
Journal of Machine Learning Research 23 (2022) 1-37 Submitted 11/20; Revised 3/22; Published 7/22

Training and Evaluation of Deep Policies Using
Reinforcement Learning and Generative Models

Ali Ghadirzadeh∗ ghadiri@cs.stanford.edu
Stanford University, CA 94305, USA

Petra Poklukar∗ poklukar@kth.se
KTH Royal Institute of Technology, Stockholm, Sweden

Karol Arndt karol.arndt@aalto.fi
Aalto University, Espoo, Finland

Chelsea Finn cbfinn@cs.stanford.edu
Stanford University, CA 94305, USA

Ville Kyrki ville.kyrki@aalto.fi
Aalto University, Espoo, Finland

Danica Kragic dani@kth.se
KTH Royal Institute of Technology, Stockholm, Sweden

Mårten Björkman celle@kth.se

KTH Royal Institute of Technology, Stockholm, Sweden

Editor: George Konidaris

Abstract

We present a data-efficient framework for solving sequential decision-making problems
which exploits the combination of reinforcement learning (RL) and latent variable genera-
tive models. The framework, called GenRL, trains deep policies by introducing an action
latent variable such that the feed-forward policy search can be divided into two parts: (i)
training a sub-policy that outputs a distribution over the action latent variable given a
state of the system, and (ii) unsupervised training of a generative model that outputs a
sequence of motor actions conditioned on the latent action variable. GenRL enables safe
exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about
valid sequences of motor actions. Moreover, we provide a set of measures for evaluation
of generative models such that we are able to predict the performance of the RL policy
training prior to the actual training on a physical robot. We experimentally determine the
characteristics of generative models that have most influence on the performance of the
final policy training on two robotics tasks: shooting a hockey puck and throwing a basket-
ball. Furthermore, we empirically demonstrate that GenRL is the only method which can
safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.

Keywords: reinforcement learning, policy search, robot learning, deep generative models,
representation learning

∗. denotes equal contribution

c©2022 Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/20-1265.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-1265.html

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

1. Introduction

Reinforcement learning (RL) can leverage modeling capability of generative models to
solve complex sequential decision making problems more efficiently (Singh et al., 2020;
Ghadirzadeh et al., 2017; Arndt et al., 2020). RL has been applied to end-to-end training
of deep visuomotor robotic policies (Levine et al., 2016, 2018) but it is typically too data-
inefficient especially when applied to tasks that provide only a terminal reward at the end
of an episode. One way to alleviate the data-inefficiency problem in RL is by leveraging
prior knowledge to reduce the complexity of the optimization problem. One prior that sig-
nificantly reduces the data requirement is an approximation of the distribution from which
valid action sequences can be sampled. Such distributions can be efficiently approximated
by training generative models given a sufficient amount of valid action sequences.

The question is then how to combine powerful RL optimization algorithms with the
modeling capability of generative models to improve the efficiency of the policy training?
Moreover, which characteristics of the generative models are important for efficient policy
training? A suitable generative model must capture the entire distribution of the training
data to generate as many distinct motion trajectories as possible, while avoiding the genera-
tion of invalid trajectories outside the training dataset. The diversity of the generated data
enables the policy to complete a given task for the entire set of goal states when training
a goal-conditioned policy. On the other hand, adhering to the distribution of the training
data ensures safety in generated trajectories which are running on a real robotic platform.

In this paper, we (i) propose a learning framework that exploits RL and generative
models to solve sequential decision making problems and considerably improves the data-
efficiency of deep policy training, and (ii) provide a set of measures to evaluate the quality of
the latent space of different generative models regulated by the RL policy search algorithms,
and use them as a guideline for the training of generative models such that the data-efficiency
of the policy training can be further improved prior to actual training on a physical robot.

Regarding (i), we propose the GenRL learning framework that divides the sequential
decision-making problem into the following sub-problems which can be solved more effi-
ciently: (1) an unsupervised generative model training problem that approximates the dis-
tribution of motor actions, and (2) a trust-region policy optimization problem that solves
a contextual multi-armed bandit without temporal credit assignment issue which exists in
typical sequential decision-making problems.

Regarding (ii), we evaluate generative models based on (a) the quality and coverage of
the samples they generate using the precision and recall metric (Kynkäänniemi et al., 2019),
and (b) the quality of their latent representations by measuring their disentanglement using
a novel measure called disentanglement with precision and recall (DwPR) which is derived
from the above precision and recall metric. The measures can be applied to any task prior
to the policy training as they do not leverage the end states obtained after execution of
the generated trajectories on a robotic platform. Our hypothesis is that a generative model
which is able to generate realistic samples that closely follow the training data (i.e. has high
precision and high recall) and is well disentangled (i.e. has a latent space where individual
dimensions control different aspects of the task) leads to a more sample efficient neural
network policy training.

2

Deep Reinforcement Learning with Generative Models

We experimentally evaluate the GenRL framework on two robotics tasks: shooting
a hockey puck and throwing a basketball. To quantify the importance of (a) and (b)
for a superior RL policy training performance and validate our hypothesis, we perform a
detailed evaluation of several generative models, namely β-VAEs (Higgins et al., 2017) and
InfoGANs (Chen et al., 2016), by calculating Pearson’s R between their characteristics and
the performance of the policy. Furthermore, we demonstrate the safety and data-efficiency
of GenRL on the two tasks by comparing it to two state-of-the-art policy search algorithms,
PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018b). In summary, the advantages
of the proposed GenRL framework are:

• It enables learning complex robotics skills such as throwing a ball by incorporating
prior knowledge in terms of a distribution over valid sequences of actions, therefore,
reducing the search space (Section 6.4).

• It helps to learn from sparse terminal rewards that are only provided at the end of
successful episodes. The proposed formulation converts the sequential decision-making
problem into a contextual multi-armed bandit (Section 3). Therefore, it alleviates the
temporal credit assignment problem that is inherent in sequential decision-making
tasks and enables efficient policy training with only terminal rewards.

• It enables safe exploration in RL by sampling actions only from the approximated
distribution (Section 6.5). This is in stark contrast to the typical RL algorithms in
which random actions are taken during the exploration phase.

• It provides a set of measures for evaluation of the generative model based on which
it is possible to predict the performance of the RL policy training prior to the actual
training (Section 6.6).

This paper provides a comprehensive overview of our earlier work for RL policy training
based on generative models (Ghadirzadeh et al., 2017; Arndt et al., 2020; Chen et al., 2020;
Hämäläinen et al., 2019; Bütepage et al., 2020) and is organized as follows: in Section 2,
we provide an overview of the related work. We formally introduce the problem of policy
training with generative models in Section 3, and describe how the GenRL framework is
trained in Section 4. In Section 5 we first briefly overview β-VAEs and InfoGANs, and then
define the evaluation measures used to predict the final policy training performance. We
present the experimental results in Section 6 and discuss the conclusion and future work in
Section 7. Moreover, for the sake of completeness, we describe the end-to-end training of
the perception and control modules in Appendix A by giving a summary of the prior work
(Levine et al., 2016; Chen et al., 2020). Note that this work provides a complete overview of
the proposed GenRL framework and focuses more on the evaluation of the generative model.
We refer the reader to our prior work (Ghadirzadeh et al., 2017) for further investigation
of the data-efficiency of the proposed approach in training complex visuomotor skills.

2. Related Work

Our work addresses two types of problems: (a) policy training based on unsupervised gener-
ative model training and trust-region policy optimization, and (b) evaluation of generative

3

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

models to forecast the efficiency of the final policy training task. We introduce the related
work for each of the problems in the following sections.

2.1 Data-efficient End-to-end Policy Training

In recent years, end-to-end training of policies using deep RL has gained in popularity in
robotics research (Ghadirzadeh et al., 2017; Levine et al., 2016; Finn et al., 2016; Kalash-
nikov et al., 2018; Quillen et al., 2018; Singh et al., 2017; Devin et al., 2018; Pinto et al.,
2017). However, deep RL algorithms are typically data-hungry and learning a general pol-
icy, i.e., a policy that performs well also for previously unseen inputs, requires a farm of
robots continuously collecting data for several days (Levine et al., 2018; Finn and Levine,
2017; Gu et al., 2017; Dasari et al., 2019). The limitation of large-scale data collection has
hindered the applicability of RL solutions to many practical robotics tasks. Recent studies
tried to improve the data-efficiency by training the policy in simulation and transferring the
acquired skills to the real setup (Quillen et al., 2018; Pinto et al., 2017; Abdolmaleki et al.,
2020; Peng et al., 2018), a paradigm known as sim-to-real transfer learning. Sim-to-real ap-
proaches are utilized for two tasks in deep policy training: (i) training the perception model
via randomization of the texture and shape of visual objects in simulation and using the
trained model directly in the real world setup (zero-shot transfer) (Hämäläinen et al., 2019;
Tobin et al., 2017), and (ii) training the policy in simulation by randomizing the dynamics
of the task and transferring the policy to the real setup by fine-tuning it with the real data
(few-shot transfer learning) (Arndt et al., 2020; Peng et al., 2018). However, challenges in
the design of the simulation environment can cause large differences between the real and
the simulated environments which hinder an efficient knowledge transfer between these two
domains. In such cases, transfer learning from other domains, e.g., human demonstrations
(Bütepage et al., 2020; Yu et al., 2018) or simpler task setups (Chen et al., 2020, 2018b), can
help the agent to learn a policy more efficiently. In this work, we exploit human demonstra-
tions to shape the robot motion trajectories by training generative models that reproduce
the demonstrated trajectories. Following our earlier work (Chen et al., 2020), we exploit
adversarial domain adaptation techniques (Tzeng et al., 2017, 2020) to improve the gener-
ality of the acquired policy when it is trained in a simple task environment with a small
amount of training data. In the rest of this section, we review related studies that improve
the data-efficiency and generality of RL algorithms by utilizing trust-region terms, convert-
ing the RL problem into a supervised learning problem, and trajectory-centered approaches
that shape motion trajectories prior to the policy training.

