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Abstract

Machine learning (ML) systems often exhibit unexpectedly poor behavior when they are deployed
in real-world domains. We identify underspecification in ML pipelines as a key reason for these
failures. An ML pipeline is the full procedure followed to train and validate a predictor. Such a
pipeline is underspecified when it can return many distinct predictors with equivalently strong
test performance. Underspecification is common in modern ML pipelines that primarily validate
predictors on held-out data that follow the same distribution as the training data. Predictors
returned by underspecified pipelines are often treated as equivalent based on their training domain
performance, but we show here that such predictors can behave very differently in deployment
domains. This ambiguity can lead to instability and poor model behavior in practice, and is a
distinct failure mode from previously identified issues arising from structural mismatch between
training and deployment domains. We provide evidence that underspecfication has substantive
implications for practical ML pipelines, using examples from computer vision, medical imaging,
natural language processing, clinical risk prediction based on electronic health records, and medical
genomics. Our results show the need to explicitly account for underspecification in modeling
pipelines that are intended for real-world deployment in any domain.

Keywords: distribution shift, spurious correlation, fairness, identifiability, computer vision,
natural language processing, medical imaging, electronic health records, genomics

1. Introduction

In many applications of machine learning (ML), a trained model is not only required to predict well in
the training domain; it is also expected to satisfy additional behavioral requirements in deployment.
For example, in domains such as medical diagnostics, it is often desirable for the model to be sensitive
to physiological signals, while being invariant to environmental or operational signals that can change
between deployment contexts. In other domains, such as natural language processing, the behavioral
requirements are determined by the details of the application; for example, the requirements in
question answering, where sensitivity to world knowledge is important, may be different from those in
translation, where isolating semantic knowledge is desirable. These requirements are often presented
as criteria for determining whether an ML-based predictor can be trusted in practice.

Unfortunately, many ML pipelines—that is, the procedure that is followed to train and validate a
predictor—are poorly set up to credibly satisfy these requirements. Here, we study a workflow that
we call the standard ML pipeline. The standard ML pipeline includes a model specification, a training
data source, and, importantly, an independent and identically distributed (iid) evaluation procedure,
which validates a predictor’s expected predictive performance on data drawn from the training
distribution, such as a randomly held-out set. This standard paradigm has enabled transformational
progress in a number of problem areas, but its blind spots are now becoming more salient. In
particular, the evaluations in this pipeline are agnostic to the particular signal used by the trained
model to produce predictions. As a result, concerns regarding “spurious correlations” and “shortcut
learning” in trained models are now widespread (e.g., Geirhos et al., 2020; Arjovsky et al., 2019).

The purpose of this paper is to explore this gap in the standard ML pipeline. A common
explanation is simply that, in many situations, the ML pipeline has a structural design flaw, such that
there is a fundamental conflict between iid performance and desirable behavior in deployment. For
example, this can occur when the main signal at training time comes from selection bias or features
that will not be available at deployment time. In these cases, models optimized for iid performance
will necessarily incorporate inappropriate signal (Caruana et al., 2015; Arjovsky et al., 2019; Ilyas
et al., 2019).

However, even when these clear structural flaws are avoided, ML pipelines can still produce
predictors that behave unexpectedly in deployment. One common observation from practitioners
is that predictors optimized on the same data to achieve the same level of iid generalization will
often show widely divergent behavior when applied to real-world settings. This observation is not
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adequately explained by the standard “structural flaw” narrative, from which we would expect
predictors with similar iid performance to show similar defects in deployment.

In this paper, we identify underspecification in ML pipelines as a distinct failure mode that
explains this behavior. In general, the solution to a problem is underspecified if there are many distinct
solutions that solve the problem equivalently. For example, the solution to an underdetermined
system of linear equations (i.e., more unknowns than linearly independent equations) is underspecified,
with an equivalence class of solutions given by a linear subspace. In the context of ML, we say an
ML pipeline is underspecified if there are many distinct ways for the pipeline to produce a predictor
that satisfies the pipeline’s validation criterion equivalently, even if the specification of the pipeline
(e.g., model specification, training data) is held constant. Various notions of underspecification
are well-documented in the ML literature; for example, it is a core idea in deep ensembles, double
descent, Bayesian deep learning, and loss landscape analysis (Lakshminarayanan et al., 2017; Fort
et al., 2019; Belkin et al., 2018; Nakkiran et al., 2020). However, the substantive implications of
underspecification in practical ML pipelines have been under-studied.

Here, we make two main claims about the role of underspecification in modern machine learning.
The first claim is that underspecification in ML pipelines, and the standard ML pipeline in particular,
is a key obstacle to reliably training models that behave as expected in deployment. Specifically,
when an ML pipeline can produce many predictors that satisfy its validation criterion equivalently,
the particular predictor that is returned (and thus the real-world behavior of the deployed model),
will be determined by opaque, often arbitrary choices made in the training pipeline. Thus, in the
standard ML pipeline, even if there exists a predictor with the strongest achievable iid performance
that also behaves appropriately in deployment, we cannot guarantee that such a model will be
returned when the pipeline is underspecified. In Section 3, we demonstrate this issue in several
examples that incorporate simple models: one simulated, one theoretical, and one a real empirical
example from medical genomics. In these examples, we show how underspecification manifests as
sensitivity to arbitrary choices that keep iid performance fixed, but can have substantial effects on
performance in model deployment.

The second claim is that underspecification is ubiquitous in modern applications of ML, and
has substantial practical implications. We support this claim with an empirical study, in which
we apply a simple experimental protocol across plausibly deployable deep learning pipelines in
computer vision, medical imaging, natural language processing (NLP), and electronic health record
(EHR) based prediction. The protocol is designed to detect underspecification by showing that a
predictor’s performance on stress tests—empirical evaluations that probe the model’s behavior along
practically important dimensions—is sensitive to iid-performance-preserving perturbations to the
training pipeline, such as the choice of random seed. We show that these perturbations induce
substantial variation in stress test performance, indicating that these behavioral characteristics of the
model are poorly constrained by the training and validation pipeline. This variation distinguishes
underspecification-induced failure from the more familiar case of structural mismatch, which would
predict uniformly poor performance on stress tests. We find evidence of underspecification in all
applications, with downstream effects on robustness, fairness, and causal grounding.

Together, our findings indicate that underspecification can, and does, degrade the credibility of
ML systems in applications, even in settings where the pipeline specification is well-aligned with
the goals of an application. The direct implication of our findings is that substantive real-world
behavior of ML predictors can be determined in unpredictable ways by choices that are made for
convenience, such as initialization schemes or step size schedules chosen for trainability—even when
these choices do not affect iid performance. More broadly, our results suggest a need to explicitly test
models for required behaviors in all cases where these requirements are not directly guaranteed by iid
evaluations. Finally, these results suggest a need for training and evaluation techniques tailored to
address underspecification, such as flexible methods to constrain ML pipelines to produce predictors
that satisfy the requirements of specific applications. Interestingly, our findings suggest that enforcing
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these constraints need not introduce hard tradeoffs with iid performance, a hypothesis that has been
explored in subsequent work (see discussion in Section 9).

Organization The paper is organized as follows. We present some core concepts and review relevant
literature in Section 2. We present a set of examples of underspecification in simple, analytically
tractable models as a warm-up in Section 3. We then present a set of four deep learning case studies
in Sections 5-8. We close with a discussion in Section 9.

Overall, our strategy in this paper is to provide a broad range of examples of underspecification
in a variety of modeling pipelines. Readers may not find it necessary to peruse every example to
appreciate our argument, but different readers may find different domains to be more familiar. As
such, the paper is organized such that readers can take away most of the argument from understanding
one example from Section 3 and one case study from Sections 5-8. However, we believe there is
benefit to presenting all of these examples under the single banner of underspecification, so we include
them all in the main text.

2. Preliminaries and Related Work
2.1 Machine Learning Pipelines

In this paper, the object we focus on is an ML pipeline, which is the procedure that is followed
to train and validate a predictor. We consider a supervised learning setting, where the goal
is to obtain a predictor f : X — Y that maps inputs z (e.g., images, text) to labels y. The
specification of an ML pipeline includes the training data D drawn from a training distribution
P; a specification of the model class F from which a predictor f(x) will be chosen; a procedure
for choosing predictors from that class; and a procedure for validating the candidate predictor.
Usually, the pipeline selects f € F by approximately minimizing the predictive risk on the training
distribution Rp(f) := E(x y)~p[f(f(X),Y)] for some loss function £. Here, we focus on the standard
ML pipeline, which validates the predictor f by evaluating its predictions on an independent and
identically distributed test set D’ also drawn from P, e.g., a hold-out set selected completely at
random. Here, we assume that the pipeline is tuned to return a predictor that exhibits the best
achievable validation performance given the constraints of its specification.

In practice, even when core components of the ML pipeline are fixed—such as the training
distribution model, specification, and validation procedure—there are still many degrees of freedom
that often remain unspecified. These may include the specific optimization algorithm, any number of
hyperparameters such as learning rate, weight initialization, data ordering, etc. These details of the
ML pipeline are often left to automatic search procedures, or simply randomized, as in the case of
weight initialization and data ordering. With advances in automated machine learning (AutoML)
techniques such as neural architecture search (see Elsken et al., 2019, for a review), more aspects of
ML pipelines are being left as degrees of freedom rather than explicit design decisions.

2.2 Underspecification

We say that an ML pipeline is underspecified if there are many predictors f that a pipeline could
return that satisfy the pipeline’s validation criteria equivalently. This often occurs if there are many
degrees of freedom in the pipeline specification, such as its random seed, that have little effect on
validation performance. We denote this set of achievable validation-equivalent predictors F* C F.
In the standard ML pipeline, F* corresponds to a set of predictors with the highest practically
achievable iid performance given the pipeline specification. Previously, Breiman (2001) referred to
similar sets of equivalently performant models as “Rashomon sets”.

Underspecification creates difficulties when the predictors in F* process inputs in systematically
different ways, resulting in different generalization behavior on distributions that differ from P. When
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this is true, even when F* contains a predictor that would behave appropriately in deployment, a
pipeline may return a different predictor because it cannot distinguish between them.

The ML literature has studied various notions of underspecification in more theoretical contexts.
In the deep learning literature specifically, much of the discussion has focused on the shape of the
loss landscape E(x y)~p[(f(X),Y)], and of the geometry of non-unique risk minimizers, including
discussions of wide or narrow optima (see, e.g. Chaudhari et al., 2019), and connectivity between
global modes in the context of model averaging (Izmailov et al., 2018; Fort et al., 2019; Wilson
and Izmailov, 2020) and network pruning (Frankle et al., 2020). Underspecification also plays a
role in recent analyses of overparametrization in theoretical and real deep learning models (Belkin
et al., 2018; Mei and Montanari, 2019; Nakkiran et al., 2020). Here, underspecification is a direct
consequence of having more degrees of freedom than datapoints.

