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Abstract

We provide a theoretical treatment of over-specified Gaussian mixtures of experts with
covariate-free gating networks. We establish the convergence rates of the maximum likeli-
hood estimation (MLE) for these models. Our proof technique is based on a novel notion
of algebraic independence of the expert functions. Drawing on optimal transport, we estab-
lish a connection between the algebraic independence of the expert functions and a certain
class of partial differential equations (PDEs) with respect to the parameters. Exploiting
this connection allows us to derive convergence rates for parameter estimation.

Keywords: Mixture of experts, maximum likelihood estimation, convergence rate, opti-
mal transport, partial differential equation, algebraic geometry.

1. Introduction

Gaussian mixtures of experts, a class of piece-wise regression models introduced by (Jacobs
et al., 1991; Jordan and Jacobs, 1994; Jordan and Xu, 1995), have found applications in
many fields including social science (Huang and Yao, 2012; Huang et al., 2013; Compiani
and Kitamura, 2016), speech recognition (Peng et al., 1996; Makkuva et al., 2020), nat-
ural language processing (Eigen et al., 2014; Shazeer et al., 2017; Makkuva et al., 2019,
2020), and system identification (Rasmussen and Ghahramani, 2002). Gaussian mixtures
of experts differ from classical finite Gaussian mixture models in two ways. First, the mix-
ture components (the “experts”) are regression models, linking the location and scale of
a Gaussian model of the response variable to a covariate vector X via parametric models
hi(X,01) and ha(X,02), where 01, 02 are parameters. Second, the mixing proportions (the
“gating network”) are also functions of the covariate vector X, via a parametric model
m(X, ) that maps X to a probability distribution over the labels of the experts. The over-
all model can be viewed as a covariate-dependent finite mixture. Despite their popularity
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in applications, the theoretical understanding of Gaussian mixtures of experts has proved
challenging and lagged behind that of finite mixture models. The inclusion of covariates X
in the experts and the gating networks leads to complex interactions of their parameters,
which complicates the theoretical analysis of parameter estimation.

In the setting of finite mixture models, while the early literature focused on identifiabil-
ity issues (Teicher, 1960, 1961, 1963; Lindsay, 1995), recent work has provided a substantive
inferential theory; see for example (Rousseau and Mengersen, 2011; Nguyen, 2013; Heinrich
and Kahn, 2018; Ho and Nguyen, 2016, 2019). To the best of our knowledge, Chen (1995) set
the stage for these recent developments by establishing a convergence rate of n~/4 for pa-
rameter estimation in the univariate setting of over-specified mixture models. Later, Nguyen
(2013) used the Wasserstein metric to analyze the posterior convergence rates of parameter
estimation for both finite and infinite mixtures. Recently, Ho and Nguyen (2019) provided a
unified framework to rigorously characterize the convergence rates of parameter estimation
based on the singularity structures of finite mixture models. Their results demonstrated that
there is a connection between the singularities of these models and the algebraic-geometric
structure of the parameter space.

Moving to Gaussian mixtures of experts, a classical line of research focused on the
identifiability in these models (Jiang and Tanner, 1999a) and on parameter estimation in the
setting of exact-fitted models where the true number of components is assumed known (Jiang
and Tanner, 1999d,b,c). This assumption is, however, overly strong for most applications;
the true number of components is rarely known in practice. There are two common practical
approaches to deal with this issue. The first approach relies on model selection, most notably
the BIC penalty (Wang et al., 1996; Khalili and Chen, 2007). This approach is, however,
computationally expensive as we need to search for the optimal number of components over
all the possible values. Furthermore, the sample size may not be large enough to support
this form of inference. The second approach is to over-specify the true model, by using rough
prior knowledge to specify more components than is necessary. However, theoretical analysis
of parameter estimation is challenging in the over-specified setting, given the complicated
interaction among the parameters of the expert functions, a phenomenon that does not
occur in the exact-fitted setting of Gaussian mixtures of experts. Another challenge arises
from inhomogeneity—some parameters tend to have faster convergence rates than other
parameters. This inhomogeneity makes it nontrivial to develop an appropriate distance for
characterizing convergence rates.

In the current paper we focused on a simplified setting in which the expert functions
are covariate-dependent, but the gating network is not. We refer to this as the Gaussian
mizture of experts with covariate-free gating functions (GMCF) model. This model is also
widely known as finite Gaussian mixture of regression (Khalili and Chen, 2007). Although
simplified, this model captures the core of the mixtures-of-experts problem, which is the in-
teractions among the different mixture components. We believe that the general techniques
that we develop here can be extended to the full mixtures-of-experts model—in particular
by an appropriate generalization of the transportation distance to capture the variation of
parameters from the gating networks—but we leave the development of that direction to
future work.
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1.1 Setting

We propose a general theoretical framework for analyzing the statistical performance of
maximum likelihood estimation (MLE) for parameters in the setting of over-specified Gaus-
sian mixtures of experts with covariate-free gating functions. In particular, we assume that
(X1, Y1),...,(Xp,Yy) are i.i.d. samples from a Gaussian mixture of experts with covariate-
free gating functions (GMCF) of order ko, with conditional density function gg, (Y| X):

4Gy Y’X Zﬂ-of Y|h1(X 0 ) h2(Xa‘9(2)z))a (1)

where Gy := Zfil 71—?5(0(1)1'76(2)1') is a true but unknown probability measure (mixing measure)
and ‘991‘ € Q; C R% for all 4, j. Furthermore, we denote {f(:|u,0)} as the family of location-
scale univariate Gaussian distributions. We over-specify the true model by choosing k& > kg
components.

We estimate Gy under the over-specified GMCF model via maximum likelihood esti-
mation (MLE). We denote the MLE as G,,. Our results reveal a fundamental connection
between the algebraic structure of the expert functions hy and hs and the convergence rates
of the MLE through a general version of the optimal transport distance, which refers to
as the generalized transportation distance. A similar distance has been used to study the
effect of algebraic singularities on parameter estimation in classical finite mixtures (Ho and
Nguyen, 2019).

1.2 Generalized transportation distance

In contrast to the traditional Wasserstein metric (Villani, 2003), the generalized transporta-
tion distance assigns different orders to each parameter. This special property of generalized
transportation distance provides us with a tool to capture the inhomogeneity of parameter
estimation in Gaussian mixtures of experts. In order to define the generalized transportation
distance, we first define the semi-metric dy(.,.) for any vector k = (K1,...,Kg+q,) € NOTE
as follows:

q1+q2 1/]|£l oo
d 91’92 < Z |0 Z)|Hz> ,

01(1) . 9(q1+q2)) € R11t%2. Generally, d,(.,.) does not satisfy the standard

for any 0; = oo 0
triangle inequality. More precisely, when not all k; are identical, d, satisfies a triangle
inequality only up to some positive constant less than one. When all x; are identical, d,
becomes a metric.

Now, we let G = Zle Ti0(6,;,0,;) De some probability measure. The generalized trans-

portation distance between G and Gy with respect to kK = (k1, ..., kg 4+¢,) € NUT2 is given
by:
— 0 /5]l
(G G o= Y asal > n)) )
1]
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where the infimum is taken over all couplings q between 7 and 7; i.e., where i =
moand ), qij = 7r§-). Additionally, n; = (61;,62;) and 77? = (9%,9%-) for all 4,j. When
k= (2,...,2), we can check that W,(G,Go) = Wa(G, Go), the second order Wasserstein
metric (Villani, 2003).

In general, the convergence rates of mixing measures under generalized Wasserstein
distance translate directly to the convergence rates of their associated atoms or parameters.
More precisely, assume that there exist a sequence {G} and a vector kK = (K1,...,Kq +q) €
N#+492 guch that WN(GTL, Go) — 0 at rate w, = o(1) as n — oo. Then, we can find a sub-
sequence of G, such that each atom (support) (6%;,69.) of G is the limit point of atoms
of G,. Additionally, the convergence rates for estimating (0%)(“), the uth component of

6%., are wiFle/me while those for estimating (63;)(") are wirlleelmae g < u < ¢ and
1 < wv < go. Furthermore, the convergence rates for estimating the weights associated with
these parameters are wyf”"". Finally, there may exist some atoms of G, that converge to
limit points outside the atoms of (Gy. The convergence rates of these limit points are also

similar to those for estimating the atoms of Gy.

1.3 Main contribution

The generalized transportation distance in equation (2) allows us to introduce a notion of
algebraic independence between expert functions h; and he that is expressed in the language
of partial differential equations (PDEs). Using this notion, we are able to characterize the
convergence rates of parameter estimation for several choices of expert functions h; and
ho when they are either algebraically independent or not. Our overall contributions in the
paper can be summarized as follows:

e Algebraically independent settings: When the expert functions hy and ho are
algebraically independent, we establish the best possible convergence rate of order
n=Y4 for W,.(Ghy, Go) (up to a logarithmic factor) where k = (2,...,2). That result
directly translates to a convergence rate of n~'/4 for the support of én

e Algebraically dependent settings: When the expert functions h; and he are al-
gebraically dependent, we prove that the convergence rates of parameter estimation
are very slow and inhomogeneous. More precisely, the rates of convergence are either
determined by the solvability of a system of polynomial equations or by the admis-
sibility of a system of polynomial limits. The formulations of these systems depend
on the PDEs that capture the interactions among the parameters for the expert func-
tions. Furthermore, we show that the inhomogeneity of parameter estimation can be
characterized based on the generalized transportation distance.

We note in passing that while our results in the paper are specifically for the MLE, the proof
technique and algebraic independence notion can also be used to analyze the convergence
rate of parameter estimation from moment methods (Anandkumar et al., 2012, 2015) with
the over-specified GMCF model.

Organization. The remainder of the paper is organized as follows. In Section 2, we
introduce the problem setup for Gaussian mixtures of experts with covariate-free gating
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functions. Section 3 establishes convergence rates for parameter estimation under the alge-
braically independent setting. In Section 4, we consider various settings in which the expert
functions are algebraically dependent and establish the convergence rates of parameter es-
timation under these settings. We provide proofs for a few key results in Section 5 while
deferring the majority of the proofs to the Appendices. Finally, we conclude in Section 6.
Notation. For any vector z € R%, we use superscript and subscript notation inter-
changeably, letting z = (z(), . .. ,x(d)) orx = (x1,...,xq). Thus, either @ or z; is the i-th
d
component of z. For each z € R%, we denote z = [] (z(?)% for any x = (x(V), ..., k(¥)
i=1
N¢. For any two vectors x,y € Rd, we write z < y if 2@ < y(i) foralll<i<dand z <y
if x < y and x # y. For any two sequences {a,} and {b,}, the notation a,, < b, means
an < Cby, for all n > 1 where C is some constant independent of n. For any two sets A and
B with finite number of elements, we denote A = B to indicate that the elements of A are
identical to those of B (up to a permutation of the elements of each set).
For any two density functions p, ¢ (with respect to the Lebesgue measure p), the total

1
variation distance is given by V(p,q) = 5 Ip(z) — q(z)|dp(z). The squared Hellinger

distance is defined as h?(p,q) = ;/(\/p(x) — V() *du(z).

2. Background

In this section, we provide the necessary background for our analysis of the convergence rates
of the MLE under over-specified Gaussian mixtures of experts with covariate-free gating
functions. In particular, in Section 2.1, we define the over-specified Gaussian mixture of
experts with covariate-free gating functions, and in Section 2.2, we establish identifiability
and smoothness properties for these models as well as establishing the convergence rates of
density estimation.

2.1 Problem setup

Let Y € Y C R be a response variable of interest and let X € X C R? be a vector of
covariates believed to have an effect on Y. We start with a definition of identifiable expert
functions.

Definition 1. Given © C R? for some ¢ > 1. We say that an expert function hy : X x © —
R is identifiable if for each k € N the following holds:

(I.1) If there exist distinct parameters (m,...,n,) and (n},...,n;) such that for almost
surely X € X, we can find permutation function ox : {1,2,...,k} — {1,2,...,k} to
satisfy h1(X, nax(i)) =h(X,n) for all1 <i <k, then {m,...,m} ={nt,....,m.}-

Examples of identifiable expert function h; include hy(X,n) = g(n'[1, X]) for any in-
jective function ¢ : R — R where X € R? and n € R*!. Recall that we focus on Gaussian
mixtures of experts (Jacobs et al., 1991; Jordan and Jacobs, 1994; Jordan and Xu, 1995) for
which the gating functions are independent of covariate X. We now start with the following
definition of Gaussian mixtures of experts with covariate-free gating functions.
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Definition 2. Assume that we are given two identifiable expert functions hy : X x Q1 —

O1 CR and hy : X x Qo — Oy C Ry where Q; C R% for given dimensions ¢; > 1 as
k

1 < i <2 Let {m}k | denote k weights with > m = 1. We say that (X,Y) follows a
i=1

Gaussian mixtures of experts with covariate-free gating functions (GMCF) of order k, with

respect to expert functions hy, ho and gating functions m;, if the conditional density function

of Y given X has the following form

ge(Y]X) = / £ (V| (X, 00), ha (X, 05)) dG (01, 02)

k

=3 mif(V|h1(X, 01), ha(X, 02)),
=1
k
where G = ) Ti6(p,,.6,,) 15 a discrete probability measure that has evactly k atoms on

=1
Q= Ql X QQ.

As an example, when ¢q1 = g2 = d + 1, generalized linear expert functions take the form
hl(X, 91) = QI[I,X] and hQ(X, (92) = exp (9;—[1,){])

Over-specified GMCF: Let (X1,Y1),...,(X,,Y,) beii.d. draws from a GMCF of order
ko with conditional density function gg,(Y'|X) where Gg := Zfil W?(S(@?iﬁgi) is a true but
unknown probability measure (mixing measure). Since kg is generally unknown in practice,
one popular approach to estimate the mixing measure G is based on over-specifying the
true number of components ky. In particular, we fit the true model with £ > ky number of
components where k is a given threshold that is chosen based on prior domain knowledge.
We refer to this setting as the over-specified GMCF.

Maximum likelihood estimation (MLE): To obtain an estimate of G, we define the
MLE as follows:

G, = arg maleog(gg(K-|Xi)), (3)
Geg

where G is some subset of O(Q) := {G = 22:1 Ti0(013,60) * 1 <1 < k}, namely, the set of
all discrete probability measures with at most & components. Detailed formulations of G
will be given later based on the specific structures of expert functions k1 and ho.

Universal assumptions and notation: Throughout this paper, we assume that ; and
Q9 are compact subsets of R and R% respectively. Additionally, Q := Q7 x Q9 and X is
a random vector and has a given prior density function f(X), which is independent of the
choices of expert functions hi, he. Furthermore, X is a fixed compact set of R%. Finally we
denote

pa(X,Y) = ga(Y|X)f(X)

as the joint distribution (or equivalently mixing density) of X and Y for any G € O ().
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2.2 General identifiability, smoothness condition, and density estimation

In order to establish the convergence rates of @n, our analysis relies on three main ingredi-
ents: general identifiability of the GMCF, Holder continuity of the GMCF up to any order
r > 1, and parametric convergence rates for density estimation under the over-specified
GMCF. We begin with the following result regarding the identifiability of GMCF.

Proposition 3. For given identifiable expert functions h1 and he, the GMCEF is identifiable
with respect to hy and ho, namely, whenever there are finite discrete probability measures G
and G' on Q such that pc(X,Y) = pe(X,Y) almost surely (X,Y) € X x Y, then it follows
that G = G'.

The proof of Proposition 3 is in Appendix A.1. A second result that plays a central
role in analyzing convergence of the MLE in over-specified GMCF is the uniform Holder
continuity, formulated as follows:

Proposition 4. For any r > 1, the GMCF admits the uniform Hélder continuity up to the
rth order, with respect to the expert functions hy, ho and prior density function f:

> f@)

|w|=r

olsl f
<80’“8¢9“2 (y|h1(z, 01), ha(z, 02))
1 00y

olsl f

g (0. a(o,89) )| < €61 02) = B3PI
1 2

for any v € R4 and for some positive constants & and C that are independent of x,y
and (61,62), (07,0,) € Q. Here, k = (k1,k2) € NOUT2 where k; € N% for any 1 <i < 2.

Finally, when the expert functions h; and hs are sufficiently smooth in terms of their
parameters, we can guarantee the parametric convergence rate of density estimation.

Proposition 5. Assume that the expert functions hy and ho are twice differentiable with
respect to their parameters. Additionally, assume that there exist positive constants a,~y,7
such that hi(X,01) € [—a,a], ha(X,02) € [v,7] for all X € X,0; € Q1,602 € Q. Then, the
following holds: B

P(h(pg, -pa,) > Cllogn/n)'/?) 3 exp(—clogn) (4)
for universal positive constants C' and c that depend only on €.

The proof of Proposition 5 is in Appendix C.

3. Algebraically independent expert functions

In this section, we consider the MLE in equation (3) over the entire parameter space O ().
That is, we let G = Or(Q2). To analyze the convergence rates of MLE under over-specified
GMCF we capture the algebraic interaction among the expert functions h; and ho via the
following definition.

Definition 6. We say that the expert functions hi, ho are algebraically independent if they
are twice differentiable with respect to their parameters 601 and 02 and the following holds:
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(0.1) For any (01,602), if we have o, By € R (for 1 < i < g9, and 1 < u < v < q1) such
that

q2 2
Ooh 8h oh
Sat A(X o)+ Y B3 7 (X.01)—5(X,601) =0,

i1 00y 1<u<v<q 00,
almost surely in X, then we must also have o; = By = 0 for all 1 < i < g2 and

I1<u<v<q.

(0.2) For any 02, if we have vy, € R (for 1 <u < v < qa) such that

OhZ 8h2
Z '7u1)7(12L)(X7 02) (v )(X 92)
1<u<o<gy 003 965

almost surely in X, then we have Yy, = 0 for all 1 <u < v < go.

(0.3) For any (01,02), if we have ny, € R (for 1 <u < gy and 1 <v < q2) such that

q1 g2 2
ZZ 8h oh
nU’U : X7 01) (5) (X7 92) = 07
00
u=1v=1 2

almost surely in X, then we have My, =0 for all 1 <u<q and 1 <v < ¢o.
h2
a9 oL
00
for some 1 < i < ¢o, then we have o; = 0. The same convention goes for other derivatives
in Conditions (0.1), (0.2), and (0.3). An equivalent way to express the Condition (O.1)

in Definition 6 is that the elements in a set of partial derivatives,

Note that in this definition we use the convention that if X, 02) = 0 almost surely

h h h3
81(X91)81(X01)a (XOg)'lgigqg,lgugvgql y
ae(u) (99( v) 89( i)
are linearly independent with respect to X. Similarly, the Conditions (0.2) and (0.3)
indicate that the elements of the following sets of partial derivatives

{ o2 o2

— 2 (X,0)—2(X,0): 1<u<v<gqyp,
06" 65"

oh oh3
(i)(Xael) ()(X92) I1<u<q, 1<v<q
00, 00,

are linearly independent with respect to X. To exemplify the algebraic independence notion
in Definition 6, we consider the following simple examples of expert functions hy and ho
that are algebraically independent.

Example 1. (a) Let X C R If we choose expert functions hi(X,01) = 0 X and
h3(X,02) = 0y for all 61 € Q1 C R? and 03 € Qy C Ry, then hy and hy are algebraically
independent.

(b) Let X C Ry. If we choose expert functions hi(X,01) = (9?) + 052))()””” for all
0, = («951),«952)) € 0 C R?, where m > 1 and h3(X,02) = 02X for all 65 € Qo C R, then
h1, he are algebraically independent.
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There are also several standard settings of GMCF where the expert functions h; and
hs are algebraically dependent (See Section 4 for these examples). For instance, for the
standard univariate mixtures of Gaussian distributions, namely, when the expert func-
tions hi(X,0;1) = 61 and h3(X,0;) = 6y for all 01,0,, then these expert functions are
algebraically dependent as they violate Condition (O.1) in Definition 6, which is due to

2 Oh3
following PDE: (g—gi(X, 01)> = a—GQ(X, ) for all #1,05. The convergence rate of MLE
2

for the over-specified Gaussian mixtures had been established in (Ho and Nguyen, 2016).
Another example of GMCF when the expert functions are algebraically dependent is the
Gaussian mixture of regression (Khalili and Chen, 2007), namely, h1(X,61) = 6] [1, X] and
h3(X,02) = 0y for all §; = (051), e ,diﬂ)) and 2. These expert functions also violate
2

Condition (O.1) due to the PDE: (%(X, 61))2 = ZZQQ(X, 62). That relation between
0%1) and 6 leads to distinct behaviors of the elements of 6; in the convergence rates of
MLE (see Theorem 8 for a detailed statement). Further examples of algebraically depen-
dent functions as well as convergence rates of their parameter estimation are provided in
Section 4.

Going back to the algebraic independence condition for the expert functions h; and ho,
we have the following result regarding the convergence rates of parameter estimation @n
under the over-specified GMCF model.

Theorem 7. Assume that expert functions h1 and ho are algebraically independent and are
twice differentiable with respect to their parameters. Additionally, assume that there exist
positive constants a,v,75 such that hi(X,61) € [—a,a], ha(X,02) € [v,7] for all X € X,0; €
01,05 € Q9. Then, the following holds: B

(a) (Convergence rate of MLE) There exists a positive constant Cy depending on Go and
Q such that

P(Wn(@n, Go) > Co(log n/n)1/4) = exp(—clogn),
where k = (2,...,2) € N2 gnd c is a positive constant depending only on Q.

(b) (Minimaz lower bound) For any k' € R1V92 such that (1,...,1) X&' <k =(2,...,2),

inf sup B (W (G G)) = 1/ 2I10),
G GEOL(\Ory1()

Here, the infimum is taken over all sequences of estimates G, € Or(Q2). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pg, and ¢ stands for a universal constant depending only on €.

The proof of Theorem 7 is in Section 5.1.

A few comments are in order. First, part (a) of Theorem 7 establishes a best possible
convergence rate of n—1/4 (up to a logarithmic factor) of (A}‘n to Gy under the generalized
transportation distance W,. while part (b) of that theorem demonstrates that this rate is
sharp. From part (a), the convergence rate n~ Y4 of CA}n suggests that the rate of estimating
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individual components (0%-)(“) and (Ggi)(”) isn 4 forl <u<g and1 < v < g. On
the other hand, the minimax result from part (b) indicates that at least one individual
component (62,)() and (63;)(*) can not be estimated faster than n~/* for some 1 < i < kg
and for some 1 < u < ¢ and 1 < v < ¢2. The main reason for these slow convergence
rates is the singularity of Fisher information matrix for these components. Such a singularity
phenomenon is caused by the effect of fitting the true model by larger model, a phenomenon
which has been observed previously in traditional mixture models settings under strong
identifiability (Chen, 1995; Nguyen, 2013).

Second, we would like to emphasize that Theorem 7 is not only of theoretical interest.
Indeed, it provides insight into the choice of expert functions that are likely to have favorable
convergence in practice. When the expert functions are not algebraically independent, we
demonstrate in the next section that the convergence rates of parameter estimation in
over-specified GMCF are very slow and depend on a notion of complexity level of over-
specification.

4. Algebraically dependent expert functions

In the previous section we established a convergence rate n='/4 for the MLE when the
expert functions h; and ho are algebraically independent. In many scenarios, however, the
expert functions are taken to be algebraically dependent. Here we show that in some of
these settings the convergence rates of the MLE can be much slower than n~1/4.

