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Abstract

A number of applications require two-sample testing on ranked preference data. For instance,
in crowdsourcing, there is a long-standing question of whether pairwise-comparison data
provided by people is distributed identically to ratings-converted-to-comparisons. Other
applications include sports data analysis and peer grading. In this paper, we design two-
sample tests for pairwise-comparison data and ranking data. For our two-sample test for
pairwise-comparison data, we establish an upper bound on the sample complexity required
to correctly test whether the distributions of the two sets of samples are identical. Our test
requires essentially no assumptions on the distributions. We then prove complementary
lower bounds showing that our results are tight (in the minimax sense) up to constant
factors. We investigate the role of modeling assumptions by proving lower bounds for a
range of pairwise-comparison models (WST, MST, SST, parameter-based such as BTL and
Thurstone). We also provide tests and associated sample complexity bounds for partial
(or total) ranking data. Furthermore, we empirically evaluate our results via extensive
simulations as well as three real-world data sets consisting of pairwise-comparisons and
rankings. By applying our two-sample test on real-world pairwise-comparison data, we
conclude that ratings and rankings provided by people are indeed distributed differently.
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1. Introduction

Data in the form of pairwise-comparisons, or more generally partial or total rankings,
arises in a wide variety of settings. For instance, when eliciting data from people (say, in
crowdsourcing), there is a long-standing debate over the difference between two methods
of data collection: asking people to compare pairs of items or asking people to provide
numeric scores to the items. A natural question here is whether people implicitly generate
pairwise-comparisons using a fundamentally different mechanism than first forming numeric
scores and then converting them to a comparison. Thus, we are interested in testing if the
data obtained from pairwise-comparisons is distributed identically to if the numeric scores
were converted to pairwise-comparisons (Raman and Joachims, 2014; Shah et al., 2016). As
another example consider sports and online games, where a match between two players or two
teams is a pairwise-comparison between them (Herbrich et al., 2007; Hvattum and Arntzen,
2010; Van Der Maas and Wagenmakers, 2005). Again, a natural question that arises here
is whether the relative performance of the teams has changed significantly across a certain
period of time (e.g., to design an appropriate rating system (Cattelan et al., 2013)). A third
example is peer grading where students are asked to compare pairs of homeworks (Shah et al.,
2013) or rank a batch of homeworks (Lamon et al., 2016; Raman and Joachims, 2014). A
question of interest here is whether a certain group of students (female/senior/...) grade very
differently as compared to another group (male/junior/...) (Shah et al., 2018). Additionally,
consumer preferences as pairwise-comparisons or partial (or total) rankings can be used to
investigate whether a certain group (married/old/...) make significantly different choices
about purchasing products as opposed to another group (single/young/...) (Cavagnaro and
Davis-Stober, 2014; Regenwetter et al., 2011).

Each of the aforementioned problems involves two-sample testing, that is, testing whether
the distribution of the data from two populations is identical or not. With this motivation,
in this paper we consider the problem of two-sample testing on preference data in the form
of pairwise-comparisons and, more generally, partial and total rankings. First, we focus
our efforts on preference data in the form of pairwise-comparisons. Specifically, consider
a collection of items (e.g., teams in a sports league). The data we consider comprises
comparisons between pairs of these items, where the outcome of a comparison involves one of
the items beating the other. In the two-sample testing problem, we have access to two sets
of such pairwise-comparisons, obtained from two different sources (e.g., the current season in
a sports league forming one set of pairwise-comparisons and the previous season forming a
second set). The goal is to test whether the underlying distributions (winning probabilities)
in the two sets of data are identical or different. Similarly, when the data comprises of
partial or total rankings over a collection of items from two different sources, our goal is to
test whether the distributions over total rankings for the two sources are identical or not.
Specifically, we consider the case where a partial ranking is defined as a total ranking over
some subset of the collection of items.

Contributions. We now outline the contributions of this paper; the theoretical contribu-
tions for the pairwise-comparison setting are also summarized in Table 1.

• First, we present a test for two-sample testing with pairwise-comparison data and associated
upper bounds on its minimax sample complexity. Our test makes essentially no assumptions
on the outcome probabilities of the pairwise-comparisons.
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• Second, we prove information-theoretic lower bounds on the critical testing radius for this
problem. Our bounds show that our test is minimax optimal for this problem.

• As a third contribution, we investigate the role of modeling assumptions: What if one could
assume one of the popular models (e.g., BTL, Thurstone, parameter-based, SST, MST,
WST) for pairwise-comparison outcomes? We show that our test is minimax optimal under
WST and MST models. We also provide an information-theoretic lower bound under the
SST and parameter-based models. Conditioned on the planted clique hardness conjecture,
we prove a computational lower bound for the SST model with a single observation per
pair of items, which matches the sample complexity upper bound attained by our test, up
to logarithmic factors.

• Fourth, we conduct experiments on two real-world pairwise-comparison data sets. Our test
detects a statistically significant difference between the distributions of directly-elicited
pairwise-comparisons and converting numeric scores to comparison data. On the other
hand, from the data available for four European football leagues over two seasons, our test
does not detect any statistically significant difference between the relative performance of
teams across two consecutive seasons.

• Finally, we present algorithms for two-sample testing on partial (or total) ranking data for
two partial ranking models—namely, the Plackett-Luce model and a more general marginal
probability based model. We provide upper bounds on sample complexity for the test for
the Plackett-Luce model controlling both the Type I and Type II error. Moreover, our test
for the marginal probability based model controls the Type I error. We apply our test to a
real-world data set on sushi preferences. Our test finds a statistically significant difference
in sushi preferences across sections of different demographics based on age, gender and
region of residence.

A shorter version of this paper (Rastogi et al., 2020) was presented at the IEEE International
Symposium on Information Theory (ISIT) 2020.

Related literature. The problem of two-sample testing on ranked preference data is at
the intersection of two rich areas of research—two-sample testing and analyzing ranked
preference data.

The problem of two-sample testing has a long history in statistics, and classical tests
include the t-test and Pearson’s χ2 test (see for instance Lehmann and Romano, 2005 and
references therein). More recently, non-parametric tests (Gretton et al., 2012a,b; Rosenbaum,
2005; Kim et al., 2020b; Szekely and Rizzo, 2004) have gained popularity but these can
perform poorly in structured, high-dimensional settings. The minimax perspective on
hypothesis testing which we adopt in this work originates in the work of Ingster (1994) (and
was developed further in Ingster (1997); Ingster and Suslina (2003); Ingster (1994)). Several
recent works have studied the minimax rate for two-sample testing for high-dimensional
multinomials (Balakrishnan and Wasserman, 2018, 2019; Chan et al., 2014; Valiant and
Valiant, 2017; Valiant, 2011), and testing for sparsity in regression (Carpentier et al., 2018;
Collier et al., 2017), we build on some of these ideas in our work. We also note the work
of Mania et al. (2018) who propose a kernel-based two-sample test for distributions over
total rankings.

3



Rastogi, Balakrishnan, Shah, Singh

Model (M) Upper Bound Lower Bound Computational Lower
Bound

Model-free for k > 1, ε2M ≤ c
1

kd
(Thm. 1)

ε2M > c
I(k > 1)

kd
+

I(k = 1)

4
(Prop. 4)

ε2M > c
I(k > 1)

kd
+

I(k = 1)

4

WST and MST ε2M ≤ c
1

kd
ε2M > c

1

kd
(Thm. 3) ε2M > c

1

kd

SST ε2M ≤ c
1

kd
ε2M > c

1

kd3/2
for k = 1, ε2M >

c

kd(log log(d))2
(Thm. 6)

Parameter-
based

ε2M ≤ c
1

kd
ε2M > c

1

kd3/2
(Thm. 5) ε2M > c

1

kd3/2

Table 1: This table summarizes our results for two-sample testing of pairwise-comparison data
(introduced formally in Equation 1), for common pairwise-comparison models. Here, d denotes
the number of items, and we obtain k samples (comparisons) per pair of items from each of the
two populations. In this work, we provide upper and lower bounds on the critical testing radius
εM, defined in (3). The upper bound in Theorem 1 is due to the test in Algorithm 1 which is
computationally efficient. We note that the constant c varies from result to result.

The analysis of pairwise-comparison data is a rich field of study, dating back at least 90
years to the seminal work of Louis Thurstone (1927) and subsequently Bradley and Terry
(1952) and Luce (1959). Along with this, Plackett (1975) and Luce (1959) worked on the
now-well-known Plackett-Luce model for partial and total rankings. In the past two decades,
motivated by crowdsourcing and other applications, there is significant interest in studying
such data in a high-dimensional setting, that is, where the number of items d is not a fixed
constant. A number of papers (Shah et al., 2016; Chen and Suh, 2015; Negahban et al., 2012;
Rajkumar and Agarwal, 2014; Szörényi et al., 2015; Guiver and Snelson, 2009; Maystre and
Grossglauser, 2015, and references therein) in this space analyze parameter-based models such
as the BTL and the Thurstone models for pairwise-comparison data and the Plackett-Luce
model for partial (or total) ranking data. Here the goal is usually to estimate the parameters
of the model or the underlying ranking of the items. The papers (Ailon, 2012; Braverman
and Mossel, 2008; Chatterjee and Mukherjee, 2019; Chen et al., 2018; Falahatgar et al., 2017;
Rajkumar et al., 2015, and references therein) also study ranking from pairwise-comparisons,
under some different assumptions.

Of particular interest is the paper by Aldous (2017) which uses the BTL model to make
match predictions in sports, and also poses the question of analyzing the average change in
the performance of teams over time. While this paper suggests some simple statistics to test
for change, designing principled tests is left as an open problem. To this end, we provide
a two-sample test without any assumptions and with rigorous guarantees, and also use it
subsequently to conduct such a test on real-world data.

A recent line of work (Heckel et al., 2019; Shah et al., 2017; Shah and Wainwright, 2018)
focuses on the role of the modeling assumptions in estimation and ranking from pairwise-
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comparisons. We study the role of modeling assumptions from the perspective of two-sample
testing and prove performance guarantees for some pairwise-comparison models.

Organization. The remainder of this paper is organized as follows. In Section 2, we
formally describe the problem setup and provide some background on the minimax perspective
on hypothesis testing. We also provide a detailed description of the pairwise-comparison
models studied in this work. In Section 3 we present our minimax optimal test for pairwise-
comparison data and present the body of our main technical results for the pairwise-
comparison setting with brief proof sketches and defer technical aspects of the proofs
to Section 6. Then, in Section 4 we extend our results for the two-sample testing problem
on partial (or total) ranking data. We describe two partial ranking models and provide
testing algorithms and associated sample complexity bounds. The corresponding proofs are
in Section 6. In Section 5, we present our findings from implementing our testing algorithms
on three real-world data sets. Furthermore, we present results of simulations on synthetic
data which validate our theoretical findings. We conclude with a discussion in Section 7.

2. Background and problem formulation for pairwise-comparison setting

In this section, we provide a more formal statement of the problem of two-sample testing using
pairwise-comparison data along with background on hypothesis testing and the associated
definition of risk, and various types of ranking models.

2.1 Problem statement

Our focus in this paper is on the two-sample testing problem where the two sets of samples
come from two potentially different populations. Here, we describe the model of the data we
consider in our work. Specifically, consider a collection of d items. The two sets of samples
comprise outcomes of comparisons between various pairs of these items. In the first set
of samples, the outcomes are governed by an unknown matrix P ∈ [0, 1]d×d. The (i, j)th

entry of matrix P is denoted as pij , and any comparison between items i and j results in i
beating j with probability pij , independent of other outcomes. We assume there are no ties.
Analogously, the second set of samples comprises outcomes of pairwise-comparisons between
the d items governed by a (possibly different) unknown matrix Q ∈ [0, 1]d×d, wherein item i
beats item j with probability qij , the (i, j)th entry of matrix Q. For any pair (i, j) of items,
we let kpij and k

q
ij denote the number of times a pair of items (i, j) is compared in the first

and second set of samples respectively. Let Xij denote the number of times item i ∈ [d] beats
item j ∈ [d] in the first set of samples, and let Yij denote the analogous quantity in the second
set of samples. It follows that Xij and Yij are Binomial random variables independently
distributed as Xij ∼ Bin(kpij , pij) and Yij ∼ Bin(kqij , qij). We adopt the convention of setting
Xij = 0 when kpij = 0, and Yij = 0 when kqij = 0, and kpii = kqii = 0.

Our results apply to both the symmetric and asymmetric settings of pairwise-comparisons:

Symmetric setting: The literature on the analysis of pairwise-comparison data frequently
considers a symmetric setting where “i vs. j” and “j vs. i” have an identical meaning. Our
results apply to this setting, for which we impose the additional constraints that pji = 1− pij
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and qji = 1− qij for all (i, j) ∈ [d]2. In addition, for every 1 ≤ i ≤ j ≤ d, we set kpji = kqji = 0
(and hence Xji = Yji = 0), and let kpij , k

q
ij , Xij and Yij represent the comparisons between

the pair of items (i, j) .

Asymmetric setting: Our results also apply to an asymmetric setting where “i vs. j” may
have a different meaning as compared to “j vs. i”. For instance, in a setting of sports where
“i vs. j” could indicate i as the home team and j as the visiting team. This setting does not
impose the restrictions described in the symmetric setting above.

Hypothesis test. Consider any classM of pairwise-comparison probability matrices, and
any parameter ε > 0. Then,the goal is to test the hypotheses

H0 : P = Q

H1 :
1

d
|||P −Q|||F ≥ ε,

(1)

where P,Q ∈M.

2.2 Hypothesis testing and risk

We now provide a brief background on hypothesis tests and associated terminology. In
hypothesis testing, the Type I error is defined as the probability of rejecting the null
hypothesis H0 when the null hypothesis H0 is actually true, an upper bound on the Type I
error is denoted by α; the Type II error is defined as the probability of failing to reject the
null when the alternate hypothesis H1 is actually true, an upper bound on Type II error is
denoted by β. The performance of the testing algorithm is evaluated by measuring its Type
I error and its power, which is defined as one minus the Type II error.