Improving the policy while avoiding abrupt changes in the policy distribution after each
update is known as the trust-region approach in policy optimization. Trust-region policy
optimization (TRPO) (Schulman et al., 2015) and proximal policy optimization (PPO)
(Schulman et al., 2017) are two variants of trust-region policy gradient methods that scale
well to non-linear policies such as neural networks. The key component of TRPO and PPO
is a surrogate objective function with a trust-region term based on which the policy can be
updated and monotonically improved. In TRPO, the changes in the distributions of the
policies before and after each update are penalized by a KL divergence term. Therefore, the
policy is forced to stay in a trust-region given by the action distribution of the current policy.
Our expectation-maximization (EM) formulation yields a similar trust-region term with the

4

Deep Reinforcement Learning with Generative Models

difference being that it penalizes the changes in the distribution of the deep policy and a
so-called variational policy that will be introduced as a part of our proposed optimization
algorithm. Since our formulation allows the use of any policy gradient solution, we use the
same RL objective function as in TRPO.

The EM algorithm has been used for policy training in a number of prior work (Neu-
mann, 2011; Deisenroth et al., 2013; Levine and Koltun, 2013). The key idea is to introduce
variational policies to decompose the policy training into two downstream tasks that are
trained iteratively until no further policy improvement can be observed (Ghadirzadeh, 2018).
The guided policy search (GPS) algorithm (Levine et al., 2016) divides the visuomotor pol-
icy training task into a trajectory optimization and a supervised learning problem. GPS
alternates between two steps: (i) optimizing a set of trajectories by exploiting a trust-region
term to stay close to the action distribution given by the deep policy, and (ii) updating the
deep policy to reproduce the motion trajectories. Our EM solution differs from the GPS
framework and earlier approaches in that we optimize the trajectories by regulating a gener-
ative model that is trained prior to the policy training. Training generative models enables
the learning framework to exploit human expert knowledge as well as to optimize the policy
given only terminal rewards as explained earlier.

Trajectory-centric approaches, such as dynamic movement primitives (DMPs), have
been popular because of the ease of integrating expert knowledge in the policy training pro-
cess via physical demonstration (Bahl et al., 2020; Peters and Schaal, 2006, 2008; Ijspeert
et al., 2003, 2013; Hazara and Kyrki, 2019). However, such models are less expressive
compared to deep neural networks. Moreover, these approaches cannot be used to train
reactive policies where the action is adjusted in every time-step based on the observed sen-
sory input (Haarnoja et al., 2018a). On the other hand, deep generative models can model
complex dependencies within the data by learning the underlying data distribution from
which realistic samples can be obtained. Furthermore, they can be easily accommodated in
larger neural networks without affecting the data integrity. Our GenRL framework based
on generative models enables training both feedback (reactive) and feedforward policies by
adjusting the policy network architecture.

The use of generative models in robot learning has become popular in recent years
(Zhou et al., 2020; Chen et al., 2022; Ghadirzadeh et al., 2017; Bütepage et al., 2020;
Hämäläinen et al., 2019; Chen et al., 2020; Arndt et al., 2020; Lippi et al., 2020; Gothoskar
et al., 2020; Igl et al., 2018; Buesing et al., 2018; Mishra et al., 2017; Ke et al., 2018;
Hafner et al., 2018; Rhinehart et al., 2018; Krupnik et al., 2019) because of their low-
dimensional and regularized latent spaces. However, latent variable generative models are
mainly studied to train a long-term state prediction model that is used in the context
of trajectory optimization and model-based reinforcement learning (Buesing et al., 2018;
Mishra et al., 2017; Ke et al., 2018; Hafner et al., 2018; Rhinehart et al., 2018; Krupnik
et al., 2019). Regulating generative models based on reinforcement learning to produce
sequences of actions according to the visual state has first appeared in our prior work
(Ghadirzadeh et al., 2017). Since then we applied the framework in different robotic tasks,
e.g., throwing balls (Ghadirzadeh et al., 2017), shooting hockey-pucks (Arndt et al., 2020),
pouring into mugs (Chen et al., 2020; Hämäläinen et al., 2019), and in a variety of problem
domains, e.g., sim-to-real transfer learning (Hämäläinen et al., 2019; Arndt et al., 2020)
and domain adaptation to acquire general policies (Chen et al., 2020). Recently, generative

5

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

models have also been used to train feedback RL policies based on normalizing flows (Dinh
et al., 2016) to learn behavioral prior that transforms the original MDP into a simpler one
for the RL policy training (Singh et al., 2020). In this work, we focus on RL tasks that
can be best implemented using feed-forward policies, and study the properties of generative
models that improve the efficiency of the RL policy training.

2.2 Evaluation of Generative Models

Although generative models have proved successful in many domains (Lippi et al., 2020;
Brock et al., 2018; Wang et al., 2018; Wiewel and Yang, 2019; Xu and Tan, 2020) assessing
their quality remains a challenging problem (Locatello et al., 2019; Poklukar et al., 2022,
2021). It involves analysing the quality of both latent representations and generated sam-
ples. Regarding the latter, generated samples and their diversity should resemble those
obtained from the training data distribution. Early developed metrics such as IS (Salimans
et al., 2016), FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018) provided a promising
start but were shown to be unable to separate between failure cases, such as mode collapse
or unrealistic generated samples (Sajjadi et al., 2018; Kynkäänniemi et al., 2019). Instead
of using a one-dimensional score, Sajjadi et al. (2018) proposed to evaluate the learned dis-
tribution by comparing the samples from it with the ground truth training samples using
the notion of precision and recall. Intuitively, precision measures the similarity between the
generated and real samples, while recall determines the fraction of the true distribution that
is covered by the distribution learned by the model. The measure was further improved
both theoretically and practically by Simon et al. (2019), while Kynkäänniemi et al. (2019)
provides an explicit non-parametric variant of the original probabilistic approach. We use
the precision and recall measure provided by Kynkäänniemi et al. (2019).

Regarding the assessment of the quality of the latent representation, a widely adopted
approach is the measure of disentanglement (Higgins et al., 2018; Bengio et al., 2013; Tschan-
nen et al., 2018). A representation is said to be disentangled if each latent component en-
codes exactly one ground truth generative factor present in the data (Kim and Mnih, 2018).
Existing frameworks for both learning and evaluating disentangled representations (Higgins
et al., 2017; Kim and Mnih, 2018; Eastwood and Williams, 2018; Chen et al., 2018a; Kumar
et al., 2017) rely on the assumption that the ground truth factors of variation are known
a priori and are independent. The core idea is to measure how changes in the generative
factors affect the latent representations and vice versa. In cases when an encoder network is
available, this is typically achieved with a classifier that was trained to predict which gener-
ative factor in the input data was held constant given a latent representation (Higgins et al.,
2017; Kim and Mnih, 2018; Eastwood and Williams, 2018; Kumar et al., 2017; Chen et al.,
2018a). In generative models without an encoder network, such as GANs, disentanglement
is measured by visually inspecting the latent traversals provided that the input data are im-
ages (Chen et al., 2016; Jeon et al., 2021; Lee et al., 2020; Liu et al., 2019). However, these
measures are difficult to apply when generative factors of variation are unknown or when
manual visual inspection is not possible, both of which is the case with sequences of motor
commands for controlling a robotic arm. We therefore define a measure of disentanglement
that does not rely on any of these requirements. Our measure, disentanglement with pre-
cision and recall (DwPR), is derived from the precision and recall measure introduced by

6

Deep Reinforcement Learning with Generative Models

Kynkäänniemi et al. (2019) and estimates the level of disentanglement by measuring the
diversity of trajectories generated when holding one latent dimension fixed. In contrast to
existing measures, DwPR measures how changes in the latent space affect the generated
trajectories in a fully unsupervised way.

3. Overview of the GenRL Framework

In this section, we provide an overview of the proposed GenRL approach. We consider a
finite-horizon Markov decision process of length T , defined by a tuple (S,U, p(st+1|st, ut),
p(s0), r(sT)), where S is a set of states s, U is a set of M -dimensional motor actions u,
p(st+1|st, ut) is the state transition probability, p(s0) is the initial state distribution, and
r(sT) is the terminal reward function. The state contains information about the current
configuration of the environment as well as the goal to reach in case a goal-conditioned policy
has to be obtained. By abuse of notation, we will drop the explicit distinction between a
random variable, e.g., s, and a concrete instance of it, in the rest of the paper and only
write s when no confusions can arise.

