent estimator is obtained.

Notations: Before proceeding, we first set up some notations. For a vector v “

pvjq
p
j“1 P Rp, let }v}k be its `k norm, k “ 1, 2. Its `0 norm }v}0 is the number of nonzero

entries in v and `8 norm is }v}8 “ max |vj |. For a matrix M “ pmijq
p
i,j“1 P Rpˆp, its

elementwise `8 norm is }M}max “ max |mij |. For a set D, |D| denotes its cardinality. We
use a_ b to denote the larger one of a and b.

2.2 Estimation via Regularized Quadratic Optimization

In this subsection, we aim to bridge the gap between theoretical analysis and practical
implementation regarding the optimal projection direction. The empirical performance
of a data-driven projection test relies heavily on the estimation accuracy of the optimal
projection direction. However, in high-dimensional settings, there is no statistical guarantee
for the ridge-type estimator introduced in Huang (2015).

We propose a new consistent estimator to improve the test performance with the as-
sumption that w‹ is sparse. Observing that Σ´1µ is the minimizer of 1

2wJΣw´µJw, we
propose to estimate w‹ “ Σ´1µ using the following regularized quadratic optimization

minimize
w

1

2
wJ

pΣw ´ x̄Jw ` Pλpwq, (2)

where Pλpwq “
řp
j“1 Pλpwjq is a penalty function satisfying the following conditions

(i) Pλp0q “ 0 and Pλptq is symmetric around 0,

(ii) Pλptq is differentiable for t ‰ 0 and limtÑ0` P 1λptq “ λ,

(iii) Pλptq is a non-decreasing function on t P r0,8q,

(iv) Pλptq{t is a non-increasing function on t P r0,8q,

(v) There exists γ ą 0 such that Pλptq `
γ
2 t

2 is convex.

Such conditions on Pλ are mild (Loh and Wainwright, 2015) and are satisfied by a wide
variety of penalties including the Lasso (Tibshirani, 1996) and nonconvex regularizers such
as the SCAD (Fan and Li, 2001), and the MCP (Zhang, 2010). We further assume that
the sample covariance matrix pΣ satisfies the following restricted strong convexity (RSC)
condition,

∆J
pΣ∆ ě ν}∆}22 ´ τ

c

log p

n
}∆}1 for ∆ P Rp and }∆}1 ě 1, (3)

where ν ą 0 is a strictly positive constant and τ ě 0 is a non-negative constant. When p ă n,
pΣ is positive definite, one can set τ “ 0 and ν be the smallest eigenvalue of pΣ. In the high-
dimensional setting where p ą n, pΣ is semi-positive definite and ∆J

pΣ∆ ě 0 for all ∆ P Rp.
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Thus the RSC condition (3) holds trivially for t∆ : }∆}1{}∆}
2
2 ą cu with c “ ν

τ

b

n
log p . As a

result, we only require the RSC condition to hold in the set t∆ : }∆}1{}∆}
2
2 ď c, }∆}1 ě 1u.

The RSC condition (3) is imposed on pΣ only for }∆}1 ě 1, and it turns out the condition
actually holds for all ∆ P Rp, see Lemma 10. Such RSC-type condition is widely used in
establishing the non-asymptotic error bounds in high-dimensional statistics and is satisfied
with high probability under sub-Gaussianity assumption (Agarwal et al., 2012; Loh and
Wainwright, 2015, 2017). Alternatively, the RSC-type condition can also be replaced by a
similar condition known as restricted eigenvalue (RE) condition (Bickel et al., 2009; Van
De Geer and Bühlmann, 2009).

It is quite challenging to obtain the global solution to the optimization problem (2) if
a nonconvex penalty Pλ is used. Instead of searching for the global solution, we establish
the non-asymptotic error bounds for any stationary point pw that satisfies the following
first-order condition,

pΣpw ´ x̄`∇Pλppwq “ 0, (4)

where ∇Pλ denotes the sub-gradient of Pλ. The condition (4) is a necessary condition
for pw to achieve a local minimum. Therefore the set of pw satisfying (4) includes all local
minimizers as well as the global one.

Lots of efficient algorithms have been developed to attain stationary points even when
the objective function is nonconvex. These algorithms include local linear approximation
(Fan et al., 2014; Wang et al., 2013; Zou and Li, 2008), composite gradient descent method
(Loh and Wainwright, 2015; Nesterov, 2013), and proximal-gradient method (Wang et al.,
2014). In practice, we may choose the tuning parameter λ in the penalty function by cross-
validation or the high-dimensional BIC criterion proposed in Wang et al. (2013). We impose
the following conditions,

(C1) x1, . . . ,xn are identically and independently distributed sub-Gaussian vectors.

(C2) The sample covariance matrix pΣ satisfies the RSC condition in (3) with 3γ ď 4ν.

(C3) There exists constant C1 ą 0 such that }w‹}1 ď C1.

Remark 1 Condition (C3) is posited to ensure a good estimation of w‹. By the definition
of w‹, pΣw‹ should be somewhat close to µ. Note that }pΣw‹ ´ µ}8 “ }pΣw‹ ´Σw‹}8 ď

}pΣ´Σ}max ¨ }w
‹}1. A diverging }w‹}1 would amplify the estimation error of pΣ.

The following theorem establishes the `1 and `2 error bounds for all stationary points pw
under the alternative hypothesis.

Theorem 2 Suppose conditions (C1)-(C3) hold. Let pw be any stationary point of the
problem (2) with λ “ C

a

log p{n for some large constant C. Then under H1 (i.e., w‹ ‰ 0),
with probability at least 1´ cp´1 for some absolute constant c, we have

}pw ´w‹}1 “ O

˜

s

c

log p

n

¸

and }pw ´w‹}2 “ O

˜

c

s log p

n

¸

,

where s “ }w‹}0 is the number of nonzero entries in w‹.
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Remark 3 Though inspired by Loh and Wainwright (2015), we would like to clarify the
difference between Theorem 2 and the results in Loh and Wainwright (2015). The optimiza-
tion problem in Loh and Wainwright (2015) requires an additional constraint }w}1 ď R for
some tuning parameter R to ensure }pw}1 is bounded by R. R needs to be chosen carefully
such that w‹ is feasible and both the penalty parameter λ and sample size n also depend on
R. However, how to choose R is not clear in practice. In our work, we modify the RSC
condition by substituting }∆}22 for }∆}2 in the RSC condition (3) so that the constraint
}pw}1 ď R is no longer needed.

