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Abstract

Many network data encountered are two-mode networks. These networks are characterized
by having two sets of nodes and links are only made between nodes belonging to different
sets. While their two-mode feature triggers interesting interactions, it also increases the risk
of privacy exposure, and it is essential to protect sensitive information from being disclosed
when releasing these data. In this paper, we introduce a weak notion of edge differential
privacy and propose to release the degree sequence of a two-mode network by adding
non-negative Laplacian noises that satisfies this privacy definition. Under mild conditions
for an exponential-family model for bipartite graphs in which each node is individually
parameterized, we establish the consistency and asymptotic normality of two differential
privacy estimators, the first based on moment equations and the second after denoising the
noisy sequence. For the latter, we develop an efficient algorithm which produces a readily
useful synthetic bipartite graph. Numerical simulations and a real data application are
carried out to verify our theoretical results and demonstrate the usefulness of our proposal.
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1. Introduction

Network data are becoming increasingly prevalent in a connected society. By nature or by
definition, many network datasets are two-mode networks, sometimes also known as affil-
iation or bipartite networks. A two-mode network can be conveniently represented as a
bipartite graph, where one set of nodes denote “actors” and the other set of nodes denote
“events”. Edges are only formed between nodes belonging to different sets, representing
affiliation or linkage relationships between “actors” and “events”. As typical examples, af-
filiation relationship can be formed to link actors to the movies they played in actors-movies
networks; authors can be linked to the papers they signed in author-paper networks; board
members can be linked to the companies they lead in company-board networks. Two-
mode networks have also been frequently used to represent memberships between social
organizations and their members, such as the affiliation of the researchers to the academic
institutions, interlocking directors to companies, trade partners to major oil exporting na-
tions, and so on. A concrete example of such a network can be found in Figure 1, where
person-company leadership information between 24 companies and 20 corporate directors
can be found (Barnes and Burkett, 2010). An edge exists only between a person and a
company when the person had a leadership position in the company.

1 23 45 678 9 1011 12131415 161718 19 2021222324

1 2 345678 9 1011 12 13141516 1718 1920

Figure 1: A bipartite network for the corporate leadership network dataset. Top nodes
represent companies and bottom nodes corporate directors. The sizes of the
nodes are proportional to their degrees.

In these networks, the “actors” are brought together to jointly participate in social
events. Such joint participation in events provides the opportunity for actors to interact,
and hence increases the probability of link formation (e.g., friendship) between actors. For
example, belonging to the same organizations (boards of directors, political party, labor
union, and so on) provides the opportunity for people to meet and interact, and thus links
between individuals are more easily to be formed in these circumstances. Similarly, when
actors participate in more than one event, two events are connected through these actors.

There has been increasing interest in analyzing two-mode network data in recent years,
and a number of approaches have been proposed. Latapy et al. (2008) extended the ba-
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sic network statistics in the analysis for one-mode networks to two-mode network data.
Snijders et al. (2013) proposed a stochastic actor-oriented model for the co-evolution of
two-mode and one-mode networks. By extending exponential random graph models for
the one-mode networks, Wang et al. (2009) proposed a number of two-mode specifications
as the sufficient statistics in exponential family graph models for two-mode affiliation net-
works, and compared the goodness-of-fit results obtained using the maximum likelihood
and pseudo-likelihood approaches by simulation.

In recent years, data privacy disclosure has become a severe problem when sharing sensi-
tive data. To protect data privacy, randomized data releasing mechanisms that add random
noises into the original data are commonly used to protect data privacy. Dwork et al. (2006)
developed a rigorous definition of “differential privacy” that focuses on preventing individ-
ual information from being detected. This notion of privacy protection has now become an
important analytical framework to protect sensitive data in data sharing. Roughly speak-
ing, differential privacy is a privacy standard making a restriction that changes to one
person’s data will not significantly affect the output distribution in a randomized data re-
leasing mechanism. More recent discussions on the trade-off between privacy and statistical
accuracy under differential privacy can be found in Duchi et al. (2018) and the references
therein.

To release a network that carries confidential and sensitive information, the simplest ap-
proach is to release some of the network statistics instead of the whole network. One such
statistic is the degree sequence that summarizes much information contained in a network.
The degree sequence of a network is useful as many other important properties of a net-
work are constrained by it [e.g., Albert and Barabasi (2002)]. Releasing a network naively
via publishing its degree sequence however runs the risk of violating data privacy. As an
example, Jernigan and Mistree (2009) successfully predicted the sexual orientation of Face-
book users by using their friendships’ public information. To overcome this, differentially
private algorithms have been proposed to release the network statistics of interest [e.g., Lu
and Miklau (2014)], for which the Laplace mechanism in Dwork et al. (2006) that satisfies
differential privacy has been widely used. Hay et al. (2009) used this mechanism to release
the degree partition and proposed an efficient algorithm to find the solution that minimizes
the L2 distance between all possible graphical degree partitions and the noisy degree parti-
tion. Under the assumption that all parameters are bounded, Karwa and Slavković (2016)
proved that a differentially private estimator of the parameter in the β-model (Chatterjee
et al., 2011) corresponding to the denoised degree sequence is consistent and asymptotically
normally distributed. Furthermore, they constructed an efficient algorithm to denoise the
differentially private degree sequence, which minimizes the L1 distance between the noisy
sequence and all possible graphical degree sequence. Despite these recent developments
on one-mode network models, to our best knowledge, differential privacy for two-mode
networks has not been well explored.

This paper focuses on a weak version of edge differential privacy and statistical inference
based on the private degree sequences of bipartite graphs. We study a two-mode network
model which is an exponential family distribution on bipartite graphs with the degree se-
quence as its sufficient statistic. In our model, each node is associated with its own individual
parameter. As the number of the parameters grows linearly with that of the nodes, this
characterization gives rise to a challenging problem when it comes to parameter estimation
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and statistical inference. We now summarize the main contributions of the paper as follows.
First, we give a new definition, (ε, r)-weak edge differential privacy, where only a sufficiently
large number of neighboring graphs are taken into account for privacy protection. By weak-
ening the classical edge differential privacy, this new privacy standard can accommodate
non-negative discrete Laplace mechanisms to release the degrees of bipartite graphs. One
immediate advantage is that it avoids the generation of negative outputs, in contrast to the
symmetric Laplace mechanism in Karwa and Slavković (2016). This is beneficial for sparse
networks since adding negative noises easily produces negative degrees which leads to the
non existence of the maximum likelihood estimator (MLE) in the model studied in Karwa
and Slavković (2016). We show that the estimator of the parameter based on the moment
equation in which the unobserved original bi-degree sequence is directly replaced by the
noisy sequence with a bias correction, is consistent and asymptotically normal. Second,
we propose a bipartite Havel-Hakimi type algorithm to denoise the noisy sequence, which
finds the closest point lying in the set of all possible bigraphical sequences under the global
L1 optimization problem. This proves a conjecture made in Karwa and Slavković (2016).
The denoised bi-degree sequence can be used to obtain an accurate estimate of the degree
distribution of a bipartite graph. Along the way, it also outputs a synthetic graph that
can be used to infer the graph structure. Third, we show that the private estimator corre-
sponding to the denoised bi-degree sequence is also consistent and asymptotically normal.
Remarkably, this estimator is oracle in that it is as efficient as the MLE when no noise is
added to the degree sequence. Finally, we provide simulation as well as real data studies to
illustrate theoretical results.

For the rest of the paper, we proceed as follows. In Section 2, we introduce our two-
mode network model and present a theory for the maximum likelihood estimator when
no differential privacy issues are considered. In Section 3, we first provide an overview of
differential privacy. We then present an estimator of the degree parameter in our model
based on moment equations after non-negative Laplacian noises are added to degrees for
privacy consideration. The consistency and asymptotic normality of this estimator are
established afterwards. In Section 4, we develop an efficient algorithm to denoise the noisy
degrees, establish the upper bound of the error between the denoised sequence and the noisy
one, and present the asymptotic properties of the estimator corresponding to the denoised
sequence. In Section 5, we carry out simulation study to evaluate the theoretical results,
and further demonstrate our approach with a real data application. All the technical proofs
are provided in the Appendix.

2. A two-mode network model

For a two-mode network with m events and n actors, we use {1, . . . ,m} and {1, . . . , n} to
denote the event set and actor set, respectively. A two-mode network Gm,n represents the
affiliation relationship between actors and events, which can be coded in an affiliation matrix
X = (xi,j)m×n. If event i is affiliated with actor j, then xi,j = 1; xi,j = 0 otherwise. Thus,
each column of X describes an actor’s affiliation with the events and each row describes the
memberships of the event. In practice, n is usually large and m relatively small. Therefore,
without loss of generality we assume m ≤ n hereafter. The network Gm,n can also be
represented by a directed bipartite graph, in which the relation only flows in one direction
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from an actor to an event. Further, we define di =
∑n

j=1 xi,j as the degree of event i and

denote d = (d1, . . . , dm)>. Similarly, define bj =
∑m

i=1 xi,j as the degree of actor j and
denote b = (b1, . . . , bn)>. The pair {d, b} is the degree sequence of the two-mode network
Gm,n which, when no confusion arises, is sometimes referred to as its bi-degree sequence.

Motivated by the β-model (Chatterjee et al., 2011), we associate event i with a pop-
ularity parameter αi and actor j with a merit parameter βj , and assume that xi,j are
independent Bernoulli random variables with probability

P(xi,j = 1) =
eαi+βj

1 + eαi+βj
. (1)

Because

m∏
i=1

n∏
j=1

exp((αi + βj)xi,j) = exp

 m∑
i=1

n∑
j=1

(αi + βj)xi,j

 = exp(α>d+ β>b),

the likelihood can be written as the following exponential form

P(Gm,n) = exp(α>d+ β>b− c(α, β)), (2)

where

c(α, β) =
m∑
i=1

n∑
j=1

log(1 + exp(αi + βj))

is a normalizing constant, α = (α1, . . . , αm)> and β = (β1, . . . , βn)> are parameter vectors.
Since

∑
i di =

∑
j bj , the probability distribution (2) will be invariant when a constant is

subtracted from α and added to β. Thus for identifiability, we shall set βn = 0.
By forcing the probability distribution on graph Gm,n into the exponential family with

the degrees as the sufficient statistic, the model in (2) admits the maximum entropy when
the expectation of a degree sequence is given according to the maximum entropy principle
[Wu (1997)]. This model can also be seen as a bipartite version of the well-known p1

model [Holland and Leinhardt (1981)] for directed graphs. We will call it bipartite β-model
hereafter.

Denote θ = (α1, . . . , αm, β1, . . . , βn−1)>. The log-likelihood function becomes

`(θ) =

m∑
i=1

αidi +

n−1∑
j=1

βjbj −
m∑
i=1

n∑
j=1

log(1 + eαi+βj ),

with the following likelihood equations

di =
∑n

j=1
eαi+βj

1+eαi+βj
, i = 1, . . . ,m,

bj =
∑m

i=1
eαi+βj

1+eαi+βj
, j = 1, . . . , n− 1.

(3)

Denote the solution to the above equations as θ̄, which is the MLE of θ. We state the
consistency and asymptotic normality of θ̄ as a theorem, which is a direct corollary of
Theorems 2 and 3 in the next section.
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Theorem 1. Assume that θ∗ ∈ Rm+n−1 and X ∼ Pθ∗, where Pθ∗ denotes the probability
distribution on X under the true parameter θ∗.
(1) If n/m = O(1) and e12‖θ∗‖∞ = o((n/ log n)1/2), then as n goes to infinity, with probability
approaching one, the MLE θ̄ exists and satisfies

‖θ̄ − θ∗‖∞ = Op

(
e6‖θ∗‖∞

√
log n

n

)
= op(1).

Further, if θ̄ exists, it is unique.
(2) If e18‖θ∗‖∞ = o(n1/2/ log n), then for any fixed k ≥ 1, as n → ∞, the vector consisting
of the first k elements of (θ̄ − θ∗) is asymptotically multivariate normal with mean 0 and
covariance matrix given by the upper left k × k block of S defined in (11).