Consider the hypothesis testing problem defined in (1). We define a test φ as φ :
{kpij , k

q
ij , Xij , Yij}(i,j)∈[d]2 7→ {0, 1}. Let P0 and P1 denote the distribution of the input

variables under the null and under the alternate respectively. Here, we assume that the
variables kpij and k

q
ij are fixed for all (i, j) ∈ [d2]. LetM0 andM1(ε) denote the set of matrix

pairs (P,Q) that satisfy the null condition and the alternate condition in (1) respectively.
Then, we define the minimax risk (Ingster, 1994, 1997; Ingster and Suslina, 2003) as

RM = inf
φ
{ sup

(P,Q)∈M0

P0(φ = 1) + sup
(P,Q)∈M1(ε)

P1(φ = 0)}, (2)

where the infimum is over all {0, 1}-valued tests φ. It is common to study the minimax risk
via a coarse lens by studying instead the critical radius or the minimax separation. The
critical radius is the smallest value ε for which a hypothesis test has non-trivial power to
distinguish the null from the alternate. Formally, we define the critical radius as

εM = inf{ε : RM ≤ 1/3}. (3)

The constant 1/3 is arbitrary; we could use any specified constant in (0, 1). In this paper,
we focus on providing tight bounds on the critical radius.
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2.3 A range of pairwise-comparison models

A model for the pairwise-comparison probabilities is a set of matrices in [0, 1]d×d. In the
context of our problem setting, assuming a model means that the matrices P and Q are
guaranteed to be drawn from this set. In this paper, the proposed test and the associated
guarantees do not make any assumptions on the pairwise-comparison probability matrices P
and Q. In other words, we allow P and Q to be any arbitrary matrices in [0, 1]d×d. However,
there are a number of models which are popular in the literature on pairwise-comparisons, and
we provide a brief overview of them here. We analyze the role of these modeling assumptions
in our two-sample testing problem. In what follows, we let M ∈ [0, 1]d×d denote a generic
pairwise-comparison probability matrix, with Mij representing the probability that item
i ∈ [d] beats item j ∈ [d]. The models impose conditions on the matrix M .

• Parameter-based models: A parameter-based model is associated with some known, non-
decreasing function f : R→ [0, 1] such that f(θ) = 1− f(−θ) ∀ θ ∈ R. We refer to any
such function f as being “valid”. The parameter-based model associated to a given valid
function f is given by

Mij = f(wi − wj) for all pairs (i, j), (4)

for some unknown vector w ∈ Rd that represents the notional qualities of the d items. It is
typically assumed that the vector w satisfies the conditions

∑
i∈[d]wi = 0 and that ‖w‖∞

is bounded above by a known constant.

– Bradley-Terry-Luce (BTL) model: This is a specific parameter-based model with

f(θ) =
1

1 + e−θ
.

– Thurstone model: This is a specific parameter-based model with f(θ) = Φ(θ), where
Φ is the standard Gaussian CDF.

• Strong stochastic transitivity (SST): The model assumes that the set of items [d] is
endowed with an unknown total ordering π, where π(i) < π(j) implies that item i is
preferred to item j. A matrixM ∈ [0, 1]d×d is said to follow the SST model if it satisfies the
shifted-skew-symmetry condition Mij = 1−Mji for every pair i, j ∈ [d] and the condition

Mi` ≥Mj` for every i, j ∈ [d] such that π(i) < π(j) and for every ` ∈ [d]. (5)

• Moderate stochastic transitivity (MST): The model assumes that the set of items [d] is
endowed with an unknown total ordering π. A matrix M ∈ [0, 1]d×d is said to follow the
MST model if it satisfies Mij = 1−Mji for every pair i, j ∈ [d] and the condition

Mi` ≥ min{Mij ,Mj`} for every i, j, ` ∈ [d] such that π(i) < π(j) < π(`). (6)

• Weak stochastic transitivity (WST): The model assumes that the set of items [d] is endowed
with an unknown total ordering π. A matrix M ∈ [0, 1]d×d is said to follow the WST
model if it satisfies Mij = 1−Mji for every pair i, j ∈ [d] and the condition

Mij ≥
1

2
for every i, j ∈ [d] such that π(i) < π(j). (7)
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Model hierarchy: There is a hierarchy between these models, that is, {BTL, Thurstone}
⊂ parameter-based ⊂ SST ⊂ MST ⊂ WST ⊂ model-free.

3. Main results for pairwise-comparison setting

We now present our main theoretical results for pairwise-comparison data.

3.1 Test and guarantees

Our first result provides an algorithm for two-sample testing in the problem (1), and
associated upper bounds on its sample complexity. Importantly, we do not make any
modeling assumptions on the probability matrices P and Q. First we consider a per-pair
fixed-design setup in Theorem 1 where for every pair of items (i, j), the sample sizes kpij , k

q
ij

are equal to k. Following that, in Corollary 2, we consider a random-design setup wherein
for every pair of items (i, j), the sample sizes kpij , k

q
ij are drawn i.i.d. from some distribution

D supported over non-negative integers.

Input: Samples Xij , Yij denoting the number of times item i beat item j in the
observed kpij , k

q
ij pairwise-comparisons from populations denoted by probability

matrices P,Q respectively.
Test Statistic:

T =

d∑
i=1

d∑
j=1

Iij
kqij(k

q
ij − 1)(X2

ij −Xij) + kpij(k
p
ij − 1)(Y 2

ij − Yij)− 2(kpij − 1)(kqij − 1)XijYij

(kpij − 1)(kqij − 1)(kpij + kqij)

(8)

where Iij = I(kpij > 1)× I(kqij > 1).
Output: If T ≥ 11d, where 11d is the threshold, then reject the null.

Algorithm 1: Two-sample test with pairwise-comparisons for model-free setting

Our test is presented in Algorithm 1. The test statistic (8) is designed such that it has an
expected value of zero under the null and a large expected value under the alternate. That
is, the test statistic (8) is designed symmetrically across P and Q such that it has expected
value zero, if P = Q. Similarly, to reject the null with high probability, under the alternate
|||P −Q|||F ≥ εd, the test statistic (8) is designed to increase as |||P −Q|||F increases. In fact,
we will later show in Section 6.2 that the test statistic increases quadratically with |||P −Q|||F.
The following theorem characterizes the performance of this test, thereby establishing an
upper bound on the sample complexity of this two-sample testing problem in a random-design
setting.

Theorem 1 Consider the testing problem in (1) withM as the class of all pairwise probability
matrices. Suppose the number of (per pair) comparisons between the two populations is fixed,
kpij = kqij = k (for all i 6= j in the asymmetric setting and all i < j in the symmetric setting).
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There is a constant c > 0 such that for any ε > 0, if k > 1 and ε2 ≥ c
1

kd
, then the sum of

Type I error and Type II error of Algorithm 1 is at most 1
3 .

The proof is provided in Section 6.2. Theorem 1 provides a guarantee of correctly distin-
guishing between the null and the alternate with probability at least 2

3 . The value 2
3 is

closely tied to the specific threshold used in the test above. More generally, for any specified
constant ν ∈ (0, 1), the test achieves a Type I error at most ν by setting the threshold as

d

√
24(1− ν)

ν
. Similarly, for any specified constant ν ∈ (0, 1), the test achieves a Type II

error at most ν, if ε2 ≥ ν1

kd
, wherein ν1 > 0 is a constant that depends on ν. The power of

our test approaches 1 at the rate
c

kdε2
, where c is some constant, that is the power of our

test increases as ε increases.
Moreover, if the sample complexity is increased by some factorR, then running Algorithm 1

on R independent instances of the data and taking the majority answer results in error
probability that decreases exponentially with R as (exp(−2R)), while the sample complexity
increases only linearly in R. One can thus have a very small probability of error of, for

instance, d−50 with k = Õ

(
1

dε2

)
. Later, in Proposition 4, we show that under the fixed

k condition, kpij = kqij = k, we have that k > 1 is necessary for our two-sample testing
problem. It is also interesting to note that the estimation rate to test the hypotheses in (1)
is k = O

(
log(d)
ε2

)
while the rate for our testing algorithm is k = O

(
1
dε2

)
.

Now, we consider the random-design setup wherein for every pair of items (i, j), the
sample sizes kpij , k

q
ij are drawn i.i.d. from some distribution D supported over non-negative

integers. Let µ and σ denote the mean and standard deviation of distribution D respectively,
and let p1 := PrZ∼D(Z = 1). We assume that D has a finite mean and that

µ ≥ c1p1; µ ≥ c2σ, (9)

for some constants c1 > 1 and c2 > 1. Many commonly occurring distributions obey these
properties, for instance, Binomial distribution, Poisson distribution, geometric distribution
and discrete uniform distribution, with appropriately chosen parameters.

Corollary 2 Consider the testing problem in (1) withM as the class of all pairwise proba-
bility matrices. Suppose the number of comparisons in the two populations kpij , k

q
ij are drawn

i.i.d. from some distribution D that satisfies (9) (for all i 6= j in the asymmetric setting and

all i < j in the symmetric setting). There is a constant c > 0 such that if ε2 ≥ cmax{ 1

µd
,

1

d2
},

then the sum of Type I error and Type II error of Algorithm 1 is at most 1
3 .

The proof of Corollary 2 is in Section 6.1. In Corollary 2, we see that the even under the
random-design setup, our test achieves the same testing rate as in the per-pair fixed-design
setup considered in Theorem 1, for µ ≤ d.

We now evaluate the performance of Algorithm 1 when kpij , k
q
ij are drawn i.i.d. from one

of the following commonly occurring distributions. Consider any arbitrary matrices P and
Q. We specialise Corollary 2 to these distributions by stating the sample complexity that

9
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guarantees that the probability of error is at most 1
3 in the two-sample testing problem (1),

wherein constant c may depend on c1, c2 for each distribution. Note that, as in Corollary 2,
we assume ε2d2 ≥ c′ where c′ is some positive constant

• Binomial distribution (kpij , k
q
ij

iid∼ Bin(n, a)) : Sufficient condition n ≥ cmax{ 1

adε2
,

1

a
}.

• Poisson distribution (kpij , k
q
ij

iid∼ Poisson(λ)) : Sufficient condition λ ≥ cmax{ 1

dε2
, 1}.

• Geometric Distribution (kpij , k
q
ij

iid∼ Geometric(a)): Sufficient condition
1

a
≥ cmax{ 1

dε2
, 1}.

• Discrete Uniform Distribution (kpij , k
q
ij

iid∼ Unif(0, n)): Sufficient condition n ≥ cmax{ 1

dε2
, 1}.

Next, we note that a sharper but non-explicit threshold in Algorithm 1 can be obtained
using the permutation test method to control the Type I error. We detail this approach in
Algorithm 2.

Input : Samples Xij , Yij denoting the number of times item i beat item j in the
observed kpij , k

q
ij pairwise-comparisons from populations denoted by probability

matrices P,Q respectively. Significance level α ∈ (0, 1). Iteration count γ.
(1) Compute the test statistic T defined in (8).
(2) For `← 1 to γ :

(i) Repeat this step independently for all i 6= j in the asymmetric setting and for
all i < j in the symmetric setting. Collect the (kpij + kqij) samples together and
reassign kpij of the samples chosen uniformly at random to P and the rest to Q.
Compute the new values of Xij and Yij based on this reassignment.
(ii) Using the new values of Xij and Yij , recompute the test statistic in (8).
Denote the computed test statistic as T`.

Output : Reject the null if p =
∑γ

`=1
1
γ1(T` − T ) < α.

Algorithm 2: Permutation test with pairwise-comparisons for model-free setting.

More generally, the results in Theorem 1 and Corollary 2 (and the following converse results
in Theorem 3 and Proposition 4) also apply to the two-sample testing problem of comparing
two Bernoulli matrices (or vectors) P and Q, wherein each entry of the matrices (or vectors)
is a Bernoulli parameter. In this problem, we want to test whether two Bernoulli matrices are
identical or not, and we have access to some observations of some (or all) of the underlying
Bernoulli random variables.

We conclude this section with a proof sketch for Theorem 1; the complete proof is provided
in Section 6.1 and 6.2.

Proof Sketch for Theorem 1. The test statistic T is designed to ensure that EH0 [T ] = 0
for any arbitrary pairwise probability matrices P,Q such that P = Q, and for any values of
{kpij , k

q
ij}1≤i,j≤d. We lower bound the expected value of T under the alternate hypothesis

as EH1 [T ] ≥ ckd2ε2 (Lemma 10). Next, we show that the variance of T is upper bounded
under the null by 24d2 and under the alternate by 24d2 + 4kd2ε2 (Lemma 11). These lemmas
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allow us to choose a suitable threshold value of 11d. Finally, using Chebyshev’s inequality
comparing the square of expectation with the variance, we obtain the desired upper bound
on the sample complexity with guarantees on both Type I and Type II errors.

3.2 Converse results and the role of modeling assumptions

In this section we look at the role of modeling assumptions on the pairwise-comparison
probability matrices in the two-sample testing problem in (1).

Lower bound for MST, WST, and model-free classes. Having established an upper
bound on the rate of two-sample testing without modeling assumptions on the pairwise-
comparison probability matrices P,Q, we show matching lower bounds that hold under the
MST class. The WST and model-free classes are both supersets of MST, and hence the
following guarantees automatically apply to them as well.

Theorem 3 Consider the testing problem in (1) withM as the class of matrices described
by the MST model. Suppose we have k comparisons for each pair (i, j) from each population.
There exists a constant c > 0, such that the critical radius εM is lower bounded as ε2M >

c

kd
.