Note that the error bounds in Theorem 2 hold for all stationary points. In other words,
any local solution is guaranteed with desirable statistical accuracy and a global one is
unnecessary if it is too challenging to achieve. Theorem 2 implies pw is a consistent estimator
under H1 if w‹ is sparse (more precisely,

a

s log p{n Ñ 0). Such consistency under H0 is
not guaranteed as there is no signal in the true parameter w‹ “ 0. Fortunately, with the
data-splitting technique, we will see in Section 3 that the size of the proposed projection
test is always controlled regardless of the consistency of the estimator pw.

3. Data-Splitting Based Projection Test

In this section, we present full methodological details of our proposed multiple-splitting
projection test (MPT) together with its theoretical properties. After carefully studying the
dependency of p-values resulted from a multiple-splitting procedure, we introduce a new
combination framework that makes use of the dependency structure. Section 3.1 demon-
strates a single-splitting projection test using the estimator introduced in the previous
section. Section 3.2 studies the exchangeability of p-values. Section 3.3 provides a brief
overview of traditional approaches for combining multiple p-values. Section 3.4 formally
presents our combination framework and the proposed MPT.

3.1 Single-Splitting Projection Test (SPT)

Data-splitting technique has a long history in statistical applications and remains attractive
in modern statistics (Wasserman and Roeder, 2009; Barber and Candès, 2019). We begin
with one single data-splitting. Let D “ tx1, . . . ,xnu denote the set of full sample and we
partition the full sample into two disjoint sets D1 “ tx1, . . . ,xn1u and D2 “ txn1`1, . . . ,xnu
with |D1| “ n1 and |D2| “ n2 “ n ´ n1. The idea is to use D1 to estimate the optimal
projection direction while use D2 to conduct the test with projected sample. To be more
specific, we estimate the optimal projection direction w‹ using a stationary point pw of the
following regularized quadratic optimization problem

minimize
w

1

2
wJ

pΣ1w ´ x̄J1 w ` Pλpwq, (5)

where x̄1 and pΣ1 are sample mean and sample covariance matrix computed from D1. Then
we project the observations in D2 to a 1-dimensional space as follows: yi “ pwJxi, i “
n1 ` 1, . . . , n. The one-sample t-test is readily applied to the projected sample and the
resulting test statistic is

T
pw “

?
n2sy{sy, (6)
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where sy and s2y are the sample mean and sample variance of tyn1`1, . . . , ynu. Due to the
data-splitting, the estimator pw is independent of D2. As a result, the test T

pw is an exact
one-sample t-test if xi’s are normally distributed, and the p-value of test T

pw is given by

ppT
pwq “ 2 p1´Gn2´1p|T pw|qq , (7)

where Gn2´1 is the cdf of tn2´1 distribution. Without normality assumption, T
pw has an

asymptotic standard normal distribution, and the p-value is given by ppT
pwq “ 2 p1´ Φp|T

pw|qq .
We reject the null hypothesis at significance level α whenever ppT

pwq ă α.

We refer to T
pw as the single-splitting projection test (SPT). Ideally, one would like to use

full sample to estimate w‹ and use full sample to perform the test, which makes the limiting
distribution challenging to derive since the projection pw and sample are dependent. Thanks
to the data-splitting procedure, an exact t-test can be achieved as pw is independent of D2.
Furthermore, we would like to point out that the size of the SPT is well controlled regardless
of how pw is estimated, but a consistent pw ensures high power under the alternative. The
following theorem demonstrates the asymptotic power of the SPT.

Theorem 4 Suppose that the conditions in Theorem 2 hold. Further assume
p1 _ }µ}8qs

a

log p{n Ñ 0 and n2{n Ñ κ P p0, 1q, where n2 is the sample size of D2. Let
ζ “ µJΣ´1µ and zα{2 be the upper α{2 quantile of Np0, 1q, then the asymptotic power of
the proposed SPT at a given significance level α is

βpT
pwq “ Φp´zα{2 `

a

nκζq.

Remark 5 The term ζ can be interpreted as the signal strength of alternative hypothesis.
As long as nµJΣ´1µÑ8, the proposed SPT has asymptotic power approaching 1. Under
local alternative µ “ δ{

?
n for some fixed δ ‰ 0, the asymptotic power of the SPT is

Φp´zα{2 `
?
κδJΣ´1δq. To achieve high power empirically, we adopt the same strategy as

in Huang (2015) and recommend to take n2 “ tκnu with κ P r0.4, 0.6s.

3.2 Exchangeability of p-values

To compensate the power loss due to the data-splitting procedure, we consider a multiple-
splitting procedure (formally presented in Section 3.4), which repeats the data-splitting
multiple times and aggregates all the information in p-values to make inferences on H0.
More specifically, we consider m times of data-splitting for some fixed integer m. Let πk, k “
1, . . . ,m, be a random permutation of t1, . . . , nu. Accordingly, let Dπk “ txπkp1q, . . . ,xπkpnqu
denote the permutated sample. For each k “ 1, . . . ,m, we apply the SPT to Dπk and obtain
the p-value pk according to (7). Before proceeding with the combination of p-values, we first
investigate the dependence structure of these p-values. The following theorem establishes
the exchangeability among the p-values.

Theorem 6 The p-values pp1, p2, . . . , pmq resulted from the multiple-splitting procedure are

exchangeable, i.e., pp1, . . . , pmq
d
“ ppπp1q, . . . , pπpmqq for any π, a permutation of t1, . . . ,mu.

The exchangeability of p-values holds no matter it is under H0 or H1. We would like to
point out that such exchangeability structure of p-values holds for a general permutation
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framework. In many statistical problems, with the technique of data-splitting, the first
half sample Dπk1 can be used to learn the underlying model (e.g., parameter estimation,
variable selection). We denote the acquired knowledge by fpDπk1 q. Then together with the
second half sample Dπk2 , a p-value (or some other statistic) can be derived for some specific
inference problem pk “ gpfpDπk1 q,D

πk
2 q. With fixed mappings f and g, it can be shown that

the pk’s are also exchangeable. For instance, let us consider the high-dimensional linear
regression problem and of interest is to test whether some coefficient, say βj , is 0 or not.