We consider settings in which the agent only receives sparse terminal rewards at the
end of an episode. Let r∗ be the minimum reward required to successfully complete the
task. We wish to find a policy πΘ(τ |s0) which conditioned on an initial state, outputs
a sequence of motor actions τ = {ut}t=0:T−1 that results in high terminal rewards. The
likelihood of a roll-out of states and actions pΘ{s0, u0, ..., sT−1, uT−1, sT } under the policy
πΘ is computed as p(s0)

∏T−1
t=0 p(st+1|st, ut)πΘ(ut|s0). The reward can then be found as

r = r(sT). Considering the stochasticity of the terminal state, sT , the terminal reward can
be modeled by a conditional distribution p(r|s0, τ) conditioned on the initial state s0, and
the sequence of actions τ . Here, the policy’s objective is to maximize the likelihood of the
terminal reward r being greater than r∗:

Θ∗ = argmax
Θ

∫∫
p(s0)πΘ(τ |s0) p(r|s0, τ) ds dτ

= argmax
Θ

Es0∼p(s0),τ∼πΘ(τ |s0)[p(r|s0, τ)],
(1)

where, we omitted the reward threshold r∗ for simplicity. Our approach is based on training
a generative model gϑ, parametrized by ϑ, that maps a low-dimensional latent action sample
α ∈ RNα into a motion trajectory τ ∈ RT×M , where Nα � T × M . In other words,
we assume that the search space is limited to the trajectories spanned by the generative
model. In this case, the feed-forward policy search problem splits into two sub-problems:
(i) finding the mapping gϑ(α) and (ii) finding the sub-policy πθ(α|s), where Θ = [θ, ϑ].
Instead of marginalizing over trajectories as in (1) we marginalize over the latent variable
by exploiting the generative model

θ∗ = argmax
θ

Es0∼p(s0),α∼πθ(α|s0)[p(r|s0, gϑ(α))]. (2)

An overview of our approach is shown in Figure 1. Once the models are trained the
output of the policy πΘ is found by first sampling from the sub-policy α ∼ πθ(α|s0) given
an initial state s0 and then using the mapping gϑ to get the sequence of motor actions

7

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

!! " #Sub-policy
$" " !!)

Environment
&(#|!!, *)

Initial
state

Action latent
variable

terminal
reward

*
Generative

Model
&#(*|")

* ∼ $$ * !!)

trajectory of
motor actions

{-%}

!! ∼ &(!!)

Figure 1: The architecture of the deep action-selection policy πΘ based on latent-variable
generative models. The policy consists of two models, the sub-policy πθ(α|s0)
that assigns a distribution over the action latent variable α conditioned on a
given initial state s0, and a generative model τ = gϑ(α) that maps a latent action
sample α ∼ πθ(α|s0) into a trajectory of motor actions τ . Given the initial state
s0 and the action trajectory τ that is executed on the robot, the environment
returns a terminal reward r according to the reward probability r ∼ p(r|s0, τ).

τ = gϑ(α). The state s0 and the generated trajectory τ are then given to the environment
which outputs a terminal reward r. In the rest of the text we refer to the sub-policy as
the policy and omit the parameters ϑ from the notation gϑ when they are not needed.
In the following section, we introduce the expectation-maximization (EM) algorithm for
training an action-selection policy using a generative model based on which different motor
trajectories suitable for solving a given task can be generated.

4. Expectation-Maximization Policy Training

The EM algorithm is a well-suited approach to find the maximum likelihood solution to
the intractable marginalization over the latent variable introduced in (1) and (2). We use
the EM algorithm to find an optimal policy πθ∗(α|s0) by first introducing a variational
policy q(α|s0) which can be a copy of the policy network. In this case, the variational
policy is simply the next update for the policy. As the goal is to find an action trajectory
τ that maximizes the reward probability p(r|s0, τ), we start by expressing its logarithm as
log p(r|s0) =

∫
q(α|s0) log p(r|s0)dα, where we used the identity

∫
q(α|s0)dα = 1 and omit-

ted the conditioning on τ in the reward probability for simplicity. Following the EM deriva-
tion introduced in Neumann (2011) and using the identity p(r|s0) = p(r, α|s0)/p(α|r, s0),
the expression can be further decomposed into

log p(r|s0) =

∫
q(α|s0) log

p(r, α|s0)

q(α|s0)
dα︸ ︷︷ ︸

I

+

∫
q(α|s0) log

q(α|s0)

p(α|r, s0)
dα︸ ︷︷ ︸

II

(3)

The second term (II) is the Kullback-Leibler (KL) divergence DKL(q(α|s0) || p(α|r, s0))
between distributions q(α|s0) and p(α|r, s0), which is a non-negative quantity. Therefore,
the first term (I) provides a lower-bound for log p(r|s0). Instead of maximizing the log-
likelihood term directly, we maximize the lower bound using the EM algorithm. It is an

8

Deep Reinforcement Learning with Generative Models

iterative procedure consisting of two steps known as the expectation (E-) and the maxi-
mization (M-) steps, introduced in the following sections.

4.1 Expectation Step

The goal of the E-step is to maximize the lower bound indirectly by minimizing the KL-
divergence with respect to the variational policy. The left hand side of Eq. 3 does not
depend on the variational policy q(α|s). Therefore, the sum of (I) and (II) in the equation
must remain the same when we only update the variational policy. As the result, reducing
(II) in Eq. 3 should increase (I). Therefore, the E-Step objective, is to minimize (II) by
optimizing q. Assuming that q is parametrized by φ, the E-step objective function is given
by

φ∗ = argmin
φ

DKL(qφ(α|s) || p(α|r, s))

= argmax
φ

Eα∼qφ(α|s)[log p(r|s, α)]−DKL(qφ(α|s) ||πθ(α|s)), (4)

where, we used the Bayes rule p(α|r, s) = p(r|α, s)p(α|s)/p(r|s) and substituted p(α|s) by
πθ(α|s). We can replace the original MDP with another one in which the action space is
the latent space of the generative model. Besides, the horizon length of this new MDP is
equal to one, T = 1, since the entire sequence of actions is now modeled by a single latent
variable α. Therefore, we solve a contextual multi-armed bandit instead of a sequential
decision making problem. The reward function can now be considered as r(s, g(α)), or in
short r(s, α). We can now use the policy gradient theorem to maximize the expected reward
value Eqφ(α|s)[r(s, α)].

DKL(qφ(α|s) ||πθ(α|s)) acts as a trust region term forcing qφ not to deviate too much
from the policy distribution πθ. Therefore, we can apply policy search algorithms with trust
region terms to optimize the objective given in (4). Following the derivations introduced in
Schulman et al. (2015), we adopt TRPO objective for the E-step optimization

φ∗ = argmax
φ

Es∼p(s0),α∼πθ(α|s)

[
qφ(α|s)
πθ(α|s)

A(s, α)−DKL(qφ(α|s) ||πθ(α|s))
]
, (5)

where, A(s, α) = r(s, α) − Vπ(s) is the advantage function, Vπ(s) = Eα∼πθ(α|s)[r(s, α)] is
the value function and φ∗ denotes the optimal solution for the given iteration. Note that
the action latent variable α is always sampled from the policy πθ(α|s) and not from the
variational policy qφ(α|s).

4.2 Maximization Step

The M-step yields a supervised learning objective with which we train the policy πθ. It
directly maximizes the lower bound (I) in (3) by optimizing the policy parameters θ while
holding the variational policy qφ constant. Following Deisenroth et al. (2013) and noting
that the dynamics of the system p(r|α, s) are not affected by the choice of the policy
parameters θ, we maximize (I) by minimizing the following KL-divergence

θ∗ = argmin
θ

DKL(qφ(α|s) ||πθ(α|s)). (6)

9

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

In other words, the M-step updates the policy πθ to match the distribution of the
variational policy qφ which was updated in the E-step. Similarly as in the E-step, θ∗

denotes the optimal solution for the given iteration. However, for the variational policies
with same network architecture as the policy network (which is the case for the current
paper), the M-step can be simply copying the parameters of the variational policy φ onto
the policy parameters θ.

A summary of EM policy training is given in Algorithm 1. In each iteration, a set of
states {si} is sampled from the initial state distribution p(s). For each state si, a latent
action sample αi is sampled from the distribution given by the policy πθ(α|si). A generative
model g is then used to map every latent action variable αi into a full motor trajectory τi
which is then deployed on the robot to get the corresponding reward value ri. In the inner
loop, the variational policy qφ and the main policy πθ are updated on batches of data.

Input : generative model gϑ, initial policy πθ, initial value function Vπ,
batch size N

Output: trained πθ
while training πθ do

for i = 1, . . . , N do
sample states si ∼ p(s0)
sample actions αi ∼ πθ(.|si)
generate motor actions τi ← gϑ(αi)
obtain the reward ri ← r(si, τi)

end
repeat

E-step:
update the variational policy qφ according to (5) given {si, αi, ri}Ni=1

M-step:
update the policy πθ by copying the variational policy, i.e. θ ← φ

until training done;

update the value function V = argminV ′
∑N

i=1(V ′(si)− ri)2 given {si, ri}Ni=1

end

Algorithm 1: GenRL framework.

5. Generative Models in GenRL and Their Evaluation

So far we discussed how to train an action-selection policy based on the EM algorithm
to regulate the action latent variable which is the input to a generative model. In this
section, we review two prominent generative models, Variational Autoencoder (VAE) and
Generative Adversarial Network (GAN), which we use in GenRL to generate sequences
of actions required to solve the sequential decision-making problem. We then introduce a
set of measures used to predict which properties of a generative model will influence the
performance of the policy training.

10

Deep Reinforcement Learning with Generative Models

5.1 Generative Models

We aim to model the distribution p(τ) of the motor actions that are suitable to complete
a given task. To this end, we introduce a low-dimensional random variable α with a prob-
ability density function p(α) representing the latent actions which are mapped into unique
trajectories τ by a generative model g. The model g is trained to maximize the likelihood
Eτ∼D,α∼p(α)[pϑ(τ |α)] of the training trajectories τ ∈ D under the entire latent variable
space.

5.1.1 Variational Autoencoders

A VAE (Kingma and Welling, 2014; Rezende et al., 2014) consists of encoder and de-
coder neural networks representing the parameters of the approximate posterior distribu-
tion qϕ(α|τ) and the likelihood function pϑ(τ |α), respectively. The encoder and decoder
neural networks, parametrized by ϕ and ϑ, respectively, are jointly trained to optimize the
variational lower bound

max
ϕ,ϑ

Eα∼qϕ(α|τ)[log pϑ(τ |α)]− βDKL(qϕ(α|τ)||p(α)), (7)

where the prior p(α) is the standard normal distribution and the parameter β (Higgins
et al., 2017) a variable controlling the trade-off between the reconstruction fidelity and the
structure of the latent space regulated by the KL divergence. A β > 1 encourages the model
to learn more disentangled latent representations (Higgins et al., 2017).