The lower bound on the rate matches the rate derived for Algorithm 1 in Theorem 1, thereby
establishing the minimax optimality of our algorithm (up to constant factors). The MST class
is a subset of the WST model class. This proves that Algorithm 1 is simultaneously minimax
optimal under the MST and WST modeling assumptions in addition to the model-free
setting. We provide a proof sketch for Theorem 3 in Section 3.2.1; the complete proof is in
Section 6.3.3.

Necessity of µ > p1. Recall that the upper bound derived in Theorem 1 under the model-
free setting holds under the assumption that k > 1 and, similarly, Corollary 2 holds under
the assumption that µ ≥ c1p1 with c1 > 1, as stated in (9). We now state a negative result
for the case µ ≤ p1, which implies that kpij , k

q
ij ≤ 1 ∀ (i, j) under the random-design setup

and k ≤ 1 under the per-pair fixed-design setup.

Proposition 4 Consider the testing problem in (1) with M as the class of all pairwise
probability matrices. Suppose we have at most one comparison for each pair (i, j) from each
population (for all i 6= j in the asymmetric setting and all i < j in the symmetric setting).
Then, for any value of ε ≤ 1

2 , the minimax risk defined in (2) is at least 1
2 , thus, ε

2
M ≥

1
4 .

We provide some intuition for this result here. If kpij = kqij ≤ 1∀ (i, j), then at best one has
access to first order information of each entry of P and Q, that is, one has access to only
Pr(Xij = 1),Pr(Yij = 1),Pr(Xij = 1, Yij = 1) for each pair (i, j). This observation allows us
to construct a case wherein the null and the alternate cannot be distinguished from each
other by any test, due to the inaccessibility of higher order information of the underlying
Bernoulli random variables. The complete proof is provided in Section 6.3.2.

Lower bound for parameter-based class. We now prove an information-theoretic
lower bound for our two-sample testing problem wherein the probability matrices follow the
parameter-based model.

11
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Theorem 5 Consider the testing problem in (1). Consider any arbitrary non-decreasing
function f : R→ [0, 1] such that f(θ) = 1− f(−θ) ∀ θ ∈ R, withM as the parameter-based
class of probability matrices associated to the given function. Suppose we have k comparisons
for each pair (i, j) from each population. There exists a constant c > 0, such that the critical
radius εM is lower bounded as ε2M >

c

kd3/2
.

This lower bound also applies to probability matrices in the SST class described in (5). We
provide a brief proof sketch in Section 3.2.1; the complete proof is in Section 6.3.4. Observe
that the lower bound on testing rate obtained in Theorem 5 does not match the testing rate
obtained in Theorem 1. In the next part of this section, we provide a computational lower
bound in place of a statistical lower bound to bridge this gap.

Computational lower bound for SST class. Given the polynomial gap between The-
orem 1 and Theorem 5, it is natural to wonder whether there is another polynomial-time
testing algorithm for testing under the SST and/or parameter-based modeling assumption.
We answer this question in the negative, for the SST model and single observation model
(k = 1), conditionally on the average-case hardness of the planted clique problem (Jerrum,
1992; Kučera, 1995). In informal terms, the planted clique conjecture asserts that there is no
polynomial-time algorithm that can detect the presence of a planted clique of size κ = o(

√
d)

in an Erdős-Rényi random graph with d nodes. We construct SST matrices that are similar
to matrices in the planted clique problem and as a direct consequence of the planted clique
conjecture, we have the following result.

Theorem 6 Consider the testing problem in (1) withM as the class of matrices described
by the SST model. Suppose the planted clique conjecture holds. Suppose we have one
comparison for each pair (i, j) from each population. Then there exists a constant c > 0
such that for polynomial-time testing algorithms the critical radius εM is lower bounded as
ε2M >

c

d(log log(d))2
.

Thus, for k = 1, the computational lower bound on the testing rate for the SST model
matches the rate derived for Algorithm 1 (up to logarithmic factors). The proof of Theorem 6
is provided in Section 6.3.5. We devote the rest of this section to a sketch of the proofs of
Theorem 3 and Theorem 5.

3.2.1 Proof sketches for Theorem 3 and Theorem 5

To prove the information-theoretic lower bound under the different modeling assumptions,
we construct a null and alternate belonging to the corresponding class of probability matrices.
The bulk of our technical effort is devoted to upper bounding the chi-square divergence
between the probability measure under the null and the alternate. We then invoke Le Cam’s
lower bound for testing to obtain a lower bound on the minimax risk which gives us the
information-theoretic lower bound. We now look at the constructions for the two modeling
assumptions.
Lower bound construction for MST class (Section 6.3.3). We construct a null and alternate
such that under the null P = Q = [1

2 ]d×d and under the alternate P = [1
2 ]d×d and Q ∈ Θ

with 1
d |||P −Q|||F = ε. For this, we define a parameter η ∈ [0, 1

2 ] and then define Θ as a set of
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matrices in which the upper right quadrant has exactly one entry equal to 1
2 + η in each row

and each column and the remaining entries above the diagonal are 1
2 . The entries below the

diagonal follow from the shifted-skew-symmetry condition. We consider the alternate where
Q is chosen uniformly at random from the set Θ of probability matrices in MST class.
Lower bound construction for parameter-based class (Section 6.3.4). The construction is same
as the construction given above except we define a different set Θ of probability matrices.
According to the parameter-based model, the matrices P and Q depend on the vectors
wp ∈ Rd and wq ∈ Rd respectively. Now, for simplicity in this sketch, suppose that d is even.
We set wp = [0, · · · , 0], which fixes pij = 1

2 ∀ (i, j). Consider a collection of vectors each with
half the entries as δ and the other half as −δ, thereby ensuring that

∑
i∈[d]wi = 0. We set δ

to ensure that each of the probability matrices induced by this collection of vectors obey
1
d |||P −Q|||F = ε. We then consider the setting where Q is chosen uniformly at random from
the set of pairwise-comparison probability matrices induced by the collection of values of wQ.

4. Two-sample testing with partial or total ranking data

In this section, we extend our work from the previous sections to two-sample testing for
ranking data. We focus on the two-sample testing problem where the two sets of samples
from two potentially different populations comprise of partial or total rankings over various
subsets of d items. Specifically, we consider the case where a partial ranking is defined as
a total ranking over some subset of d items. Let λP and λQ be two unknown probability
distributions over the set of all d-length rankings. We observe two sets of partial or total
rankings, one set from each of two populations. The partial rankings in the first set are
assumed to be drawn i.i.d. according to λP , and the partial rankings in second set are drawn
i.i.d. according to λQ. Each sample obtained is a ranking over a subset of items of size
ranging from 2 to d. Henceforth, we use the term total ranking to specify a ranking over all
d items. We assume there are no ties.

Hypothesis test Our goal is to test the hypothesis,

H0 : λP = λQ

H1 : λP 6= λQ.
(10)

In the sequel, we consider this hypothesis testing problem under certain modeling assumptions
on λP and λQ.

4.1 Models

We now describe two partial ranking models that we analyse subsequently.

Marginal probability based model This is a non-parametric partial ranking model that
is entirely specified by the probability distribution over all total rankings, given by λP in
the first population and λQ in the second population. The distribution λ defines the partial
ranking model for the corresponding population as follows. Let Sd denote the set of all total
rankings over the d items. Consider some subset of items Ω ⊆ [d] of size m ∈ {2, · · · , d}, and
let τΩ be a ranking of the items in this set. Then, we define a set of all total rankings that
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obey the partial ranking τΩ as

S(τΩ) = {τ ∈ Sd : τ(τ−1
Ω (1)) < τ(τ−1

Ω (2)) < · · · < τ(τ−1
Ω (m))}. (11)

The marginal probability based partial ranking model gives the probability of a partial
ranking τΩ as

P(τΩ) =
∑

τ∈S(τΩ)

λ(τ), (12)

where λ represents λP or λQ for the corresponding population. This model defines the
probability of a partial ranking similarly to the non-parametric choice model described in
Farias et al. (2013). In fact, their choice model defined over sets of size 2 is the same as
our model over partial rankings of size 2. Our model has the desired property that given a
partial ranking over the set Ω containing item i and item j, the marginal probability that
item i is ranked higher than item j, denoted by P(i � j), does not depend on other items in
set Ω. Subsequently, the marginal probability is expressed as

P(i � j|Ω) =
∑

τ∈S(τΩ),τ(i)<τ(j)

λ(τ)

=
∑

τ∈Sd,τ(i)<τ(j)

λ(τ)

Now, for the two populations we define the marginal probability of pairwise-comparisons over
items (i, j) as pij and qij for all pairs (i, j) with i < j. Note that this model has the property
that pij = 1− pji and qij = 1− qji for all (i, j). We also note that the Plackett-Luce model
described next is a subset of this model.

Plackett-Luce model This model introduced by Luce (1959) and Plackett (1975) is a
commonly used parametric model for ranking data. In this model, each item has a notional
quality parameter wi ∈ R, ∀ i ∈ [d]. Under the Plackett-Luce model, the partial rankings in
each population are generated according to the corresponding underlying quality parameters,
namely wPi∈[d] and w

Q
i∈[d]. The weight parameters completely define the probability distribution

λ over the set of all total rankings. In this model, a partial (or total) ranking τ is generated
in a sequential manner where each item in a ranking is viewed as chosen from the set of
items ranked lower. The probability of choosing an item i from any set S ⊆ [d] is given by

exp(wi)∑
(i′∈S) exp(wi′ )

. To explain the sequential generation procedure, we show an example here,

P(i1 � i2 � · · · � i`) =
∏̀
j=1

exp(wij )∑`
j′=j exp(wij′ )

.

An important property of the Plackett-Luce model is that the marginal probability that item
i is ranked higher than item j, P(i � j) does not depend on the other items in the ranking,
in fact, P(i � j) = exp(wi)

(exp(wi)+exp(wj)) . For each pair (i, j), we denote the marginal probability
P(i � j) corresponding to the parameters wPi∈[d] as pij . Similarly, we denote the marginal

probability P(i � j) corresponding to the parameters wQi∈[d] as qij . These pairwise marginal
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probabilities pij and qij are collected in pairwise-comparison probability matrices P and Q
respectively.

Finally, with this notation, we specialise the hypothesis testing problem in (10) for the
two partial ranking models described above, in terms of the pairwise probability matrices P
and Q. For any given parameter ε > 0, we define the two-sample testing problem as

H0 : P = Q

H1 :
1

d
|||P −Q|||F ≥ ε.

(13)

We note that under the Plackett-Luce model, the null condition in (10) is equivalent to the
null condition in (13). Moreover, under the Plackett-Luce model, difference in two probability
distributions λP and λQ is captured by difference in the pairwise probability matrices P and
Q. Thus, we specialise the alternate condition in (10) in terms of scaled Frobenius distance
between the pairwise probability matrices, P and Q, denoted by the parameter ε, to get the
alternate condition in (13). Furthermore, under the marginal probability based model, the
null condition in (10) implies P = Q whereas the converse is not true. That is, there exist
pairs of probability distributions over the set of all d-length rankings λP and λQ, that follow
the marginal probability based model with λP 6= λQ, such that their corresponding pairwise
probability matrices P and Q are equal. Thus, under the marginal probability based model,
by conducting a test for the hypothesis testing problem in (13) that controls the Type I error
at level α, we get control over Type I error at level α for the hypothesis testing problem in (10).

We are now ready to describe our main results for two-sample testing with partial (or total)
ranking data.

4.2 Main results

Our testing algorithms for ranking data build upon the test statistic in Algorithm 1. To test
for difference in probability distributions λP and λQ, we first use a rank breaking method
to convert the data into pairwise-comparisons, on which we apply the test statistic in (8).
Given a rank breaking method, denoted by R, and rankings from the two populations,
SPi and SQi for i ∈ [N ], then the rank breaking algorithm yields pairwise-comparison
data as R(SPi∈[N ]

) = {kpij , Xij}(i,j)∈[d]2 and, similarly, R(SQi∈[N ]
) = {kqij , Yij}(i,j)∈[d]2 . Here,

kpij , k
q
ij , Xij , Yij represent the pairwise-comparison data as defined in Section 2.1. Now, we

describe three rank breaking methods that we subsequently use in our testing algorithms,
Algorithm 3 and Algorithm 4.

1. Random disjoint: In this method, denoted by RR, given a set of N partial (or total)
rankings, we randomly break each ranking up into pairwise-comparisons such that no
item is in more than one pair. In this method, each m-length ranking yields bm2 c pairwise-
comparisons.

2. Deterministic disjoint: We use this rank breaking method, denoted by RD, when
we have N total rankings. In this method, we deterministically break each ranking
into pairwise-comparisons so that no item is in more than one pair. So, we get bd2c
pairwise-comparisons from each total ranking. First, we want the number of samples
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to be divisible by d, so we throw away (N mod d) rankings chosen randomly. Then
arbitrarily without looking at the data, partition the remaining rankings into bNd c disjoint
subsets each containing d rankings. Within each subset, we convert the d rankings into
dbd2c pairwise-comparisons deterministically such that we observe at least one comparison
between each pair (i, j) ∈ [d] with i < j. We keep exactly one pairwise-comparison for
each pair in a subset. In this manner, we get to observe exactly bNd c comparisons between
each pair of items.

3. Complete: In this method, denoted by RC, given a set of N partial (or total) rankings,
we break each ranking into all possible pairwise-comparisons for that ranking. In this
method, each m-length ranking yields

(
m
2

)
pairwise-comparisons.

Now, equipped with the rank breaking methods, we describe our first result which provides
an algorithm (Algorithm 3) for the two-sample testing problem in (13) for the Plackett-Luce
model, and associated upper bounds on its sample complexity.

Input : Two sets SP and SQ of m-length partial rankings, where 2 ≤ m ≤ d. The
two sets of partial rankings, SP and SQ correspond to pairwise probability matrices
P and Q respectively, according to the Plackett-Luce model. Rank breaking
method, R ∈ {RR, RD, RC}.