Our work here complements these efforts in two ways: first, our goal is to understand how
underspecification relates to model behaviors beyond the training distribution P; and secondly, the
primary object that we study is practical ML pipelines rather than the loss landscape itself. This
latter distinction is particularly important for this work, as there is often a gap between analysis of
a learning problem and analysis of an ML pipeline built around that problem. For example, ML
pipelines built around well-conditioned learning problems can exhibit underspecification if the choice
of convex regularizer is left as a degree of freedom. Likewise, ML pipelines built around poorly
conditioned problems may show little sign of underspecification, for example, if the optimization
algorithm is fixed and induces a strong implicit regularization. In fact, the pipelines we study
incorporate a number of standard tricks, such as early stopping, which are ubiquitous in ML as it is
applied to real problems, but can widen the gap between learning theory and practice. This being
said, these analyses are clearly connected, as we discuss in Section 3.

Our treatment of underspecification is more closely related to work on “Rashomon sets” (Fisher
et al., 2019), “predictive multiplicity” (Marx et al., 2019), and methods that search for validation-
equivalent predictors that are “right for the right reasons” (Ross et al., 2017). These lines of work
similarly note that a single learning problem specification can admit many near-optimal solutions,
and that these solutions may have very different properties along axes such as interpretability or
fairness. Here, we draw out additional implications of this phenomenon in practical ML pipelines.

2.3 Structural and Underspecified Failure Modes

Underspecification differs from more commonly-studied structural failure modes that arise in ap-
plications of machine learning. In structural failure modes, there is an explicit tension between
iid generalization and desirable behavior at deployment time. In these scenarios, a predictor that
behaves as required will have inferior iid performance compared to a predictor that uses so-called
“spurious” associations that are strongly predictive of the label in the training data, but do not appear
in plausible deployment settings.

For example, structural failure modes have been widely reported in medical applications of ML,
where the training inputs often include markers of a doctor’s diagnostic judgment (Oakden-Rayner
et al., 2020). As an illustration, Winkler et al. (2019) report on a CNN model used to diagnose skin
lesions that exhibited strong reliance on surgical ink markings around skin lesions that doctors had
deemed to be cancerous. Because the judgment that went into the ink markings may have used
information not available in the image itself, a predictor that incorporated this feature could achieve
better iid predictive performance than one that did not. However, these markings would not be
expected to be present in deployment, where the predictor would be used pre-diagnosis, using only
unmarked images.

Structural failure modes often indicate a design flaw in the ML pipeline: the learning problem that
the ML pipeline was designed to solve is not well-aligned with the real-world problem encountered in
deployment. As such, they can often be addressed by changing core parts of the ML pipeine, such as
more careful selection of training data. Several algorithmic approaches have also been proposed to
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overcome structural issues, including Peters et al. (2016); Heinze-Deml et al. (2018); Arjovsky et al.
(2019); Magliacane et al. (2018). These approaches often use data collected in multiple environments
to identify causal invariances.

Underspecification is distinct and complementary to structural failure modes. This is evident
in settings where structural issues are not present. For example, in many perception problems, the
label can be recovered with high certainty using only desired signal (e.g., the shape of the foreground
object in an image recognition task), but ML models will often exhibit sensitivity to inappropriate
signal (e.g., background features that are correlated with the foreground object at training time),
even though this is not necessary to achieve competitive iid performance. In this work, we argue that
underspecification factors into these failures.

Geirhos et al. (2020) connects this idea to the notion of “shortcut learning”. They point out
that there may be many predictors that generalize well in iid settings, but only some that align
with the intended solution to the prediction problem. In addition, they also note (as we do) that
opaque aspects of ML pipelines, such as the optimization procedure, can make certain features easier
for a pipeline to represent, and note the need for future investigation in this area. Our work offers
additional empirical support to this argument. Furthermore, we show that even pipelines that are
identical up to their random seed can produce predictors that rely differently on distinct shortcuts,
emphasizing the relevance of underspecification.

Finally, we note that structural and underspecified failure modes can coexist in the same problem.
In problems where there is a fundamental tradeoff between iid performance and required deployment
behavior, F* may not contain any predictors with ideal behavior in deployment; however, the
particular strength of the tradeoff and is often underspecified by the standard ML pipeline. In many
of the examples that we consider here, particularly the experiments with deep learning pipelines,
both types of failures are likely to be present.

2.4 Stress Tests and Credibility

Our core claims revolve around how underspecification creates ambiguity in real-world predictor
behavior, which can undermine the credibility of an ML system. In particular, we are interested in
behavior that is not tested by iid evaluations, but has observable implications in practically important
situations. To assess these behavioral requirements, we use stress tests, or evaluations that probe the
properties of a predictor by observing its outputs on specifically designed inputs. Strategies of this
type are one way to warrant trust in an ML system (Jacovi et al., 2020).

Stress tests are becoming a key part of standards of evidence in a number of applied domains,
including medicine (Collins et al., 2015; Liu et al., 2020a; Rivera et al., 2020), economics (Mullainathan
and Spiess, 2017; Athey, 2017), public policy (Kleinberg et al., 2015), and epidemiology (Hoffmann
et al., 2019). In many settings where stress tests have been proposed in the ML literature, they have
often uncovered cases where models fail to generalize as required for direct real-world application.
Our aim is to show that underspecification can play a role in these failures.

Here, we review three types of stress tests that we consider in this paper, and make connections
to existing literature where they have been applied.

Stratified Performance Evaluations Stratified evaluations (i.e., subgroup analyses) test whether
a predictor f behaves differently on inputs from different strata of a dataset. We choose a particular
feature A and stratify a standard test dataset D’ into strata D), = {(x;,y:) : A; = a}. A performance
metric can then be calculated and compared across different values of a. Often, A is chosen to be a
feature that is not mechanistically related to the label, but is salient in deployment.

Stratified evaluations have been presented in the literature on fairness in machine learning, where
examples are stratified by socially salient characteristics like skin type and gender (Buolamwini and
Gebru, 2018); the ML for healthcare literature (Obermeyer et al., 2019; Oakden-Rayner et al., 2020),
where examples are stratified by subpopulations; and the natural language processing and computer
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vision literatures where examples are stratified by topic or notions of difficulty (Hendrycks et al.,
2019; Zellers et al., 2018).

Shifted Performance Evaluations Shifted performance evaluations test whether the average
performance of a predictor f generalizes when the test distribution differs in a specific way from the
training distribution. These tests define a new data distribution P’ # P from which to draw the test
dataset D’, then evaluate a performance metric with respect to this shifted dataset.

There are several strategies for generating P’, which test different properties of f. For example, to
test whether f exhibits invariance to a particular transformation T'(z) of the input, one can define P’/
to be the distribution of the variables (T'(z),y), when (x,y) are drawn from the training distribution
P (e.g., noising of images in ImageNet-C in Hendrycks and Dietterich (2019)). One can also define P’
less formally, for example by changing the data scraping protocol used to collect the test dataset
(e.g., ObjectNet in Barbu et al. (2019)), or changing the instrument used to collect data.

Shifted performance evaluations form the backbone of empirical evaluations in the literature on
robust machine learning and task adaptation (e.g., Hendrycks and Dietterich, 2019; Wang et al., 2019;
Djolonga et al., 2020; Taori et al., 2020). Shifted evaluations are also required in some reporting
standards, including those for medical applications of AT (Collins et al., 2015; Liu et al., 2020a; Rivera
et al., 2020).

Contrastive Evaluations Shifted evaluations that measure aggregate performance can be useful
for surfacing potential deployment failures, but the aggregation involved can obscure more fine-
grained patterns. Contrastive evaluations can support localized analysis of particular model behaviors.
Contrastive evaluations are performed on the example, rather than distribution level, and check
whether a particular modification of the input x causes the output of the model to change in unexpected
ways. Formally, a contrastive evaluation makes use of a dataset of matched sets C = {z;} chll, where
each matched set z; consists of a base input x; that is modified by a set of transformations 7,
z; = (Tj(xi))1;eT- In contrastive evaluations, metrics are computed with respect to matched sets,
and can include, for example, measures of similarity or ordering among the examples in the matched
set. For instance, if it is assumed that each transformation in 7 should be label-preserving, then a
measurement of disagreement within the matched sets reveals unexpected behavior.

Contrastive evaluations are common in the ML fairness literature, e.g., to assess counterfactual
notions of fairness (Garg et al., 2019; Kusner et al., 2017). They are also increasingly common as
robustness or debugging checks in the natural language processing literature (Ribeiro et al., 2020;
Kaushik et al., 2020).

3. Warm-Up: Underspecification in Simple Models

To build intuition for how underspecification manifests in practice, we demonstrate its consequences
in three relatively simple models before moving on to study practical deep neural networks. Here, we
examine examples of underspecification in three different settings: (1) a simple parametric model for
an epidemic in a simulated setting; (2) a linear model in a real-world medical genomics setting, where
such models are currently state-of-the-art; and (3) a shallow random feature model in the theoretical
infinitely wide limit. In each case, we show how modeling pipelines that have known degeneracies
return substantively different predictors when the pipeline is perturbed. This previews our strategy
for perturbing deep learning pipelines with unknown degeneracies, where we observe similar results.

3.1 Underspecification in a Simple Epidemiological Model

One core task in infectious disease epidemiology is forecasting the trajectory of an epidemic. Dynamical
models are often used for this task. Here, we consider a simple simulated setting where the data
is generated exactly from this model; thus, unlike a real setting where model misspecification is
a primary concern, the only challenge here is to recover the true parameters of the generating
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process, which would enable an accurate forecast. We show that even in this simplified setting,
underspecification is a key challenge in the forecasting task.

Specifically, we consider the simple Susceptible-Infected-Recovered (SIR) model that is often
used as the basis of epidemic forecasting models in infectious disease epidemiology. This model is
specified in terms of the rates at which the number of susceptible (5), infected (I), and recovered
(R) individuals in a population of size N, change over time:

ds I dI I I drR 1
dt6<N)S’ cthJrﬂ(N)S’ & =D

In this model, the parameter 3 represents the transmission rate of the disease from the infected
to susceptible populations, and the parameter D represents the average duration that an infected
individual remains infectious.

To simulate the forecasting task, we generate a full trajectory from this model for a full time-course
T. We specify a forecasting pipeline that takes in data of observed infections up to some time Ty < T,
and estimates the parameters (8, D) by minimizing squared-error loss on predicted infections at
each timepoint using gradient descent (susceptible and recovered are usually not observed). 1
Importantly, during the early stages of an epidemic, when Ty is small, the parameters of the model
are poorly identified by this training task. This is because, at this stage, the number of susceptible
is approximately constant at the total population size (N), and the number of infections grows
approximately exponentially at rate 8 — 1/D. The data only determine this rate. Thus, there are
many pairs of parameter values (3, D) that describe the exponentially growing timeseries of infections
equivalently well.