If ‖θ∗‖∞ is bounded above by a constant, the convergence rate of θ̄ can be shown to
be Op(n

−1/2). The rate in Theorem 1 (i) matches the minimax optimal upper bound for
estimating the parameters via the LASSO method in a regression model with n parameters
and n2 observations [e.g., Lounici (2008)]. The condition to guarantee the consistency
requires e12‖θ∗‖∞ = o((n/ log n)1/2) while the asymptotic normality requires e18‖θ∗‖∞ =
o((n/ log n)1/2).

3. Differentially private estimation

3.1 Differential privacy

Differential privacy (Dwork et al., 2006) is a widely used privacy standard that aims to
protect individual’s privacy information by applying randomized algorithms to the original
data. It requires that the distribution of the output is almost the same whether or not an
individual’s record appears in the database. Consider an original database D containing a
set of records of n individuals. A randomized data releasing mechanism Q takes D as an
input and outputs a sanitized database S = (S1, . . . , Sk) for public use. Specifically, the
mechanism Q(·|D) defines a conditional probability distribution on outputs S given D. Let
ε be a positive real number and S denote the sample space of Q. We call two databases D1

and D2 “neighbors” if they differ only on a single element. The data releasing mechanism
Q is called ε-differentially private (Dwork et al., 2006) if for any two neighboring databases
D1 and D2, and all measurable subsets S of S,

Q(S ∈ S|D1) ≤ eε ×Q(S ∈ S|D2).

The definition of ε-differential privacy is based on ratios of probabilities. In particular, given
two databases D1 and D2 that are different from only a single entry, the probability of an
output S given the input D1 in the data releasing mechanism Q is less than that given the
input D2 multiplied by a privacy factor eε. The privacy parameter ε is chosen by the data
curator administering the privacy policy and is public. Its magnitude essentially controls
the trade-off between privacy and utility. Smaller value of ε means more privacy protection.

What is being protected in the differential privacy is precisely the difference between
two neighboring databases. Within network data, depending on the definition of the graph
neighbors, differential privacy is divided into node differential privacy [Hay et al. (2009);
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Kasiviswanathan et al. (2013)] and edge differential privacy [Nissim et al. (2007)]. Two
graphs are called neighbors if one can be obtained from the other by removing a node and
its adjacent edges. Differential privacy defined upon this is called node differential privacy.
Analogously, we can define edge differential privacy by letting graphs be neighbors if they
differ exactly in one edge. Following Hay et al. (2009), we shall focus on edge differential
privacy in this paper.

Standard formulation of differential privacy essentially protects the true graph by re-
quiring that the output of the true graph and the output of any neighboring graph are
indistinguishable. For any graphs G and G′ we use δ(G,G′) to denote the number of edges
on which two graphs G and G′ differ. For some ε > 0, the classical definition of ε-edge
differential privacy requires:

sup
G,G′∈G,δ(G,G′)=1

sup
S∈S

log
Q(S|G)

Q(S|G′)
≤ ε, (4)

where G is the set of graphs of interest on n nodes and S is the set of all possible outputs.

Edge differential privacy requires that the logarithmic ratio of the probabilities of an
output S given two neighboring graphs G and G′ is up to a privacy scalar ε. If the outputs
are the network statistics, then a simple algorithm to guarantee edge differential privacy is
the Laplace mechanism [e.g., Dwork et al. (2006)] that adds Laplace noise to the original
statistics. However, when the output function is positive (e.g. degree sequences), the
Laplace mechanism may generate negative outputs such that the subsequent graph is not
well defined and the MLEs do not exist. As an illustration, we consider releasing the bi-
degree sequence via the discrete Laplace mechanism in Karwa and Slavković (2016). We
generate 1000 networks with 50 events and 100 actors according to the two-mode network
model with edge formation probability given as in (1), where the parameters α and β
are generated from the uniform distribution U(−2, 0), and generate the differential private
degree sequences by adding discrete Laplace noise to the degree sequences. Out of the 1000
cases we simulated, corresponding to ε = 0.5, 1.5 and 2.0, there are 1000, 863 and 632 cases
for which the output degree sequence contains negative degrees.

To avoid producing negative outputs when releasing network statistics and overcome
the non-existence of the MLE after adding noises for privacy protection, we propose a weak
version of edge differential privacy that can accommodate a non-negative discrete Laplace
random variable as the noise. Notice that in (4), G′ ∈ G indicates that the graph G is
compared to all its neighboring graphs in G. When the number of nodes tends to infinity
and subsequently a graph can have infinitely many neighbors, this notion of differential
privacy for taking the supremum over all these neighbors can be too stringent. Intuitively,
for the purpose of privacy protection, we only require that the true graph is indistinguishable
from a sufficiently large number of neighboring graphs that share no meaningful common
structures. Motivated by this, we introduce a weak version of edge differential privacy,
called (ε, r)-weak edge differential privacy and abbreviated as (ε, r)-WEDP hereafter.

Definition 1 (Weak Edge Differential Privacy). Recall that ε > 0 denotes a privacy pa-
rameter, and δ(G,G′) denotes the number of edges on which two graphs G and G′ differ.
We use G ∩ G′ to denote the common subgraph of G and G′. We say that a randomized
mechanism Q(·|G) is (ε, r)-WEDP if:
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(i) There exists a size r > 0 such that,

inf
G∈G

∣∣∣∣{G′ : δ(G,G′) = 1 and sup
S∈S

log
Q(S|G)

Q(S|G′)
≤ ε
}∣∣∣∣ ≥ r,

where G is the set of graphs of interest on n nodes and S is the set of all possible
outputs.

(ii) Denote G′ :=
{
G′ : δ(G,G′) ≤ 1 and supS∈S log Q(S|G)

Q(S|G′) ≤ ε
}

. Let E(G) be the set of

edges in G. It is required that

∩G′∈G′E(G′) = ∅.

Constraint (i) indicates that the original graph G is indistinguishable among at least r
neighboring graphs for a given privacy parameter ε. Since an undirected graph on n nodes
has at most n(n− 1)/2 edges, r ≤ n(n− 1)/2. Correspondingly, r ≤ n(n− 1) for a directed
graph and r ≤ mn for a bipartite graph. Constraint (ii) says that all graphs in G′ share
no common edges. When G, the set of graphs of interest, is constrained to be a strict
subset of the set of all graphs, the classical ε-edge differential privacy would agree with
constraint (i) in the above definition. On the other hand, constraint (ii) ensures that the
elements in the indistinguishable set G′ either has no common subgraph (so that the edges in
the original graph are well-protected), or the common subgraph consists of isolated nodes,
which are generally non-informative and indistinguishable among themselves. Clearly, when
r → n(n− 1)/2, (ε, r)-WEDP reduces to the classical ε-edge differential privacy.

WEDP inherits one very important property of edge differential privacy in that it is
closed under composition. We state this in the following lemma.

Lemma 1. Let f be an output of an (ε, r)-WEDP mechanism and g be any measurable
function. Then g(f(G)) is also (ε, r)-WEDP.

This lemma shows that any post-processing done on the output of an (ε, r)-WEDP
mechanism is also (ε, r)-WEDP. However, (ε, r)-WEDP may not have other properties, e.g.,
a convex combination of differential private mechanisms is differentially private.

We use Gq to denote the set of graphs having exactly q edges, where G0 corresponds to
the empty graph and Gn the full graph. For any graph G ∈ Gq, we shall call G′ the right
neighbor of G if δ(G,G′) = 1 and G′ has one more edge than G. Similarly, G′ is called a
left neighbor if δ(G,G′) = 1 and G has one more edge than G′.

The following lemma indicates that the proposed non-negative discrete Laplace mecha-
nism satisfies (ε, q)-WEDP.

Lemma 2. (Non-negative Discrete Laplace Mechanism)

Suppose f = (f1, . . . , fk) : Gq → {0, 1, 2, . . .}k is a monotone output function on Gq such
that if G′ is a right neighbor of G, we have fi(G) ≤ fi(G

′) for i = 1, . . . , k. Let z1, . . . , zk
be independent samples from a non-negative discrete Laplace distribution with probability
defined as:

P (z = t) = (1− λ)λt, t = 0, 1, 2 . . . , λ ∈ (0, 1).
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Then the algorithm that outputs f(G) + (z1, . . . , zk) for any G ∈ Gq is (ε, q)-WEDP, where
ε = −∆(f) log λ, and ∆(f) is called the local sensitivity defined as

∆(f) = max
G∈Gq ,G′∈L(G)

‖f(G)− f(G′)‖1. (5)

In the above, L(G) denotes the set of left neighboring graphs for G.

Note that in our (ε, q)-WEDP framework, the local sensitivity is less than the global
sensitivity maxG,G′∈G,δ(G,G′)=1 ‖f(G)− f(G′)‖1 under classical EDP.

Now we summarize the effect of WEDP under the two-mode network via statistical
hypothesis (Wasserman and Zhou, 2010). Recall that X = (xij)m×n is the affiliation matrix
of the two-mode network, where xij ’s are binary random variables with probability measure
P . Similar to the definition of Gq, for a given integer q ≤ min{m,n}, we use Gm,n(q) to
denote the set of two-mode graphs having exactly q edges. It remains hard to test the
difference between graph G and its left neighbor G′.

Proposition 1. For any graph G ∈ Gm,n(q), let S be an output from the non-negative
discrete Laplace mechanism Q(·|G). Any level γ test which is a function of S, P and Q of
H0 : xij = 1 versus H1 : xij = 0 has power bounded above by γeε.

Together with Lemma 2, Proposition 1 indicates that the true graph is almost indistin-
guishable among q left neighbors, and the probability successfully identifying the existence
of a particular edge (i.e., xij = 1) is very low.

3.2 A moment based estimator

Since in our model the degree sequence is the sufficient statistic, we consider it as the only
private information we want to protect. As adding or removing an edge will increase or
decrease the degrees of two corresponding nodes by one each, the local sensitivity ∆(f) as
defined in (5) is less than 2 when f is taken as the degree sequence.

We assume that the privacy parameter ε can depend on m and n, and write εn here-
after since we shall consider asymptotic theory. We use the non-negative discrete Laplace
mechanism in Lemma 2 to release the degree sequence to guarantee (εn, q)-WEDP. Assume
that random variables {zi}mi=1 and {zj}m+n

j=m+1 are mutually independent and distributed by
the non-negative discrete Laplace distributions with parameter λn = exp(−εn/2).

Then we obtain the noisy degree sequence (d̃, b̃) as

d̃i = di + zi, i = 1, . . . ,m

b̃j = bj + zj+m, j = 1, . . . , n.
(6)

It is of interest to see whether we can accurately estimate the parameter under the model
in (2) by using the sequence (d̃, b̃) in (6) with the noise added. If we use (d̃, b̃) directly in
place of (d, b) in (3) for estimation, the resulting estimator will be biased, as positive noises
are added to (d, b). To see this, if λn goes to 1 (i.e., εn → 0), then the impact of the mean
Ezi can not be neglected by noting that Ed̃i = Edi + Ezi, where Ezi = λn/(1 − λn) and
λn = e−εn/2. This argument motivates the use of the following bias-corrected estimating
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equation

d̃i − λn
1−λn =

∑n
j=1

eαi+βj

1+eαi+βj
, i = 1, . . . ,m,

b̃j − λn
1−λn =

∑m
i=1

eαi+βj

1+eαi+βj
, j = 1, . . . , n− 1,

(7)

by taking into account the bias introduced by the noise in z. Let θ̃ = (α̃1, . . . , α̃m, β̃1, · · · , β̃n−1)>

be the solution to the above equations and β̃n = 0. The fixed point iteration algorithm can
be used to solve the above system of equations. Since (d̃, b̃) satisfies (εn, q)-WEDP, θ̃ is also
(εn, q)-WEDP according to Lemma 1.

The most efficient equations for estimating the parameters are necessarily based on
the score equations of the likelihood, which is not analytically available due to the need
to sum over the added noise. Our choice of the moment equations in (7) is based on
simplicity and intuition. Alternatively, there may be other moment equations that can

be useful. For example, we may want to explore the use of terms such as
(
d̃i − λn

(1−λn)

)2

and
(
b̃j − λn

(1−λn)

)2
. However, complex terms as these will bring challenges not only to

computation but also to theoretical analysis.

3.3 Asymptotic properties

In this section, we establish the consistency and asymptotic normality of the moment based
estimator defined by solving (7). For a vector x = (x1, . . . , xn)> ∈ Rn, denote by ‖x‖∞ =
max1≤i≤n |xi|, the `∞-norm of x. For a non-negative discrete Laplace random variable z
with parameter λn, we have

Ez =
λn

1− λn
, Var(z) =

λn
(1− λn)2

.