(1) Using the rank breaking method get

{kpij , Xij}(i,j)∈[d]2,i<j ← R(SP ); {kqij , Yij}(i,j)∈[d]2,i<j ← R(SQ).

(2) Execute Algorithm 1.
Algorithm 3: Two-sample testing with partial ranking data for Plackett-Luce model.

We note that both Algorithm 3 and Algorithm 4, defined in this section, can be used with
any of the three rank breaking methods described. The subsequent guarantees provided
depend on the rank breaking method used, as we see in Theorem 7 and Theorem 8.
In our results for two-sample testing under the Plackett-Luce modeling assumption, we
consider two cases. In the first case, for some m ∈ {2, · · · , d− 1}, each sample is a ranking
of some m items chosen uniformly at random from the set of d items. In the second
case, the samples comprise of total rankings, that is, m = d. The following two theorems
characterize the performance of Algorithm 3 thereby establishing an upper bound on the
sample complexity of the two-sample testing problem defined in (13). In these theorems
we use the disjoint rank breaking methods so that the pairwise-comparisons created from a
ranking are independent.

Theorem 7 Consider the testing problem in (13) where pairwise probability matrices P
and Q follow the Plackett-Luce model. Suppose we have N samples, where for some m ∈
{2, · · · , d − 1}, each sample is a ranking of some m items chosen uniformly at random
from the set of d items. Then, there are positive constants c, c0, c1 and c2 such that if

N ≥ c
d2 log(d)

m
d c0

dε2
e and ε ≥ c1d

−c2, then Algorithm 3 with the “Random disjoint” rank

breaking method will correctly distinguish between P = Q and 1
d |||P −Q|||F ≥ ε, with probability

at least 2
3 .
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The proof of Theorem 7 is provided in Section 6.4. The lower bound assumption on ε in
Theorem 7 is to ensure that the sufficient number of pairwise comparisons needed after
applying the random disjoint rank breaking algorithm, is not very large. Theorem 7 is a
combined result of the random disjoint rank breaking algorithm and the result in Theorem 1.
When we have total rankings, Algorithm 3 with the “Deterministic disjoint” rank breaking
method yields an improvement in the sample complexity by a logarithmic factor. We state
this formally in the following theorem.

Theorem 8 Consider the testing problem in (13) where pairwise probability matrices P and
Q follow the Plackett-Luce model. Suppose we have N samples of total rankings from each
population. Then, there are positive constants c, c1 and c2 such that if N ≥ 2dd c

dε2
e and

ε ≥ c1d
−c2, then Algorithm 3 with the “Deterministic disjoint” rank breaking method will

correctly distinguish between P = Q and 1
d |||P −Q|||F ≥ ε, with probability at least 2

3 .

The proof of Theorem 8 is provided in Section 6.5. These two results provide an upper bound
on the sample complexity when using partial (and total) rankings for the two-sample testing
problem in (13) under the Plackett-Luce model. In Theorem 7 and Theorem 8 the lower
bound of 2

3 on probability of success is tied to the specific threshold used in Algorithm 1
in the same manner as described for Theorem 1. Specifically, for any constant ν ∈ (0, 1),
Algorithm 3 can achieve a probability of error at most ν with the same order of sample
complexity as mentioned in Theorem 7 and Theorem 8.

Algorithm 3 addresses the problem of two-sample testing under the Plackett-Luce model.
Now, we provide a permutation test based algorithm for the more general, non-parametric
model, namely, marginal probability based model. The permutation test method described
in Algorithm 4 gives a sharper (implicit) threshold than that in Algorithm 3. Note that
Algorithm 4 doesn’t require any assumptions on the length of the partial-ranking data, the
partial-ranking data in each population can be of varying lengths. Moreover, as we will see in
Theorem 9, the Type I error guarantee of Algorithm 4 holds even if the pairwise-comparisons
created from the rank breaking method are dependent, hence the guarantee does not depend
on the choice of the rank breaking method.

The key difference between the permutation testing algorithm for pairwise-comparison
data, described in Section 3.1, and the permutation testing algorithm for partial ranking
data, described in Algorithm 4, is the shuffling step. In our partial ranking based setup, each
ranking sample is obtained independent of all else while the pairwise-comparisons obtained
from a rank are not necessarily independent of each other. Hence, in the partial ranking
based permutation testing algorithm (Algorithm 4), we re-distribute ranking samples between
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the two populations and not the pairwise-comparisons.

Input : Two sets of partial rankings SP and SQ from two populations corresponding
to the probability distributions λP and λQ. Significance level α ∈ (0, 1). Rank
breaking method, R ∈ {RR, RD, RC}. Iteration count γ.

(1) Using the rank breaking method get

{kpij , Xij}(i,j)∈[d]2,i<j ← R(SP ); {kqij , Yij}(i,j)∈[d]2,i<j ← R(SQ).

(2) Compute the test statistic T defined in (8).
(3) {Repeat γ times} Put the samples in SP and SQ together and reassign the
samples at random such that the number of samples assigned to each population is
the same as before. Repeat Step 1 and Step 2. Denote the computed test statistic
as T` for the `th iteration.
Output : Reject the null if p =

∑γ
`=1

1
γ1(T` − T ) < α.

Algorithm 4: Two-sample testing algorithm with partial ranking data for marginal
probability based model.

We now show that Algorithm 4 controls the Type I error of the two-sample testing problem
in (10) under the more general, marginal probability based partial ranking model. This result
relies on considerably weaker assumptions than Theorem 7 and Theorem 8. In particular, we
do not assume that each ranking is of the same length. We only assume that the (sub)set of
items ranked in each sample from each population is sampled independently from the same
distribution. Specifically, let there be any probability distribution over all non-empty subsets
of [d]. Then, the set of items ranked in each sample for each population is sampled i.i.d.
from this distribution. Moreover, the number of samples from the two populations need not
be equal.

Theorem 9 Consider any probability distributions λP and λQ and the two-sample testing
problem in (10). Suppose we have partial ranking data from each population such that the
sets of items ranked in each sample in each population is sampled i.i.d. from any probability
distribution over all non-empty subsets of [d]. Suppose the partial ranking data follows the
marginal probability based model. Then, for any significance level α ∈ (0, 1) the permutation
testing method of Algorithm 4 has Type I error at most α.

The proof of Theorem 9 is provided in Section 6.6. Recall that the Plackett-Luce model is a
special case of the marginal probability based model, and hence as a direct corollary, the
guarantees for Algorithm 4 established in Theorem 9 also apply to the Plackett-Luce model.

5. Experiments

In this section, we present results from experiments on simulated and real-world data sets,
to gain a further understanding of the problem of two-sample testing on pairwise-comparison
data.
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Figure 1: Power of the testing algorithm versus the scaling factor of the sample size parameter
n = 1

adε2 . We use Algorithm 2 which uses the test statistic in (8) with the permutation testing
method. The test is conducted at a significance level of 0.05 (indicated by the horizontal line at
y = 0.05). Unless specified otherwise, the parameters are fixed as d = 20, ε = 0.05, a = 1.

5.1 Pairwise-comparison data

We now describe real-world experiments and synthetic simulations we conduct for two-
sample testing on pairwise-comparison data. In these experiments, we use the test statistic
we designed in Algorithm 1 along with the permutation testing method as described in
Algorithm 2 to obtain an implicit value of the threshold and control Type I error.

5.1.1 Synthetic simulations

We conduct two sets of experiments via synthetic simulations. The first set of experiments
empirically evaluates the dependence of the power of our test (Algorithm 1) with respect to
individual problem parameters. In each of the simulations, we set the significance level to be
0.05. Specifically, given the problem parameters n, a, d and ε, we consider the random-design
setting with kpij , k

q
ij

iid∼ Bin(n, a). We consider the asymmetric and model-free setting, fix
P = [1

2 ]d×d and set Q = P + ∆ where ∆ is sampled uniformly at random from the set of all
matrices in [−1

2 ,
1
2 ]d×d with 1

d |||∆|||F = ε. In Figure 1a, b and c, we vary the parameter d, ε
and a respectively, keeping the other parameters fixed. Recall that our results in Theorem 1
and Corollary 2 predict the sample complexity as n = Θ( 1

adε2
). To test this theoretical

prediction, we set the sample size n (on the x-axis) as n = 1
adε2

, and plot the power of the
test on the y-axis. Each plot point in Figure 1 is obtained by averaging over 400 iterations of
the experiment, and the threshold for the test is obtained by running the permutation test
method over 5000 iterations. Observe that, interestingly in each figure, the curves across all
values of the varied parameters nearly coincide, thereby validating the sample complexity
predicted by our theoretical results.

The second set of experiments empirically investigates the role of the underlying pairwise-
comparison models in two-sample testing with our test (Algorithm 1). We consider the
random-design setup in the symmetric setting with kpij , k

q
ij

iid∼ Bin(n, a) ∀ i < j. We generate
the matrices P and Q in three ways: model-free, BTL and SST. In the model-free setting, we
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Figure 2: Power of our test (Algorithm 2) under three different models for pairwise-comparisons: BTL,
SST and the model-free setting. The parameters of the problem are set as d = 20, ε2 = 0.05, a = 1
and the test is conducted at a significance level of 0.05 (indicated by the horizontal line at y = 0.05).

generate P and Q in a manner similar to the first set of simulations above, with the additional
constraints ∆ji = 1−∆ij ∀ i ≤ j. For the BTL and SST models, we fix P = [1

2 ]d×d. For the
BTL model, we choose wp according to the construction in Section 6.3.4 to obtain Q. For the
SST model, we set Q = P + ∆, where matrix ∆ is generated as follows. We generate ∆ by
arranging

(
d
2

)
random variables uniformly distributed over [0, 1], in a row-wise decreasing and

column-wise increasing order in the upper triangle matrix (∆ij = 1−∆ji) and normalizing
to make 1

d |||∆|||F = ε. This construction ensures that ∆ lies in the SST class, and since matrix
P is a constant matrix, Q is also guaranteed to lie in the SST class. The results of the
simulations are shown in Figure 2. The results show that in the settings simulated, the
power of the testing algorithm is identical in all the models considered. This leaves an open
question whether there exists a tighter information-theoretic lower bound for the SST and
the parameter-based model that matches the upper bound derived for the test in Algorithm 1
or if there exists a test statistic for these models with a better rate.

5.1.2 Real-world data

In this section, we describe the results of our experiments on two real-world data sets. In
these experiments, we use Algorithm 2 to obtain a p-value for the experiment.

Ordinal versus cardinal An important question in the field of crowdsourcing and data-
elicitation from people is whether pairwise-comparisons provided by people (ordinal responses)
are distributed similarly to if they provide ratings (cardinal responses) which are then
converted to pairwise-comparisons (Shah et al., 2016; Raman and Joachims, 2014). In
this section, we use the permutation based two-sample test described in Algorithm 2 to
address this question. We use the data set from Shah et al. (2016) comprising six different
experiments on the Amazon Mechanical Turk crowdsourcing platform. In each experiment,
workers are asked to either provide ratings for the set of items in that experiment (age
for photo given, number of spelling mistakes in a paragraph, distance between two cities,
relevance of web-based search results, quality of taglines for a product, frequency of a piano
sound clip) or provide pairwise-comparisons. The number of items in each experiment ranged
from 10 to 25. For each of the six experiments, there were 100 workers, and each worker
was assigned to either the ordinal or the cardinal version of the task uniformly at random.
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The first set of samples corresponds to the elicited ordinal responses and the second set of
samples are obtained by converting the elicited ratings to ordinal data. We have a total of
2017 ordinal responses and 1671 cardinal-converted-to-ordinal responses. More details about
the data set and experiment are provided in the appendix.

Using Algorithm 2, we test for difference in the two resulting distributions for the entire
data set (d = 74). We observe that the test rejects the null with a p-value of 0.003, thereby
concluding a statistically significant difference between the ordinal and the cardinal-converted-
to-ordinal data.

European football leagues In the second data set, we investigate whether the relative
performances of the teams (in four European football leagues: English Premier League,
Bundesliga, Ligue 1, La Liga) changed significantly from the 2016-17 season to the 2017-18
season. The leagues are designed such that each pair of teams plays twice in a season (one
home, one away game), so we have at most two pairwise-comparisons per pair within a league
(we do not consider the games that end in a draw). Each league has 15-17 common teams
across two consecutive seasons. This gives a total of 801 and 788 pairwise-comparisons in the
2016-17 and 2017-18 seasons respectively. More details about the experiment are provided in
the appendix.

Using the test statistic of Algorithm 1 with permutation testing, we test for a difference
in the two resulting distributions for the entire data set (d = 67). We observe that the test
fails to reject the null with a p-value of 0.971, that is, it does not recognize any significant
difference between the relative performance of the European football teams in 2017-18 season
and the 2016-17 season from the data available. Running the test for each league individually
also fails to reject the null.

5.2 Partial and total ranking data

We now describe the experiments we conducted on real-world data for two-sample testing on
partial (and total) ranking data. In these experiments, we use the test statistic (8) along
with the permutation testing method, as explained in Algorithm 4.

For our experiments, we use the “Sushi preference data set” Kamishima (2003), in which
subjects rank different types of sushi according to their preferences. The data set contains
two sets of ranking data. In the first set, the subjects are asked to provide a total ranking
over 10 items (popular types of sushi). In this set, all subjects are asked to rank the same 10
objects. This set contains 5000 such total rankings.

In the second set of ranking data, a total of 100 types of sushi are considered. We first
describe how the 100 types are chosen. The authors in Kamishima (2003) surveyed menu
data from 25 sushi restaurants found on the internet. For each type of sushi sold at the
restaurant, they counted the number of restaurants that offered the item. From these counts,
they derived the probabilities that each item would be supplied. By eliminating unfamiliar
or low frequency items, they came up with a list of 100 items. Each subject in this set is
asked to rank a subset of 10 items randomly selected from the 100 items, according to the
probability distribution described above. This set contains responses from 5000 subjects.