However, when used to forecast the trajectory of the epidemic past Tops, these parameters
yield very different predictions. In Figure 1(a), we show two predicted trajectories of infections
corresponding to two parameter sets (3, D). Despite fitting the observed data identically, these
models predict peak infection numbers, for example, that are orders of magnitude apart.

Because the training objective cannot distinguish between parameter sets (8, D) that yield
equivalent growth rates § — 1/D, arbitrary choices in the learning pipeline determine which set
of observation-equivalent parameters are returned by the learning algorithm. In Figure 1(c), we
show that by changing the point Dy at which the parameter D is initialized in the least-squares
minimization procedure, we obtain a wide variety of predicted trajectories from the model. In
addition, the particular distribution used to draw Dg (Figure 1(b)) has a substantial influence on the
distribution of predicted trajectories.

In realistic epidemiological models that have been used to inform policy, underspecification is dealt
with by testing models in forecasting scenarios (i.e., stress testing), and constraining the problem
with domain knowledge and external data, for example about viral dynamics in patients (informing
D) and contact patterns in the population (informing 3) (see, e.g. Flaxman et al., 2020).

3.2 Underspecification in a Linear Polygenic Risk Score Model

For a more realistic example of underspecification, we turn to polygenic risk scores. Polygenic risk
scores (PRS) in medical genomics leverage patient genetic information (genotype) to predict clinically
relevant characteristics (phenotype). Typically, they are linear models built on categorical features
that represent genetic variants. PRS have shown great success in some settings (Khera et al., 2018),
but face difficulties when applied to new patient populations (Martin et al., 2017; Duncan et al.,
2019; Berg et al., 2019).

We show that underspecification plays a role in this difficulty with generalization. Specifically, we
show that there is a non-trivial set of predictors F* that show strong performance in iid validations,
but transfer very differently to a new population. Thus, a modeling pipeline based on iid performance
alone cannot reliably return a predictor that transfers well.

1. Here, we omit a separate validation procedure because in-sample fit is sufficient validation in such a simple model.



UNDERSPECIFICATION PRESENTS CHALLENGES FOR CREDIBILITY IN MODERN MACHINE LEARNING

320000 —— Do=28 —— Gamma 5 20000 Do ~ Gamma
© Do=7 © Do ~ Normal
E 15000 e data points Normal “E 15000 e data points
b N
S 10000 S 10000
& 3
£ 5000 £ 5000
3 =
=z =4

0 0

0 40 80 120160200240 280 D 0 40 80 120160200 240280
Time (days) 0 Time (days)

Figure 1: Underspecification in a simple epidemiological model. A training pipeline that only
minimizes predictive risk on early stages of the epidemic leaves key parameters underspecified, making
key behaviors of the model sensitive to arbitrary training choices. Because many parameter values
are equivalently compatible with fitting data from early in the epidemic, the trajectory returned by a
given training run depends on where it was initialized, and different initialization distributions result
in different distributions of predicted trajectories.

To construct distinct, validation-equivalent predictors, we exploit a core ambiguity in PRS, namely,
that many genetic variants that are used as features are nearly collinear. This collinearity makes
it difficult to distinguish causal and correlated-but-noncausal variants (Slatkin, 2008). A common
approach to this problem is to partition variants into clusters of highly-correlated variants and to only
include one representative of each cluster in the PRS (e.g., International Schizophrenia Consortium
et al., 2009; CARDIoGRAMplusC4D Consortium et al., 2013). Usually, standard heuristics are
applied to choose clusters and cluster representatives as a pre-processing step (e.g., “LD clumping”,
Purcell et al., 2007).

Importantly, because of the high correlation of features within clusters, the choice of cluster
representative leaves the iid risk of the predictor largely unchanged. Thus, distinct PRS predictors that
incorporate different cluster representatives can be treated as members of the validation-equivalent
set F*. However, this choice has strong consequences for model generalization.

To demonstrate this effect, we examine how feature selection influences behavior in a stress test
that simulates transfer of PRS across populations. Using data from the UK Biobank (Sudlow et al.,
2015), we examine how a PRS predicting a particular continuous phenotype called the intraocular
pressure (I0P) transfers from a predominantly British training population to “non-British” test
population (see Appendix D for definitions). We construct an ensemble of 1000 PRS predictors that
sample different representatives from each feature cluster, including one that applies a standard
heuristic from the popular tool PLINK (Purcell et al., 2007).

The three plots on the left side of Figure 2 confirm that each predictor with distinct features
attains comparable performance in the training set (left panel) and iid test set (middle panel), with
the standard heuristic (red dots) slightly outperforming random representative selection. However,
on the shifted “non-British” test data (right panel), we see far wider variation in performance, and
the standard heuristic fares no better than the rest of the ensemble. More generally, within this set
of predictors, performance on the British test set is only weakly associated with performance on the
“non-British” set (Spearman p = 0.135;95% CI 0.070-0.20; Figure 2, right).

Thus, because the PRS training pipeline is underspecified, it cannot reliably return a predictor
that transfers as required between populations, despite some predictors in F* having acceptable
transfer performance. For full details of this experiment and additional background information, see
Appendix D.
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Figure 2: Underspecification in linear models in medical genomics. (Left) Performance
of a PRS model using genetic features in the British training set, the British evaluation set, and
the “non-British” evaluation set, as measured by the normalized mean squared error (MSE divided
by the true variance, lower is better). Each dot represents a PRS predictor (using both genomic
and demographic features). Large red dots are PRS predictors using the “index” variants of the
clusters of correlated features selected by PLINK. Gray lines represent the baseline models using
only demographic information. The x-axis is random jitter added to visualize the points more easily.
The increased error from the left panel to the middle panel is the standard generalization gap from
train to test on iid data; meanwhile, the large dispersion of errors in the right panel relative to the
middle panel is evidence of underspecification of transfer accuracy. (Right) Comparison of model
performance (NMSE) in British and “non-British” eval sets (middle and right panels on the Left
side of the figure), given the same set of genomic features (Spearman p = 0.135;95% CI 0.070-0.20).
Transfer performance is difficult to predict from iid performance.

3.3 Theoretical Analysis of Underspecification in a Random Feature Model

We close this set of examples with a theoretical analysis of the population risk of random feature
models in the infinitely-wide limit. The content of this section is substantially more mathematical
than the rest of the paper, and can be safely skipped by readers more interested in empirical results.

In this problem, underpsecification results from overparameterization: when there are more
parameters than datapoints, the learning problem is inherently underspecified. Overparameterization
is a key property of many modern neural network models. Much recent work has shown that this
underspecification has interesting regularizing effects on iid generalization, but there has been little
focus on its impact on how models behave on other distributions. Here, we show that we can recover
the effect of underspecification on out-of-distribution generalization in an asymptotic analysis of
a simple random feature model, which is often used as a model system for neural networks in the
infinitely wide regime.

We consider for simplicity a regression problem: we are given data {(x;,v;)}i<n, with z; € R?
vector of covariates and y; € R a response. As a tractable and yet mathematically rich setting, we use
the random features model of Neal (1996) and Rahimi and Recht (2008). This is a one-hidden-layer
neural network with random first layer weights W and learned second layer weights 8. We learn a
predictor fyw : R4 — R of the form

fw(x) =0Ta(Wa).

Here, W € RV*4 is a random matrix with rows w; € R, 1 < i < N that are not optimized and
define the featurization map x — o(Wx). We take (w;);<n to be iid and uniformly random with
|lwi]|2 = 1. We consider data (x;, ;), where &; are uniformly random with ||a;]|2 = v/d and a linear
target y; = fi(x:) = By x:.

We analyze this model in a setting where both the number of datapoints n and the neurons N
both tend toward infinity with a fixed overparameterization ratio N/n. For N/n < 1, we learn the
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second layer weights using least squares. For N/n > 1 there exist choices of the parameters 6 that
perfectly interpolate the data fw (x;) = y; for all i < n. We choose the minimum ¢5-norm interpolant
(which is the model selected by GD when 6 is initialized at 0):

minimize ||6]]

subject to fw (x;) = y; for all .

We analyze the predictive risk of the predictor fy on two test distributions, P, which matches
the training distribution, and P, which is perturbed in a specific way that we describe below. For a
given distribution Q, we define the prediction risk as the mean squared error for the random feature
model derived from W and for a test point sampled from Q:

R(W,Q) =E(x,y)~q(Y — (W) o(WX))>.

This risk depends implicitly on the training data through 97 but we suppress this dependence.

Building on the work of Mei and Montanari (2019) we can determine the precise asymptotics of
the risk under certain distribution shifts in the limit n, N, d — oo with fixed ratios n/d, N/n. We
provide detailed derivations in Appendix E, as well as characterizations of other quantities such as
the sensitivity of the prediction function fw to the choice of W.

In this limit, any two independent random choices W7 and W5 induce trained predictors fw,
and fw, that have indistinguishable in-distribution error R(W;, P). However, given this value of the
risk, the prediction functions fw, () and fw,(x) are nearly as orthogonal as they can be, and this
leads to very different test errors on certain shifted distributions Pa.

Specifically, we define PA in terms of an adversarial mean shift. We consider test inputs
Tiest = X + ¢, where x is an independent sample from the training distribution, but xg is a
constant mean-shift defined with respect to a fixed set of random feature weights W,. We denote
this shifted distribution with Pa w,. For a given Wy, a shift @, can be chosen such that (1)
it has small norm (]|zol] < A < ||z|]), (2) it leaves the risk of an independently sampled W
mostly unchanged (R(W,Pa w,) = R(W,Piain)), but (3) it drastically increases the risk of Wy
(R(Wy,Pa w,) > R(Wp,Pirain)). In Figure 3 we plot the risks R(W,Pa w,) and R(Wy,Pa w,)
normalized by the iid test risk R(W, Ptain) as a function of the overparameterization ratio for two
different data dimensionalities. The upper curves correspond to the risk for the model against which
the shift was chosen adversarially, producing a 3-fold increase in risk. Lower curves correspond to the
risk for the same distributional shift for the independent model, resulting in very little risk inflation.

These results show that any predictor selected by min-norm interpolation is vulnerable to shifts
along a certain direction, while many other models with equivalent risk are not vulnerable to the
same shift. The particular shift itself depends on a random set of choices made during model training.
Here, we argue that similar dynamics are at play in many modern ML pipelines, under distribution
shfits that reveal practically important model properties.

