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Abstract

We propose a nonparametric two-sample test procedure based on Maximum Mean Dis-
crepancy (MMD) for testing the hypothesis that two samples of functions have the same
underlying distribution, using kernels defined on function spaces. This construction is mo-
tivated by a scaling analysis of the efficiency of MMD-based tests for datasets of increasing
dimension. Theoretical properties of kernels on function spaces and their associated MMD
are established and employed to ascertain the efficacy of the newly proposed test, as well
as to assess the effects of using functional reconstructions based on discretised function
samples. The theoretical results are demonstrated over a range of synthetic and real world
datasets.
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1. Introduction

Nonparametric two-sample tests for equality of distributions are widely studied in statistics,
driven by applications in goodness-of-fit tests, anomaly and change-point detection and clus-
tering. Classical examples of such tests include the Kolmogorov-Smirnov test (Kolmogorov-
Smirnov et al., 1933; Smirnov, 1948; Schmid, 1958) and Wald-Wolfowitz runs test (Wald and
Wolfowitz, 1940) with subsequent multivariate extensions (Friedman and Rafsky, 1979).

Due to advances in the ability to collect large amounts of real time or spatially dis-
tributed data there is a need to develop statistical methods appropriate for functional data,
where each data sample is a discretised function. Such data has been studied for decades
in the Functional Data Analysis (FDA) literature (Horváth and Kokoszka, 2012; Hsing and
Eubank, 2015) particularly in the context of analysing populations of time series, or in
statistical shape analysis (Mardia and Dryden, 1989). More recently, due to this modern
abundance of functional data, increased study has been made in the machine learning liter-
ature for algorithms suited to such data (Berrendero et al., 2020; Chevyrev and Oberhauser,
2018; Kadri et al., 2016; Carmeli et al., 2010; Zhang et al., 2012).

In this paper we consider the case where the two probability distributions being com-
pared are supported over a real, separable Hilbert space, for example L2(D) with D ⊂ Rd
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and we have discretised observations of the function samples. If the samples consist of
evaluations of the functions over a common mesh of points, then well-known methods for
nonparametric two-sample testing for vector data can be used directly. Aside from the prac-
tical issue that observations are often made on irregular meshes for each different sample
there is also the issue of degrading performance of classical tests as mesh size increases,
meaning the observed vectors are high dimensional. As is typical with nonparametric two-
sample tests, the testing power will degenerate rapidly with increasing data dimension. We
therefore seek to better understand how to develop testing methods which are not strongly
affected by the mesh resolution, exploiting intrinsic statistical properties of the underlying
functional probability distributions.

In the past two decades kernels have seen a surge of use in statistical applications
(Muandet et al., 2017; Gretton et al., 2012a; Sutherland et al., 2016; Borgwardt et al., 2006).
In particular, kernel based two-sample testing (Gretton et al., 2012a, 2007) has become
increasingly popular. These approaches are based on a distance on the space of probability
measures known as Maximum Mean Discrepancy. Given two probability distributions P
and Q, a kernel k is employed to construct a mapping known as the mean embedding,
of the two distributions into an infinite dimensional Reproducing Kernel Hilbert Space
(RKHS). The MMD between P and Q, denoted MMDk(P,Q) is given by the RKHS norm
of the difference between the two embeddings, and defines a pseudo-metric on the space of
probability measures. This becomes a metric if k is characteristic, see Section 3. By the
kernel trick, MMD simplifies to a closed form, up to expectations, with respect to P and
Q, which can be estimated unbiasedly using Monte Carlo simulations.

A major advantage of kernel two-sample tests is that they can be constructed on any
input space which admits a well-defined kernel, including Riemannian manifolds (Pelletier,
2005), as well as discrete structures such as graphs (Shawe-Taylor and Cristianini, 2004)
and strings (Gärtner, 2003). The flexibility in the choice of kernel is one of the strengths
of MMD-based testing, where a priori knowledge of the structure of the underlying dis-
tributions can be encoded within the kernel to improve the sensitivity or specificity of the
corresponding test. The particular choice of kernel strongly influences the efficiency of the
test, however a general recipe for constructing a good kernel is still an open problem. On
Euclidean spaces, radial basis function kernels are often used, meaning kernels of the form
k(x, y) = φ(γ−1‖x−y‖2), where ‖·‖2 is the Euclidean norm, φ : R+ → R+ is a function and
γ > 0 is the bandwidth. Numerous kernels used in practice belong to this class of kernels,
including the Gaussian kernel φ(r) = e−r

2/2, the Laplace kernel φ(r) = e−r and others in-
cluding the rational quadratic kernel, the Matern kernel and the multiquadric kernel. The
problem of selecting the bandwidth parameter to maximise test efficiency over a particular
input space has been widely studied. One commonly used strategy is the median heuristic
where the bandwidth is chosen to be the median of the inter-sample distance. Despite its
popularity, there is only limited understanding of the median heuristic, with some notable
exceptions. In Ramdas et al. (2015b); Reddi et al. (2015) the authors investigate the dimin-
ishing power of the kernel two-sample test using a Gauss kernel for distributions of white
Gaussian random vectors with increasing dimension, demonstrating that under appropriate
alternatives, the power of the test will decay with a rate dependent on the relative scal-
ing of γ with respect to dimension. Related to kernel based tests are energy distance tests
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(Székely, 2003; Székely and Rizzo, 2004), the relationship was made clear in Sejdinovic et al.
(2013).

There has been relatively little work on understanding the theoretical properties of
kernels on function spaces. A Gauss type kernel on L2([0, 1]) was briefly considered in
Christmann and Steinwart (2010, Example 3). Recently, in Chevyrev and Oberhauser
(2018) a kernel was defined on the Banach space of paths on [0, 1] of unbounded 1-variation,
using a novel approach based on path signatures, demonstrating that this is a characteristic
kernel over the space of such paths. The associated MMD has been employed as a loss
function to train models generating stochastic processes (Kidger et al., 2019). Furthermore,
in Nelsen and Stuart (2020) the authors propose an extension of the random Fourier feature
kernel of Rahimi and Recht (2008) to the setting of an infinite dimensional Banach space,
with the objective of regression between Banach spaces. This paper will build on aspects
of these works, but with a specific emphasis on two-sample testing for functional data.

Two-sample testing in function spaces has received much attention in FDA and is studied
in a variety of contexts. Broadly speaking there are two classes of methods. The first
approach seeks to initially reduce the problem to a finite dimensional problem through a
projection onto a finite orthonormal basis within the function space, typically using principal
components, and then makes use of standard multivariate two-sample tests (Benko et al.,
2009; Lopes et al., 2011). The second approach poses a two-sample test directly on function
space (Aue et al., 2018; Bucchia and Wendler, 2017; Horváth et al., 2014; Pomann et al.,
2016; Cabana et al., 2017). Many of these works construct the test on the Hilbert space
L2(D) using the L2(D) norm as the testing statistic. A priori, it is not obvious why this
norm will be well suited to the testing problem, in general. Investigation into the impact of
the choice of distance in distanced based tests for functional data has been studied in the
literature (Chen et al., 2014; Chakraborty and Zhang, 2019; Zhu et al., 2019) and a distance
other than L2(D) for the functional data was advocated. This motivates the investigation
into kernels which involve distances other than L2(D) in their formulation. In many works,
the two-sample tests are designed to handle a specific class of discrepancy, such as a shift in
mean (Horváth et al., 2012; Zhang et al., 2010), or a shift in covariance structure (Panaretos
et al., 2010; Ferraty and Vieu, 2003; Fremdt et al., 2012).

This paper has two main aims. First, to naturally generalise the finite dimensional
theory of kernels to real, separable Hilbert spaces to establish kernels that are character-
istic, identify their RKHS and establish topological properties of the associated MMD. In
particular the proof of characterticness builds upon the spectral methods introduced in
Sriperumbudur et al. (2010) and the weak convergence results build upon Simon-Gabriel
and Schölkopf (2018). Second, we apply such kernels to the two-sample testing problem
and analyse the power of the tests as well as the statistical impact of performing the tests
using data reconstructed from discrete functional observations.

The specific contributions are as follows.

1. For Gaussian processes, we identify a scaling of the Gauss kernel bandwidth with
mesh-size which results in testing power which is asymptotically independent of mesh-
size, under mean-shift alternatives. In the scaling of vanishing mesh-size we demon-
strate that the associated kernel converges to a kernel over functions.
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2. Motivated by this, we construct a family of kernels defined on real, separable Hilbert
spaces and identify sufficient conditions for the kernels to be characteristic, when
MMD metrises the weak topology and provide an explicit construction of the repro-
ducing kernel Hilbert space for a Gauss type kernel.

3. Using these kernels we investigate the statistical effect of using reconstructed func-
tional data in the two-sample test.

4. We numerically validate our theory and compare the kernel based test with established
two-sample tests from the functional data analysis literature.

The remainder of the paper is as follows. Section 2 covers preliminaries of modelling
random functional data such as the Karhunen-Loève expansion and Gaussian measures.
Section 3 recalls some important properties of kernels and their associated reproducing
kernel Hilbert spaces, defines maximum mean discrepancy and the kernel two-sample test.
Section 4 outlines the scaling of test power that occurs when an increasingly finer observation
mesh is used for functional data. Section 5 defines a broad class of kernels and offers an
integral feature map interpretation as well as outlining when the kernels are characteristic,
meaning the two-sample test is valid. Section 6 highlights the statistical impact of fitting
curves to discretised functions before performing the test. A relationship between MMD
and weak convergence is highlighted and closed form expressions for the MMD and mean-
embeddings when the distributions are Gaussian processes are given. Section 7 provides
multiple examples of choices for the kernel hyper parameters and principled methods of
constructing them. Section 8 contains multiple numerical experiments validating the theory
in the paper, a simulation is performed to validate the scaling arguments of Section 4 and
synthetic and real data sets are used to compare the performance of the kernel based test
against existing functional two-sample tests. Concluding remarks and thoughts about future
work are provided in Section 9.

2. Hilbert Space Modelling of Functional Data

In this paper we shall follow the Hilbert space approach to functional data analysis and
use this section to outline the required preliminaries (Cuevas, 2014; Hsing and Eubank,
2015). Before discussing random functions we establish notation for families of operators
that will be used extensively. Let X be a real, separable Hilbert space with inner product
〈·, ·〉X then L(X ) denotes the set of bounded linear maps from X to itself, L+(X ) denotes
the subset of L(X ) of operators that are self-adjoint (also known as symmetric) and non-
negative, meaning 〈Tx, y〉X ≥ 0 ∀x, y ∈ X . The subset of L+(X ) of trace class operators
is denoted L+

1 (X ) and by the spectral theorem (Steinwart and Christmann, 2008, Theorem
A.5.13) such operators can be diagonalised. This means for every T ∈ L+

1 (X ) there exists
an orthonormal basis of eigenfunctions {en}∞n=1 in X such that Tx =

∑∞
n=1 λn〈x, en〉X en,

where {λn}∞n=1 are non-negative eigenvalues and the trace satisfies Tr(T ) =
∑∞

n=1 λn <∞.
When the eigenvalues are square summable the operator is called Hilbert-Schmidt and the
Hilbert-Schmidt norm is ‖T‖2HS =

∑∞
n=1 λ

2
n.

We now outline the Karhunen-Loève expansion of stochastic processes. Let x(·) be a
mean zero stochastic process in X = L2([0, 1]), note the following will hold for a stochastic
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process taking values in any real, separable Hilbert space but we focus on L2([0, 1]) since
it is the most common setting for functional data. Suppose that the pointwise covariance
function E[x(s)x(t)] = k(s, t) is continuous. Define the covariance operator Ck : X → X
associated with X by Cky(t) =

∫ 1
0 k(s, t)y(s)ds. Then Ck ∈ L+

1 (X ) and denote the spectral
decomposition Cky =

∑∞
n=1 λn〈y, en〉X en. The Karhunen-Loève (KL) expansion (Sullivan,

2015, Theorem 11.4) provides a characterisation of the law of the process x(·) in terms

of an infinite-series expansion. More specifically, we can write x(·) ∼ ∑∞n=1 λ
1/2
n ηnen(·),

where {ηn}∞n=1 are unit-variance uncorrelated random variables. Additionally, Mercer’s
theorem (Steinwart and Scovel, 2012) provides an expansion of the covariance as k(s, t) =∑∞

n=1 λnen(s)en(t) where the convergence is uniform.

An important case of random functions are Gaussian processes (Rasmussen and
Williams, 2006). Given a kernel k, see Section 3, and a function m we say x is a Gaus-
sian process with mean function m and covariance function k if for every finite collection
of points {sn}Nn=1 the random vector (x(s1), . . . , x(sN )) is a multivariate Gaussian random
variable with mean vector (m(s1), . . . ,m(sN )) and covariance matrix k(sn, sm)Nn,m=1. The
mean function and covariance function completely determines the Gaussian process. We
write x ∼ GP(m, k) to denote the Gaussian process with mean function m and covariance
function k. If x ∼ GP(0, k) then in the Karhunen-Loève representation ηn ∼ N (0, 1) and
the ηn are all independent.

Gaussian processes that take values in X can be associated with Gaussian measures
on X . Gaussian measures are natural generalisations of Gaussian distributions on Rd to
infinite dimensional spaces, which are defined by a mean element and covariance operator
rather than a mean vector and covariance matrix, for an introduction see Da Prato (2006,
Chapter 1). Specifically x ∼ GP(m, k) can be associated with the Gaussian measure Nm,Ck

with mean m and covariance operator Ck, the covariance operator associated with k as
outlined above. Similarly given any m ∈ X and C ∈ L+

1 (X ) then there exists a Gaussian
measure Nm,C with mean m and covariance operator C (Da Prato, 2006, Theorem 1.12).
In fact, the Gaussian measure Nm,C is characterised as the unique probability measure on

X with Fourier transform N̂m,C(y) = exp(i〈m, y〉X − 1
2〈Cy, y〉X ). Finally, if C is injective

then a Gaussian measure with covariance operator C is called non-degenerate and has full
support on X (Da Prato, 2006, Proposition 1.25).

3. Reproducing Kernel Hilbert Spaces and Maximum Mean Discrepancy

This section will outline what a kernel and a reproducing kernel Hilbert space is with
examples and associated references. Subsection 3.1 defines kernels and RKHS, Subsection
3.2 defines MMD and the corresponding estimators and Subsection 3.3 outlines the testing
procedure.

3.1 Kernels and Reproducing Kernel Hilbert Spaces

Given a nonempty set X a kernel is a function k : X × X → R which is symmetric,
meaning k(x, y) = k(y, x), for all x, y ∈ X , and positive definite, that is, the matrix
{k(xn, xm); n,m ∈ {1, . . . , N}} is positive semi-definite, for all {xn}Nn=1 ⊂ X and for
N ∈ N. For each kernel k there is an associated Hilbert space of functions over X
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known as the reproducing kernel Hilbert space (RKHS) denoted Hk(X ) (Berlinet and
Thomas-Agnan, 2004; Steinwart and Christmann, 2008; Fasshauer and McCourt, 2014).
RKHSs have found numerous applications in function approximation and inference for
decades, multiple detailed surveys exist in the literature (Saitoh and Sawano, 2016; Paulsen
and Raghupathi, 2016). The RKHS associated with k satisfies the following two prop-
erties i). k(·, x) ∈ H(X ) for all x ∈ X ii). 〈f, k(·, x)〉H(X ) = f(x) for all x ∈ X
and f ∈ H(X ). The latter is known as the reproducing property. The RKHS is con-
structed from the kernel in a natural way. The linear span of a kernel k with one in-

put fixed H0(X ) =
{∑N

n=1 ank(·, xn) : N ∈ N, {an}Nn=1 ⊂ R, {xn}Nn=1 ⊂ X
}

is a pre-Hilbert

space equipped with the following inner product 〈f, g〉H0(X ) =
∑N

n=1

∑M
m=1 anbmk(xn, ym)

where f =
∑N

n=1 ank(·, xn) and g =
∑M

m=1 bmk(·, ym). The RKHS Hk(X ) of k is then
obtained from H0(X ) through completion. More specifically Hk(X ) is the set of functions
which are pointwise limits of Cauchy sequences in H0(X ) (Berlinet and Thomas-Agnan,
2004, Theorem 3). The relationship between kernels and RKHS is one-to-one, for every
kernel the RKHS is unique and for every Hilbert space of functions such that there exists
a function k satisfying the two properties above it may be concluded that the k is unique
and a kernel. This result is known as the Aronszajn theorem (Berlinet and Thomas-Agnan,
2004, Theorem 3).