With data-splitting, one can use Dπk1 to select a set of important covariates pA such that

| pA| ă n´1. Then we can fit ordinary least squares with the covariate set pAYtju and obtain
the p-value pk of a test regarding whether βj “ 0. Since the p-values are exchangeable, the
MPT introduced in Section 3.4 is readily to combine the p-values.

In fact, such exchangeability holds even without data-splitting. The key of exchange-
ability lies in that conditioning on the dataset D, its m permutations Dπ1 , . . . ,Dπm are
independent from each other. The following theorem generalizes the results in Theorem 6.

Theorem 7 Let D “ tx1, . . . ,xnu be a random sample and π1, ¨ ¨ ¨ , πm be m permutations
of t1, ¨ ¨ ¨ , nu. Dπ1 , . . . ,Dπm denote the m permutated samples of D. Let g be a mapping
from Dπk to a statistic: Tk “ gpDπkq, then T1, . . . , Tm are exchangeable.

3.3 Traditional Combination of p-values

One popular strategy to enhance testing power is via the combination of p-values (Romano
and DiCiccio, 2019; Yu et al., 2019, 2020, 2022). In fact, combining multiple p-values from
a set of hypothesis tests has been widely used in statistical literature. Let p1, . . . , pm denote
m valid p-values. That is, under H0,

Prppk ď uq “ u, 0 ă u ă 1 for k “ 1, . . . ,m.

A natural question is how we can decide whether H0 should be rejected based on the m
p-values such that the type I error rate is still retained.

Classical approaches require independence assumption among p-values. Examples in-
clude the Fisher’s method, the Pearson’s method, the Stouffer’s method, the Tippett’s
method, and many others. In the meantime, significant efforts were made to combine de-
pendent p-values. Rüschendorf (1982) proved that twice the average p-values remains a valid
p-value and proposed an average-based combination test, which rejects H0 at level α if the
average of p1, . . . , pm is less than or equal to α{2. Romano and DiCiccio (2019) introduced
a quantile-based combination test. A special case is we reject H0 at level α if the median
of p-values is less than or equal to α{2. Under H0, we know Zk “ Φ´1ppkq „ Np0, 1q,
where Φp¨q is the cdf of Np0, 1q. Assuming pZ1, . . . , Zmq

J follows a multivariate normal
distribution, Romano and DiCiccio (2019) proposed a Z-average test based on the sample
mean of Zk’s, that rejects H0 if |

řm
k“1 Zk| ě mzα{2, where zα{2 is the upper α{2-quantile

of Np0, 1q. More recently, Liu and Xie (2020) introduced a new combination test based on
the Cauchy transformation which is insensitive to dependencies among p-values. The test
rejects H0 at level α if

řm
k“1 tantp0.5 ´ piqπu ě mcα, where cα is the upper α-quantile of

standard Cauchy distribution.
In general, these methods tend to be over-conservative in order to control Type I error

rate without taking advantage of certain dependence structure (e.g., exchangeability). This
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can be regarded as a trade-off between potential size inflation and possible power loss. The
traditional combination methods generally ignore the dependency structure, therefore tend
to make unnecessarily large comprise in testing power in order to retain a correct size for
a less favorable scenario. In Section 4.1, we use simulation studies to compare the size and
power of the proposed MPT with those of traditional combination methods. On the one
hand, the numerical studies show that the size of MPT is slightly below the level α “ 0.05
while the size of traditional combination methods are almost 0. On the other hand, the
power of MPT is much higher than those traditional combination methods. In summary,
compared to the traditional ones, the proposed MPT is less conservative in terms of testing
size, and exhibits much higher testing power.

3.4 Multiple-Splitting Projection Test (MPT)

Based on the m exchangeable p-values tp1, . . . , pmu, the question is how we can make
a decision on whether H0 should be rejected or not. To improve upon the traditional
methods, we propose a new framework to combine p-values obtained from multiple splits.
The proposed framework takes advantage of the exchangeability structure among those p-
values, as a result, achieving higher testing power than existing commonly used combination
approaches.

Figure 1: Density plots of pZ1, Z2q under H0 and H1 with autocorrelation (AR) covariance
structure and compound symmetry (CS) covariance structure when n “ 40 and p “ 1000.

Let Zk “ Φ´1ppkq, k “ 1, . . . ,m. Under H0, Z1, . . . , Zm are exchangeable standard
normal random variables, with correlation corrpZi, Zjq “ ρ ě 0 for any pair pi, jq, i ‰ j
due to exchangeability. Figure 1 depicts the density of pZ1, Z2q with m “ 2 under different
covariance structures (see Section 4 for detailed descriptions of simulation settings). It shows
that pZ1, Z2q are clearly exchangeable (symmetric). Under H0, pZ1, Z2q are approximately
normally distributed centering at p0, 0q. Under H1, the joint distribution of pZ1, Z2q is not
normal and its center is far away from p0, 0q.

Let sZ be the sample mean, then we have EpZ̄q “ 0 and VarpZ̄q “ p1 ` pm ´ 1qρq{m
under H0. If pZ1, . . . , Zmq are jointly normally distributed, then the standardized statistic
of sZ, Mρ “ Z̄{

a

p1` pm´ 1qρq{m „ Np0, 1q. In general, by the central limit theorem for
exchangeable random variables (e.g., see Klass and Teicher (1987)), we know

Mρ “ Z̄{
a

p1` pm´ 1qρq{m
d
Ñ Np0, 1q. (8)
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The correlation ρ is typically unknown and needs to be estimated from the sample. Two
approaches to estimate ρ will be provided later in this subsection. Let pρ denote an estimator
of ρ. We first present the asymptotic distribution of M

pρ under H0.

Theorem 8 Let pρ be a consistent estimator of ρ ą 0. Under H0, we have as mÑ8,

M
pρ “ Z̄{

a

p1` pm´ 1qpρq{m
d
Ñ Np0, 1q. (9)

Remark 9 When ρ “ 0, the p-value combination is reduced to the independent case. Hence
Mρ converges to the standard normal distribution at rate

?
m as m Ñ 8. However, when

ρ ‰ 0, M
pρ converges at a slower rate m as the variance of Z̄ is not asymptotically degenerate.

Hypothesis testing based on such a slow convergence rate is more likely to fail in controlling
the type I error in finite-sample performance.