We use the Newton method to derive the existence and consistency of θ̃. The idea can
be briefly described as follows. Define a system of functions:

Fi(θ) = d̃i − λn
1−λn −

∑n
k=1

eαi+βk

1+eαi+βk
, i = 1, . . . ,m,

Fm+j(θ) = b̃j − λn
1−λn −

∑m
k=1

eαk+βj

1+eαk+βj
, j = 1, . . . , n,

F (θ) = (F1(θ), . . . , Fm+n−1(θ))>.

(8)

Note the solution to the equation F (θ) = 0 is precisely the estimator. We construct the
Newton iterative sequence: θ(k+1) = θ(k) − [F ′(θ(k))]−1F (θ(k)), and obtain its geometric
convergence of rate. As a result, by choosing the initial value as the true value θ∗, we derive
the error between θ∗ and θ̃. The existence and consistency of θ̃ are stated blow.

Theorem 2. Assume that θ∗ ∈ Rm+n−1 and X ∼ P∗θ. If n/m = O(1), εn ≥ 4(log n/n)1/2

and
(1 + ε−1

n )e8‖θ∗‖∞ + e12‖θ∗‖∞ = o((n/ log n)1/2), (9)

then for large n, with probability at least 1− 6/n− 2/(m+ n− 1)2, the estimator θ̃ in (7)
exists and satisfies

‖θ̃ − θ∗‖∞ = O

(
{(1 + ε−1

n )e2‖θ∗‖∞ + e6‖θ∗‖∞}
√

log n

n

)
= op(1).

10
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Further, if θ̃ exists, it is unique.

The condition ε−1
n e8‖θ∗‖∞ = o((n/ log n)1/2) in this theorem exhibits an interesting trade-

off between the privacy parameter εn and ‖θ∗‖∞. If ‖θ∗‖∞ is bounded by a constant, εn
can be as small as (log n)1/2/n1/2, meaning that more privacy protection can be employed.
Conversely, if e‖θ

∗‖∞ grows at a rate of n1/24/(log n)1/24, then εn can only be at a constant
magnitude, implying that the amount of privacy protection will be capped for the moment
based estimator to be consistent.

We explain here why we can use the noisy degree sequence to accurately estimate the
unknown parameters θ∗. As mentioned above, we use the convergence of the Newton
iterative sequence to prove consistency, where one important step is to establish the upper
bound of max{‖d̃ − Ed̃‖∞, ‖b̃ − Eb̃‖∞}. In (22), it is shown that this upper bound is of
the order of (n log n)1/2. On the other hand, maxi=1,...,m+n−1 |zi − Ezi| is also of order
O(
√
n log n) as in (21) if εn ≥ 4(log n/n)1/2 and n/m = O(1). As a result, the upper

bound for the centered noisy degrees has the same order as the original centered degrees.
Since the Jacobian matrix of F (θ) defined in (8) does not depend on d̃, the only difference
for the consistency proof between the moment equations for original degrees and those for
noisy degrees is the upper bound. Therefore, the noisy degrees can be directly used to
infer parameters. Further, this result holds not only for discrete Laplace random variables
but also for any random variables as long as their max norm is less than (n log n)1/2. We
conjecture that the techniques developed here can also be used for the model in Karwa and
Slavković (2016).

In order to present asymptotic normality of θ̃, we introduce a class of matrices. Given
two positive numbers b, B, we say the (m+ n− 1)× (m+ n− 1) matrix U = (ui,j) belongs
to the class Lm,n(b, B) if the following holds:

b ≤ ui,i −
∑m+n−1

j=m+1 ui,j ≤ B, i = 1, . . . ,m;um,m =
∑m+n−1

j=m+1 um,j ,

ui,j = 0, i, j = 1, . . . ,m, i 6= j,

ui,j = 0, i, j = m+ 1, . . . ,m+ n− 1, i 6= j,

b ≤ ui,j = uj,i ≤ B, i = 1, . . . ,m, j = m+ 1, . . . ,m+ n− 1,

ui,i =
∑m

k=1 uk,i =
∑m

k=1 ui,k, i = m+ 1, . . . ,m+ n− 1.

(10)

If U ∈ Lm,n(b, B), then U is a (m+ n− 1)× (m+ n− 1) diagonally dominant, symmetric
nonnegative matrix. Define um+n,i = ui,m+n := ui,i −

∑m+n−1
j=1 ui,j for i = 1, . . . ,m+ n− 1

and um+n,m+n =
∑m+n−1

i=1 um+n,i. Then b ≤ um+n,i ≤ B for i = 1, . . . ,m, um+n,i = 0 for
i = m,m + 1, . . . ,m + n − 1 and um+n,m+n =

∑m
i=1 ui,m+n =

∑m
i=1 um+n,i. Note that the

Fisher information matrix of the parameter vector θ, denoted as V , satisfies V = −F ′(θ). It
is not difficult to verify that V ∈ Lm,n(b, B). The asymptotic distribution of θ̃ depends on
the inverse of V that does not have a closed form. We propose to approximate the inverse
of V , written as V −1, by the following matrix S = (si,j)

si,j =



δi,j
vi,i

+ 1
vm+n,m+n

, i, j = 1, . . . ,m,

− 1
vm+n,m+n

, i = 1, . . . ,m, j = m+ 1, . . . ,m+ n− 1,

− 1
vm+n,m+n

, i = m+ 1, . . . ,m+ n− 1, j = 1, . . . ,m,
δi,j
vi,i

+ 1
vm+n,m+n

, i, j = m+ 1, . . . ,m+ n− 1,

(11)

11
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where δi,j = 1 when i = j and δi,j = 0 when i 6= j.
It can be shown that for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},

e2‖θ‖∞

(1 + e2‖θ‖∞)2
≤ vi,j =

eαi+βj

(1 + eαi+βj )2
≤ 1

4
.

Therefore V ∈ Ln(b, B), where b is the expression on the left of the above inequality
and B = 1/4. Let g = (d1, . . . , dm, b1, . . . , bn−1)> and g̃ = (d̃1, . . . , d̃m, b̃1, . . . , b̃n−1)>. If
we apply Taylor’s expansion to each component of g̃ − Eg, then the first order term in
the expansion is V (θ̃ − θ). By using S defined at (11) in place of V −1, we can represent
θ̃ − θ as the sum of S(g̃ − Eg) and a remainder term. The central limit theorem is proved
by establishing the asymptotic normality of S(g̃ − Eg) and showing that the remainder is
asymptotically negligible. We formally state the central limit theorem as follows.

Theorem 3. Assume that n/m = O(1), εn ≥ 4(log n/n)1/2 and

ε−2
n e10‖θ∗‖∞ + ε−1

n e8‖θ∗‖∞ + e18‖θ∗‖∞ = o(n1/2/ log n). (12)

(i) If ε−1
n (log n)1/2e2‖θ∗‖∞ = o(1), then for any fixed k ≥ 1, as n → ∞, the vector

consisting of the first k elements of (θ̃ − θ∗) is asymptotically multivariate normal
with mean 0 and covariance matrix given by the upper left k× k block of S defined at
(11).

(ii) Let λn = exp(−εn/2) and σ2
n = (m+n−1)λn/(1−λn)2. If σn/v

1/2
m+n,m+n → c for some

constant c, then for any fixed s ≥ 1 and t ≥ 1, the vector (α̃1 − α∗1, . . . , α̃s − αs, β̃1 −
β∗1 , . . . , β̃t−β∗t ) is asymptotically (s+ t)-dimensional multivariate normal distribution
with mean zero and covariance matrix Σ = (Σij)(s+t)×(s+t), where

Σi,j =


1
vi,i

+ 1
vm+n,m+n

+ σ2
n

v2m+n,m+n
, i, j = 1, . . . , s,

−( 1
vm+n,m+n

+ s2n
v2m+n,m+n

), i > s, j ≤ t; i ≤ s, j > s,

1
vm+j,m+j

+ 1
vm+n,m+n

+ σ2
n

v2m+n,m+n
, i, j = s+ 1, . . . , s+ t.

(13)

We remark that in the above theorem, the conclusion continues to hold if we change the
first k elements of (θ̃ − θ∗) to an arbitrarily fixed k elements. In the first part of Theorem
3, the condition ε−1

n (log n)1/2e2‖θ∗‖∞ = o(1) requires εn → ∞. Under this condition, the
asymptotic variance of θ̃ is the same as that of the original MLE θ̄. The result in this part
implies that when little privacy protection is provided via the random noise, the moment
based estimator is as efficient as the MLE, which is as expected. On the other hand, in the
second part of Theorem 3, the asymptotic variance of θ̃i has an additional variance factor
σ2
n/v

2
2n,2n in contrast to that in the first part and the asymptotic variance of θ̄i in Theorem

1. The inflation of the variance is the price to pay for achieving differential privacy. To
understand where this factor comes from, we note that the asymptotic expression of θ̃i
contains the term

∑m
i=1 zi−

∑n−1
j=1 zm+j . The variance of the term is ne−εn/2(1− e−εn/2)−2,

which is not ignorable when εn is small. Interestingly, the asymptotic variance for the
difference of a pair of estimated parameters (θ̃ − θ∗)i − (θ̃ − θ∗)j is 1/vi,i + 1/vj,j which is
not affected by adding privacy protection.

12
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4. The denoised degree and estimator

In this section, we propose an algorithm to denoise the noisy sequence (d̃, b̃) in (6) via solving
an L1 optimization problem, which outputs a synthetic bipartite graph simultaneously.
Then we present consistency and asymptotic normality of the estimator corresponding to
the denoised degree sequence.

The noisy sequence (d̃, b̃) is generally not bigraphic. That is, it does not correspond to
any two-mode network. A necessary condition for bigraphic sequences is that the sum of
degrees of events is equal to the sum of degrees of actors. This condition is violated with a
large probability since noises are randomly added into degrees. To make (d̃, b̃) bigraphic, a
useful approach is to denoise (d̃, b̃) such that the resulting degree sequence corresponds to
a two-mode network. However, designing a denoising process can be challenging due to the
following reasons. First, the number of parameters to be estimated in a denoised degree
sequence is equal to the number of observations in (d̃, b̃). Second, the parameter space is
discrete and very large, whose cardinality grows at least exponentially with the number of
parameters.

Let Bm,n be the set of all possible degree sequences of a graph Gm,n. We derive a
denoised degree sequence estimator motivated by the likelihood principle by treating (d̃, b̃)
as the observation with the parameter (d, b) in Bm,n. Since the parameter λn in the noise
addition process is known, the likelihood on observation (d̃, b̃) with the parameter (d, b) in
Bm,n can be seen as

L(d, b|d̃, b̃) = c(λn) exp{−(

m∑
i=1

|d̃i − di|+
n∑
j=1

|b̃j − bj |) log
1

λn
}.

The above argument leads to our denoised degree sequence estimator

(d̂, b̂) = arg min
(d,b)∈Bm,n

(‖d̃− d‖1 + ‖b̃− b‖1). (14)

The above estimator is attractive intuitively, as we basically seek the closest point (d̂, b̂)
lying in Bm,n to (d̃, b̃) in terms of the L1 distance.

To compute (d̂, b̂), we propose Algorithm 1. Along the way, it also outputs a bipartite
graph with (d̂, b̂) as its degree sequence. The correctness of Algorithm 1 is given in Theorem
4 and its proof can be found in Section A.6.

Theorem 4. The degree sequence of Gm,n produced by Algorithm 1 is (d̂, b̂) defined in (14).