4. Empirical Strategy for Probing Underspecification in Deep Learning
Pipelines

Having motivated the notion of underspecification in ML pipelines, we now turn to an empirical study
of underspecification in modern deep learning pipelines. We show that underspecification affects the
real-world behavior of predictors trained using the standard ML pipeline in three domains: computer
vision (including both basic research and medical imaging), natural language processing, and clinical
risk prediction using electronic health records. In each case, we use a simple experimental protocol to
show that the standard pipeline admits a non-trivial set F* of high-performing validation-equivalent
predictors, but that different predictors in F* exhibit systematically different real-world behavior.
Similarly to our approach in Section 3, our protocol approaches underspecification constructively
by instantiating a set of predictors from the set F* and probing their behavior. However, for deep
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Figure 3: Random feature models with identical in-distribution risk show distinct risks
under mean shift. Expected risk (averaging over random features Wy, W) of predictors fw,, fw
under a Wy-adversarial mean-shift at different levels of overparameterization (N/n) and sample size-
to-parameter ratio (n/d). Upper curves: Normalized risk Ew, R(Wy; Pw, a)/Ew R(W; P) of the ad-
versarially targeted predictor fw,. Lower curves: Normalized risk Eyy w, R(W'; Pw, a)/Ew R(W;P)
of a predictor fy defined with independently drawn random weights W. Under this particular
shift, the normalized risk of the predictor fyw, is several times larger than the normalized risk of
fw across a range of overparameteriation settings, despite having indistinguishable risk under the
iid test distribution P’. Here the input dimension is d = 80, N is the number of neurons, and n the
number of samples. We use ReLU activations; the ground truth is linear with ||Bo|l2 = 1. Circles
are empirical results obtained by averaging over 50 realizations. Continuous lines correspond to the
analytical predictions detailed in the supplement.

models, it is difficult to specify predictors in this set analytically. Instead, we construct an ensemble
of predictors from a given model by perturbing small parts of the ML pipeline (e.g., the random seed
used in training), and retraining the model several times. When there is a non-trivial set 7*, such
small perturbations are often enough to push the pipeline to return a different choice f € F*. This
strategy does not yield an exhaustive exploration of F*; rather, it is a conservative indicator of which
predictor properties are well-constrained and which are underspecified by the modeling pipeline.

Once we obtain an ensemble, we make several measurements. First, we empirically confirm that
the models in the ensemble have near-equivalent iid performance, and can thus be considered to
be members of F*. Secondly, we evaluate the ensemble on one or more application-specific stress
tests that probe an aspect of model behavior that is important in the deployment context (see
Section 2.4). Variability in stress test performance—beyond what can be explained by differences in
iid performance—provides evidence that the modeling pipeline is underspecified along a practically
important dimension.

The experimental protocol we use to probe underspecification is closely related to uncertainty
quantification approaches based on deep ensembles (e.g., Lakshminarayanan et al., 2017; Dusenberry
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et al.; 2020). In particular, by averaging across many randomly perturbed predictors from a
single modeling pipeline, deep ensembles have been shown to be effective tools for detecting out-of-
distribution inputs, and correspondingly for tamping down the confidence of predictions for such
inputs (Snoek et al., 2019). These approaches probe a particular notion of algorithmic stability,
where the training pipeline for a model is perturbed even when the data are held constant (Yu et al.,
2013).

To establish that observed variability in stress test performance is a genuine indicator of under-
specification, we evaluate three properties.

e First, we consider the magnitude of the variation, either relative to iid performance (when they
are on the same scale), or relative to external benchmarks, such as comparisons between ML
pipelines featuring different model architectures.

e Secondly, when sample size permits, we consider unpredictability of the variation from iid
performance. Even if the observed difference in iid performance in our ensemble is small,
if stress test performance tracks closely with iid performance, this would suggest that our
characterization of F* is too permissive. We assess this by computing correlation coefficients
between the iid validation metric and the stress test metric.

e Finally, we establish that the variation in stress tests indicates systematic differences between
the predictors in the ensemble. Often, the magnitude of variation in stress test performance
alone will be enough to establish systematicness. However, in some cases we supplement with a
mixture of quantitative and qualitative analyses of stress test outputs to illustrate that the
differences between predictors does align with important dimensions of the application.

In all cases that we consider, we find evidence that practically important predictor behaviors are
underspecified by the standard ML pipeline. In some cases the evidence is obvious, while in others
it is more subtle, owing in part to the conservative nature of our exploration of F*. Our results
interact with a number of research areas in each of the fields that we consider, so we close each case
study with a short application-specific discussion.

5. Case Studies in Computer Vision

Computer vision is one of the flagship application areas in which deep learning on large-scale training
sets has advanced the state of the art. Here, we focus on an image classification task, specifically on
the ImageNet validation set (Deng et al., 2009). We examine two pipeline specifications: one that
trains a ResNet-50 model (He et al., 2016) on ImageNet, and another that pretrains a ResNet-101x3
Big Transfer (BiT) model (Kolesnikov et al., 2019) on the JFT-300M dataset (Sun et al., 2017) then
fine-tunes it on ImageNet. The former is a standard baseline in image classification. The latter is
scaled-up ResNet designed for transfer learning, which attains state-of-the-art, or near state-of-the-art,
on many image classification benchmarks, including ImageNet.

A key challenge in computer vision is robustness under distribution shift. It has been well-
documented that many deep computer vision models suffer from brittleness under distribution shifts
that humans do not find challenging (Goodfellow et al., 2016; Hendrycks and Dietterich, 2019; Barbu
et al.,; 2019). This brittleness has raised questions about deployments in open-world high-stakes
application, and has given rise to an active literature on robustness in image classification (see, e.g.,
Taori et al., 2020; Djolonga et al., 2020). Recent work has connected lack of robustness to computer
vision models’ encoding counterintuitive features (Ilyas et al., 2019; Geirhos et al., 2019; Yin et al.,
2019; Wang et al., 2020).

Here, we show concretely that the pipelines we study are underspecified in ways that align with
distribution shifts. Going beyond previous work that show degradation in model performance across
shifts, here we show that predictors trained by identical pipelines (up to random seed) can have very
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different responses to corruptions and shifts, even when their iid performance is held nearly constant.
We begin by constructing ensembles of trained ResNet-50 and BiT models: we train 50 ResNet-50
models on ImageNet using identical pipelines that differ only in their random seed, 30 BiT models
that are initialized at the same JFT-300M-trained checkpoint, and differ only in their fine-tuning
seed and initialization distributions (10 runs each of zero, uniform, and Gaussian initializations). On
the ImageNet validation set, the ResNet-50 predictors achieve a 75.9% + 0.11 top-1 accuracy, while
the BiT predictors achieve a 86.2% =+ 0.09 top-1 accuracy.

We evaluate these predictor ensembles on two stress tests that have been proposed in the image
classification robustness literature: ImageNet-C (Hendrycks and Dietterich, 2019) and ObjectNet
(Barbu et al., 2019). ImageNet-C is a benchmark dataset that replicates the ImageNet validation
set, but applies synthetic but realistic corruptions to the images, such as pixelation or simulated
snow, at varying levels of intensity. ObjectNet is a crowdsourced benchmark dataset that covers a
set of classes included in the ImageNet validation set, but depicts them in a wider variety of settings
and configurations. Both stress tests have been used as prime examples of the lack of human-like
robustness in deep image classification models.

5.1 ImageNet-C

We show results from the evaluation on several ImageNet-C tasks in Figure 4. The tasks we show
here incorporate corruptions at their highest intensity levels (level 5 in the benchmark). In the
figure, we highlight variability in the accuracy across predictors in the ensemble, relative to the
variability in accuracy on the standard iid test set. For both the ResNet-50 and BiT predictors,
variation on some ImageNet-C tasks is an order of magnitude larger than variation in iid performance.
Furthermore, within this ensemble, there is weak sample correlation between performance on the iid
test set and performance on each benchmark stress test, and performance between tasks (all 95%
CI’s for Pearson correlation using n = 50 and n = 30 contain zero, see Figure 5). This indicates
that the differences in stress test performance cannot be explained by some predictors simply being
better-trained than others. For context, we report absolute model accuracies and ensemble standard
deviations in Table 1.

5.2 ObjectNet

We also evaluate these ensembles along more “natural” shifts in the ObjectNet test set. Here, we
compare the variability in model performance on the ObjectNet test set to a subset of the standard
ImageNet test set with the 113 classes that appear in ObjectNet. The results of this evaluation
are in Table 1. The relative variability in accuracy on the ObjectNet stress test is larger that the
variability seen in the standard test set (standard deviation is 2x for ResNet-50 and 5x for BiT),
although the difference in magnitude is not as striking as in the ImageNet-C case in Figure 4. There
is also a slightly stronger relationship between standard test accuracy and test accuracy on ObjectNet
(Spearman p 0.22 (—0.06,0.47) for ResNet-50, 0.47 (0.13,71) for BiT).

Nonetheless, the variability in accuracy suggests that some predictors in the ensembles are
systematically better or worse at making predictions on the ObjectNet test set. We quantify this with
p-values from a one-sided permutation test, which we interpret as descriptive statistics. Specifically,
we compare the variability in model performance on the ObjectNet test set with variability that
would be expected if prediction errors were randomly distributed between predictors. The variability
of predictor accuracies on ObjectNet is large compared to this baseline (p = 0.002 for ResNet-50 and
p = 0.000 for BiT). On the other hand, the variability between predictor accuracies on the standard
ImageNet test set are more typical of what would be observed if errors were randomly distributed
(p = 0.203 for ResNet-50 and p = 0.474 for BiT). In addition, the predictors in our ensembles disagree
far more often on the ObjectNet test set than they do in the ImageNet test set, whether or not we
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Dataset ImageNet pixelate contrast motion blur brightness ObjectNet
ResNet-50  0.759 (0.001)  0.197 (0.024) 0.091 (0.008) 0.100 (0.007)  0.607 (0.003) 0.259 (0.002)
BiT 0.862 (0.001)  0.555 (0.008) 0.462 (0.019) 0.515 (0.008) 0.723 (0.002) 0.520 (0.005)

Table 1: Accuracies of ensemble members on stress tests. Ensemble mean (standard deviations)
of accuracy proportions on ResNet-50 and BiT models.

Dataset ImageNet ImageNet (subset) ObjectNet
ResNet-50  0.160 (0.001) 0.245 (0.005)  0.509 (0.003)
BiT 0.064 (0.004) 0.094 (0.006)  0.253 (0.012)

Table 2: Ensemble disagreement proportions for ImageNet vs ObjectNet models. Average
disagreement between pairs of predictors in the ResNet and BiT ensembles. The “subset” test set
only includes classes that also appear in the ObjectNet test set. Models show substantially more
disagreement on the ObjectNet test set.

consider the subset of the ImageNet test set examples that have classes that appear in ObjectNet
(Table 2).

5.3 Conclusions

Our results show that practically important properties of image classifiers are poorly constrained by
the standard ML pipeline. The fact that underspecification persists in the scaled-up BiT pipeline
is particularly notable, because scaling up data and model size has become a popular strategy
for improving performance across a wide range of robustness stress tests, aligning closely with
how much this scaling improves performance on iid evaluations (Djolonga et al., 2020; Taori et al.,
2020; Hendrycks et al., 2020). However, even as overall performance on stress tests improves, iid-
performance-preserving perturbations to the pipeline still induce variability in stress test performance,
indicating that important real-world behaviors are still not fully specified. Improving the composition
of training data has the potential to mitigate underspecification, but these results suggest that
underspecification requires more special attention as scaling strategies are explored.