In addition, this data set contains demographic information about all the subjects,
including their

(a) Gender {Male, Female}
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(a) Grouping by gender
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(b) Grouping by age
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(c) Grouping by primary region of residence until
15 years old
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(d) Grouping by current region of residence

Figure 3: Empirical power of our test statistic T with the permutation testing method described in
Algorithm 4 in testing for difference in sushi preference from the first set of responses with d = 10.
The responses obtained comprise of total rankings from each subject. Test results are shown for
differences between demographic division based on the information available. Two different rank
breaking methods are used for our algorithm, namely, “Random Disjoint” and “Complete”. We also
show the results for kernel-based two-sample testing with Kendall’s kernel and Mallows’ kernel as in
Mania et al. (2018). The x-axis shows the number of samples (total rankings) from each group used
to conduct the test and the y-axis shows the empirical power of our test. The test is conducted at a
significance level of 0.05 (indicated by the horizontal line at y = 0.05). Empirical power is computed
as an average over 100 trials.

(b) Age {Above 30, Below 30}

(c) Current region of residence {East, West}

(d) Primary region of residence until 15 years old {East, West}.

Using our testing algorithm, we test for a difference in preferences across the two sections
within each demographic mentioned above. In the first set of experiments, we implement the
permutation testing method with our test statistic (8) on the first set of ranking data with
d = 10 for each demographic division. We show the results in Figure 3 for two rank-breaking
methods, namely, “Random Disjoint” and “Complete”. In addition, we show the results of two
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(a) Grouping by gender
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(b) Grouping by age
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(c) Grouping by primary region of residence until
15 years old
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(d) Grouping by current region of residence

Figure 4: Empirical power of our test statistic T with the permutation testing method described in
Algorithm 4 in testing for difference in sushi preference from the first set of responses with d = 100.
Test results are shown for differences between demographic division based on the information available.
Two different rank breaking methods are used, namely, “Random Disjoint” and “Complete”. The
x-axis shows the number of samples (total rankings) from each sub-group used to conduct the test
and the y-axis shows the empirical power of our test. The test is conducted at a significance level of
0.05 (indicated by the horizontal line at y = 0.05). Empirical power is computed as an average over
100 iterations.

kernel-based two-sample testing methods for total rankings designed in Mania et al. (2018),
namely, Kendall’s kernel and Mallows’ kernel. We randomly sub-sampled n samples from
each sub-group of subjects and used 200 permutations to determine the rejection threshold
for the permutation test. In these experiments, we show the empirical power of our testing
method, which is the fraction of times our test rejected the null in a total of 100 trials. We
show all the results of using this method on the sushi data set in Figure 3. Across each
demographic division, our test detects a statistically significant difference in distribution over
sushi preferences for the 10 types of sushi included. Moreover, our testing algorithm with
“Complete” rank breaking method performs competitively with the kernel-based two-sample
testing methods introduced in Mania et al. (2018).
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We note that since our testing algorithms also work with partial ranking data, our testing
algorithms are much more general than the testing algorithms in Mania et al. (2018), as we
demonstrate in our next set of experiments on the second sushi preference data set. We use
Algorithm 4 to test if the preferences of the subjects in the second sushi data set also varies
across the different demographics. Recall that this data set has d = 100 items in total but
each ranking only ranks a subset of 10 items. The other details of the experiment are the
same as the previous experiment. The results are shown in Figure 4. Again, across each
demographic, our test detects a statistically significant difference in distribution over sushi
preferences for the 100 types of sushi included.

6. Proofs

This section is devoted to the proofs of our main results. In Section 6.1 and Section 6.2 we
prove the positive results from Section 3.1, and in Section 6.3 we prove the converse results
from Section 3.2. Lastly, Sections 6.4-6.6 are devoted to proofs of results under the partial
(or total) ranking setting mentioned in Section 4.2.

Throughout these and other proofs, we use the notation c, c′, c0, c1 and so on to denote
positive constants whose values may change from line to line.

6.1 Proof of Corollary 2

In this section we present the complete proof of Corollary 2. We first present the proof for
the random-design setup described in Corollary 2 and then specialise the proof in Section 6.2
to the per-pair fixed-design setup in Theorem 1. To prove our result, we analyse the
expected value and the variance of the test statistic T in Algorithm 1 in the following two
lemmas. Recall that under the random-design setup kpij , k

q
ij are distributed independently

and identically according to some distribution D that satisfies the conditions in (9).

Lemma 10 For T as defined in Algorithm 1, with kpij , k
q
ij

iid∼ D, under the null EH0 [T ] = 0
and under the alternate,

EH1 [T ] ≥ cµ|||P −Q|||2F.

The proof of Lemma 10 is provided in Section 6.1.1. Now, with a view to applying Chebyshev’s
concentration inequality, we bound the variance of T .

Lemma 11 For T as defined in Algorithm 1, with kpij , k
q
ij

iid∼ D, where D obeys the conditions
described in (9), under the null

VarH0 [T ] ≤ 24d2,

and under the alternate,

VarH1 [T ] ≤ 24d2 + 8µ|||P −Q|||2F + c′µ2|||P −Q|||2F

where c′ > 0 is a constant.
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The proof for Lemma 11 is provided in Section 6.1.2. We now have to control Type I error
and Type II error. Using one-sided Chebyshev’s inequality for the test statistic T , which has
EH0 [T ] = 0, we derive an upper bound on Type I error as follows

PH0(T ≥ t) ≤ VarH0 [T ]

VarH0 [T ] + t2
. (14)

Observe that if t = 11d then the Type I error is upper bounded by 1
6 . In addition, if Type I

error is required to be at most ν, then we set the threshold equal to d
√

24(1− ν)

ν
. We now

move to controlling the Type II error of the testing algorithm. We again invoke Chebyshev’s
inequality as follows

PH1(T < t) ≤ VarH1 [T ]

VarH1 [T ] + (EH1 [T ]− t)2
. (15)

To guarantee that Type II error is at most 1
6 , we substitute the bounds on EH1 [T ],VarH0 [T ],VarH1 [T ]

from Lemma 10 and Lemma 11 in (15) to get the sufficient condition

5(24d2 + 8µ|||P −Q|||2F + c′µ2|||P −Q|||2F) ≤ (cµ|||P −Q|||2F − 11d)2

40µ|||P −Q|||2F + 22cdµ|||P −Q|||2F + 5c′µ2|||P −Q|||2F ≤ c2µ2|||P −Q|||4F + d2.

This condition yields

40 + 22cd+ 5c′µ ≤ c2µ|||P −Q|||2F. (16)

Recall that under the alternate 1
d |||P − Q|||F ≥ ε. According to the final condition derived

here (16), under the regime µ > d, we have control over total probability of error if ε2d2 ≥ c′
for some constant c′ > 0. Under the regime µ ≤ d, the condition (16) simplifies as

ε2 ≥ c′′

µd
, (17)

where c′′ > 0 is some constant. This gives the sufficient condition to control total probability
of error (sum of Type I error and Type II error) to be at most 1

3 under the setting where

kpij , k
q
ij

iid∼ D.

6.1.1 Proof of Lemma 10

We now prove the bounds on the expected value of the test statistic defined in Algorithm 1.
Recall that for each (i, j), given kpij , k

q
ij , we have Xij ∼ Bin(kpij , pij) and Yij ∼ Bin(kqij , qij).

Also, kpij , k
q
ij

iid∼ D wherein E[kpij ] = µ,Var[kpij ] = σ2,Pr(kpij = 1) = p1 and D obeys (9). We
denote the vector of kpij and k

q
ij for all (i, j) by kp and kq respectively. Now, the conditional

expectation of T is expressed as

E [T |kp,kq ] =

d∑
i=1

d∑
j=1

Iijkpijk
q
ij

kpij + kqij
(pij − qij)2. (18)
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Using the law of total expectation, we have

E [T ] = E [E [T |kp,kq ] ]

=
d∑
i=1

d∑
j=1

E

[
Iijkpijk

q
ij

kpij + kqij
(pij − qij)2

]

= E

[
Iijkpijk

q
ij

kpij + kqij

]
|||P −Q|||2F

Clearly, EH0 [T ] = 0. To find a lower bound for EH1 [T ], we first note that

E

[
Iijkpijk

q
ij

kpij + kqij

]
= E

[
I0ijk

p
ijk

q
ij

kpij + kqij

]
− 2

∑
k∈[d]

P(kpij = 1, kqij = k)
k

k + 1
+

1

2
P(kpij = 1, kqij = 1)

≥ E

[
I0ijk

p
ijk

q
ij

kpij + kqij

]
− 2p1. (19)

where I0ij = I(kpij > 0)× I(kqij > 0). Furthermore, we see that for any event E,

E

[
I0ijk

p
ijk

q
ij

kpij + kqij

]
≥ E

[
I0ijk

p
ijk

q
ij

kpij + kqij
|E

]
Pr(E). (20)

We define the event E as
µ− cσ ≤ kpij ≤ µ+ cσ, and

µ− cσ ≤ kqij ≤ µ+ cσ
(21)

with some constant c > 1 such that µ− cσ > 0. Using Chebyshev’s inequality, we get that
Pr(E) ≥ (1− 1

c2
)2. Finally, we combine (19), (20) and (21), to get

E

[
Iijkpijk

q
ij

kpij + kqij

]
≥ (µ− cσ)2

2(µ+ cσ)

(
1− 1

c2

)2

− 2p1. (22)

Since D obeys the conditions in (9), we have µ ≥ c1p1 and µ ≥ c2σ. Therefore, there is a
constant c > 0 that depends on c1, c2, such that E[T ] ≥ cµ|||P −Q|||2F. This proves Lemma 10.

6.1.2 Proof of Lemma 11

To analyse the variance of the test statistic T , we note that pairwise-comparisons for each
pair are obtained independently. This allows us to compute the variance for each pair (i, j)
separately, as variance of sum is equal to the sum of variances. The following analysis of the
variance of the test statistic T applies under both the null and the alternate. The law of
total variance states that

Var[T ] = E[ Var[T |kp,kq] ] + Var[E[T |kp,kq] ]. (23)
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We evaluated the term Var[T |kp,kq], present in the expression above, in Wolfram Mathe-
matica. We show the output here,

Var[T |kp,kq] ≤
d∑
i=1

d∑
j=1

2Iijkpij(k
p
ij − 1)kqij(k

q
ij − 1)

(kpij − 1)2(kqij − 1)2(kpij + kqij)
2

(
kqij(k

q
ij − 1)p4

ij(3− 2kpij)

+ 2p3
ijk

q
ij(k

q
ij − 1)(−2 + 2qijk

p
ij − 2qij + kpij)

+ 2pijqij(k
p
ij − 1)(kqij − 1)(1 + 2q2

ijk
p
ij − qij − 2qijk

p
ij + qijk

q
ij)

+ p2
ij(k

q
ij − 1)(2qij(k

p
ij − 1)(kpij − 1− 2kqij) + kpij − 2q2

ij(k
p
ij − 1)(kpij + kqij − 1))

− q2
ij(qij − 1)kpij(k

p
ij − 1)(1− 3qij + 2qijk

q
ij)
)

≤
d∑
i=1

d∑
j=1

8Iij
(kpij + kqij)

2

(
kpij(k

p
ij − 1)(kqij − 1)(2pij(pij − qij)2)

+ kqij(k
q
ij − 1)(kpij − 1)(2qij(pij − qij)2)

+ 2pijqij(k
p
ij − 1)(kqij − 1)(1− pij)(1− qij)

+ p2
ijk

q
ij(k

q
ij − 1)(1− pij)2 + q2

ijk
p
ij(k

p
ij − 1)(1− qij)2

)
. (24)

Applying the trivial upper bound pij ≤ 1, qij ≤ 1 ∀ (i, j), we get

Var[T |kp,kq] ≤
d∑
i=1

d∑
j=1

8Iij

(
kpijk

q
ij

(kpij + kqij)
(pij − qij)2 + 3

)
(25)

Following this, we evaluate the first term on the right hand side of (23) as

E[ Var[T |kp,kq] ] ≤ 24d2 + 8|||P −Q|||2FE

[
Iijkpijk

q
ij

kpij + kqij

]
. (26)

To further simplify the upper bound in (26), we observe that

E

[
Iijkpijk

q
ij

kpij + kqij

]
≤ 1

2
E[max{kpij , k

q
ij}]. (27)

We exploit the independence of kpij , k
q
ij to get the CDF of max{kpij , k

q
ij} as

P(max{kpij , k
q
ij} ≤ x) = P(kpij ≤ x)P(kqij ≤ x).