5.1.2 Generative Adversarial Networks

A GAN model (Goodfellow et al., 2014) consists of a generator and discriminator neural net-
work that are trained by playing a min-max game. The generative model gϑ, parametrized
by ϑ, transforms a latent sample α sampled from the prior noise distribution p(α) into
a trajectory τ = gϑ(α). The model needs to produce realistic samples resembling those
obtained from the training data distribution p(τ). It is trained by playing an adversarial
game against the discriminator network Dϕ, parametrized by ϕ, which needs to distinguish
a generated sample from a real one. The competition between the two networks is expressed
as the following min-max objective

min
ϑ

max
ϕ

Eτ∼p(τ)[logDϕ(τ)] + Eα∼p(α)[log(1−Dϕ(gϑ(α))]. (8)

However, the original GAN formulation (8) does not impose any restrictions on the latent
variable α and therefore the generator gϑ can use α in an arbitrary way. To learn disentan-
gled latent representations we instead use InfoGAN (Chen et al., 2016) which is a version
of GAN with an information-theoretic regularization added to the original objective. The
regularization is based on the idea to maximise the mutual information I(α, gϑ(α)) between
the latent code α and the corresponding generated sample gϑ(α). An InfoGAN model is
trained using the following information minmax objective (Chen et al., 2016)

min
ϑ,ψ

max
ϕ

Eτ∼p(τ)[logDϕ(τ)] + Eα∼p(α)[log(1−Dϕ(gϑ(α))]

− λEα∼p(α),τ∼gϑ(α)[logQψ(α|τ)], (9)

11

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

where Qψ(α|τ) is an approximation of the true unknown posterior distribution p(α|τ) and
λ a hyperparameter. In practice, Qψ is a neural network that models the parameters of a
Gaussian distribution and shares all the convolutional layers with the discriminator network
Dϕ except for the last few output layers.

5.2 Evaluation of Generative Models in GenRL

We review the characteristics of generative models that may lead to effective policy training
by measuring precision and recall as well as disentanglement. Our goal is to be able to
judge the quality of the policy training by evaluating the generative models prior to the RL
training. We relate the measures to the performance of the policy training in Section 6.6.

5.2.1 Precision and Recall

A generalized precision and recall measure for comparing distributions was introduced by
Sajjadi et al. (2018), and further improved by Kynkäänniemi et al. (2019), to evaluate the
quality of a distribution learned by a generative model g. It is based on the comparison of
samples obtained from g with the samples from the ground truth reference distribution. In
our case, the reference samples correspond to the training motor trajectories. Intuitively,
precision measures the quality of the generated sequences of motor actions by quantifying
how similar they are to the training trajectories. It determines the fraction of the gener-
ated samples that are realistic. On the other hand, recall evaluates how well the learned
distribution covers the reference distribution and determines the fraction of the training
trajectories that can be generated by the generative model. In the context of the policy
training, we would like the output of πΘ to be as similar as possible to the demonstrated
motor trajectories. It is also important that πΘ covers the entire state space as it must
be able to reach different goal states from different task configurations. Therefore, the
generative model should have both high precision and high recall scores.

The improved measure introduced by Kynkäänniemi et al. (2019) is based on an ap-
proximation of the manifolds underlying the training and generated data. In particular,
given a set T ∈ {Tr,Tg} of either real training trajectories Tr or generated trajectories Tg,
the corresponding manifold is estimated by forming hyperspheres around each trajectory
τ ∈ T with radius equal to its kth nearest neighbour NNk(τ,T). To determine whether
or not a given novel trajectory τ lies within the volume of the approximated manifold we
define a binary function

f(τ,T) =

{
1 if ||τ − τ ||2 ≤ ||τ −NNk(τ,T)||2 for at least one τ ∈ T
0 otherwise.

By counting the number of generated trajectories τg ∈ T g that lie on the manifold of the
real data T r we obtain the precision, and similarly the recall by counting the number of
real trajectories τr ∈ T r that lie on the manifold of the generated data T g

precision(T r,T g) =
1

|T g|
∑
τg∈T g

f(τg,T r) and recall(T r,T g) =
1

|T r|
∑
τr∈T r

f(τr,T g).

(10)

12

Deep Reinforcement Learning with Generative Models

In our experiments, we use the original implementation provided by Kynkäänniemi et al.
(2019) directly on the trajectories as opposed to their representations as suggested in their
paper.

5.2.2 Disentanglement with Precision and Recall

In addition to evaluating the quality of the generated samples, we also assess generative
models by the quality of their latent action representations in terms of disentanglement. We
evaluate it with a novel measure, called disentanglement with precision and recall (DwPR),
that we derive from the precision and recall metric introduced in Section 5.2.1 as described
below.

A disentangled representation of the motor data obtained from the latent space of a
generative model can be defined as the one in which every end state of the system is
controllable by one latent dimension determined by the vector basis of the latent space. For
example, consider a task where the goal is to shoot a hockey puck to a specific position
on a table top. We say that a latent representation given by a generative model g is
well-disentangled if there exists a basis of the latent space with respect to which each
dimension controls one axis of the end position of the hockey puck. Our hypothesis is that
the more disentangled the representation is, the more efficient is the policy training. We
experimentally evaluate the effect of disentangled representations on the performance of the
policy training in Section 6.6.

Our measure of disentanglement is based on the following observation: if representations
given by g are well disentangled, then setting one latent dimension to a fixed value should
result in limited variation in the corresponding generated trajectories Tg. For example, if
the 1st latent dimension controls the distance of the end position of the hockey puck to a
fixed origin then setting it to a fixed value should limit the set of possible end positions
of the puck to a certain spherical range (assuming the polar coordinates in the end state
space). In this case, assuming that g well reflects the true data distribution, we should
obtain a high precision score since the limited end positions are close to the true ones but
a low recall since these do not cover all possibilities. We present the details below.

Our approach can be described in two phases. In phase 1, we generate the two sets of
generated trajectories on which we run the precision and recall metrics from Section 5.2.1.
Firstly, for a fixed latent dimension l ∈ {1, . . . , Nα} we perform a series of D ∈ N latent
interventions where we set the lth component of a latent code αl to a fixed value Id,
αl = Id for d = 1, . . . , D. Each intervention αl = Id is performed on a set of n samples
sampled from the prior distribution p(α). We denote by T l−Idg the set of n generated
trajectories corresponding to the latent samples on which we performed the intervention
αl = Id. We define T lg = ∪Dd=1T

l−Id
g to be the union of the trajectories corresponding

to all D interventions performed on the fixed latent dimension l. By construction, T lg
consists of n · D trajectories. For example, D = 5 latent interventions on the 2-st latent

dimension yield the set T 2
g = T 2−I1

g ∪ · · · ∪ T 2−I5
g . Secondly, we define a set T

p(α)
g of n ·D

generated trajectories corresponding to randomly sampled latent samples from the prior

distribution p(α). We then treat T
p(α)
g and T lg as T r and T g in (10), respectively, and

calculate precision(T
p(α)
g ,T lg) and recall(T

p(α)
g ,T lg) for every latent dimension l. Note that

13

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

we consider T
p(α)
g as the reference set T r because we wish to evaluate the disentanglement

relative to the generative capabilities of each individual model g.

In phase 2, our goal is to aggregate the precision and recall values obtained in phase 1
to measure the magnitude of the disentanglement of the latent dimensions. To this end, we
define

δ(l) = precision(T p(α)
g ,T lg)− recall(T p(α)

g ,T lg) (11)

for each latent dimension l. Since a well disentangled generative model g should achieve high

precision but low recall on T
p(α)
g and T lg, the higher the δ(l) value, the higher the magnitude

of disentanglement for the latent dimension l. Note that this definition correctly reflects
even cases where the trajectories T lg exhibit very low variance as this will be reflected in a
low precision, thus yielding a low δ(l). Due to the nature of the robotics tasks considered in
our experiments in Section 6, where the end state spaces are two dimensional, we compare
our models based on the highest two δ(l) values obtained for each g. Let δ1(g) and δ2(g)
denote the highest and second highest δ(l) values, respectively. To compare the magnitude
of the two most disentangled latent dimensions among the models, we use δ1(g) and the

average δ̃(g) := δ1(g)+δ2(g)
2 . Note that we generally cannot determine whether the two latent

dimensions control the same aspect of the end state space without executing the obtained
trajectories on the robot.

6. Experiments

We experimentally validated our approach by:

1. evaluating data efficiency of GenRL (Section 6.4),

2. evaluating safety of GenRL (Section 6.5), and

3. determining the characteristics of generative models that contribute to a more data-
efficient policy training (Section 6.6).

We performed several experiments on two simulated tasks: hockey task and basketball task,
described in Section 6.1 and compared the performance of the GenRL framework to two
state-of-the-art policy search algorithms, PPO (Schulman et al., 2017) and SAC (Haarnoja
et al., 2018b) in Sections 6.4 and 6.5. Also, we provide details on the training and evalu-
ation of the generative models in Section 6.2 and the corresponding EM policy training in
Section 6.3.

6.1 Experimental Setup and Implementation Details

In this section, we provide details of the experimental setup and describe the considered
hockey and basketball tasks.

As illustrated in Figure 2, we evaluated GenRL by training goal-conditioned policies for
two robotic tasks, shooting a hockey puck and throwing a basketball.