6. Case Studies in Medical Imaging

Medical imaging is one of the primary high-stakes domains where deep image classification models
are directly applicable. In this section, we examine underspecification in two medical imaging models
designed for real-world deployment. The first classifies images of patient retinas, while the second
classifies clinical images of patient skin. We show that, when trained using the standard ML pipeline,
the behavior of these models is underspecified along dimensions that are practically important for
deployment. These results confirm the need for explicitly testing and monitoring medical ML models
in settings that accurately represent the deployment domain, as codified in recent best practices
(Collins et al., 2015; Kelly et al., 2019; Rivera et al., 2020; Liu et al., 2020a).

6.1 Ophthalmological Imaging

Deep learning models have shown great promise in the ophthalmological domain (Gulshan et al.,
2016; Ting et al., 2017). Here, we consider a pipeline that trains one such model to predict diabetic
retinopathy (DR) and referable diabetic macular edema (DME) from retinal fundus images. The
pipeline trains a model with an Inception-V4 backbone (Szegedy et al., 2017) by first pretraining on
ImageNet, and then fine-tuning using de-identified retrospective fundus images from EyePACS in the
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Figure 4: Image classification model performance on stress tests is sensitive to random
initialization in ways that are not apparent in iid evaluation. (Top Left) Parallel axis plots
showing the variation in accuracy between identically trained, randomly initialized ResNet-50 models
on strongly corrupted ImageNet-C data. Lines represent the performance of each predictor in the
ensemble on classification tasks using uncorrupted test data, as well as corrupted data (pixelation,
contrast, motion blur, and brightness). Given values are the deviation in accuracy from the ensemble
mean, scaled by the standard deviation of accuracies on the “clean” ImageNet test set. The solid
black line highlights the performance of an arbitrarily selected model to show how performance on
one test may not be a good indication of performance on others. (Right) Example image from the
standard ImageNet validation set, with corrupted versions from the ImageNet-C benchmark. Right:
Example images from the standard ImageNet test set, with corrupted versions from the ImageNet-C
benchmark.
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Figure 5: Performance on ImageNet-C stress tests is unpredictable from standard test
performance. Spearman rank correlations of predictor performance, calculated from random
initialization predictor ensembles. (Left) Correlations from 50 retrainings of a ResNet-50 model on
ImageNet. (Right) Correlations from 30 ImageNet fine-tunings of a ResNet-101x3 model pre-trained
on the JFT300M dataset.
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Figure 6: Stress test performance varies across identically trained medical imaging models.
Points connected by lines represent metrics from the same model, evaluated on an iid test set (bold)
and stress tests. Each axis shows deviations from the ensemble mean, divided by the standard
deviation for that metric in the standard iid test set. These models differ only in random initialization
at the fine-tuning stage. (Top Left) Variation in AUC between identical diabetic retinopathy
classification models when evaluated on images from different camera types. Camera type 5 is
a camera type that was not encountered during training. (Bottom Left) Variation in accuracy
between identical skin condition classification models when evaluated on different skin types. (Right)
Example images from the original test set (left) and the stress test set (right). Some images are
cropped to match the aspect ratio.
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Figure 7: Identically trained retinal imaging models show systematically different behavior
on stress tests. Calibration plots for two diabetic retinopathy classifiers (orange and blue) that
differ only in random seed at fine-tuning. Calibration characteristics of the models are nearly identical
for each in-distribution camera type 1-4, but are qualitatively different for the held-out camera type
5. Error bars are +2 standard errors.

United States and from eye hospitals in India. Dataset and model architecture details are similar
to those in (Krause et al., 2018). For our experiment, we restrict the pipeline to incorporate only
standard iid validation.

A key use case for these models is to augment human clinical expertise in underserved settings,
where doctor capacity may be stretched thin. As such, generalization to images taken by a range of
cameras, including those deployed at different locations and clinical settings, is essential for system
usability (Beede et al., 2020).
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Here, we show that the performance of predictors produced by the standard ML pipeline is
sensitive to underspecification. Specifically, we construct an ensemble of 10 models that differ only in
random initialization at the fine-tuning stage. We evaluate these models on stress tests predicting
DR using images taken by a camera type not encountered during training and validation.

The results are shown in Figure 6. Measuring accuracy in terms of AUC, variability in AUC
on the held-out camera type is larger than that in the standard test set, both in aggregate, and
compared to most strata of camera types in the training set. To establish that this larger variability
is not easily explained away by differences in sample size, we conduct a two-sample z-test comparing
the AUC standard deviation in the held-out camera test set (n = 287) against the AUC standard
deviation in the standard test set (n = 3712) using jackknife standard errors, obtaining a z-value of
2.47 and a one-sided p-value of 0.007. In addition, models in the ensemble differ systematically in
ways that are not revealed by performance in the standard test set. For example, in Figure 7, we show
calibration plots of two predictors from the ensemble computed across camera types. The predictors
have similar calibration curves for the cameras encountered during training, but have markedly
different calibration curves for the held-out camera type. This suggests that these predictors process
images in systematically different ways that only become apparent when evaluated on the held-out
camera type.

6.2 Dermatological Imaging

Deep learning based image classification models have also been explored for applications in dermatology
(Esteva et al., 2017). Here, we examine a model proposed in Liu et al. (2020b) that is trained to
classify skin conditions from clinical skin images. This model has a similar Inception-V4 architecture
to the one in Section 6.1. We also use a similar pipeline in this experiment: we pretrain on ImageNet,
fine-tune on dermatological images, and restrict valdation to iid accuracy evaluations.

In this setting, one key concern is that the model may have variable performance across skin types,
especially when these skin types are differently represented in the training data. Given the social
salience of skin type, this concern is aligned with broader concerns about ensuring that machine
learning does not amplify existing healthcare disparities (Adamson and Smith, 2018). In dermatology
in particular, differences between the presentation of skin conditions across skin types has been linked
to disparities in care (Adelekun et al., 2020).

Here, we show that model performance across skin types is sensitive to underspecification.
Specifically, we construct an ensemble of 10 predictors with randomly initialized fine-tuning layer
weights. We then evaluate the predictors on a stress test that stratifies the test set by skin type on
the Fitzpatrick scale (Fitzpatrick, 1975) and measures Top-1 accuracy within each slice.

The results are shown at the bottom of Figure 6. Compared to overall test accuracy, there is
larger variation in test accuracy within skin type strata across models, particularly in skin types II
and IV, which form substantial portions (n = 437, or 10.7%, and n = 798, or 19.6%, respectively)
of the test data. Based on this test set, some predictors in this ensemble would be judged to have
higher discrepancies across skin types than others, even though they were all produced by an identical
training pipeline.

Because the sample sizes in each skin type stratum differ substantially, we use a permutation
test to explore the extent to which the larger variation in some subgroups can be accounted for
by sampling size. This test shuffles the skin type indicators across examples in the test set, then
calculates the variance of the accuracy across these random strata. We compute one-sided p-values
with respect to this null distribution and interpret them as exploratory descriptive statistics. The
key question is whether the larger variability in some strata, particularly skin types II and IV, can be
explained away by sampling noise alone. (Our expectation is that skin type III is both large enough
and similar enough to the iid test set that its accuracy variance should be similar to the overall
variance, and the sample size for skin type V is so small that a reliable characterization would be
difficult.) Here, we find that the variation in accuracy in skin types III and V are easily explained by
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sampling noise, as expected (p = 0.54,n = 2619; p = 0.42,n = 109). Meanwhile the variation in skin
type II is largely consistent with sampling noise (p = 0.29,n = 437), but the variation in skin type IV
seems to be more systematic (p = 0.03,n = 798). These results are exploratory, but they suggest a
need to pay special attention to this dimension of underspecification in ML models for dermatology.

6.3 Conclusions

Overall, the vignettes in this section demonstrate that underspecification can introduce complications
for deploying ML, even in application areas where it has the potential to highly beneficial. In
particular, these results suggest that one cannot expect ML models to automatically generalize to
new clinical settings or populations, because this generalization behavior is underspecified. This
confirms the need to tailor and test models for the clinical settings and populations in which they will
be deployed. While current strategies exist to mitigate these concerns, addressing underspecification,
and generalization issues more generally, could reduce a number of points of friction at the point of
care (Beede et al., 2020).

7. Case Study in Natural Language Processing

Deep learning models play a major role in modern natural language processing (NLP). In particular,
large-scale Transformer models (Vaswani et al., 2017) trained on massive unlabeled text corpora
have become a core component of many NLP pipelines (Devlin et al., 2019). For many applications,
a successful recipe is to pretrain by language modeling or denoising a large unlabeled corpus, and
then fine-tune using labeled data from a task of interest, sometimes no more than a few hundred
examples (e.g., Howard and Ruder, 2018; Peters et al., 2018). This workflow has yielded strong
results across a wide range of tasks in natural language processing, including machine translation,
question answering, summarization, sequence labeling, and more. As a result, a number of NLP
products are built on top of publicly released pretrained checkpoints of language models such as
BERT (Devlin et al., 2019).

However, recent work has shown that NLP systems built with this pattern often rely on “short-
cuts” (Geirhos et al., 2020), which may be based on spurious phenomena in the training data (McCoy
et al., 2019b). Shortcut learning presents a number of difficulties in natural language processing:
for example, failure to satisfy intuitive invariances, such as invariance to typographical errors or
seemingly irrelevant word substitutions (Ribeiro et al., 2020); ambiguity in measuring progress in
language understanding (Zellers et al., 2019); and reliance on stereotypical associations with race
and gender (Caliskan et al., 2017; Rudinger et al., 2018; Zhao et al., 2018; De-Arteaga et al., 2019).

In this section, we show that underspecification plays a role in shortcut learning in the pretrain/fine-
tune approach to NLP, in both stages. In particular, we show that reliance on specific shortcuts
can vary substantially between predictors that differ only in their random seed at fine-tuning or
pretraining time. Following our experimental protocol, we perform this case study with an ensemble of
predictors obtained from identical training pipelines that differ only in the specific random seed used
at pretraining and/or fine-tuning time. Specifically, we train 5 instances of the BERT “large-cased”
language model (Devlin et al., 2019), using the same Wikipedia and BookCorpus data that was used
to train the public checkpoints. This model has 340 million parameters, and is the largest BERT
model with publicly released pretraining checkpoints. For tasks that require fine-tuning, we fine-tune
each of the five checkpoints 20 times using different random seeds.