Remark 9 suggests that the asymptotic distribution in (9) does not serve as a good
cornerstone to test H0. The slow convergence rate and potential size inflation become
major concerns for practitioners. In practice, one may conduct a large number of splits
which bring in extra computational burden. This motivates us to seek an exact level α test
to ensure the finite-sample performance. Let cpρ,m, α{2q be the upper α{2 quantile of the
distribution of M

pρ and we reject H0 if |M
pρ| ą cpρ,m, α{2q. Given pρ, the exact distribution

of M
pρ depends on ρ and is very difficult to derive, so is cpρ,m, α{2q. Instead, we use the

critical value cpm,αq that is chosen against the least favorable ρ such that type I error is
controlled regardless ρ, i.e., cpm,α{2q “ supρPp0,1q cpρ,m, α{2q. Then we reject H0 at level
α if

|M
pρ| ą cpm,α{2q. (10)

We refer to the test (10) as multiple-splitting projection test (MPT) and summarize full
methodological details in Algorithm 1. Note that the critical value cpm,α{2q depends on
the way you estimate ρ. With the choice cpm,α{2q, the MPT is still an exact level α test
but no longer a size α test.

Algorithm 1 Multiple-splitting Projection Test (MPT)

1: Input: dataset D, the number of splits m, n1, and significance level α
2: Step 1: randomly generate m permutations of t1, . . . , nu, denoted by πk, k “ 1, . . . ,m
3: Step 2: obtain multiple p-values
4: for k “ 1 to m do

5: (1) partition the permuted sample Dπk into Dπk
1 and Dπk

2 and obtain x̄k1 , pΣ
k

1 from Dπk
1

6: (2) estimate pwk using a stationary point of minimize
w

1
2wJ pΣ

k

1w ´ x̄kJ1 w ` Pλpwq

7: (3) project Dπk
2 and obtain yki “ pwkJxπkpiq, i “ n1 ` 1, . . . , n

8: (4) T
pwk “

?
n2sy

k{sky , where syk and pskyq
2 are the sample mean and variance of tykn1`1, . . . , y

k
nu

9: (5) compute the p-values by pk “ 2 p1´ Φp|T
pwk |qq

10: end for
11: Step 3: combine the p-values
12: (1) compute the sample mean sZ and variance s2Z of tZk “ Φ´1ppkq, k “ 1, . . . ,mu
13: (2) compute test statistic M

pρ “ sZ{
a

p1` pm´ 1qpρq{m
14: Return: Reject H0 at level α if |M

pρ| ą cpm,α{2q

10
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Two estimators of ρ are introduced in Follmann and Proschan (2012). Let s2Z is the
sample variance of Zi’s. The first estimator is given by pρ1 “ maxp0, 1 ´ s2Zq. The second
estimator, which is quantile based, is given by pρ2 “ maxp0, 1 ´ pm ´ 1qs2Z{χ

2
m´1p1 ´ βqq,

where χ2
m´1p1 ´ βq is the upper p1 ´ βq quantile of χ2

m´1. An appealing approach is to
choose β as large as possible so that the test with cpm,α{2q “ zα{2 remains level α for all ρ.
We refer to Follmann and Proschan (2012) for more details. Follmann and Proschan (2012)
also provides the table of critical values cpm,α{2q and β for different m, see Tables 2 and
3 in Appendix A. We see that cpm,α{2q increases dramatically as m increases, leading to
low power when m is large. Hence the quantile approach is preferred when m is relatively
large.

As for the choice of m, Figure 2 shows how the testing power changes with the number
of splits m under settings with different correlation structure, samples sizes and dimensions.
We would like to point out that the proposed MPT is a valid level α test regardless the
dependence structure since the critical value is chosen such that Type I error is controlled
for all dependence structure (i.e., for all ρ). In other words, the proposed MPT is able to
control Type I error regardless the number of splits m and data characteristics (e.g., sample
size, data dimensionality). The main purpose of conducting multiple splitting (i.e., choosing
m ą 1) is to mitigate power loss brought by single data-splitting procedure and improve
the testing power over SPT. Under alternative hypothesis, the testing power from each split
depends on the original data characteristics. Hence theoretically the exact relationship
between m and the testing power of MPT also depend on original data characteristics. As
shown in the plot, the testing power increases as m increases but the improvement of power
becomes insignificant when m is relatively large. Considering the fact that a large number
of splits will increase computational cost, we recommend to set m P r30, 60s as a reasonable
choice in practice considering the trade-off between testing power and computational cost.

4. Numerical Studies

In this section, we conduct numerical studies to demonstrate the finite-sample performance
of the proposed MPT through both Monte Carlo simulation and a real data example.

4.1 Monte Carlo Simulation

We compare the proposed MPT with other state-of-the-art tests and p-value combination
approaches. In particular, we include the following tests in our experiments:

• Projection test: our proposed SPT and MPT (with m “ 40), ridge projection test
(Ridge) (Huang, 2015), and random projection test (RPT) (Lopes et al., 2011).

• Combining p-values: Median-based combination (Median) (Romano and DiCic-
cio, 2019), average-based combination (Average) (Rüschendorf, 1982), average-based
combination using Φ´1ppkq (Z-average) (Romano and DiCiccio, 2019), and Cauchy
combination (Cauchy) (Liu and Xie, 2020).

• Quadratic-form test: CQ test (Chen and Qin, 2010).

• Extreme-type test: CLX test (Cai et al., 2014).

11



Liu, Yu and Li

0 20 40 60 80 100
number of splits m

0.0

0.2

0.4

0.6

0.8

1.0

po
we

r

(a) AR structure with n=40, p=1000
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(b) CS structure with n=40, p=1000
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(a) AR structure with n=40, p=2000
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(b) CS structure with n=40, p=2000
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Figure 2: Testing power versus number of splits m for autocorrelation (AR) structure and
compound symmetry (CS) structure with different choices of n and p. Different colors
correspond to different correlations r.

We generate a random sample of size n from Nppcµ,Σq with µ “ p1J10,0
J
p´10q

J. We set
c “ 0, 0.5 to examine the size and the power of these tests, respectively. To examine the
test robustness to non-normally distributed data, we also generate random samples from a
multivariate t6-distribution. Let σij be the pi, jq entry in Σ. For r P p0, 1q, we consider the
following two covariance matrices: (1) compound symmetry (CS) with σij “ r if i ‰ j and
σij “ 1 if i “ j and (2) autocorrelation (AR) with σij “ r|i´j|. We vary r from 0.1 to 0.9
with step size 0.1 to examine the impact of correlation on size and power. We set sample
size n “ 40, 100 and dimension p “ 1000.