A kernel k on X ⊆ Rd is said to be translation invariant if it can be written as k(x, y) =
φ(x− y) for some φ. Bochner’s theorem, Theorem 23 in the Appendix, tells us that if k is
continuous and translation invariant then there exists a Borel meaure on X such that µ̂k(x−
y) = k(x, y) where µ̂ is the characteristic function of µ defined as µ̂(x) =

∫
X e

i〈x,y〉dµ(y).
We call µk the spectral measure of k. The spectral measure is an important tool in the
analysis of kernel methods and shall become important later when discussing the two-sample
problem.

3.2 Maximum Mean Discrepancy

Given a kernel k and associated RKHS Hk(X ) let P be the set of Borel probability mea-
sures on X and assuming k is measurable define Pk ⊂ P as the set of all P ∈ Pk such that∫
k(x, x)

1
2dP (x) <∞. Note that Pk = P if and only if k is bounded (Sriperumbudur et al.,

2010, Proposition 2) which is very common in practice and shall be the case for all kernels
considered in this paper. For P,Q ∈ Pk we define the Maximum Mean Discrepancy denoted
MMDk(P,Q) as follows MMDk(P,Q) = sup‖f‖Hk(X )≤1

∣∣∫ fdP − ∫ fdQ∣∣. This is an integral

probability metric (Müller, 1997; Sriperumbudur et al., 2010) and without further assump-
tions defines a pseudo-metric on Pk, which permits the possibility that MMDk(P,Q) = 0
but P 6= Q.

We introduce the mean embedding ΦkP of P ∈ Pk into Hk(X ) defined by ΦkP =∫
k(·, x)dP (x). This can be viewed as the mean in Hk(X ) of the function k(x, ·) with

respect to P in the sense of a Bochner integral (Hsing and Eubank, 2015, Section 2.6).
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Following Sriperumbudur et al. (2010, Section 2) this allows us to write

MMDk(P,Q)2 =

(
sup

‖f‖Hk(X )≤1

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣
)2

=

(
sup

‖f‖Hk(X )≤1
|〈ΦkP − ΦkQ, f〉|

)2

= ‖ΦkP − ΦkQ‖2Hk(X ). (1)

The crucial observation which motivates the use of MMD as an effective measure of dis-
crepancy is that the supremum can be eliminated using the reproducing property of the
inner product (Sriperumbudur et al., 2010, Section 2). This yields the following closed form
representation

MMDk(P,Q)2 =

∫ ∫
k(x, x′)dP (x)dP (x′) +

∫ ∫
k(y, y′)dQ(y)dQ(y′)

− 2

∫ ∫
k(x, y)dP (x)dQ(y). (2)

It is clear that MMDk is a metric over Pk if and only if the map Φk : Pk → Hk(X )
is injective. A kernel is characteristic if the map Φk is injective over all of P. Various
works have provided sufficient conditions for a kernel over finite dimensional spaces to be
characteristic (Sriperumbudur et al., 2010, 2011; Simon-Gabriel and Schölkopf, 2018).

Given independent samples Xn = {xi}ni=1 from P and Ym = {yi}mi=1 from Q we wish to
estimate MMDk(P,Q)2. A number of estimators have been proposed. For clarity of presen-
tation we shall assume that m = n, but stress that all of the following can be generalised to
situations where the two data-sets are unbalanced. Given samples Xn and Yn, the following
U-statistic is an unbiased estimator of MMD2

k(P,Q)2

M̂MDk(Xn, Yn)2 :=
1

n(n− 1)

n∑
i 6=j

h(zi, zj), (3)

where zi = (xi, yi) and h(zi, zj) = k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi). This estimator
can be evaluated in O(n2) time. An unbiased linear time estimator proposed in Gretton
et al. (2012a) is given by

M̂MDk,lin(Xn, Yn)2 :=
2

n

n/2∑
i=1

h(z2i−1, z2i), (4)

where it is assumed that n is even. While the cost for computing M̂MDk,lin(Xn, Yn)2

is only O(n) this comes at the cost of reduced efficiency, i.e. Var(M̂MDk(Xn, Yn)2) <

Var(M̂MDk,lin(Xn, Yn)2), see for example Sutherland (2019). Various probabilistic bounds
have been derived on the error between the estimator and MMDk(P,Q)2 (Gretton et al.,
2012a, Theorem 10, Theorem 15).

3.3 The Kernel Two-Sample Test

Given independent samples Xn = {xi}ni=1 from P and Yn = {yi}ni=1 from Q we seek to
test the hypothesis H0 : P = Q against the alternative hypothesis H1 : P 6= Q without
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making any distributional assumptions. The kernel two-sample test of Gretton et al. (2012a)
employs an estimator of MMD as the test statistic. Indeed, fixing a characteristic kernel
k, we reject H0 if M̂MDk(Xn, Yn)2 > cα, where cα is a threshold selected to ensure a false-
positive rate of α. While we do not have a closed-form expression for cα, it can be estimated
using a permutation bootstrap. The theoretical justification of this is provided by Arcones
and Giné (1992). More specifically, we randomly shuffle Xn ∪ Yn, split it into two data sets

X ′n and Y ′n, from which M̂MDk(X
′
n, Y

′
n)2 is calculated. This is repeated numerous times

so that an estimator of the threshold ĉα is then obtained as the (1 − α)-th quantile of the
resulting empirical distribution. The same test procedure may be performed using the linear
time MMD estimator as the test statistic.

The power of a test is a measure of its ability to correctly reject the null hypothesis.
More specifically, fixing α the false-positive rate, and obtaining an estimator ĉα of the
threshold, we define the power of the test at α to be P(nM̂MDk(Xn, Yn)2 ≥ ĉα). Invoking
the central limit theorem for U-statistics (Serfling, 1980) we can quantify the decrease in
variance of the unbiased MMD estimators, asymptotically as n→∞.

Theorem 1 (Gretton et al., 2012a, Corollary 16) Suppose that Ex∼P,y∼Q[h2(x, y)] < ∞.

Then under the alternative hypothesis P 6= Q, the estimator M̂MDk(Xn, Yn)2 converges in
distribution to a Gaussian as follows

√
n
(

M̂MDk(Xn, Yn)2 −MMD2
k(P,Q)

)
D−→ N (0, 4ξ1), n→∞,

where ξ1 = Varz [Ez′ [h(z, z′)]]. An analogous result holds for the linear-time estimator, with
ξ2 = Varz,z′ [h(z, z′)] instead of ξ1.

In particular, under the conditions of Theorem 1, for large n, the power of the test will
satisfy the following asymptotic result

P
(
nM̂MDk(Xn, Yn)2 > ĉα

)
≈ Φ

(√
n

MMDk(P,Q)2

2
√
ξ1

− cα

2
√
nξ1

)
, (5)

where Φ is the CDF for a standard Gaussian distribution and ξ1 = Varz [Ez′ [h(z, z′)]]. The
analogous result for the linear-time estimator holds with ξ2 = Varz,z′ [h(z, z′)] instead of ξ1

(Reddi et al., 2015; Liu et al., 2020). This suggests that the test power can be maximised
by maximising MMDk(P,Q)2/

√
ξ1 which can be seen as a signal-to-noise-ratio (Liu et al.,

2020). It is evident from previous works that the properties of the kernel will have a very
significant impact on the power of the test, and methods have been proposed for increasing
test power by optimising the kernel parameters using the signal-to-noise-ratio as an objective
(Sutherland et al., 2016; Reddi et al., 2015; Liu et al., 2020).

4. Resolution Independent Tests for Gaussian Processes

To motivate the construction of kernel two-sample tests for random functions, in this section
we will consider the case where the samples Xn and Yn are independent realisations of
two Gaussian processes, observed along a regular mesh ΞN = {t1, . . . , tN} of N points
in D where D ⊂ Rd is some compact set. Therefore N will be the dimension of the
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observed vectors. To develop ideas, we shall focus on a mean-shift alternative, where the
underlying Gaussian processes are given by GP(0, k0) and GP(m, k0) respectively, where k0

is a covariance function, and m ∈ L2(D) is the mean function. We use the subscript on
k0 to distinguish it from the kernel k we use to perform the test. We will use the linear
time test due to easier calculations. This reduces to a multivariate two-sample hypothesis
test problem on RN , with samples Xn = {xi}ni=1 from P = N (0,Σ) and Yn = {yi}ni=1 from
Q = N (mN ,Σ), where Σi,j = k0(ti, tj) for i, j = 1, . . . , N and mN = (m(t1), . . . ,m(tN ))>.

We consider applying a two-sample kernel test as detailed in Section 3, with a Gaussian
kernel k(x, y) = exp(−1

2γ
−2
N ‖x − y‖22) on RN where γN may depend on N . The large

N limit was studied in Ramdas et al. (2015b) but not in the context of functional data.
This motivates the question whether there is a scaling of γN with respect to N which,
employing the structure of the underlying random functions, guarantees that the statistical
power remains independent of the mesh size N . To better understand the influence of
bandwidth on power, we use the signal-to-noise ratio as a convenient proxy, and study its
behaviour in the large N limit. We say the mesh ΞN satisfies the Riemann scaling property
if 1

N ‖mN‖22 = 1
N

∑N
i=1m(ti)

2 →
∫
Dm(t)2dt = ‖m‖2L2(D) as N →∞ for all m ∈ L2(D), this

will be used in the next result to characterise the signal-to-noise ratio from the previous
subsection.

Proposition 2 Let P,Q be as above with ΞN satisfying the Riemann scaling property and
γN = Ω(Nα) with α > 1/2 then if k0(s, t) = δst

MMDk(P,Q)2

√
ξ2

∼
√
N‖m‖2L2(D)

2
√

1 + ‖m‖2
L2(D)

, (6)

and if k0 is continuous and bounded then

MMDk(P,Q)2

√
ξ2

∼
‖m‖2L2(D)

2
√
‖Ck0‖2HS + ‖C1/2

k0
m‖2

L2(D)

, (7)

where ∼ means asymptotically equal in the sense that the ratio of the left and right hand
side converges to one as N →∞.

The proof of this result is in the Appendix and generalises Ramdas et al. (2015a) by
considering non-identity Σ. Included in the proof are expressions for rates of MMDk(P,Q)2

and ξ2. The way this ratio increases with N , the number of observation points, in the
white noise case makes sense since each observation is revealing new information about the
signal as the randomness is independent at each observation. On the other hand the non-
identity covariance matrix means the randomness is not independent at each observation
and thus new information is not obtained at each observation point. Indeed the stronger
the correlations, meaning the slower the decay of the eigenvalues of the covariance operator
Ck0 , the smaller this ratio shall be since the Hilbert-Schmidt norm in the denominator will
be larger.

It is important to note that the ratio in the right hand sides of (7) and (6) are indepen-
dent of the choice of α once α > 1/2 meaning that once greater than 1/2 this parameter

9
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will be ineffective for obtaining greater testing power. The next subsection discusses how
α = 1/2 provides a scaling that results in kernels defined directly over function spaces,
facilitating other methods to gain better test power.

4.1 Kernel Scaling

Proposition 2 does not include the case γN = Θ(N1/2) however it can be shown that the
ratio does not degenerate in this case, see Theorem 18 and Theorem 20. In fact, the two
different scales of the ratio, when Σ is the identity matrix or a kernel matrix, still occur.
This is numerically verified in Section 8.

Suppose γN = γ0N
1/2 for some γ0 ∈ R and one uses a kernel of the form k(x, y) =

f(γ−2
N ‖x− y‖22) over RN for some continuous f . Suppose now though that our inputs shall

be xN , yN , discretisations of functions x, y ∈ L2(D) observed on a mesh ΞN that satisfies
the Riemann scaling property. Then as the mesh gets finer we observe the following scaling

k(xN , yN ) = f(γ−2
N ‖xN − yN‖22)

N→∞−−−−→ f(γ−2
0 ‖x− y‖2L2(D)).

Therefore the kernel, as the discretisation resolution increases, will converge to a kernel over
L2(D) where the Euclidean norm is replaced with the L2(D) norm. For example the Gauss
kernel would become exp(−γ−2

0 ‖x− y‖2L2(D)).
This scaling coincidentally is similar to the scaling of the widely used median heuristic

defined as

γ2 = Median
{
‖a− b‖22 : a, b ∈ {xi}ni=1 ∪ {yi}mi=1, a 6= b

}
, (8)

where {xi}ni=1 are the samples from P , {yi}ni=1 samples from Q. It was not designed with
scaling in mind however in Reddi et al. (2015) it was noted that it results in a γ2 = Θ(N)
scaling for the mean shift, identity matrix case. The next lemma makes this more precise
by relating the median of the squared distance to its expectation.

Lemma 3 Let P = N (µ1,Σ1) and Q = N (µ2,Σ2) be independent Gaussian distributions
on RN then Ex∼P,y∼Q[‖x− y‖22] = Tr(Σ1 + Σ2) + ‖µ1 − µ2‖22 and∣∣∣∣Medianx∼P,y∼Q[‖x− y‖22]

Ex∼P,y∼Q[‖x− y‖22]
− 1

∣∣∣∣ ≤ √2

(
1− ‖µ1 − µ2‖42

(Tr(Σ1 + Σ2) + ‖µ1 − µ2‖22)2

) 1
2

,

in particular if P,Q are discretisations of Gaussian processes GP(m1, k1),GP(m2, k2) on
a mesh ΞN of N points satisfying the Riemann scaling property over some compact D ⊂ Rd
with m1,m2 ∈ L2(D) and k1, k2 continuous then Ex∼P,y∼Q[‖x− y‖22] ∼ N(Tr(Ck1 + Ck2) +
‖m1 −m2‖2L2(D)) and as N →∞ the right hand side of the above inequality converges to

√
2

(
1−

‖m1 −m2‖4L2(D)

(Tr(Ck1 + Ck2) + ‖m1 −m2‖2L2(D)
)2

) 1
2

.

The above lemma does not show that the median heuristic results in γN = γ0N
1/2 but

relates it to the expected squared distance which does scale directly as γ0N
1/2. Therefore

investigating the properties of such a scaling is natural.

10
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Since L2(D) is a real, separable Hilbert space when using kernels defined directly over
L2(D) in later sections we can leverage the theory of probability measures on such Hilbert
spaces to deduce results about the testing performance of such kernels. In fact, we shall
move past L2(D) and obtain results for kernels over arbitrary real, separable Hilbert spaces.
Note that a different scaling of γN would not result in such a scaling of the norm to L2(D)
so such theory cannot be applied.