In order to simplify our proofs in the algebraically-dependent cases, in this section we
only consider single covariate settings, i.e., X € & C R. With the similar proof technique,
most of the results in this section can be generalized to their corresponding multivariate
covariate settings, i.e., X € X C R%. Furthermore, we focus on the case in which the MLE
is restrained to a parameter space G that has the following structure:

l
g = Ok,EO(Q) = {G = Zﬂi(s(@u,@m‘) 01 < l < k and T > Co VZ}
i=1

That is, we consider the set of discrete probability measures with at most & components
such that their weights are lower bounded by ¢, for some given sufficiently small posi-
tive number ¢y. Under this assumption, the true but unknown mixing measure Gy =

ko
Zjlﬁgé(@?w@gi) € &k () is assumed to have W? >y for 1 <i < k.
1=

We first study a few specific settings when the expert functions h1 and ho do not satisfy
Condition (0O.1) in Sections 4.1 and 4.2. Then, we study a few other representative settings
when the expert functions h; and he do not satisfy either Conditions (0.2) or (0.3) in
Section 4.3.

4.1 Beyond Condition (0O.1): Linear expert functions and uniform
convergence rates of the MLE

In this section, we consider a few representative examples involving expert functions h; and
ho that are algebraically dependent. We establish the corresponding convergence rates of

10
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the MLE for these examples. Our analysis will be divided into two distinct choices for ho:
when hs is covariate independent and when hs depends on the covariate.

4.1.1 COVARIATE-INDEPENDENT EXPERT FUNCTION ho

We first consider an algebraic dependence setting where the expert function hs is indepen-
dent of the covariate X.

Example 2. Let the expert functions be hi(X|01) = 9%1) + 9;2))( for all 61 = (051),052)) €
QO C R? and h3(X|02) = 09 for all 05 € Qo C Ry. These expert functions hy and hs are
algebraically dependent, as characterized via the following PDE relating hy and hs

2
ohy  0n}
(80%1) (X7 91)) - 892 (X7 92)7 (5)

for all 01 and 05.
It is clear that the expert functions h; and hg in Example 2 satisfy Conditions (0O.2)
and (0.3) in Definition 1. Therefore, these expert functions only do not satisfy condition

(0.1) in that definition. Now, let 7 := 7(k — ko + 1) be the minimum value of r such that
the following system of polynomial equations:

k—ko+1 C?Q?lb;m
Z 27:0foreacha:1,...,r, (6)
n1!n2!

Jj=1 mnin2

does not have any nontrivial solution for the unknown variables (aj,bj,cj);?;fﬁl. The
ranges of n; and ng in the second sum consist of all natural pairs satisfying the equation
n1 + 2ny = . A solution to the above system is considered nontrivial if all of variables c;
are non-zeroes, while at least one of the a; is non-zero.

Our use of the parameter 7 builds on earlier work by Ho and Nguyen (2016) who used
it to establish convergence rates in the setting of over-specified location-scale Gaussian
mixtures, which is a special case of over-specified GMCF when the expert are identity
functions. As demonstrated in Proposition 2.1 in Ho and Nguyen (2016), when k — kg = 1,
then 7 = 4. When k& — kg = 2, we have ¥ = 6. When k — kg > 3, then 7 > 7. As the
authors indicated, the actual value of ¥ when k£ — kg > 3 is non-trivial to determine as we
need to use computational algebra tools, such as Groebner bases, and these tools become
computationally expensive to use when k — kg > 3. The following theorem shows that 7
plays a role in the sharp convergence rate of the MLE under the setting of expert functions
in Example 2.

Theorem 8. Assume that expert functions hy(X|61) = 09) + 0%2))( for 6, = (951),952)) €
Q1 C R? and h3(X|02) = 63 for 05 € Qy CRy. Then, we have the following results:

(a) (Convergence rate of MLE) There exists a positive constant Cy depending only on Gg
and Q) such that

P (Wa(Gn, Go) > Co(logn/m)/*") 3 exp(~clogn),

where k = (7,2, [T/2]) and T is defined in equation (6). Here, ¢ is a positive constant
depending only on Q.

11
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(b) (Minimaz lower bound) For any k' € R® such that (1,1,1) < &' < k= (7,2, [F/2]),

inf sup E,,, (WH, (G, G)) = /).
G GEOL(2)\Opy—1(Q)

Here, the infimum is taken over all sequences of estimates Gy, € O(Q). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pg.

The proof of Theorem 8 is in Section 5.2.

The sharp convergence rates of MLE in Theorem 8 demonstrate that the best possible
convergence rates of estimating (69,)), (9,)?) and 69, are not uniform. In particular, the
rates for estimating (69,)") and (69,)®) are n=%/?" and n~'/4, respectively, while the rate
for estimating 69, is n~Y2I7/21 (up to a logarithmic factor) for all 1 < i < kg. Therefore,
estimation of the second component of 69, is generally much faster than estimation of the
first component of 9%- and ‘931‘- As is seen in the proof, the slow convergence of (9%)(1) and
69, arises from the way in which the structure of the PDE (5) captures the statistically
relevant dependence of the expert functions hy and he. In particular, the PDE shows that
(09)1) and 69, are linearly dependent, but, since the second component of 9, is associated
with the covariate X, it does not have any interaction with Ggi, which explains why it enjoys
a much faster convergence rate than the other parameters.

Second, if we choose expert functions hq(X,0;) = 9%1) + 0%2))( +...+ 0§Q1)X‘11 for any
q1 > 2 and h3(X,03) = 0y where 0; = (9%1), .. .,9%‘11)), then with a similar argument we
obtain that the best possible convergence rates for estimating (Q?i)(j) for j # 1 are n~1/4
for all 1 < i < ko while those for (67,)1) and 69, are n=/?" and n=1/217/2] | respectively (up
to a logarithmic factor).

4.1.2 COVARIATE-DEPENDENT EXPERT FUNCTION hg

We now turn to the setting of algebraic dependence between the parameters associated with
covariate X in h; and the parameters of ho.

Example 3. Define expert functions hi(X,61) = Hg ) 9( )X for all 61 = (9(1) 9(2)) e C

2 and h2(X,0) = 0 + 08P X2, for all 05 = (087, 687 )) € Qy C R? such that 089,052 > 0
and 951) + 9&2) > 7 for some positive constant 7. We have the following PDE for these
expert functions:

2
(8}“)0@ en) O (x.00). @

o6t a9
oh T oong
1 —_—

which shows that h1 and he are algebraically dependent.

We can check that the expert functions h; and hg in Example 3 satisfy Conditions
(0.2) and (0.3) in Definition 1; therefore, they only do not satisfy Condition (O.1) in that

12
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definition. The main distinction between Example 3 and Example 2 is that we have the
covariate X? in the formulation of the expert function hy in Example 3. This inclusion leads
to a rather rich spectrum of convergence rates for the MLE. To illustrate these convergence
rates, we consider two distinct cases for the expert function hs:

e without offset: Hél) =0, i.e., h3(X,0;) = 952))(2.
o with offset: 951) is taken into account; i.e., h%(X, 09) = 951) + 952)X2.

Theorem 9. (Without offset) Let T be defined as in equation (6). Assume that expert
functions hy (X, 6,) = 0%1) + 952)X for 61 = (0&1), 0&2)) € Oy CR? and h3(X,02) = 02, X2 for
0y € Qo C Ry. Then, the following holds:

(a) (Convergence rate of MLE) There exists a positive constant Cqy depending only on Go
and ) such that

P (Wa(Gn. Go) > Co(logn/m)/¥") 3 exp(~clogn),

where k = (2,7, [T/2]). Here, ¢ is a positive constant depending only on Q.

(b) (Minimaz lower bound) For any k' € R® such that (1,1,1) < &' < k= (2,7, [F/2]),

inf sup E,. (WH/(én,G)) = n— 1/l lloo)
G GEOL(Q)\Ogy 1 ()

Here, the infimum is taken over all sequences of estimates G, € Or(Q2). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pg.

The proof of Theorem 9 is in Appendix A.3.

In contrast to the setting of Theorem 8, the expert function hs is now a function of X?2.
The sharp convergence rate of G, in Theorem 9 demonstrates that the convergence rates for
estimating (69,), (09,)®), and 69, are n=1/%, n=Y/2" and n=/2[7/21 respectively, for all 1 <
1 < kg. Therefore, with the formulation of expert functions given in Theorem 9, estimation
of the first component of 69, is much faster than estimation of the second component of
9(1)2-. This is in contrast to the results in Theorem 8. A high-level explanation for this
phenomenon is again obtained by considering the PDE structure, which in this case is given
by equation (8):

2
Ohy Oh3
——(X.,0 = —=(X,0).
(80;2)( ) 1)) 892( ) 2)

Such a structure implies the dependence of the second component of G?i and 932-; therefore,
there exists a strong interaction between (H?i)(Q) and 609, in terms of their convergence rates.
On the other hand, the first component of 9% and 69 are linearly independent, which implies
that there is virtually no interaction between these two terms. As a consequence, (0%)(1)
will enjoy much faster convergence rates than (9%)(2) and 082-.

13
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In contrast to the setting without an offset term in the expert function ho, the conver-
gence rate of the MLE under the setting with the offset term in hs suffers from two ways:
one which is captured by the PDE structure with respect to 951) and 051) in equation (7)
and another from the PDE structure with respect to 052) and 952) in equation (8).
Theorem 10. (With offset) Let T be defined as in equation (6). Assume that expert func-
tions hy(X101) = 03 + 09X for 0, = (01V,0?) € Q1 € R? and h2(X|0,) = 05V + 6 X2
for 65 = (9%”,9%2)) € Qy C R? such that «9&”,«9&2) >0 and 951) + 9%2) > 7 for some given
positive 5. Then, the following holds:

(a) (Convergence rate of MLE) There exists a positive constant Cy depending only on Gg
and Q such that

P (Wi(Gn, Go) > Cologn/m)/¥") 3 exp(~clogn), (9)
where k = (7,7, [7/2],[7/2]). Here, c is a positive constant depending only on SQ.

(b) (Minimaz lower bound) For any ' € R* such that (1,1,1,1) < &' < k = (7,7, [7/2], [7/2]),

inf sup Epe (Wn’(an,G)) - n— Y/l lloo)

Gn GEOK()\Oky-1()

Here, the infimum is taken over all sequences of estimates Gy, € O (). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pes.

The proof of Theorem 10 is in Appendix A.4.

Note that when there is an offset term in the expert function ho, the convergence rate of
G, suggests that the convergence rates for estimating (09)1) (09)@), (69,)1), and (63,)?
are n~ Y& o~ YE nm12[7/21 and n~Y2I7/21 | respectively, for all 1 < i < kg. In comparison
to the convergence rate n~/4 for estimating (9%)(2) under the setting without covariate X2
in hy in Theorem 8, the convergence rate n~'/?" for estimating (0?2-)(2) under the setting
of Theorem 10 is much slower. Furthermore, the convergence rate n~/?" for estimating
(69)) in the setting of Theorem 10 is much slower than the corresponding rate n~'/4 for
estimating (69,)?® in the setting of Theorem 9.

Note also that if we choose more general expert functions, hy(X,6;) = 0%1) + 0&2)X +
cot Ggql)X‘“, for any ¢1 > 1 and h3(X,02) = 051) + 9%2))(2 + ...+ 95‘11)){2(117 where
01 = (951),...,9?1)) and 6y = (9;1),...,95‘11)), i.e., letting go = ¢, then we also obtain
that the best possible convergence rates for estimating (69,)0) are n='/?" while those for
estimating (031-)(7) are n~ V2721 for all 1 <4 < ko and 1 < j < ¢1. Such results can be
)

explained by the following system of PDEs characterizing the dependence between OY and

Oéi) for 1 <i < qq:

2 2
ai(;(X,Hl) :%(X,&Z), for all 1 <i < ¢,
00;" 005

for any (601,02).

14



CONVERGENCE RATES FOR GAUSSIAN MIXTURES OF EXPERTS

4.2 Beyond Condition (O.1): Nonlinear expert functions and non-uniform
convergence rates of MLE

Thus far we have considered various algebraic dependence settings for linear expert functions
hi and hy with respect to their parameters. Under these settings, the convergence rates of
the MLE are uniform; i.e., they are independent of the values of the true mixing measure
Gy. In this section, we demonstrate that in the case of nonlinear expert functions h; and ho
that are algebraically dependent and do not satisfy Condition (O.1), the convergence rates
of @n strongly depend on the values of Gj.

The specific setting that we consider is when h; is nonlinear in terms of its parameter
0, while hso is independent of the covariate X. In that setting, we have the following simple
example of algebraically dependent expert functions:

2
m(x,0) = (017 +0PX)", 13(X162) = 02, (10)

for all 0; = (0\V,0%) € Q1 = [0,71] x [0,75] and 6, € Qy C R where 71, 75 are given
positive numbers. Here, the choice regarding the ranges of 81 is to ensure that the expert
function hy is identifiable with respect to its parameter 1. The following result shows that
the expert functions hq and hg are algebraically dependent as they do not satisfy Condition

(0.1).

Proposition 11. Assume that the expert functions hi and ho take the forms in equa-
tion (10). Then the expert functions hy and hy are algebraically dependent, as captured in
the following PDE that relates hi and hs:

2
Ohy _ (1) 28h%
(W<X791)> =4(6,") 8792()(’92)’ (11)

for all 6, = (0§1), 0) and 6s.

Unlike the previous PDEs in equations (5), (7), and (8), which hold for all (6,62), the
PDE in equation (11) holds only under a special structure for 6;; namely, 6; = (1), 0),
where the second component of #; needs to be zero. Such a special structure of the PDE
leads to an interesting phase transition regarding the convergence rates of the MLE under
specific values of true mixing measure Gy. In order to capture this phase transition precisely,
we distinguish two separate settings of Gj:

e Nonlinearity setting I: As long as there exists (9%)(2) = 0 for some 1 <17 < kg, we
have (69,)(") = 0.

e Nonlinearity setting IT: There exists 69; such that (69,)(") # 0 and (69,)®®) = 0 for
some index 1 <17 < kg.

4.2.1 NONLINEARITY SETTING I

Under the nonlinearity setting I for the true mixing measure Gg, we have the following
result regarding the sharp convergence rate of the MLE.
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Theorem 12. Let the expert functions hy and hy be defined as in equation (10). Under
the nonlinearity setting I for Gg, the following holds:

(a) (Convergence rate of MLE) There ezists a positive constant Cy depending only on Gy
and € such that

P(W(Gn, Go) > Co(logn/n)'/*) 3 exp(—clogn),
where k = (2,2,2). Here, c is a positive constant depending only on €.

(b) (Minimaz lower bound) For any k' € R® such that (1,1,1) X &' <k = (2,2,2),

infsup By, (Wit (G, G)) 2 /211,
Gn€g1 GeGy

where the structure of the parameter space Gi C Ok(2)\Ok,y—1(22) is given by

k/
g1 :{G = chs(@u’g%) tko < K <k and as long as GS) =0 for some 1 <i <k,
=1

then 9%) = 0}.

Here, E,., denotes the expectation taken with respect to the product measure with
mixture density pe.

The proof of Theorem 12 is in Appendix A.5.

Under the nonlinearity setting I for G, the results of Theorem 12 suggest that the
convergence rates for estimating (69,)(1); (69,)) and 69, are n='/* and these convergence
rates are sharp. Furthermore, these convergence rates match those under the settings in
which the expert functions b1 and ho are algebraically independent. This phenomenon arises
because there is no linkage between 69, and 63, in the PDE for the nonlinearity setting I.

4.2.2 NONLINEARITY SETTING II

Unlike the nonlinearity setting I of Gg, the convergence rate of MLE under nonlinearity
setting II is more complicated to analyze due to the existence of the zero-valued coefficient
(9%)(2) for some 1 < i < kg. To simplify the presentation, we first start with a result
regarding the structure of the partial derivatives of f when the second component of 6 is
zero. We then define an inhomogeneous system of polynomial limits based on this structural
assumption to analyze the behavior of the MLE. Finally, we state a formal convergence rate
result of the MLE under the general nonlinearity setting II for Gj.

Partial derivative structures: Since there exists a zero-valued coefficient (69,)) for
some 1 <7 < ky under the nonlinearity setting I of Gy, we will focus on understanding the
partial derivatives of f when the second component of 6 is 0, i.e., 952) = 0. To facilitate
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the discussion, we firstly consider a few specific simple examples of these derivatives:

Of _ 5o Of of _op(Vx of of _of _19%*f

960" Lo’ gp® 8h1 902 Oh:  20h2

i of 120 f of 2 Of 2 °f
=20 4 40V , =2X +4(0M)2x ,
8(99))2 Ohq E)h% (9(9%2))2 Ohy 8h2
0’f _*f _10'f *f W*f | o o)y30°f

— = =12 +8(6") .

003  Ohi  40hi GRE L on? oh3

Here, we suppress the condition on hl(X 01) and ho(X,62) in the notation to simplify the
OB and 2
' 002 8(951))2

independent with respect to X and Y. This dependence among these partial derivatives
underlies the complex behavior of the MLE in this setting.

By iterating this computation of partial derivatives of f up to a high order, we obtain
the following key lemma generalizing the structure of partial derivatives of f with respect
to 0 and 6.

are not linearly

Lemma 13. Assume that 6&2) = 0. For any value of 0&1) #0, 02, and v = (71,72) € N2,
the following holds:

(a) When 1 is an odd number, we have:

ol f
o, (X 61), ha (X 62))
(0D o6
(n—1)/2 87+u+2'yzf
272( Z P M(Y\hl(Xael),hz(X,%)))-

(b) When 1 is an even number, then:
ol f

—(Y|h1(X7 01)7 h‘Q(Xa 02))
o(01)yn 063

71/2
a 3 +u+2’yzf
= om (ZP(% 1) ), Y, 91),h2(X,92)))-

Oh?

(1)

Here, P&”“(@P) are polynomials in terms of 0, that satisfy the following iterative equa-

tions:
(1) 5(1) W pena 0y 0PV
Py(67) =26y, Ky (077) := @ (077),
0!
ap(%)
1 — 1
PEAD((Y) 1= 20 P 011) + 2 01,
1

for any 1 < u < (v —1)/2 when v is an odd number or for any 1 < u < ('yl —2)/2 such

that v1 is an even number. Additionally, P(Vl_tll))ﬂ(&(l)) = 29( )P((Vll)1)/2(9( ) if 71 is an

odd number while P(V};l)(egl)) = 26( )P(('Yl) )/2(9(1)) when 1 > 2 is an even number.
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Inhomogeneous system of polynomial limits: Given the specifications of the poly-
nomials PT('“)(HP) in Lemma 13, we define a system of polynomial limits that is useful for
studying convergence rates under the nonlinearity setting II as follows. Assume that we are
given s € N and 3s sequences {@in },,~qs {0i;n},>1, and {¢in},~, such that a;,, — 0, bi,, — 0
> > wninz
asn —ooforl <i<s, while¢;, >0as1<i<sand ) ¢, <¢forsome given ¢ > 0. For
i=1
each 9%1) and r € N, we denote the following inhomogeneous system of polynomial limits:

(71) (1) M1 372
P p a;nbin
s B 00) )<z i )

Y1,72,U 272 71 !2!

Z Ci,n <|ai,n|T + ‘bz’n”"/ﬂ)

i=1

— 0, (12)

asn — oo for all 1 <1 < 27 where the summation with respect to 71, y2, v in the numerator
satisfies 71 /2+u+2v2 = [, u < 71/2 when 7 is an even number while (y14+1)/24+u+2vy, =1,
u < (y1 —1)/2 when 7 is an odd number. Additionally, v; + v2 < 7.

From these conditions, it is clear that the system of polynomial limits (12) contains
exactly 2r polynomial limits. For example, when r = 2, the system of polynomial limits
contains four polynomial limits, which take the following form:

) —0

(Zcmam+ze<1>zcmam /(Zcm(\am\2+\b )
)> — 0
)

)

<4(0§1))2<;cma1 n) +Zcm m>/< cl7n<|ai,n|2 + |bim
> > — 0
)

(Z%“mm /(Zcm<|am| + b

(Zcivnbin /(ZC@n(’ai’n’Q + ’bz’no) — 0
i=1 i=1

Studying system of polynomial limits: In general, when r is large, the system of
polynomial limits (12) does not have a solution; i.e., not all the polynomial limits go to
zero. We can therefore find a smallest value of r such that this system of polynomial limits
has no solution. This motivates the following definition that plays a key role in obtaining a
convergence rate for the MLE.

Definition 14. For any s > 1 and 9%1), define ?(951)75) as the smallest positive integer
r such that system of polynomial limits (12) does not hold for any choices of sequences

{ai,n}nzp {bi,n}nzp and {cim}nzy

In general, determining the exact value of ?(9%1), s) is difficult as the system of polynomial
limits (12) is intricate. In the following lemma, we demonstrate that we can obtain an

upper bound of ?(9%1), s) based on the system of polynomial equations (6), for any s > 1
and 051) #0.
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Lemma 15. For a general value of s > 2 and for all 0%1) # 0, we have
3T}, 5) <7(s),
where T(s) is defined as in (6).

Convergence rates of MLE: Equipped with the definition of ?((9%1), s), we have the
following result for the convergence rate of the MLE under the nonlinearity setting II.

Theorem 16. Given the nonlinearity setting Il for Goy and the expert functions hy and hs
in equation (10), we define A := {i € [ko] : (69,)V) # 0 and (69,)® = 0} and

imag := arg max((09,) M, k — ko + 1).
icA
Additionally, we denote Ty, := ?((9%7”%)(1), k—ko+1). Then, there exists a positive constant
Cy depending only on Go and Q) such that

P(WK(GH,GO) > Co(logn/n)l/ﬁsm) = exp(—clogn),
where k = (Tsin, 2, [Tsin /2])-

The proof of Theorem 16 is in Appendix A.6.

A few comments are in order. First, the result of Theorem 16 indicates that the con-
vergence rates for estimating (6%,)(1), (69.)) 69, are n=1/2Tsin =14 and n=1/2[in /21 re-
spectively, for 1 < i < kg. The slow convergence rates of estimating (9(1])(1) and 69 under
nonlinearity setting II is captured by the PDE (11), which indicates that (6%,)(") and 69,
are linearly dependent when the second component of 0(1)1- is zero.

Second, since Tgy < 7 = 7(k — ko + 1), the convergence rates for estimating (69;)(") and
69; under the settings of expert functions hy and hy in equation (10) may be faster than
those of (G?i)(l) and 982- under the choice of expert functions hy and ho in Example 2, i.e.,

hi1(X161) = 951) + 052)X and h3(X|0) = 6. Therefore, parameter estimation when h; is
quadratic in terms of 9%1) + HEQ)X is generally easier than when h; is linear in terms of

9%1) + 9§Z)X . Finally, we wish to remark that it is unclear whether the convergence rate of
MLE in Theorem 16 is sharp due to the complex behaviors of the system of limits (12). We
leave the sharpness of that rate for the future work.