In the Hockey task, the goal is to learn to shoot a hockey puck to a target position
(illustrated by the red dot in Figure 2) by a hockey stick which is attached to the robot

14

Deep Reinforcement Learning with Generative Models

(a) Hockey environment (b) Basketball environment

𝑥

𝑦
𝑧

𝑥
𝑦𝑧

Figure 2: The hockey shooting and basketball throwing environments used in the experi-
ments. The Mujoco engine is used to simulate the robotic environments.

end-effector. The target is randomly placed at a position (x, y) in a rectangular area with
x ∈ [0.65, 1.3] meters, and y ∈ [−0.4, 0.4] meters from the robot. The feed-forward policy,
conditioned on the xy coordinates of the goal position, generates a sequence of actions
consisting of 7 motor actions for 69 time-steps. The feedback policies, conditioned on the
xy coordinate of the goal position (2-dimensional) and the joint position (7-dimensional)
and velocity of the robot (7-dimensional), assign a distribution over the next motor action
(7-dimensional) which is the commanded change in the joint position of the robot. The
agent receives a terminal reward at the end of each episode which is calculated as the
negative Euclidean distance between final position of the puck and the target.

In the Basketball task, the goal of the robot is to throw a ball to a basket which is
randomly placed at a radius of one to eight meters from the robot, and at the angle formed
by the basket center and the x-axis ranging from −π/2 to π/2. The feed-forward policy,
conditioned on the xy coordinates of the basket, generates a sequence of actions consisting
of 7 motor actions for 78 time-steps. On the other hand, the feedback policies, which are
conditioned on the xy coordinate of the basket and the joint position and velocity of the
robot (14 dimensions), assign a distribution over the next motor action (7 dimensions).
In this environment, the reward is calculated as follows: at each timestep where the ball
passes the height of the basket, the Euclidean distance to the goal in the horizontal plane is
calculated and stored. At the end of the episode, the minimum of these distances is used as
the terminal reward (with a minus sign). This allows the agent to learn complex throwing
strategies (such as ones where the ball bounces on the floor multiple times before landing
in the basket) without making the reward excessively sparse.

6.2 Generative Model Training and Evaluation

The generative models are represented by neural networks that map a low-dimensional ac-
tion latent variable α into a njoints×ntime-steps dimensional vector representing njoints motor

15

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Nα β
reward

Nα λ
reward

hockey basketball hockey basketball

VAE1 2 0.01 -0.267 -0.106 GAN1 2 0.1 -0.144 -0.767
VAE2 2 0.005 -0.085 -0.081 GAN2 2 1.5 -0.129 -0.469
VAE3 2 0.001 -0.040 -0.081 GAN3 2 3.5 -0.119 -1.183
VAE4 3 0.01 -0.266 -0.109 GAN4 3 0.1 -0.155 -0.413
VAE5 3 0.005 -0.060 -0.119 GAN5 3 1.5 -0.068 -0.357

VAE6 3 0.001 -0.033 -0.093 GAN6 3 3.5 -0.101 -1.019
VAE7 6 0.01 -0.266 -0.088 GAN7 6 0.1 -0.159 -0.337
VAE8 6 0.005 -0.065 -0.108 GAN8 6 1.5 -0.153 -0.254

VAE9 6 0.001 -0.038 -0.104 GAN9 6 3.5 -0.135 -1.344

Table 1: Training details of the generative models used in our experiments. We varied the
latent dimensionality Nα and hyperparameters β in case of β-VAEs and λ in case
of InfoGANs affecting the disentanglement. We additionally report the maximum
reward achieved by each of these models over 3 independent runs (see Section 6.3).
We marked three best performing models per task in gray.

actions and ntime-steps time-steps. For all tasks njoints = 7, while ntime-steps = 69 for the
hockey task and ntime-steps = 78 for the basketball task. For all the models, we varied the
dimension of the latent space Nα ∈ {2, 3, 6}. For each task and each dimension Nα, we
trained i) 3 β-VAE models with β ∈ 0.01, 0.005, 0.001 which are referred to as VAE1-9 as
reported in Table 1 (left column), and ii) 3 InfoGAN models with γ ∈ 0.1, 1.5, 3.5 which are
referred to as GAN1-9 (right column). In total, we considered 9 β-VAE models and 9 Info-
GAN models per task. We refer the reader to Appendix B for the complete training details
and the exact architecture of the models, as well as to Appendix C for visualized examples
of generated trajectories. The prior distribution p(α) was chosen to be the standard normal
N(0, 1) in case of β-VAEs, and uniform U(−1, 1) in case of InfoGANs. We evaluated all
the generative models using the precision and recall as well as disentanglement measures
introduced in Section 5.2 with hyperparameters described below.

6.2.1 Precision and Recall

For each generative model g, we randomly sampled 15000 samples from the latent prior
distribution p(α). The corresponding set of the generated trajectories Tg was compared to
a set Tr comprised of 15000 randomly chosen training trajectories which were sampled only
once and fixed for all the models. The neighbourhood size k was set to 3 as suggested by
Kynkäänniemi et al. (2019).

6.2.2 Disentanglement

For each generative model g, we performed D = 5 interventions on every latent dimension
l ∈ {1, . . . , Nα} and sampled n = 10000 latent vectors for each D. Thus, the resulting
sets T lg contained n · D = 50000. We additionally generated 50000 trajectories from the

16

Deep Reinforcement Learning with Generative Models

Figure 3: Examples of the performance of policies trained with the GenRL method on
the basketball and hockey tasks. For the basketball task, the trained policy
can successfully throw the ball into the green basket placed at different random
locations, and for the hockey task, the policy can shoot the puck to random target
positions illustrated by the red dots.

corresponding prior p(α) used as the reference set T
p(α)
g , which we kept fixed for each g. As

in precision and recall, we used the neighbourhood size k = 3.

6.3 EM Policy Training

GenRL trained generative models with offline action data containing 40K episodes of 7-
dimensional motor actions, each containing 69 time-steps for the hockey task and 78 time-
steps for the basketball task. We used the combination of human demonstration and expert
trajectory shaping to collect the motor action data. First, we collected a few human demon-
strations through kinesthetic teaching and then added random values to some of the robot
joint velocities to generate different hits or throws, e.g., with different strengths or dif-
ferent orientations. For each generative model and each task, we trained one policy with
three different random seeds. The obtained average training performances together with
the standard deviations are shown in Figures 4 and 5 for the hockey and basketball tasks,
respectively. Using these results, we labeled each generative model with the maximum re-
ward achieved during the EM policy training across all three random seeds. The values are
reported Table 1 where we marked the best performing models per task in gray. In gen-
eral, we observe that while VAE3 and GAN6 performed well on both tasks, VAEs generally
performed better than GAN models. Figure 3 illustrates examples of GenRL performance
at the deployment phase. For the basketball task, the policy trained with GenRL can suc-
cessfully throw the ball into baskets placed randomly at different locations. Also, for the
hockey task, the trained policy can successfully shoot the puck to different random target
positions.

6.4 Comparison to Other Policy Search Methods

We compared GenRL with two state-of-the-art policy search algorithms, PPO (Schulman
et al., 2017) and SAC (Haarnoja et al., 2018b), in terms of the data efficiency and safety

17

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Epochs

Re
w
ar
ds

Epochs

Figure 4: Policy training performance for the hockey task. We report the average reward
together with the standard deviation obtained during EM policy training across
three different random seeds.

Epochs

Re
w
ar
ds

Epochs

Figure 5: Policy training performance for the basketball task. We report the average reward
together with the standard deviation obtained during EM policy training across
three different random seeds.

18

Deep Reinforcement Learning with Generative Models

Hockeypuck Task Environment Basketball Task Environment

Epoch Epoch

Re
w
ar
d

Figure 6: The average policy training performance of GenRL, PPO and SAC on the hockey
and basketball tasks. We report the average reward together with the standard
deviation (y-axis) obtained across three different random seeds.

of RL exploration. To make fair comparisons, we also pre-trained PPO and SAC with the
same amount of data used to train the generative model of the GenRL. However, for the
PPO and SAC methods, we needed to provide corresponding state transition and reward
data in addition to the action data. We pre-trained a goal-conditioned PPO policy with the
behavior cloning approach provided the pre-recorded state-action pairs at every time-step
and the goal state. On the other hand, SAC was pre-trained by adding the the goal states
and the state-action pairs to its replay buffer. In this way, we ensured that PPO and SAC
receive the same amount of data for pre-training the policy.

Figure 6 shows the average training performance for three random seeds of SAC, PPO
and GenRL for the hockey and basketball task. As shown, PPO and SAC cannot train a
policy that can solve the tasks, and training with the pre-collected data does not help. For
the basketball task (right), the robot looses the ball at the beginning of episodes because of
the shaky motion caused by sampling actions from the PPO or SAC policies. This is not
a problem for GenRL because it uses the generative model to generate smooth trajectories
of actions to properly throw the ball. For the hockey task (left), pre-training the policy
with behavior cloning helps at the beginning of the training. However, further training
with PPO worsen the learning performance most likely because it is hard to learn from the
sparse rewards provided for the PPO training phase. Moreover, SAC completely fails to
learn a policy for the hockey task even though its replay buffer is initialized by high-quality
demonstration data. GenRL, on the other hand, consistently achieves significantly better
performance on both of the tasks even though its generative model is only trained with
action data, and not with all data containing state-action transitions and rewards.

19

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Figure 7: The average number of unsafe collisions during policy training with GenRL, PPO
and SAC. We report the average number of time-steps per episode during which
the hockey blade is in contact with the table top for the hockey task.