5. Kernels and RKHS on Function Spaces

For the rest of the paper, unless specified otherwise, for example in Theorem 9, the
spaces X ,Y will be real, separable Hilbert spaces with inner products and norms
〈·, ·〉X , 〈·, ·〉Y , ‖·‖X , ‖·‖Y . We adopt the notation in Section 2 for various families of op-
erators.

5.1 The Squared-Exponential T kernel

Motivated by the scaling discussions in Section 4 we define a kernel that acts directly on a
Hilbert space.

Definition 4 For T : X → Y the squared-exponential T kernel (SE-T ) is defined as

kT (x, y) = e−
1
2
‖T (x)−T (y)‖2Y .

We use the name squared-exponential instead of Gauss because the SE-T kernel is not
always the Fourier transform of a Gaussian distribution whereas the Gauss kernel on Rd is,
which is a key distinction and is relevant for our proofs. Lemma 25 in the Appendix assures
us this function is a kernel. This definition allows us to adapt results about the Gauss
kernel on Rd to the SE-T kernel since it is the natural infinite dimensional generalisation.
For example the following theorem characterises the RKHS of the SE-T kernel for a certain
choice of T , as was done in the finite dimensional case in Minh (2009). Before we state the
result we introduce the infinite dimensional generalisation of a multi-index, define Γ to be
the set of summable sequences indexed by N taking values in N ∪ {0} and for γ ∈ Γ set
|γ| =

∑∞
n=1 γn, so γ ∈ Γ if and only if γn = 0 for all but finitely many n ∈ N meaning

Γ is a countable set. We set Γn = {γ ∈ Γ: |γ| = n} and the notation
∑
|γ|≥0 shall mean∑∞

n=0

∑
γ∈Γn

which is a countable sum.

Theorem 5 Let T ∈ L+(X ) be of the form Tx =
∑∞

n=1 λ
1/2
n 〈x, en〉X en with convergence in

X for some orthonormal basis {en}∞n=1 and bounded positive coefficients {λn}∞n=1 then the
RKHS of the SE-T kernel is

HkT (X ) =

F (x) = e−
1
2
‖Tx‖2X

∑
|γ|≥0

wγx
γ :

∑
|γ|≥0

γ!

λγ
w2
γ <∞

 ,

where xγ =
∏∞
n=1 x

γn
n , xn = 〈x, en〉X , λγ =

∏∞
n=1 λ

γn
n and γ! =

∏∞
n=1 γn! and

HkT (X ) is equipped with the inner product 〈F,G〉HkT (X ) =
∑
|γ|≥0

γ!
λγwγvγ where F (x) =

e−
1
2
‖Tx‖2X

∑
|γ|≥0wγx

γ, G(x) = e−
1
2
‖Tx‖2X

∑
|γ|≥0 vγx

γ.

11
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Remark 6 In the proof of Theorem 5 an orthonormal basis of HkT (X ) is given which re-
sembles the infinite dimensional Hermite polynomials which are used throughout infinite
dimensional analysis and probability theory, for example see Da Prato and Zabczyk (2002,
Chapter 10) and Nourdin and Peccati (2009, Chapter 2). In particular they are used to de-
fine Sobolev spaces for functions over a real, separable Hilbert space (Da Prato and Zabczyk,
2002, Theorem 9.2.12) which raises the interesting and, as far as we are aware, open ques-
tion of how HkT (X ) relates to such Sobolev spaces for different choices of T .

For the two-sample test to be valid we need the kernel to be characteristic meaning
the mean-embedding is injective over P, so the test can tell the difference between any two
probability measures. To understand the problem better we again leverage results regarding
the Gauss kernel on Rd, in particular the proof in Sriperumbudur et al. (2010, Theorem 9)
that the Gauss kernel on Rd is characteristic. This uses the fact that the Gauss kernel on
Rd is the Fourier transform of a Gaussian distribution on Rd whose full support implies the
kernel is characteristic. By choosing T such that the SE-T kernel is the Fourier transform
of a Gaussian measure on X that has full support we can use the same argument.

Theorem 7 Let T ∈ L+
1 (X ) then the SE-T kernel is characteristic if and only if T is

injective.

This is dissatisfyingly limiting since T ∈ L+
1 (X ) is a restrictive assumption, for example

it does not include T = I the identity operator. We shall employ a limit argument to reduce
the requirements on T . To this end we define admissible maps.

Definition 8 A map T : X → Y is called admissible if it is Borel measurable, continuous
and injective.

The next result provides a broad family of kernels which are characteristic. It applies
for X being more general than a real, separable Hilbert space. A Polish space is a separable,
completely metrizable topological space. Multiple examples of admissible T are given in
Section 7 and are examined numerically in Section 8.

Theorem 9 Let X be a Polish space, Y a real, separable Hilbert space and T an admissible
map then the SE-T kernel is characteristic.

Theorem 9 generalises Theorem 7. A critical result used in the proof is the Minlos-
Sazanov theorem, detailed as Theorem 24 in the Appendix, which is an infinite dimensional
version of Bochner’s theorem. The result allows us to identify spectral properties of the
SE-T kernel which are used to deduce characteristicness.

5.2 Integral Kernel Formulation

Let k0 : R×R→ R be a kernel, C ∈ L+
1 (X ) and NC the corresponding mean zero Gaussian

measure on X and define kC,k0 : X × X → R as follows

kC,k0(x, y) :=

∫
X
k0 (〈x, h〉X , 〈y, h〉X ) dNC(h).

12



A Kernel Two-Sample Test for Functional Data

Consider the particular case where k0(s, t) = 〈Φ(s),Φ(t)〉F , where Φ : R→ F is a continuous
feature map, mapping into a Hilbert space (F , 〈·, ·〉F ), which will typically be RF for some
F ∈ N. In this case the functions x → Φ(〈x, h〉X ) can be viewed as F–valued random
features for each h ∈ X randomly sampled from NC , and kC,k0 is very similar to the
random feature kernels considered in Nelsen and Stuart (2020) and Bach (2017). Following
these previous works, we may completely characterise the RKHS of this kernel, the result
involves L2

NC
(X ;F) which is the space of equivalence classes of functions from X to F that

are square integrable in the F norm with respect to NC and L2(X ) := L2(X ;F).

Proposition 10 Suppose that ψ(x, h) = Φ(〈x, h〉X ) satisfies ψ ∈ L2
NC×NC (X × X ;F) then

the RKHS defined by the kernel kC,k0 is given by

HkC,k0 (X ) =

{∫
〈v(h), ψ(·, h)〉FdNC(h) : v ∈ L2

NC
(X ;F)

}
⊂ L2

NC
(X ).

The proof of this result is an immediate generalization of the real-valued case given in Nelsen
and Stuart (2020). Using the spectral representation of translation invariant kernels we can
provide conditions for kC,k0 to be a characteristic kernel.

Proposition 11 If k0 is a kernel over R × R then kC,k0 is a kernel over X × X . If C is
injective and k0 is also continuous and translation invariant with spectral measure µ such
that there exists an interval (a, b) ⊂ R with µ(U) > 0 for every open subset U ⊂ (a, b) then
kC,k0 is characteristic.

For certain choices of T the SE-T kernel falls into a family of integral kernels. Indeed,
if k0(x, y) = cos(x− y) then kC,k0 is the SE-C

1
2 kernel

kC,k0(x, y) = N̂C(x− y) = e−
1
2
‖x−y‖2C = e−

1
2

∑∞
n=1 λn(xn−yn)2 ,

where ‖x − y‖2C = 〈C(x − y), x − y〉X , {λn}∞n=1 are the eigenvalues of C and xn = 〈x, en〉
are the coefficients with respect to the eigenfunction basis {en}∞n=1 of C.

Secondly, let γ > 0 and assume C is non-degenerate and set k0 to be the complex
exponential of γ multiplied the by white noise mapping associated with C, see Da Prato
and Zabczyk (2002, Section 1.2.4), then kC,k0 is the SE-γI kernel

kC,k0(x, y) = kγI(x, y) = e−
γ
2
‖x−y‖2X , (9)

Note that kγI is not the Fourier transform of any Gaussian measure on X (Maniglia and
Rhandi, 2004, Proposition 1.2.11) which shows how the integral kernel framework is more
general than only using the Fourier transform of Gaussian measures to obtain kernels, as
was done in Theorem 7.

The integral framework can yield non-SE type kernels. Let N1 be the measure associated
with the Gaussian distribution N (0, 1) on R, C be non-degenerate and k0(x, y) = N̂1(x−y)
then we have

kC,k0(x, y) =

∫
X

∫
R
eiz〈h,x−y〉dN1(z)dNC(h) =

(
‖x− y‖2C + 1

)− 1
2 . (10)
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Definition 12 For T : X → Y the inverse multi-quadric T kernel (IMQ-T ) is defined as

kT (x, y) =
(
‖T (x)− T (y)‖2Y + 1

)−1/2
.

By using Proposition 11 we immediately obtain that if T ∈ L+
1 (X ) and T is non-

degenerate then the IMQ-T kernel is characteristic. But by the same limiting argument as
Theorem 9 and the integral kernel formulation of IMQ-T we obtain a more general result.

Corollary 13 Under the same conditions as Theorem 9 the IMQ-T kernel is characteristic.

6. MMD on Function Spaces

In Section 5 we derived kernels directly over function spaces that were characteristic, mean-
ing that the MMD induced by them is a metric on P(X ). Therefore a two-sample test based
on such kernels may be constructed, as detailed in Section 3, using the same form of U-
statistic estimators and bootstrap technique as the finite dimensional scenario. This section
will explore properties of the test. Subsection 6.1 will investigate the effect of performing the
test on reconstructions of the random function based on observed data. Subsection 6.2 will
provide explicit calculations for MMD when P,Q are Gaussian processes. Subsection 6.3
discusses the topology on P(X ) induced by MMD and how it relates to the weak topology.

6.1 Influence of Function Reconstruction on MMD Estimator

In practice, rather than having access to the full realisation of random functions the
data available will be some finite-dimensional representation of the functions, for exam-
ple through discretisation over a mesh, or as a projection onto a finite dimensional basis of
X . Therefore to compute the kernel a user may need to approximate the true underlying
functions from this finite dimensional representation. We wish to ensure the effectiveness
of the tests using reconstructed data.

We formalise the notion of discretisation and reconstruction as follows. Assume that
we observe {Ixi}ni=1 where {x}ni=1 are the random samples from P and I : X → RN
is a discretisation map. For example, I could be point evaluation at some some fixed
t1, t2, . . . , tN ∈ D i.e. Ixi = (xi(t1), . . . , xi(tN ))>. Noisy point evaluation can also be
considered in this framework. Then a reconstruction map R : RN → X is employed so that
RIXn = {RIxi}ni=1 is used to perform the test, analogously for RIYn. For example, R
could be a kernel smoother or a spline interpolation operator. In practice one might have a
different number of observations for each function, the following results can be adapted to
this case straightforwardly.

Proposition 14 Assume k is a kernel on X satisfying |k(x, y)− k(u, v)| ≤ L‖x− y− (u−
v)‖X for all u, v, x, y ∈ X for some L > 0 and let P,Q ∈ P with Xn = {xi}ni=1, Yn = {yi}ni=1

i.i.d. samples from P,Q respectively with reconstructed data RIXn = {RIxi}ni=1,RIYn =
{RIyi}ni=1 then∣∣∣∣M̂MDk(Xn, Yn)2 − M̂MDk(RIXn,RIYn)2

∣∣∣∣ ≤ 4L

n

n∑
i=1

‖RIxi − xi‖X + ‖RIyi − yi‖X .

14
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Corollary 15 If kT is the SE-T or IMQ-T kernel then the above bound holds with
‖T (RIxi) − T (xi)‖Y , ‖T (RIyi) − T (yi)‖Y instead of ‖RIxi − xi‖X , ‖RIyi − yi‖X with
L = 1√

e
and L = 2

3
√

3
respectively.

An analogous result can be derived for the linear time estimator with the same
proof technique. While Proposition 14 provides a statement on the approximation of
M̂MDk(RIXn,RIYn)2 we are primarily concerned with its statistical properties. Asymp-
totically, the test efficiency is characterised via the Gaussian approximation in Theorem 1,
specifically through the asymptotic variance in (5). The following result provides conditions
under which a similar central limit theorem holds for the estimator based on reconstructed
data, with the same asymptotic variance. It imposes conditions on the number of discreti-
sation points per function sample N , the error of the approximations and the number of
function samples n.

Theorem 16 Let k satisfy the condition in Proposition 14 and let Xn = {xi}ni=1 and
Yn = {yi}ni=1 be i.i.d. samples from P and Q respectively with P 6= Q, and associated
reconstructions RIXn and RIYn based on N(n) dimensional discretisations IXn and IYn
where N(n)→∞ as n→∞. If n

1
2Ex∼P [‖x−RIx‖X ]→ 0 and n

1
2Ey∼P [‖y−RIy‖X ]→ 0

as n→∞, then for ξ = 4Varz [Ez′ [h(z, z′)]]

n
1
2
(
M̂MDkT (RIXn,RIYn)2 −MMDkT (P,Q)2

) d−→ N (0, ξ).

A similar result can be derived for the linear time estimator by using the linear time
estimator version of Proposition 14. The discretisation map, number of discretisations
per function sample and the reconstruction map need to combine to satisfy the convergence
assumption. For example if a weaker reconstruction map is used then more observations per
function sample will be needed to compensate for this. Additionally if the discretisation map
offers less information about the underlying function, for example it provides observations
that are noise corrupted, then more observations per function sample are needed.

We now discuss three settings in which these assumptions hold, relevant to different
applications. We shall assume that k satisfies the conditions of Proposition 14 and that
T = I.

6.1.1 Linear interpolation of regularly sampled data

Let X = L2([0, 1]) and ΞN(n) = {ti}N(n)
i=1 be a mesh of evaluation points where ti+1 − ti =

N(n)−1 for all i and define Ix = (x(t1), . . . , x(tN(n)))
> ∈ RN(n). Let R be the piecewise

linear interpolant defined as

(RIx)(t) = (x(ti+1)− x(tk))
t− ti
ti+1 − ti

+ x(ti), for t ∈ [ti, ti+1).

Suppose that realisations x ∼ P and y ∼ Q are almost surely in C2([0, 1]) and in particular
satisfy Ex∼P [‖x′′‖2X ] <∞ and Ey∼Q[‖y′′‖2X ] <∞. Then

Ex∼P [‖x−RIx‖X ] ≤ 1

N(n)2
Ex∼P [‖x′′‖X ],

15



Wynne and Duncan

and analogously for y ∼ Q. Therefore if N(n) ∼ nα with α > 1/4 then the conditions of
Theorem 16 are satisfied. Conditions for P,Q to have samples lie almost surely in C2([0, 1])
in the case where P,Q are Gaussian measures has been studied widely (Lukić and Beder,
2001; Steinwart, 2018; Karvonen et al., 2020).

6.1.2 Kernel interpolant of quasi-uniformly sampled data

Let X = L2(D) with D ⊂ Rd compact. As in the previous example, I will be the evaluation

operator over a set of points ΞN(n) = {ti}N(n)
i=1 but now we assume the points are placed

quasi-uniformly in the scattered data approximation sense, for example regularly placed
grid points, see Wynne et al. (2021) and Wendland (2005, Chapter 4) for other method to
obtain quasi-uniform points.