General picture: In general, if we have an expert function hq(X16;) = (99) + 0%2)X)m
for some positive integer m > 1, and expert function hs is independent of covariate X
as in equation (10), then we also have that h; and hg are algebraically dependent. The

corresponding PDE strucure is the following;:

2
Ohy _ 2 p(Dy2(m-1)Oh3
(609) (X7 91)) =m (01 ) 802 (Xa 02)7 (13)

for all 6; = (9%1),0) and 62. This PDE structure captures a phase transition between
nonlinearity setting I and nonlinearity setting II. More precisely, we can check that the
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convergence rate of @n will be n=1/4, which is similar to that in Theorem 12 under the non-
linearity setting I. Under the nonlinearity setting II, the convergence rates of @n are again
determined by a system of polynomial limits, which is dependent on m and much more
complicated than that in equation (12). A useful insight that arises from these systems is
that the convergence rates of (9,)(1) and 9, are better than n~/?" and n~'/2["/2] respec-
tively while that of (0(1]1-)(2) is n=1/4 for any 1 < i < ko. As a consequence, the convergence
rates for parameter estimation when m > 2 are always better than m = 1.

4.3 Beyond Condition (0.2) or (0.3): Other algebraically dependent expert
functions

Thus far, we have studied the convergence rates of MLE under a few representative settings
when the expert functions are algebraically dependent and do not satisfy Condition (O.1) in
Definition 1. In this section, we study these convergence rates under some specific settings
when the expert functions do not satisfy either Condition (0.2) or (0.3).

4.3.1 BEYOND ONLY ONE CONDITION
We first study a setting when the expert functions h; and hg do not satisfy Condition (O.2)
while they satisfy Conditions (O.1) and (O.3).

Example 4. For X € X C R, we define expert functions hi(X,01) = 01X? for all
0, € Y CR and h3(X,05) = 089 + 09X + 089 X2 for all 6, = (09,087, 68Y) € 0y RS,
such that 0&1) + 0&2) + 953) > 7 for some positive constant 5. Then, we have the following
PDE for these expert functions:

2

Oh? Oh? Oh3
é) (X, 01) = (f) (X, 09) (g) (X, 02), (14)

00, 00, 00,

which shows that h1 and hs are algebraically dependent.

Equation (14) indicates that the expert functions in Example 4 do not satisfy Condi-
tion (0.2). We can verify that these expert functions satisfy Conditions (O.1) and (O.3).
Hence, these expert functions only do not satisfy Condition (O.2) in Definition 1. The fol-
lowing theorem establishes the sharp convergence rate of MLE under this setting of expert
functions.

Theorem 17. Assume that for X € X C Ry the expert functions hy(X,01) = 61 X2 for all
6) € Q1 CR and h3(X,02) = 05 + 0 X + 05V X2 for all 6, = (059,657 ,65)) € 0y c RS
such that 951) + 952) + 053) > 7 for some positive constant 5. Then, the following holds:

(a) (Convergence rate of MLE) There exists a positive constant Cqy depending only on Go
and Q such that

P (Wﬁ(én,Go) > Co(logn/n)1/4> 2 exp(—clogn),
where k = (2,2,2,2). Here, ¢ is a positive constant depending only on Q.
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(b) (Minimaz lower bound) For any x' € R* such that (1,1,1,1) = ' <k = (2,2,2,2),

inf sup Epe (Wm/(én,G)) - n— Y/l lloo)

Gn GEOK()\Oky-1()

Here, the infimum is taken over all sequences of estimates G, € Or(Q2). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pg.

Proof of Theorem 17 is in Appendix A.7.

The result of Theorem 17 entails that even though the expert functions are algebraically
dependent due to their violation of Condition (0O.2), the convergence rate of MLE under
this setting is still n—1/4 (up to some logarithmic factor), which is similar that of MLE
when the expert functions are algebraically independent in Theorem 7. The convergence
rate n~Y/4 of the MLE under the generalized transportation distance also leads the the
uniform convergence rates n~1/4 for estimating the individual components 69, and (63;)®
forl <u<3and 1 <i<kg.

We now move to another example of algebraically dependent expert functions hi, hs
when they do not satisfy Condition (O.3) while they satisfy Conditions (O.1) and (O.2).

Example 5. For X € X C Ry, we define expert functions hy(X,01) = 9%1) +9§2)X2 for all
6, = (0,6%)) € Q) C R? and h3(X, 65) = 0D X+6 X3 for all 6, = (65 ,65)) € Q, c R2
such that 9&1) + 952) > 7 for some positive constant 7. Then, we have the following PDE
for these expert functions:

Ohy Oh3 Ohy Oh3
— (X, 1) —55 (X, 02) = — - (X, 61) —5 (X, 62), (15)
ootV 965 % 65!

which shows that h1 and ha are algebraically dependent.

The PDE (15) indicates that the expert functions h; and hy in Example 5 do not satisfy
Condition (0.3). We can check that these expert functions still satisfy Conditions (O.1)
and (0O.2). The sharp convergence rate of MLE under this setting of expert functions is
established in the following theorem.

Theorem 18. Assume that for X € X C Ry the expert functions hi(X,601) = 0%1) —|—9§2)X2
for all 0, = (09, 0?) € Q) € R? and h3(X,02) = 08V X + 02 X3 for all 0, = (089, 08?) €
Q9 C Ri such that 051) + 052) > 7 for some positive constant 5. Then, the following holds:

(a) (Convergence rate of MLE) There exists a positive constant Cy depending only on Gg
and Q) such that

P (Wﬁ(én,Go) > Co(logn/n)1/4) = exp(—clogn),
where k = (2,2,2,2). Here, ¢ is a positive constant depending only on Q.
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(b) (Minimaz lower bound) For any x' € R* such that (1,1,1,1) = &’ <k = (2,2,2,2),

inf sup By (W (G @) 15 /).
Gn GEOk(Q)\Okofl(Q)

Here, the infimum is taken over all sequences of estimates G, € Or(Q2). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pg.

The proof of Theorem 18 is in Appendix A.8.

Interestingly, similar to the result of Theorem 17, the convergence rate of parameter
estimation for the particular setting in Example 5 that the expert functions do not satisfy
Condition (0.3) but still satisfy Conditions (O.1) and (0.2) is still n='/* (up to some
logarithmic factor). That convergence rate is identical to the convergence rate of MLE when
the expert functions are algebraically independent. Furthermore, that convergence rate of
MLE directly leads to the uniformly convergence rates n~/% of individual components
(09,) and (69,)® for 1 <w,v <2and 1<i< ko.

4.3.2 BEYOND MORE THAN ONE CONDITIONS

We now discuss a few specific settings of the expert functions hy and he when they do
not satisfy more than one conditions in Definition 1. The first example is when the expert
functions hy and hg satisfy Condition (0O.2) but do not satisfy Conditions (O.1) and (O.3).

Example 6. For X € X C R, we define expert functions hq1(X,01) = 6%1) +0§2)X2 for all
6, = (0V,0Y) € Q, € R? and h3(X,60,) = 60" + 08 X2 for all 6, = (059, 68”) € Q, c RZ

such that 951) + 952) > 7 for some positive constant 5. Then, we have the following PDFEs
for these expert functions:

2
2 h
P (x,0) = (0 (x00)) (16)
065 06!
Oh3 ohy Ohy
— (X, 02) = —5 (X, 61) —5 (X, 0h), (17)
965 06" 96\
Ohy Oh3 Ohy Oh3
— (X, 01)— (X, 02) = — (X, 61) —+5 (X, 02), (18)
ootV 965? % %

which shows that h1 and hs are algebraically dependent.

Equations (16) and (17) demonstrate that the expert functions in Example 6 do not
satisfy Condition (O.1) while equation (18) proves that these expert functions do not satisfy
Condition (0O.3). We can check that these expert functions still satisfy Condition (0O.2).
The following result establishes the sharp convergence rate of MLE under this setting of
these expert functions.

Theorem 19. Assume that for X € X C Ry the expert functions hi(X,01) = 9%1) +9§2)X2
for all 6, = (0V,60%) € Q, ¢ R? and B3(X,605) = 65 + 0 X2 for all 0, = (0,0 €
Qs C Ri such that 951) + 052) >~ for some positive constant 5. Then, the following holds:
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(a) (Convergence rate of MLE) There exists a positive constant Cqy depending only on Go
and ) such that

P (V[N/H(@H,Go) > Co(logn/n)l/%) = exp(—clogn),

where k = (7,2, [T/2],2). Here, c is a positive constant depending only on €.

(b) (Minimaz lower bound) For any ' € R* such that (1,1,1,1) X &' < k = (7,2, [7/2],2),

inf s By (Wie(Ga,G)) n V@I,
Gn GEOk(Q)\Okofl(Q)

Here, the infimum is taken over all sequences of estimates G, € Or(Q). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pi.

The proof of Theorem 19 is in Appendix A.9.

The results of Theorem 19 indicate that the convergence rate of MLE is n™ and sharp
when the expert functions hy (X, 61) = 9&1) +9§2)X2 and h3(X, 6y) = 951) +0§2)X2. This con-
vergence rate indicates that the convergence rates for estimating (69,)), (69,)(69,)M), (69,)?)
are respectively /2 VA 120021 and nm /4 for all 1 < i < kg. The slow convergence
rates for estimating (69,)) and (69,))) are due to the linear dependence of these compo-
nents in equation (16). Interestingly, even though we have linear dependence of (0(131-)(2) and
(Qgi)(2) in equations (17) and (18), the convergence rates for estimating these components
are still n='/* and align with those when the algebraic independence is satisfied.

1/2F

Our final example is when the expert functions i1 and he do not satisfy all Conditions

(0.1), (0.2), and (0.3).

Example 7. For X € X C Ry, we define expert functions hi(X,01) = 9%1) + 052)X2
for all 07 = (017,0%) € Q, ¢ R? and h3(X,05) = 08V + 09X + 08V X2 for all 0y =
(951),952),«953)) € Oy C R3 such that «951) + 952) + 953) > 7 for some positive constant 7.
Then, we have the following PDEs for these expert functions:

;Zi) (X, 0) = (;0}8) (X, 91)>2, (19)

;%(X,G ) = ;;1) (X, 01)59%) (X, 01), (20)

(;9’?2) (X, 92)>2 = ;’EQ) (X, 92);;; (X, 0,), (21)
;@(X,Hl);?( ,02) = ;}E;)(X 0 );;i (X, 02), (22)

which shows that h1 and he are algebraically dependent.
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Equations (19) and (20) demonstrate that the expert functions in Example 7 do not
satisfy Condition (O.1). Equation (21) proves that these expert functions do not satisfy
Condition (0.2) and equation (22) indicates that these expert functions do not satisfy Con-
dition (0.3)/.\ The following theorem establishes the optimal convergence rate of parameter

estimation G, of the over-specified GMCF model under the setting of these expert functions.

Theorem 20. Assume that for X € X C Ry the expert functions hy(X,0;) = 0§1) +9§2)X2
for all 0, = (617,6%) € Q, ¢ R? and h3(X,05) = 08 + 09X + 689 X2 for all 6y =
(951),952),953)) € Oy C R3 such that 951) + 952) + 053) > 7 for some positive constant 7.
Then, the following holds:

(a) (Convergence rate of MLE) There ezists a positive constant Cy depending only on Gy
and Q such that

P (W,{(CA}”, Go) > Cp(log n/n)l/%) 2 exp(—clogn),
where k = (7,2, [7/2],2,2). Here, c is a positive constant depending only on §Q.

(b) (Minimaz lower bound) For any ' € R* such that (1,1,1,1) 2 &' < k = (7,2, [7/2],2,2),

inf sup E,. (WR, (G, G)) > /@I 1)
Gn GEOk(Q)\Okofl(Q)

Here, the infimum is taken over all sequences of estimates G, € Or(Q). Furthermore,
E,. denotes the expectation taken with respect to the product measure with mixture
density pi.

The proof of Theorem 20 is in Appendix A.10.

A few comments with the results of Theorem 20 are in order. First, the convergence rate
of the MLE under generalized transportation distance indicates that the convergence rates
for estimating (69,)™), (69.)®) (69,)1), (9,)@), (69,)®) are respectively n=1/27 n=1/4 n=1/2[7/21
n~14 and n=Y* (up to some logarithmic factors) for all 1 < i < k. The slow convergence
rates for estimating (69,)(") and (69,)(!) are due to the PDE (19), which entails a dependency
among these parameters. On the other hand, despite of the dependency of (9%)(2), (082-)(2),
and (98i)(3) via PDEs (20)-(22), the convergence rates for estimating these elements are
still comparable to those when the algebraically independent assumption holds. This result
again suggests that the Condition (O.1) seems to be the key condition to slow down the
convergence rates of the MLE @n and its individual components.

5. Proofs of key results

In this section, we provide the proofs of the key theoretical results in the paper while
deferring the rest to the Appendices. Our proof techniques build on previous work for
establishing the sharp convergence rates for parameter estimation under traditional finite
mixture models (Chen, 1995; Heinrich and Kahn, 2018; Ho and Nguyen, 2019) and are
based on using a generalized transportation distance to provide controls on various Taylor
expansions. We begin with a lemma that presents a general strategy for obtaining sharp
convergence rates.
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Lemma 21. (a) (MLE estimation) Assume that there exists some k € NT'T92 gych that
inf h(pc. pc,) /WG, Go) > 0. (23)
€

where G is a subset of Or(Q) for the over-fitted setting of the GMCF model. Then there
exists some positive constant Cy depending only on Gg and Q such that

B(W, (G, Go) > Collog n/n) /1% < exp(—clogn),

where ¢ is a positive constant depending only on 2.
(b) (Minimax lower bound) Assume that inequality (23) holds for any Go € G. Furthermore,
as long as Gog € G, the following holds

inf h Wl = 24
Jnf, (PcspGo) /W " (G, Go) =0 (24)
for all k" < k. Then, for any k' € R1T2 such that (1,...,1) <k < &,

inf sup K, (Wﬂ/(én,c)) > p= @R ),
Gn€G GEG\Opy—1(9)

Here, E,, denotes the expectation taken with respect to product measure with mizture density
pe, and ¢ stands for a universal constant depending on ).

Proof of Lemma 21 is in Appendix A.2.

5.1 Proof of Theorem 7

Given Lemma 21, we obtain the conclusion of Theorem 7, by demonstrating the following
results:

inf h NWH“H‘X’ G,G 0 25
GEl(Qk(Q) (pGapGo)/ K ( ) 0) >0, ( )
inf h NWH,HIHC" G,G =0 26
G€1(9k(Q) (pG7pG0)/ " ( ’ 0) ( )

for any ' € R1T%2 < k where k = (2,...,2). The proof of inequality (25) is in Section 5.1.1
while the proof of equality (26) is in Section 5.1.2.
5.1.1 PROOF FOR INEQUALITY (25)

The proof of inequality (25) is divided into two parts: local structure and global structure.

Local structure: We first demonstrate that inequality (25) holds when WK(G, Go) is
sufficiently small. In particular, we will prove that

lim inf h(pg,pgo)//ﬂ\?,ﬂ““""(G, Go) > 0.
0 Ge0,(Q): W (G,Go)<e

Due to the standard lower bound h > V/, it is sufficient to show that
lim inf V(pa, pay) /W= (G, Go) > 0.

€20 Ge0,(Q):W,.(G,Go)<e
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Assume that the above statement does not hold. This implies that we can find a sequence
G, € Or(9) such that V(pgn,pgo)/w,gﬁ““’(Gn,Gg) — 0 and WK(GH,GO) — 0 as n — oc.
As being demonstrated in Lemma 22 in Appendix B, we can assume the sequence G,, has
exactly k atoms, where kg < k < k, and can be represented as follows:

k0+z Si
n - Z Zp”(s(elu 621]
i=1 j=1
_ _ ko+l _
where [ > 0 is some nonnegative integer and s; > 1 for 1 < i < kg + [ such that > s; = k.
i=1

Additionally, (67;;,05;;) — (69.,69,) and lep?] — ) for all 1 < i < kg + . Here, 70 =0
j:

1ig» 7

as ko +1 < i < k while (6Y;,69,) are possible extra limit points from the convergence of
components of G, as kg + 1 <i < k.
Now, according to Lemma 23 in Appendix B, we have

k:0+Z S k‘()-i-z S;
Wllfilloo G, Go) =2 Z Zp dllﬁlloo 771] Z Zp?j — 70

=1 j=1 i=1 |j=1
ko+l s; ) ) Ko+l | s

- Z pr (Helw 0(1)2”2 + Hggij o 93%’”2) + Z ZP?J o W?
i=1 j=1 i=1 |j=1

= Dn(Gna GO)a

where £ = (2,...,2), 0 = (6%;,69,) and 0y = (63,05, ) for 1 <i < ko and 1< j < i

For the simplicity of presentation, we introduce the following notation: A#7;; := 07;; — 0.,
AHSU = 931] Ggi for 1 <i < kg+1land1<j<s;. Additionally, we denote AQ?Z] =

((AH{LU)( ' (AG{LZ])(CH)) and Afg,; = ((Aegg])(l), (Aeggj)(q )> for all 4, j.

Since V(pe, , ey )/ W1 (G, Go) — 0 asn — 0o, we obtain that V(pe, , pay )/ D (G Go)
— 0. To facilitate the proof argument, we divide it into several steps.

Step 1 - Structure of Taylor expansion: By means of a Taylor expansion up to the
second order, for any 1 <7 < kg +1 and 1 < j < s;, the following holds:

f (Y 1h(X,01;), ha(X, 05:5)) — F (Y [h1(X, 67;), ha(X, 605;))

au Bu glal+18]
- 3 e} T {em @ S vty mee )

anpB
1<]al+18]<2 v—1 06700,

where o = (a1,...,aq), 8= (B1,---,0g), la| =a1+ ...+ g, and |[B] = B1 + ... + Bg,-
R;;(X,Y) is the remainder from the Taylor expansion and it satisfies

Riy (X, Y)F(X) = O (| 8015577 + 40251157
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for some universal constant v > 0 for all 1 < ¢ < kg and 1 < j <'s;. We thus have:

ygem (X7Y) _pGo(Xay)
]”v'0‘|“Z Si .
- Z me Y‘h’l X 011]) hQ(X 922]) (Y|h1(X7 9(1)1)7h2(X7 0(2)1)] f(X)

=1 j=1

ko+l , s;
+ Z(sz] ’) Y’hl(X 611) hQ(X 921))?(‘){)

ko+l s; oy 92 Bu
- Z ZPZ Z 151 H{ Aelw } H{(Aegij)(v)}
i=1 j=1 1<]al+|B]<2 v=1

Lammf (Y|h1(X,6Y;), ha(X,69)) F(X)
X 9 1) 9 7
pggel T TR

ko+l , s;
= 3 (30— 1K . b 4T 0+ ROKY)

= A, + B, + R(X,Y),

ko+l s; B
where R(X’ Y) = i Z RZJ(X Y)) f(X) < Z E p’L] [HAHIUH?—7 + HA02UH2+V]> :

=1 j= i=1 j=
From the formulation of D (Gn, Go), it is clear that

kO+Z Sq
R(X,Y)/Dp(GnyGo) 3D Y (118013513 + [1A602:5]13] — (27)

=1 j=1

as n — 0o. For the univariate location-scale Gaussian distribution, we have the following
characteristic PDE:

o f of
({Tﬂ(%ﬂa >_2ﬁ<1’7%0>7 (28)

where i and o respectively stand for the location and scale parameter in a location-scale
Gaussian distribution. Governed by that PDE, we find that

O*f i

on? (Y1h1(X,01), ha(X,02)) = 8h2 (Y|h1(X,01), ha(X,02)), (29)
for all (01, 02). Therefore, for any (61, 62), a straightforward calculation yields the following;:
of Ohy of
7 (Y[hi(X,01), ha(X, 02)) = (X, 01) o= (Y[hi(X, 01), hao(X, 62)) ,
oo\ 900 O
0 Oh3 0
O I (X,00), (X, 0) = 2 (X, 0) S (¥ (X, 00), (X, 62)
2 005 2
1 0h3 *f
= 58657’) (X, 92)(9—}% (Y|h1(X,61),ho(X,62)),
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for all 1 <wu < gy and 1 < v < go. Similarly, the PDE structure (28) leads to

a@ffgw(whmx 01), ho(X, 02)) = agfj’;;(v)( O (VI (X, 00), a( X )

+a@9f(ﬂ) (X, 91);?1) (X, eggz{ (V{11 (X, 00), hs(X, 62))

aagfgw(yml(x 01), ha(X, 62)) = ae?jgi(”)( )5,{2 (Y[h1(X,01), ha(X, 62))

+a‘i)’§2) (X, 9%‘9&}5) (X, 92)22{ (V]I (X, 01), ha(X, 02))

- ;%?jgi@)(x 0 @Z (Y|h1(X,601), hao(X, 02))

+i;li>(X’ 92)8‘122) (X, 92)22{; (V|71 (X, 01), ha (X, 62)) ,

%gjggw(y‘hl X.01), ha(X.00)) = ;e?i) (X, 91);?%( ,92)(%83}%(Y!h1(X,01),h2(X,92))
_ ;;Eg)(;c 0 >§9’i) (X, 00) 58 (V1 (X,00). (X, 0)

for all u,v. Equipped with the above equations, we can rewrite A,, as follows

k:()-i: 4 ‘ an - k:()-i-i ( )

i=1 =1 1 i=1
where the explicit forms of Aq(f,)T(X ) are

(Z n (W) ohy 0
A me (Z Aelz]) aa(u) (X 912)
u=1
(u) n O\ @)
4 (201,) " (a05,) oo (X 90))
|<umia 1+ Liu=y) 06" 9p(")

n,2 . . i) 9 21 89( ) 21
j=1 u=1 2
() (v)
(A%) (Aem) ohy
1+ 1{u:v} aggu

Ohy

0
a9()(X{9 ii)

(X, 08)

(u) (v)
oy G0 e
2 1+ 1{u v} 895“) aegv) 2i) (>
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Zp iim ) (agg,)® 20 g0y O3 (g0
i 12] 213 u 21
ot 80( ) 80( v)
(w) (v)
(Aegm) (AGSZ]) 8h2 6h2
2 0

n,4 : D; u (X7 92 ) (X 921)

K Z ! 1<uzv<q2 1+ Liu=y) 6" o)

In view of the above computations, we can treat Z(i) ~(X,Y)/Dy(Gyp,Go) as a linear
combinations of elements from F- (i) for 1 <7 <4, which can be defined as follows:

oh 0 _
]:1(2) = {aegi)( elz)af{ (Y|h1(X7 Q?i),hz(X, 0(2)1)) f(X) t1<u< ‘h}

U ﬂ(}( QOA)@ (Y\hl(X 00.) hQ(X 90')) f(X) c1<u,v<q
o6 oel) " Om3 h B T swrsar

Oh2 0?2 _
Fali) = {aegi)(X’ 9, 8h§ (V1R (X, 0%,), ha(X,09,)) F(X): 1 <u< CD}

Ohy 8h1 82f B

U{M%a,e%)azf (Y11 (X, 69;), ha (X, 65,)) F(X) : 1§W’§‘D}’

208" 9ol Oht
. ohy Oh3 Bf _
F(i) :_{099) (X, 69, )%w (X, egl)ah3 (V]ha (X, 69)), ha(X,6%)) F(X) :

1 <u<gq, 1§U§(I2}7

Fali) = 4 22 (x 09 O3 o g0y O (i (X, 00), hal(X,00) FOX) = 1< v <
4 = aeéu) » V24 89(0) 24 8h4 1 2{A, U9 . SU,V>q2 -
Therefore, we can view A, /Dy (Gp,Gp) as a linear combination of elements from F :=
Uff{l U?:1 F;(). Similarly, we can view B, /D, (G, Go) as a linear combination of elements
of the form f(Y|h1(X,0Y;), ha(X,09))f(X) for 1 <i < ko +1.
Step 2 - Non-vanishing coefficients: Assume that all of the coefficients in the repre-
sentation of A, /Dy (Gy,Go) and By, /D, (G, Gp) go to 0 as n — oo, namely, the coefficients
of the elements from F and of elements of the form f(Y|hi(X,6Y,),ha(X,69,))f(X) for

1 <i<ko+1goto0. By taking the summation of the absolute values of the coefficients
of By, /D(Gn, Gyp), the following limit holds

ko4l | s;
DD v /DI’»(GnaGO) -0

i=1 |j=1
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From the expression for D (G, Gg), this yields:

ko+l s;
S5 wiy (llaen ] + [1a6s,;) /Dﬁ(Gn,Go) 1 (30)
i=1 j=1

(@)

On the other hand, according to the formulation of AniA(X ), the coefficients associated

2 ) 2

S4 (u)

with the elements 8’(‘5) (X,69) 7341 in Fy(i) are . p (Aeg‘) /8D, (G, Go)]
805 i h = 1] ]

as 1 <i<ko+land 1l <u<q. According to the hypothesis, these coefficients go to zero;
therefore, by taking the summation of all of these coefficients, we obtain that

ko+l s; )
> o | Aos; / Dy (G, Go) — 0. (31)

i=1 j=1

Furthermore, from the formulation of ASL (X), we can check that the coefficients attached

2
to the elements (a%?;) (X, 0%)) gihjg (Yh(X,69,), ha(X,609,)) f(X) in Fa(i) are

JZ&;P%{ (a07;,)" }2/ 2D,s(Gn, Go)] .

as 1 <i<ky+land 1 <u < q. As all of these coefficients go to zero, by taking the
summation of these coefficients, we obtain the following limit:

ko+l s

> vy llael, /Dn(GmGo) — 0. (32)

i=1 j=1
Combining the results from equations (31) and (32), the following limit holds:

ko+l s

> 3 (1808 + 1483 2) /Du(G.Go) 0

i=1 j=1

which is a contradiction to equation (30). Therefore, not all the coefficients in the repre-
sentation of A, /D (G, Go) and B,,/D;(Gy,Go) go to zero as n — oo.