We prove Theorem 4 by converting the bipartite version [López and Muntaner-Batle
(2013)] of the well-known Havel-Hakimi algorithm [Havel (1955); Hakimi (1962)] into Al-
gorithm 1, and thus confirm a conjecture made in Karwa and Slavković (2016) that Havel-
Hakimi algorithm can be used to denoise noisy sequences other than those for the β-model.
The bipartite Havel-Hakimi algorithm ensures that for a nonnegative bi-sequence (d, b) with
decreasing orders d1 ≥ · · · ≥ dm and b1 ≥ · · · ≥ bn, the pair (d, b) is bigraphic if and only
if (d′, b′) is bigraphic, where (d′, b′) is obtained from (d, b) by deleting the largest element
d1 from d and subtracting 1 from each of the b1 largest elements of b. In each step of the
recursive algorithm, when the event with degree k were deleted and one degree is reduced

13
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Algorithm 1

Input: Two sequences of nonnegative integers d̃ and b̃
Output: A bipartite graph Gm,n on m events and n actors with degree sequence (d̂, b̂)
1: Let Gm,n be an empty bipartite graph
2: Let S = {1, . . . ,m} and T = {1, . . . , n}
3: while |S| > 0 do
4: T = {1, . . . , n} \W where W = {j : bj ≤ 0}
5: Let d̃i∗ = maxi∈S d̃i and i∗ = min{i ∈ S : d̃i = d̃i∗}.
6: Let c = min(d̃i∗ , |T |).
7: Let I = indices of c highest values in {bj , j ∈ T}
8: Add an edge to (i∗, j) for all j ∈ I
9: Let bj = bj − 1 for all j ∈ I and S = S \ {i∗}

10: end while

from actors with largest k degrees, a graph with the denoised degree sequence can be gener-
ated by adding the so-called k-star graphs with one event as the center and k actors as leaf
nodes to the previous bipartite graph. Proofs and further details are provided in Section
A.6.

The time complexity of Algorithm 1 is O(m log n+ s), where s is the number of edges,
and thus this algorithm is efficient. To give an idea about the time in practice, it took
0.3 second when (m,n) = (1000, 1000), 5.5 seconds when (m,n) = (5000, 5000) and 23.6
seconds when (m,n) = (10000, 10000) on the average on a computer with CPU i7-7500U
(2.7GHz) and 8 GB RAM to denoise a network using our implementation of the algorithm.

The next proposition characterizes the error between (d̂, b̂) and (d, b) in terms of the
privacy parameter εn.

Proposition 2. Let [c] be the integer part of c (c > 0). For any given c > 0, we have that

P(‖(d̂, b̂)− (d, b)‖∞ > c) ≤ (m+ n)e−εn([c]+1)/2.

Proposition 2 characterizes the relationship between the privacy parameter and the
error for the denoised degree sequence in terms of `∞ distance. As expected, the smaller
the privacy parameter εn is, the larger the error will be. If c = 6ε−1

n log n, then (m + n −
1)e−εn([c]+1)/2 ≤ 1/n such that

‖(d̂, b̂)− (d, b)‖∞ = Op(log n/εn), (15)

giving an idea about the accuracy of the denoised degree sequence.
We can now define our second denoised estimator by replacing (d, b) in the original

maximum likelihood equation (3) by (d̂, b̂), which is different from (7). Denote the solution
as θ̂. By Lemma 1, θ̂ is also a (εn, q)-WEDP estimator. By noting that (15) holds, using
similar arguments in Theorems 2 and 3, we can show that θ̂ is consistent and asymptotically
normal, as stated in Corollary 1. The proof of this corollary is omitted but for completeness
we list here the main steps that differ. Note

‖(d̂, b̂)−(Ed,Eb)‖∞ ≤ ‖(d̂, b̂)−(d, b)‖∞+‖(d, b)−(Ed,Eb)‖∞ = Op

(
(1 +

(log n)1/2

n1/2εn
)
√
n log n

)
.

14



Two-mode Networks and Differential Privacy

Since (d̂, b̂) is bigraphic, the above equation implies

|
m∑
i=1

(d̂i − Edi) +
n−1∑
j=1

(b̂j − Ebj)| = |b̂n − Ebn| = Op

(
(1 +

(log n)1/2

n1/2εn
)
√
n log n

)
.

Note that since the distribution of the difference d̂ − d is difficult to obtain, we do not
have the asymptotic result similar to that in Theorem 3 (ii).

Corollary 1. Assume that A ∼ Pθ∗, n/m = O(1) and εn ≥ 4(log n/n)1/2.
(i)If e12‖θ∗‖∞ + (log n)1/2/(εnn

1/2))e8‖θ∗‖∞ = o((n/ log n)1/2), then for large n, with proba-
bility at least 1− 6/n− 2/(m+ n− 1)2, the estimator θ̂ exists and satisfies

‖θ̂ − θ∗‖∞ = Op

(
(e6‖θ∗‖∞ +

(log n)1/2

n1/2εn
e2‖θ∗‖∞)

√
log n

n

)
= op(1).

Further, if θ̂ exists, it is unique.
(ii)If e18‖θ∗‖∞ = o(n1/2/ log n) and ε−1

n e6‖θ∗‖∞ = o(n1/2/ log n), then for any fixed k ≥ 1, as
n→∞, the vector consisting of the first k elements of (θ̂−θ∗) is asymptotically multivariate
normal with mean 0 and covariance matrix given by the upper left k × k block of S defined
at (11).

We remark that the error bounds ‖θ̂− θ∗‖∞ and ‖θ̃− θ∗‖∞ are the the same as that of
the MLE in Theorem 1, when εn is a constant.

When ε−1
n = o(n1/2/(log n)1/2), θ̂ has a smaller error since it contains a factor (log n/n)1/2.

This indicates that θ̂ is more efficient than θ̃ in the high privacy regime.

5. Numerical studies

5.1 Simulation

In this section, we verify our theoretical results via simulations under different setups for n,
εn and θ. We also compare θ̃, the moment based estimator discussed in Section 3.2, with
θ̂, the denoised estimator discussed in Section 4.

We now specify how the parameters in the simulation are set. We let α∗i = c(i −
1) log n/(m − 1) for i = 1, . . . ,m and β∗j = c(n − j) log n/(n − 1) for j = 1, . . . , n with
β∗n = 0, where we considered three different values for c as c = 0.1, 0.2 or 0.3. That is,
the parameters take a linear form. We varied the value of c to assess how the frequency
of an estimator existing depends on the magnitude of the linear form. For the parameter
in the non-negative discrete Laplace distribution, we simulated εn being either log(n)/n1/6

or log(n)/n1/4. We considered (m,n) = (50, 100) or (m,n) = (100, 200). Under each
simulation setting, 10, 000 datasets were generated.

By Theorem 3, ξ̃i,j = [α̃i − α̃j − (α∗i − α∗j )]/(1/ṽi,i + 1/ṽj,j)
1/2, ζ̃i,j = (α̃i + β̃j − α∗i −

β∗j )/(1/ṽi,i + 1/ṽm+j,m+j)
1/2, and η̃i,j = [β̃i − β̃j − (β∗i − β∗j )]/(1/ṽi,i + 1/ṽm+j,m+j)

1/2

converge in distribution to the standard normal distributions, where ṽi,i is the estimate

of vi,i by replacing θ∗ with θ̃. Likewise, we can define ξ̂i,j , ζ̂i,j and η̂i,j based on the

denoised estimator θ̂ which, according to Theorem 1, also converge to the standard normal
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distributions. The QQ plots for ξ̃1,2, ξ̃m/2,m/2+1 and ξ̃m−1,m when (m,n) = (50, 100) are

shown in Figure 2 when εn = log n/n1/6. We can see that the empirical quantiles are in
close agreement with the theoretical quantiles, suggesting that the asymptotic normality
results for θ̃ hold. The QQ plots for ξ̂1,2, ζ̂m/2,m/2+1 and η̂m−1,m show similar patterns and
we omit them to save space.
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Figure 2: The QQ plots. The red line is the reference line y = x. The first row and second
row corresponds to L = 0.1 log n and L = 0.3 log n, respectively.

Table 1 reports the coverage frequencies of the 95% confidence interval for αi − αj , the
length of the confidence interval, and the frequency that the estimator did not exist. The
reported frequencies and lengths were conditional on the event that the estimator exists.
We found that most of empirical coverage frequencies are close to the nominal 95% level.
As expected, the length of the confidence interval increases as c increases and decreases as
n increases. When L = 0.3 log n, the estimator failed to exist with a positive frequencies
over 20%. When εn = log n/n1/6 and c ≤ 0.2, most of simulated coverage frequencies for
the estimates are close to the targeted level. The results for εn = log n/n1/4 exhibit similar
phenomena. One interesting observation is that the lengths of the 95% confidence intervals
based on the denoised estimator are always no larger than those on the moment based
estimator, confirming our claim that the former is more efficient.

5.2 Real data analysis

We evaluate the use of the proposed estimator on the UC irvine forum network data [Opsahl
and Panzarasa (2011)]. This dataset contains 899 students and 522 topics. An edge between
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Table 1: The reported values are the coverage frequency (×100%) for αi − αj for a pair
(i, j) / the length of the confidence interval / the frequency (×100%) that the
estimate did not exist. ”Moment” refers to the moment based estimating equation
estimator defined in Section 3.2 and ”Denoised” the denoised estimator in Section
4.

(m,n) (i, j) Type c = 0.1 c = 0.2 c = 0.3

εn = log n/n1/6

(50, 100) (1, 2) Moment 93.98/1.21/0 93.97/1.44/1.25 93.26/1.87/25.54

Denoised 94.10/1.20/0 94.23/1.43/1.25 93.39/1.84/25.44

(25, 26) Moment 94.27/1.16/0 94.05/1.27/1.25 94.23/1.44/25.54

Denoised 94.34/1.16/0 94.15/1.27/1.25 94.33/1.44/25.44

(49, 50) Moment 94.05/1.14/0 94.06/1.18/1.25 94.05/1.23/25.54

Denoised 94.04/1.14/0 93.99/1.18/1.25 94.00/1.23/25.44

(100, 200) (1, 2) Moment 94.56/0.86/0 94.50/1.06/0.01 94.08/1.43/3.14

Denoised 94.67/0.86/0 94.69/1.06/0.01 94.39/1.42/3.14

(50, 51) Moment 94.29/0.82/0 94.51/0.91/0.01 94.32/1.06/3.14

Denoised 94.31/0.82/0 94.58/0.91/0.01 94.40/1.06/3.14

(99, 100) Moment 94.39/0.80/0 94.62/0.83/0.01 94.77/0.87/3.14

Denoised 94.47/0.80/0 94.64/0.83/0.01 94.76/0.87/3.14

εn = log n/n1/4

(50, 100) (1, 2) Moment 93.28/1.21/0.15 92.94/1.46/7.50 91.41/1.94/60.43

Denoised 93.54/1.21/0.14 93.30/1.45/7.14 92.00/1.89/59.10

(25, 26) Moment 93.57/1.17/0.15 93.21/1.28/7.50 93.10/1.46/60.43

Denoised 93.86/1.17/0.14 93.50/1.28/7.14 93.20/1.46/59.10

(49, 50) Moment 93.65/1.14/0.15 93.29/1.18/7.50 93.18/1.24/60.43

Denoised 93.78/1.14/0.14 93.30/1.18/7.14 93.33/1.24/59.10

(100, 200) (1, 2) Moment 94.74/0.86/0 93.35/1.07/0.07 91.93/1.47/10.12

Denoised 95.08/0.86/0 93.79/1.07/0.07 92.56/1.45/10.08

(50, 51) Moment 94.04/0.82/0 94.77/0.92/0.07 93.76/1.07/10.12

Denoised 94.18/0.82/0 94.87/0.92/0.07 93.81/1.07/10.08

(99, 100) Moment 94.20/0.80/0 94.05/0.83/0.07 94.06/0.88/10.12

Denoised 94.34/0.80/0 94.21/0.83/0.07 94.11/0.88/10.08
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a student and a topic exists if there is at least one forum message that the user had sent to
the topic. In total, there are 7089 edges so the network is very sparse though none of the
observed degrees is zero.

Following the simulation study, we chose εn as εn = log n/n1/6 or εn = log n/n1/4. To
assess the overall performance of the differentially private estimators, we repeatedly released
the degree sequence using the non-negative discrete Laplace mechanism 1, 000 times. Since
the network is very sparse, the denoised algorithm 1 assigned zero degrees to certain nodes
in each simulation, rendering the denoised estimator non-existent every time. Therefore, we
focused on assessing the performance of the moment based estimator. The results are shown
in Figure 3 with the estimates of α (β) on the vertical axis and degree on the horizontal
axis. The black points correspond to ᾱ or β̄ fitted with the original data and the red points
the median values of α̃ or β̃. Also plotted are the upper bounds and the lower bounds in
the blue color of the 95% confidence intervals. The results show that the median of the
estimator is very close to the MLE and that the MLE lies well within the 95% confidence
interval. Moreover, as ε increases, the lengths of the confidence intervals become smaller as
expected.