We set R as the kernel interpolant using a kernel k0 with RKHS norm equivalent to
W ν

2 (D) with ν > d/2, this is achieved by the common Matérn and Wendland kernels
(Wendland, 2005; Kanagawa et al., 2018). For this choice of recovery operator, (RIx)(t) =
k0(t,Ξ)K−1

0 I(x) where k0(t,Ξ) = (k0(t, t1), . . . , k0(t, tN(n)) and K0 is the kernel matrix of
k0 over ΞN(n).

Suppose the realisations of P and Q lie almost surely in W τ
2 (D) for some τ > d/2, this

assumption is discussed when P,Q are Gaussian processes in Kanagawa et al. (2018, Section
4), then

Ex∼P [‖x−RIx‖X ] ≤ CN(n)−(τ∧ν)/d,

for some constant C > 0, with an identical result holding for realisations of Q (Wynne
et al., 2021; Narcowich et al., 2006). It follows that choosing N(n) ∼ n guarantees that the
conditions of Theorem 16 hold in this setting. Here we see that to maintain a scaling of
N(n) independent of dimension d we need the signal smoothness ν, τ to increase with d.

Note that the case where I is pointwise evaluation corrupted by noise may be treated
in a similar way by using results from Bayesian non-parametrics, for example van der Vaart
and van Zanten (2011, Theorem 5). In this case R would be the posterior mean of a
Gaussian process that is conditioned on I(x).

6.1.3 Projection onto an orthonormal basis

Let X be an arbitrary real, separable Hilbert space and {en}∞n=1 be an orthonormal ba-
sis. Suppose that I is a projection operator onto the first N(n) elements of the ba-
sis Ix = (〈x, e1〉X , . . . , 〈x, eN(n)〉X )> and R constructs a function from basis coefficients

R(β1, . . . , βN(n)) =
∑N(n)

i=1 βiei meaning RIx =
∑N(n)

i=1 〈x, ei〉X ei. A typical example on
L2([0, 1]) would be a Fourier series representation of the samples {xi}ni=1 and {yi}ni=1 from
which the functions can be recovered efficiently via an inverse Fast Fourier Transform. By
Parseval’s theorem Ex∼P [‖x−RIx‖2X ] =

∑∞
i=N(n)+1 |〈x, ei〉X |2 → 0 as N(n)→∞. For the

conditions of Theorem 16 to hold, we require that n1/2Ex∼P
[∑∞

i=N(n)+1 |〈x, ei〉X |2
]
→ 0 as

n→∞ which means N(n) will need to grow in a way to compensate for the auto-correlation
of realisations of P and Q.

In this setting the use of the integral kernels described in Section 5.2 are particularly
convenient. Indeed, let C =

∑∞
i=1 λiei ⊗ ei ∈ L1

+(X ) and consider the integral kernel kC,k0 .
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An evaluation of the kernel k(x, y) can then be approximated using a random Fourier feature
approach (Rahimi and Recht, 2008) by

kC,k0(x, y) ≈ 1

nS

nS∑
l=1

k0

N(n)∑
i=1

λ
1
2
i xiη

l
i,

N(n)∑
i=1

λ
1
2
i yiη

l
i

 ,

where xi = 〈x, ei〉X , yi = 〈y, ei〉X and ηli ∼ N (0, 1) i.i.d. for i = 1, . . . N(n) and l = 1, . . . , nS
for some nS ∈ N. This permits opportunities to reduce the computational cost of MMD
tests as judicious choices of Φ will permit accurate approximations of k(x, y) using nS small.
Similarly, the weights, λi can be chosen to reduce the dimensionality of the functions xi
and yi.

6.2 Explicit Calculations for Gaussian Processes

A key property of the SE-T kernel is that the mean-embedding ΦkTP and MMDkT (P,Q)2

have closed form solutions when P,Q are Gaussian measures. Using the natural corre-
spondence between Gaussian measures and Gaussian processes from Section 2 we may get
closed form expressions for Gaussian processes. This addresses the open question regarding
the link between Bayesian non-parametrics methods and kernel mean-embeddings that was
discussed in Muandet et al. (2017, Section 6.2).

Before stating the next result we need to introduce the concept of determinant for an
operator, for S ∈ L1(X ) define det(I+S) =

∏∞
n=1(1+λn) where {λn}∞n=1 are the eigenvalues

of S. The equality det
(
(I + S)(I + R)

)
= det(I + S) det(I + R) holds and is frequently

used.

Theorem 17 Let kT be the SE-T kernel for some T ∈ L+(X ) and P = Na,S be a non-
degenerate Gaussian measure on X then

ΦkT (Na,S)(x) = det(I + TST )−
1
2 e−

1
2
〈(I+TST )−1T (x−a),T (x−a)〉X .

Theorem 18 Let kT be the SE-T kernel for some T ∈ L+(X ) and P = Na,S , Q = Nb,R be
non-degenerate Gaussian measures on X then

MMDkT (P,Q)2 = det(I + 2TST )−
1
2 + det(I + 2TRT )−

1
2

− 2 det
(
(I + TST )(I + (TRT )

1
2 (I + TST )−1(TRT )

1
2 )
)− 1

2

× e− 1
2
〈(I+T (S+R)T )−1T (a−b),T (a−b)〉X .

These results outline the geometry of Gaussian measures with respect to the distance
induced by the SE-T kernel. We see that the means only occur in the formula through their
difference and if both mean elements are zero then the distance is measured purely in terms
of the spectrum of the covariance operators.

Corollary 19 Under the Assumptions of Theorem 18 and that T, S,R commute then

MMDkT (P,Q)2 = det(I + 2TST )−
1
2 + det(I + 2TRT )−

1
2

− 2 det(I + T (S +R)T )−
1
2 e−

1
2
〈(I+T (S+R)T )−1T (a−b),T (a−b)〉X .
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Since the variance terms ξ1, ξ2 from Section 3 are simply multiple integrals of the SE-T
kernel against Gaussian measures we may obtain closed forms for them too. Theorem 20 is
a particular instance of the more general Theorem 27 in the Appendix.

Theorem 20 Let P = NS , Q = Nm,S be non-degenerate Gaussian measures on X , T ∈
L+

1 (X ) and assume T and S commute then when using the SE-T kernel

ξ1 = 2 det(ΣS)−
1
2
(
1 + e−〈(I+3TST )−1Tm,Tm〉X − 2e−

1
2
〈(I+2TST )Σ−1

S Tm,Tm〉X
)

− 2 det(I + 2TST )−1
(
1 + e−〈(I+2TST )−1Tm,Tm〉X − 2e−

1
2
〈(I+2TST )−1Tm,Tm〉X

)
,

ξ2 = 2 det(I + 4TST )−
1
2
(
1 + e−〈(I+4TST )−1Tm,Tm〉X

)
− 2 det(I + 2TST )−1

(
1 + e−〈(I+2TST )−1Tm,Tm〉X − 4e−

1
2
〈(I+2TST )−1Tm,Tm〉X

)
− 8 det(ΣS)−

1
2 e−

1
2
〈(I+2TST )Σ−1

S Tm,Tm〉X ,

where ΣS = (I + TST )(I + 3TST ).

6.3 Weak Convergence and MMD

We know that MMD is a metric on P when k is characteristic, so it is natural to identify the
topology it generates and in particular how it relates to the standard topology for elements
of P, the weak topology.

Theorem 21 Let X be a Polish space, k a bounded, continuous, characteristic kernel on
X × X and P ∈ P then Pn

w−→ P implies MMDk(Pn, P ) → 0 and if {Pn}∞n=1 ⊂ P is tight

then MMDk(Pn, P )→ 0 implies Pn
w−→ P where

w−→ denotes weak convergence.

For a discussion on weak convergence and tightness see Billingsley (1971). The tightness
is used to compensate for the lack of compactness of X which is often required in analogous
finite dimensional results. In particular, in Chevyrev and Oberhauser (2018) an example
where MMDk(Pn, P ) → 0 but Pn but does converge to P was given without the assump-
tion of tightness. A precise characterisation of the relationship between MMD and weak
convergence over a Polish space is an open problem.

7. Practical Considerations for Kernel Selection

We now present examples and techniques to choose kernels and construct maps T that are
admissible. Two main categories will be discussed, integral operators induced by kernels
and situation specific kernels.

For the first catergory assume X = Y = L2(D) for some compact D ⊂ Rd and let k0

be a measurable kernel over D × D and set T = Ck0 where Ck0 is the covariance operator
associated with k0, see Section 2. We call k0 an admissible kernel if Ck0 is admissible.
If k0 is continuous then by Mercer’s theorem Ck0x =

∑∞
n=1 λn〈x, en〉en for some positive

sequence {λn}∞n=1 and orthonormal set {en}∞n=1 (Steinwart and Christmann, 2008, Chapter
4.5). To be admissible Ck0 needs to be injective which is equivalent to {en}∞n=1 forming
a basis (Steinwart and Scovel, 2012, Proof of Theorem 3.1). Call k0 integrally strictly
positive definite (ISPD) if

∫
D
∫
D x(s)k0(s, t)x(t)dsdt > 0 for all non-zero x ∈ X . Recall
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that if k0 is translation invariant then by Theorem 23 there exists a measure µk0 such that
µ̂k0(s− t) = k(s, t).

Proposition 22 Let D ⊂ Rd be compact and k0 a continuous kernel on D, if k0 is ISPD
then k0 is admissible. In particular, if k0 is continuous and translation invariant and µk0
has full support on D then k0 is admissible.

For multiple examples of ISPD kernels see Sriperumbudur et al. (2011) and of µk0 see
Sriperumbudur et al. (2010). Using the product to convolution property of the Fourier
transform one can construct k0 such that µk0 has full support relatively easily or modify
standard integral operators which aren’t admissible. For example, for some F ∈ N consider
the kernel kcos(F )(s, t) =

∑F−1
n=0 cos(2πn(s− t)) on [0, 1]2 whose spectral measure is a sum of

Dirac measures so does not have full support. If the Dirac measures are convolved with a
Gaussian then they would be smoothed out and would result in a measure with full support.
Since convolution in the frequency domain corresponds to a product in space domain the new

kernel kc-exp(F,l)(s, t) = e−
1

2l2
(s−t)2kcos(F )(s, t) satisfies the conditions of Proposition 22. This

technique of frequency modification has found success in modelling audio signals (Wilkinson,
2019, Section 3.4). In general, any operator of the form Tx =

∑∞
n=1 λn〈x, en〉X en for

positive, bounded {λn}∞n=1 and an orthonormal basis {en}∞n=1 is admissible even if it is not
induced by a kernel, for example the functional Mahalanobis distance (Berrendero et al.,
2020).

The second category is scenario specific choices. By this we mean kernels whose structure
is specified to the testing problem at hand. For example, while the kernel two-sample test
may be applied for distributions with arbitrary difference one may tailor it for a specific
testing problem, such a difference of covariance operator. If one does only wish to test
for difference in covariance operator of the two probability measures then an appropriate
kernel would be kcov(x, y) = 〈x, y〉2X which is not characteristic but MMDkcov(P,Q) = 0 if
and only if P,Q have the same covariance operator. However, a practitioner may want a
kernel which emphasises difference in covariance operator, due to prior knowledge regarding
the data, while still being able to detect arbitrary difference, in case the difference is more
complicated than initially thought. We now present examples of T which do this. To
emphasise higher order moments, let X ⊂ L4(D) and Y the direct sum of L2(D) with itself
equipped with the norm ‖(x, x′)‖2Y = ‖x‖2L2(D) + ‖x′‖2L2(D) and T (x) = (x, x2). This map
captures second order differences and first order differences individually, as opposed to the
polynomial map which combines them. Alternatively, one might be in a scenario where the
difference in the distributions is presumed to be in the lower frequencies. In this case a map
of the form T (x) =

∑F
n=1 λn〈x, en〉X en could be used for decreasing, positive λn and some

orthogonal en. This will not be characteristic, since T only acts on F frequencies, however
if F is picked large enough then good performance could still be obtained in practice. For
example, λn, en could be calculated empirically from the function samples using functional
principal component analysis and F could be picked so that the components explain a certain
percentage of total variance. See Horváth and Kokoszka (2012) for a deeper discussion on
functional principal components and its central role in functional data analysis.

All of the choices outlined above have associated hyperparameters, for example if T =
Ck0 then hyperparameters of k0 are hyperparameters of T such as the bandwidth. It is
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outside the scope of this paper to investigate new methods to choose these parameters but
we do believe it is important future work. Multiple methods for finite dimensional data
have been proposed using the surrogrates for test power outlined in Section 4 (Sutherland
et al., 2016; Gretton et al., 2012b; Liu et al., 2020) which could have potential for use in
the infinite dimensional scenario.

8. Numerical Simulations

In this section we perform numerical simulations on real and synthetic data to rein-
force the theoretical results. Code is available at https://github.com/georgewynne/

Kernel-Functional-Data.

8.1 Power Scaling of Functional Data

Verification of the power scaling when performing the mean shift two-sample test using
functional data, discussed in Section 4, is performed. Specifically we perform the two-sample
test using the SE-I kernel with x ∼ GP(0, kl) and y ∼ GP(m, kl) where m(t) = 0.05 for

t ∈ [0, 1] and kl(s, t) = e−
1

2l2
(s−t)2 with 50 samples from each distribution. This is repeated

500 times to calculate power with 1000 permutations used in the bootstrap to simulate the
null. The observation points are a uniform grid on [0, 1] with N points, meaning N will be
the dimension of the observed discretised function vectors. The parameter l dictates the
dependency of the fluctations. Small l means less dependency between the random function
values so the covariance matrix is closer to the identity. When the random functions are
m with N (0, 1) i.i.d. corruption the corresponding value of l is zero which essentially
means kl(x, y) = δxy. In this case the scaling of power is expected to follow (6) and grow
asymptotically as

√
N . On the other hand if l > 0 the fluctuations within each random

function are dependent and we expect scaling as (7) which does not grow asymptotically
with N .

Figure 1 confirms this theory showing that power increases with a finer observation mesh
only when there is no dependence in the random functions values. We see some increase of
power as the mesh gets finer for the case of small dependency however the rate of increase
is much smaller than the i.i.d. setting.
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Figure 1: Test power as mesh size decreases given different point dependency strengths
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Abbreviation Description Reference

ID SE-T kernel, T = I Section 5
FPCA SE-T kernel, T based on functional principle components Section 7
SQR SE-T kernel, T squaring feature expansion Section 7

CEXP SE-T kernel, T based on the cosine-exponential kernel Section 7
COV Covariance kernel k(x, y) = 〈x, y〉2X Section 7
FAD Functional Anderson-Darling (Pomann et al., 2016)
CVM Functional Cramer-von Mises (Hall and Keilegom, 2007)

BOOT-HS Bootstrap Hilbert-Schmidt (Paparoditis and Sapatinas, 2016)
FPCA-χ Functional Principal Component χ2 (Fremdt et al., 2012)

Table 1: Summary of two-sample tests and kernels used in numerical experiments

8.2 Synthetic Data

The tests are all performed using the kcov kernel from Section 7 and the SE-T kernel for four
different choices of T and unless stated otherwise Y = L2([0, 1]) and we use the short hand
L2 for L2([0, 1]) and nx, ny will denote the sample sizes of the two samples. To calculate
power each test is repeated 500 times and 1000 permutations are used in the bootstrap to
simulate the null distribution.

COV will denote the kcov kernel, which can only detect difference of covariance operator.
ID will denote T = I. CEXP will denote T = Ck0 with k0 = kc-exp(20,

√
10) the cosine

exponential kernel. SQR will denote T (x) = (x, x2) with Y the direct sum of L2([0, 1]) with

itself as detailed in Section 7. FPCA will denote Tx =
∑F

n=1 λ
1/2
n 〈x, en〉en where λn, en are

empirical functional principal components and principal values computed from the union
of the two collections of samples with F chosen such that 95% of variance is explained.
The abbreviations are summarised in Table 1 along with references to the other tests being
compared against.