In each case, we evaluate the ensemble of predictors on stress tests designed to probe for
specific shortcuts, focusing on shortcuts based on stereotypical correlations, and find evidence of
underspecification along this dimension in both pretraining and fine-tuning. As in the other cases we
study here, these results suggest that shortcut learning is not enforced by model architectures, but
can be a symptom of ambiguity in the ML pipeline.
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Underspecification has a wider range of implications in NLP. We connect our results to previous
work that reported instability in performance on stress tests designed to diagnose shortcut learning in
Natural Language Inference tasks (McCoy et al., 2019b; Naik et al., 2018). Using the same protocol,
we replicate the results (McCoy et al., 2019a; Dodge et al., 2020; Zhou et al., 2020), and extend them
to show sensitivity to the pretraining random seed. We also explore how underspecification affects
representations in static word embeddings.

7.1 Gendered Correlations in Downstream Tasks

We begin by examining gender-based shortcuts on two previously proposed benchmarks: a semantic
textual similarity (STS) task and a pronoun resolution task.

7.1.1 SEMANTIC TEXTUAL SIMILARITY (STS)

In the STS task, a predictor takes in two sentences as input and scores their similarity. We obtain
predictors for this task by fine-tuning BERT checkpoints on the STS-B benchmark (Cer et al., 2017),
which is part of the GLUE suite of benchmarks for representation learning in NLP (Wang et al.,
2018). Our ensemble of predictors achieves consistent iid accuracy, measured in terms of correlation
with human-provided similarity scores, ranging from 0.87 to 0.90. This matches reported results from
Devlin et al. (2019), although better correlations have subsequently been obtained by pretraining on
larger datasets (Liu et al., 2019; Lan et al., 2019; Yang et al., 2019).

To measure reliance on gendered correlations in the STS task, we use a set of stress test templates
proposed by Webster et al. (2020): we create a set of triples in which the noun phrase in a given
sentence is replaced by a profession, “a man”, or “a woman”, e.g., “a doctor/woman/man is walking.”
The model’s gender association for each profession is quantified by the similarity delta between pairs
from this triple, e.g.,

Y11 Y19

sim(“a woman is walking”, “a doctor is walking”) — sim(“a man is walking”, “a doctor is walking”).

A model that does not learn a gendered correlation for a given profession will have an expected
similarity delta of zero. We are particularly interested in the extent to which the similarity delta for
each profession correlates with the percentage of women actually employed in that profession, as
measured by U.S. Bureau of Labor Statistics (BLS; Rudinger et al., 2018).

7.1.2 PRONOUN RESOLUTION

In the pronoun resolution task, the input is a sentence with a pronoun that could refer to one of two
possible antecedents, and the predictor must determine which of the antecedents is the correct one.
We obtain predictors for this task by fine-tuning BERT checkpoints on the OntoNotes dataset (Hovy
et al., 2006). Our ensemble of predictors achieves accuracy ranging from 0.960 to 0.965.

To measure gendered correlations on the pronoun resolution task, we use the stress test templates
proposed by Rudinger et al. (2018). In these templates, there is a gendered pronoun with two possible
antecedents, one of which is a profession. The linguistic cues in the template are sufficient to indicate
the correct antecedent, but predictors may instead learn to rely on the correlation between gender
and profession. In this case, the similarity delta is the difference in predictive probability for the
profession depending on the gender of the pronoun.

7.1.3 GENDER CORRELATIONS AND UNDERSPECIFICATION

We find significant variation in the extent to which the predictors in our ensemble incorporate
gendered correlations. For example, in Figure 8 (Left), we contrast the behavior of two predictors
(which differ only in pretraining and fine-tuning seed) on the STS task. Here, the slope of the line is
a proxy for the predictor’s reliance on gender. One fine-tuning run shows strong correlation with
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F (p-value) Spearman p (95% CI)

Semantic text similarity (STS)

Test Accuracy 5.66 (4e-04) —
Gender Correlation 9.66 (1e-06) 0.21 (-0.00, 0.40)
Pronoun resolution

Test Accuracy 48.98 (3e-22) —
Gender Correlation 7.91 (2e-05) 0.08 (-0.13, 0.28)

Table 3: Summary statistics for structure of variation on gendered shortcut stress tests.
For each dataset, we measure the accuracy of 100 predictors, corresponding to 20 randomly initialized
fine-tunings from 5 randomly initialized pretrained BERT checkpoints. Models are fine-tuned on
the STS-B and OntoNotes training sets, respectively. The F-statistic quantifies how systematic
differences are between pretrainings. Specifically, it is the ratio of between-pretraining variance to
within-pretraining variance in the accuracy statistics. In the absense of sampling noise, F-statistic of
0 would indicate that pretraining seed explains no variance in performance. p-values are reported
to give a sense of scale, but not for inferential purposes; it is unlikely that assumptions for a valid
F-test are met. F-values of this magnitude are consistent with systematic between-group variation.
The Spearman p statistic quantifies how ranked performance on the fine-tuning task correlates with
the stress test metric of gender correlation.

BLS statistics about gender and occupations in the United States, while another shows a much
weaker relationship. For an aggregate view, Figures 8 (Center) and (Right) show these correlations
in the STS and coreference tasks across all predictors in our ensemble, with predictors produced from
different pretrainings indicated by different markers. These plots show three important patterns:

1. There is a large spread in correlation with BLS statistics: on the STS task, correlations range
from 0.3 to 0.7; on the pronoun resolution task, the range is 0.26 to 0.51. As a point of
comparison, prior work on gender shortcuts in pronoun resolution found correlations ranging
between 0.31 and 0.55 for different model architectures (Rudinger et al., 2018).

2. There is a weak relationship between test accuracy performance and gendered correlation
(STS-B: Spearman p = 0.21; 95% CI = (0.00,0.39), Pronoun resolution: Spearman p = 0.08;
95% CI = (—0.13,0.29)). This indicates that learning accurate predictors does not require
learning strong gendered correlations.

3. Sensitivity to gender correlations is affected by the random seed at pretraining, and not just
fine-tuning. Especially in the pronoun resolution task (Figure 8 (Right)), predictors with the
same pretraining seed have similar behavior (i.e., similar sensitivity to gender information)
relative to predictors trained with different pretraining seeds, even after fine-tuning on the
same data.

In Table 3, we numerically summarize the variance with respect to pretraining and fine-tuning
using an F-statistic — the ratio of between-pretraining to within-pretraining variance. The pretraining
seed has an effect on both the main fine-tuning task and the stress test, but the small correlation
between the fine-tuning tasks and stress test metrics suggests that this random seed affects these
metrics independently.

7.2 Stereotypical Associations in Pretrained Language Models

Underspecification in supervised NLP systems can occur at both the fine-tuning and pretraining
stages. In the previous section, we gave suggestive evidence that underspecification allows identically
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Figure 8: Reliance on gendered correlations is affected by random initialization. (Left)
The gap in similarity for female and male template sentences is correlated with the gender statistics
of the occupation, shown in two randomly-initialized fine-tunes. (Right) Pretraining initialization
significantly affects the distribution of gender biases encoded at the fine-tuning stage.

pretrained BERT checkpoints to encode substantively different language representations. Here, we
examine pretraining underspecification more directly, considering again its impact on reliance on
stereotypical shortcuts. Specifically, we examine the performance of our ensemble of five BERT
checkpoints on the StereoSet benchmark (Nadeem et al., 2020).

StereoSet is a set of stress tests designed to directly assess how the predictions of pretrained
language models correlate with well-known social stereotypes. The test inputs are spans of text with
sentences or words masked out, and the task is to score a set of choices for the missing piece of text.
The choice set contains one nonsense option, and two plausible options, of which one conforms to
a stereotype and the other does not. The benchmark probes stereotypes along the axes of gender,
profession, race, and religion. For example, a span targeted at the gender domain reads “Girls tend
to be more [mask] than boys”, with options “soft” (stereotypical), “determined” (anti-stereotypical),
and “fish” (non-sensical). Predictors are scored based on both whether they are able to exclude
the non-sensical option (LM Score) and whether they consistently choose the option that conforms
with the stereotype (Stereotype Score). These scores are averaged together to produce an Idealized
Context Association Test (ICAT) score, which can be applied to any language model.

In Figure 9, we show the results of evaluating our five pretrained BERT checkpoints, which
differ only in random seed, across all StereoSet metrics. The variation across checkpoints is large.
The range of overall ICAT score between our identically trained checkpoints is 3.35. For context,
this range is larger than the gap between the top six models on the public leaderboard,? which
differ in size, architecture, and training data (GPT-2 (small), XLNet (large), GPT-2 (medium),
BERT (base), GPT-2 (large), BERT (large)). On the disaggregated metrics, the score range between
checkpoints is narrower on the LM score (sensible vs. non-sensible sentence completions) than on
the Stereotype score (consistent vs. inconsistent with social stereotypes). This is consistent with
underspecification, as the LM score is more closely aligned to the task on which the checkpoints are
validated. Interestingly, score ranges are also lower on overall metrics compared to by-demographic
metrics, suggesting that even when model performance looks stable in aggregate, checkpoints can
encode different social stereotypes.

7.3 Spurious Correlations in Natural Language Inference

Underspecification also affects more general aspects of language representations that align with notions
of “semantic understanding” in NLP systems. One task that probes such notions is natural language

2. https://stereoset.mit.edu retrieved October 28, 2020.
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Figure 9: Different pretraining seeds produce different stereotypical associations. Results
across five identically trained BERT large cased pretraining checkpoints on StereoSet (Nadeem
et al., 2020). The ICAT score combines a language model (LM) score measuring “sensibility” and a
stereotype score measuring correlations of language model predictions with known stereotypes. A
leaderboard featuring canonical pretrainings is available at https://stereoset.mit.edu/. Variabil-
ity in stereotype scores is large between BERT checkpoints that were pretrained identically up to
random seed, even among those that achieve similar LM scores.

inference (NLI). The NLI task is to classify sentence pairs (called the premise and hypothesis)
into one of the following semantic relations: entailment (the hypothesis is true whenever the premise
is), contradiction (the hypothesis is false when the premise is true), and neutral (Bowman et al.,
2015). Typically, language models are fine-tuned for this task on labeled datasets such as the
MultiNLI training set (Williams et al., 2018). While test set performance on benchmark NLI datasets
approaches human agreement (Wang et al., 2018), it has been shown that there are shortcuts to
achieving high performance on many NLI datasets (McCoy et al., 2019b; Zellers et al., 2018, 2019).
In particular, on stress tests that are designed to probe semantic representations more directly, these
models are still far below human performance.

Notably, previous work has shown that performance on these stronger stress tests is also unstable
with respect to the fine-tuning seed (Zhou et al., 2020; McCoy et al., 2019a; Dodge et al., 2020).
We interpret this to be a symptom of underspecification. Here, we replicate and extend this prior
work by assessing sensitivity to both fine-tuning and pretraining random seeds. Here we use the
same five pretrained BERT Large cased checkpoints, and fine-tune each on the MultiNLI training
set (Williams et al., 2018) 20 times. Across all pretrainings and fine-tunings, accuracy on the standard
MNLI matched and mismatched test sets are in tightly constrained ranges of (83.4% — 84.4%) and
(83.8% — 84.7%), respectively.?