6.5 Safety of Policy Training with GenRL

In this section, we study the safety aspect of policy training on physical systems. Safe
policy training is particularly important for real-robot applications to avoid damages to the
robot and its environment due to the trial-and-error exploration of RL training. For this
experiment, we train policies using GenRL, PPO and SAC on the hockey task, and report
the average number of time-steps per episode during which the hockey blade is in contact
with the table top. The collision between the blade and the table top is a proper indication
of the safety of the policy training algorithm in our hockey task setting because collisions
between the blade and the table top are more likely than any other type of collisions in this
setting, and in real world, training must be stopped when such collisions happen.

Similar to the experiments introduced in the previous section, we pre-train PPO and
SAC with the same amount of data used to train the generative model of the GenRL. We
train policies using all three methods for a fixed number of epochs. Figure 7 illustrates the
result for the GenRL, PPO and SAC methods. Most importantly, during the entire training
time with GenRL, there is no collision between the table top and the blade. According to
our collision tracker algorithm, the only collision is hitting the puck with the hockey blade.
However, during policy training with PPO and SAC, the blade hits the table top for many
time-steps which indicates that these methods may not be suitable for real-robot training.
Therefore, considering both the performance and safety, policy training with GenRL is a
better alternative than SAC and PPO when training on similar robotic tasks.

20

Deep Reinforcement Learning with Generative Models

hockey Precision Recall δ1 δ̃

VAE
Pearson’s R −0.052 0.959 −0.533 0.979

p-value 0.893 0.000 0.140 0.000

GAN
Pearson’s R −0.485 0.526 0.505 0.393

p-value 0.186 0.146 0.165 0.295

ALL
Pearson’s R −0.068 0.737 0.082 0.833

p-value 0.789 0.000 0.746 0.000

Table 2: Correlation results between the performance of the policy reported in Table 1 and
resulting evaluation measures described in Section 5.2 for the generative models
trained on the hockey task. We report Pearson correlation coefficient R (the higher
the absolute value, the better ↑) with the corresponding p-value.

basketball Precision Recall δ1 δ̃

VAE
Pearson’s R −0.936 0.571 −0.059 0.131

p-value 0.000 0.108 0.880 0.738

GAN
Pearson’s R −0.035 0.811 0.539 0.591

p-value 0.929 0.008 0.134 0.094

ALL
Pearson’s R 0.434 0.907 0.648 0.629

p-value 0.072 0.000 0.004 0.005

Table 3: Correlation results between the performance of the policy reported in Table 1 and
resulting evaluation measures described in Section 5.2 for the generative models
trained on the basketball task. We report Pearson correlation coefficient R (the
higher the absolute value, the better ↑) with the corresponding p-value.

6.6 Evaluation of Generative Models

In this section, we empirically determine the characteristics of generative models that con-
tribute to a more efficient policy training for the hockey and basketball tasks. We evaluated
the trained β-VAE and InfoGAN models (Section 6.2) by measuring precision and recall and
disentanglement measures introduced in Section 5.2. Using these models we trained several
RL policies (as described in Section 6.3) with the proposed GenRL framework presented
in Section 4, and investigated the relation between the properties of the generative models
and the performance of the policy. Our analysis in the remained of this section empirically
shows that generative models that are able to cover the distribution of the training trajecto-
ries well and additionally have well disentangled latent action representations capturing all
aspects of the robotic task result in a successful policy training when combined with GenRL.

We first studied the correlation of each individual evaluation measure to the perfor-
mance of the policy training separately for the basketball and hockey tasks. In particular,
we calculated the Pearson’s correlation between the values obtained from each evaluation
measure and the corresponding generative model label derived from the performance of the
policy as described in Section 6.3. We report the Pearson’s correlation coefficients (the

21

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Figure 8: Precision and recall scores for VAE (left) and GAN models (right) trained on the
hockey task.

higher, the better ↑) together with the corresponding p-values (the lower, the better ↓),
where we consider a correlation to be significant if p < 0.005. Furthermore, we studied
the same correlation but without differentiating between the tasks. Note that our aim was
not to train perfect generative models since the variation in the evaluation results among
different models enabled us to investigate which of their characteristics are important for
the training of GenRL.

6.6.1 Precision and recall

To obtain a successful policy, we expect the generative models to output trajectories that
are as similar to the demonstrated motor trajectories as possible. This is measured with
precision and recall scores which are shown in Figures 8 and 9 for the hockey and basketball
tasks, respectively. For the hockey task (Figure 8), we observe that VAEs have higher
precision (x-axis) and on average higher recall (y-axis) than GANs. In Table 2, we observe
a positive correlation of the recall to the policy performance for VAEs, while for GANs
neither precision nor recall were found significant. This is likely due to the fact that all
GAN models achieve very similar maximum reward (see Table 1). However, we observe that
GAN5, GAN6 and GAN3, which achieve the highest maximum reward, have the highest
recall among the models. Same holds for VAE6, VAE9 and VAE3 models.

Similarly, for the basketball task (Figure 9), we observe that VAEs have both very high
precision and recall, while GANs exhibit lower recall. Especially low recall is obtained for
GAN3, GAN6 and GAN9 models which were all trained with λ = 3.5 which encourages
larger disentanglement. These models all achieved worst reward (see Table 1). Note that
in general the precision of GAN models trained on basketball task is lower than of those
trained on the hockey task. In Table 3, we observe that precision is negatively correlated to
the policy performance in case of VAEs. We hypothesize that this is a spurious correlation
originating from the importance of the high recall. For GANs, we instead observe a positive
correlation for recall. When the type of the model was disregarded in the correlation com-
putation (rows ALL in Tables 2 and 3), we observe recall to be an important characteristic

22

Deep Reinforcement Learning with Generative Models

Figure 9: Precision and recall scores for VAE (left) and GAN models (right) trained on the
basketball task.

Figure 10: Disentanglement scores for VAE (left) and GAN models (right) trained on the
hockey task.

of the generative models since it is positively correlated to the performance of the policy for
both tasks.

6.6.2 Disentanglement

Next, we evaluated whether disentangled generative models yield a better policy trained

with GenRL. Note again that we considered T
p(α)
g as the reference set since we wished to

determine how disentangled each model is with respect to its own modelling capabilities.
We report the exact disentanglement scores δ1, δ̃ together with the respective precision and
recall values in Tables 4 and 5, and provide visualization of δ1 and δ̃ in Figures 10 and 11
for the hockey and basketball tasks, respectively.

For the hockey task (Figure 10), we observe that all generative models attain similar
average δ̃ of two most disentangled latent dimensions (y-axis) and that GAN4, GAN7-9
models (right) attain worse maximum disentanglement δ1 (x-axis) than VAEs (left). These

23

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

hockey VAE1 VAE2 VAE3 VAE4 VAE5 VAE6 VAE7 VAE8 VAE9

Precision 1.000 0.988 0.979 1.000 0.984 0.984 1.000 0.988 0.986
Recall 0.025 0.016 0.012 0.026 0.051 0.032 0.036 0.032 0.024

δ1 0.975 0.972 0.967 0.974 0.933 0.953 0.964 0.956 0.962

Precision 1.000 0.989 0.984 1.000 0.988 0.984 1.000 0.986 0.985
Recall 1.000 0.344 0.04 1.000 0.332 0.037 1.000 0.346 0.055

δ2 0.000 0.645 0.945 0.000 0.656 0.947 0.000 0.640 0.930

δ̃ 0.487 0.808 0.956 0.487 0.794 0.950 0.482 0.798 0.946

hockey GAN1 GAN2 GAN3 GAN4 GAN5 GAN6 GAN7 GAN8 GAN9

Precision 0.966 0.965 0.960 0.975 0.957 0.952 0.961 0.949 0.937
Recall 0.041 0.027 0.013 0.251 0.065 0.066 0.232 0.250 0.340

δ1 0.925 0.938 0.947 0.724 0.892 0.887 0.729 0.698 0.598

Precision 0.981 0.954 0.955 0.978 0.952 0.953 0.964 0.943 0.94
Recall 0.103 0.051 0.034 0.304 0.145 0.348 0.303 0.434 0.434

δ2 0.878 0.904 0.921 0.674 0.807 0.604 0.661 0.509 0.506

δ̃ 0.901 0.921 0.934 0.699 0.850 0.746 0.695 0.603 0.552

Table 4: Disentanglement scores for VAE (top rows) and GAN (bottom rows) models ob-
tained on the hockey task. We report the precision and recall values calculated
as in Equation (11) that yield the highest two values δ1 and δ2. We additionally
report their average δ̃.

Figure 11: Disentanglement scores for VAE (left) and GAN models (right) trained on the
basketball task.

24

Deep Reinforcement Learning with Generative Models

basketball VAE1 VAE2 VAE3 VAE4 VAE5 VAE6 VAE7 VAE8 VAE9

Precision 0.983 0.988 0.985 0.989 0.984 0.974 0.984 0.991 0.986
Recall 0.009 0.009 0.008 0.015 0.010 0.015 0.034 0.020 0.036

δ1 0.974 0.979 0.976 0.974 0.974 0.960 0.950 0.971 0.950

Precision 0.986 0.986 0.986 0.979 0.984 0.983 0.985 0.987 0.984
Recall 0.042 0.041 0.040 0.038 0.037 0.045 0.045 0.045 0.796

δ2 0.944 0.945 0.946 0.941 0.946 0.938 0.940 0.942 0.189

δ̃ 0.959 0.962 0.961 0.958 0.960 0.949 0.945 0.956 0.570

basketball GAN1 GAN2 GAN3 GAN4 GAN5 GAN6 GAN7 GAN8 GAN9

Precision 0.953 0.962 0.985 0.965 0.95 0.976 0.955 0.944 1.000
Recall 0.073 0.071 0.067 0.032 0.042 0.109 0.075 0.221 0.989

δ1 0.879 0.891 0.918 0.933 0.908 0.867 0.880 0.723 0.011

Precision 0.957 0.966 0.989 0.949 0.956 0.995 0.951 0.925 1.000
Recall 0.096 0.134 0.205 0.043 0.092 0.440 0.222 0.281 0.998

δ2 0.862 0.832 0.784 0.905 0.864 0.555 0.729 0.644 0.002

δ̃ 0.871 0.861 0.851 0.919 0.886 0.711 0.804 0.683 0.006

Table 5: Disentanglement scores for VAE (top rows) and GAN (bottom rows) models ob-
tained on the basketball task. We report the precision and recall values calculated
as in Equation (11) that yield the highest two values δ1 and δ2. We additionally
report their average δ̃.