Through the CDF, we derive the PDF as

P(max{kpij , k
q
ij} = x) = P(max{kpij , k

q
ij} ≤ x)− P(max{kpij , k

q
ij} ≤ x− 1)

= P(kpij ≤ x)2 − P(kpij ≤ x− 1)2

= P(kpij = x)(P(kpij ≤ x) + P(kpij ≤ x− 1))

≤ 2P(kpij = x) (28)
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We substitute this inequality in (27) to get

E

[
Iijkpijk

q
ij

kpij + kqij

]
≤ µ. (29)

As a result, following from (26), we have

E[ Var[T |kp,kq] ] ≤ 24d2 + 8µ|||P −Q|||2F. (30)

Now, the remaining (second) term on the right hand side of (23) is

Var[E[T |kp,kq] ] =
d∑
i=1

d∑
j=1

Var

[
Iijkpijk

q
ij

(kpij + kqij)

]
(pij − qij)4

≤ Var

[
Iijkpijk

q
ij

(kpij + kqij)

]
d∑
i=1

d∑
j=1

(pij − qij)2 (31)

≤ Var

[
Iijkpijk

q
ij

(kpij + kqij)

]
|||P −Q|||2F. (32)

To bound the variance term in the previous equation, we see that

Var

[
Iijkpijk

q
ij

(kpij + kqij)

]
= E

( Iijkpijk
q
ij

(kpij + kqij)

)2
− E

([
Iijkpijk

q
ij

(kpij + kqij)

])2

(a)

≤ 1

4
E
[(

max{kpij , k
q
ij}
)2
]
− cµ2

(b)

≤ 1

2
E[(kpij)

2]− cµ2

=
1

2
(µ2 + σ2)− cµ2

(c)

≤
(

1

2
+

1

2c2
2

− c
)
µ2 = c′µ2, (33)

where inequality (a) follows from (22), inequality (b) follows similarly to the result in (28),
and inequality (c) is a result of (9). Thus, the upper bound in (32) becomes

Var[E[T |kp,kq] ] ≤ c′µ2|||P −Q|||2F. (34)

Finally, we put together the terms in (23) by combining (30) and (34) to get the desired
upper bound on the variance of the test statistic under the alternate hypothesis, which is

Var[T ] ≤ 24d2 + 8µ|||P −Q|||2F + c′µ2|||P −Q|||2F. (35)

Additionally, to obtain the upper bound on the variance of the test statistic under the
null, we substitute |||P −Q|||F as zero in (35). This completes the proof of Lemma 11.
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6.2 Proof of Theorem 1

In this proof, we first specialise the statements of Lemma 10 and Lemma 11 to the per-pair
fixed-design setup where kpij = kqij = k ∀ (i, j) ∈ [d], for some positive integer k > 1. Under
this setting, following from (18), we have

E[T ] =

d∑
i=1

d∑
j=1

1

2
I(k > 1)k(pij − qij)2 =

1

2
k|||P −Q|||2F. (36)

Similarly, we note that in (23) we have that Var[E[T |kp,kq] ] = 0, which in combination
with (26) implies that

Var[T ] ≤ 24d2 + 4k|||P −Q|||2F. (37)

Now, invoking Chebyshev’s inequality as described in (14) and (15) to control Type I and
Type II error at level 1

6 , we set the threshold as 11d to get the sufficient condition as

ε2 ≥ c

kd
(38)

for some positive constant c. This proves Theorem 1.

6.3 Proof of converse results

In this section we prove all the claims made in Section 3.2. We begin with some background.

6.3.1 Preliminaries for proof of lower bound

We begin by briefly introducing the lower bound technique applied in Theorem 3 and
Theorem 5. The main objective of the proof is to construct a set of null and alternate such
that the minimax risk of testing defined in (2) is lower bounded by a constant. To lower
bound the minimax risk, we analyse the χ2 distance between the resulting distributions of
the null and the alternate. We construct the null and alternate as follows. Let P0 = [1

2 ]d×d.
Under the null, we fix P = Q = P0 and under the alternate, P = P0, Q ∈ Θ where Θ is a
set of matrices from the model classM to be defined subsequently. We assume a uniform
probability measure over Θ. The set Θ is chosen such that 1

d |||P0 −Q|||F = ε for all Q ∈ Θ.
In our problem setup, we observe matrices X,Y wherein each element is the outcome of

k observations of the corresponding Bernoulli random variable. For each pair (i, j), we have
Xij ∼ Bin(k, pij), Yij ∼ Bin(k, qij). For simplicity of notation, we will denote the matrix
distribution corresponding to the pairwise-comparison probability matrix P0 by P0, that is,
X ∼ P0 when P = P0, and Y ∼ P0 when Q = P0. For the case where Yij ∼ Bin(k, qij) and
Q ∼ Unif(Θ), we denote the resulting matrix distribution as Y ∼ PΘ. We now have all the
parts required to derive the χ2 divergence between the null and the alternate defined in this
section.
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The χ2 divergence between the distribution of X,Y under the null and the distirbution
of X,Y under the alternate is given by

χ2((X,Y )H0 , (X,Y )H1) = χ2(XH0 , XH1) + χ2(YH0 , YH1) + χ2(XH0 , XH1)χ2(YH0 , YH1)

= χ2(P0,P0) + χ2(P0,PΘ) + χ2(P0,P0)χ2(P0,PΘ)

= χ2(P0,PΘ). (39)

This reduces our two-sample testing problem into a goodness of fit testing problem for the
given model class, where the null distribution is given by P0 and the alternate distribution is
given by PΘ. This goodness of fit testing problem is written as

H0 : P = P0

H1 : P ∼ Unif(Θ),
(40)

where P0 =
[

1
2

]d×d.
Continuing with the reduction in (39) and (40), Le Cam’s method for testing states

that the minimax risk (2) for the hypothesis testing problem in (40), is lower bounded as
(Lemma 3 in Collier et al. (2017))

RM ≥
1

2

(
1−

√
χ2(P0,PΘ)

)
. (41)

Therefore, if the χ2 divergence is upper bounded by some constant c < 1, then no algorithm
can correctly distinguish between the null and the alternate with probability of error less
than 1

2(1−
√
c). Consequently, by deriving the value of ε corresponding to c = 1

9 , we will
get the desired lower bound on the critical radius defined in (3) for the two-sample testing
problem in (1).

We now delve into the technical part of the proof in which we derive the χ2 divergence
between P0 and PΘ. For a probability distribution P0 and a mixture probability measure PΘ,
we know (from Lemma 7 in Carpentier et al. (2018)) that

χ2(P0,PΘ) = E(Q,Q′)∼Unif(Θ)

(∫
dPQdPQ′
dP0

)
− 1. (42)

Here E(Q,Q′)∼Unif(Θ) denotes the expectation with respect to the distribution of the pair
(Q,Q′) where Q and Q′ are sampled independently and uniformly at random from the set
Θ (with replacement). According to the null and alternate construction described in the
beginning of this section, recall that X ∼ P0 implies that Xij ∼ Bin(k, 1

2) ∀ (i, j). Similarly
X ∼ PQ implies that Xij ∼ Bin(k, qij) ∀ (i, j). With this information, we simplify the χ2

divergence as

χ2(P0,PΘ) = E(Q,Q′)∼Unif(Θ)

∑
v∈V

 d∏
i=1

d∏
j=1

(
k
vij

)
q
vij
ij (1− qij)k−vij

(
k
vij

)
(q
′
ij)

vij (1− q′ij)k−vij(
k
vij

)
(1

2)k

− 1.

(43)
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where V ∈ Rd(d−1) is the set of all possible vectors with each element belonging to the set
{0, 1, · · · , k}. There are (k + 1)d(d−1) such vectors. We further simplify the summation over
V as

χ2(P0,PΘ) = E(Q,Q′)∼Unif(Θ)

d∏
i=1

d∏
j=1

(
k∑
`=0

(
k
`

)
q`ij(1− qij)k−`(q

′
ij)

`(1− q′ij)k−`

(1
2)k

)
− 1. (44)

This gives us the χ2 divergence for the construction defined in terms of the elements of the
matrices in the set Θ. Later, we will see that the set Θ designed for the different modeling
assumptions considered (namely, MST and parameter-based) consist solely of matrices with
entries from the set {1

2 − η,
1
2 ,

1
2 + η}. This information enables us to further simplify the

expression for χ2(P0,PΘ).

Consider a pair of matrices (Q,Q′) sampled uniformly at random from the set Θ. Let an
agreement be defined as the occurrence of 1

2 + η (or 1
2 − η) in the same position in Q and Q′

and a disagreement is defined as the occurrence of 1
2 + η in Q or Q′ in the same position

as 1
2 − η in Q′ or Q respectively. Next, we define two statistics b1 and b2 that quantify the

number of agreements and disagreements, respectively, in the matrix pair (Q,Q′) as shown
here

b1(Q,Q′) =

d∑
i=1

d∑
j=1

[
1{qij=q

′
ij= 1

2
+η} + 1{qij=q

′
ij= 1

2
−η}

]
,

b2(Q,Q′) =

d∑
i=1

d∑
j=1

[
1{qij= 1

2
+η}1{q′ij= 1

2
−η} + 1{qij= 1

2
−η}1{q′ij= 1

2
+η}

]
.

(45)

Using these definitions, we state the following Lemma to analyse χ2(P0,PΘ) in (44).

Lemma 12 Consider two pairwise-comparison probability matrices Q and Q′ with qij ∈
{1

2 − η,
1
2 ,

1
2 + η} and q′ij ∈ {1

2 − η,
1
2 ,

1
2 + η}. Suppose b1(Q,Q′) = b1 and b2(Q,Q′) = b2.

Then, we have

d∏
i=1

d∏
j=1

(
k∑
`=0

(
k
`

)
q`ij(1− qij)k−`(q

′
ij)

`(1− q′ij)k−`

(1
2)k

)
≤ (1 + 4η2)k(b1−b2). (46)

The proof is provided at the end of this subsection. Using Lemma 12 and (44), we get an
upper bound on the χ2 divergence as

χ2(P0,PΘ) ≤ E(Q,Q′)∼Unif(Θ)

[
(1 + 4η2)k(b1−b2)

]
− 1. (47)

We conclude the background section on the converse results here. We will use the
equations discussed in this section to derive the lower bound for the different modeling
assumptions in Theorem 3 and Theorem 5 in their respective proofs.
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Proof of Lemma 12 Let

G(Q,Q′) =

d∏
i=1

d∏
j=1

(
k∑
`=0

(
k
`

)
q`ij(1− qij)k−`(q

′
ij)

`(1− q′ij)k−`

(1
2)k

)
− 1. (48)

Let g(qij , q
′
ij) denote the summation in the equation above, that is

g(qij , q
′
ij) = 2k

k∑
`=0

(
k

`

)
q`ij(1− qij)k−`(q

′
ij)

`(1− q′ij)k−`. (49)

Notice that if qij = 1
2 or q′ij = 1

2 then g(qij , q
′
ij) = 1. Additionally, g(1

2 + η, 1
2 + η) =

g(1
2 − η,

1
2 − η) and

g

(
1

2
+ η,

1

2
+ η

)
=2k

k∑
`=0

(
1

2
+ η

)2` k∑
`=0

(
1

2
− η
)2k−2`

=2k
(

1

2
+ 2η2

)k k∑
`=0

(
k

`

)(
1

2
+

η
1
2 + 2η2

)`(
1

2
+

η
1
2 − 2η2

)k−`
=(1 + 4η2)k. (50)

Also, note that g(1
2 + η, 1

2 − η) = g(1
2 − η,

1
2 + η) and

g(
1

2
− η, 1

2
+ η) = 2k

k∑
`=0

(
k

`

)
(
1

2
− η)`(

1

2
+ η)k−`(

1

2
+ η)`(

1

2
− η)k−`

= (
1

2
− 2η2)k

k∑
`=0

(
k

`

)
= (1− 4η2)k. (51)

Therefore, if the pair of matrices Q,Q′ have b1 agreements and b2 disagreements, then using
(50), (51) we get

G(Q,Q′) =g

(
1

2
+ η,

1

2
+ η

)b1
g

(
1

2
+ η,

1

2
− η
)b2

= (1 + 4η2)kb1(1− 4η2)kb2

≤ (1 + 4η2)k(b1−b2).

This proves Lemma 12.

6.3.2 Proof of Proposition 4

In this section, we provide a construction of the null and the alternate in (1) under the
model-free assumption that proves the statement of Proposition 4. To this end, let P0 be
a pairwise probability matrix with the (i, j)th element denoted by pij for all i, j ∈ [d]. We
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will provide more details about P0 subsequently. Consider the case where under the null
P = Q = P0 and under the alternate P = P0 and Q ∼ Bernoulli(P0). Under this notation,
we have that under the alternate qij ∼ Bernoulli(pij). We choose P0 such that for all i, j ∈ [d]

we have 0 ≤ pij ≤ 1
2 . With this, we argue that under the alternate construction, for any

realization of Q, we have

|||P0 −Q|||2F ≥
d∑
i=1

d∑
j=1

p2
ij .

In this manner, by choosing an appropriate P0, we construct the alternate for any given
ε which satisfy the conditions in the two-sample testing problem in (1). Note that the
maximum value of |||P0−Q|||2F attainable in this construction is when pij = 1

2 for all (i, j) ∈ [d].
In this setting, |||P0 − Q|||2F = d2

4 , for all realizations of Q. Thus, in our construction, the
parameter ε is at most 1

2 .
Now, in Proposition 4, we consider the case where we have one pairwise-comparison

for each pair in each population, that is, kpij = kqij = 1 ∀ i, j ∈ [d]. Recall that the
observed matrices corresponding to the two populations are denoted by X and Y which
are distributed as X ∼ Bernoulli(P ) and Y ∼ Bernoulli(Q). Now, for our construction, we
see that X is distributed identically under the null and the alternate as X ∼ Bernoulli(P0),
and Y is distributed as Y ∼ Bernoulli(P0) under the null and Y ∼ Bernoulli(Q) under the
alternate. Thus, to distinguish between the null and the alternate, we must be able to
distinguish between the product distribution P0 := Bernoulli(P0) × Bernoulli(P0) and the
product distribution P1 := Bernoulli(P0)× Bernoulli(Q) where Q ∼ Bernoulli(P0).

For the setting with one comparison per pair, we have access to only first order statistics
for matrices X and Y . Since the Bernoulli parameters for all pairs (i, j) are independently
chosen under the model-free setting, we look at the first order statistics of any pair (i, j),
which are given by Pr(Xij = 1),Pr(Yij = 1),Pr(Xij = 1, Yij = 1). Now, observe that under
both the distributions P0 and P1 we have that

Pr(Xij = 1) = pij ; ,Pr(Yij = 1) = pij ; Pr(Xij = 1, Yij = 1) = p2
ij .