Step 3 - Fatou’s argument: We denote m,, as the maximum of the absolute values of
the coefficients in the representation of A, /Dy(Gy,Go) and B, /D;(Gy,Gpo). From here,
we define d,, := 1/m,,. Since not all the coefficients of A, /D(G.,Go) and B,,/D.(G,,Gp)
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vanish, we have d,, /A oo as n — co. From the definition of m,,, we denote

(ZPZ ) /mn — a (sz] Ag?zg v ) /mn - /BTu(l)y
j=1
(pr (a0 )" A%)‘”) R ()

(sz] Aglzg (u AQQZ])( )) /mn — nuv(i)v

asn — oo for all 1 < i < ko + [ and all u,v. Here, at least one among (i), Bru(7), Yruw (i),
and 7y, (7) is different from zero for all i, u,v. Invoking Fatou’s lemma, we have:

. V(pG 7pG0) / |pG (va) _pG’o(X7Y)|
= lim d, 5B 2es > [ limnf d, d(X,Y).
0=l i GGy = ) i DG Go) OV )

From the definition of (%), Bru (%), Yruv (%), Nuv (i), the following holds:

ko+l 4
XY (X,Y) —
0, Pl T P T) S S BT (¥ (X80, ha (X 65)) T(X). (34
m i=1 7=0

for all (X,Y’) where the expressions for Y (X) are:

(1) o ahl 0 Yiuv (Z) 62h1 0
EO (X) T Oé( Z Blu u ) + 1<uzv<ql 1+ 1{u:v} 80§u)60§v) (Xa elz)a

q2 .
(%) 1 8h2 ’Yluv(l) 8]11 8h1 0
By (X) =5 ) Bouli) —ps (X, 63;) + (X, 00;) — oy (X, 05;)
2 2 uzzl 89(“) ISUZ,U:SH 1+ 1{u:v} aegu) ae( v) 1

272
+ 1 Z V2uv (1/) g)hz (’U) (X7 egz)a
2 1<u,v<qa L+ 1{“:1)} 802 69

q1 g2 2
8h Oh3
Z Z Mo (i i ) 9 i)y (X 92z)

u=1v=1 89& )
(4) 1 fmv( ) Oh3 Oh3
EY(X) =7 ), 2 (X, 08,) -2 (X, 03).
4 1<u,v<q2 L+ 1{u:v} 89§ ) 89; v)

Combining the results from equations (33) and (34), the following equation holds

ko+l 4

> > EYX W LI (X, 09, (X, 08) F(X) =

i=1 7=0

almost surely (X,Y"). For almost surely X, the set

{gh{ (Y’hl(X, 69.), ha(X, 981')) 0<T< 4}
1
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is linearly independent with respect to Y. Therefore, the above equation eventually leads
to EQ)(X) =0 almost surely X for 0 <7 <4 and 1<i<ky+1L

When 7 = 0, it is clear that the equation E’g) (X) = 0 almost surely X demonstrates
that a(i) = 0 for all i. When 7 > 3, since the expert functions h; and hy are algebraically
independent, the equations Y (X) = 0 almost surely X lead to 7y2y,(7) = 0 and 7y, (i) = 0
for all (u,v) and i. Furthermore, invoking the fact that the expert functions h; and he
are algebraically independent and the result that ~o,,(i) = 0 for all (u,v), the equation
Eéz) (X) = 0 almost surely X implies that £2,(7) = 0 and 714,(7) = 0 for all i and (u,v).
Collecting the previous results, the equation Egz) (X) = 0 almost surely X leads to 1,(i) =0
for all ¢ and u. Therefore, all the coefficients a(i), 5r4(7), Yruv(?), and 7,,(7) are equal to
zero for all ¢ and u, v, which is a contradiction.

As a consequence, we can find some ¢y > 0 such that

inf h(pa, )/ WEl= (G, Go) > 0.
GeOy, (Q):WN(G,Go)SEO

Global structure: Given the local bound that we have just established, to obtain the
conclusion of inequality (25), it is sufficient to demonstrate that

inf h(pa, pay)/WIFI= (G, Go) > 0.
Ge0L(Q):W4(G,Go)>eo

Assume that the above result does not hold. This indicates that we can find a sequence G,, €
O (£2) such that h(pén,pgo)/WN/,!RH“(@n, Go) — 0 as n — oo while W,{(@n, Go) > ¢ for all
n > 1. Since the set € is bounded, there exists a subsequence of G, such that G,, — G’ for
some mixing measure G’ € Ok (). To facilitate the discussion, we replace this subsequence
by the whole sequence of G,,. Then, as Wn(én, Go) > ¢ for all n > 1, this implies that
W, (G',Go) > €. Combining the previous bound with h(pén,pco)/ﬂ””w(én, Go) — 0, we
obtain that h(pg ,pc,) — 0 as n — oo. Invoking Fatou’s lemma, the following inequality
holds:

0= lim 12(0g,06,) = 5 [ imint (/o (1) = Vha(6.7)) d(X.Y)
— 5 [ (Voo (X7) = Voe (6.7)) dix.v).

This inequality leads to pg/(X,Y) = pg,(X,Y) for almost surely X,Y. Due to the iden-
tifiability of GMCF, this leads to G’ = Gy, which is a contradiction to the result that
W (G',Go) > €9 > 0. Hence, we achieve the conclusion of inequality (25).

5.1.2 PROOF FOR EQUALITY (26)

To achieve the conclusion of equality (26), it is equivalent to find a sequence G,, € Ok(Q2)

such that h(pGn,pGO)/Wfﬂf,H“(Gn, Gp) — 0 asn — oo for every £’ < k. In fact, for any ' <

k, we have min ') < 2. Without loss of generality, we assume () = min £ <
1<i<qi+q2 1<i<qi1+q2

2. Now, we construct a sequence of mixing measures, G,, = Zfi?l W?(s(@n o) with kg + 1
140724
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components as follows: (72,07, 0%.) = (7, 9?(1.71), 9[2)(2.71)) for 3 < i < ko+1. Additionally,

T =7 =1/2, (07,0%) = (03) — Lg,/n.03) — Lg,/n), and (07, 05,) = (69 + 14, /n, 03, +
14,/n). Now, by means of Taylor expansion up to the first order, we have

PG, (X,Y) = pa, (X, Y) Z?T FOY|hi(X,05), ha(X, 05) — F(Y (X, 6%), ha (X, 65))) F(X)

_ Z”z” 3 a!lm i[l{(m?i)(u)}au ﬁ{(AGSi)(v)}Bv

i=1 o] +18]=1 v=1
of
aeaaeﬁ

(Y[h1(X,62)), ha(X,603,)) f(X) + R(X,Y),

where AG7, = 07, — 09, and AOY, = 05 — 69, for 1 < i < 2. Here R(X,Y) is a Taylor
remainder from the above expansion. With the choice of 7}, 07;, and 603; for 1 < i < 2, we
can verify that:

2 q1 Qq 492 ﬁv
> [T{@or@ ) TI{@op} =0
=1 u=1 v=1

for all |a| + || = 1. Therefore, we have the following representation
pGn(X7 Y) — PGy (X’ Y) = R(Xa Y)v
where the explicit form of the Taylor remainder R(X,Y) is as follows:

n-yw Y L H{ oy T {amyo )"

=l |a[+|8]=2 v=1

(Y|h1(X 091 + tAOT), ha(X, 09, + tAG3;)) f(X)dt

X
D\H I

From the properties of a univariate location-scale Gaussian distribution, we can verify that

0% f

/ (aegaeg

2
(Y|h1(X, 69, + tAOY), ha(X, 6% + tM;@)))
d(X,Y)

T = sup

t€(0,1] f(Y’hl(Xv 0?1)7h2(X’ 081)

(35)

for all |a| + || = 2. Additionally, the expressions for 07, and 67, indicate that

5= gﬂ alfl H{ (AG; } ﬁ{(M%)@)}m =0(n7?), (36)

v=1
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for all |a| + || = 2. Now a direct computation yields that

_W(pe,pa,) 1 / (P, (X, Y) = pey (X,))? d(X,Y)
Wg,”"‘l””(Gna Go) (\/pGn (X,Y) +v/pc, (X,Y))2 WN/E,HH'H“(GW Go)
1 R(X.Y)
=3 / pGO(X,Y)Wj,”“"'w(Gn,Go)d(X’Y)'

The Cauchy-Schwartz inequality implies that the following inequality holds:

—2
R (X7 ) —4
— T =0(n™")

X,Y >, TapF, ’
pGo( ) ) |a\+|ﬁ| 9

where the final bound comes from the bounds on T, g and F, g in equations (35) and (36).
On the other hand, the choice of G, guarantees that W:,H” HC"’(Cj}’n,GO) = O(n‘Q"I(l)) as

M = min &, Since #’V) < 2, it is clear that
1<i<qi+qe
R(X,Y)
/ do 4(X,Y) =0,
ygen (Xv Y)WH/ (Gn7 GO)

as n — oo. Therefore, h2(pGn,pG0)//W7§,H/°°(Gn, Go) — 0. As a consequence, we obtain

the conclusion of equality (26).

5.2 Proof of Theorem 8

By means of Lemma 21, we prove Theorem 8 by establishing the following results:

inf h Wikl (@, Go) > 0 37
GGOII?,EO(Q) (pGapGo)/ K ( ’ 0) ) ( )
Gel(glk(ﬂ) (pGapGO)/ ( ’ 0) ) ( )

for any k' € R? < k where xk = (7,2, [F/2]). To simplify the presentation, we assume that
7 is an even number throughout this proof, which leads to x = (7,2,7/2). The proof when
7 is an odd number can be obtained in a similar fashion.

5.2.1 PROOF FOR INEQUALITY (37)

To streamline the argument, we provide a proof only for the local structural inequality:

lim inf V(pa,pa,)/WiHl= (G, Go) > 0
€20 GeOy 2, (9):Wk(G,Go)<e

the global structural result, for inequality (37), can be argued in a similar fashion as in the
proof of Theorem 7. Assume now that the local structure inequality does not hold. This
implies that we can find a sequence G,, € Oy, z,(2) such that V (pg,,, pGO)/W,.lJK”‘” (Gn,Go) —
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0 and W,(Gn,Go) — 0 as n — oo. Employing the similar argument as in Theorem 7 in
Section 5.1, we can represent the sequence GG, as follows:

G = Z me 07,,08,,): (39)

=1 j=1

si
9%) — (09,,09,) for all 1 < i < ko,1 < j < s and le?j — 7 for all
]:
1 < i < kg. Note that we do not have [ in the representation of G,, € Oz (£2), in contrast
to the result in Section 5.1. The reason is that the weights of G,, are lower bounded by
a positive number ¢y, which entails that there exists no extra components (69;,69,) as the
limit points of the components of G,,. In this proof, for the simplicity of presentation, we
denote AGY;; = 07, — 69, and Al = 05, — 69, for all 1 <i < ko, 1 < j < s;. Additionally,
Aﬁ’fw = ((AH?Z-])(I), (AHI”U)(Q)) for all 1 <7 < kp,1 <j <s;. Now, according to Lemma 23
in Appendix B, we have:

e,

=1 j=1
ko S;
+ 1D pf = | := D(Ga, Go),

i=1 j=1

where (67;;,

2
+1805,7)

\(Aew”

where k = (7,2,7/2). Since V(pGn,pGO)/W,ﬂH”w(G, Go) — 0, we have V(pa,,, pc, )/ Dw(Gr, Go)
— 0. We again divide our proof argument into several steps.

Step 1 - Structure of Taylor expansion: Using the decomposition pg,, (X,Y)—pg,(X,Y),
as in the proof of inequality (25) in Section 5.1, we carry out a Taylor expansion up to the
order T:

ko si [e51 Qaz
pe (X Y) =pa(x ) = 23 ¥ sf@ey® ) )@ | @

i=1j=1  1<|a|<F
olel f

Y|hi(X,00.), ha(X,609)) F(X
Xa(a(”)ala(e(”)azae‘é“‘"( 68 (X, 020) FX)

+Z(§jpw ) FO 1 (X, 600, (X, ) FCX) + RX.Y)

‘= Ap + B, + R(X,Y), (40)

where R(X,Y) is a remainder term. This remainder term is such that R(X,Y")/D.(G,, Go) —
0 as n — o0, is due to the uniform Holder continuity of a location-scale Gaussian family
with respect to expert functions hy, ho, and prior density f (cf. Proposition 4).

From the formulation of the expert functions hq, hy as well as the structural form of the
PDE for location-scale Gaussian kernel, we obtain the following;:

olelf
a(05) (01> 005°

X a2 gartaztas f

(Yhi1(X,01),ha(X,02)) = (Yhi1(X,61), ha(X,02)),

asg a1 t+az+2as
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for any a1,a0,a3 € N, 61 € Qq, and 0y € (Qs. From this equation, we can rewrite A, as
follows:

P ook )@ 1 o)

i=1 j=1 1<|a|<r

ag Qaltaz+2a _
<220 Y by (X, 60, ha(X, 09,))F(X)

2a3 ahﬂél-l-az +2ag

Y iwf 5 g} o) @} o)

i=1 j=1 ao=0 = 1,03
X almfmh (X, 69.), ha(X, 69.))F(X) (41)
ahl1+a2 1\A Y14 )y 192 A5 Uy )

where aq,a3 € N in the sum of the second equation satisfies a7 +2a3 = and 1 — an <
a1+ ag < T — as. We define

8l+a2 f
onlre

F ::{XO‘2 (Y[h1(X,09), hao(X, 09N F(X): 0<ap <7, 0<1<2(F—ag), 1 <i< ko}.

We claim that the elements of F are linearly independent with respect to X and Y. We
prove this claim at the end of this proof. Assume that this claim is given at the moment.
Inspecting the explicit form of F, we can treat A, /Dy(Gn,Go), Bn/D.(Gp,Go) as a linear
combination of elements of F.

Step 2 - Non-vanishing coefficients: To simplify the proof, we denote EQQ,Z(Q?i, 9%)
I+ao _
f(Y|h1(X|9(1)Z.),hg(X|03i))f(X) in A, and B, for any 0 <

as the coefficient of X2

ahll+042
ay <7, 0 <1 <20 —ag), and 1 < i < kg. Then, the coefficients associated with
8l+a f B .
X2 6hl+°‘ (Y|h1(X,6%.), ha(X,09)) f(X) in An/Dx(Gy,Go) and B,,/Dy(Gn,Go) take the

form Ea%l(ﬂ(fi, 09,)/ Dy (Gr, Go).

Assume that all of the coefficients in the representation of A,,/D,.(G,, Go), Bn/Dx(Gp, Go)
go to zero as n — oo. By taking the summation of |Eg(6Y;,609;)/Dy(Gn,Go)| for all
1 <14 < kg, we obtain that

<§0: | ip?j - W?\)/Dn(Gn,Go) -0

i=1 j=1
Additionally, according to equation (41), we can verify that
2

Sq

> D
Eno(69;,03) _ j=1 "
D/{(Gna GO) DR(GTMGO)

for all 1 <i < ko. From the formulation of D,(G,,Gp), the above limits lead to

(S (e

i=1 j=1

(AH?ZJ)( )

— 0,

1
12]

+ 1A92w|r/2> }/DH(Gn, Go) — 1 as n — oo,
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Therefore, we can find an index i* € {1,...,ko} such that

S
(g
j=1

(Afy- )|+ megi*jvﬂ) } /Dy(Gn,Go) 4 0,

as n — 0o. Given the definition of L, we find that

S 2 Si 2
it 2P| (A05,)®) Si 3 vl |(Af)?
Jj=1 _ j=1 l o (42)
i P [(Af7, D) ' +|AGD, |7/ Dy (Gr,Go) L
j=1 v 1) 2i%j

Now, since we have Ey, 1(6%;,609,)/ D (Gy, Go) — 0 for all values of az,l,i from the hypoth-
esis, we obtain that

Ea2,l(9(1)i’79(2]i) _ l Eaz,l(e(llw ggi)

S; _ N L Dn(GnyGO)
lequ (‘(Ae?i*j)(l) |T/2)
J:

M1 (69;,65;) = — 0,

T
+ Ay,

forany 0 < ap < 7,0 <1 <2(F—ag), and 1 < i < ko. Note that, given the limit (42),
when ag > 2 we find that

Si 2
7 n 2
;pij (Aelij)( )
Maz,l<9?i798i) N - < = — 0.
> p?*j< (AG7 )W+ A0, r/2>
i=1

Therefore, to obtain a contradiction, it is sufficient to consider only when as < 1. When
ao = 1, direct computation leads to

)"

a1
A%ﬁﬂ (A07,)2) (A6,

{

2Py 2

7=1 a1+2a3=l
a1+asz<r

293 lavg!
0 A0
Ml,l(91i792z‘) =

T )

le?j (‘(Aeﬁ'*j)(l)
‘7:

+ \Aegg.*jr/?)

for any 0 <1 < 2(7 — 1). It is clear that if we have (AH?M)(Z) =0 forall 1 <i<kyand
1 <j <s;, it is possible that Mu(@(fi, Ggi) — 0 for all 1 <17 < ky. As that existence of the
sequence (A7, j)(Q) does not violate any of the previous limits, it indicates that when as = 1,
it is possible that MQQ,Z(H%-, 69.) go to 0 for all i and j. Hence, to obtain a contradiction
with the system of limits from M,, ;(6Y;,69,), we only need to consider s = 0.
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By the representation of A,, in equation (41), we can verify that

8% {(Aglz j)( )} (AGQz ])
Z D+ >
7j=1

o1 +2az=l 2931 !as!

o1 +az<T
s
jgl p?j <
Step 3 - Understanding the system of polynomial limits: The technique for study-
ing the above system of polynomial limits is similar to that of Step 1 in the proof of
Proposition 3.3 in (Ho and Nguyen, 2019). Here, we briefly sketch the proof for complete-

N — (1 1/2
ness. We denote M = 1;1]12:;* {](Aﬂh ]) )], | A0, / } and p = éngx {pj}. Given this
notation, let (A67;.;) W /M — aj, AOY,. j/MQ — bj, and pit;/p — c? for all 1 < j < s;+.

Since pj; > o, we will have ¢; > 0 for all 1 < j < s;+. By dividing both the numerators and

MO,Z(Q%* ) 93@'*) = — 0.

(Af7. )M 4 | A0,

21]

the denominators of Mg ;(69,.,69..) by Ml, we obtain the following system of polynomial
equations:

albag
=0
Z Z 20[3al|a3
7=1 a1 +2a3=l
a1+a3<T

forall 1 <1 < 7. Since s < k—ko+1 (as s; > 1 for all 1 < i < ky), this system
of polynomial equations will not admit any nontrivial solutions (a;, b;, cj)j-lzl according to
the definition of 7. This is a contradiction. As a consequence, not all the coefficients of
A, /Dy (Gr, Go) and By, /D, (G, Gy) go to zero as n — 0.

Step 4 - Fatou’s argument: Equipped with the above result, we utilize Fatou’s argu-
ment in Step 3 of the proof of inequality (25) to obtain a contradiction. We denote

= Eoy1(62,69)| /Dk(Gr, Go);
T = <an<r, 0<ISD (o a), 1§igko‘ 02,1033, 05:)| / Di(Gn, Go);

i.e., my is the maximum of the absolute values of the coefﬁcients in the representation of
Ay /Dy (Gn, Go) and B,,/Dy (G, Go). We now define E,, ;(0Y;,05;)/mn — Tay (i) asn — 0o
forall 1 <i<ky O<as<7,and 0 <1 < 2(F — aw). Here, at least one among 7o, (i) is
different from zero. Armed with Fatou’s lemma as in the proof of inequality (25), we obtain
the following equation:

a2 al+042f 0 0 3
Z Ta27 X hlJra (Y’hl(X7 Hli)a h2(X7 921))f(X) =0, (43)
i,

almost surely (X,Y) where the ranges of (i,cp9,l) in the sum satisfy 1 < i < kg, 0 <
ag <7, and 0 <[ < 2(F — ag). According to the claim that the elements of F are linearly
independent with respect to X and Y, equation (43) indicates that 7, ;(i) = 0 for all 4, o, [,
which is a contradiction. As a consequence, we prove inequality (37).
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Proof for claim that the elements of F are linearly independent: To facilitate
the presentation, we reuse the notation from Step 4. In particular, assume that we can find
Tan(1) ER (1 <i < kg, 0<ap <7,and 0 <[ < 2(F — ag)) such that equation (43) holds
almost surely X and Y. This equation is equivalent to

ko 27

33 (X a0 ) b (X1 aX165) =0 (14)

i=1 u=0 “as+l=u

for almost surely X and Y. Since (69,69,),..., (69, ,H(Q]ko) are ko distinct pairs, we also
obtain that (h1(X|69;), h2(X[0%,)), .. (hl(X|91k0) h2(X|92k )) are ko distinct pairs for al-
“f
any (Vho (X16%;), ha (X 63;))
are linearly independent with respect to Y for 0 < u < 27. Therefore, equation (44) implies
that > Ta27l(i)Xj =0foralll <i<kyand 0 <wu <27. Asitis a polynomial of X € X,
jHl=u

which is a bounded subset of R, equation (44) only holds when all the coefficients are zero;
ie., Tay1(1) =0 foral ag+1 =u, 1 <i<kyand 0 < u < 27. Hence, we establish the
claim.

most surely X. With that result, for X almost surely,

5.2.2 PROOF FOR EQUALITY (38)

In a manner similar to the proof strategy in Theorem 7, to obtain the conclusion for (38),
it is sufficient to construct some sequence Gy, € O (£2) such that

h(pa,,pay) /W= (G, Go) — 0,

for any (1,1,1) = k" < k = (7,2,7/2). The construction for G,, will be carried out under
two particular settings of x'.