We evaluate our ensemble of predictors on the HANS stress test (McCoy et al., 2019b) and the
StressTest suite from Naik et al. (2018). The HANS stress tests are constructed by identifying
spurious correlations in the training data—for example, that hypotheses that are entailed by the
premise tend to have high lexical overlap with the premise—and then generating a test set such
that the spurious correlations no longer hold. The Naik et al. (2018) stress tests are constructed
by perturbing examples, for example by introducing spelling errors or meaningless expressions (e.g.,
“and true is true”).

We again find strong evidence that the extent to which a trained model relies on shortcuts is
underspecified, as demonstrated by sensitivity to the choice of random seed at both fine-tuning
and pretraining time. Here, we report several broad trends of variation on these stress tests: first,
the magnitude of the variation is large; second, the variation is sensitive to the fine-tuning seed,
replicating Zhou et al. (2020); third, the variation is also sensitive to the pretraining seed; fourth,
the variation is difficult to predict based on performance on the standard MNLI validation sets; and
finally, the variation on different stress tests tends to be weakly correlated.

3. The “matched” and “mismatched” conditions refer to whether the test data is drawn from the same genre of text
as the training set.
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Dataset F (p-value) Spearman p (95% CI)
MNLI, matched 1.71 (2e-01) —
MNLI, mismatched 20.18 (5e-12) 0.11 (-0.10, 0.31)
Naik et al. (2018) stress tests

Antonym, matched 15.46 (9e-10) 0.05 (-0.16, 0.26)
Antonym, mismatched 7.32 (4e-05) 0.01 (-0.20, 0.21)
Length Mismatch, matched 4.83 (1e-03) 0.33 ( 0.13, 0.50)
Length Mismatch, mismatched 5.61 (4e-04) -0.03 (-0.24, 0.18)
Negation, matched 19.62 (8e-12) 0.17 (-0.04, 0.36)
Negation, mismatched 18.21 (4e-11) 0.09 (-0.12, 0.29)
Spelling Error, matched 25.11 (3e-14) 0.40 ( 0.21, 0.56)
Spelling Error, mismatched 14.65 (2e-09) 0.43 ( 0.24, 0.58)
Word Overlap, matched 9.99 (9e-07) 0.08 (-0.13, 0.28)
Word Overlap, mismatched 9.13 (3e-06) -0.07 (-0.27, 0.14)
Numerical Reasoning 12.02 (6e-08) 0.18 (-0.03, 0.38)
HANS (McCoy et al., 2019b) 4.95 (1E-03) 0.07 (-0.14, 0.27)

Table 4: Summary statistics for structure of variation in predictor accuracy across
NLI stress tests. For each dataset, we measure the accuracy of 100 predictors, corresponding
to 20 randomly initialized fine-tunings from 5 randomly initialized pretrained BERT checkpoints.
All models are fine-tuned on the MNLI training set, and validated on the MNLI matched test
set (Williams et al., 2018). See the caption of Table 3 for a description of F-statistics. The Spearman
p statistic quantifies how ranked performance on the MNLI matched test set correlates with ranked
performance on each stress test. For most stress tests, there is only a weak relationship, such that
choosing models based on test performance alone would not yield the best models on stress test
performance.

Figure 10 shows our full set of results, broken down by pretraining seed. These plots show evidence
of the influence of the pretraining seed; for many tests, there appear to be systematic differences in
performance from fine-tunings based on checkpoints that were pretrained with different seeds. We
report one numerical measurement of these differences with F-statistics in Table 4, where the ratio
of between-group variance to within-group variance is generally quite large. Table 4 also reports
Spearman rank correlations between stress test accuracies and accuracy on the MNLI matched
validation set. The rank correlation is typically small, suggesting that the variation in stress test
accuracy is largely orthogonal to validation set accuracy enforced by the training pipeline. Finally,
in Figure 11, we show that the correlation between stress tests performance is also typically small
(with the exception of some pairs of stress tests meant to test the same aspects of a representation),
suggesting that the space of underspecified representations spans many dimensions.

7.4 Conclusions

There is increasing concern about whether natural language processing systems are learning general
linguistic principles, or whether they are simply learning to use surface-level shortcuts (e.g., Bender
and Koller, 2020; Linzen, 2020). Particularly worrying are shortcuts that reinforce societal biases
around protected attributes such as gender (e.g., Webster et al., 2020). The results in this section
replicate prior findings that highly-parametrized NLP models do learn spurious correlations and
shortcuts. However, this reliance is underspecified by the standard ML pipeline: merely changing
the random seed can induce large variation in the extent to which spurious correlations are learned.
Furthermore, this variation is demonstrated in both pretraining and fine-tuning, indicating that
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Figure 10: Predictor performance on NLI stress tests varies both within and between
pretraining checkpoints. Each point corresponds to a fine-tuning of a pretrained BERT checkpoint
on the MNLI training set, with pretraining distinguished on the z-axis. All pretrainings and fine-
tunings differ only in random seed at their respective training stages. Performance on HANS (McCoy
et al., 2019b) is shown in the top left; remaining results are from the StressTest suite (Naik et al.,
2018), with the suffixes (m) and (mis) indicating the genre-matched and mismatched conditions
respectively. Red bars show a 95% CI around for the mean accuracy within each pretraining. The
tests in the bottom group of panels were also explored in Zhou et al. (2020) across fine-tunings from
the public BERT large cased checkpoint (Devlin et al., 2019); for these, we also plot the mean + /-
1.96 standard deviations interval, using values reported in Zhou et al. (2020).
variation is substantially larger on most stress tests than the MNLI test sets (< 1% on both MNLI
matched and unmatched). There is also substantial variation between some pretrained checkpoints,
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Figure 11: Predictor performance across stress tests are typically weakly correlated.
Spearman correlation coefficients of 100 predictor accuracies from 20 fine-tunings of five pretrained
BERT checkpoints. The suffixes (m) and (mis) indicate the genre-matched and mismatched conditions
respectively (Naik et al., 2018).
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pretraining alone can produce variation in representations that translates to more or less robustness.
This implies that individual stress test results should be viewed as statements about individual model
checkpoints, and not about architectures or learning algorithms. More general comparisons require
evaluation across many pipeline degrees of freedom (e.g., random seeds).

8. Case Study in Clinical Predictions from Electronic Health Records

The rise of Electronic Health Record (EHR) systems has created an opportunity for building predictive
ML models for diagnosis and prognosis (e.g. Ambrosino et al. (1995); Brisimi et al. (2019); Feng
et al. (2019)). In this section, we focus on one such model that uses a Recurrent Neural Network
(RNN) architecture with EHR data to predict acute kidney injury (AKI) during hospital admissions
(TomasSev et al., 2019a). AKI is a common complication in hospitalized patients and is associated
with increased morbidity, mortality, and healthcare costs (Khwaja, 2012). Early intervention can
improve outcomes in AKI (National Institute for Health and Care Excellence (NICE), 2019), which
has driven efforts to predict it in advance using machine learning. TomaSev et al. (2019a) achieve
state-of-the-art performance, detecting the onset of AKI up to 48 hours in advance with an accuracy
of 55.8% across all episodes and 90.2% for episodes associated with dialysis administration.

Despite this strong discriminative performance, there have been questions raised about the
associations being learned by this model and whether they conform with our understanding of
physiology (Kellum and Bihorac, 2019). Specifically, for some applications, it is desirable to disentangle
physiological signals from operational factors related to the delivery of healthcare, both of which
appear in EHR data. As an example, the value of a lab test may be considered a physiological signal;
however the timing of that same test may be considered an operational one (e.g. due to staffing
constraints during the night or timing of ward rounds). Given the fact that operational signals may
be institution-specific and are likely to change over time, understanding to what extent a predictor
relies on different signals can help practitioners determine whether the predictor meets their specific
generalization requirements (Futoma et al., 2020).

Here, we show that underspecification makes the answer to this question ambiguous. Specifically,
we apply our experimental protocol to the TomaSev et al. (2019a) AKI modeling pipeline, which
produces a predictor that predicts the continuous risk (every 6 hours) of AKI in a 48h lookahead
time window (see Supplement for details).

8.1 Data, Predictor Ensemble, and Metrics

The pipeline and data used in this study are described in detail in Tomagev et al. (2019a). Briefly,
the data consists of de-identified EHRs from 703,782 patients across multiple sites in the United
States collected at the US Department of Veterans Affairs* between 2011 and 2015. Records include
structured data elements such as medications, labs, vital signs, diagnosis codes, etc, aggregated in
six hour time buckets (time of day 1: 12am-6am, 2: 6am-12pm, 3: 12pm-6pm, 4: 6pm-12am). In
addition, precautions beyond standard de-identification have been taken to safeguard patient privacy:
free text notes and rare diagnoses have been excluded; many feature names have been obfuscated;
feature values have been jittered; and all patient records are time-shifted, respecting relative temporal
relationships for individual patients. Therefore, this dataset is only intended for methodological
exploration.

The model consists of embedding layers followed by a 3 layer-stacked RNN before a final dense
layer for prediction of AKI across multiple time horizons. Our analyses focus on predictions with a
48h lookahead horizon, which have been showcased in the original work for their clinical actionability.
To examine underspecification, we construct a predictor ensemble by training the model from 5
random seeds for each of three RNN cell types: Simple Recursive Units (SRU, Lei et al. (2018)), Long

4. Disclaimer: Please note that the views presented in this manuscript are that of the authors and not that of the
Department of the Veterans Affairs.
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Short-Term Memory (LSTM, Hochreiter and Schmidhuber (1997)) or Update Gate RNN (UGRNN,
Collins et al. (2017)). This yields an ensemble of 15 predictors in total.

The primary validation metric that we use to evaluate predictive performance is normalized area
under the precision-recall curve (PRAUC) (Boyd et al., 2012), evaluated across all patient-timepoints
where the model makes a prediction. This is a PRAUC metric that is normalized for prevalence of
the positive label (in this case, AKI events). Our ensemble of predictors achieves tightly constrained
normalized PRAUC values between 34.59 and 36.61.

8.2 Reliance on Operational Signals

We evaluate these predictors on stress tests designed to probe the sensitivity to specific operational
signals in the data: the timing and number of labs recorded in the EHR. ® In this dataset, the
prevalence of AKI is largely the same across different times of day (see Table 1 of Supplement).
However, AKI is diagnosed based on lab tests, ® and there are clear temporal patterns in how
tests are ordered. For most patients, creatinine is measured in the morning as part of a ‘routine’,
comprehensive panel of lab tests. Meanwhile, patients requiring closer monitoring may have creatinine
samples taken at additional times, often ordered as part of an ‘acute’, limited panel (usually, the
basic metabolic panel.) © Thus, both the time of day that a test is ordered, and the panel of tests
that accompany a given measurement may be correlated with AKI risk, but are primarily operational
factors.