For all four instances of the SE-T kernel exp (− 1
2γ2
‖T (x)− T (y)‖2Y) we use, for all

but SQR scenario, the median heuristic γ2 = Median
{
‖T (a) − T (b)‖2Y : a, b ∈ {xi}nXi=1 ∪

{yi}nYi=1, a 6= b
}

. As the SQR scenario involves two norms in the exponent two calculations
of median heuristic are needed so that the kernel used is exp(− 1

2γ21
‖x−y‖2L2− 1

2γ22
‖x2−y2‖2L2)

with γ2
j = Median

{
‖aj − bj‖2L2 : a, b ∈ {xi}nXi=1 ∪ {yi}nYi=1, a 6= b

}
for j = 1, 2.

Difference of Mean

We compare to the Functional Anderson-Darling (FAD) test in Pomann et al. (2016) which
involves computing functional principal components and then doing multiple Anderson-
Darling tests. Independent realisations {xi}nxi=1 and {yj}nyj=1 of the random functions x, y
over [0, 1] are observed on a grid of 100 uniform points with nx = ny = 100 and observation
noise N (0, 0.25). The two distributions are

x(t) ∼ t+ ξ10

√
2 sin(2πt) + ξ5

√
2 cos(2πt),

y(t) ∼ t+ δt3 + η10

√
2 sin(2πt) + η5

√
2 cos(2πt),
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with ξ5, η5
i.i.d∼ N (0, 5) and ξ10, η10

i.i.d∼ N (0, 10). The δ parameter measures the deviation
from the null hypothesis that x, y have the same distribution. The range of the parameter
is δ ∈ {0, 0.5, 1, 1.5, 2}.

Figure 2 shows CEXP performing best among all the choices which makes sense since
this choice explicitly smooths the signal to make the mean more identifiable compared
to the noise. We see that FPCA performs poorly because the principal components are
deduced entirely from the covariance structure and do not represent the mean difference
well. Likewise COV performs poorly since it can only detect difference in covariance, not
mean. Except from FPCA and COV all choices of T out perform the FAD method. This
is most likely because the FAD method involves computing multiple principle components,
an estimation which is inherently random and results in components which do not identify
the mean shift well, and computes multiple FAD tests with a Bonferroni correction which
can cause too harsh a requirement for significance. The empirical sizes of each method are
all very close to the nominal 5% level, see Table 4 in the Appendix for the values used to
plot Figure 2.

Figure 3 shows an ROC curve. On the x-axis is α the false positive rate parameter in
the test, see Section 3, and on the y-axis is the power of the test, meaning the true positive
rate. The plot was obtained using δ = 1.25, nx = 50, ny = 50 with the same observation
locations and noise as described above. We see that COV and FPCA performs trivially
weakly implying the calculated principal components are uninformative for identifying the
difference in mean. CEXP has the best curve ID, SQR perform equally well.
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Figure 2: Test power under mean difference for different kernels.

Difference of Variance

We investigate two synthetic data sets, the first from Pomann et al. (2016) and the second
from Paparoditis and Sapatinas (2016). The first represents a difference in covariance in a
specific frequency and the second a difference across all frequencies.
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Figure 3: ROC curve for different kernels.

In the first data set nx = ny = 100, observations are made on a uniform grid of 100
points and the observation noise is N (0, 0.25). The two distributions are

x(t) ∼ ξ10

√
2 sin(2πt) + ξ5

√
2 cos(2πt),

y(t) ∼ η10+δ

√
2 sin(2πt) + η5

√
2 cos(2πt),

with ξ5, η5
i.i.d∼ N (0, 5) and ξ10 ∼ N (0, 10) and η10+δ ∼ N (0, 10+δ). Therefore the difference

in covariance structure is manifested in the first frequency. The range of the parameter is
δ ∈ {0, 5, 10, 15, 20} and we again compare against the FAD test.

Figure 4 shows that COV performs the best which is to be expected since it is specifically
designed to only detect change in covariance. SQR and FPCA perform well since they are
designed to capture covariance information too. CEXP performs almost identically to ID
since it is designed to improve performance on mean shift tests, not covariance shift. The
values of the plot are in Table 5 in the Appendix.

The second dataset is from Paparoditis and Sapatinas (2016) and we compare against
the data reported there of a bootstrap Hilbert-Schmidt norm (BOOT-HS) test (Paparoditis
and Sapatinas, 2016, Section 2.2) and a functional principal component chi-squared (FPCA-
χ) test (Fremdt et al., 2012), which is similar to the test in Panaretos et al. (2010). The
number of function samples is nx = ny = 25 and each sample is observed on a uniform grid
over [0, 1] consisting of 500 points. The first distribution is defined as

x(t) ∼
10∑
n=1

ξnn
− 1

2

√
2 sin(πnt) + ηnn

− 1
2

√
2 cos(πnt),

where ξn, ηn are i.i.d. Student’s t-distribution random variables with 5 degrees of freedom.
For δ ∈ R the other function distribution is y ∼ δx′ where x′ is an i.i.d. copy of x. When
δ = 1 the two distributions are the same. The entire covariance structure of Y is different
from that of X when δ 6= 1 which is in contrast the previous numerical example where the
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Figure 4: Test power under variance difference in one frequency for different kernels.

covariance structure differed at only one frequency. The range of the deviation parameter
is δ ∈ {1, 1.2, 1.4, 1.6, 1.8, 2}.

Figure 5 shows again that COV and SQR performs the best. The BOOT-HS and FPCA-
χ tests are both conservative, providing rejection rates below 5% when the null is true as
opposed to the kernel based tests which all lie at or very close to the 5% level. The values
of the plot are in Table 6 in the Appendix.
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Figure 5: Test power under variance difference across all frequencies for different kernels.
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Difference of Higher Orders

Data from Hall and Keilegom (2007) is used when performing the test. The random func-
tions x, y are distributed as

x(t) ∼
15∑
n=1

e−
n
2 ξxnψn(t),

y(t) ∼
15∑
n=1

e−
n
2 ξyn,1ψn(t) + δ

15∑
n=1

n−2ξyn,2ψ
∗
n(t),

with ξxn, ξ
y
n,1, ξ

y
n,2

i.i.d∼ N (0, 1), ψ1(t) = 1, ψn(t) =
√

2 sin((k− 1)πt) for n > 1 and ψ∗1(t) = 1,

ψ∗n(t) =
√

2 cos((k − 1)π(2t− 1)) if n > 1 is even, ψ∗n(t) =
√

2 sin((k − 1)π(2t− 1)) if n > 1
is odd. The observation noise for x is N (0, 0.01) and for y is N (0, 0.09). The range of the
parameter is δ ∈ {0, 1, 2, 3, 4} and we compare against the FAD test and the Cramer-von
Mises test in Hall and Keilegom (2007). The number of samples is nx = ny = 15 and
for each random function 20 observation locations are sampled randomly according to px
or py with px being the uniform distribution on [0, 1] and py the distribution with density
function 0.8 + 0.4t on [0, 1].

Since the data is noisy and irregularly sampled, curves were fit to the data before the test
was performed. The posterior mean of a Gaussian process with noise parameter σ2 = 0.01
was fit to each data sample using a Matérn-1.5 kernel kMat(s, t) = (1 +

√
3(s− t))e−

√
3(s−t).

Figure 6 shows that the COV, SQR perform the best with other choices of T performing
equally. Good power is still obtained against the existing methods despite the function
reconstructions, validating the theoretical results of Section 6. The values of the plot are
in Table 7 in the Appendix.
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Figure 6: Test power under difference of higher orders for different kernels.
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8.3 Real Data

Berkeley Growth Data

We now perform tests on the Berkeley growth dataset which contains the height of 39 male
and 54 female children from age 1 to 18. The data can be found in the R package fda. We
perform the two sample test on this data for the five different choices of T with γ chosen
via the median heuristic outlined in the previous subsection. To identify the effect on test
performance of sample size we perform random subsampling of the datasets and repeat the
test to calculate test power. For each sample size M ∈ {5, 10, 15, 20} we sample M functions
from each data set and perform the test, this is repeated 500 times to calculate test power.
The results are plotted in Figure 7. Similarly, to investigate the size of the test we sample
two disjoint subsets of size M ∈ {5, 10, 15, 20} from the female data set and perform the test
and record whether the null was incorrectly rejected, this is repeated 500 times to obtain a
rate of incorrect rejection of the null, the results are reported in Table 2.

Figure 7 shows ID, SQR performing the best, COV performs weaker than CEXP sug-
gesting that it is not just a difference of covariance operator that distinguishes the two
samples. Table 2 shows nearly all the tests have the correct empirical size.
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Figure 7: Test power under subsamples of size M using Berkeley growth data.

NEU Steel Data

We perform the two-sample test on two classes from the North Eastern University steel
defect dataset (Song and Yan, 2013; He et al., 2020; Dong et al., 2019). The dataset
consists of 200 × 200 pixel grey scale images of defects of steel surfaces with 6 different
classes of defects and 300 images in each class. We perform the test on the two classes
which are most visually similar, called rolled-in scale and crazing. See the URL (Song and
Yan, 2020) for further description of the dataset. For each sample size M ∈ {5, 10, 15, 20}
we sample M images from each class and perform the test, this is repeated 500 times to
calculate test power. Again we assess the empirical size by sampling two distinct subsets
from one class, the rolled-in class, for sample sizes M ∈ {5, 10, 15, 20} and repeat this 500
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M ID CEXP SQR FPCA COV

5 4.6 4.4 4.4 3.6 4.8
10 5.2 5.4 5.0 5.6 5.4
15 4.6 4.8 5.6 4.8 7.2
20 5.2 5.4 6.0 6.4 5.6

Table 2: Empirical size, meaning the rate of rejection of the null when the null is true, of
the two-sample test performed on the female Berkeley growth data for different
sample sizes across different choices of T . The values are written as percentages,
a value above 5 shows too frequent rejection and below shows too conservative a
test.

times and report the rate of incorrect null rejection. For CEXP we use the two dimensional
tensor product kernel induced by the CEXP kernel with 20 frequencies and l =

√
10/200 to

normalise the size of the images.
Figure 8 shows SQR having the best performance, CEXP performs well and so does ID.

Table 3 shows that the empirical size is inflated under some choices of T including SQR
which should be taken into consideration when considering overall performance.
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Figure 8: Test power under subsamples of size M using NEU steel data.

9. Conclusion

In this paper we studied properties of kernels on real, separable Hilbert spaces, and the
associated Maximum Mean Discrepancy distance. Based on this, we formulated a novel
kernel-based two-sample testing procedure for functional data. The development of kernels
on Hilbert spaces was motivated by the observation that certain scaling of kernel parameters
in the finite dimensional regime can result in a kernel over a Hilbert space. Indeed, multiple
theoretical properties emerged as natural infinite dimensional generalisations of the finite
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M ID CEXP SQR FPCA COV

5 4.4 4.8 5.6 4.2 3.8
10 5.8 5.8 6.0 5.8 6.6
15 6.4 5.8 5.8 6.6 6.6
20 5.0 6.0 5.2 5.8 6.0

Table 3: Empirical size, meaning the rate of rejection of the null when the null is true,
of the two-sample test performed on the rolled-in scale class from the NEU steel
defect data, for different sample sizes across different choices of T . The values are
written as percentages, a value above 5 shows too frequent rejection and below
shows too conservative a test.

dimensional case. The development of kernels defined directly over Hilbert spaces facilitates
the use of hyperparameters adapted for functional data, such as the choice of T in the SE-T
kernel, which can result in greater test power.

While other nonparametric two-sample tests for functional data have been proposed
recently, we believe that kernel-based approaches offer unique advantages. In particular,
the ability to choose the kernel to reflect a priori knowledge about the data, such as any
underlying dependencies, or to emphasise at which spatial scales the comparison should be
made between the samples can be of significant benefit to practitioners. The construction
of kernels which are tailor-made for two-sample testing of specific forms of functional data,
for example time series and spatial data, is an interesting and open question, which we shall
defer to future work.

The theory of kernels on function spaces is of independent interest and our work high-
lights how existing results on probability measures on infinite dimensional spaces can be
applied to kernel methods, for example the use of the Minlos-Sazanov theorem when prov-
ing characteristicness. Recent theoretical developments relating to kernels and MMD on
general topological spaces in the absence of compactness or local compactness have revealed
the challenges in establishing important properties of such metrics, for example determin-
ing weak convergence of sequences of probability measures (Simon-Gabriel and Schölkopf,
2018; Simon-Gabriel et al., 2020; Chevyrev and Oberhauser, 2018), which have important
implications for the development of effective MMD-based tests for functional data.

A further application of kernels on function spaces is statistical learning of maps between
function spaces, in particular, the challenge of learning surrogate models for large-scale PDE
systems which can be viewed as a nonlinear deterministic maps from an input function
space, initial or boundary data, to an output function space, a system response. Here there
are fundamental challenges to be addressed relating to the universality properties of such
kernels. Preliminary work in (Nelsen and Stuart, 2020) indicates that this is a promising
direction of research.
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Appendix A. Proofs of Theoretical Results

A.1 Bochner and Minlos-Sazanov Theorem

Bochner’s theorem provides an exact relationship between continuous, translation invariant
kernels on Rd, meaning k(x, y) = φ(x−y) for some continuous φ, and the Fourier transforms
of finite Borel measures on Rd. For a proof see Wendland (2005, Theorem 6.6).

Theorem 23 (Bochner) A continuous function φ : Rd → C is positive definite if and only
if it is the Fourier transform of a finite Borel measure µφ on Rd

µ̂φ(x) :=

∫
Rd
eix

T ydµφ(y) = φ(x).

Bochner’s theorem does not continue to hold in infinite dimensions, for example the
kernel k(x, y) = e−

1
2
‖x−y‖2X when X is an infinite dimensional, real, separable Hilbert space

is not the Fourier transform of a finite Borel measure on X (Maniglia and Rhandi, 2004,
Proposition 1.2.11). Instead, a stronger continuity property is required, this is the content
of the Minlos-Sazanov theorem. For a proof see (Maniglia and Rhandi, 2004, Theorem
1.1.5) or Vakhania et al. (1987, Theorem VI.1.1).

Theorem 24 (Minlos-Sazanov) Let X be a real, seperable Hilbert space and φ : X → C
a positive definite function on X then the following are equivalent

1. φ is the Fourier transform of a finite Borel measure on X

2. There exists C ∈ L+
1 (X ) such that φ is continuous with respect to the norm induced

by C given by ‖x‖2C = 〈Cx, x〉X .