Case 1: «' = (M, K'® k'®)) where #'® < 2. Under this setting, we construct G, =
ZfoT "6 (gn. p3.) such that (77 91‘2,021) = (W?_l,H?(i_l)ﬁg(i_l)) for 3 < i <ko+1. Ad-
ditionally, 7! = 7} = 79/2, ((6{2) 08) = ((09)M,69,) for 1 < i < 2, and (07,)? =
09)® —1/n, (07,)@ = (89,)@ + 1/n. From this construction for G,,, we can verify that
/VI\;,!/K ”°°(Gn, Go) < n=""? . Denote AOT =07 — 09, for 1 < i < 2. Now, by means of Taylor
expansion up to the first order around (69, )2), we have

P, (X,Y) = pao(X,Y) = Zw FY|hi(X,07,), ha(X, 05;)) — f(Y|h1(X,001), ha(X, 03,))) F(X)

0 - _
- wa (807)® 2L (VY. 0).ha(X. 51)) F) + Fa(X.Y),
i 1
where (A@”)(Q) (07)3 — (09)@ for 1 < i <2 and Ry(X,Y) is Taylor remainder such
that
1

2 2
Y)= ;m"{ (M{z)@)} 0/(1 — t)a(i?f) (Y|hi(X, 609 +tA67),

ha(X, 0%, + tAG3;)) f(X)dt
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2 2
It is not hard to check that 772”{ (AG?Z-)(Z)} = 0O(n?%) and
i=1

2
82
(8(9(;;)2 (Y|hi(X, 09 + tAOT), ha(X, 03, + tAng‘)))
sup / L 5 5 d(X,Y)
t€[0,1] fYThi (X, 607;), ha(X, 05,)

Therefore, using the same argument as in the proof of equality (26), the following holds:

P2 (pa,, pay) / R|(X,Y) ax.y) < 2
) pGo(

WE/HWHN(Gn, Go X, Y)leuﬂf“w(c!n, Go) ~ 263
as n — oo. Therefore, we achieve the conclusion of equality (38) under Case 1.

Case 2 K = ( '), 2, k'®)) where ( ) /@’(3)) < (7, ?/2) Under this setting, we construct
ko. For 1 § Jj < k‘ k:o + 1, we choose (91‘]-)(2) = (09, ) and

: 2 0(ch)?
W — (@0 D % gn g0 i TG
(015" = ( W+ o V2 = Y2 + 20 Zf:_lkOH(C;‘-)f

where (¢}, a;, bf)f —1k:0+1 are the nontrivial solution of the system of polynomial equations (6)

when r =7 — 1. With this formulation of G,,, it is clear that

pGn(X7 Y) - pGo(Xv Y)

k—ko+1
- Z W? (f(Y|h1(X7 9?2)7 h2(X? 93@)) - f(Y|h1(Xv 9?1)? h2<X7 981))) ?(X)
=1

By means of a Taylor expansion up to the (7 — 1)th order around ((0?1)(1), 981), i.e., along
the direction of the first component of 9, and 69;, the following equation holds:

[f(Y1hi (X, 65;), ha(X,05:)) — f(Y [ha (X, 691), ha(X, 631))] F(X)
1 o glal B B
B 1<Z|<: ) a!{(AHﬁ‘)(l)} (AQZ)%W (Y1hi(X,691), ha(X,603,)) f(X) + Rai(X,Y)

1 n “ n o a1+2a2f T D)
= % oo e S i (6,000, ha (X 0807 (X) + (.Y,
: 1

1<]a|<7-1
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where a = (a1, as) in the sum and Rg;(X,Y) is a remainder. Equipped with this equation,
we can rewrite pg, (X,Y) — pg,(X,Y) as

k—ko+1 1 [e%}
PG, (X,Y) = pg,(X,Y) = Z Y OA{(A%)(I)} (Af5;)*?
1<]a|<r—1
aa1+2a2f

X W(Y‘hl()(v 00:), ha(X,09;)) F(X) + Ra(X,Y)
1

2(r—1) 1 k—ko+1 a1
-S| T 4 X wfenn] @
=1 a1 +2a0=I =1
a1t+as<r—1
Lo

8hl (Y|h1(X 9 ) hQ(Xvegi))?(X)"_RQ(XvY)a

where Ro(X,Y) = Zf;lkOJrl 7" Ry;(X,Y) and the range of o in the second equality satisfies
a1 + 202 =l and a1 + ag <7 — 1. From the formulations of 7', 67, and 63, as 1 <7 <
k — kg + 1, we can check that

k—ko+1

a
> o> m{emol s -o

a1 +200=l = i=1
a1ta<r—1

when 1 <[] <7 — 1. Additionally, we also have

1k—k0+1 a1 B
Li= > = > W?{(Aﬁ’ﬁ)‘”} (AG5)2 = O(n™T),
C!1+20é2:l ' =1

a1+oe<r—1

when 7 < [ < 2(F — 1). Furthermore, the explicit form of Ry(X,Y) is as follows:
k—ko+1 aq
= 3w 3 a{emn ) e

1
_ o _
y / -1 ))f 892 (Y1hi (X, 09, + tAOL), ha(X, 03, + tA0S)) F(X)dt
a1 &%
0

k—ko+1 a1 -
It is not hard to check that ZO: ﬂ?{(AGﬁ;)(l)} (A07)*? = O(n™") and
i=1
o f ’
T s (Yhi(X, 09, + tA0T;), ha(X, 03, + tAG;))
sup / 016, 7)1 96, d(X,Y) < oo
t€[0,1] f(Y|h1(X7 9(1)1)’h2<X7 6(2)1) , ’
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for any |a| = r. By the Cauchy-Schwartz inequality, the following inequality holds:

o [ (B I (X, 89, ha( X, 98i>>f<X>)2d(X7 "
)

W2 (PG PGo) < Z
WQH"@ loo G GO 2”“ [loo G GO pGO(X, Y)
R2<X7 Y)

W:’”H'Hoo (Gn, GO) ’

From a property of the location-scale Gaussian distribution, we have

(2201 (0,00, ha (X, 08)7 (X))
/ d(X,Y) < o0

yuen (Xv Y)

for any 7 <1 < 2(7 — 1). Furthermore, by means of a similar argument as in the proof of
equality (26), we can argue that

B(X.Y) . On%)
T (G, Gy~ BT

Putting these results together, we have

h2(pGn7pGO) < O(n_QF)
WQIHH/HOO(GH Go) ~ p—2min{x/( k/(3)}

0, (45)

as n — oo. Therefore, we obtain the conclusion of equality (38) under Case 2.

6. Discussion

We have provided a systematic theoretical understanding of the convergence rates of pa-
rameter estimation under over-specified Gaussian mixtures of experts based on an analysis
of an underlying algebraic structure. In particular, we have introduced a new theoretical
tool, which we refer to as algebraic independence, and we have established a connection
between this algebraic structure and a certain family of PDEs. This connection allows us to
determine convergence rates of the MLE under various choices of expert functions h; and
ho.

There are several directions for future research. First, the current convergence rates of
the MLE are established under the assumptions that the parameter spaces are bounded;
it would be important to remove this assumption for wider practical applicability. Second,
the results of the paper demonstrate that the convergence rates of MLE are only very slow
when the expert functions are algebraically dependent. When we indeed fit the models
with algebraically independent expert functions while the true expert functions are alge-
braically dependent, i.e., we misspecify the expert functions, the convergence rates of MLE
become n~1/4. However, the MLE will not converge to the true mixing measure. This
raises an interesting challenge of how to characterize the difference between the limiting
mixing measure and the true mixing measure in terms of the generalized transportation
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distance. Finally, since the log-likelihood function of over-specified Gaussian mixtures of
experts is nonconcave, the MLE does not have a closed form in practice. Therefore, heuristic
optimization algorithms, such as Expectation-Maximization (EM) algorithm, are generally
used to approximate MLE. The convergence rates of EM algorithm and other optimization
algorithms in standard mixture models had been studied in (Dwivedi et al., 2020b,a). Re-
cently, Kwon et al. (2021) established the minimax convergence rates of EM algorithm and
Ren et al. (2022) studied the convergence rate of Polyak step size gradient descent algorithm
for symmetric two-component Gaussian mixed linear regression, which is a special case of
Gaussian mixture of experts. It is of practical importance to investigate the computational
errors arising from the updates of the optimization algorithms, such as EM algorithm, on
the convergence rates of MLE under general Gaussian mixtures of experts.
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Appendix A. Appendix

In this appendix, we provide proofs for remaining results in the paper.

A.1 Proof of Proposition 3

Assume that there exist G = Zle Ti0(01,,0,,) and G’ = Zf;l (0, 0y Such that pg (X, Y) =
per (X,Y) for almost surely (X,Y) € X x ). It is equivalent to

k K
D mif(Y[hi(X,00), ha(X, 02:) = Y wif(Y [ (X,65,), ha(X, 65;)) (46)

i=1 i=1

for almost surely (X,Y’). Since the pairs (61;,02;) are distinct and the pairs (6}, 05;) are
distinct, we can find X such that all the pairs (hi(X,01;), ha(X, 62;)) are distinct and all the
pairs (h1(X, 67;), h2(X, 05,)) are distinct. Given that value of X, Zle mif(Yh1(X, 01:), ha(X, 02;))
can be viewed as a mixture of k distinct Gaussian distributions in terms of Y. Similarly,
we also can treat Zflzl 7 f(Y|h1(X,01;), h2(X, 05,)) as a mixture of k' distinct Gaussian
distributions in terms of Y. Since we have
k K
S o mif(YV[ha (X, 010), ha(X, 02:)) = > wi f(Y[ha (X, 67,), ha(X, 65;))
i=1 i=1

for almost surely Y (Note that, here we fix that value of X), due to the identifiability of
location-scale Gaussian mixtures (Teicher, 1960, 1961), we have k = k' and {my, 7o, ..., 7} =
{m}, 7, ..., 7.}, namely, the weights of the two mixtures are identical (up to some permu-
tation of the indices). Without loss of generality, we assume that m; = 7} for all 1 < < k.
We denote by Ji,...,J; the partition of {1,2,...,k} for some | < k such that m; = =} for
any ¢,7' € J; and 1 < j <[. Furthermore, m; # 7, when ¢ and ¢’ do not belong to the same
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set J; for any 1 < j <. Therefore, we can rewrite equation (46) as follows:

sz FYhi(X,015), ha(X, 02;)) Zwa (Yhi(X,0},), ha(X, 605:)).

j=lield; Jj=liel;

From these results, for almost surely X, for each 1 < j <[ there exist permutation functions
Ug( : Jj — Jj such that (hl(X, 910&(1'))7h2(X’ 920 (z))) = (hl(X, Oii),hQ(X, 9’21)) for all
i € Jj. Since the expert functions h; and ho are identifiable, from Definition 1 these
equations indicate that {(01;,62) : i € J;} = {(0;,65) : i€ Jj}forall1 <j<I Asa

consequence,

D) ILUTINES 3) pet

Jj=lieJ; Jj=lieJ;

We obtain the conclusion of the proposition.

A.2 Proof of Lemma 21

The proof of part (a) of Lemma 21 is straightforward from the parametric convergence
rate of h(p@n, DG, established in Proposition 5. We therefore omit the proof of part (a) of
Lemma 21 for the brevity of presentation.

We now provide proof of part (b) of Lemma 21. It follows the same argument as that
of Lemma 1 in (Yu, 1997). Fix (1,...,1) < ¥ 3 k and the true mixing measure Gy. Let
Cp > 0 be any fixed constant. From the hypothesis of part (b), for any sufficiently small
e > 0, we can find G, € G such that Wﬁr( 0, Go) = 2¢ and h(pGB,pGO) < Cpell'll= . Now,
by taking any sequence of estimates G,, € G, we obtain that

2 o B [WK/(CJR, G)] > Epg, [WH/(G’n, GO)] +Epg, [WN/(G‘”, Gg)] .
Here, E,, denotes the expectation taken with respect to the product measure with mixture

density pg. Since Wnr satisfies the weak triangle inequality, we have a positive constant C
depending on ' such that

W (G, Go) + W (G, Ghy) > CLW, (Go, Gly) = 2Ce.

Therefore, we find that
EPGO WH'(GW GU)} + EPG6 [Wn’(ém G{))} = 2016]}111]{;2 (EpGo [fl] + IEp’GO [fQ]) )

where the infimum is taken over non-negative measurable functions f; and fo defined in
terms of X7, ..., X, such that fi+ fo = 1. The definition of total variation distance indicates
that we can rewrite the right-hand-side of the above inequality as 1 — V(pgo, pg{)). Putting

the above results together, we find that

oo T [Wﬁ,(c‘:n, G)} > (e (1 —V(ph,, p&))) .
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Since V' < h, we obtain that

V(e ér) < (Dt ) = \/1 - (1 - hZ(pGO,pGg])) < \/1 — (1 - Cge2liw'll=)"™.

Therefore, we arrive at

o, By [W(Go, @] = Cre (1 = 1= (1= el ) .

By choosing CZe2lW llee = 1 the bound in the above display becomes

E, [W.(G,.G)| > cin=2/215
e pG[ ( )} > can

As sup Ep. (WH/ (G, G)) > MaAXGe (G0} Bpa [WH/(G_’H, G)] , we reach the conclu-
GEG\Opy-1(22)
sion of part (b) of the lemma.

A.3 Proof of Theorem 9

Similar to previous proofs in Section 5, it is sufficient to demonstrate the following results:

lim inf Vpa,pay,)/WEl=(G,Gy) >0, (47)
€20 G0y, 5, (2):Wk(G,Go)<e

inf & Wil Go) =0 48

Gegi(ﬂ) (pa,pco) /Wy "> (G, Go) , (48)

for any (1,1,1) < &' € R3 < k where k = (2,7, [7/2]). Without loss of generality, we assume
that 7 is an even number throughout this proof, i.e., k = (2,7,7/2). Proof of inequality (47)
is in Appendix A.3.1 while proof of equality (48) is in Appendix A.3.2.

A.3.1 PROOF FOR INEQUALITY (47)

Assume the inequality (47) does not hold. It indicates that there exists a sequence G,, €
Ok (£2) such that V(pg,pgo)/w,gy””“(Gn,Go) — 0 and W,ﬂ“"m(Gn,Go) — 0. To simplify
the presentation, we reuse the notation of G, as in equation (39) in the proof of Theorem 8
in Section 5.2. Since k = (2,7,7/2), we have

k‘o S;
T (G Go) 2505l (\(Aw(”

2
‘1“ (Ae?ij)(Q)
i=1 j=1

+ |A‘9§ij|r/2>

ko S;
+D 1> o = 7l i= Di(Gn, Go).

i=1 j=1

Similar to the proof of Theorem 8, by means of Taylor expansion up to the 7 order, we can
represent

pGn(X7Y) _pGO(X7Y) = Ap + By + R(X7Y)7
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where A,,, By, and R(X,Y) are identifical to those in equation (40) such that R(X,Y)/D. (G, Go)

— 0 as n — 0o. Given the formulation of expert functions hy, hy, we have the following key

equation:
8|a‘f Xa2+2a3 aa1+a2+2a3f

a(6\)10(61Y)22 005

(Y[h1(X161), ha(X162)) = (Y[h1(X[01), ha(X162)),

[o%:] altaz+2as
205 s

for any aq, ae, a3 € N. Equipped with the above equation, A,, can be rewritten as

Zipw Zr: Q(Til Z 903 ¢y .{ 113)(1)}a1{(A9113)( )}QQ(A%U)

i=1 j=1 a1=0 = 1,03

Oé1+lf

xX! (Y[h1(X103;), ha(X165:)) F(X),  (49)

ah?1+l

where a9, ag € N in the above sum satisfies ago +2a3 =land 1 —a; < as+ a3 <7 —aq. If
we define

o+l _
F= {le)ha O (3 [ (X16%), ha (XIS))F(X) - 0 < on <7, 0<1<2(F—an), 17 < ko},

then the elements of F are linearly independent with respect to X and Y. The proof
argument of this claim is similar to that in equation (44) in Section 5.2. Therefore, we can
treat A, /D (Gn,Go), Bn/Dx(Gn,Go) as a linear combination of elements of F.

Similar to the proof of Theorem 8 in Section 5.2, we denote F,, ;(6Y;,69;) as the coefficient

a1+l _
of Xlghal+f(Y|h1(X|9?,.),hz(Xwgi))f(X) in A, and B, for any 0 < oy <7, 0 < <
1
7 ; : 0t 0 07
2(T —aq), and 1 < i < kg. Then, the coefficients of X Py (Y|h1(X167;), ha(X|65;)) f(X)
1

in A,/Dy(Gn,Go) and B,/ D, (Gy, Go) will be F,, (6;,65,)/Dy(Gn, Go).
Assume that all of these coefficients go to 0 as n — oco. By taking the summation of
|Fo,0(0%;,69,)/ Dw(Gn, Go)| for all 1 < i < kg, we obtain that

(Z!i% QI)/DH(GH,GOHO.

=1 j=1

Additionally, according to equation (49), we can verify that

F20(9127621)/D GnaGO <ZPU AGW

>/D (Gn,Go) =0

for all 1 < i < kg. From the formulation of D, (G,,Go), the above limits lead to

(S (e

i=1 j=1

2

01 + 1A92w|r/2> }/DH(Gn, Go) — 1 as n — oo,
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Thus, we can find an index * € {1, ... ko} such that

{5 ([
j=1

+ |A022 ]|T 2) }/DH(GTMGO) 7L> 0

as n — oo. Without loss of generality, we assume that i* = 1. Now, since we have
Foy1(09,,63,)/Dy(Gn, Go) — 0 for all values of vy, 1, i, we obtain that
Fal,l(e%a Qgi) _ l Fahl(e(fi: 981')

al, (011a02i) = B

: — 0,
le?j (‘(Aeﬁj)(z)
J:

~J Dy(Gn,Go)

+ |Ab,; ’r/2>

forany 0 < a3 <7,0<1<2(T—ai1), and 1 <i < ky. From the representation of A,, in
equation (49), we can verify that

a2
o {em) e
> p?j >

5=1 7 as+2as=l 2% aglas!
ag+a3<T

MO,Z(Q%, 981) = — 0.

]:

"4 jae, |r/2>

for 0 <[ < 27. Using the same argument as that in Step 3 of the proof of Theorem 8 in
Section 5.2, the above system of polynomial limits does not hold. As a consequence, not
all the coefficients in the linear combinations of A,,/D,.(G,, Go) and B,,/D,(G,,Go) go to
0 as n — oco. From here, using the Fatou’s argument in Step 4 of the proof of Theorem 8
and the fact that the elements of F are linearly independent with respect to X and Y, we
achieve the conclusion of claim (47).

A.3.2 PROOF FOR EQUALITY (48)
To alleviate the presentation, we will only provide a proof sketch of equality (48). We also
divide the proof into two settings of ¥’ < k = (2,7,7/2).
Case 1: ' = (k ’(1),5’(2),5’(3)) when /(1) < 2. Under this setting, we construct G, =
ZfoTl "6 (gn, 03,y such that (7}’ 91‘1,0”) = (m)_ 1’9(1)(1 1) Hg(i_l)) for 3 <7< ky+1. Ad-
ditionally, 77 = 78 = 79/2, ((07,)@,05) = ((69,)@,69;) for 1 < i < 2, and (7)Y =
09D —1/n, (67,)M = (69,)D) 4+ 1/n. From this construction of G, we can verify that
W,!,'{ ”""(Gn7 Go) < n=""". Given that formulation of Gy, when we perform Taylor expan-
sion up to the first order around (69,)"), the following equation holds

pGn<X7 Y) _pGo<X7 Y) = §1<X7 Y)?
where R (X,Y) is Taylor remainder such that

Ri(X,Y)

2 1 2
=Zw?{<A0;z><”} [0 02 (10 (X8, + 0208 (X, 8, +1205) T
J 0
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Using the same argument as that in Case 1 in the proof of equality (38) in Section 5.2.2,
the following holds

—0

2 52 —4
NZL” (/]ﬁGnapGo) r-j / R/ly(iﬁ?}[) d(X, Y) ;5 O(TL /(12
W, "l (@, Go) P (X, Y)W 12 (G,, Go) n—2k

as n — oo. Therefore, we achieve the conclusion of equality (48) under Case 1.

Case 2: r' = (2,+'®,x'®)) when (/-1/1(2),/4(3)) < (7,7/2). Under this setting of /', we
construct G, = Zle 'S (g7. op.) Such that (Wg"ﬁrk_ko,01‘(”,67%),93(“#%)) = (n9,6%,,09.)
for 2 <i < ky. For 1 <j<k—ky+ 1, we choose (Q?j)(l) = (09 and

* 20* 7d(ct)?
@) _ 02 2% g g0 % 1\5
(07;)" = (071)" + o 05; = 03 + 20 T Zf:_fOH(C}k-)f

where (¢}, al, bf)f;lkOH are the non-trivial solution of system of polynomial equations (6)
when r = 7 — 1. From here, by performing Taylor expansion around ((9?1)(2),981), ie.,
along the direction of the second component of §9; and 69, and arguing similarly as Case 2

in the proof of equality (38) in Section 5.2.2, we obtain that

2r—2 1
P, (X,Y) = pe,(X,¥) = Y O ) L (0 (X, 80, hal(X, 09)F(X) + (X, V),
I=7 1

where Ry(X,Y) is Taylor remainder such that the following limit holds

R, —2r
/ RQN(X?’Y) d(X7 Y) ;j O(n 3 ) - — 0.
PGy (X, Y)Wj,”” H‘X’(Gn, Go) n—2min{r/® (3}

Therefore, we achieve that h2(pGn,pG0)/W3,”H/”°°(Gn,Go) — 0 as n — 0o. As a conse-

quence, we reach the conclusion of equality (48) under Case 2.

A.4 Proof of Theorem 10

Similar to the previous proofs, it is sufficient to demonstrate the following results:

lim inf V(pa,pa,)/WiEl= (G, Go) > 0, (50)
0 GEO 2, (2): Wi (G, Go)<e

inf  h WKl (G, Go) =0 51

a0 (PG pGo) /W " (G, Go) =0, (51)

for any (1,1,1,1) < x' € R* < k where k = (7,7, [7/2],[7/2]). Without loss of gen-
erality, we assume that 7 is even, i.e., k = (F,7,7/2,7/2). Proof of inequality (50) is in
Appendix A.4.1 while proof of equality (51) is in Appendix A.4.2.
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A.4.1 PROOF FOR INEQUALITY (50)

Assume that the conclusion of claim (50) does not hold. By using the same notations of G,,
as in the proof of Theorem 8, we can find a sequence G,, that has representation (39) such

that V(pGn,pGO)/W”H”‘”(Gn, Go) — 0 and W,.;(Gm Go) — 0. Here, since 6;; and 05?) have
2 dimensions, we denote AL, = ((A6L; )(1), (AH%)@)) forall 1 <i<kpand1<j<s

215 215
7‘/2)

throughout this proof. According to Lemma 23, we have
Si
+Z 1> pl = 7| i= Dy(Gn, Go).