In the above settings, the optimal projection direction Σ´1µ is sparse or approximately
sparse. When Σ has the compound symmetry structure, Σ´1 is an approximately sparse
matrix in the sense that the off-diagonal entries are of order p´1 and dominated by its
diagonal entries. Then optimal projection direction Σ´1µ is also approximately sparse since
the first 10 entries dominate the rest entries. When Σ has the autocorrelation structure, Σ´1

is a 3-sparse matrix, meaning that at most three entries in each row or column are nonzero,
and the resulting optimal projection direction Σ´1µ is sparse as well. We set κ “ 0.5
when implementing the SPT and the MPT, i.e., half of the sample is used to estimate the
projection direction and the other half is used to perform the test. The quantile approach pρ2

12
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is used to estimate pairwise correlation among Zk’s. We set the type I error rate α “ 0.05.
All simulation results are based on 10,000 independent replications.
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(c) n=40, p=1000, c=0.5 with CS
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(d) n=40, p=1000, c=0.5 with AR

Figure 3: Size and power of different tests for normally distributed samples with n “ 40.
Panels (a) and (b) show size (c “ 0) under the null hypothesis for the CS and AR structure,
respectively. Panels (c) and (d) show power (c “ 0.5) under the alternative hypothesis for
the CS and AR structure, respectively.

Figure 3 reports the size and power of different tests for normally distributed samples
with n “ 40. In terms of size, the proposed MPT successfully controls the type I error
rate below α. It is slightly conservative since the critical value is chosen against the worst
ρ. The size of Cauchy test and CQ test are slightly inflated. The Median test, Average
test and Z-average test are too conservative and their size are very close to 0. The CLX
test completely fails to control the type I error rate due to the slow convergence rate of the
limiting distribution. As for power analysis, under the CS structure, the MPT outperforms
all other tests. Cauchy test is slightly less powerful than the MPT but more powerful than
other conservative combination approaches. The power of CLX test and CQ test decreases
as the correlation increases since both tests ignore the dependence among variables. In
addition, CLX test and CQ test require the largest eigenvalue of Σ is upper bounded by
some constant, which is not satisfied in the CS structure. Under the AR structure, note
that the CLX test cannot control the size at all under H0 (can be as large as 0.20). The size
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inflation makes the testing power artificially high and hence it is not trustworthy. Excluding
the CLX test, the proposed MPT has the best performance, followed by the Cauchy test.
Other conservative combination tests are even less powerful than the SPT, which indicates
such conservative combination methods do not necessarily improve the testing power.
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(c) n=40, p=1000, c=0.5 with CS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r

(d) n=40, p=1000, c=0.5 with AR

Figure 4: Size and power of different tests for samples following multivariate t6 distribution
with n “ 40. Panels (a) and (b) show size (c “ 0) under the null hypothesis for the CS and
AR structures, respectively. Panels (c) and (d) show power (c “ 0.5) under the alternative
hypothesis for the CS and AR structures, respectively.

We also examine the finite-sample performance of the proposed MPT when the normality
assumption is not satisfied. Figure 4 shows the size and power comparisons of different
tests when xi’s are generated from multivariate t6 distribution with AR and CS covariance
structure. The results show a similar pattern as those in the normal settings, which provide
numerical evidences on the robustness of the MPT to non-Gaussianity. When n “ 100, the
patterns of size and power are similar to that of n “ 40. Due to the limit of space, we
relegate the results for n “ 100 to the appendix, see Figures 5 and 6 in Appendix C.

The numerical results in this subsection emphasize that the MPT greatly improves the
testing power upon the SPT thanks to the multiple splits. In a brief summary, our proposed
MPT successfully controls the type I error rate and achieves the highest testing power in
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comparison with all other state-of-the-arts level α tests. In addition, the studies reveal that
the proposed MPT is quite robust to non-Gaussianity.

4.2 Real Data Analysis

We apply the proposed MPT and SPT together with other tests introduced above to a real
dataset of high resolution micro-computed tomography (Percival et al., 2014). This dataset
contains skull bone densities of n “ 29 mice with genotype “T0A1” in a genetic mutation
study. For each mouse, bone density is measured for 16 different areas of its skull at density
levels between 130 - 249. In this empirical analysis, we are interested in comparing the
bone density patterns of two areas in the skull, namely “Mandible” and “Nasal”. We use
all density levels between 130 - 249 for our analysis, and hence dimension p “ 120. Since
the two areas come from the same mouse, we first take the difference of bone density in the
two areas at the corresponding density level for each observation. Then we normalize the
bone density in the sense that 1

29

ř29
i“1X

2
ij “ 1 for all 1 ď j ď 120. The null hypothesis is

the density patterns of two skull areas are the same.

Table 1: Decisions on whether null hypothesis should be rejected or not at significance level
α “ 0.05 based on different tests for the bone density dataset with various signal strengths.
The numbers in the parentheses in the p-values if applicable.

δ 1.0 0.8 0.6 0.4 0.3 0.2 0.18

MPT 4 4 4 4 4 4 4

Cauchy 4 4 4 4 4 4 4

Median 4 4 4 4 4 7 7

Average 4 4 4 4 7 7 7

Z-average 4 4 4 4 4 7 7

SPT 4 p10´10q 4 p10´9q 4 p10´7q 4 p10´6q 4 p10´4q 4 (0.042) 7 (0.246)
Ridge 4 p10´8q 4 p10´7q 4 p10´5q 4 (0.001) 4 (0.014) 7 (0.146) 7 (0.387)
RPT 4 p10´9q 4 p10´8q 4 p10´6q 4 p10´4q 4 p0.010q 7 (0.203) 7 (0.347)
CQ 4 (0) 4 (0) 4 (0) 4 p10´4q 7 (0.081) 7 (0.772) 7 (0.945)
CLX 4 (0) 4 p10´14q 4 p10´8q 4 p0.004q 7 (0.189) 7 (0.965) 7 (0.994)