25

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

all tasks Precision Recall δ1 δ̃

ALL
Pearson’s R 0.479 0.650 0.538 0.458

p-value 0.003 0.000 0.001 0.005

Table 6: Correlation results between the performance of the policy reported in Table 1 and
resulting evaluation measures described in Section 5.2 for all generative models on
both basketball and hockey task. We report Pearson correlation coefficient R (the
higher, the better ↑) with the corresponding p-value.

models are trained with larger dimension of the latent space, Nα = 3 and 6, respectively. We
observe that GAN5, GAN6 and GAN3 models, which achieve the best maximum reward,
all have both high δ1 and high δ̃. Together with the precision and recall results visualized
in Figure 8, this suggest that the models necessarily need to have both high recall and be
well disentangled. We obtain similar results for VAEs, where we observe a lower average
disentanglement δ̃ for VAE1, VAE4 and VAE7, which result in worse policy performance
as seen in Table 1. These models are trained with β = 0.01 which should learn more
disentangled latent representations. However, we observe in Table 4 (top) that β = 0.01
seems to highly disentangle only one latent dimension but ignoring the others. This is on
par with observations in Table 2, where we observe a positive correlation of δ̃ to the policy
performance for VAEs. Moreover, we observe that VAE3, VAE6 and VAE9 achieve highest
δ1 and δ̃, which are the models with highest precision and recall scores and best performing
policy.

For the basketball task (Figure 11), we firstly observe that all VAEs achieve high δ1

and δ̃ except for VAE9 (see also Table 5) which also achieves one of the lowest maximum
reward. Secondly, we observe that GANs obtain lower δ̃ than VAEs. We observe that
the best performing GAN4, GAN5 and GAN7 achieve high disentanglement values. These
models also achieve the highest precision and recall values (see again Figure 9, right). We
observe the worst disentanglement scores for GAN9 which most likely originate from the
poor recall of the model. When investigating the correlation of δ1 and δ̃ to the performance
of the policy in Table 3, we find that the correlation is not significant when we distinguish
the type of the generative models (rows VAE and GAN) due to the dominance of the recall
measure. However, when analyzing the correlation without distinguishing the type of the
model, we observe a positive correlation for both scores (row ALL). Therefore, we conclude
that disentanglement is an additionally beneficial characteristic for the generative models
that obtain sufficiently high recall.

6.6.3 General evaluation

Lastly, we evaluated the correlation of the evaluation measures to the policy performance
for all the models and both tasks. The results, shown in Table 6, support our earlier
conclusions. We observe the highest correlation for recall followed by δ1. We also observe a
weaker positive correlation for precision and δ̃. Therefore, we conclude that the latent action
representations should capture all aspects of the robotic task in a disentangled manner, while
it is less important to capture them precisely.

26

Deep Reinforcement Learning with Generative Models

7. Conclusion

We presented an RL framework that combined with generative models trains deep visuo-
motor policies in a data-efficient manner. The generative models are integrated with the
RL optimization by introducing a latent variable α that is a low-dimensional representa-
tion of a sequence of motor actions. Using the latent action variable α, we divided the
optimization of the parameters Θ of the deep visuomotor policy πΘ(τ |s) into two parts:
optimizing the parameters ϑ of a generative model pϑ(τ |α) that generates valid sequences
of motor actions, and optimizing the parameters θ of a sub-policy πθ(α|s), where Θ = [θ, ϑ].
The sub-policy parameters θ are found using the EM algorithm, while generative model
parameters ϑ are trained unsupervised to optimize the objective corresponding to the cho-
sen generative model. In summary, the complete framework consists of two data-efficient
subsequent tasks, training the generative model pϑ, and training the sub-policy πθ.

Moreover, we provided a set of measures for evaluating the quality of the generative
models regulated by the RL policy search algorithms such that we can predict the perfor-
mance of the deep policy training πΘ prior to the actual training. In particular, we used
the precision and recall measure (Kynkäänniemi et al., 2019) to evaluate the quality of the
generated samples, and adjusted it to define a novel measure called disentanglement with
precision and recall (DwPR) that additionally evaluates the quality of the latent space of
the generative model pϑ. We experimentally demonstrated the predictive power of these
measures on two tasks in simulation, shooting hockey puck and throwing a basketball, us-
ing a set of different VAE and GAN generative models. Regardless of the model type, we
observe that the most beneficial latent action representations are those that capture all
aspects of the robotic task in a disentangled manner.

Acknowledgments

This work was supported by Knut and Alice Wallenberg Foundation, the EU through the
project EnTimeMent, the Swedish Foundation for Strategic Research through the COIN
project, and also by the Academy of Finland through the DEEPEN project.

27

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Lin(Nα, 128) + BN + ReLU

Lin(128, 256) + BN + ReLU

Lin(256, 512) + BN + ReLU

Lin(512, InputDim)

Table 7: Architecture of the genera-
tor neural network.

Shared layers
Lin(InputDim, 256) + ReLU
Lin(256, 128) + ReLU

discriminator Lin(128, 1) + Sigmoid

Qnet
Lin(128, 64)
Lin(64, Nα)

Table 8: Architecture of the discriminator and
Qnet neural networks.

Appendix A. End-to-end Training of Perception and Control

The EM policy training algorithm presented in Section 4 updates the deep policy using
the supervised learning objective function introduced in (6) (the M-step objective). Similar
to GPS (Levine et al., 2016), the EM policy training formulation enables simultaneous
training of the perception and control parts of the deep policy in an end-to-end fashion. In
this section, we describe two techniques that can improve the efficiency of the end-to-end
training.

A.1 Input Remapping Trick

The input remapping trick (Levine et al., 2016) can be applied to condition the varia-
tional policy q on a low-dimensional compact state representation, z, instead of the high-
dimensional states s given by the sensory observations, e.g., camera images. The policy
training phase can be done in a controlled environment such that extra measures other
than the sensory observation of the system can be provided. These extra measures can be
for example the position of a target object on a tabletop. Therefore, the image observations
s can be paired with a compact task-specific state representation z such that z is used in
the E-step for updating the variational policy qφ(α|z), and s in the M-step for updating the
policy πθ(α|s).

A.2 Domain Adaptation for Perception Training

Domain adaptation techniques, e.g., adversarial methods (Chen et al., 2020), can improve
the end-to-end training of visuomotor policies with limited robot data samples. The unla-
beled task-specific images, captured without involving the robot, can be exploited in the
M-step to improve the generality of the visuomotor policy to manipulate novel task objects
in cluttered backgrounds.

The M-step is updated to include an extra loss function to adapt data from the two
different domains: (i) unlabeled images and (ii) robot visuomotor data. The images must
contain only one task object in a cluttered background, possibly different than the task
object used by the robot during the policy training. Given images from the two domains,
the basic idea is to extract visual features such that it is not possible to detect the source
of the features. More details of the method can be found in our recent work in (Chen et al.,
2020).

28

Deep Reinforcement Learning with Generative Models

Figure 12: Example of a test trajectory (left), VAE6 generated trajectory (middle) and
GAN5 generated trajectory (right) for the hockey task.

Appendix B. Training Details of Generative Models

In this section, we report architectural and training details for generative models used in
our experiments. The architectures of the decoders is shown in Table 7, where we used Lin
and BN to refer to the linear and batch normalization layers, respectively. The InputDim
denotes the dimension of the trajectories and is equal to 69 · 7 and 78 · 7 for the hockey
and basketball tasks, respectively. Architectural choices related to each type of generative
model are discussed below. All the models were trained for 5000 epochs with learning rate
fixed to 2e−4 using batch size 256. For our evaluation, we chose the best performing models
based on minimum squared error computed between 100 randomly generated trajectories
and trajectories in the test datasets not used during training.

B.1 Variational Autoencoder

The encoder neural network is symmetric to the decoder with two output linear layers of
size Nα representing the mean and the log standard deviation of the approximate posterior
distribution.

B.2 InfoGAN

The architecture of the generator, discriminator and the neural network parametrizing
Qφ(α|τ) are summarised in Tables 7 and 8. Learning rates of the optimizers for the generator
and discriminator networks were fixed to 2e− 4.

Appendix C. Examples of Generated Trajectories

In this section, we visualize examples of testing trajectories as well as generated ones for
both hockey (Figure 12) and basketball tasks (Figure 13).

29

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Figure 13: Example of a test trajectory (left), VAE2 generated trajectory (middle) and
GAN3 generated trajectory (right) for the basketball task.

30

Deep Reinforcement Learning with Generative Models

References

Abbas Abdolmaleki, Sandy H Huang, Leonard Hasenclever, Michael Neunert, H Francis
Song, Martina Zambelli, Murilo F Martins, Nicolas Heess, Raia Hadsell, and Martin
Riedmiller. A distributional view on multi-objective policy optimization. arXiv preprint
arXiv:2005.07513, 2020.

Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement
learning for sim-to-real domain adaptation. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 2725–2731. IEEE, 2020.

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic
policies for end-to-end sensorimotor learning. Advances in Neural Information Processing
Systems, 33:5058–5069, 2020.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):
1798–1828, 2013.