Wl (G, Go) <Zzpw<‘ o, ol
=1 j=1

7 /2

(AQQZ])( )

‘ (Aelz])( )

‘1“ (Aegij)m)

=1 5=1

Invoking Taylor expansion up to the order 7, we obtain that

P6,(X,Y) = py(X,Y) = Zipw > a'{(AGhJ)()}al{(AGIU)()}QZ{(Ag%j)(l)}O‘B

=1 j=1 1<]a|<F
@ olelf
(a0,)® |
% 20y 207200650047

Z(sz] l) Y’hl(th,hQ(Xng))?(X)—i—R(X, Y)

= A,+B,+R(X,Y),

where a = (aq, ag, a3, o) and R(X,Y) is a Taylor remainder such that R(X,Y)/D. (G, Go) —
0 asn — oo for all (X,Y"). The formulation of expert functions A1, hs and the PDE structure
of Gaussian kernel lead to

olel f
0011 0(61”)201057)00(057 )4

X @2+2a4 aa1+a2+2a3+2a4f

(Y[R (X6%,), ha (X]65:)) F(X)

(Y[h1(X,01), h2(X, 02))

= gastos 8h‘1)‘1+a2+2a3+2a4 (Y[h1(X, 601), ha (X, 62)),
for any aq, a0, a3, a4 € N, 07 € 1, and 05 € Q5. With the above equation, we can rewrite
A,, as follows

n= 3535 5 Hlmgo) " g} {0} {an )

i=1 j=1 1<|a|<T

X a2+2a4 aa1+a2+2a3+2a4f .
(Y[R (X169;), ha(X163,)) F(X)

as a1 taz+2az+2a4
205 oS

= Zip” > ( 2. 2063+10¢4a'{ b { i) }QQ{(A%”)()}QS

i=1j=1  1<l;+12<2F S a1,a2,03,04

al1+l2 -
o)) xS i el naCx1og) o) (52)
1
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where a1, as, ag, ag € N in the sum of second equation satisfies aq +2ag = I, ag + 204 = Io,
and 1 < a1 +as+ag+ag <T.
As demonstrated in the earlier proofs, we can treat A,/ D (G, Go) and B,/ D (G, Go)

l1+12 _
L ¥ by (X1609), ho (X109))F(X) for 0 < Iy +1s < 2F and

as a linear combination of X2
o h‘lll +l2

1 < i < kg, which are linearly independent with respect to X and Y. For the simplicity of

l1+12f -
(Y|h1 (X169,), ha(X03,)) f(X)

presentation, we denote Ey, 1, (69,,09;) as the coefficient of X2 PN
1

in A, B,,. From the equation (52), we can check that

Eo(69;,65)) <pr > {Aem)()}az{(&%”)()}a4)/(20‘4a2!a4!)7

ao+204=1
ao4ags<rT

El,ow?i,e&):(ipg; > {ay® ) {0} ) e,

7j=1 a1+2as3=l
a1+az<T

for any 1 <1 < 27.
Assume that all of the coefficients of A,,/D.(Gp,Gyp) and B, /D.(G,,Go) go to 0 as
n — oo. The summation of |Ego(6Y;,60;)/Dw(Gn,Go)| for all 1 < i < kg leads to

Zlipw = ;| )/ De(Gn, Go) —
( )

=1 j=1

From the formulation of D, (G,,Go), the above limit implies that

Si T 7/2 /2
D A (TCAL R RC BRI R TR R XCRR I
=1 j=1
Therefore, we can find an index i* € {1,...,ko} such that
7 7/2 7/2
{Zp”(\ e+ 2010|2050+ 0g) @] ) LDt 0

The above result leads to two distinct cases.

. /2
Case 1: {( > p’iij< >}/DK(GH,G0) 4 0. By taking the
j=1

product between the inverse of the previous ratio and Ej (6Y;+,63;.)/Dy(Gn, Go), we achieve
the following system of limits

(Eo, £ {0 {0} ) eea

T

(AQSZ *j

)(1)

(A0 ;)

j=1 a1+2a3<zl
: - "
( zlpzaj(\mezz 0| 1| ag. o )
J:

for all 1 <[ < 27, which does not hold according to the argument of the proof of Theorem
8. Therefore, Case 1 can not hold.
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T

(A07 )P +| (A0,

21* 5

Syx ?/2
Case 2: {( > p’iij< )@ >}/DK(GH,G0) # 0. By taking the
j=1

product between the inverse of the previous ratio with Eo;(69;.,69;.)/Dx(Gn, Go), we obtain
that following system of limits

(zp £ {0} @)@} ) e

ao+204=1
T/2
) )

ag+as<r
for all 1 <[ < 27, which does not hold. Thus, Case 2 can not happen.
As a consequence, not all the coefficients of A,,/D,(Gy,Go) and B,,/D«(G,,Gp) go to
0 as n — oo. From here, using the same argument as the Fatou’s argument in Step 4 of the
proof of Theorem 8, we achieve the conclusion of inequality (50).

— 0,

ra

<le?*]<‘(A9?z ])( ) (Aggz j)(
]:

A.4.2 PROOF FOR EQUALITY (51)

To avoid unnecessary repetition, we only sketch the proof for equality (51). Since k' =

(D, K@) ) DY < (7,7,7/2,7/2), one of the two pairs (x/(V,x/®3)), (k'@ /@) is

strictly dominated by (7,7/2). Without loss of generality, we assume that (/) x/(3)) <

(7,7/2). Under this setting of £/, we construct a sequence of mixing measures G, =
k

> ie1 T 0(on gz as follows. We choose (ng-i-k—k()’eqf(i-i-k—ko)’eg(i-‘y-k‘—k‘o)) = (n9,69.,69,) for

2<i< ko Forl<j<k—ko+1, we choose ((H?j)(z), (9%)(2)) = ((9(1)1)( ), (69, )) and

2b* W?(C*)Q
B = )0 + 5 (o) = B0+ = TES
’ AR v ST
where (¢, al, b}

= a;, b)), are the non-trivial solution of system of polynomial equations (6)
when r =7 — 1. From here, by performing Taylor expansion around ((69,)™, (69,)), i.e.,
along the direction of the first component of 69, and 69, and arguing similarly as Case 2 in
the proof of equality (38) in Section 5.2.2, we obtain that

)k ko+1

2r—2

0 _ _
P, (XY) —pa,(X.Y) = 3 O ah{ (V[ha(X, 69,), ha(X, 00)) F(X) + R(X,Y),

where R(X,Y) is a Taylor remainder such that the following limit holds

R —2F
/ R(X.Y) d(x.y) < O 1) o
pao (X, V)W (G, Go) 20 )

As a consequence, we eventually achieve that

hZ(PGn,Z?GO)/WN/E/N I (G, Go) = 0

as n — 0o, which leads to the conclusion of equality (51).
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A.5 Proof of Theorem 12

Similar to the proof of Theorem 8, to obtain the conclusion of Theorem 12, it is sufficient
to demonstrate that

l‘ .llf [/ p(; p NLL”H” G G > 0 z[):;
6llIOl GGOk,EO (Ql):U’K(G,Go)<6 ( ) G’O)/ K ( 1) 0) ’ ( )
. ¢ L NH/KL/HOO G’ Gy))=0 54
61H(1) ¥ lll(G o)< (pG,pGo)/” K ( 0) ’ ( )

for all (1,1,1) = &' € R? < k = (2,2,2) where  := (2,2,2) and G is defined in Theorem 12.

A.5.1 PROOF OF INEQUALITY (53)

Assume that the above result does not hold, which leads to the existence of sequence

ko s; — —~
Gn =Y. 3 Plidon, on, ) such that V (pg,, pay) /WL (G, Go) — 0 and Wi(Gy, Go) — 0.
i=1j5=1
Here, (675, 05;;) — — (69.,09.) forall 1 <i < kp,1 < j <s; and i Py — 7 for all 1 < i < ky.

j=1
In this proof, we denote AHIU = ((Aeﬁj)( ), (Aﬁﬁ-j)@)) forall1 <i<kpand1l<j<s,.

According to Lemma 23 in Appendix B, we have
H(3>>

Wllnlloo Gn, Go) Zi:pw(
ko S;
+Z Zp?] — 1 := D (G, Go).

=1 j=1
i=1 |j=1

(1) (2)

lz]

'(Mm)( )

Since the proof argument for claim (53) is rather intricate, we divide this argument into
several steps.

Step 1 - Structure of Taylor expansion: By means of Taylor expansion up to the
order ||k||sc = 2, we obtain that

ko i a a
. 1 ' N R
PG, (X,Y) —pg,(X,Y) = Zzpi]‘ Z (X,{(Aem)()} {(Aelz])()} (A92ij)3
i=1j=1  1<fa|<||slloo
olel f -
X (VIR (X6%,), ha (X]65:)) f(X)
a(00) (0 )02 63 ' ’

n Z(Zﬁ p,) POV I (X162, o (X163))F(X) + R(X,Y)

=1
= A,+B,+R(X,Y),

where a = (a1, ag, a3) and R(X,Y) is a Taylor remainder such that R(X,Y)/D;(G,,Go) —
0 as n — oo.
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olel

With the formation of expert functions h; and hs, we can check that

(05 065> )22 005
(Y|h1(X160Y;), ha(X69,)) f(X) are not linearly independent with respect to X and Y. There-
fore, as being argued in the proof of Theorem 8, we can not consider A,, as a linear combi-
nations of these derivatives. To see clearly the influence of non-linearity setting I of Gy on
the set of linear independent elements of A,,, we will provide the detail formulations of key
partial derivatives of f with respect to 61 and 65 up to the second order.

Key partial derivatives up to the second order: In particular, for any 6; and 65, by

0? 0
means of direct computation and the PDE equation W = 28}{2’ we can verify that

if:z(eglueng)ﬁ of 2X(9<1>+9 )af

o6t) Ohy’ 9o oy’
0*f of @ )2 o f
=220 Ly (oM 4ol 27
oy om (o +0x) on?’
0 f 20F  uxe2 (o) 4 9@ )2 O
2L _ox2 % L yx x) 2L
2(0)? gy +AXE (01 + 017 x) an2’
*f of M, 5@ x> »*f
— 0T _ox 2 L ax (oY) 4ol s
00" 96 ohy ( * ) o2’

of _of 10 9f 9f 10Y (55)
90y OhZ  20h27 002 Ohi  40nt

Here, we suppress the condition on hy(X,6;) and ho(X,62) in the notation to simplify the
presentation.

Set of linear independent elements: We define

l2
Fie {th L (X, 09,), ha(X, 09))F(X) : (1,1a) €B, 1< i< ko} ,
where B = {(0,0), (0,1)(0,2),(0,3),(0,4),(1,1),(1,2), (1,3),(2,1),(2,2),(2,3),(3,2),(4,2) }.
According to the key partial derivatives of f up to the second order given by equation (55),
we can validate that the elements of F are linearly independent with respect to X and Y.
Therefore, we can treat A, /D.(Gpn,Go), Bn/Dk(Gn,Go) as a linear combination of linear
independent elements of F.

Step 2 - Non-vanishing coefficients: Assume that all the coefficients in the represen-
tation of A,/ D« (G, Go) and B,/ D« (G, Gp) go to 0 as n — oo. By taking the summation
of the absolute value of coefficients in B,, /D (G, Go), it implies that

SIS 5 = | Du(G ) 0

=1 j=1
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Furthermore, from the formulations of key partial derivatives in equation (55), the vanishing
4

of coefficients of g f(Y]hl (X,69), ha(X,09.)) to 0 as 1 < i < ko leads to

Zzlplj ‘AGQU ? /DH(GmGO) —0

=1 j=1

Given the above results, the following holds

Z szy |A92w’ + | pr - ﬂ-o‘ /DN(GTH GO) — 0. (56)

i=1 | j=1

of
ohy
(Yhi(X,09), ha(X,69,)) as Iz € {0,2} as 1 < Iy < 4 go to 0 as

On the other hand, the hypothesis that the coefficients of X =

*f
oh 2
1 <14 < kg respectively lead to the following system of polynomial limits:

as I3 € {0,2} and X2

me Aelz] (1) /DH(Gnv GO) + 2In,i — 07

Z PE(AE)P | /Di(G, Go) + 2K — 0,

20%) V(09 ? L + {020} s = 0,
[0 L+ 2000 D09 1+ {020 Kos = 0,
2(65) D (60) Ko + {(@)P} s 0,

{00)@} Kus 0, (57)

for all 1 <1 < ko where the explicit forms of I,, ;, J,, and K, ; are as follows:

Zpu

2
Aelz] (1)‘ /DN(GTH GO)’

me Aelz] Aelzj)(z) /Dn(Gn, GO),

nz = ZPU

According to the formulation of non-linearity setting I of Gy, we only have two possible
cases to consider with respect to a pair ((H?i)(l), (0%)(2)):

(A7) ] /D(Gn, Go).
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Case 1: (9[1)1»)(2) # 0. Under this case, the final limit in system of limits (57) indicates that
K, ; — 0 as n — oo. Plugging this result into the fifth limit in this system, we achieve that
Jni — 0 as n — oo. Putting the previous results together, the third limit in the system of
limits leads to I,,; — 0 as n — oo.

Case 2: (69)M) = (09,)® = 0. Under this case, the final four limits in system of polyno-
mial limits (57) always hold. On the other hand, the first two limits of this system leads to
I,; —0and K, ; — 0 as n— oo.

Given the results from Case 1 and Case 2, the following limit holds

2 2
zl o (\(A%)U \(A%)U )
i=1j=
Do(Go Go) — 0. (58)

Putting the results from (56) and (58) together, we obtain that
= Dm(Gm GO)/DH(GTM GO) — 0:

which is a contradiction. Therefore, not all the coefficients of A,,/ Dy (G, Go) and B,,/ D (G, Go)
go to 0 as n — oo. From here, using the same argument as that of using the Fatou’s ar-
gument in Step 4 of the proof of Theorem 8, we achieve the conclusion of inequality (53)
under non-linearity setting I of Gy.

A.5.2 PROOF OF EQUALITY (54)

We will construct a similar sequence of mixing measures G,, as that in the proof of (26) in

Section 5.1.2. More precisely, we define G,, = ZfOJ{I 7r"5(9n 03,) with kg + 1 components as

follows: (n]*,67;,0%;) = (77?_1,9(1)(1._1),08(1._1)) for 3 <i < ko + 1. Additionally, 7" = 75 =
1/2, (614,05;) = (63; — 12/n,09, — 1/n), and (615, 05,) = (69; + 12/n, 65, + 1/n). Now,
by means of Taylor expansion up to the first order, the detail formulations of first order
derivatives in (55), and the choice of G,,, we have

PG, (X,Y) = pGo (X, Y) Zﬂ- f(Y|hi(X, 075, 03) — f(Y]h(X, 0(1]17031)) ?(X)

Y Y A H{ (A6 } ﬁ{(Aew}ﬁv

=l Jal+]8l=1 u=l
of
* 003067
= R(X,Y),
where AG = 07, — 69, and AL = 0% — 09, for 1 < i < 2. Using the similar argument as
that in the proof of (26) in Section 5.1.2, R(X,Y) is a Taylor remainder from the above
expansion such that

i -4
R (X,Y) A(X,Y) 3 O(n=*) .
PGy (X, Y)WQHH H°°(G Go) n—2min{x'(D 5/ (3} —
0

as n — 00. As a consequence, we achieve the conclusion of equality (54).

(Y‘hl(Xv 0?1)7 hQ(Xv 081)) ?(X) =+ E(X7Y>
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A.6 Proof of Theorem 16

To achieve the conclusion of the theorem, it is sufficient to demonstrate that

lim inf V(pa,pa,) /W (G, Go) > 0
=0 GEOg () Wiy, (G.Go)<e s

sin

where Tg, = ?((H?imx)(l), k— ko + 1) and Rgin = (Tsin, 2, [Tsin /2]). Assume that the above

result does not hold. It implies that we can find sequence G,, such that

Vv (pGnapGU) /Wg: (GTm GO) — 0,

and Wi, (Gn,Go) — 0. To avoid unnecessary repetition, we utilize the same notation of
G, as in the proof of Theorem 12 in Appendix A.5.

Step 1 - Structure of Taylor expansion: Similar to the proof of Theorem 12, we have
the following representation when we perform Taylor expansion up to the order Tgin:

pa, (X,Y) —pe,(X,Y) = A, + B, + R(X,Y),
where R(X,Y) is a Taylor remainder such that R(X,Y)/Dx_. (Gn,Go) — 0 as n — oc.

Ksin
The forms of B, and Dz (Gy,Go) are similar to that in Step 1 of Theorem 12 except that
Wwe use Ksin instead of k. Furthermore, A, has the following form:

ko
Ap =Y An(i) =Y An(i)+ Y Anli),
=1

€A i€A°
where A := {i € [ko] : (69,)") # 0 and (69,)®® = 0} and
. - n 1 n o n o n \o
An(i) == sz’j Z a,{(Aeuj)(l)} {(Aelij)@)} (AHZij) ’
j:1 1S|a|§sin ’

olel ¢

SPYEY @
9(0;7)10(0,7 )*2005?

(Y‘hl(Xv 9?@)7 hQ(X7 931)) ?(X)

for ¢ € [ko]. Under the non-linearity setting II of Gp, there exists an index ¢ such that
(09,)1) #£ 0 and (69,)® = 0. Therefore, we have |.A| > 1. To analyze the structure of A, (i),
we consider two settings of index i: i € A and i € A°.

olel
(0”1 0(61 )2 005
(Y|h1(X162.), ho(X169;)) f(X) up to order Tgy, > 2 is not linearly independent with respect
to X and Y. Therefore, we cannot treat A, (i) as a linear combination of these derivatives
as long as ¢ € A. Our strategy is to reduce this collection of full partial derivatives into a

lo
O F v |y (X, 09,), ha (X, 63,))F(X)

Index i € A: Foranyi € A, the collection of full partial derivatives

collection of linearly independent terms of the forms X"

hi?
as those in the previous proofs for some (I1,l2). Given that idea, we define
. I al2f 0 0 \\F .
F(0) = (X0 V(X 0), ha(X, 03:)) F(X) = (1, 1) € BG)
1

56



CONVERGENCE RATES FOR GAUSSIAN MIXTURES OF EXPERTS

the set of all linear independent terms deriving from computing the partial derivatives of f
up to order Tg, with respect to 6; and 2. In general, the exact form of B(7) is very difficult
to obtain. For the purpose of this proof, we only need to focus on a subset of B(7) in which
we have a closed form. In particular, we denote a set Bg,}, as follows:

Bsub = {(2,0)} U {(0,[2) | S l2 S 2/fsin}-

We claim that By, is a subset of B(i) for any i € A. We prove this claim at the end of this
proof. From now on, we assume that this claim is given.

Index i € A% For any i € A°, we also have the linear dependence of the set of full

ol - -
(Y|h1(X169,), ha(X69,)) f(X) up to order T > 2.
0(61") 0602005 1 i
Similar to the strategy of case ¢ € A, we also reduce the previous set into a collection of
l
© LV I (X 09), ha(X, 08))FCX), whichs can
1

partial derivatives

linearly independent terms of the forms X"

be defined as:

_ o _ .

.F( ) {Xll ahlf (Y|h1(X7 9?2)7 h2(X7 031))f(X) : (ll? l2) S B(Z)} :

1

However, the structure of B(i) is also very complicated. For the purpose of this proof, we
only consider its subset Bgyp,, which has the following form:

B, :={(0,1),(0,4), (1,2),(2,1),(2,2),(2,3),(3,2), (4,2)}-

The proof for the claim that By, C B(i) for any i € A° is similar to that from claim
Bsu, C B(i) as i € A; therefore, it is omitted. From now on, we also assume that the above
claim is true.

Given the formulations of F (i) and F (i), we can treat A, (i)/Dz_ (G, Go) as the linear
combinations of elements from F(i) divided by Dz, (Gn,Go) for i € A and from F(i)
divided by Dz (Gy,Gy) for i € A°.

Non-vanishing coefficients: Similar to the previous proofs, we assume that all the
coefficients in the representation of Ay (i)/ Dz, (Gn, Go) and B, /Dz_ (G, Go) go to 0 as
n — oo for all ¢ € [ko]. From the deﬁnitions of Beup and Bgu,, we have the coefficients

l
hf(Y\hl(X 69,), h2(X,609,)) f(X) go to 0 when (I1,l2) € Bsup fori € A
_ 1
or (ll, 12) € Bgyp, for i € AC°.
For the simplicity of the presentation, we denote E;, ;,)(i) the coefficients of the element
xu?” f
Ohy

associated with X4

(Y|h1(X, 0%), ho(X, G(QJZ))?(X) when (l1,l2) € Bgup and i € A. Similarly, E(h,lz)(i)
o f

are the coefficients of X' —= o (Y|h1(X,09,), ha(X,65,)) f(X) when (I1,12) € Beup and i € A°.

For (I1,12) = (0,1) as 1 S I < 2Ty, the exact formulation of E;, 1,)(7) can be derived
o

from determining the coefficient of X't ahlj:

1

(Y|hi(X,09), ha(X,63,)) f(X) in the following
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term:

si 1 " ahlf —
n A U} Ab — L (Y|m(X,6%), ha(X,69,)) F(X),
Sy ¥ OO} @ (), 089) 70

for v = (71,72). Equipped with the result of Lemma 13, we can verify that

Eoy(i)=| Y_ W(ZP?J’{(A%J)()} S ) / Fin (Gns Go),

272 19!
12, j=1 Rae

(59)

where the summation with respect to 1, y2, 7 in the numerator satisfies v1 /2 + 7+ 2y, = [,
7 < 71/2 when v is an even number while (y1 +1)/2+ 7+ 2y =1, 7 < (y1 — 1)/2 when
~1 is an odd number. Furthermore, 1 + 2 < Tgin.

By taking the summation of the absolute value of coefficients in B,,/D(Gn, Gp), it
implies that

SIS 5t 0| D (G Go) 0

=1 j=1

From the definition of D5 (G, Go), it leads to

Zzpz] (‘ lz] (1)

=1 j=1

Ffsin /2-|
> / Rsin (GVM GO)

‘(Agn )(2)

‘AHQU

Therefore, there exists an index i* € [ko| such that

pr<

Fain /21N |
> / K/ﬂln(GnJ GO) 7L>
We denote

1 ’—}isin /21
K/sln Gn7G0 sz ](‘ 11 ] ( ) >

As Eq, 1,)(i) — 0 and E(l/ () = 0forie A, je A (I,l2) € B, and (I3,13) € Bsub,
the following holds:

Tsin 2

07 ) )y

‘(Aalz ])( )

+‘A9§i* ;

I'sin

2
+ ‘ Aby;- ;

+‘ (Af7. )P

D%sin (Gru GO)
7Esin (GTm GO)
¥ . DEgin Gn; GO
K (7)== Ecn GO;
for all i € A, j € A, (I1,l2) € Bgup, and (I4,15) € Bsu,. Now, we consider two possible
settings of ¢*.