We apply the proposed MPT and SPT together with other tests to the bone density
dataset. The decisions as well as p-values if applicable (in the parentheses) are reported in
the first column in Table 1. All tests are able to reject the null hypothesis, implying that the
bone density patterns are significantly different. To compare the power of different tests,
we further conduct tests as we decrease the signal strength in the bone density difference.
To be specific, let x̄ be the sample mean and ri “ xi´ x̄ be the residual for the ith subject.
Then a new observation zi “ δx̄ ` ri is constructed for the ith subject for some δ P r0, 1s.
By this construction, a smaller δ leads to a weaker signal strength and would make the test
more challenging. Table 1 also reports the decisions and p-values (in the parentheses) for
δ “ 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.18. When δ ě 0.4, all the tests perform well and reject the
null hypothesis at level 0.05. When δ decreases to 0.3, the CQ test, the CLX test and the
average based combination test start to fail to reject the null hypothesis. When δ “ 0.2, the
proposed MPT and SPT and Cauchy combination test are able to reject the null. Further
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decreasing δ to 0.18, only the MPT and Cauchy combination test can detect the density
difference. This real data example demonstrates that the proposed MPT is more powerful
than existing tests and performs well even when the signal is very weak.

5. Discussion

In this work, we study the hypothesis test for one-sample mean vectors in high dimensions.
We first study the question of estimating optimal projection direction and provide statistical
guarantee. Furthermore, we propose the multiple-splitting projection test, which makes use
of the exchangeability of multiple p-values, to mitigate the power loss arising from the single
data-splitting procedure. The proposed multiple data-splitting framework can be easily
extended to a two-sample problem in which the optimal projection direction is Σ´1pµ1 ´

µ2q (Huang, 2015). Sharing the same spirit, half of the sample can be used to estimate
the projection direction and the remaining half is used to perform the two-sample t-test.
Then resultant multiple p-values can be combined similarly to the MPT. As pointed out in
Theorem 7, the exchangeability phenomenon generally holds for a permutation framework.
This work can be extended to many other statistical inference problems, such as testing
the coefficients for a high-dimensional regression model. We hope such insight provides
new ideas for researchers from related areas. Another interesting extension is to develop
more refined combination methods which better handle the exchangeability. We leave these
interesting questions as future work.
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Appendices

The appendices provide additional materials for the main manuscript. Appendix A provides
the tables of critical values for the proposed MPT. Appendix B presents technical lemmas
and complete proofs of theoretical results. Appendix C reports additional numerical results
of size and power comparisons for n “ 100 to serve as a complementary to the numerical
studies in Section 4.

Appendix A. Tables of critical values

In this section, we present the tables of critical values for the proposed MPT. Follmann
and Proschan (2012) derives the critical values of cpm,α{2q and β for tests M

pρ1 and M
pρ2

at level α “ 0.05, respectively. We summarize the critical values in Tables 2-3.
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Table 2: Critical value cpm,α{2q with respect to m for the test M
pρ1 at level α “ 0.05

number of splits m

Method Value 2 3 4 5 10 20 40 100 1000 10000

M
pρ1 cpm,α{2q 1.988 2.058 2.133 2.204 2.489 2.865 3.126 4.115 7.17 12.66

Table 3: The smallest value β with respect to m to control the type I error of the test M
pρ2

with cpm,α{2q “ zα{2 at level α “ 0.05

number of splits m

Method Value 2 3 4 5 10 20 40 100 1000 10000

M
pρ2 β 0.25 0.25 0.25 0.25 0.20 0.20 0.15 0.15 0.10 0.05

Appendix B. Lemmas and Proofs

B.1 Technical Lemmas

In this subsection, we introduce a few technical lemmas to help establish theoretical results.
Before proceeding, we first introduce some notations for sub-Gaussian and sub-exponential
random variables. The sub-Gaussian norm of a sub-Gaussian random variable X is

}X}ψ2 “ sup
pě1

p´
1
2 pE|X|pq1{p.

The sub-exponential norm of a sub-exponential random variable X is

}X}ψ1 “ sup
pě1

p´1pE|X|pq1{p.

Lemma 10 If the RSC condition (3) holds, then

∆JW∆ ě ν}∆}22 ´ τ

c

log p

n
}∆}1 for all ∆ P Rp.

Proof For any }∆}1 ă 1, the L1 norm of ∆{}∆}1 is 1 and hence satisfies the RSC condition
in (3). We have

∆J

}∆}1
W

∆

}∆}1
ě ν

}∆}22
}∆}21

´ τ

c

log p

n

}∆}1
}∆}1

∆J

}∆}1
W

∆

}∆}1
ě ν

}∆}22
}∆}21

´ τ

c

log p

n

}∆}21
}∆}21

∆JW∆ ě ν}∆}22 ´ τ

c

log p

n
}∆}21.
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Since }∆}1 ă 1, then }∆}21 ď }∆}1, implying

∆J
pΣ∆ ě ν}∆}22 ´ τ

c

log p

n
}∆}1.

The proof of Lemma 10 is complete.

Lemma 11 Suppose x1, . . . ,xn P Rp „ pµ,Σq are independent and identically distributed
sub-Gaussian random vectors. Let x̄ and pΣ “ ppσijqpˆp be the sample mean and sample
covariance matrix. If log p ă n, then with probability at least 1´ 2p´1, we have

(i) }x̄´ µ}8 ď C
a

log p{n for some large C.

(ii) }pΣ´Σ}max ď C
a

log p{n for some large C.

Proof Let x̄ “ 1
n

řn
k“1 xk be the sample mean and pΣ “ 1

n

řn
k“1pxk ´ x̄qpxk ´ x̄qJ be

the sample covariance matrix. Without loss of generality, we assume Epxiq “ 0 and the
sub-Gaussian parameter for xi is σ2. Write xk “ pxk1, . . . ,xkpq

J and each Xkj is a sub-
Gaussian random variable with parameter σ2 and let K “ max1ďjďp }xkj}ψ2 . Obviously, x̄
is also sub-Gaussian random vector with parameter σ2{

?
n. For any t ą 0, we have

Prp}x̄´ µ}8 ą tq ď 2p exp
 

´cnt2{K2
(

.

Take t “ C
a

log p{n for some large C ą 0, we have

Prp}x̄´ µ}8 ă C
a

log p{nq ě 1´ 2p´1. (11)

The sample covariance pΣ can be decomposed as

pΣ “
1

n

n
ÿ

k“1

xkx
J
k ´ x̄x̄J.