6. Discussion

We have presented the consistency and asymptotic normality of the moment based and
denoised estimators of the parameters in a bipartite β-model. The results assume the con-
dition n/m = O(1). To see whether this condition can be relaxed, we conducted additional
simulation by considering m = [n1/2] or m = [n3/4], where [n1/2] denotes the integer part
of n1/2. Other settings were taken the same as those in Section 5.1. When m = [n1/2]
and n = 200, 500, 1000, we observed that the moment based estimator and the denoised
estimator both failed to exist with probabilities larger than 96%. This makes sense because
actors are affiliated with a small number of events (≤ 10) such that adding noises easily
produces outputs beyond the range of degrees, especially for large n. On the other hand,
when m = [n3/4], the frequencies that estimators failed are less than 4% in the case of
‖θ‖∞ ≤ 0.2 log n, where the sample quantile matches the theoretical one very well. When
‖θ‖∞ = 0.3 log n, the estimates failed to exist with positive frequencies. The simulation
results indicate that the condition n/m = O(1) can be possibly weakened. Moreover, it
is of also interest to see whether the conditions imposed on e‖θ

∗‖∞ can be relaxed. These
questions will be interesting to investigate in future.

In this paper, we have focused on the bipartite β-model that does not include nodal
interactions. If the statistic to be released is the degree sequence, this is a natural model
that is shown to be useful for parameter estimation and privacy protection. In many real-
life problems, however, interactions amongst nodes are often present. One approach is to
encode all the interesting interactions via network statistics such as the degree sequence,
k-stars and the number of triads, and then to characterize them using some exponential-
family distribution, leading to for example the popular exponential random graph model.
In additional simulation (not shown here), we have observed that if the true model deviates
from the bipartite β model and the information to be released is the degree sequence, using
the latter to fit network data will produce biased estimates even when no noise is added,
though a small deviation does not seem to pose a serious issue. We remark that investigating
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Figure 3: The moment based differentially private estimate (α̃, β̂) (as red crosses) and the
MLE (as black dots). The plots show the median and the upper (97.5th) and the
lower (2.5th) quantiles (in blue triangles).

theoretical properties of a general exponential random graph model with dependent net-
work statistics is extremely challenging even without privacy protection [Fienberg (2012);
Chatterjee and Diaconis (2013)]. Furthermore, the denoising process discussed in this paper
cannot be extended (at least in an exact manner) directly to include more general sufficient
statistics, because the Havel-Hakimi algorithm has only been developed for simple network
statistics such as the degree sequence. Gong forward though, if the exponential random
graph type of model is deemed appropriate for modelling a network, we will need to release
all the sufficient statistics of this model before adding appropriate noises. We leave its
investigation to future work.
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Appendix A.

In this section, we will present the proofs for Lemmas 1 and 2, Proposition 1, Theorems 1,
2 and 3.

A.1 Proof of Lemma 1

Proof
The proof is a direct extension of that of Lemma 2.6 in Wasserman and Zhou (2010). Let

Q: G → R be a randomized data releasing mechanism that is (ε, r)-WEDP and g: R→ R′

be an arbitrary measurable mapping. Fix any pair of neighboring graphs (G,G′) satisfying
the definition of (ε, r)-WEDP, and fix any event S ⊆ R′. Let T = {t ∈ R : g(t) ∈ S}. Then
we have:

P [g(Q(G)) ∈ S] = P [Q(G) ∈ T ] ≤ eεP [Q(G′) ∈ T ] ≤ eεP [g(Q(G′)) ∈ S].

According to the definition of (ε, r)-WEDP, there are at least r neighboring graphs G′ sat-
isfying the above inequality for G and they do not share common edges. This shows that
g ◦Q : G → R′ is (ε, r)-WEDP.

A.2 Proof of Lemma 2

Proof
Note that the output of the mechanism is f(G)+Z ∈ Rk. For any z ∈ Rk with z ≥ f(G),

and any left neighboring graph G′ of G, we have

P(f(G) + Z = z|G) > 0 and P(f(G′) + Z = z|G′) > 0,

where the second inequality is due to f(G′) ≤ f(G). Then we have

P(f(G) + Z = z|G) =

k∏
i=1

(1− λ)λzk−fk(G) =

k∏
i=1

(1− λ)λzk−fk(G′) × λ
∑k
i=1(fi(G

′)−fi(G))

Since λz is a decreasing function of z for 0 < λ < 1, we get the following:

P(f(G) + Z = z|G) ≤ P(f(G′) + Z = z|G′)× λ−∆(f) = eεP(f(G′) + Z = z|G′). (16)

The lemma is then proved by noticing that for any G ∈ Gq, there are q left neighbors G′

such that P(f(G′) +Z = z|G′) > 0, and the fact that condition (ii) in Definition 3.1 is true
for the set of left neighbors.
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A.3 Proof of Proposition 1

Proof Without loss of generality, we consider H0 : X11 = 1 and H1 : X11 = 0. The
marginal distribution under H0 and H1 are then given, respectively, as

M0(S) =
∑

{X:X11=1}

Q(S | 1, X12, . . . , X1n, X21, . . . , X2n, . . . , Xmn)P (X),

M1(S) =
∑

{X:X11=0}

Q(S | 0, x12, . . . , X1n, X21, . . . , X2n, . . . , Xmn)P (X).

By the Neyman-Pearson lemma, the most powerful test is to reject H0 when U > u where
U(S) = M1(S)/M0(S) and u is the smallest constant such that

∑
S I(U(S) > u)M0(S) ≤ γ.

LetG andG′ be the bipartite graphs with their respective vectors (1, x12, . . . , x1n, x21, . . . , x2n,
. . . , xmn) and (0, x12, . . . , x1n, x21, . . . , x2n, . . . , xmn). Because G′ is the left neighboring
graph of G and Q satisfies (ε, q)-WEDP, we have

M1(S) ≤ eεM0(S),

such that the power is M1(U > u) ≤ eεM0(U > u) ≤ γeε.

A.4 Proofs for Theorem 2

Before proving Theorem 2, we start with some preliminaries.

For a subset C ⊂ Rn, let C0 and C denote the interior and closure of C, respectively.
For an n× n matrix J = (Ji,j), let ‖J‖∞ denote the matrix norm induced by the `∞-norm
on vectors in Rn, i.e.

‖J‖∞ = max
x 6=0

‖Jx‖∞
‖x‖∞

= max
1≤i≤n

n∑
j=1

|Ji,j |.

The approximate error using S in (11) to approximate the inverse of V is given in the
lemma below, which is an direct extension of that for Proposition 1 in Yan et al. (2016).

Lemma 3. If V ∈ Lm,n(b, B) with B/b = o(n) and n/m = O(1), then for large enough n,

‖V −1 − S‖max = O

(
B2

b3mn

)
,

where ‖A‖max := maxi,j |aij | for a general matrix A = (aij).

Note that if B and b are bounded constants, then the upper bound of the above approx-
imation error is on the order of (mn)−1, indicating that S is a high-accuracy approximation
to V −1. The following result is the rate of convergence for the Newton method.

Lemma 4 (Yamamoto (1988)). Let X and Y be Banach spaces, D be an open convex subset
of X and F : D ⊆ X → Y be Fréchet differentiable. Assume that, at some x0 ∈ D, F ′(x0)
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is invertible and that

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ K‖x− y‖, x, y ∈ D,
‖F ′(x0)−1F (x0)‖ ≤ η, h = Kη ≤ 1/2,

S̄(x0, t
∗) ⊆ D, t∗ = 2η/(1 +

√
1− 2h).

Then: (1) The Newton iterates xn+1 = xn − F ′(xn)−1F (xn), n ≥ 0 are well-defined, lie in
S̄(x0, t

∗) and converge to a solution x∗ of F (x) = 0.
(2) The solution x∗ is unique in S(x0, t

∗∗) ∩ D, t∗∗ = (1 +
√

1− 2h)/K if 2h < 1 and in
S̄(x0, t

∗∗) if 2h = 1.
(3) Error estimates are: ‖x∗ − x0‖ ≤ t∗ and ‖x∗ − xn‖ = 21−n(2h)2n−1η for n ≥ 1.

Recall that F (θ) is defined in (8).
The solution to the equation F (θ) = 0 is precisely the estimator θ̃. The Jacobian matrix

F ′(θ) of F (θ) can be calculated as follows. For i = 1, . . . ,m,

∂Fi
∂αl

= 0, l = 1, . . . ,m, l 6= i;
∂Fi
∂αi

= −
n∑
j=1

eαi+βj

(1 + eαi+βj )2
,

∂Fi
∂βj

= − eαi+βj

(1 + eαi+βj )2
, j = 1, . . . , n− 1,

and for j = 1, . . . , n− 1,

∂Fm+j

∂αl
= − eαl+βj

(1 + eαl+βj )2
, l = 1, . . . ,m,

∂Fm+j

∂βj
= −

m∑
i=1

eαi+βj

(1 + eαi+βj )2
;
∂Fm+j

∂βk
= 0, k = 1, . . . , n− 1, k 6= j.

Since ex/(1 + ex)2 is a decreasing function on x when x ≥ 0 and an increasing function
when x ≤ 0. Consequently, for any i, j, we have

e2‖θ‖∞

(1 + e2‖θ‖∞)2
≤ −F ′i,j(θ) ≤

1

4
. (17)

According to the definition of Lm,n(b, B), we have that −F ′(θ) ∈ Lm,n(b, B), where

b =
e2‖θ‖∞

(1 + e2‖θ‖∞)2
, B =

1

4
.

Therefore, Lemma 3 can be applied.
Let D be an open convex subset of Rn. We say an n × n function matrix F (x) whose

elements Fij(x) are functions on vectors x, is Lipschitz continuous on D if there exists a
real number λ such that for any v ∈ Rn and any x, y ∈ D,

‖F (x)v − F (y)v‖∞ ≤ λ‖x− y‖∞‖v‖∞,

where λ may depend on n but independent of x and y. We introduce some technical lemmas
first.
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Lemma 5. The Jacobian matrix F ′(x) is Lipschitz continuous on Rm+n−1 with Lipschitz
coefficient 3n/4, where F (x) is defined in (8).

Proof Let x, y ∈ Rm+n−1 and

F ′i (θ) = (F ′i,1(θ), . . . , F ′i,m+n−1(θ))> := (
∂Fi
∂α1

, · · · , ∂Fi
∂αm

,
∂Fi
∂β1

, · · · , ∂Fi
∂βn−1

)>.

Then, for i = 1, . . . ,m, we have

∂2Fi
∂αl∂αs

= 0, s 6= l;
∂2Fi
∂α2

i

= −
n∑
j=1

eαi+βj (1− eαi+βj )
(1 + eαi+βj )3

,

∂2Fi
∂αi∂βs

= −e
αi+βj (1− eαi+βj )

(1 + eαi+βj )3
, s = 1, . . . , n− 1, s 6= i;

∂2Fi
∂αi∂βi

= 0,

∂2Fi

∂βj
2 = −e

αi+βj (1− eαi+βj )
(1 + eαi+βj )3

, j = 1, . . . , n− 1;
∂2Fi
∂βs∂βl

= 0, s 6= l.

Note that

| e
αi+βj (1− eαi+βj )

(1 + eαi+βj )3
|≤ eαi+βj

(1 + eαi+βj )2
≤ 1

4
. (18)

By the mean value theorem for vector-valued functions, we have

F ′i (x)− F ′i (y) = J (i)(x− y),

where

J
(i)
s,l =

∫ 1

0

∂F ′i,s
∂θl

(tx+ (1− t)y)dt, s, l = 1, . . . ,m+ n− 1.

Therefore,

max
s

m+n−1∑
l

| J (i)
(s,l) |≤

n

2
,
∑
s,l

| J (i)
(s,l) |≤ n

Similarly, for i = m + 1, . . . ,m + n − 1, we also have F ′i (x) − F ′i (y) = J (i)(x − y) and∑
s,l |J

(i)
(s,l)| ≤ m. Consequently,

‖ F ′i (x)− F ′i (y) ‖∞≤‖ J (i) ‖∞‖ x− y ‖∞≤
n

2
‖ x− y ‖∞, i = 1, . . . ,m+ n− 1,

and for ∀ v ∈ Rm+n−1,

‖ [F ′i (x)− F ′i (y)]v ‖∞ = max
i
|
m+n−1∑
j=1

(F ′i,j(x)− F ′i,j(y))vj |

= max
i
| (x− y)J (i)v |

≤ ‖ x− y ‖∞‖ v ‖∞
∑

k,j | J
(i)
(s,l) |

≤ n ‖ x− y ‖∞‖ v ‖∞ .
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Note that the above inequality does not depend on the subscript i of F ′i (x). So F ′(x) is
Lipschitz continuous with Lipschitz coefficient n. It completes the proof.