The existence of such an operator is a much stronger continuity property than standard
continuity on X and will be crucial in the proof of Theorem 26, one of our main results. To
see that continuity with respect to such a C is stronger than usual continuity consider the
following example. Fix any ε > 0 and assume we only know that φ : X → R is continuous
and for simplicity assume that φ(0) = 1, then we know there exists some δ > 0 such that
‖x‖X < δ implies |φ(x) − 1| < ε meaning we have control of φ(x) over the bounded set
‖x‖X < δ. On the other hand, if φ is continuous with respect to ‖·‖C for some C ∈ L+

1 (X )
then we know there exists some δ′ > 0 such that ‖x‖C < δ′ implies |φ(x) − 1| < ε so we
have control of φ(x) over the unbounded set ‖x‖C < δ′. To see this set is unbounded let
{λn, en}∞n=1 be the orthonormal eigensystem of C and for n ∈ N let yn = δ′en

2λn
if λn > 0

otherwise yn = nen, then since C ∈ L+
1 (X ) we know λn → 0 so ‖yn‖X →∞. Since we used

elements from the eigensystem it is clear that ‖yn‖C ≤ δ′/2. Therefore we have constructed
a subset of the ball with respect to ‖·‖C of radius δ′ that has unbounded norm.
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A.2 Proofs for Section 4

Proof [Proposition 2]
We begin by outlining the scaling that occurs for each of the two cases. For econ-

omy of notation we set γ = γN . If k0(s, t) = δst then Tr(Σi) = N for all i ∈ N and
〈mN ,ΣmN 〉 = ‖mN‖22 = Θ(N) by the Riemann scaling. If k0 is continuous and bounded
then Tr(Σi) = Θ(N i) since N−iTr(Σi) → Tr(Cik0) and 〈mN ,Σ

imN 〉 = Θ(N i+1) since

N−(i+1)〈mN ,Σ
imN 〉 →

∫
D
∫
Dm(s)Cik0m(t)dsdt.

We shall outline the proof of the result in the second case, the proof for the first case is
entirely analogous and is completed by substituting the above scaling results where appro-
priate. Throughout this proof we shall repeatedly use the following Taylor series approx-
imation, for a positive definite matrix Σ ∈ RN×N , based on the classical Girard-Waring
formulas.

det(I + εΣ) = 1 + εTr(Σ) +
ε2

2
R1(s) = 1 + εTr(Σ) +

ε2

2
(Tr(Σ)2 − Tr(Σ2)) +

ε3

6
R2(s′),

for some 0 < s, s′ ≤ ε where

R1(s) =

(∑ λi
(1 + sλi)

)2

− det(I + sΣ)
∑ λ2

i

(1 + sλi)2
,

and

R2(s) =− 2(1 + det(I + sΣ))
∑ λi

(1 + sλi)

∑ λ2
i

(1 + sλi)2

+ 2 det(I + sΣ)
∑ λ3

i

(1 + sλi)3
,

where {λ1, . . . , λN} are the eigenvalues of Σ. We may bound these remainders

R1(s) ≤
(∑ λi

(1 + sλi)

)2

≤ Tr(Σ)2 = O(N2),

and

R2(s) ≤ 2 det(I + sΣ)
∑ λ3

i

(1 + sλi)3
≤ 2eεTr(Σ)Tr(Σ3).

In our scenario ε = γ−2 = O(N−2α) = o(N−1) therefore eεTr(Σ) is bounded since Tr(Σ) =
O(N). Finally, Tr(Σ3) = O(N3) therefore R2(s) = O(N3). Setting T = 1

γ I and R = S = Σ
in Corollary 19 and applying the above Taylor expansion along with the expansions for
x−1/2 and (I + εΣ)−1 with Lagrange remainder term

MMD2
k(P,Q) = 2 det(I + 2Σ/γ2)−

1
2

(
1− e−

1
2γ2
〈(I+2Σ/γ2)−1µ,µ〉

)
=

(
1 +

1

γ2
r1

)(
1

γ2

〈
(I + 2Σ/γ2)−1µ, µ

〉
+

1

γ4
r2

)
=

(
1 +

1

γ2
r1

)(
1

γ2
〈µ, µ〉+

1

γ4
r2 +

1

γ4
r3

)
,
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where r1, r2, r3 are remainder terms.

To leading order r1/γ
2 = O(N1−2α), r2/γ

4 = O(N2−4α), r3/γ
4 = O(N2−4α) so it follows

that MMD2
k(P,Q) = γ−2‖mN‖2 + r(N) where, to leading order, r(N) = O(N2−4α). We

now consider the denominator. To this end, applying Theorem 20 with T = γ−1I and
S = Σ we obtain

ξ2 = 2 det(I + 4Σ/γ2)−
1
2

(
1 + e

− 1
γ2
〈µ,(I+4Σ/γ2)−1µ〉

)
− 2 det(I + 2Σ/γ2)−1(1 + e

− 1
γ2
〈µ(I+2Σ/γ2)−1µ〉 − 4e

− 1
2γ2
〈µ(I+2Σ/γ2)−1µ〉

)

− 8 det((I + Σ/γ2)(I + 3Σ/γ2))−1/2e
− 1

2γ2
〈µ,(I+2Σ/γ2)(I+3Σ/γ2)−1(I+Σ/γ2)−1µ〉

.

We split this into two terms, ξ2 = A1 +A2, where

A1 = 4 det(I + 4Σ/γ2)−
1
2 + 4 det(I + 2Σ/γ2)−1 − 8 det((I + Σ/γ2)(I + 3Σ/γ2))−1/2,

and

A2 = 2 det(I + 4Σ/γ2)−
1
2

(
−1 + e

− 1
γ2
〈µ,(I+4Σ/γ2)−1µ〉

)
− 2 det(I + 2Σ/γ2)−1(3 + e

− 1
γ2
〈µ(I+2Σ/γ2)−1µ〉 − 4e

− 1
2γ2
〈µ(I+2Σ/γ2)−1µ〉

)

− 8 det((I + Σ/γ2)(I + 3Σ/γ2))−1/2(−1 + e
− 1

2γ2
〈µ,(I+2Σ/γ2)(I+3Σ/γ2)−1(I+Σ/γ2)−1µ〉

).

Applying Taylor’s theorem for the determinant and exponential terms we obtain:

A1 = 4

[
1− 2

γ2
Tr(Σ) +

2

γ4
(Tr(Σ))2 +

4

γ4
Tr(Σ2) + r1

]
+ 4

[
1− 2

γ2
Tr(Σ) +

2

γ4
(Tr(Σ))2 +

2

γ4
Tr(Σ2) + r2

]
− 8

[
1− 1

2γ2
Tr(Σ) +

1

8γ4
Tr(Σ)2 +

1

4γ4
Tr(Σ2) + r3

]
×
[
1− 3

2γ2
Tr(Σ) +

9

8γ4
(Tr(Σ))2 +

9

4γ4
Tr(Σ2) + r4

]
,

where to leading order r1, r2, r3, r4 = O(N3−6α + N4−8α). After simplification we obtain
A1 = 4

γ4
Tr(Σ2) + r(N) where r(N) = O(N3−6α). Similarly writing A2 = B1 +B2 +B3, we

obtain:

B1 =
2

γ2
(1− 2Tr(Σ)/γ2 + r5)

(
−〈µ, µ〉+

4

γ2
〈µ,Σµ〉+

1

2γ2
〈µ, µ〉2 + r6

)
,

B2 = − 2

γ2
(1− 2Tr(Σ)/γ2 + r7)

(
〈µ, µ〉 − 2

γ2
〈µ,Σµ〉+ r8

)
,

B3 = − 8

γ2

(
1− 2Tr(Σ)/γ2 + r9

)(
−1

2
〈µ, µ〉+

1

γ2
〈µ,Σµ〉+

1

8γ2
〈µ, µ〉2 + r10

)
,

where r5, . . . , r10 are remainder terms which satisfy ri = O(N3−6α + N4−8α) for i =
5, . . . , 10. Expanding B1 +B2 +B3 and collecting into powers of γ, we see that the constant
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terms and the terms with denominator γ2 cancel out. Collecting terms with γ4 denominator
gives A2 = 4

γ4
〈µ,Σµ〉 + r(N) where r(d) = O(d3−6α) is a remainder term containing the

higher order terms. Combining the leading order expressions for A1 and A2, and collecting
together the remainder terms we obtain

MMD2
k(P,Q)√
ξ2

=
‖µ‖22/γ2 + r(N)√

4Tr(Σ2)/γ4 + 4〈µ,Σµ〉/γ4 + r′(N)
,

where r(N) = O(N2−4α) and r′(N) = O(N3−6α) It follows that

MMD2
k(P,Q)√
ξ2

=
‖µ‖22√

4Tr(Σ2) + 4〈µ,Σµ〉

 1 + r(N)
‖µ‖22/γ2√

1 + r′(N)
4Tr(Σ2)/γ4+4〈µ,Σµ〉/γ4

 . (11)

As discussed at the start of the proof ‖mN‖22 = Θ(N) and Tr(Σ2), 〈mN ,ΣmN 〉 = Θ(N2)
meaning that γ2r(N)/‖mN‖22 = O(N1−2α) and so converges to zero. Likewise the fraction
in the square root in the denominator converges to zero, meaning the term in the brack-
ets of (11) converge to 1 as N → ∞, yielding the advertised result once numerator and
denominator is divided by N since

N−2Tr(Σ2)→
∫
D

∫
D
k0(s, t)dsdt = ‖Ck‖2HS ,

N−2〈mN ,ΣmN 〉 →
∫
D

∫
D
m(s)k0(s, t)m(t)dsdt = ‖C1/2

k m‖2L2(D).

For the case of identity matrix substituting the corresponding scaling of
Tr(Σ2), 〈mN ,ΣmN 〉 in the relevant places will produce the result.

Proof [Lemma 3]

We use the standard fact that for a real valued random variables η the following in-
equality holds |E[η]−Median[η]| ≤ Var[η]

1
2 and we will be using this inequality on ‖x− y‖22

where x ∼ P, y ∼ Q. For economy of notation let µ = µ1 − µ2 and Σ = Σ1 + Σ2. Using
standard Gaussian integral identities we obtain

E[‖x− y‖22]2 = (Tr(Σ) + ‖µ‖22)2,

E[‖x− y‖42] = 2Tr(Σ2) + 4〈µ,Σµ〉+ (Tr(Σ) + ‖µ‖22)2,

therefore

Var[‖x− y‖22] = E[‖x− y‖42]− E[‖x− y‖22]2 = 2Tr(Σ)2 + 4‖µ‖22Tr(Σ).

Substituting into the inequality at the start of the proof∣∣∣∣Median[‖x− y‖22]

E[‖x− y‖22]
− 1

∣∣∣∣2 ≤ 2Tr(Σ)2 + 4‖µ‖22Tr(Σ)

(Tr(Σ) + ‖µ‖22)2
= 2

(
1− ‖µ‖42

(Tr(Σ) + ‖µ‖22)2

)
,
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which completes the first part of the proof. The special case follows from divid-
ing the numerator and denominator of the fraction in the right hand side by N2

and using the assumption that the kernels are continuous and the mesh satisfies
the Riemann scaling property. Writing mN for the discretised version of m1 − m2 gives
N−2‖mN‖42 → ‖m1−m2‖2L2(D), N

−1Tr(Σ)→ Tr(Ck1 +Ck2), N−1‖mN‖22 → ‖m1−m2‖2L2(D).

A.3 Proofs for Section 5

Lemma 25 The SE-T function is a kernel.

Proof [Lemma 25] Consider first the case T = I, it is shown in Schoenberg (1938, Theo-
rem 3) that if k(x, y) = φ(‖x−y‖2Y) for φ a completely monotone function then k is positive
definite on Y and it is well known that e−ax is such a function for a > 0 therefore kI is a
kernel. Now take kT to be the SE-T kernel then for any N ∈ N, {an}Nn=1 ⊂ R, {xn}Nn=1 ⊂ X
we have

∑N
n,m=1 anamkT (xn, xm) =

∑N
n,m=1 anamkI(T (xn), T (xm)) ≥ 0

Proof [Theorem 5] This proof uses the argument of Minh (2009, Theorem 1). The plan
is to first show the function space stated in the theorem is an RKHS and that the kernel is
the SE-T kernel so by uniqueness of kernel for RKHS we are done. This is done using the
Aronszajn theorem (Minh, 2009, Theorem 9) which identifies the kernel as an infinite sum
of basis functions, see also Paulsen and Raghupathi (2016, Theorem 2.4).

First we prove that HkT (X ) is a separable Hilbert space. That it is an inner product
space is clear from the definition of the inner product and the assumption that λn > 0 for
all n ∈ N. The definition of the inner product means completeness of HkT (X ) equivalent to
completeness of the weighted l2 space given by

l2λ(Γ) =

(wγ)γ∈Γ : ‖(wγ)γ∈Γ‖2l2λ(Γ)
:=
∑
γ∈Γ

γ!

λγ
w2
γ <∞


which can be easily seen to be complete since Γ is countable and γ!/λγ is positive for all
γ ∈ Γ. To see that HkT (X ) is separable observe that from the definition of the inner

product, the countable set of functions φγ(x) =
√
λγ/γ!e−

1
2
‖Tx‖2X xγ is orthonormal and

spans HkT (X ) hence is an orthonormal basis.
Next we prove that HkT (X ) is an RKHS. Expanding the kernel through the exponential

function gives

kT (x, y) = e−
1
2
‖Tx‖2X e−

1
2
‖Tx‖2X e〈Tx,Ty〉X = e−

1
2
‖Tx‖2X e−

1
2
‖Tx‖2X

∞∑
n=0

〈Tx, Ty〉nX
n!

,

and by the assumption on T we know 〈Tx, Ty〉nX =
(∑∞

m=1 λmxmym
)n

=
∑
|γ|=n

n!
γ!λ

γxγyγ

where xm = 〈x, em〉X , similarly for ym, therefore

kT (x, y) = e−
1
2
‖Tx‖2X e−

1
2
‖Tx‖2X

∑
|γ|≥0

λγ

γ!
xγyγ =

∑
|γ|≥0

φγ(x)φγ(y).
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So for any F ∈ HkT (X ) we have 〈F, kT (·, x)〉HkT (X ) =
∑

γ∈Γ〈F, φγ〉HkT (X )φγ(x) = F (x) so

kT is a reproducing kernel of HkT (X ) so by uniqueness of reproducing kernels we have that
HkT (X ) is the RKHS of kT .

Proof [Theorem 7] If kT (x, y) = µ̂(x − y) for some Borel measure on X then (2) lets us
write

MMDkT (P,Q)2 =

∫
X

∫
X
kT (x, y)d(P −Q)(x)d(P −Q)(y)

=

∫
X

∫
X

∫
X
ei〈h,x−y〉X dµ(h)d(P −Q)(x)d(P −Q)

=

∫
X

(∫
X
ei〈h,x〉X d(P −Q)(x)

)(∫
X
e−i〈h,y〉X d(P −Q)(y)

)
dµ(h) (12)

=

∫
X

∣∣∣P̂ (h)− Q̂(h)
∣∣∣2 dµ(h),

where (12) is obtained by using Fubini’s theorem to swap the integrals which is permitted
since |ei〈h,x−y〉X |= 1 and is therefore integrable with respect to P and Q.

Fourier transforms of finite Borel measures on X are uniformly continuous (Albeverio
and Mazzucchi, 2015, Proposition 2.21) therefore if µ has full support, meaning that
µ(U) > 0 for every open U ⊂ X , then we may immediately conclude that P̂ = Q̂ and
since the Fourier transform of finite Borel measures on X is injective (Da Prato, 2006,
Proposition 1.7) we may conclude that P = Q meaning that ΦkT is injective. Assume T
is injective. If kT is the SE-T kernel then Da Prato (2006, Proposition 1.25) shows that
µ = NT 2 has full support since T 2 is also injective. Therefore kT is characteristic. For the
converse direction we use the contrapositive and assume that T is not injective meaning
there exists x∗ ∈ X with x∗ 6= 0 and Tx = 0. Set P = δ0 and Q = δx∗ the Dirac measures
on 0, x∗ then ΦkT (P ) = kT (0, ·) = kT (x∗, ·) = ΦkT (Q) therefore ΦkT is not injective so kT
is not characteristic.

Proof [Theorem 9] The result is a corollary of the next theorem which is where Theorem
24 is employed.