Hence we know,

max
i,j
|pσij ´ σij | ď max

i,j
|
1

n

n
ÿ

k“1

xkixkj ´ σij | `max
i,j
|x̄ix̄j |.

In addition, we have

}xkixkj}ψ1 ď 2}xki}ψ2}xkj}ψ2 ď 2K2.

Hence }xkixkj ´ σij}ψ1 ď 4K2. According to the inequality of tail probability for sub-
exponential variables, we have

Pr

˜

max
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

k“1

xkixkj ´ σij

ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

ď max

ˆ

2p2 exp

"

´cn
t2

16K4

*

, 2p2 exp

"

´cn
t

4K2

*˙

.
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It is easy to verify that }x̄i}ψ2 ď K{
a

1{n and }x̄ix̄j}ψ1 ď 2}x̄i}ψ2}x̄j}ψ2 ď 2K2{n, we have

Prpmax
i,j
|x̄ix̄j | ą tq ď 2p2 exp

"

´
cnt

2K2

*

.

By the choice of t “ C
2

b

log p
n for some large C ą 0, we have maxi,j |pσij ´ σij | ď C

a

log p{n

with probability at least 1´ 2p´1, which completes the proof.

Lemma 12 (Loh and Wainwright (2015)) Assume penalty function Pλptq satisfies con-
ditions (i)-(v), then

(a) |Pλpt1q ´ Pλpt2q| ď λ|t1 ´ t2| for any t1, t2 P R.

(b) For any w P Rp, we have λ}w}1 ď Pλpwq `
ν
2 }w}

2
2.

(c) Suppose }w‹}0 “ s ą 0, then for any w P Rp such that cPλpw
‹q ´ Pλpwq ě 0 with

c ě 1, we have cPλpw
‹q ´ Pλpwq ď λpc}δA}1 ´ }δAc}1q, where δ “ w ´ w‹ and A is

the index set of the s largest elements of δ in magnitude.

(d) Define Jλptq “ λ|t|´Pλptq. Then the function Jλptq´
µ
2 t

2 “ λ|t|´Pλptq´
µ
2 t

2 is concave
and differentiable.

B.2 Proof of Theorem 2

Lemma 10 shows that the RSC condition in (3) actually holds for all ∆ P Rp. Now we are
ready to prove Theorem 2. Define w‹ “ Σ´1µ and p∆ “ pw´w‹. The first order necessary
condition (4) implies that

p∆
J
pΣpw ` x∇Pλppwq ´ x̄, p∆y “ 0. (12)

By the RSC condition (3), we have

p∆
J
pΣ p∆ ě ν} p∆}22 ´ τ

c

log p

n
} p∆}1. (13)

Adding (12) to (13), we have

´ p∆
J
pΣw‹ ´ x∇Pλppwq ´ x̄, p∆y ě ν} p∆}22 ´ τ

c

log p

n
} p∆}1. (14)

Lemma 12 shows that Pλ,γpwq “ Pλpwq `
γ
2 }w}

2
2 is a convex function, hence

Pλ,γpw
‹q ´ Pλ,γppwq ě x∇Pλppwq ` γ pw,w‹ ´ pwy,

which implies

´x∇Pλppwq, p∆y ď Pλpw
‹q ´ Pλppwq `

γ

2
} p∆}22. (15)

19



Liu, Yu and Li

Combining (14) and (15),

ν} p∆}22 ´ τ

c

log p

n
} p∆}1 ď ´ p∆

J
pΣw‹ ` x̄J p∆` Pλpw

‹q ´ Pλppwq `
γ

2
} p∆}22

pν ´ γ{2q} p∆}22 ď Pλpw
‹q ´ Pλppwq ` }Σ̃w‹ ´ x̄}8} p∆}1 ` τ

c

log p

n
} p∆}1

pν ´ γ{2q} p∆}22 ď Pλpw
‹q ´ Pλppwq `

˜

}pΣw‹ ´ x̄}8 ` τ

c

log p

n

¸

} p∆}1.

By triangle inequality, we know }pΣw‹ ´ x̄}8 ď }pΣw‹ ´ µ}8 ` }x̄ ´ µ}8. According to
Lemma 11, there exists M1,M2 ą 0 such that

Prp}x̄´ µ}8 ďM1

a

log p{nq ě 1´ 2p´1. (16)

Prp}pΣ´Σ}max ďM2

a

log p{nq ě 1´ 2p´1.

Then with probability at least 1´ 2p´1,

}pΣw‹ ´ µ}8 “ }pΣw‹ ´Σw‹}8 ď }pΣ´Σ}8}w
‹}1 ďM2C1

a

log p{n. (17)

Combining (16) and (17), we know that with probability at least 1´ 4p´1, we have

}pΣw‹ ´ x̄}8 ďM 1
a

log p{n,

with M 1 “M1 `M2C1. Take λ “M
a

log p{n with M “ 4 maxtM 1, τu, we have

}pΣw‹ ´ x̄}8 ` τ
a

log p{n ď λ{2.

Hence

pν ´ γ{2q}p∆}22 ď Pλpw
‹q ´ Pλppwq `

λ

2
}p∆}1

ď Pλpw
‹q ´ Pλppwq `

1

2
Pλpp∆q `

γ

4
}p∆}22,

where the second inequality is because λ
2 }

p∆}1 ď
1
2Pλp

p∆q ` γ
4 }

p∆}22 by Lemma 12(b). By the

subadditivity of Pλ, we have Pλpp∆q “ Pλppw ´w‹q ď Pλppwq ` Pλpw
‹q. Then

pν ´ γ{2q }p∆}22 ď Pλpw
‹q ´ Pλppwq `

1

2
Pλppwq `

1

2
Pλpw

‹q `
γ

4
}p∆}22

pν ´ 3γ{4q }p∆}22 ď
3

2
Pλpw

‹q ´
1

2
Pλppwq

p2ν ´ 3γ{2q }p∆}22 ď 3Pλpw
‹q ´ Pλppwq.

By Lemma 12(c), we have 3λ}p∆I}1 ´ λ}p∆Ic}1 ě 3Pλpw
‹q ´ Pλppwq ě 0, where I denotes

the index set of the s largest elements of p∆ in magnitude. Since ν ě 3γ{4, we have

0 ď p2ν ´ 3γ{2q }p∆}22 ď 3λ}p∆I}1 ´ λ}p∆Ic}1.
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As a result, we have }p∆Ic}1 ď 3}p∆I}1 and

ˆ

2ν ´
3

2
γ

˙

}p∆}22 ď 3λ}p∆I}1 ´ λ}p∆Ic}1 ď 3λ}p∆I}1 ď 3λ
?
s}p∆I}2,

from which we conclude that

}p∆}2 ď
6λ
?
s

4ν ´ 3γ
“ O

˜

c

s log p

n

¸

.