The following lemma bounds maxi di and maxj bj .

Lemma 6. If εn ≥ 4(log n/n)1/2 and n/m = O(1), then with probability at least 1 − 6/n
we have

max{ max
i=1,...,m

|d̃i − E(d̃i)|, max
j=1,...,n

|b̃j − E(b̃j)|} = O(
√
n log(n)).

Proof Note that the random variables zi’s (i = 1, . . . ,m + n) are independently and
identically distributed by the positive discrete Laplace distribution with the parameter
λn = exp(−εn/2). Let [c] be the integer part of c (c > 0). Then we have

P(zi ≤ c) = (1− λn)(1 + λ1
n + . . .+ λ[c]

n ) = 1− λ[c]+1
n .

Therefore, we have

P( max
i=1,...,m+n−1

zi > c) = 1−
m+n−1∏
i=1

P(zi ≤ c) = 1− (1− λ[c]+1
n )m+n−1. (19)

Since (1− x)n ≥ 1− nx when x ∈ (0, 1), we have

P( max
i=1,...,m+n−1

zi > c) ≤ (m+ n− 1)λ[c]+1
n . (20)

When c = (n log n)1/2 and εn > 4(log n/n)1/2,

(m+ n− 1)λ[c]+1
n ≤ (m+ n− 1) exp

(
−2(log n/n)1/2 · (n log n)1/2

)
=
m+ n− 1

n2
<

2

n
,

such that with probability at least 1− 2/n,

max
i=1,...,m+n−1

zi <
√
n log n.

Because ε−1
n ≤ (n/ log n)1/2/4, we have Ezi = λn/(1 − λn) . 2/εn �

√
n log n. It follows

that with probability at least 1− 2/n,

max
i=1,...,m+n−1

|zi −
λn

1− λn
| = O(

√
n log n). (21)

Note that xi,j ’s are independent Bernoulli random variables and di is the sum of n
random variables xi,j , j = 1, . . . , n. Recall that m < n. By Hoeffding’s inequality, we have

P
(
|di − Edi| ≥

√
n log n

)
≤ 2 exp {−2n log n

n
} ≤ 2

n2n/n
≤ 2

n2
.

Therefore,

P
(

max
i=1,...,m

|di − Edi| ≥
√
n log n

)
≤ P

(⋃
i |di − Edi| ≥

√
n log n

)
≤

∑m
i=1 P

(
|di − Edi| ≥

√
n log n

)
≤ m× 2

n2 ≤ 2
n .
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Similarly, we have

P
(

max
j=1,...,n

|bj − Ebj | ≥
√
n log n

)
≤ 2

n
.

Consequently,

P
(

max{max
i
|di − Edi|,max

j
|bj − Ebj |} ≥

√
n log n

)
≤ P

(
max
i
|di − Edi| ≥

√
n log n

)
+ P

(
max
j
|bj − Ebj | ≥

√
n log n

)
≤ 4

n .

So, with probability at least 1− 4/n, we have

max{max
i
|di − Edi|,max

j
|bj − Ebj |} = O(

√
n log n). (22)

Notice that d̃i = di + zi and b̃j = bj + zm+j . By combing (21) and (22), it yields that

max{max
i
|d̃i − Ed̃i|,max

j
|b̃j − Eb̃j |} = Op(

√
n log n).

It completes the proof.

Lemma 7. If n/m = O(1), with probability at least 1− 2/(m+ n− 1)2, we have

m∑
i=1

(zi − Ezi)−
n−1∑
j=1

(zm+j − Ezm+j) = Op(ε
−1
n (n log n)1/2).

To show Lemma 7, we need some preliminaries. We first introduce the concentration
inequality. We say that a real-valued random variable X is sub-exponential with parameter
κ > 0 if

[E|X|p]1/p ≤ κp for all p ≥ 1.

Note that if X is a κ-sub-exponential random variable with finite first moment, then the
centered random variable X−E[X] is also sub-exponential with parameter 2κ. Independent
sub-exponential random variables has the concentration inequality.

Lemma 8 (Vershynin (2012), Corollary 5.17). Let X1, . . . , Xn be independent centered
random variables, and suppose each Xi is sub-exponential with parameter κi. Let κ =
max1≤i≤n κi. Then for every ε ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ζ
)
≤ 2 exp

[
−nc1 ·min

( ε2
κ2
,
ζ

κ

)]
,

where c1 > 0 is an absolute constant.

The positive discrete Laplace random variable is sub-exponential.
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Lemma 9. Let z be a positive discrete Laplace random variable with parameter λ ∈ (0, 1),
where

P(z = n) = (1− λ)λn, n = 0, 1, 2, . . . .

Then z is sub-exponential with parameter −c(log λ)−1, and the centered random variable
X − λ is sub-exponential with parameter −2c(log λ)−1, where c is an absolute constant.

Proof A direct calculation gives that

Ezp =
∞∑
n=1

np(1− λ)λn

= (1− λ)
∞∑
n=1

npe−n log 1
λ

≤ (1− λ)

∫ ∞
0

tpe−t log 1
λdt

= (1− λ)(
1

log 1
λ

)p+1

∫ ∞
0

spe−sds

= (1− λ)(
1

log 1
λ

)p+1Γ(p). (23)

Thus, we have

(Ezp)1/p ≤ (
1

log 1
λ

)1+1/p(1− λ)1/p(Γ(p))1/p.

Wang and Zhao (2007) showed that for x ≥ 1,

(
x

e
)x
√

2πx(1 +
1

12x
) < Γ(x+ 1) < (

x

e
)x
√

2πx(1 +
1

12x− 0.5
).

So, when p ≥ 2, we have

(Ezp)1/p ≤ (
1

log 1
λ

)1+1/p(1− λ)1/p[(
p− 1

e
)p−1

√
2π(p− 1)(1 +

1

12(p− 1)− 0.5
)]1/p

≤ cp(log
1

λ
)−1,

where c is an absolute constant. On the other hand, when 1 ≤ p ≤ 2, Γ(p) ≤ 1. In this
case, by (23), we still have

(Ezp)1/p ≤ cp(log
1

λ
)−1.

Now we give the proof of Lemma 7.

Proof of Lemma 7. Note that {zi}m+n−1
i=1 are independently positive discrete Laplace

random variables with parameter λn = e−εn/2. By Lemma 9, zi−Ezi is sub-exponential with
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parameter −2c(log λn)−1 = 4c/εn. Let κn = 4c/εn. We use the concentration inequality in
Lemma 8 to bound the sum

∑m+n−1
i=1 (zi − Ezi), where we choose

ζ = κn

(
2 log(m+ n− 1)

c1(m+ n− 1)

)1/2

.

Assume n is sufficiently large such that ζ/κn =
√

2 log(m+ n− 1)/c1(m+ n− 1) ≤ 1.
Then by Lemma 8, we have

P

 1

n+m− 1
|
m∑
i=1

(zi − Ezi)−
n−1∑
j=1

(zm+j − Ezm+j)| ≥ κn
(

2 log(m+ n− 1)

γ(m+ n− 1)

)1/2


≤ 2 exp

(
−(m+ n− 1)c1 ·

2 log(m+ n− 1)

c1(m+ n− 1)

)
=

2

(m+ n− 1)2
.

Thus, with probability at least 1− 2/(m+ n− 1)2, we have

m∑
i=1

(zi − Ezi)−
n−1∑
j=1

(zm+j − Ezm+j) = O(ε−1
n (n log n)1/2).

Now, we are ready to prove Theorem 2.
Proof of Theorem 2 We construct the Newton’s iterates, θ(k+1) = θ(k)−[F

′
(θ(k))]−1F (θ(k))

with the initial point as θ(0) = θ∗ and apply Lemma 4 to show the consistency. We verify
the conditions in Lemma 4 as follows. First, we calculate K. Let V = (vij) := −F ′(θ∗) and
W = V −1 − S, where S is defined at (11). First, we have

‖S(F ′(x)− F ′(y))‖∞ ≤ 3
4(3 + e2‖θ∗‖∞),

Then, we have

‖V −1(F ′(x)− F ′(y))‖∞
≤ ‖S(F ′(x)− F ′(y))‖∞ + ‖W (F ′(x)− F ′(y))‖∞

≤ 3(3 + e2‖θ∗‖∞)

4
+ ‖W‖∞‖F ′(x)− F ′(y)‖∞

= O(
3

4
e2‖θ∗‖∞) +O(

(m+ n)

mn
e6‖θ∗‖∞) = O(e6‖θ∗‖∞),

where the last equation is due to Lemmas 3 and 5. Therefore, K = O(e6‖θ∗‖∞). Assume
that the following holds:

‖F (θ∗)‖∞ = O(
√
n log(n)), (24)

m∑
i=1

Fi(θ
∗)−

n−1∑
j=1

Fm+j(θ
∗) = Op(ε

−1
n (n log n)1/2). (25)
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Next, we calculate η. Note that

‖[F ′(θ∗)]−1F (θ∗)‖∞ ≤ ‖SF (θ∗)‖∞ + ‖WF (θ∗)‖∞

≤ max
i

1

vii
‖F (θ∗)‖∞ +

1

vm+n,m+n
|
m∑
i=1

Fi(θ
∗)−

n−1∑
j=1

Fm+j(θ
∗)|+ n‖W‖max‖F (θ∗)‖∞

≤ O((1 + ε−1
n )(log n)1/2n−1/2e2‖θ∗‖∞) +O(ε−1

n (log n)1/2n−1/2e6‖θ∗‖∞)

= O({(1 + ε−1
n )e2‖θ∗‖∞ + e6‖θ∗‖∞}(log n)1/2n−1/2) := η.

Lemma 5 shows that F ′(x) that is Lipschitz continuous on D with Lipschitz coefficient n.
Thus, λ = n and

h = 2Kη = O((1 + ε−1
n )e8‖θ∗‖∞ + e12‖θ∗‖∞}

√
log n

n
.

If equation (9) holds, then h = o(1). By Lemma 4, limn→∞ θ̃
(n) exists. Denote the limit as

θ̃. Then it satisfies

‖θ̃ − θ∗‖∞ = O({(1 + ε−1
n )e2‖θ∗‖∞ + e6‖θ∗‖∞}(log n)1/2n−1/2) = o(1).

By Lemmas 6 and 7, (24) and (25) hold with probabilities at least 1 − 6/n and 1 −
2/(m + n − 1)2, respectively. Thus the above inequality also holds with probability at
least 1 − 6/n − 2/(m + n − 1)2. The uniqueness of the estimator is due to that −F ′(θ) is
positively definite.

A.5 Proofs for Theorem 3

We first present some technical lemmas. Let g = (d1, . . . , dm, b1, . . . , bn−1)> and V =
Cov(g). It is clear that V = −F ′(θ∗) for F (θ) defined at (8). Note that di =

∑
k xi,k

and bj =
∑

k xk,j are sums of m and n independent random variables, respectively. By the

central limit theorem for the bounded case in Loéve (1977, page 289), both v
−1/2
i,i (di−E(di))

and v
−1/2
m+j,m+j(bj − E(bj)) converges to standard normal distributions if vi,i and vm+j,m+j

diverge. Note that

ne2‖θ∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vi,i ≤

n

4
, , i = 1, . . . ,m,

me2‖θ∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vm+j,m+j ≤

m

4
, j = 1, . . . , n

Then we have the following lemmas.

Lemma 10. Assume that X ∼ Pθ∗. If e‖θ
∗‖∞ = o(n1/2) and n/m = O(1), then for any fixed

k ≥ 1, as n→∞, the vector consisting of the first k elements of S{g−Eg} is asymptotically
multivariate normal with mean zero and covariance matrix given by the upper left k×k block
of S.