Theorem 26 Let X be a real, separable Hilbert space and T = I then the SE-T kernel is
characteristic.

Proof [Theorem 26] The idea of this proof is to use the contrapositive and assume P 6= Q
and conclude that MMDkI (P,Q) > 0. The main tool shall be Theorem 24 since P 6= Q

implies P̂ 6= Q̂ and Theorem 24 implies that these Fourier transforms vary slowly in some
sense so there will be a set of big enough measure such that P̂ (x) 6= Q̂(x) for x in this set,
which will allow us to deduce MMDkI (P,Q) > 0.

Suppose P,Q are Borel probability measures on X with P 6= Q then P̂ 6= Q̂ (Da
Prato, 2006, Proposition 1.7) so there exists x∗ ∈ X , ε > 0 such that |P̂ (x∗) − Q̂(x∗)| > ε.
By Theorem 24 there exists S,R ∈ L+

1 (X ) such that P̂ (respectively Q̂) is continuous
with respect to the norm induced by S (repectively R). For r > 0 let BS(x∗, r) = {x ∈
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X : 〈S(x − x∗), x − x∗〉X < r2} be the ball based at x∗ of radius r with respect to the
norm induced by S, and BR(x∗, r) will denote the analogous ball with respect to the norm
induced by R. By the continuity properties of P̂ , Q̂ there exists r > 0 such that

x ∈ BS(x∗, r) =⇒ |P̂ (x)− P̂ (x∗)| < ε

4

x ∈ BR(x∗, r) =⇒ |Q̂(x)− Q̂(x∗)| < ε

4
.

The set BS(x∗, r) ∩ BR(x∗, r) is non-empty since it contains x∗ and if x ∈ BS(x∗, r) ∩
BR(x∗, r) then by reverse triangle inequality

|P̂ (x)− Q̂(x)| = |P̂ (x)− P̂ (x∗) + P̂ (x∗)− Q̂(x∗) + Q̂(x∗)− Q̂(x)|
≥ |P̂ (x∗)− Q̂(x∗)| − |P̂ (x)− P̂ (x∗)| − |Q̂(x)− Q̂(x∗)|
> ε− ε

4
− ε

4
=
ε

2
. (13)

Now define the operator U = S + R which is positive, symmetric and trace class since
both S and R have these properties. Note that BU (x∗, r) ⊂ BS(x∗, r) ∩BR(x∗, r) because

‖x− x∗‖2U = 〈U(x− x∗), x− x∗〉X
= 〈S(x− x∗), x− x∗〉X + 〈R(x− x∗), x− x∗〉X
= ‖x− x∗‖2S + ‖x− x∗‖2R.

Since U is a positive, compact, symmetric operator there exists a decomposition into
its eigenvalues {λn}∞n=1, a non-negative sequence converging to zero, and eigenfunctions
{en}∞n=1 which form an orthonormal basis of X . We will later need to associate a non-
degenerate Gaussian measure with U . To this end define V to be the positive, symmetric,
trace class operator with eigenvalues {ρn}∞n=1 where ρn = λn if λn > 0 otherwise ρn = n−2,
and eigenfunctions {en}∞n=1 inherited from U . Then by construction V is injective, positive,
symmetric and trace class. The V induced norm dominates the U induced norm therefore
BV (x∗, r) ⊂ BU (x∗, r) so for x ∈ BV (x∗, r) we have |P̂ (x)− Q̂(x)| > ε/2.

Now we construct an operator which will approximate I, define the operator Imx =∑∞
n=1 ω

(m)
n 〈x, en〉X en where ω

(m)
n = 1 for n ≤ m and ω

(m)
n = n−2 for n > m and {en}∞n=1

is the eigenbasis of V , then Im ∈ L+
1 (X ) for every m ∈ N. It is easy to see k

I
1/2
m

converges

pointwise to kI as m→∞ since e−
1
2
x is a continuous function on R and ‖x‖2

I
1/2
m

→ ‖x‖2I =

‖x‖2X however clearly I
1/2
m does not converge in operator norm to I since I is not a compact

operator. Since kIm ≤ 1 for all m we may use the bounded convergence theorem to obtain

MMDkI (P,Q)2 =

∫
X

∫
X
kI(x, y)d(P −Q)(x)d(P −Q)(y)

= lim
m→∞

∫
X

∫
X
k
I
1/2
m

(x, y)d(P −Q)(x)d(P −Q)(y)

= lim
m→∞

∫
X
|P̂ (x)− Q̂(x)|2dNIm(x), (14)
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where (14) is by the same reasoning as in the proof of Theorem 7. In light of the lower
bound we derived earlier over BV (x∗, r) of the integrand in (13)

MMDkI (P,Q)2 = lim
m→∞

∫
X
|P̂ (x)− Q̂(x)|2dNIm(x) ≥ lim

m→∞

∫
BV (x∗,r)

ε2

4
dNIm(x),

so if we can lower bound NIm(BV (x∗, r)) by a positive constant indepdendent of m then we
are done. This set is the ball with respect to V ∈ L+

1 (X ) which is a somehow large set, see
the discussion after Theorem 24, and we will use a push-forward of measure argument.

Define T (x) = x − x∗ then NIm(BV (x∗, r)) = T#NIm(BV (0, r)) and (Da Prato, 2006,
Proposition 1.17) tells us T#NIm(BV (0, r)) = N−x∗,Im(BV (0, r)). Next we note that

N−x∗,Im(BV (0, r)) = V
1
2

#N−x∗,Im(B(0, r)) and (Da Prato, 2006, Proposition 1.18) tells us
that

V
1
2

#N−x∗,Im(B(0, r)) = N
−V

1
2 x∗,V

1
2 ImV

1
2
(B(0, r)).

For ease of notation let y∗ = −V 1
2x∗ and since we choose to construct Im from the

eigenbasis of V we have Vmx := V
1
2 ImV

1
2x =

∑
n∈N ρ

(m)
n 〈x, en〉X en where ρ

(m)
n = ρn for

n ≤ m and ρ
(m)
n = ρnn

−2 for n > m so Vm ∈ L+
1 (X ) and is injective for every m ∈ N. We

follow the proof of (Da Prato, 2006, Proposition 1.25) and define the sets

Al =

{
x ∈ X :

l∑
n=1

〈x, en〉2X ≤
r2

2

}
Bl =

{
x ∈ X :

∞∑
n=l+1

〈x, en〉2X <
r2

2

}
.

Since Vm is non-degenerate for every m ∈ N we have that for every l ∈ N the events Al, Bl
are independent under Ny∗,Vm (Da Prato, 2006, Example 1.22) meaning ∀m, l ∈ N we have

Ny∗,Vm(B(0, r)) ≥ Ny∗,Vm(Al ∩Bl) = Ny∗,Vm(Al)Ny∗,Vm(Bl),

and by the measure theoretic Chebyshev inequality, for every l ∈ N

Ny∗,Vm(Bl) ≥ 1−Ny∗,Vm(Bc
l ) ≥ 1− 2

r2

∞∑
n=l+1

∫
X
〈x, en〉2XdNy∗,Vm

= 1− 2

r2

( ∑
n=l+1

ρ(m)
n + 〈y∗, en〉2X

)

≥ 1− 2

r2

( ∞∑
n=l+1

ρn + 〈y∗, en〉2X

)
.

As the final line involves the tail of a finite sum with no dependcy on m there exists an
L ∈ N such that Ny∗,Vm(BL) > 1

2 for every m ∈ N and l ≥ L. Note that for m > L we have

Ny∗,Vm(AL) = Ny∗,V (AL) since AL depends only on the first L coordinates and ρ
(m)
n = ρn

for n ≤ L if m > L. So for m > L

Ny∗,Vm(AL) = Ny∗,V (AL) ≥ Ny∗,V

(
B

(
0,

r√
2

))
> c > 0,
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for some c since V is non-degenerate (Da Prato, 2006, Proposition 1.25).

Overall we have shown that there exists an L ∈ N such that for m > L we have
NIm(BV (x∗, r)) = Ny∗,Vm(B(0, r)) > c

2 . Therefore, by substituting back into the lower
bound for MMDkI (P,Q)2

MMDkI (P,Q)2 = lim
m→∞

∫
X
|P̂ (x)− Q̂(x)|2dNIm(x)

≥ lim
m→∞

∫
BV (x∗,r)

ε2

4
dNIm(x) >

ε2c

8
> 0,

which implies by contrapositive that kI is characteristic.

With Theorem 26 proved we proceed to prove Theorem 9. By (2)

MMDkT (P,Q)2 =

∫ ∫
kT (x, x′)dP (x)dP (x′) +

∫ ∫
kT (y, y′)dQ(y)dQ(y′)

− 2

∫ ∫
kT (x, y)dQ(x)dP (y)

=

∫ ∫
kI(x, x

′)dT#P (x)dT#P (x′) +

∫ ∫
kI(y, y

′)dT#Q(y)dT#Q(y′)

− 2

∫ ∫
kI(x, y)dT#P (x)dT#Q(y) (15)

= MMDkI (T#P, T#Q)2.

Using Theorem 26 we know that if MMDkT (P,Q) = 0 then T#P = T#Q and all
that is left to show is that the assumption on T implies P = Q. By the definition
of push-forward measure we know that for every B ∈ B(Y) we have the equality
P (T−1B) = Q(T−1B). By the assumptions on X ,Y, T we know that T (A) ∈ B(Y) for
every A ∈ B(X ) (Kechris, 1995, Theorem 15.1). Hence for any A ∈ B(X ) take B = T (A)
then P (A) = P (T−1B) = Q(T−1B) = Q(A), which shows P = Q.

Proof [Proposition 11] For any N ∈ N take any {an}Nn=1 ⊂ R, {xn}Nn=1 ⊂ X then

N∑
n,m=1

kC,k0(xn, xm) =

∫
X

N∑
n,m=1

k0(〈xn, h〉X , 〈xm, h〉X )dNC(h) ≥ 0,

since this is the integral of a non-negative quantity as k0 is a kernel. Symmetry of kC,k0
follows since k0 is symmetric meaning kC,k0 is a kernel. Expanding k0 using its spectral
measure we have

kC,k0(x, y) =

∫
X

∫
R
ei〈x−y,rh〉X dµ(r)dNC(h) = ν̂(x− y),

where ν(A) =
∫
X
∫
R 1A(rh)dµ(r)dNC(h) for all A ∈ B(X ). This is the law of the X valued

random variable ξX where ξ ∼ µ and X ∼ NC are independent. We will show that ν has
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full support on X from which is follows that kC,k0 is characteristic by following the proof of
Theorem 7.

Fix any open ball B = B(h, r) ⊂ X then given the assumption on µ by intersecting
with (0,∞) or (−∞, 0) we may assume that a, b have the same sign. Assume that a, b > 0,
the proof for when a, b < 0 is analogous. We first treat the case h 6= 0. Set δ = min(1

2( ba −
1), r

2‖h‖X ) so that (a, a(1 + δ)) ⊂ (a, b). Now consider the ball B′ = B( h
a(1+δ) ,

r
4a(1+δ)), take

any c ∈ (a, a(1 + δ)) and any x ∈ B′ then

‖cx− h‖X ≤
∥∥∥∥ξx− ξh

a(1 + δ)

∥∥∥∥
X

+

∥∥∥∥ ξh

a(1 + δ)
− h
∥∥∥∥
X

≤ cr

4a(1 + δ)
+ ‖h‖X

(
1− c

a(1 + δ)

)
<
r

4
+ ‖h‖X

(
1− 1

1 + δ

)
<
r

4
+
r

2
< r.

Therefore for any c ∈ (a, a(1 + δ)) we have cB′ ⊂ B. Hence P(ξX ∈ B) = ν(B) ≥
µ
(
(a, a(1 + δ))

)
NC(B′) > 0 by the assumptions on µ and the way NC is non-degenerate.

The case h = 0 is analogous, take B′ = B(0, r2b) then for every c ∈ (a, b) we have
cB′ ⊂ B and we again conclude ν(B) > 0.

Proof [Corollary 13] The idea of the proof is to represent the IMQ-T kernel as an integral
of the SE-T kernel then use the same limit argument as in the proof of Theorem 26 and
push-forward argument of Theorem 9.

Throughout this proof kIMQ
T and kSE

T will denote the IMQ-T and SE-T kernels respec-

tively. By the same proof technique as Theorem 9 is suffices to prove that kIMQ
I is charac-

teristic. Let {en}∞n=1 be any orthonormal basis of X and let Imx =
∑m

n=1〈x, en〉X en so that
Im converges to I pointwise. Then by the same limiting argument in the proof of Theorem
26 using bounded convergence theorem, letting N1 be the N (0, 1) measure on R we have

MMD
kIMQ
I

(P,Q)2 = lim
m→∞

∫
X

∫
X
kIMQ
Im

(x, y)d(P −Q)(x)d(P −Q)(y)

= lim
m→∞

∫
X

∫
X

∫
R
kSE
Im(zx, zy)dN1(z)d(P −Q)(x)d(P −Q)(y) (16)

=

∫
R

MMDkSEI
(z#P, z#Q)2dN1(z), (17)

where (16) is from the integral representation of kIMQ
Im

in (10) which can be used since

Im ∈ L+
1 (X ), (17) is obtained by using Fubini’s theorem and bounded convergence theorem

and z#P denotes the push-forward of the measure under the linear map from X to X defined
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as multiplication by the scalar z. The integrand in (17) can be rewritten as

MMDkSEI
(z#P, z#Q)2 =

∫
X

∫
X
kSE
I (x, y)d(z#P − z#Q)(x)d(z#P − z#Q)(y)

=

∫
X

∫
X
kSE
I (zx, zy)d(P −Q)(x)d(P −Q)(y)

=

∫
X

∫
X
e−

z2

2
‖x−y‖2X d(P −Q)(x)d(P −Q)(y)

= MMDkSE
z2I

(P,Q)2,

which makes it clear that MMDkSEI
(z#P, z#Q)2 is a continuous, non-negative function of z

and equals 0 if and only if z = 0. Using this we deduce

MMD
kIMQ
I

(P,Q)2 =

∫
R

MMDkSEI
(z#P, z#Q)2dNσ2(z)

=

∫
R

MMDkSE
z2I

(P,Q)2dNσ2(z) > 0,

since Nσ2 has strictly positive density. This proves that the IMQ-I kernel is characteristic
and by the same push-forward argument as in the proof of Theorem 9 we may conclude
that the IMQ-T kernel is characteristic too.

A.4 Proofs for Section 6

Proof [Proposition 14] For any i, j using the assumption on k we have

|k(xi, yj)− k(RIxi,RIyj)| ≤ L‖xi − yj −RIxi +RIyj‖X (18)

≤ L
(
‖RIxi − xi‖X + ‖RIyj − yj‖X

)
, (19)

where (18) is by assumption and (19) uses the triangle inequality. Using (3) gives∣∣∣∣M̂MDk(Xn, Yn)2 − M̂MDk(RIXn,RIYn)2

∣∣∣∣
≤ 1

n(n− 1)

n∑
i 6=j
|h(zi, zj)− h(RIzi,RIzj)|

≤ 2L

n(n− 1)

n∑
i 6=j
‖RIxi − xi‖X + ‖RIxj − xj‖X + ‖RIyi − yi‖X + ‖RIyj − yj‖X (20)

=
4L

n

n∑
i=1

‖RIxi − xi‖X + ‖RIyi − yi‖X , (21)

where (20) follows from expanding using the definition of h in Section 3 and using the
triangle inequality and (21) follows from counting the number of pairs of indices in the
sum.
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Proof [Corollary 15] This can be deduced by the Lipschitz constants of e−x
2/2 and

(x2 + 1)−1/2. Then the proof of Proposition 14 may be continued in the same manner.