K, 15)(0) = Eq, 1,)(i) = 0,

Ea ) (7) =0,
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Setting 1 - i* € A: By direct computation, the vanishing of K, 0)( *) to 0 is equivalent

to
Zpl .7 /Dkvﬁm _> O
From the definition of Kgi,, the above result leads to

n = sz ](‘ lz ])(1)

Equipped with the formulation of E(y (7*) in equation (59) for any 1 < [ < 27y, the
following system of limits holds:

(AGT.) 2>

Tsin

Ffsin/ﬂ
> Dz — 1.

Ksin

+‘Aegﬁ ;

PO ((69,.)D) / & {(Mﬁ PiS )}%(A%‘z i)
2 (Jle?*j >

1 ) o T 272 v1!792!
Ko(i") =

Ffsin /21 )

where the summation with respect to 1,72, 7 in the numerator satisfies v1 /2 + 7+ 2vy2 = [,
7 < v1/2 when 7, is an even number while (y; +1)/24+ 7+ 2y =1, 7 < (y1 — 1)/2 when
~1 is an odd number. Additionally, y1 + 2 < Tgin.

Recall that Tg, = T((09; x)(l), k — ko 4+ 1) where ipax = argmaxt((69,)M k — ko + 1).

ieA

Therefore, Tein > T((09)M), & — ko + 1) > F((09:.)1V), 55+) as s+ < k — ko + 1. From the
definition of T((69,.)™), s;+) in Definition 14, the system of polynomial limit (60) does not
hold given the values of T((#?,.)(1), s;+). Therefore, it does not happen under Tg,. As a
consequence, setting 1 that ¢* € A will not hold.

0, (60)

AG;. ;

> p;aj(‘waz 3O
j:

Tsin ‘

Setting 2 - i* € A% Since Tg, > 3, it is clear that (2,2,2) < (Tgin, 2, [Tsin /2]). It implies
that

2 2
D, (G, Go) < D(Gr, Go) : sz g (‘ on. J)u) ‘(Aeni*j)@) +‘A9§i*j )
Since E, 1,)(i*) = 0 for all (I1,13) € Bgu, it leads to
inl s % EEsin(Gn7 GO)— 3
Fy 1) (i) i= === E 1, 1,) (") = 0,

D(G,, Gy)

for all (I1,12) € Bsup. We can check that the vanishing of F(0,4) (7*) to 0 leads to

sz *j

(A7)

/ﬁ(Gn, Go) — 0. (61)
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Furthermore, the vanishings off(lhb)(i*) to 0 for (I1,12) € {(0,1),(1,2),(2,1),(2,2),(3,2),(4,2)}
lead to the system of polynomial limits similar to system of polynomial limits (57) where

the index 4 in this system is replaced by i* and the distance Dy (G, Gp) is replaced by
ﬁ(Gn,GO). Due to the fact that i* € A° following the argument after system of lim-

its (57), we obtain that

>t (| At
j=1

Invoking the results from equations (61) and (62) leads to

Sy* 2
1:Zp;.aj< >/1~)(Gn,G0)—>O,
j=1

which is a contradiction. Therefore, setting 2 that i* € A¢ will not hold.

As a consequence, not all the coefficients of A, (i)/Dx,,. (Gn,Go) and B,/ Dy, (Gpn,Go)
go to 0 as n — oo for all i € [kg]. From here, by means of the Fatou’s argument as that
of the previous proofs, we achieve the conclusion regarding the convergence rate of MLE

under non-linearity setting II of Gg.

2

n 2) /5(Gn,Go) — 0. (62)

2
+

2

(207 D)+ /(A7) P| +] A0,

Proof of claim Bgyp, C B(i) for any i € A: First of all, we demonstrate that the
o'z _
f(Y|h1(X, 69.), ha(X,609,)) f(X) where (l1,12) € Bgup are originated from

hl2

elements X'

some partial derivatives of f with respect to 1 and 6». In fact, by means of Lemma 13,
the pairs of indices (I1,l2) = (0,1) € Bgyp for 1 < I < 2Ty, correspond to the elements

ahlf
——————— (Y[ (X, 09), ho(X,09)) for 1 < |y <
(6" 1 003 ' 2
Tsin- Additionally, the pair (2,0) € By, is associated with element from the derivation of
0% f
7(Y|h1 (X7 90)7 hQ(Xa 00))
o602 1 ’

coming from the partial derivatives

ol f
: i
f(X) for (I1,12) € Bgyp is linearly independent with respect to X and Y. Therefore, we

achieve the conclusion that By, C B(3).

Furthermore, it is not hard to verify that the collection of X" (Y|hi(X,09), ha(X, 69,))

A.7 Proof of Theorem 17

Similar to the previous proofs, it is sufficient to demonstrate the following results:

lim inf V(pa,pa,)/WiHl=(G, Go) > 0, (63)
€20 GO 4, ():Wa(G,Go)<e
inf  h(pa, wlKle G Gy) =0, 64
cenfo) (PG pGe) /W, " (G, Go) (64)

for any (1,1,1,1) < &' € R* < k where k = (2,2,2,2). Proof of inequality (63) is in
Appendix A.7.1 while proof of equality (64) is in Appendix A.7.2.
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A.7.1 PROOF FOR INEQUALITY (63)

We assume that the conclusion of inequality (63) does not hold. It indicates that we can

find a sequence G,, that has representation (39) such that V(pgn,pGO)/W,!””w (Gpn,Gp) — 0
and W, (Gp,Gp) — 0. As 03;; has three dimensions, in this proof we denote A6y, =

(05D, (A05,)P, (AG)3)) for all 1 <i < kgand 1 < j < s;. According to Lemma 23,

we have
ko s; 2
Wl (G Go) 2505t (’Mm ) )
+Z‘Zp1] ?’ = Dli(GTZ?GO)'

=1 j=1
i=1 j=1

2

(AQQZ])( ) (AHQZ])( ) (AHQZJ)(

By means of Taylor expansion up to the second order, we have
baG, (Xa Y) — PGy (X Y) =

Zipw 3 .{Aelm}a {(AQQZ])()}az{(Ae%)()}as{(Aegij)(B)}%

i=1 j=1 1<]|al<2
olelf
89a18(9(1))0‘28(9(2))%8(9(3))

+Z(Z% )10 0 (X, 60, ha (X, 090)FX) + RUX.Y)

:=A,+ B, + R(X,Y),

(Y’hl(X7 9?1)7 hQ(Xv 08@)) ?(X)

where the Taylor remainder R(X,Y) is such that R(X,Y)/D.(G,,Gp) — 0 as n — oc.
From the formulations of expert functions hi, hy, we find that

Ia\f
(Y|h1 (X7 01)7 h2(Xa 02)) =
0070(037)20(057 Y2 0(05” e
X20ataz+2a4 gor+2aet+2az+2a4
LY 1y (X1601), ha(X62).

az+taz+ay a1+2az+2a3+204
2 one

for any a = (a1, a2,a3,04) € N*. Based on the above equation, we can express A, as
follows:

A - Y T o} @m0} @)} @m0}

i=1 j=1 1<|al<2

X2catazt2as goat2as+2a3+204 f

Sestastar  gpe1Tlartasias (Y[h1(X03;), ha(X10%,)) F(X).  (65)
1
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If we define

llal 0\WF .
F- {X o Y (X107

l1 =201 + ag + 20y, ls = a1 + 2a9 + 203 + 20y, O§|O[|S2, 1§’L§k¢0},

then the elements of F are linearly independent with respect to X and Y. The proof
argument of this claim is similar to that in equation (44) in Section 5.2. Therefore, we can
treat A, /D (Gn,Go), Bn/Dx(Gn,Go) as a linear combination of elements of F.
Similar to the proof of Theorem 8 in Section 5.2, we denote F}, ;,(0Y;,69;) as the coeffi-
l
92 f

cient of X4 o (Y|h1(X169,), ha(X69,)) F(X) in A, and B,, for any l; = 201 +ag+2ay, Iy =

1
a1 + 2ag + 2a3 + 20y, 0 < |of < 2 and 1 <4 < ky. Then, we can check that the coeffi-

l2 f
cients of X4 (;h (Y|h1(X169)), ho(X|609.)) f(X) in A,/ Dy(Gr, Go) and B,/ D,(G, Go) will
I

be Fy, 1, (9%‘7 ng‘)/DH(Gna Go).
Assume that all of these coefficients go to 0 as n — oco. By taking the summation of
|Fo,0(0%;,09,)/Dw(Gn, Go)| for all 1 < i < ko, we obtain that

ko Si
(21350t = #01)/DulG ) . (66)

i=1 j=1

When [; = 4 and [y = 2, the only « that satisfies these equations is a = (2,0,0,0). It
indicates that the summation of |Fy2(69;,609,)/Dy(Gr, Go)| for all 1 < i < kg leads to

(>3

i=1 j=1

2

When [y = 0 and I3 = 4, only a = (0,2,0,0) satisfies these equations. By summing all the
coefficients |Fp 4(0Y;,69;)/ Dy (Gr, Go)| for all 1 < i < kg, we find that

(S

=1 j=1

(Agg; D

)/D (G, Go) = (68)

Similarly, when (I1,l2) = (2,4), we have a = (0,0, 2,0) or when (I1,1l2) = (4,4), we have o =
(0,0,0,2). By considering the summation of the coefficients of |Fs4(6Y;,65,)/Dsx(Gn,Go)|
or [Fy4(69,,09.)/ D (Gy,Go)| for all 1 <i < kg, we arrive at

i=1 j=1

(fipzz(

i=1 j=1

AHQZJ ) @

>/D,{(Gn, Go) — 0

2
N )/Dn(Gn, Go) — 0. (69)
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Combining the results from equations (66)-(69) leads to

ko s; 2 2 2 2 ko P
S35 (\M;@j (200 | a0 +|(a8g,)® ) SRS )
=1j5=1 i=1 j=1
1=
DR(GTM GO) - 0,

which is a contradiction. As a consequence, not all the coefficients in the linear combinations
of A,/Dy(Gp,Go) and B,,/D.(Gy,Go) go to 0 as n — oo. From here, using the Fatou’s
argument in Step 4 of the proof of Theorem 7 and the fact that the elements of F are
linearly independent with respect to X and Y, we achieve the conclusion of claim (63).

A.7.2 PROOF FOR EQUALITY (64)

Our construction of a sequence G,, € O(€2) to satisfy equality (64) will be similar to that of
equality (26) in the proof of Theorem 7. Here, we briefly sketch the proof for equality (64)

to avoid unnecessary repetition. For any v’ < k = (2,2,2,2), we have lrgj£4(n’)(i) < 2.
<i<

Now, we construct a sequence of mixing measures, G, = Zf’f{l 7'('?5(9?. o) with kg + 1
components as follows: (72,07, 0%) = (7 ,, 0?(1._1), 98(2._1)) for 3 < i < ko+1. Additionally,
=y =1/2, (071,08) = (6%, — 1/n, 03, — 13/n), and (01, 05,) = (6%, +1/n, 65, +13/n).
From here, by performing Taylor expansion up to the first order around 69, and 69; as in
the proof of equality (26), we find that

pGn(X7Y) _pGo(X7Y) = E(Xa Y),
where R(X,Y) is a Taylor remainder such that the following limit holds

-2
XY —4
pay (X, VYW=, Gy) p—2mini<ica{(#) 0}

As a consequence, we eventually achieve that
o[l
12 (PG, o) / W2l (G, Go) — 0
as n — 0o, which leads to the conclusion of equality (64).

A.8 Proof of Theorem 18

It is sufficient to demonstrate the following results:

lim inf V(pa,pa,)/WlHl=(G, Go) > 0, (70)
€0 GeOy 4, (Q): Wi (G,Go)<e

inf  h(pg, Wil (q qo) =0, 71

cblo) (Pcs pGo) /W " (G, Go) (71)

for any (1,1,1,1) < &' € R* < k where k = (2,2,2,2). Proof of inequality (70) is in
Appendix A.8.1 while proof of equality (71) is in Appendix A.8.2.

63



Ho, YANG, JORDAN

A.8.1 PROOF FOR INEQUALITY (70)

We assume that the conclusion of inequality (70) does not hold. It indicates that we can
find a a sequence G, that has representation (39) such that V(pgn,;DGO)/W,!HHoo (Gpn,Gp) = 0
and W (Gpn,Go) — 0. As 91” and 6o;; both have two dimensions, in this proof we denote
ABY = (A7) M, (A07)P) and AGy; = ((Af,,)Y, (AGy;)?)) for all 1 < i < ko and

11] 215
2)

1 <j <s;. From Lemma 23, we obtain that
54
+Z‘sz] 7(,)| = DH(GH7G0)'

=1 j=1

2 2 2

()

11]

Wikl (G, Go) <Z§:p”(

=1 j=1

’ (Aelz])( )

(g,

+(asg,)®

By means of Taylor expansion up to the second order, we have
baG, (X’ Y) - pGo (X Y) =
Si 1 o (%) a3 ) (7]
=1 j=1 1<]a|<2 :

olelf

Y|hi(X,609), ho(X,69)) F(X
Xa(9<1>)a1a(9<2>)aza(9“>)aaaw§2>)a4( [P (X, 01), ha(X, 03:)) F(X)

+Z<2Pu > (Y[h1 (X, 6Y;), ha(X, 09,)) F(X) + R(X,Y)
=A, + B, +R(X,Y),

where the Taylor remainder R(X,Y) is such that R(X,Y)/D;(Gn,Go) — 0 as n — oo.
From the formulations of expert functions hy, hs, we find that

olel ¢

0(01")0(077)20105 )2 0(05” )+
X 202taz+3aa goataz+2az+204 f

(Yhi(X,61), ha(X,0)) =

03ty ah?1+a2+2a3+2a4 (Y|h1 (X‘al)’ hQ(X’92))’

for any a = (a1, a2,a3,04) € N*. Based on the above equation, we can express A, as
follows:

i=1 j=1 1<]|a|<2

X 202taz+3aa goataz+2az+204 f

X Y |hi(X63;), ha(X165;)) f(X). (72)

Qa3 +ay ah?1+a2+2a3+2a4 (
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If we define

l
F= {thh (¥ oy (X162,), o (X 1603,)) F(X) :

l1 =2a9 + ag + 3ay, lo = a1 + as + 2a3 + 2a4, 0 < ’Oz‘ <2, 1<:1< k‘o},

then we can check that the elements of F are linearly independent with respect to X and Y.

Therefore, we can treat A, /D..(Gy, Go), Bn/Dk(Gr, Go) as alinear combination of elements
o' _

of F. We denote F}, 1,(69,,69;) as the coefficient of X" ahf(Y]hl(Xw ), ha(X609)) F(X)

in A, and B, for any 1 = 2ap + a3 + 3ay, o :a1+a2+2a3+2a4, 0<|o|]<2and 1<

O] 5 (X160,), hal X 16 F(X)

i < ko. Then, we can check that the coefficients of X' EYXE
1
in A,,/Dy(Gn,Go) and By, /D, (Gy, Go) will be Fy, 1,(69;,63,) /Dy (Gr, Go).
Assume that all of these coefficients go to 0 as n — oco. By taking the summation of
|Fo.0(6%.,65.)/Dy(Gr, Go)| for all 1 <i < kg, we obtain that

(Z S - 1) /DG i) 0 (73)

=1 j=1

When [; = 0 and ls = 2, the only « that satisfies these equations is o = (2,0,0,0). Given
that result, the summation of [F2(6%,,609.)/Dy(Gr, Go)| for all 1 < i < ko leads to

(S5

=1 j=1

AHW

)/D (G Go) = 0. (74)

When [; = 4 and Iz = 2, only a = (0,2,0,0) satisfies these equations. Summing all the
coefficients |Fy2(0Y;,09,)/Dx(Gp, Go)| for all 1 < i < ko leads to

(S5

i=1 j=1

2
(Agy)P )/Dn(Gn, Go) — 0. (75)

With similar arguments, when (l1,l2) = (2,4), we have a = (0,0,2,0) or when (I1,l3) =
(6,4), we have a = (0,0, 0,2). By considering respectively the summation of the coefficients
of [F2.4(0Y;,09.)/Dx(Gr, Go)| or |Fs4(0%;,605.)/Dy(Gn, Go)| for all 1 <i < kg, we find that

(S5

=1 j=1

(S5

i=1 j=1

(Agg, )W

>/Dn(Gna GO) -0

(Agg;)P

)/Dmn, Go) = 0. (76)

Combining the results from equations (73)-(76), we obtain

ko s; 2 2 2 Si
&3 (\ Ag7) \(Af)m@) \(A%@])(” \(Aesz]) ) n 2 5oty
1=
DH(GTLa GO) ~ 0’
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which is a contradiction. As a consequence, not all the coefficients in the linear combinations
of A,/D.(Gp,Gp) and B,,/D.(Gp,Gp) go to 0 as n — oo. From here, using the Fatou’s
argument in Step 4 of the proof of Theorem 7 and the fact that the elements of F are
linearly independent with respect to X and Y, we achieve the conclusion of inequality (70).

A.8.2 PROOF FOR EQUALITY (71)

The proof of equality (71) is similar in spirit to that of equality (64); therefore, we only
provide a proof sketch for this equality. For any ' < rk = (2,2,2,2), we construct a
sequence Gy, € Ok(Q) such that G,, = Zfﬂ'l 77?5(9?_79,21_), with ko + 1 components as follows:
(7,07, 05.) = (W?_l,eg(i_l),eg(i_l)) for 3 < i < ko + 1. Additionally, 7} = 7% = 1/2,
07,05) = (09, — 12/n,09, — 12/n), and (0%, 05,) = (09, + 12/n,09, + 15/n). From here,
by performing Taylor expansion up to the first order around 69, and 69, as in the proof of
equality (26), we find that

pGn(X7Y) _pGo(X7Y) = R(X7 Y)v

where R(X,Y) is a Taylor remainder such that the following limit holds

/ RAEX”Y) d(X,Y) 3 .O(n ) — — 0.
pay (X, VYW=, Gy) p—2mini<ica{(#) 0}

As a consequence, we eventually achieve that

hQ(pGn’PGo)/WN/f/“,“(Gn, Go) = 0
as n — 0o, which leads to the conclusion of equality (71).

A.9 Proof of Theorem 19

We will demonstrate that

lim inf V(pa,pa,)/WiHl=(G, Go) > 0, (77)
€0 GEO) 5, (Q):Wa(G,Go)<e

inf & Wil (G Go) =0 78

aebo) (PG, pGy) /W,y " (G, Go) =0, (78)

for any (1,1,1,1) < &' € R* < k where x = (7,2, [F/2],2). Without loss of generality, we
assume that 7 is an even number. The proof when 7 is an odd number is similar. Proof of
inequality (77) is in Appendix A.9.1 while proof of equality (78) is in Appendix A.9.2.

A.9.1 PROOF FOR INEQUALITY (77)

Assume that the conclusion of inequality (77) does not hold. Therefore, we can find a
sequence G, that has representation (39) such that V(pGn,pGO)/W,ﬂH”"O(Gn, Go) — 0 and

W,.(Gr,Go) — 0. As 61;; has two dimensions and ng-j has two dimensions, in this proof we
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denote AfY;; = ((Agy )N, (A6,

and 1 < j < s;. From Lemma 23, we have

Y S

=1 j=1

)@)) and A,

219 — ((Aegm)( ) (Aen

5) @) for all 1 < < ko

)

+Z ijpu 79| := D (Gy, Go).

=1 j=1

2 /2

‘ (Aelz])( )

+’ (Aegz‘j)(g)

+‘ (Agg;,)™

Invoking Taylor expansion up to the 7-th order, we find that
ba, (X Y) — PGy (Xa Y) =

Zipw Z a.{(Ael”)( )}a {(Agm)@)}m{(A@gij)(l)}ag{mgm)( )}%

i=1 j=1 1<|a|<F
olelf
X
6(9(1))a13(9(2))a23(9(1))a38(9§2)>a4

(Y|h1 (Xv 9%)7 h2(X7 931)) ?(X)

+Z(2p13 > (Y1 (X, 6Y;), ha(X, 09,)) F(X) + R(X,Y)
= Ap + By, + R(X,Y),

where the Taylor remainder R(X,Y) is such that R(X,Y)/D.(Gpn,Go) — 0 as n — oc.
Since hi(X,60;) = 951) + 952)X2 and ha(X,6y) = 951) + 0&2)X2, we can verify that

olelf

0(6;")1 016y y020(65 ) 00057
X 202+204 Hartaz+203+2ay f

(Y1hi(X,61), ha(X,0)) =

(Y|h1(X161), ha(X]62)),

a3+aq a1tas+2a3+2a4

for any o = (a1, a0, a3, 04) € N%. Given the above equation, we can rewrite 4,, as follows:

£ 5 ) fonse) fone) o)

i=1 j=1 1< <7

2a2+204 Hortoaz+2a3+204 -
Xmmo L vy (X162,), ha(X109,))F(X)- (79)

X
a3+aq a1taz+2a3+204

Similar to the previous proofs, we define

l2
F={ xS Lo (xiot). X185
1

l1 =2a9 4+ 204, lo = a1 + ag + 203 + 2014, OSIOASF, 1§i§]€0},
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Based on the proof argument similar to that of the claim in equation (44), we can demon-
strate that the elements of F are linearly independent with respect to X and Y. Therefore,
we can treat A, /Dg(Gn, Go), Bn/Dx(Gr,Go) as a linear combination of elements of . We

ol
denote £, 1,(0Y;,69,) as the coefficient of X4 8hf(Yh1 (X169,), h2(X169,)) f(X) in A, and

1
By, for any 1 = 2ag + 2y, lo = a1 + ag + 2a3 + 2a4, 0 < |a| < 7 and 1 < i < ky. Then, we

l
can check that the coefficients of X" 8hf(Y\h1(X]6 ), ha(X109,))F(X) in A,/ Dk (Gy, Go)
I

and By, /Dy (Gy, Go) will be Fy, 1,(6%;,609,)/Dy(Gn, Go).
Assume that all of these coefficients go to 0 as n — oco. By taking the summation of
|Fo.0(0;,69.)/Dw(Gn, Go)| for all 1 < i < ko, we obtain that

<Z | ipw )/D (G, Go) — (80)

i=1 j=1

When [; = 4 and I, = 2, we can check that a = (0,2,0,0) is the only solution to these
equations. Similarly, when [y = 4 and I, = 4, the only solution to these equations is @ =
(0,0,0,2). Therefore, the summation of | Fy 2(6Y;,65.)/ D (G, Go)| and | Fy 4(6%;,63,) /Dy (Gr, Go)|
for all 1 <7 < kg leads to

<Zzpw Aelw )/DH(GmGO) —0
i=1 j=1

(Zzpw (Ab3;5) 2) >/DH(GnaG0)_>0- (81)
i=1 j=1

Combining the results from equations (80)-(81), we find that

2

(A7) +|(Adg;,))

)+zrip,]—wr

=1

Dm(GnaGO) 0

The above result indicates that

7

(AQ?’LJ

)( ) )(1)

213

F/2>

i=1j=

oy

Dﬁ(Gna GO)

Hence, we can find an index i* € {1,2,...,ko} such that

7

> p;aj( (207, 0| 120, )

L=
DH(GTMGO) 7L> 0
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il

+|(A8g;. )¢

7/2
)

asn — oo. By denoting M, (69;,609,) = Fy,,(6;,69,)/ i: i <‘(A6§lZ ])( )
i=1
for all 1 <17 < kg, we obtain that

1 Fy,(69,,69,)
My, (69;,09;) = fﬁ

for any 1 < i < kg and 0 <[y < 27. From the formulation of nglz(egi, Ggi), the above limits
with M;, (69..,69..) can be rewritten as:

(o751 a3
Ag. )0 >} {(Aesz J><1>}

Zp@ > {(

=1 a1+26¥3:£2 29301 !lag!
. al—‘raggr T ,’,/2 — 0
5 o (|00 +| a0 )
‘7:

for any 0 < ls < 27. According to the argument in Step 3 of the proof of Theorem 8,
that system of limits cannot happen. As a consequence, not all the coefficients in the
linear combinations of A, /D, (Gy,Go) and B,,/D;(G,,Go) go to 0 as n — co. From here,
using the Fatou’s argument in Step 4 of the proof of Theorem 7 and the fact that the
elements of F are linearly independent with respect to X and Y, we achieve the conclusion
of inequality (77).