Lemma 11. (i) If ε−1
n (log n)1/2e2‖θ∗‖∞ = o(1) and e‖θ

∗‖∞ = o(n1/2), then for any fixed
k ≥ 1, as n→∞, the vector consisting of the first k elements of S(g̃−Eg̃) is asymptotically
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multivariate normal with mean zero and covariance matrix given by the upper left k × k
block of S.
(ii) Let σ2

n = (m + n − 1)λn/(1 − λn)2. If ε−1
n e2‖θ∗‖∞ = o(n1/2/ log n), e‖θ

∗‖∞ = o(n1/2)

and sn/v
1/2
m+n,m+n → c for some constant c, then for any fixed s ≥ 1 and t ≥ 1, the

vector ([S(g̃−Eg̃)]1, . . . , [S(g̃−Eg̃)]s, [S(g̃−Eg̃)]m+1, . . . , [S(g̃−Eg̃)]m+t) is asymptotically
(s+ t)-dimensional multivariate normal distribution with mean zero and covariance matrix
Σ = (Σij)(s+t)×(s+t) defined as in (13).

Proof There are two cases to consider.
(i) ε−1

n (log n)1/2e2‖θ∗‖∞ = o(1). Recall that

vi,j =
eαi+βj

(1 + eαi+βj )2
, i = 1, . . . ,m, j = m+ 1, . . . ,m+ n,

vi,i =

n∑
j=1

vij , i = 1, . . . ,m; vm+j,m+j =

n∑
i=1

vij , j = 1, . . . , n.

Since ex/(1 + ex)2 is an increasing function on x when x ≥ 0 and a decreasing function
when x ≤ 0, we have

O(ne−2‖θ∗‖∞) = (n−1)e2‖θ
∗‖∞

(1+e2‖θ∗‖∞ )2
≤ vi,i ≤ n−1

4 , i = 1, . . . ,m.

O(me−2‖θ∗‖∞) = (m−1)e2‖θ
∗‖∞

(1+e2‖θ∗‖∞ )2
≤ vi,i ≤ m−1

4 , i = m+ 1, . . . ,m+ n.
(26)

So if e‖θ
∗‖∞ = o(n1/2), then vi,i →∞ for all 1 ≤ i ≤ m+ n. By Lemma 7 in the main text,

we have

|
m∑
i=1

(zi − Ezi)| = Op(ε
−1
n (n log n)1/2), |

m+n∑
i=m+1

(zi − Ezi)| = Op(ε
−1
n (n log n)1/2). (27)

Since g̃i − gi = zi for i = 1, . . . ,m+ n− 1, we have

[S(g̃ − Eg)]i

= [S(g − Eg)]i + [S(g̃ − g)]i

= [S(g − Eg)]i + (−1)1(i>n)

∑m
i=1(zi − Ezi)−

∑m+n−1
i=m+1 (zi − Ezi)

vm+n,m+n

= [S(g − Eg)]i +Op(
εn(log n)1/2e2‖θ∗‖∞

n1/2
),

where the last equation is due to (26) and (27). So if εn(log n)1/2e2‖θ∗‖∞ = o(1), then we
have

[S(g̃ − Eg)]i = [S(g − Eg)]i + op(n
−1/2).

Consequently, the first part of Lemma 11 immediately follows Lemma 10.

(ii) σn/v
1/2
2n,2n → c for some constant c. Let x̃i,j = xi,j − Exi,j and

z̃ =

m∑
i=1

(zi − Ezi)−
m+n−1∑
i=m+1

(zi − Ezi).
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Note that s and t are two fixed constants. Without loss of generality, we assume that s ≤ t.
Denote

U :=



g1−Eg1
v
1/2
1,1

...
gs−Egs
v
1/2
r,r

gm+1−Egm+1

v
1/2
m+1,m+1

...
gm+t−Egm+t

v
1/2
m+t,m+t

gm+n−Egm+n

v
1/2
m+n,m+n

z̃
sn



=



∑s
j=1 x̃1,j

v
1/2
1,1

...∑s
j=1 x̃k,j

v
1/2
s,s∑s

i=1 x̃i,1

v
1/2
m+1,m+1

...∑s
i=1 x̃i,t

v
1/2
m+t,m+t∑s
i=1 x̃i,n

v
1/2
m+n,m+n

0



+



∑n
j=s+1 x̃1,j

v
1/2
1,1

...∑n
j=s+1 x̃k,j

v
1/2
r,r∑n

i=s+1 x̃i,1

v
1/2
m+1,m+1

...∑n
i=s+1 x̃i,t

v
1/2
m+t,m+t∑n
i=s+1 x̃i,n

v
1/2
m+n,m+n

z̃
sn



:= I1 + I2.

Since |xi,j | ≤ 1 and vi,i → ∞ as n → ∞, |
∑s

j=1 x̃i,j |/vi,i = o(1) for i = 1, . . . , s with fixed
s. So I1 = o(1).

Next, we will consider I2. Recall that σ2
n = Var(z̃). By the large sample theory, z̃/σn

converges in distribution to the standard normal distribution if σn → ∞. By the central

limit theorem for the bounded case in Loéve (1977) (page 289),
∑n

j=k+1 x̃i,j/v
1/2
i,i converges

in distribution to the standard normal distribution for any fixed i if e‖θ
∗‖∞ = o(n1/2). Since

x̃i,j ’s (1 ≤ i ≤ k, j = k + 1, . . . , n), x̃i,n’s and ẽ are mutually independent, I2 converges
in distribution to a s+ t+ 2-dimensional standardized normal distribution with covariance
matrix Is+t+2, where Is+t+2 denotes the (s+ t+2)× (s+ t+2) dimensional identity matrix.
Let

C =



1√
v1,1

, 0, . . . , 0, . . . 0 1√
vm+n,m+n

, σn
vm+n,m+n

0, 1√
v2,2

, . . . , 0, . . . 0 1√
vm+n,m+n

, σn
vm+n,m+n

. . .

0, 0, . . . , 1√
vs,s

, 0 . . . 0 1√
vm+n,m+n

, σn
vm+n,m+n

0, 0, . . . , 0 1√
vm+1,m+1

, 0 . . . 0 −1√
vm+n,m+n

, −σn
vm+n,m+n

. . .

0, 0, . . . , 0, 1√
vm+t,m+t

, −1√
vm+n,m+n

, −σn
vm+n,m+n


.

Then

[S(g̃ − Eg̃)]i=1,...,k = CU.

Since σ2
n/vm+n,m+n → c2 for some constant c, all positive entries of C are in the same order

n1/2. So CU converges in distribution to the k-dimensional multivariate normal distribution
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with mean 0 and covariance matrix CC> given below:

(CC>)i,j =



1
vi,i

+ 1
vm+n,m+n

+ s2n
v2m+n,m+n

i ≤ t, j ≤ t,

−( 1
vm+n,m+n

+ s2n
v2m+n,m+n

) i > t, j ≤ t,

−( 1
vm+n,m+n

+ s2n
v2m+n,m+n

) i ≤ t, j > t,

1
vm+j,m+j

+ 1
vm+n,m+n

+ s2n
v2m+n,m+n

i > t, j > t.

To complete the proof of Theorem 3, we need two lemmas below.

Lemma 12. Let R = V −1 − S. If m/n = O(1), e‖θ
∗‖∞ = o(n1/12) and ε−1

n = o(n1/2), then

[R(g̃ − Eg̃)]i = op(n
−1/2).

Proof Let R = V −1 − S and U = Cov[R(g − Eg)]. Note that

U = RV RT = (V −1 − S)V (V −1 − S)T = (V −1 − S)− S(I − V S),

where I is a (m+ n− 1)× (m+ n− 1) diagonal matrix. A direct calculation gives that

wi,j =



(δi,j−1)vi,j
vi,ivj,j

− vi,m+n

vi,ivm+n,m+n
− vm+n,j

vm+n,m+nvj,j
, i = 1, . . . ,m, j = 1, . . . ,m,

(δi,j − 1)
vi,j

vi,ivj,j
+

vi,m+n

vi,ivm+n,m+n
, i = 1, . . . ,m; j = m+ 1, . . . ,m+ n− 1,

(δi,j − 1)
vi,j

vi,ivj,j
+

vm+n,j

vj,jvm+n,m+n
, i = m+ 1, . . . ,m+ n− 1; j = 1, . . . ,m,

(δi,j − 1)
vi,j

vi,ivj,j
, i, j ∈ {m+ 1, . . . ,m+ n− 1},

where wi,j := {S(I − V S)}i,j . Because

ne2‖θ∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vi,i ≤

n

4
, i = 1, . . . ,m,

and
me2‖θ∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vi,i ≤

m

4
, i = m+ 1, . . . ,m+ n− 1,

we have

|{S(I − V S)}i,j | = |wi,j | ≤ 2 max
i 6=j

vi,j
vi,ivj,j

≤ 2(1 + e2‖θ∗‖∞)4

4mne4‖θ∗‖∞
. (28)

In view of Lemma 3 and (28), we have

‖U‖max ≤ ‖V −1 − S‖max + ‖{S(I − V S)}‖max ≤ ‖V −1 − S‖max +
(1 + e2‖θ∗‖∞)4

2mne4‖θ∗‖∞

= O

(
e6‖θ∗‖∞

mn

)
.
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This shows that if e6‖θ∗‖∞ = o(n1/2), then

[R(g − Eg)]i = op(n
−1/2). (29)

Because εn is a small privacy parameter, we have (1 − λn)−2 � ε−2
n . By Lemma 3, we

have

‖Var(Rz̃)‖max =
λn

(1− λn)2
‖R>R‖max = O(ε−2

n (m+ n− 1)‖R‖2max = O(
e12‖θ∗‖∞

n3ε2n
).

Therefore, if e6‖θ∗‖∞/εn = o(n), then

(Rz̃)i = op(n
−1/2), (30)

Combing (29) and (30), it yields

[R(g̃ − Eg̃)]i = [R(g − Eg)]i + [Rz̃]i = op(n
−1/2).

This completes the proof.

The following lemma establishes an asymptotic representation of θ̃i − θ∗i .

Lemma 13. If n/m = O(1), εn ≥ 4(log n/n)1/2 and (12) holds, then for any i,

θ̃i − θ∗i = [S(g̃ − Eg̃)]i + op(n
−1/2).

Proof Assume that the conditions in Theorem 1 hold. Then we have

ρ̃n := max
1≤i≤m+n−1

| θ̃i − θ∗i |= Op

(
{(1 + ε−1

n )e2‖θ∗‖∞ + e6‖θ∗‖∞}
√

log n

n

)
.

Let γ̂i,j = α̂i + β̂j − α∗i − β∗j . By the Taylor expansion, for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, i 6= j,

eα̂i+β̂j

1 + eα̂i+β̂j
− eα

∗
i+β∗j

1 + eα
∗
i+β∗j

=
eα
∗
i+β∗j

(1 + eα
∗
i+β∗j )2

γ̂i,j + hi,j ,

where

hij =
eα
∗
i+β∗j+φi,j γ̂i,j (1− eα

∗
i+β∗j+φi,j γ̂i,j )

2(eα
∗
i+β∗j+φi,j γ̂i,j )3

γ̂2
i,j ,

and 0 ≤ φi,j ≤ 1. By the estimating equations (7), it is not difficult to verify that

g̃ − Eg̃ = V (θ̃ − θ∗) + h,

where

hi =

n∑
k=1

hi,k, i = 1, . . . ,m, hm+i =

m∑
k=1

hk,i, i = 1, . . . , n− 1.

Equivalently,
θ̃ − θ∗ = V −1(g̃ − Eg̃) + V −1h. (31)
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By (18), it is easy to show

|hi,j | ≤ |γ̂2
i,j/2| ≤ 2ρ̂2

n, |hi| ≤
∑
j

|hi,j | ≤ 2nρ̂2
n.

Since

hm+n =

m∑
i=1

hi −
n−1∑
j=1

hm+j =

m∑
i=1

n∑
j=1

hi,j −
n−1∑
j=1

m∑
i=1

hi,j =

m∑
i=1

hi,n,

we have
|hm+n| ≤ (m+ n)ρ̂2

n = Op

(
(e12‖θ∗‖∞ + ε−2

n e4‖θ∗‖∞) log n
)
.