Proof [Theorem 16] Define the two random variables

An = n
1
2
(
M̂MDk(RIXn,RIYn)2 − M̂MDk(Xn, Yn)2

)
Bn = n

1
2
(
M̂MDk(Xn, Yn)2 −MMDk(P,Q)2

)
.

It is known Bn
d−→ N (0, ξ) (Gretton et al., 2012a, Corollay 16) so the proof is complete by

Slutsky’s theorem if An
P−→ 0. Fix any ε > 0 then by Proposition 2

P(|An| > ε) ≤ P
(

4L

n
1
2

n∑
i=1

‖RIxi − xi‖X + ‖RIyi − yi‖X > ε

)

≤ 4L

εn
1
2

E
[ n∑
i=1

‖RIxi − xi‖X + ‖RIyi − yi‖X
]

(22)

=
4Ln

1
2

ε
E[‖RIx− x‖X + ‖RIy − y‖X ] (23)

→ 0, (24)

where (22) is by Markov’s inequality, (23) is by the assumption that the samples from P,Q
and disctretisation U, V are i.i.d. across samples and (24) is by assumption.

Proof [Theorem 17] Note that ΦkT (Na,S)(x) = ΦkI (NTa,TST )(Tx) (Da Prato, 2006,
Proposition 1.18). The proof simply uses (Da Prato and Zabczyk, 2002, Proposition 1.2.8)
to calculate the Gaussian integrals.

ΦkI (Na,S)(x) =

∫
X
e−

1
2
〈x−y,x−y〉X dNa,S(y)

= e−
1
2
〈a−x,a−x〉X

∫
X
e−

1
2
〈y,y〉X e−〈y,a−x〉X dNS(y)

= det(I + S)−
1
2 e−

1
2
〈a−x,a−x〉X e

1
2
‖(I+S)−

1
2 S

1
2 (a−x)‖2X (25)

= det(I + S)−
1
2 e−

1
2
〈a−x,a−x〉X e

1
2
〈S

1
2 (I+S)−1S

1
2 (a−x),a−x〉X

= det(I + S)−
1
2 e−

1
2
〈(I−S

1
2 (I+S)−1S

1
2 )(a−x),(a−x)〉X

= det(I + S)−
1
2 e−

1
2
〈(I+S)−1(x−a),x−a〉X , (26)

where (25) is due to Da Prato and Zabczyk (2002, Proposition 1.2.8). The last equality
is due to the Sherman-Morrison-Woodbury identity for operators (Hsing and Eubank,
2015, Theorem 3.5.6). Substituting in Ta for a, STS for S and Tx for x gives the desired
expression, as discussed at the start of the proof.
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Proof [Theorem 18] The idea of the proof is that MMDkT (P,Q)2 is simply double in-
tegrals of the kernel with respect to Gaussian measures. One integral was completed in
Theorem 17 and we apply Da Prato and Zabczyk (2002, Proposition 1.2.8) again. Note
MMDkT (Na,S , Nb,R)2 = MMDkI (NTa,TST , NTb,TRT )2 so it suffices to do the calculations for
kI and substitute the other values in. Also since kT is translation invariant we may without
loss of generality assume a = 0 and replace b with a− b at the end.∫

X

∫
X
kI(x, y)dNS(x)dNb,R(y)

= det(I + S)−
1
2

∫
X
e−

1
2
〈(I+S)−1(y−b),y−b〉X dNR(y) (27)

= det(I + S)−
1
2 e−

1
2
〈(I+S)−1b,b〉X

∫
X
e−

1
2
〈(I+S)−1y,y〉X e〈y,(I+S)−1b〉X dNR(y)

= det(I + S)−
1
2 det

(
I +R

1
2 (I + S)−1R

1
2
)− 1

2 (28)

× e− 1
2
〈(I+S)−1b,b〉X e−

1
2
〈(I+S)−1R

1
2 (I+R

1
2 (I+S)−1R

1
2 )−1R

1
2 (I+S)−1b,b〉X

= det(I + S)−
1
2 det

(
I +R

1
2 (I + S)−1R

1
2
)− 1

2 (29)

× e− 1
2

(I−(I+S)−1R
1
2 (I+R

1
2 (I+S)−1R

1
2 )−1R

1
2 )(I+S)−1b,b〉X

= det(I + S)−
1
2 det

(
I +R

1
2 (I + S)−1R

1
2
)− 1

2 e−
1
2
〈(I+S+R)−1b,b〉X , (30)

where (27) is obtained by substituting the result of Theorem 17, (28) is applying Da Prato
and Zabczyk (2002, Proposition 1.2.8), (29) is just rearranging terms and (30) is using the
Sherman-Morrison-Woodbury identity for operators (Hsing and Eubank, 2015, Theorem
3.5.6). The proof is completed by using the expression of MMD in terms of three double
integrals and substituting in the appropriate values of S,R, b inline with the description at
the start of the proof. In particular when b = 0 and S = R

det(I + S) det
(
I + S

1
2 (I + S)−1S

1
2
)

= det
(
(I + S)(I + (I + S)−1S)

)
= det(I + 2S),

by the Sherman-Morrison-Woodbury identity for operators.

Proof [Theorem 20]

A more general result for which Theorem 20 is a specific case shall be proved.

Theorem 27 Let P = Na,S , Q = Nb,R be two non-degenerate Gaussian measures on X ,
C ∈ L+(X ) and assume C, S,R all commute then when using the SE-T kernel

ξ1 = α(T, S,R, a, b) + α(T,R, S, a, b)

ξ2 = β(T, S,R, a, b) + β(T,R, S, a, b),
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where

α(T, S,R, a, b) = det((I + TST )(I + 3TST ))−
1
2 − det

(
I + 2TST

)−1

+ det
(
(I + TRT )(I + T (2S +R)T )

)− 1
2 e−〈(I+T (2S+R)T )−1T (a−b),T (a−b)〉X

− det
(
I + T (S +R)T

)−1
e−〈(I+T (S+R)T )−1T (a−b),T (a−b)〉X

− 2 det(ΣS)−
1
2 e−

1
2
〈(I+2TST )Σ−1

S T (a−b),T (a−b)〉X

+ 2 det
(
(I + 2TST )(I + T (S +R)T )

)− 1
2 e−

1
2
〈(I+T (S+R)T )−1T (a−b),T (a−b)〉X ,

β(T, S,R, a, b) = det(I + 4TST )−
1
2 − det(I + 2TST )−1

+ det
(
I + 2T (S +R)T

)− 1
2 e−〈(I+2T (S+R)T )−1(a−b),a−b〉X

− det
(
I + T (S +R)T

)−1
e−〈(I+T (S+R)T )−1(a−b),a−b〉X

+ 4 det
(
(I + T (S +R)T )(I + 2TST )

)− 1
2 e−

1
2
〈(I+T (S+R)T )−1(a−b),a−b〉X

− 4 det(ΣS)−
1
2 e−

1
2
〈(I+2TST )Σ−1

S (a−b),a−b〉X ,

and ΣX = (I + TST )(I + TRT ) + TXT (2I + T (S +R)T ) for X ∈ {S,R}.

Proof [Theorem 27] As in the proof of Theorem 18 it suffices to consider T = I and
a = 0. Set k = kI and 〈·, ·〉 = 〈·, ·〉X for ease of notation. The expression for ξ1 is derived
first. The simplifications in Sutherland (2019) reveal

ξ1 = Ex[Ex′ [k(x, x′)]2]− Ex,x′ [k(x, x′)]2

+ Ey[Ey′ [k(y, y′)]2]− Ey,y′ [k(y, y′)]2

+ Ex[Ey[k(x, y)]2]− Ex,y[k(x, y)]2

+ Ey[Ex[k(y, x)]2]− Ey,x[k(y, x)]2

− 2Ex[Ex′ [k(x, x′)]Ey[k(x, y)]] + 2Ex,x′ [k(x, x′)]Ex,y[k(x, y)]

− 2Ey[Ey′ [k(y, y′)]Ex[k(y, x)]] + 2Ey,y′ [k(y, y′)]Ex,y[k(x, y)].

To calculate this only three of the terms need to be calculated then the rest are deduced
by substituting in different values. For example Ex,x′ [k(x, x′)] can be deduced from the
formula for Ex,y[k(x, y)] by setting b = 0 and S = R since this would make y acts as an
independent copy of x in the expectation. The three terms needed are

Ex,y[k(x, y)] (31)

Ex[Ey[k(x, y)]2] (32)

Ex[Ex′ [k(x, x′)]Ey[k(x, y)]]. (33)

Expression (31) was derived in the proof of Theorem 18 as

Ex,y[k(x, y)] = det(I + S +R)−
1
2 e−

1
2
〈(I+S+R)−1b,b〉.
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Next a formula for (32) is derived. First note Ey[k(x, y)] is the content of Theorem 17.
The rest follows by using (Da Prato and Zabczyk, 2002, Proposition 1.2.8) and rearranging
terms.

Ex[Ey[k(x, y)]2] = det(I +R)−1

∫
X
e−〈(I+R)−1(x−b),x−b〉dNS(x)

= det
(
(I +R)(I +R+ 2S)

)− 1
2 e−〈(I+R)−1b,b〉

× e〈2S(I+R)−1(I+2S(I+R)−1)−1(I+R)−1b,b〉

= det
(
(I +R)(I +R+ 2S)

)− 1
2 e−〈(I+R+2S)−1b,b〉.

Finally (33) is derived which involves the longest calculations. The terms in the first
expectation are the content of Theorem 17.

Ex[Ex′ [k(x, x′)]Ey[k(x, y)]]

= det
(
(I + S)(I +R)

)− 1
2

∫
X
e−

1
2
〈(I+S)−1x,x〉e−

1
2
〈(I+R)−1(x−b),x−b〉dNS(x)

= det
(
(I + S)(I +R)

)− 1
2 e−

1
2
〈(I+R)−1b,b〉

×
∫
X
e−

1
2
〈((I+S)−1+(I+R)−1)x,x〉e−

1
2
〈(I+R)−1b,x〉dNS(x)

= det
(
(I + S)(I +R)

)− 1
2 det

(
I + S((I + S)−1 + (I +R)−1)

)− 1
2

× e 1
2
〈
[(
I+S((I+S)−1+(I+R)−1)

)−1
S(I+R)−1−I

]
b,(I+R)−1b〉

= det(ΣS

)− 1
2 e−

1
2
〈(I+2S)Σ−1

S b,b〉,

where ΣS = (I + S)(I + R) + S(2I + S + R). The last equality is obtained by rearrang-
ing the terms in the exponent and determinant. Substituting into the formula for ξ1 the
derivations for (31), (32) and (33) completes the derivation for ξ1. The simplification of ξ2

in (Sutherland, 2019) is

ξ2 = Ex,x′ [k(x, x′)2]− Ex,x′ [k(x, x′)]2 + Ey,y′ [k(y, y′)2]− Ey,y′ [k(y, y′)]2

+ 2Ex,y[k(x, y)2]− 2Ex,y[k(x, y)]2

− 4Ex[Ex′ [k(x, x′)]Ey[k(x, y)]] + 4Ex,x′ [k(x, x′)]Ex,y[k(x, y)]

− 4Ey[Ey′ [k(y, y′)]Ex[k(y, x)]] + 4Ey,y′ [k(y, y′)]Ey,x[k(y, x)],

only the terms involving k2 need to be calculated. Note that k2
I = k√2I meaning if S,R, b

are replaced by 2S, 2R,
√

2b then the formula for (31) immediately gives a formula for the
terms involving k2. Combining these derived formulas gives the desired expression for ξ2.

Theorem 20 is recovered by substituting S = R, a = 0, b = m into Theorem 27.
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Proof [Theorem 21] Suppose Pn
w−→ P then by Simon-Gabriel and Schölkopf (2018,

Lemma 10), which holds in our case since the key intermediate result Berg et al. (1984,
Theorem 3.3) only requires X to be a Hausdorff space, we have MMD(Pn, P )→ 0.

Suppose MMD(Pn, P ) → 0, by Prokhorov’s theorem (Billingsley, 1971, Section 5) we
know that {Pn}∞n=1 is relatively compact. Since k is characteristic we know that Hk is a
separating set in the sense of Ethier and Kurtz (1986, Chapter 4) and MMD(Pn, P ) → 0
implies that for every F ∈ Hk that limn→∞

∫
FdPn =

∫
FdP therefore Ethier and Kurtz

(1986, Lemma 3.4.3) applies and we may conclude that Pn
w−→ P .

A.5 Proof for Section 7

Proof [Proposition 22] Suppose k0 is ISPD and Ck0 isn’t injective. Then there exists
non-zero x ∈ L2(D) such that Ck0x = 0 so

∫
D
∫
D x(s)k0(s, t)x(t)dsdt = 〈x,Ck0x〉L2(D) =

〈x, 0〉L2(D) = 0 contradicting k0 being ISPD. Combining Sriperumbudur et al. (2011,
Proposition 5) and Sriperumbudur et al. (2010, Theorem 9) shows that if µk0 has full
support then k0 is ISPD.

Appendix B. Numerical Values Used in Plots

δ ID CEXP SQR FPCA COV FAD

0.0 0.05 0.05 0.048 0.048 0.048 0.05
0.5 0.05 0.068 0.058 0.054 0.044 0.057
1.0 0.113 0.264 0.106 0.07 0.042 0.062
1.5 0.234 0.958 0.288 0.108 0.044 0.096
2.0 0.552 1.0 0.68 0.144 0.064 0.13

Table 4: Test size, the first row, and test power, other rows, under varying values of δ in
the mean shift experiment described by Pomann et al. (2016) plotted in Figure 2.
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Miguel A. Arcones and Evarist Giné. On the bootstrap of U and V statistics. The Annals
of Statistics, 20(2):655–674, 1992.

Alexander Aue, Gregory Rice, and Ozan Sönmez. Detecting and dating structural breaks
in functional data without dimension reduction. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 80(3):509–529, 2018.

44



A Kernel Two-Sample Test for Functional Data

δ ID CEXP SQR FPCA COV FAD

0 0.056 0.044 0.053 0.052 0.05 0.05
5 0.168 0.164 0.244 0.212 0.484 0.08
10 0.528 0.526 0.662 0.62 0.93 0.29
15 0.842 0.84 0.898 0.878 0.992 0.55
20 0.964 0.966 0.974 0.986 1.0 0.812

Table 5: Test size, the first row, and test power, other rows, under varying values of δ in
the variance shift in one frequency experiment described by Pomann et al. (2016)
plotted in Figure 4.

δ ID CEXP SQR FPCA COV BOOT-HS FPCA-χ

1.0 0.064 0.064 0.062 0.062 0.05 0.025 0.006
1.2 0.108 0.11 0.152 0.098 0.11 0.05 0.016
1.4 0.194 0.184 0.336 0.178 0.264 0.168 0.011
1.6 0.354 0.326 0.552 0.314 0.47 0.338 0.01
1.8 0.544 0.522 0.754 0.506 0.632 0.556 0.036
2.0 0.716 0.69 0.856 0.642 0.764 0.666 0.07

Table 6: Test size, the first row, and test power, other rows, under varying values of δ in the
scalar multiplication experiment described by Paparoditis and Sapatinas (2016)
plotted in Figure 5.

Francis Bach. On the equivalence between kernel quadrature rules and random feature
expansions. The Journal of Machine Learning Research, 18(1):714–751, 2017.
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