Since the first order statistics under both distributions P0 and P1 are identical, we conclude
that no algorithm can distinguish between these distributions with a probability of error less
than half. In turn, the minimax risk defined in (2) is at least half. This proves Proposition 4.

6.3.3 Proof of Theorem 3

In this section, we establish a lower bound on the critical radius (3) for the two-sample
testing problem defined in (1) under the assumption of the MST class as stated in The-
orem 3. First, we provide a construction for the null and the alternate in Section 6.3.1.
In this construction, we set P = Q = P0 under the null and P = P0, Q ∼ Unif(Θ) under
the alternate where Θ is a set of matrices belonging to the MST class. To complete the
description of the construction, we now describe the set Θ for the MST class of pairwise-
comparison probability matrices. The probability matrices in Θ correspond to a fixed ranking
of items. Each matrix in Θ is such that the upper right quadrant has exactly one element
in each row and each column equal to 1

2 + η for some η ∈ (0, 1
2). The rest of the elements
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above the diagonal are half. The elements below the diagonal follow from the shifted-skew-
symmetry condition imposed on MST probability matrices. It can be verified that all matrices
Q ∈ Θ lie in the MST class. Note that the set Θ has (d/2)! matrices. Since each matrix has
a total of d elements equal to 1

2±η, we get that
1
d2 |||P0−Q|||2F = ε2 = η2

d . This implies ε2 ≤ 1
4d .

Now, to derive bounds on the minimax risk according to (41), we analyse the χ2 divergence
between P0 and PΘ. From the analysis of χ2(P0,PΘ) in Section 6.3.1, specifically (47), we
have that

χ2(P0,PΘ) ≤ E(Q,Q′)∼Unif(Θ)

[
(1 + 4η2)k(b1−b2)

]
− 1

where b1 and b2 are the number of agreements and disagreements between the matrices Q,Q′,
as defined in (45). Now, to compute the χ2 divergence, we want to find the probability
that two matrices picked uniformly at random from Θ have i agreements in the upper right
quadrant(the total number of agreements is 2i due to shifted-skew-symmetry). Given a
matrix Q from set Θ, for i agreements, we want to choose a matrix Q′ ∈ Θ such that exactly
i of the perturbed elements share the same position as in Q. There are

(
d/2
i

)
ways of choosing

the i elements. Now that the i elements have their position fixed, we have to find the number
of ways we can rearrange the remaining d

2 − i elements such that none of them share a
position with the remaining perturbed elements in Q. This problem is the same as reshuffling
and matching envelopes with letters such that no letter matches with originally intended
envelope. The number of ways to rearrange a set of i objects in such a manner is given by
i!( 1

2! −
1
3! + · · ·+ (−1)i 1

i!). Thus the number of ways of rearrangement for d
2 − i items is upper

bounded by 1
2(d/2− i)!. Thus, the probability of 2i agreements is upper bounded as

P(b1 = 2i) ≤ (d/2)!

(d/2− i)!i!
(d/2− i)!
2(d/2)!

≤ 1

2(i)!
. (52)

Then, we further simplify (47) as

χ2(P0,PΘ) ≤ E(Q,Q′)∼Unif(Θ)

[
(1 + 4η2)k(b1−b2)

]
− 1

≤ E(Q,Q′)∼Unif(Θ)

[
(1 + 4η2)kb1

]
− 1

≤
d/2∑
i=0

P(b1 = 2i)(1 + 4η2)2ki − 1. (53)
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Notice that if we choose k =
c

4η2
with some constant c ∈ (0, 1) then we have that

(1 + 4η2)k =

k∑
`=0

(
k

`

)
(4η2)`

≤ 1 +

k∑
`=1

(4η2k)`

≤ 1 +
k∑
`=1

c`

≤ 1 + c′,

where c′ is some positive constant. Using this, we show that the χ2 divergence in (53) is
upper bounded by a constant for k ≤ c

η2
, as follows

χ2(P0,PΘ) ≤
d/2∑
i=0

P(b1 = 2i)(1 + 4η2)2ki − 1

≤
d/2∑
i=0

P(b1 = 2i)(1 + c′)2i − 1

=

d/2∑
i=0

P(b1 = 2i)− 1 +

d/2∑
i=0

P(b1 = 2i)((1 + c′)2i − 1)

(a)

≤
d/2∑
i=0

1

2(i!)
((1 + c′)2i − 1)

≤ 1

2

exp((1 + c′)2)− exp(1) +
∞∑

i=d/2

1

i!


≤ c′′,

where c′′ is some positive constant. The inequality (a) follows from (52). This proves that
there exists a constant c, such that if k ≤ c

η2
=

c

dε2
, then the χ2 divergence is upper bounded

by 1
9 . According to (41), this implies that the minimax risk is at least 1

3 . This establishes the
lower bound on the critical testing radius for two-sample testing under the MST modeling

assumption as ε2M > c
1

kd
and proves Theorem 3.

6.3.4 Proof of Theorem 5

Consider any arbitrary non-decreasing function f : R → [0, 1] such that f(θ) = 1 −
f(−θ) ∀ θ ∈ R. In order to prove the lower bound on testing radius stated in Theorem 5, we
construct a set of matrices Θ based on the parameter-based pairwise-comparison probability
model described in (4) associated to the given function f . Observe that f(0) = 1

2 . Recall
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that under the parameter-based model the sum of all weights is fixed as
∑d

i=1wi = 0. We
use the weight parameter to define the construction for the lower bound.

Recall the null and alternate construction described in Section 6.3.1 to prove the lower
bound. Accordingly, we set P = Q = P0 under the null and P = P0, Q ∼ Unif(Θ) under the
alternate where Θ is a set of matrices belonging to the parameter-based class. The weights
wP0 = [0, · · · , 0] ∈ Rd correspond to the pairwise probability matrix P0 = [1

2 ]d×d. Now for
creating the set Θ, consider a collection of weight vectors wΘ each with half the entries as δ
and the other half as −δ, thereby ensuring that

∑
i∈[d]wi = 0. We set δ to ensure that each

of the probability matrices induced by this collection of vectors obey 1
d |||P0 −Q|||F = ε. We

define the set of matrices Θ as the set of pairwise-comparison probability matrices induced
by the collection of values of wΘ. Clearly, there are

(
d
d/2

)
matrices in Θ. A similar argument

holds for odd d wherein d−1
2 elements of the weight vector are δ and d−1

2 elements are −δ.
Since f is monotonic, f(−2δ) ≤ f(0) ≤ f(2δ) and we have that f(2δ) = 1 − f(−2δ), we
define f(−2δ) = 1

2 − η and f(2δ) = 1
2 + η for some 0 < η ≤ 1

2 .

Similar to the proof of Theorem 3, we use (47) to bound the χ2 divergence between the
null and the alternate constructed. We first note that if we sample two matrices Q and Q′

uniformly at random (with replacement) from Θ, then if the number of agreements is i2

2 then
the number of disagreements is equal to (d−i)2

2 . The probability of i
2

2 agreements is given by

P
(
b1 =

i2

2
, b2 =

(d− i)2

2

)
=

(d/2
i/2

)(d/2
i/2

)(
d
d/2

) .

Following from (44), the χ2 divergence is

χ2(P0,PΘ) = E(Q,Q′)∼Unif(Θ)

[
(1 + 4η2)k(b1−b2)

]
− 1

≤
d∑
i=0

(d/2
i/2

)(d/2
i/2

)(
d
d/2

) (1 + 4η2)k(i2−(d−i)2)/2 − 1.

For ease of presentation, we replace d
2 by z and i

2 by `, to get

χ2(P0,PΘ) ≤
z∑
`=0

(
z
`

)(
z
`

)(
2z
z

) (1 + 4η2)2k(2`z−z2) − 1

≤
z∑
`=0

(
1

2

)z (z
`

)
(1 + 4η2)2k(2`z−z2) − 1

≤
z∑
`=0

(
1

2

)z (z
`

)
exp(8η2k(2`z − z2))− 1.

Here, we see that the summation in the final expression is equal to the expectation of
exp(8η2k(2`z − z2)) over the random variable ` where ` ∼ Bin(z, 1

2). So,

χ2(P0,PΘ) ≤ E`
[
exp(8η2k(2`z − z2))

]
− 1

≤
∞∑
i=0

(8η2kz)i

i!
E`
[
(2`− z)i

]
− 1, (54)
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where E`[(2`− z)i] is the scaled centered ith moment of Bin(z, 1
2). To get the expression for

the centered moments, we first find the moment generating function of the random variable
`′ = 2`− z, as

E
[
e(2`−z)t

]
= e−ztE

[
e2`t
]

= e−zt
z∑
`=0

(
z

`

)(
1

2
e2t

)`(1

2

)z−`
= e−zt

(
1

2
+

1

2
e2t

)z
=

(
e−t + et

2

)z
= (cosh t)z.

Then, we have

E
[
(2`− z)i

]
=
di(cosh t)z

dti

∣∣∣∣
t=0

,

which is the ith derivative of (cosh t)z evaluated at t = 0. This leads to the fact that for odd
i, E[(2`− z)i] = 0 and for even i, E[(2`− z)i] ≤ i!

(i/2)!z
i/2. Using this with (54), we get

χ2(P0,PΘ) ≤
∞∑
i=1

ci(64η4k2z3)i (55)

where ci = 1
(i/2)! , that is, ci is decreasing as i increases.

Thus, we see that if k ≤ c

η2d3/2
then there is a small enough c such that the χ2 divergence

is upper bounded by 1
9 . In this construction, we have ε2 = η2/2, therefore, using (41), the

lower bound for two-sample testing under the parameter-based modeling assumption is given

as ε2 = Ω

(
1

kd3/2

)
. This proves Theorem 5.

6.3.5 Proof of Theorem 6

To prove Theorem 6, we use the conjectured average-case hardness of the planted clique
problem. In informal terms, the planted clique conjecture asserts that it is hard to detect
the presence of a planted clique in an Erdös-Rényi random graph. In order to state it more
precisely, let G(d, κ) be a random graph on d vertices constructed in one of the following two
ways:

H0 : Every edge is included in G(d, κ) independently with probability 1
2

H1 : Every edge is included in G(d, κ) independently with probability 1
2 . In addition,

a set of κ vertices is chosen uniformly at random and all edges with both endpoints in the
chosen set are added to G.

The planted clique conjecture then asserts that when κ = o(
√
d), then there is no

polynomial-time algorithm that can correctly distinguish between H0 and H1 with an error
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probability that is strictly bounded below 1
2 . We complete the proof by identifying a subclass

of SST matrices and showing that any testing algorithm that can distinguish between the
subclass of SST matrices and the all half matrix, can also be used to detect a planted clique
in an Erdös-Rényi random graph.

Consider the null with P = Q = [1
2 ]d×d and the alternate such that P = [1

2 ]d×d and Q
is chosen uniformly at random from set Θ. The set of probability matrices Θ contains all
(d × d) matrices with the upper left and lower right quadrant equal to all half, the upper
right quadrant is all half except a (κ × κ) planted clique (i.e., a (κ, κ) submatrix with all
entries equal to one). Then we have ε2 = κ2/2d2. The bottom left quadrant follows from the
skew symmetry property. Recall that we observe one sample per pair of items (i > j). This
testing problem is reduced to a goodness-of-fit testing problem as shown in (39) and (40).

Consider the set of
(
d
2 ×

d
2

)
matrices comprising the top right

(
d
2 ×

d
2

)
sub-matrix of

every matrix in Θ. We claim that this set is identical to the set of all possible matrices in
the planted clique problem with d

2 vertices and a planted clique of size κ. Indeed, the null
contains the all-half matrix corresponding to the absence of a planted clique, and the alternate
contains all symmetric matrices that have all entries equal to half except for a (κ, κ) all-ones
sub-matrix corresponding to the planted clique. We choose the parameter κ =

√
d

log log(d)
so that any constant multiple of it will be within the hardness regime of planted clique
(for sufficiently large values of d). Now, we leverage the planted clique hardness conjecture
to state that the null in our construction cannot be distinguished from the alternate by
any polynomial-time algorithm with probability of error less than 1

2 . This implies that for
polynomial-time testing it is necessary that ε2 ≥ c

d(log log(d))2
. This proves Theorem 6.

6.4 Proof of Theorem 7

Bounding the Type I error. In this proof, we first bound the Type I error and subse-
quently bound the Type II error. To bound the probability of error of Algorithm 3, we study
the distribution of the test statistic T under the null and the alternate. Algorithm 3 uses the
test statistic defined in (8). To understand the distribution of the test statistic, we first look
at the distribution of Xij and Yij .

In Algorithm 3, we break the partial ranks into disjoint pairwise-comparisons. Under the
Plackett-Luce model disjoint pairwise-comparisons obtained from the same partial ranking
are mutually independent. Additionally, since the Plackett-Luce model obeys the property
of independence of irrelevant alternatives, the probability of observing item i being ranked
ahead of item j in a partial ranking is independent of the other items being ranked in that
partial ranking. Thus, for any pair of items (i, j), the probability of i beating j, conditioned
on the event that the pair (i, j) was observed, is always equal to pij for the population
corresponding to pairwise probability matrix P and qij for the population corresponding to
pairwise probability matrix Q. This holds true irrespective of which other items are involved
in that partial (or total) ranking. With this in mind, we identify the distribution of Xij

conditioned on kpij as Xij | kpij ∼ Bin(kpij , pij). Similarly, we have Yij | kqij ∼ Bin(kqij , qij). Let
kp,kq denote the vector of kpij , k

q
ij for all (i, j), i < j. The conditional expectation of T is

E[T |kp,kq] =

j−1∑
i=1

d∑
j=1

Iijkpijk
q
ij

kpij + kqij
(pij − qij)2.