Let R = V −1 − S. Note that (Sh)i = hi/vi,i + (−1)1{i>m}hm+n/vm+n,m+n, and (V −1h)i =
(Sh)i + (Rh)i. Then we have

|(Sh)i| ≤
|hi|
vi,i

+
|hm+n|

vm+n,m+n
≤ 4ρ̂2

n · (1 + e2‖θ∗‖∞)2

me2‖θ∗ ‖∞
= Op

(
{e6‖θ∗‖∞(e8‖θ∗‖∞ + ε−2

n )} log n

n

)
.

By Lemma 3, we have

|(Rh)i| ≤ ‖R‖max × [(m+ n− 1) max
i
|hi|] = Op

(
{e10‖θ∗‖∞(e8‖θ∗‖∞ + ε−2

n )} log n

n

)
.

If e18‖θ∗‖∞ = o(n1/2/ log n) and ε−2
n e10‖θ∗‖∞ = o(n1/2/ log n), then

| (V −1h)i |≤| (Sh)i | + | (Rh)i |= op(n
−1/2). (32)

By combining (31) and (32), it yields

θ̂i − θ∗i = [V −1(ḡ − Eḡ)]i + op(n
−1/2).

Note that V −1 = S +R. By Lemma 12, we have

θ̂i − θ∗i = [S(ḡ − Eḡ)]i + op(n
−1/2).

It completes the proof.

We now prove Theorem 3.
Proof of Theorem 3 In view of Lemma 13, Theorem 3 is a direct conclusion from Lemma
11.

A.6 Proofs for Theorem 4

In this section, we show that Algorithm 1 finds a solution to the optimization problem (14).
For two nonnegative sequences d with dimension m and b with dimension n, we say that
the pair (d, b) is bigraphic if there is a bipartite graph Gm,n with a set of m nodes having
degrees equal to the elements of d and the other set of n nodes having degrees equal to the
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elements of b. In this case, we say that Gm,n realizes the pair (d, b). There are two main
steps for the proof of Theorem 4. First, we show that the optimum lies in a small set of all
possible bigraphic degree sequences where they are point-wise bounded by (d̃, b̃). Second,
we recursively add the so-called k-star graphs to an initial bipartite graph by noticing that
every bigraphic degree sequence can be written as a sum of special degree sequences of
k-star graphs. This step is realized via the bipartite Havel-Kakimi algorithm.

López and Muntaner-Batle (2013) gave a bipartite version of the Havel-Kakimi algorithm
to verify whether (d, b) is bigraphic. We state it as one lemma here.

Lemma 14 (Theorem 2.2 in López and Muntaner-Batle (2013)). Suppose P = (p1, . . . , pm)
with p1 ≥ p2 ≥ · · · ≥ pm and Q = (q1, . . . , qn) with q1 ≥ q2 ≥ · · · ≥ qn are sequences of
nonnegative integers. The pair (P,Q) is bigraphic if and only if (P ′, Q′) is bigraphic, where
(P ′, Q′) is obtained from (P,Q) by deleting the largest element p1 from P and subtracting 1
from each of the p1 largest elements of Q.

Given m events and n actors, we say a graph is a k-star graph with event i as the center
if there are only k actors connecting to event i. Note that we define an event as the center
here. (Certainly, actors can also be defined as centers.) The corresponding degree sequence
zk(i) = (dk(i), bk(i)) is said to be a k-star sequence with event i as the center. Event i is
called the center and the k actors to which it connects are called leaf nodes. The k-star
graph has m− 1 isolated events and n− k isolated actors.

By Lemma 14, we can use a recursive method to check whether a sequence of integers
is bigraphic. At step 1, we choose the event with the largest degree as the center “1” and
remove d1 connections from actors with largest degrees. Then remove the nodes that have
lost their degrees in the process. Repeat this step until all degrees of events become zeros.
At the end of the procedure if we are left with a sequence of 0’s, then the original sequence is
bigraphic. Since each event in this process is picked at most once, the number of recursions
is at most m. So the algorithm is fast and efficient. The above discussion demonstrates that
every bigraphic sequence (d, b) can be represented as a sum of a set of k-star sequences. It
can be formed as a bipartite HH decomposition that is defined as the set of k-star sequences
obtained after the application of Lemma 14 and is denoted by H(d, b) = {g1, . . . , gm} where
gi = gki(li).

The next lemma narrows down the search scope for the optimal bi-degree sequence. It
states that the optimization can be found only in the set of degree sequences, whose degrees
are point-wise bounded by (d̃, b̃).

Lemma 15. Let s and t be two sequences of m and n nonnegative integers, respectively.
Define f(s, t) =

∑m
i=1 |d̃i − si|+

∑n
j=1 |b̃j − tj |. Let (ď, b̌) be any degree sequence such that

f(ď, b̌) = min(s,t)∈Bm,n f(s, t). There exists a degree sequence (d∗, b∗) such that d∗i ≤ d̃i, ∀ i,
b∗j ≤ b̃j, ∀ j and f(d∗, b∗) = f(ď, b̌).

Proof If d̃i ≤ d̄i, ∀ i, then we set d∗ = d̃. Hence assume that there exists at least one i
such that d̃i > d̄i. Let d∗ be defined as follows:

d∗k =

{
d̄k, k = i

d̃k, k 6= i
, b∗k =

{
b̃k − 1, k ∈ I

b̃k, k ∈ Ic
,
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where I is the index set of actors belonging to E such that |I| = d̃i − d̄i and E is the actor
set connected by the event i. Clearly, (d∗, b∗) is a bigraphic degree sequence because it is
obtained by reducing (d̃, b̃) with a k-star sequence, where k = d̃i − d̄i.

Next let us show that f(d∗, b∗) ≤ f(d̃, b̃).

f(d∗, b∗) =
∑
k

|d̄k − d∗k|+
∑
j

|b̄j − b∗j |

=
∑
k 6=i
|d̄k − d∗k|+ |d̄i − d∗i |+

∑
j∈I
|b̄j − b̃j + 1|+

∑
j∈Ic
|b̄j − b̃j |

≤
∑
k 6=i
|d̄k − d̃k|+ |d̄i − d̄i|+ |I|+

∑
k∈I
|b̄k − b̃k|+

∑
k∈Ic
|b̄k − b̃k|

= f(d̃, b̃).

Since f(d̃, b̃) = min(s,t)∈Bn f(s, t), we have f(d∗, b∗) = f(d̃, b̃). If there is more than one i

such that d̃i > d̄i, we can redefine d∗ iteratively until there are no such i left. If there is one
j such that b̃j > b̄j , with the similar lines of the above steps, we have b∗ such that b∗j ≤ b̄j .

Let Km,n be the set of all k-star degree sequences on m events and n actors. Let
K≤(d,b) be the set of all possible k-star sequences with their degrees pointwise bounded by
(d, b). The following proposition characterizes the optimal solution for K≤(d,b) in terms of
L1 distance.

Lemma 16. Given a nonnegative sequence (d, b), the solution to the optimization problem

min
(s,t)∈K≤(d,b)

‖d− s‖1 + ‖b− t‖1,

is the k-star sequence of the graph G∗, where only event i∗ is connected to actors with k
largest elements and i∗ is any event indicator satisfying di∗ = maxi di

Proof Any k-star sequence can be selected by selecting an event c as center and connecting
to k actors. Thus, if E = {j: there exists an edge connected c to j } and Ec = [n] \E, then
the objective function that we need to minimize is∑

j∈E
|bj − 1|+ |dc − k|+

∑
i 6=c
|di|+

∑
j∈Ec

|bj |.

The result follows by noticing that the optimal k-star sequence can be selected by first
selecting the center event c and then selecting E. Clearly, the optimal center is the event
with the highest degree, i.e., dc = di∗ = maxi di. Next, connecting this event to k actors
with highest degrees gives the optimal k-star sequence.

The next lemma shows that we can reduce the L1 distance of any degree sequence (d, b)
by replacing the k-star sequences in its bipartite HH decomposition with an appropriately
chosen k-star sequences by solving a sequential optimization problem. Let B≤(d,b) be the
set of all possible bipartite degree sequences with their degrees pointwise bounded by (d, b).
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Lemma 17. Let (d, b) be any degree sequence in B≤(d̃,b̃) and let H(d, b) = {gij}mj=1 be

its bipartite HH decomposition where gij is a k-star sequence centered at event ij. Define
g = (s, t). Let xi1 , . . . , xin be the following k-star sequences defined recursively:

xi1 = arg min
g∈K≤(d̃,b̃),g+

∑
j 6=1 g

ij∈B≤(d̃,b̃)

f(g),

xik+1 = argmin

g ∈ K≤(d̃,b̃) \ {xij}kj=1∑k
j=1 x

ij + g +
∑n

j=k+2 g
ij ∈ B≤(d̃,b̃)

f(

k∑
j=1

xij + g)

Let hk for k = 1, . . . ,m be constructed sequentially by replacing the k-star sequence in
H(d, b) centered at event ik by xik as follows:

h1 = xi1 +
∑
j 6=1

gij , hk =

k∑
j=1

xij +

n∑
j=k+1

gij .

Then, f(hm) ≤ f(d, b) and each hk ∈ B≤(d̃,b̃).

Proof For two bi-sequences z and a, let ‖z − a‖1 = ‖z+ − a+‖1 + ‖z− − a−‖1. Then we
have

f(hk)− f(hk+1) = ‖(d̄, b̄)−
k∑
j=1

xij −
n∑

j=k+1

gij‖1 − ‖(d̄, b̄)−
k+1∑
j=1

xij −
n∑

j=k+2

gij‖1

= xik+1 − gik+1 = ‖(d̄, b̄)−
k∑
j=1

xij − gik+1‖1 − ‖(d̄, b̄)−
k∑
j=1

xij − xik+1‖1

= f(
k∑
j=1

xij + gik+1)− f(
k∑
j=1

xij + xik+1)

≥ 0,

where the second equality is due to that each sequence is pointwise bounded by (d̄, b̄). This
shows that f(hk) is a decreasing sequence. Thus, we have f(hm) ≤ f(d, b) Moreover, each
hk is clearly a bigraphic degree sequence, as hk is obtained from hk+1 by replacing a k-star
sequence from its bipartite HH decomposition.

Now we present the proof of Theorem 4.
Proof of Theorem 4 Let (d∗, b∗) be the optimal degree sequence. By Lemma 15, we
reduce a global optimization problem into a local optimization problem by restricting the
bigraphic degree sequences bounded point-wise by (d̃, b̃). As a result, we only need to find
the optimum over the set B≤(d̃,b̃).

By Lemma 17, we can construct the optimal degree sequence over B≤(d̃,b̃) by starting

with any degree sequence (d0, b0) and replacing it by k-star sequences defined in Lemma 17.
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We start with the zero degree sequence, i.e., d0 = 0, b0 = 0. This is done in Step 1. Then,
using the notation in Lemma 17, the optimal bi-degree sequence is dn =

∑n
j=1 x

ij , where

xik+1 = argmin
g ∈ K≤d̃ \ {x

ij }kj=1∑k
j=1 x

ij + g ∈ B≤(d̃,b̃)

f(

k∑
j=1

xij + g)

Next show that Steps 2 to 9 of Algorithm 1 construct xij iteratively. To simply notation,
define z̃ = (d̃, b̃). Let zk = z̃ −

∑k
j=1 x

ij , then

xik+1 = argmin
g ∈ K≤zk \ {x

ij }kj=1

g ∈ B≤zk

f(g)

Thus, each xik+1 can be found using the result in Lemma 16. Note that to enforce the
condition g ∈ K≤zk \{xij}kj=1, we need to exclude the nodes with non-positive degrees from

consideration. This is done in Step 4. Step 5 select i∗ (i.e., ik+1). Steps 6 and 7 decide the
optimal set of actors connected with the center event i∗ according to Lemma 16. Note that
step 6 is needed to make sure that the degree is not larger than the number of nodes avail-
able to connect to. Finally, Steps 5 to 9 construct the optimal bi-degree sequence xij = xi∗

and add the edges from i∗ to actors in I to Gm,n.
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Karwa, V. and Slavković, A. (2016). Inference using noisy degrees: Differentially private
β-model and synthetic graphs. The Annals of Statistics, 44(1), 87–112.

Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and Smith, A. (2013). Analyzing
graphs with node differential privacy. Theory of Cryptography Conference, 457–476.

Latapy, M., Magnien, C., and Del Vecchio, N. (2008). Basic notions for the analysis of large
two-mode networks. Social networks, 30(1), 31–48.
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