Miko laj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
MMD GANs. In International Conference on Learning Representations, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Lars Buesing, Theophane Weber, Sébastien Racaniere, SM Eslami, Danilo Rezende, David P
Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al. Learn-
ing and querying fast generative models for reinforcement learning. arXiv preprint
arXiv:1802.03006, 2018.

Judith Bütepage, Ali Ghadirzadeh, Özge Öztimur Karadaǧ, Mårten Björkman, and Danica
Kragic. Imitating by generating: Deep generative models for imitation of interactive
tasks. Frontiers in Robotics and AI, 7:47, 2020.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. In Advances in Neural Information Pro-
cessing Systems, pages 2610–2620, 2018a.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative ad-
versarial nets. In Advances in neural information processing systems, pages 2172–2180,
2016.

Xi Chen, Ali Ghadirzadeh, John Folkesson, Mårten Björkman, and Patric Jensfelt. Deep
reinforcement learning to acquire navigation skills for wheel-legged robots in complex
environments. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3110–3116. IEEE, 2018b.

31

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Xi Chen, Ali Ghadirzadeh, Mårten Björkman, and Patric Jensfelt. Adversarial feature train-
ing for generalizable robotic visuomotor control. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 1142–1148. IEEE, 2020.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Yuan Gao, Jianhao Wang, Wenzhe Li, Bin Liang,
Chelsea Finn, and Chongjie Zhang. Latent-variable advantage-weighted policy optimiza-
tion for offline rl. arXiv preprint arXiv:2203.08949, 2022.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl
Schmeckpeper, Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale
multi-robot learning. arXiv preprint arXiv:1910.11215, 2019.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for
robotics. Foundations and Trends R© in Robotics, 2(1–2):1–142, 2013.

Coline Devin, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Deep object-centric rep-
resentations for generalizable robot learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7111–7118. IEEE, 2018.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation
of disentangled representations. In International Conference on Learning Representations,
2018.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 2786–2793.
IEEE, 2017.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel.
Deep spatial autoencoders for visuomotor learning. In 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 512–519. IEEE, 2016.

Ali Ghadirzadeh. Sensorimotor Robot Policy Training using Reinforcement Learning. PhD
thesis, KTH Royal Institute of Technology, 2018.

Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predictive
policy training using reinforcement learning. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2351–2358. IEEE, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

Nishad Gothoskar, Miguel Lázaro-Gredilla, Abhishek Agarwal, Yasemin Bekiroglu, and
Dileep George. Learning a generative model for robot control using visual feedback.
arXiv preprint arXiv:2003.04474, 2020.

32

Deep Reinforcement Learning with Generative Models

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 3389–3396. IEEE,
2017.

Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and Sergey
Levine. Composable deep reinforcement learning for robotic manipulation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6244–6251. IEEE,
2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national conference on machine learning, pages 1861–1870. PMLR, 2018b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. arXiv preprint
arXiv:1811.04551, 2018.

Aleksi Hämäläinen, Karol Arndt, Ali Ghadirzadeh, and Ville Kyrki. Affordance learning
for end-to-end visuomotor robot control. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1781–1788. IEEE, 2019.

Murtaza Hazara and Ville Kyrki. Transferring generalizable motor primitives from simula-
tion to real world. IEEE Robotics and Automation Letters, 4(2):2172–2179, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equi-
librium. In Advances in Neural Information Processing Systems 30, pages 6626–6637.
Curran Associates, Inc., 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. In International Conference on Learn-
ing Representations, 2017.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo
Rezende, and Alexander Lerchner. Towards a definition of disentangled representations.
arXiv preprint arXiv:1812.02230, 2018.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for pomdps. arXiv preprint arXiv:1806.02426, 2018.

Auke J Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes for
learning motor primitives. In Advances in neural information processing systems, pages
1547–1554, 2003.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dy-
namical movement primitives: learning attractor models for motor behaviors. Neural
computation, 25(2):328–373, 2013.

33

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Insu Jeon, Wonkwang Lee, Myeongjang Pyeon, and Gunhee Kim. Ib-gan: Disentangled
representation learning with information bottleneck generative adversarial networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7926–
7934, 2021.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey
Levine. Qt-opt: Scalable deep reinforcement learning for vision-based robotic manip-
ulation. In 2nd Conference on Robot Learning (CoRL), 2018.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi
Parikh, and Dhruv Batra. Modeling the long term future in model-based reinforcement
learning. In International Conference on Learning Representations, 2018.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint
arXiv:1802.05983, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International
Conference on Learning Representations, 2014.

Orr Krupnik, Igor Mordatch, and Aviv Tamar. Multi agent reinforcement learning with
multi-step generative models. arXiv preprint arXiv:1901.10251, 2019.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational infer-
ence of disentangled latent concepts from unlabeled observations. arXiv preprint
arXiv:1711.00848, 2017.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Im-
proved precision and recall metric for assessing generative models. In Advances in Neural
Information Processing Systems, pages 3927–3936, 2019.

Wonkwang Lee, Donggyun Kim, Seunghoon Hong, and Honglak Lee. High-fidelity synthesis
with disentangled representation. arXiv preprint arXiv:2001.04296, 2020.

Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization.
In Advances in neural information processing systems, pages 207–215, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learn-
ing hand-eye coordination for robotic grasping with deep learning and large-scale data
collection. The International Journal of Robotics Research, 37(4-5):421–436, 2018.

Martina Lippi, Petra Poklukar, Michael C Welle, Anastasiia Varava, Hang Yin, Alessan-
dro Marino, and Danica Kragic. Latent space roadmap for visual action planning of
deformable and rigid object manipulation. arXiv preprint arXiv:2003.08974, 2020.

34

Deep Reinforcement Learning with Generative Models

Bingchen Liu, Yizhe Zhu, Zuohui Fu, Gerard de Melo, and Ahmed Elgammal. Oogan:
Disentangling gan with one-hot sampling and orthogonal regularization, 2019.

Francesco Locatello, Stefan Bauer, Mario Lučić, Gunnar Rätsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Frederic Bachem. Challenging common assumptions in the unsu-
pervised learning of disentangled representations. In International Conference on Machine
Learning, 2019. Best Paper Award.

Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. Prediction and control with tempo-
ral segment models. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2459–2468. JMLR. org, 2017.

Gerhard Neumann. Variational inference for policy search in changing situations. In Pro-
ceedings of the 28th International Conference on Machine Learning, ICML 2011, pages
817–824, 2011.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 1–8. IEEE, 2018.

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2219–2225. IEEE,
2006.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients.
Neural networks, 21(4):682–697, 2008.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542,
2017.

Petra Poklukar, Anastasiia Varava, and Danica Kragic. Geomca: Geometric evaluation of
data representations. In International Conference on Machine Learning, pages 8588–8598.
PMLR, 2021.

Petra Poklukar, Vladislav Polianskii, Anastasiia Varava, Florian T. Pokorny, and Dan-
ica Kragic Jensfelt. Delaunay component analysis for evaluation of data representations.
In International Conference on Learning Representations, 2022.

Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, and Sergey Levine.
Deep reinforcement learning for vision-based robotic grasping: A simulated comparative
evaluation of off-policy methods. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 6284–6291. IEEE, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Int. Conf. Mach. Learn., pages
1278–1286, 2014.

Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for
flexible inference, planning, and control. arXiv preprint arXiv:1810.06544, 2018.

35

Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic and Björkman

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing generative models via precision and recall. In Advances in Neural Information
Processing Systems, pages 5228–5237, 2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen,
and Xi Chen. Improved techniques for training gans. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2234–2242. Curran Associates, Inc., 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Loic Simon, Ryan Webster, and Julien Rabin. Revisiting precision recall definition for gen-
erative modeling. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 5799–5808, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

Avi Singh, Larry Yang, and Sergey Levine. Gplac: Generalizing vision-based robotic skills
using weakly labeled images. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5851–5860, 2017.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine.
Parrot: Data-driven behavioral priors for reinforcement learning. In International Con-
ference on Learning Representations, 2020.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-
based representation learning. arXiv preprint arXiv:1812.05069, 2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7167–7176, 2017.

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate
Saenko, and Trevor Darrell. Adapting deep visuomotor representations with weak pair-
wise constraints. In Algorithmic Foundations of Robotics XII, pages 688–703. Springer,
2020.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catan-
zaro. High-resolution image synthesis and semantic manipulation with conditional gans.

36

Deep Reinforcement Learning with Generative Models

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
8798–8807, 2018.

F. Wiewel and B. Yang. Continual learning for anomaly detection with variational autoen-
coder. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3837–3841, 2019.

W. Xu and Y. Tan. Semisupervised text classification by variational autoencoder. IEEE
Transactions on Neural Networks and Learning Systems, 31(1):295–308, 2020.

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. One-shot imitation from observing humans via domain-adaptive meta-
learning. arXiv preprint arXiv:1802.01557, 2018.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline
reinforcement learning. arXiv preprint arXiv:2011.07213, 2020.

37

	Introduction
	Related Work
	Data-efficient End-to-end Policy Training
	Evaluation of Generative Models

	Overview of the GenRL Framework
	Expectation-Maximization Policy Training
	Expectation Step
	Maximization Step

	Generative Models in GenRL and Their Evaluation
	Generative Models
	Variational Autoencoders
	Generative Adversarial Networks

	Evaluation of Generative Models in GenRL
	Precision and Recall
	Disentanglement with Precision and Recall

	Experiments
	Experimental Setup and Implementation Details
	Generative Model Training and Evaluation
	Precision and Recall
	Disentanglement

	EM Policy Training
	Comparison to Other Policy Search Methods
	Safety of Policy Training with GenRL
	Evaluation of Generative Models
	Precision and recall
	Disentanglement
	General evaluation

	Conclusion