A.9.2 PROOF FOR EQUALITY (78)

The proof of equality (78) is similar to that of equality (38). Hence, we only provide the
proof sketch. In this proof, we consider two settings of ¥’ < k = (7,2,7/2,2).

Case 1: K = (K,/(l),lil(z), 13) ’(4)) when at least one of K@ k'Y < 2. Under this
setting, we construct G,, = Zf°+ 7' 0(oy. 6p,) such that (7T L0 00 = (79, 9(1)(1‘71)’ 98(171))
for 3 <i < ko+1. Additionally, 71'1 =y =77/2, ((07)W, (03)D) = ((69,)D, (69)D)) for
1<i<2, and (6)® = 03)) — 1/n, 03) = (63)P — 1/n, (61) = (69 +1/n,
(03,)® = (09,)® +1/n. From this construction of G,,, we can verify that W,‘J,ﬁ leo (Gp, Go) <

—min{ @D} _ -

n 2). Based on Taylor expansion up to the first order around 69;, 69, ,

we have
pGn(X7Y) _pGo(X7Y) = Rl(X7Y)7

where R1(X,Y) is Taylor remainder such that

—0

2 2 —4
N (basa) / irleshs. AXY) 3 —on )
WSIHH llo (Gny GO) e (X, Y)W,S/”H lloo (Gn; GO) n—2min{x'(2) x4}

as n — oo. Therefore, we achieve the conclusion of equality (78) under Case 1.
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Case 2: «' = (¥'1,2,x'®),2) when (/1/1(1),/1’(3)) =< (7,7/2). Under this setting of k', we
construct Gy, = Zlf 1 T O(gm, o3y such that (7', 0% i+k—ko) HS(Hk_kO)) (79, 69;,69,) for
2<i<kp Forl1<j<k—ko+1, wechoose (9?].)@) = (09, (ng)@) = (981)(2), and

2b% m(c%)?
o)D) = (9 (1)_|_ 771 SO T Y i A & S s K
(075) (011) ; (655) (621) 20 T SR
where (¢}, al, bf)f_lkOH are the non-trivial solution of system of polynomial equations (6)

when r =7 — 1. From here, by performing Taylor expansion around (69;,69,) and arguing
similarly as Case 2 in the proof of equality (38) in Section 5.2.2, we obtain that

2r—2
PG, (X,Y) — pGo (X,Y) Z O(n 77" Y|h1(X 9 i)y hQ(Xvegi))?(X)—l_E?(va)?

where Ry(X,Y) is Taylor remainder such that the following limit holds

R, —2r
/ RQN(X,}/) AX.Y) = o)
yYen (X, }/)I/I/QIH’i lloo (Gn7 GO) n72 m1n{n’(1)7ﬁ’(3)}

Therefore, we achieve that

—~9 / .
h2(pGn,pGo)/WmH [ (G, Go) — 0
as n — 00. As a consequence, we reach the conclusion of equality (78) under Case 2.

A.10 Proof of Theorem 20
We will demonstrate that

lim inf V(pa,pa,)/WiHl=(G, Go) > 0, (82)
€0 GeOy 4, (Q): W (G,Go)<e

inf  h Wil Go) = 0 83

et o) (pa,pay) /W " (G,Go) =0, (83)

for any (1,1,1,1) < ' € R* < k where x = (7, 2, [7/2],2,2). Without loss of generality, we
assume that 7 is an even number. The proof when 7 is an odd number is similar. Proof of
inequality (82) is in Appendix A.10.1 while proof of equality (83) is in Appendix A.10.2.

A.10.1 PROOF FOR INEQUALITY (82)

Assume that the conclusion of inequality (82) does not hold. It suggests that we can find
a sequence G, that has representation (39) such that V(pGn,pGO)/W,.gR”“(Gn,GO) — 0
and W,(Gn,Go) — 0. In this proof we denote AGY,; = ((A67)1), (AF7,)?)) and ABY,. =
((AOQZ])( ),(AQ%)@), (A@;Lij)(?’)) forall 1 <i<kpand 1l <j<s; From Lemma 23, we
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have
7 2 7/2 2
Wikl (G, Go) <Zzpw< or. )V ’(th)@) +’(A9;gj)(1) ‘(M%)()
i=1 j=1
’(AQQU (3) ) Z’sz] i DH(GH’GO)'

=1 j=1

An application of Taylor expansion up to the 7-th order leads to
pGn (X Y) — PGy (Xa Y) =

S5 3 S0} ) famm) fam)e ) {amo)”

i=1 j=1 1<|a| <F
alel ¢
X
8(9(1))al8(0(2)>a28(9(1))a38(9§2))a43<953))a5

+Z<Z% ) 2O 1 (X, 60, ha (X, 090)F(X) + RUX.Y)

= A, + B, + R(X,Y),

(Y‘hl(Xﬂ 0?1)7 hQ(X7 9(2)1)) ?(X)

where the Taylor remainder R(X,Y) is such that R(X,Y)/D.(Gp,Go) — 0 as n — oc.
Since hy(X,01) = 60V + 0P X2 and hy(X, 0) = 65 + 65 X + 65 X2, we find that

olel
(01001 )020(05 )5 005 )10/(057) s

X 200t04t2a5 gaitazt2a3+20a+2as f

(Y|h1(X,01), ha(X,62)) =

az+astas 8h?1+a2+2a3+2a4+2a5 (Y[h1(X[601), ha(X102)),

for any o = (a1, s, a3, a4, o) € N°. Therefore, we can rewrite A,, as follows:

An:

o (U N (O (9 e

i=1 j=1 1<|a|<F

X202t0a4t2a5 goaitazt2az+204+2a5 .
Ly | (X169,), ha(X]68,)) T (). (84)

X
ag+agtas ai+az+2az+2a4+2a5
2 5 O

Similar to the proof of Theorem 17, we define

XD —
7 =t L O X8 et X168 700

1 =209 + ag4 + 205, lo = a1 + as + 2a3 + 204 + 205, OSICKISF, 1§i§k0},
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Based on the proof argument similar to that of the claim in equation (44), we can demon-
strate that the elements of F are linearly independent with respect to X and Y. Therefore,
we can treat A, /Dg(Gn, Go), Bn/Dx(Gr,Go) as a linear combination of elements of . We

ol
denote £, 1,(0Y;,69,) as the coefficient of X4 8hf(Yh1 (X169,), h2(X169,)) f(X) in A, and

1
B, for any I} = 2ag + aq + 205, la = a1 + a2 + 2a3 + 2a4 + 2a5, 0 < |a] < 7and 1 <

I
i < ko. Then, we can check that the coefficients of X gh (Y|h1(X69,), ha(X69.)) F(X)
)
in A,,/Dy(Gr,Go) and By, /Dy(Gr, Go) will be Fy, 1,(69.,609.)/Dy(Gr, Go).

Assume that all of these coefficients go to 0 as n — oo. By taking the summation of
|Fo.0(0;,09,)/ Dw(Gr, Go)| for all 1 < i < ko, we obtain that

ko S;
(Z Ny w?|)/DH<Gn,Go> o, (85)

i=1 j=1

When I3 = 4 and ls = 2, we can check that a = (0,2,0,0,0) is the only solution to these
equations. Therefore, the summation of |Fy 2(6Y;, Qgi)/Dn(Gn, Gyp)| for all 1 < i < kg leads
to

AHMJ

<Zipm

i=1 j=1

)/D (G Go) — (86)

When [; = 2 and ls = 4, only a = (0,0,0,2,0) satisfies these equations. By taking into
account all the coefficients |F2 4(6,,09,)/Dy(Gr, Go)| for all 1 < i < ko, we find that

<Zipw

i=1 j=1

(Agg)@

)/D (G Go) = 0. (87)

Similarly, when I3 = 4 and Iy = 4, we have a = (0,0,0,0,2) as the unique solution to these
equations. By considering the summation of the coefficients |Fy 4(69;,69,)/Dy(Gy, Go)| for
all 1 <1 < kg, we arrive at

<Zi:pw

i=1 j=1

(Agg)®

)/D (G Go) = 0. (88)

Combining the results from equations (85)-(88), we find that

2 2

zl zpw(\wm“ \(A%)“ \(A%) )+2\zpw—w°\
i=1j
DR(GTMGO) -0

It indicates that

ko s 7 . 7/2

3 5% o (|(aom) | +|asg | )

=) — 1.

DR(GTMGO)
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Hence, we can find an index i* € {1,2,...,ko} such that
Sy 7 7/2
5 ot (| @m0 | +|camg )
L=""" 40

DH(GTH GO)

il

+|(A8g; )¢

7/2
)

w51 00, By denoting My (0,68) = Fu, 05,080/ 3 ot (| (a0 )
i=1
for all 1 <17 < kg, we obtain that

l Fou, (9(1)z‘v 9(2)1‘)
L D(Gy,Gy)

for any 1 <i < kg and 0 < Iy < 27. From the formulation of Fy,(6Y;,69,), the above limits
with M, (69..,69,.) can be rewritten as:

o {01 {og w}”
2. Pirj

Ml2(0117‘9 z) - —0

a1+2as=lp 20‘3051!043!
) Lo 7 7/2 —0

for any 0 < Iy < 27. According to the argument in Step 3 of the proof of Theorem &, that
system of limits cannot happen. As a consequence, not all the coefficients in the linear
combinations of A, /Dy (Gy,Go) and B,,/D.(Gy,Go) go to 0 as n — oco. From here, using
the Fatou’s argument in Step 4 of the proof of Theorem 7 and the fact that the elements of F
are linearly independent with respect to X and Y, we achieve the conclusion of claim (82).

A.10.2 PROOF FOR EQUALITY (83)

Due to the similarity of this proof to the previous proofs, we will only provide a proof sketch
of equality (83). We divide the proof into two settings of k' < k = (7,2,7/2,2,2).

Case 1: «' = (/1’(1),/1'(2),/1’(3) /(4) /@’(5)) when at least one of £, k’@) k') < 2. Under
this setting, we construct G,, = ZfOJfl 'O (gn. pp.) such that (7', 07;,05,) = (794, 0?(1 1) Qg(z 1))
for 3 <i < ko+1. Additionally, 7T1 = =70/2, ((9?1) NS )) = ((911)(1), (69,) )) for
i <2, and 0) = O8)) ~1/n, @3)) = (08)3 1/, (05) = (@) 1/,
(07,)3 = (09)@ + 1/n, (05,)P = (69,)P + 1/n, (03,)3) = (69,)® + 1/n. From this con-
struction of Gy, we can verify that /W/,!,'{/”“’ (Gn,Go) <n~ min{x'( w" @} o(n=2). Given
that formulation of G, when we perform Taylor expansion up to the first order around
69,69, the following equation holds

pGn(Xay) _pGo(Xay) = Rl(X>Y)7
where R;(X,Y) is Taylor remainder such that

2 2 —4

X, Y
1 ba,pa) / (X, 1) AXY) S g )
IJV’?/HH Hoo(Gn’ GO) e (X, Y)‘VS/HK ||00(an GO) n—2 mln{n’( ) k! (4) ! )}

—0
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as n — oo. Therefore, we achieve the conclusion of equality (83) under Case 1.

Case 2: K = (m'(l),2,m’(3),2,2) when (/@/1(1), '3)) < (7,7/2). Under this setting of «’, we
construct G, = 3% i 0oy, 05,) such that (w2, p 07k roys 050 k—ko)) = (72, 69.,605.) for
2 <i < ko For1<j<k—ko+1, we choose (67,)?) = (69)), (63,)®) = (69,)®, (63,)® =

(981)(3) and

* 2 m(c
nA() g0 ) Y g g0 ) o 2% e TG
(07" = (01)" + o (03)" = (031)" + o T = Zf:_f0+1(c;)27

)2

where (¢}, a, b;‘)i:lkﬁl are the non-trivial solution of system of polynomial equations (6)
when 7 =7 — 1. From here, by performing Taylor expansion around (69,,69;) and arguing

similarly as Case 2 in the proof of equality (38) in Section 5.2.2, we obtain that

2r—2 1
P, (X,Y) = py(X,Y) = 3 00 ) S b (VX 00), (X, 68))7() + Ro(X, V),
1

=7

where Ry(X,Y) is Taylor remainder such that the following limit holds

R, —2F
/ By(X,Y) d(x.y) < O 1 ) L.
yzen (X7 Y)WS/HH oo (Gn, GO) n‘2mm{"i’( )75/(3)}

Therefore, we achieve that

o[l
hz(l”UGn,pGo)/WH,N I (G, Go) = 0
as n — 00. As a consequence, we reach the conclusion of equality (83) under Case 2.

Appendix B. Auxiliary results
In this appendix, we provide two lemmas for the whole results in the paper. To streamline

ko

the discussion, we recall that Gy = > W?(S(eg_ 69.) is the true mixing measure with exactly
i=1 R

ko components such that 9?2- € Qjforalll <j<2and1 <14 < kg where Q; C RY are

compact sets for some given ¢; > 1 as 1 < j < 2. Furthermore, 0 = Q2 x Q».

Lemma 22. Assume that k € N9 45 q given vector order of generalized transportation
distance and k > ko. For any sequence G, € Ok(Q) such that W (Gy,Go) — 0 as n — oo,
we can find a subsequence of Gy, (by which we replace by the whole sequence Gy, for the
simplicity of presentation) that has the following properties:

(a) (Fized number of components) Gy, has exactly k number of components where kg+1 <
k<k.
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(b) (Universal representation) G,, can be represented as:

ko+l s;
R T
Gn = Z Zpij&(eﬁ'jﬁgzj)’
i—1 j—1

where | > 0 is some non-negative integer number and s; > 1 for 1 < i < ko +1

ko+l _ Sq
such that »_ si = k. Furthermore, (07;;,05,,) — (69.,69.) and > Py = 7 for all
i=1 j=1

1 <i<ko+I. Here, 77? =0 as ko+1<i<k while (9%,0&) are extra limit points
from the convergence of components of Gy, as kg +1 < i <k.

Lemma 23. Given the assumptions with Gy and G, as those in Lemma 22, we denote
nd = ((9%,9%) and n;; = <9{Lij,0§ij> for1<i<koandl<j<s; Foranyr € NOLTZ ye
define the following distance:

ko+l s ko+l| s
DA Go) = 3 S al> (o) + |3ty
i=1 j=1 i=1 |j=1

where the pseudo-metric d(.,.) is defined as in Section 1.2. Then, the following holds:
WKl (G, Go) 2 Di(Gi, Go).

The proofs of the above lemmas are similar to those in (Ho and Nguyen, 2019); therefore,
they are omitted.

Appendix C. Convergence rate of density estimation

In this appendix, we provide a proof for convergence rate of density estimation of over-
specified GMCF in Proposition 5. Our proof technique follows standard result on density
estimation for M-estimators in (van de Geer, 2000). To ease the presentation, we adapt
several notion from the empirical process theory into the setting of over-specified GMCF.

C.1 Key notation and results

We denote Pr(Q) := {pc(X,Y) : G € Ox()}. Additionally, we define N (e, Pr(2), ||.]lo0)
as the covering number of metric space (Pr(€2), ||.|loc) and Hp (e, Pr(€2), h) as the bracketing
entropy of P(€2) under Hellinger distance h. We start with the following result regarding
the upper bounds of these terms.

Lemma 24. Suppose that 01 and Q9 are respectively two bounded subsets of R™ and R%.
Then, for any 0 < e < 1/2, the following results hold

log N (€, P (), [|.llo0) < log(1/e), (89)
Hp(e, Pr(Q), h) 3 log(1/e). (90)
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The detail proof of Lemma 24 is deferred to Appendix C.3. To utilize the above bounds
with covering number and bracketing entropy of Pi(2), we will resort to Theorem 7.4
of van de Geer (2000) for density estimation with MLE. In particular, we denote the fol-
lowing key notation:

Pe(€) = {p(o60y2(X.Y) 1 G € O}, P2 (Q) 1= {p{ (X, V) - G € O},

For any 0 > 0, we define the Hellinger ball centered around pg,(X,Y’) and intersected with
P, L2 (Q) as follows:

—=1/2 —=1/2
P(.0) = {72 € P h(fipe,) < 8},
Furthermore, the size of this set can be captured by the following integral:

1)
Ts (5731/2(9,5)) = / 1/2( 731/2(Q,u),||.||2>du\/6.

52213

Equipped with the above notation, the results from Theorem 7.4 of van de Geer (2000)
regarding convergence rates of density estimation from MLE can be formulated as follows.

Theorem 25. Take U(5) > jB< 1/2((2,5)> in such a way that W(§)/5 is a non-
increasing function of §. Then, for a universal constant ¢ and for

Vndl > c¥(5y),

we have for all § > 6, that

nd>
P (h(p@n7p(;0) > 5) < cexp (_62) )

C.2 Proof for Proposition 5

Given Theorem 25, we are ready to finish the proof of Proposition 5. In fact, we have
Hg (P (@w), I112) < Hp (u, P(Q,u), ). (91)

for any u > 0. The above inequality leads to

d
s (5 791/2(9,5)) < / HY? (u, Pr(Q,w), h) du v 6
62/213
1)
3 / log(1/u)du V 4,
52/213
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where the second inequality is due to the inequality (90) in Lemma 24. Therefore, we
can choose ¥(§) = 5(log(1/5)1/2 such that ¥(5) > Jp (5,5,16/2((2,5)). From here, with

o =0 ( [logn/ n]l/ 2), the result of Theorem 25 indicates that

P(h(pg, ,pc,) > C(log n/n)"?) < exp(—clogn)

for some universal positive constants C and ¢ that depend only on €. As a consequence,
we reach the conclusion of Proposition 5.

C.3 Proof for Lemma 24

The proof of the lemma follows the argument of Theorem 3.1 in (Ghosal and van der Vaart,
2001). To facilitate the proof argument, our proof is divided into two parts.

Proof for covering number bound (89): For any set £, we denote & an e-net of £ if
each element of £ is within e distance from some elements of &. Since Q7 and Q9 are two
bounded subsets of R% and R% respectively, there exist corresponding e-nets Qi(e) and
Qo (€) of these sets with M; and My elements. We can validate that

1 qik 1 q2k
M, < C1(CI1,]€791) <6> ) M, < 02(q27k792) <6> ’

where ¢;(g;, k, ;) are universal constants depending only on ¢;, k, Q; for 1 < i < 2. Further-
more, we denote A(e) an e-net for k-dimensional simplex. It is known that the cardinality
of A(e) is upper bounded by (5/€)*. We denote

S = {pg € Pr(Q) : weights and components of G are on A(e) x Q(€) x Qa(e)}.

For each pg € Pi(2) where G = Zf;l Ti0(9y;,0,) Such that k' < k, we denote G =
Ef;l Tid(gr, 05, such that (67;,605,) € Q1(e) x Qa(e) and (03;,03;) are the closest points
to (614, 02;) in this set for 1 < i < k’. Additionally, we denote G* = Ziil W;ké(gfwggi) where
7} € A(e) and 7 are the closest points to m; in this set for 1 < ¢ < k’. From the formulation
of G*, it is clear that pg+ € S. Invoking triangle inequality with sup-norm, the following
inequality holds:

Ipa(X,Y) = pa. (X, Y)]leo < llpa(X,Y) = pa(X, Y)lloo + [Ipg(X, Y) = pa. (X, V) | o-

According to the definition of G and G*, direct computation leads to

k/

IPa(X,Y) = pe. (X, Y)lloo < D ImF = ml If (Y[ha(X, 05), ha(X, 05)) F(X)|loo S e (92)
i=1
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Furthermore, given the formulation of G, we obtain that

k.l
IpG (X, Y) = pa(X, V) oo < Y mll F(X)[f (Y[h1 (X, 65:), ha(X, 65,))
=1

— f(Y|hi(X, 015), ha(X, 09:)) | |oo

k/
3D mi (165, — Ovally, + 1165 — Bailly) S e,
=1

where the second inequality is due to the fact that the expert functions h; and hs are twice
differentiable with respect to their parameters #; and 62 and the space X is a bounded
set. This inequality implies that the covering number for metric space (Pr(€),||.|/oo) will
be upper bounded by the cardinality of S. More precisely, we obtain the following bound

5 k 1 (q1+q2)k
N (PO, Hlo) < ealans b a0 (2) (1)

€

Putting the above results together, we reach to the conclusion of the bound with covering
number (89).

Proof for bracketing entropy control (90): Recall that, from the assumption with
expert functions h; and hg, we have hi(X,0;) € [—a,a] and ha(X,02) € [y,7] for all
X e X, 01 € Q1, and 05 € Qs where a is some positive constant depending only on X and
Q.

Now, let 7 < € to be some positive number that we will chose later. From the formulation
of univariate location-scale Gaussian distribution, we can check that

1

fY[h1 (X, 01), ha(X,02)) < Vo

exp (—Yz/(Siz)) ,

for any |Y'| > 2a and X € X. Therefore, if we define

\/21?7 exp (—Y?/(87%)) f(X), for |Y|>2a

H(X,Y) = . . (93)
mlf( ) or |Y| < 2a,

then we can verify that that H(X,Y') is an envelope of Pr(2). We denote g1,...,g9n an
n-net over Px({2). Then, we construct the brackets [pF(X,Y),pV (X,Y)] as follows:

piL(Xv Y) = max{gi(X, Y) -, 0}7 pg(Xv Y) = max{gi(X, Y) +777H(X7 Y)}
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for 1 < i < N. We can verify that Px(Q) C UN,[pF(X,Y),p?(X,Y)] and pV(X,Y) —
pF(X,Y) < min{2n, H(X,Y)}. Direct computations lead to

[y —payacey) s [y - y) dy)

Y|<2a

s [ Ve - ) Y)

[Y|>2a

< Cn+exp (~C°/(27)) < en,

where C' = max{2a, v/87}log(1/n) and c is some positive universal constant. The above
bound leads to

Hp(en, Pr(2), [llh) < N Zlog(1/n).

By choosing n = €/c, we have

Hp(e, Pe(2), [|-l) < log(1/e).

Due to the inequality h? < ||.||; between Hellinger distance and total variational distance,
we reach the conclusion of bracketing entropy bound (90).
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