The `1 norm bound follows immediately from the `2 norm bound

}p∆}1 “ }p∆I}1 ` }p∆Ic}1 ď 4}p∆I}1 ď 4
?
s}p∆I}2 ď

24λs

4ν ´ 3γ
“ O

˜

s

c

log p

n

¸

.

B.3 Proof of Theorem 4

According to Theorem 2, we know }pw ´ w‹}1 “ Ops
a

log p{n1q “ op1q with high prob-

ability. Let x̄2 and pΣ2 be the sample mean and sample covariance matrix based on
D2 “ txn1`1, . . . ,xnu. On one hand,

|pwJΣpw ´ pwJΣw‹| “ |pwJΣppw ´w‹q|

ď }Σ}max}pw}1}pw ´w‹}1

ď }Σ}maxp}w
‹}1 ` }pw ´w‹}1q}pw ´w‹}1

“ O
´

s
a

log p{n1

¯

.

One the other hand,

|pwJΣw‹ ´w‹JΣw‹| “ |ppw ´w‹qJΣw‹|

ď }Σ}max}w
‹}1}pw ´w‹}1

“ O
´

s
a

log p{n1

¯

.

Hence by triangle inequality,

|pwJΣpw ´w‹JΣw‹| ď |pwJΣpw ´ pwJΣw‹| ` |pwJΣw‹ ´w‹JΣw‹|

“ O
´

s
a

log p{n1

¯

.
(18)

Given pw, we know that yn1`1, . . . , yn are i.i.d. random variables with mean µJ pw and
variance pwJΣpw. By central limit theorem and pwJΣpw ´w‹JΣw‹ “ op1q, we know

?
n2pȳ ´ µJ pwq
?

w‹JΣw‹

d
Ñ Np0, 1q.
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The test statistic of the SPT is T
pw “

?
n2ȳ{sy and we reject H0 whenever |T

pw| ą zα{2. The
power function for the SPT is

Pr

ˆˇ

ˇ

ˇ

ˇ

?
n2ȳ

?
w‹JΣw‹

ˇ

ˇ

ˇ

ˇ

ą zα{2

˙

“Pr

ˆ ?
n2ȳ

?
w‹JΣw‹

ą zα{2

˙

` Pr

ˆ ?
n2ȳ

?
w‹JΣw‹

ă ´zα{2

˙

“Pr

ˆ?
n2pȳ ´ µJ pwq
?

w‹JΣw‹
ą zα{2 `

?
n2µ

J
pw

?
w‹JΣw‹

˙

`

Pr

ˆ?
n2pȳ ´ µJ pwq
?

w‹JΣw‹
ă ´zα{2 `

?
n2µ

J
pw

?
w‹JΣw‹

˙

»Φ

ˆ

´zα{2 `

?
n2µ

J
pw

?
w‹JΣw‹

˙

` op1q

»Φ

˜

´zα{2 `

?
n2µ

J
pw

a

µJΣ´1µ

¸

.

Notice that

µJ pw ´ µJΣ´1µ “ µJ pw ´ µJw‹ “ µJppw ´w‹q

ď }µ}8}pw ´w‹}1 “ O

˜

}µ}8s

c

log p

n1

¸

Ñ 0.

As a result, we know the asymptotic power is

βpT
pwq “ Φ

ˆ

´zα{2 `

b

n2µJΣ´1µ

˙

.

B.4 Proof of Theorems 6 and 7

Theorem 6 is a direct corollary of Theorem 7 by setting Tk “ pk, we only prove Theorem 7
here. Conditioning on the observed data D, we know its random permutations Dπ1 ,Dπ2 , . . .
are independent from each other. Therefore, the resultant statistics Tk “ gpDπkq are inde-
pendent and identically distributed conditioning on D. By the de Finete theorem (Aldous,
1985) which states that a mixture of independent and identically distributed sequences are
exchangeable, we know is pT1, T2, . . . q is an exchangeable sequence, and hence pT1, . . . , Tmq
is exchangeable for any finite m.

B.5 Proof of Theorem 8

According to the central limit theorem for exchangeable random variables, we have

Mρ “ Z̄{
a

p1` pm´ 1qρq{m
d
Ñ Np0, 1q.

Let pρ be a consistent estimator for ρ ‰ 0, i.e., pρ
p
Ñ ρ. Hence,

a

p1` pm´ 1qρq{m
a

p1` pm´ 1qpρq{m

p
Ñ 1.

As a result, we know

M
pρ “ Z̄{

a

p1` pm´ 1qpρq{m
d
Ñ Np0, 1q.
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Appendix C. Additional Numerical Results

Figures 5 and 6 reports the size and power of different tests with n “ 100 for samples
following multivariate normal distribution and t6 distribution, respectively. The pattern of
size and power for different tests is similar to that of n “ 40. The proposed MPT can control
the type I error rate below the pre-specified significance level α “ 0.05 while the CLX test
completely fails to control the size. Among those tests which can retain the type I error
rate, the proposed MPT is the most powerful one for both CS and AR covariance structure.
The studies also reveal that the proposed MPT is quite robust to non-Gaussianity.
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(c) n=100, p=1000, c=0.5 with CS
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(d) n=100, p=1000, c=0.5 with AR

Figure 5: Size and power of different tests for normally distributed samples with n “ 100.
Panels (a) and (b) show size (c “ 0) under the null hypothesis for the CS and AR structure,
respectively. Panels (c) and (d) show power (c “ 0.5) under the alternative hypothesis for
the CS and AR structure, respectively.
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(c) n=100, p=1000, c=0.5 with CS
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(d) n=100, p=1000, c=0.5 with AR

Figure 6: Size and power of different tests for samples following multivariate t6 distribution
with n “ 100. Panels (a) and (b) show size (c “ 0) under the null hypothesis for the CS and
AR structure, respectively. Panels (c) and (d) show power (c “ 0.5) under the alternative
hypothesis for the CS and AR structure, respectively.
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