38



Two-Sample Testing on Ranked Preference Data

Under the null we have pij = qij . Clearly, using the law of total expectation, we see that
EH0 [T ] = E[ E[T |kp,kq] ] = 0. We now upper bound the variance of T under the null.
Recall from (23) and (24) that

VarH0 [T ] ≤
j−1∑
i=1

d∑
j=1

8Iij

(
kpijk

q
ij

(kpij + kqij)
(pij − qij)2 + 3

)
+ Var[E[T |kp,kq] ]

≤ 24d2. (56)

Now, we have the information to bound the Type I error. To get a bound on the Type I
error with threshold t, we use the one sided Chebyshev’s inequality,

PH0(T ≥ t) ≤ VarH0 [T ]

VarH0 [T ] + t2
. (57)

Using the bound in (56) and (57), we observe that if t = 11d then the Type I error is at
most 1

6 . This concludes the proof that Algorithm 3 controls the Type I error of the test (13)
at level 1

6 .

Bounding the Type 2 error. We now analyse the Type II error of Algorithm 3, that is,
the probability of our algorithm failing to reject the null, under the alternate. We consider two
cases depending on whether the pairwise-comparison data created through the rank breaking
method has at least k pairwise-comparisons per pair (i, j), i < j, or not, for some positive
integer k. We will define k later in the proof. Let the case where the pairwise-comparisons
created in each population have at least k comparisons of each pair be denoted by C1 and
let the associated Type II error be denoted by β1. Let the Type II error associated with the
remaining case be denoted by β2. Our objective is to provide an upper bound on the total
Type II error which is β = P(C1)β1 + (1− P(C1))β2.

First, we derive a bound on P(C1). To start, we note that the probability of observing
a specific pair from a total ranking is 1

d if d is odd and 1
d−1 if d is even. Recall that for a

given m, each sample is a ranking of some m items chosen uniformly at random from the
set of d items. Under this setting, we see that the probability that “Random disjoint” rank
breaking yields a specific pairwise-comparison from a m-length partial ranking is m

d(d−1) if m
is even and m−1

d(d−1) if m is odd. Henceforth, in this proof, we assume that m is even. The
proof follows similarly for odd m. Thus, the number of pairwise-comparisons observed of
any pair (i, j) is a binomial random variable with Bernoulli parameter m

d(d−1) . Consequently,
if we have N samples from each population, then for the population corresponding to the
pairwise probability matrix P , for all pairs (i, j) we have kpij ∼ Bin(N, m

d(d−1)). Similarly
for the population corresponding to pairwise probability matrix Q, for all pairs (i, j) we
have kqij ∼ Bin(N, m

d(d−1)). Now, we are equipped to compute the probability of case C1. We
divide the samples available in each population into k sections of equal sizes. Let the samples
in each population be indexed from 1 to N then we assign the first bNk c into the first section
and so on. Now, we know that the probability of observing a pair (i, j) at least once in one
such section is given by 1− (1− m

d(d−1))b
N
k
c. Using this, we get the following union bound,

P(kpij ≥ k) ≥ 1− k
(

1− m

d(d− 1)

)N
k

.
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The same inequality holds for kqij for all (i, j). Then, the probability that all pairs of items
had at least k pairwise-comparisons in both populations is lower bounded as

P(C1) ≥ 1− 2kd(d− 1)

2

(
1− m

d2

)N
k

≥ 1− kd2 exp

(
−Nm
kd2

)
We see that, if N = ckd2 log(d)/m for some positive constant c, then P(C1) ≥ 1− k

dc−2 .

Conditioned on the case C1, we invoke Theorem 1 to control the Type II error. Recall
that Theorem 1 asserts that there is a constant c0 > 0 such that if we have k pairwise-
comparisons of each pair (i, j) from each population where k ≥ max{c0

1
dε2
, 2} then the Type

II error of Algorithm 1 for the testing problem (13) is upper bounded by 1
12 . To apply this

result to Algorithm 3 conditioned on case C1, we keep k pairwise-comparisons for each pair
where k = 2dc0

1
dε2
e. Observe that, since we assume ε ≥ c1d

−c2 for some positive constants
c1 and c2, we get the inequality k ≤ c′1d

c′2 for some positive constants c′1 and c′2. Under
this inequality, we get that there exist positive constants c, c′1 and c′2 such that P(C1) > 11/12.

Next, we observe that the Type II error conditioned on the complement of C1 is at most 1.
Therefore, the total probability of failing to reject the null under the alternate is given by

β = P(C1)β1 + (1− P(C1))β2

≤ 1

12
+

1

12
=

1

6
.

This concludes the proof that for some constant C > 0, if N ≥ C
d2 log(d)

m
d c0

dε2
e, then the

probability of error of Algorithm 3 is at most 1
3 .

6.5 Proof of Theorem 8

The proof of Theorem 8 follows similarly to the proof of Theorem 7. Both theorems establish
the performance of Algorithm 3 for the two-sample testing problem stated in (13). The
difference lies in the assumption on the partial ranking data available and consequently in
the rank breaking algorithm used. In Theorem 8, we assume we have total ranking data that
is then deterministically converted to pairwise-comparisons in the following manner. We
have a total of N total rankings available from each population. We divide these into subsets
each containing d rankings as described in the “Deterministic disjoint” rank breaking method.
Notice that we can break the ranking data available in a section into pairwise-comparisons
such that we observe each unique pair of items at least one time. We prove this statement at
the end of the section. We repeat this breaking technique for all subsets. Consequently, we

get k = bNd c ≥ 2dc 1

dε2
e pairwise-comparisons for all pairs (i, j) from each population. With

this in mind, we apply Theorem 1 to obtain the desired result.
Finally, to complete the proof we show that it is indeed possible to break d total rankings

such that we observe each of
(
d
2

)
unique pairs at least once. We use a mathematical induction
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based argument. As a first step we observe that our hypothesis is true for d = 2. In the
inductive step, we assume that the hypothesis is true for all natural numbers d ∈ {2, · · · , r}.
Now, we wish to prove the hypothesis is true for d = r + 1. First, consider the case where
r is even. We divide the set of r items into two groups with r/2 items in each. From the
inductive step we know that our hypothesis is true for d = r/2. Consequently, we get 2

(
r/2
2

)
unique pairs from within the two groups which use r/2 total rankings. Next, we arrange the
items in group one in a list against the items in group two and make pairs by choosing the
items in ith position in both the lists. This gives the breaking for one total ranking. We do
this r/2 times, each time cyclically shifting the first list by one item. This step gives r2/4
unique pairs that are different from the pairs obtained in the previous step and uses r/2
total rankings. This proves our hypothesis for d = r for even r. To prove our hypothesis for
odd r, we prove our hypothesis for r + 1 which is even using the same method described in
the previous step. We complete our proof by noting that if the hypothesis is true for even r
then it must be true for r − 1. This concludes our proof of Theorem 8

6.6 Proof of Theorem 9

The idea of the proof is to show that under the null hypothesis, a ranking sample sourced
from the first population is mutually independent of and identically distributed as a ranking
sample sourced from the second population. If this statement is true, then shuffling the
population labels of ranking data, does not alter the distribution of the test statistic (8).
This in turn controls the Type I error of the permutation test method.

Under the null, for some distribution λ over all total rankings, we have that λP = λQ = λ.
This implies that under the marginal probability based model, the probability of any given
partial ranking over a set of items is the same for both the populations. Specifically,
conditioned on the set of items being ranked, each partial ranking in each population is
sampled independently and identically, according to the distribution λ. Recall that the set
of items being ranked in each population is sampled independently and identically from
some distribution over all non-empty subsets in [d]. Consequently, each ranking sample is
independent of all other ranking samples obtained from the two populations. Moreover, using
the law of total probability over all the non-empty subsets in [d], we get that each ranking
sample obtained in each population is identically distributed. With this, we conclude that
shuffling the population labels of ranking data does not alter the distribution of the test
statistic. Thus, for a permutation test with γ iterations, the p-value of the test is distributed
uniformly over {0, 1/γ, 2/γ, · · · , 1}. Hence, for any given significance level α ∈ (0, 1), by
applying a threshold of α on the p-value of the test, we are guaranteed to have Type I error
at most α.

7. Discussion and open problems

We conclude with a discussion focused on open problems in this area. We provide algorithms
for two-sample testing on pairwise-comparison and ranking data to distinguish between two
potentially different populations in terms of their underlying distributions. Through our
analysis, we see that our testing algorithm for pairwise-comparison data is simultaneously
minimax optimal under the model-free setting as well as the MST and WST model. There is
a gap between the testing rate of our algorithm and our information-theoretic lower bound
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for the SST and parameter-based models, and closing this gap is an open problem of interest.
In addition, our lower bound does not consider the random sampling regime we address
in Corollary 2, thus, obtaining a lower bound in this regime is another open problem of
interest. Second, in the future, our work may help in studying two-sample testing problems
pertaining to more general aspects of data from people such as function evaluations (Xu et al.,
2020; Noothigattu et al., 2018), issues of calibration (Wang and Shah, 2019), and strategic
behavior (Xu et al., 2019). Thirdly, in practice we use the permutation method to calibrate
our tests, ensuring valid Type I error control even when the distribution of the test statistic
is difficult to characterize analytically (for instance, in the setting with partial rank data).
Understanding the power of tests calibrated via the permutation method is an active area of
research (Kim et al., 2020a) and it would be interesting to understand this in the context of
the tests developed in our work. Finally, the literature on analyzing pairwise-comparison
data builds heavily on probability models from social choice theory (some are described in
this work). A natural related question, that has received some recent attention in Seshadri
and Ugander (2019), is the design of goodness-of-fit hypothesis tests to test whether given
pairwise-comparison data obeys certain modeling assumptions.
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Appendix A. Additional details of experiments

We now provide more details about the experiments described in Section 5.1.2.

Ordinal versus cardinal

The data set from Shah et al. (2016) used in the “Ordinal versus cardinal” experiment
comprises of six different experiments on Amazon Mechanical Turk crowdsourcing platform.
We describe each experiment briefly here.

• Photo age: There are 10 objects in this experiment wherein each object is a photograph of
a different face. The worker is either shown pairs of photos together and asked to identify
the older of the two or they provide the numeric age for each photo. There are a total of
225 ordinal responses and 275 cardinal-converted-to-ordinal responses.

• Spelling mistakes: There are 8 objects in this experiment wherein each object is a paragraph
of text in English possibly with some spelling mistakes. The worker is either shown pairs
of paragraphs and asked to identify the paragraph with more spelling mistakes or they are
asked to provide the count of spelling mistakes for all 8 paragraphs. There are a total of
184 ordinal responses and 204 cardinal-converted-to-ordinal responses.

• Distances between cities: There are 16 objects in this experiment wherein each object is
a pair of cities (no two objects share a common city). The worker is either shown two
pairs of cities at a time and asked to identify the pair that is farther from each other, or
they are asked to estimate the distances for the 16 pairs of cities. There are a total of 408
ordinal responses and 392 cardinal-converted-to-ordinal responses.

• Search results: There are 20 objects in this experiment wherein each object is the result
of an internet based search query of the word "internet". The worker is either asked to
compare pairs of results based on their relevance or they are shown all the results and
asked to rate the relevance of each result on a scale of 0-100. There are a total of 630
ordinal responses and 370 cardinal-converted-to-ordinal responses.

• Taglines: There are 10 objects in this experiment wherein each object is a tagline for a
product described to the worker. The worker is either asked to compare the quality of
pairs of taglines or they are asked to provide ratings for each tagline on a scale of 0-10.
There are a total of 305 ordinal responses and 195 cardinal-converted-to-ordinal responses.

• Piano : There are 10 objects in this experiment wherein each object is a sound clip of a
piano key played at a certain frequency. The worker is either given pairs of sound clips
and asked to identify the clip with the higher frequency or they are asked to estimate the
frequency of the 10 clips. There are a total of 265 ordinal responses and 235 cardinal-
converted-to-ordinal responses.

In our main experiment, we combine the data from all the experiments described above and
test for statistically significant difference between the underlying distributions for ordinal
responses and ordinal-converted-to-cardinal responses. We also test for difference in each
individual experiment (which however have smaller sample sizes), the results are provided in
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Table 2. We observe that the qualitatively more subjective experiments (photo age, search
results, taglines) have a lower p-value, which indicates that the ordinal responses are more
different from cardinal-converted-to-ordinal responses in a more subjective setting.

Experiment Combined Age Spellings Distances Search results Taglines Piano
p-value 0.003 0.001 0.657 0.75 0.187 0.0829 0.514

Table 2: p-value of two-sample test comparing the distribution of ordinal responses and the
distribution of cardinal-converted-to-ordinal responses in the experiments described above

European football leagues

In this experiment, we obtain the match scores for four different European football leagues
(English Premier League, Bundesliga, Ligue 1, La Liga) across two seasons (2016-2017,
2017-2018). There were 17 teams that played the two seasons in each of EPL, La Liga, Ligue
1 and 16 teams in Bundesliga. To test for statistically significant difference between the
relative performance of the participating teams in the two consecutive seasons we combined
the data from all four leagues. We also tested for difference in each individual league, the
results are displayed in Table 3. From the 2016-2017 season we have 202 pairwise-comparisons
in EPL, 170 pairwise-comparisons in Bundesliga, 215 pairwise-comparisons in La Liga, and
201 pairwise-comparisons in Ligue 1. From the 2017-2018 season we have 214 pairwise-
comparisons in EPL, 178 pairwise-comparisons in Bundesliga, 208 pairwise-comparisons in
La Liga, and 201 pairwise-comparisons in Ligue 1. From the number of comparisons available
our test does not detect any significant difference between the relative performance of teams
in European football leagues over two consecutive seasons.

League Combined EPL Bundesliga La Liga Ligue 1
p-value 0.971 0.998 0.691 0.67 0.787

Table 3: p-value of two-sample test comparing relative performance of teams in a football
league over two consecutive seasons.
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