We test for reliance on this signal by applying two interventions to the test data that modify (1)
the time of day of all features (aggregated in 6h buckets) and (2) the selection of lab tests. The first
intervention shifts the patient timeseries by a fixed offset, while the second intervention additionally
removes all blood tests that are not directly relevant to the diagnosis of AKI. We hypothesize that if
the predictor encodes physiological signals rather than these operational cues, the predictions would
be invariant to these interventions. More importantly, if the model’s reliance on these operational
signals is underspecified, we would expect the predictors in our ensemble to respond differently to
these modified inputs.

We begin by examining overall performance on this shifted test set across our ensemble. In
Figure 12, we show that performance on the intervened data is both worse and more widely dispersed
than in the standard test set, especially when both interventions are applied. This shows that the
model incorporates time of day and lab content signals, and that the extent to which it relies on
these signals is sensitive to both the recurrent unit and random initialization.

The variation in performance reflects systematically different signals encoded by the predictors in
the ensemble. We examine this directly by measuring how individual model predictions change under
the timeshift and lab intervensions. Here, we focus on two trained LSTM models that differ only in
their random seeds, and examine patient-timepoints at which creatinine measurements were taken. In
Figure 13 (right), we show distributions of predicted risk on the original patient-timepoints observed
in the “early morning” (12am-6am) time range, and proportional changes to these risks when the
timeshift and lab interventions were applied. Both predictors exhibit substantial changes in predicted
risk under both interventions, but the second predictor is far more sensitive to these changes than
the first, with the predicted risks taking on substantially different distributions depending on the
time range to which the observation is shifted.

These shifts in risk are consequential for decision-making and can result in AKI episodes being
predicted tardily or missed. In Figure 14, we illustrate the number of patient-timepoints where the
changed risk score crosses each model’s calibrated decision threshold. In addition to substantial

5. Neither of these factors are purely operational—there is known variation in kidney function across the day and the
values of accompanying lab tests carry valuable information about patient physiology. However, we use these here
as approximations for an operational perturbation.

. specifically a comparison of past and current values of creatinine (Khwaja, 2012)

7. This panel samples Creatinine, Sodium, Potassium, Urea Nitrogen, CO2, Chloride and Glucose.

[=2]
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Figure 12: Variability in performance from ensemble of RNN models processing electronic
health records (EHR). Model sensitivity to time of day and lab perturbations. The x-axis denotes
the evaluation set: “Test” is the original test set; “Shift” is the test set with time shifts applied;
“Shift + Labs” applies the time shift and subsets lab orders to only include the basic metabolic
panel CHEM-7. The y-axis represents the normalized PRAUC, and each set of dots joined by a line
represents a model instance.
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Figure 13: Variability in AKI risk predictions between two LSTM models processing
electronic health records (EHR). Histograms showing showing risk predictions from two models,
and changes induced by time of day and lab perturbations. Histograms show counts of patient-
timepoints where creatinine measurements were taken in the early morning (12am-6am). LSTM
1 and 5 differ only in random seed. “Test” shows histogram of risk predicted in original test data.
“Shift” and “Shift + Labs” show histograms of proportional changes (in %) Perturbed—Bascline j,qy;ceq

Baseline
by the time-shift perturbation and the combined time-shift and lab perturbation, respectively.

differences in the number of flipped decisions, we also show that most of these flipped decisions occur
at different patient-timepoints across predictors.

8.3 Conclusions

Our results here suggest that predictors produced by this model tend to rely on the pattern of lab
orders in a substantial way, but the extent of this reliance is underspecified. Depending on how stable
this signal is in the deployment context, this may or may not present challenges. However, this result
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Figure 14: Variability in AKI predictions between two LSTM models processing electronic
health records (EHR). Counts (color-coded) of decisions being flipped due to the stress tests, from
the LSTM 1 and LSTM 5 models, as well as the proportions of those flipped decision intersecting
between the two models (in %). Rows represent the time of day in the original test set, while columns
represent the time of day these samples were shifted to. LSTM 1 and 5 differ only in random seed.
“Shift” represents the flipped decisions (both positive to negative and negative to positive) between
the predictions on the test set and the predictions after time-shift perturbation. “Shift + Labs”
represents the same information for the combined time-shift and labs perturbation.

also shows that the reliance on this signal is not enforced by the model specification or training data,
suggesting that the reliance on lab ordering patterns could be modulated by adding constraints to
the training procedure, and without sacrificing iid performance. In the Supplement, we show one
such preliminary result, where a model trained with the timestamp feature completely ablated was
able to achieve identical iid predictive performance. This is compatible with previous findings that
inputting medical /domain relational knowledge has led to better out of domain behavior (Nestor
et al., 2019), performance (Popescu and Khalilia, 2011; Choi et al., 2017; Tomasev et al., 2019a,b)
and interpretability (Panigutti et al., 2020).

9. Discussion: Implications for ML Practice

Our results show that underspecification is a key failure mode for applied machine learning, where
we often have requirements for predictors that extend beyond iid generalization. We have used
between-predictor variation in stress test performance as an observable signature of underspecification.
This failure mode is distinct from generalization failures due to structural mismatch between training
and deployment domains. We have seen that underspecification is ubiquitious in practical machine
learning pipelines across many domains. Indeed, thanks to underspecification, substantively important
aspects of the decisions are determined by arbitrary choices made in the training pipeline, such as the
random seed used for parameter initialization. We close with a discussion of some of the implications
of the study, which broadly suggest a need to find better interfaces for domain knowledge in ML
pipelines.

First, we note that the methodology in this study underestimates the impact of underspecification:
our goal was to detect rather than fully characterize underspecification, and in most examples, we
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only explored underspecification through the subtle variation that can result from modifying random
seeds in training. However, modern deep learning pipelines incorporate a wide variety of ad hoc
practices, each of which may carry their own implicit regularizations, which in turn can translate
into substantive differences in the real-world behavior of predictors. These include the particular
scheme used for initialization; conventions for parameterization; choice of optimization algorithm;
conventions for representing data; compression schemes; and choices of batch size, learning rate, and
other hyperparameters, all of which may interact with the infrastructure available for training and
serving models (Hooker, 2020). We conjecture that many combinations of these choices would reveal
a far larger validation-equivalent set of high-performing predictors F*, a conjecture that has been
partially borne out by concurrent work (Wenzel et al., 2020). However, we believe that there would be
value in more systematically mapping out the set of validation-equivalent predictors that a pipeline
could return as a true measurement of the uncertainty entailed by underspecification. Current efforts
to design more effective methods for exploring loss landscapes (Fort et al., 2019; Garipov et al., 2018)
could play an important role here, and there are opportunities to import ideas from the sensitivity
analysis and partial identification subfields in causal inference and inverse problems.

Second, our findings underscore the need to thoroughly test models on application-specific tasks,
and in particular to check that the performance on these tasks is stable. The extreme complexity of
modern ML models pipelines ensures that some aspect of predictor behavior will almost certainly
be underspecified; thus, the challenge is to ensure that this underspecification does not jeopardize
the specific behaviors that are required by an application. In this vein, designing stress tests that
are well matched to applied requirements, and that provide good “coverage" of potential failure
modes is a major challenge that requires incorporating domain knowledge. This can be particularly
challenging, given that our results show that there is often low correlation between performance on
distinct stress tests when iid performance is held constant, and the fact that many applications will
have fine-grained requirements that require more customized stress testing. For example, within the
medical risk prediction domain, the dimensions that a model is required to generalize across (e.g.,
temporal, demographic, operational, etc.) will depend on the details of the deployment and the goals
of the practitioners (Futoma et al., 2020). For this reason, developing best practices for building
stress tests that crisply represent requirements, rather than standardizing on specific benchmarks,
may be an effective approach. This approach has gained traction in the NLP subfiled, where several
papers now discuss the process by which stress tests datasets should iterate continuously (Zellers
et al., 2019), and new systems for developing customized stress tests have been proposed (Ribeiro
et al., 2020; Kaushik et al., 2020).

Third, our results suggest some new strategies for training models that exhibit appropriate
real-world behavior when underspecification plays a role. By definition, underspecification can
be resolved by specifying additional criteria for selecting predictors from the equivalence class of
validation-equivalent predictors F*. Importantly, this suggests a departure from a popular strategy
of improving iid performance of predictors by marginalizing across F* (Wilson and Izmailov, 2020).
Here, because it is known that some predictors in F* behave poorly on stress tests, simply averaging
them together is not guaranteed to produce better results on stress tests than carefully choosing a
specific predictor from the equivalence class (see Appendix A for some examples). Of course, these
approaches can be reconciled if the marginalization is restricted to predictors that satisfy required
constraints.

Some central questions remain, however, for designing constraints to mitigate underspecification.
First, because they are meant to enforce application-specific requirements on predictor behavior, such
criteria or constraints must also be application-specific, presenting a challenge for the development
of general methods (similarly to our discussion of testing above). Although some general-purpose
heuristics have been proposed (e.g., Bengio, 2017), proposals for expressing application-specific
requirements with flexible but unified frameworks may be a promising middle ground solution. Causal
DAGs (Schélkopf, 2019) and explanations (Ross et al., 2017) are both promising candidates for such
frameworks.
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Finally, there is a question of whether imposing constraints on real-world behavior should
necessarily trade off with iid generalization. This question comes down to whether the behavioral
failures of the predictor are driven by structural conflict or underspecification; indeed, in many
problems, both may play a role. However, a major point of this study is that, in many problems, there
is significant slack introduced by underspecification where tradeoff-free improvement is possible. Some
recent work supports this observation: in the robustness literature Raghunathan et al. (2020) show
that robustness / accuracy tradeoffs need not be fundamental, but are often driven by finite-sample
phenomena; in the NLP literature, Webster et al. (2020) show that reliance on gendered correlations
can be reduced in BERT-derived predictors with little-to-no tradeoff (Webster et al., 2020); and
in Appendix C, we show a similar preliminary result from our EHR example. Constraints that
are specifically tailored to the application can be particularly effective in this regard. For example,
Makar et al. (2021) and Veitch et al. (2021) show that regularization schemes that are designed to
respect the causal structure of scenarios that are expected to be encountered in practice can produce
models that generalize well in deployment; in particular, Makar et al. (2021) highlight a case where
such constraints can actually improve finite-sample iid generalization and real-world behavior, while
Veitch et al. (2021) provides a precise characterization of some cases where tradeoffs will and will not
arise. Overall, the design of application-specific constraints is a promising direction for incorporating
domain expertise without fully compromising the powerful prediction abilities of modern ML models.
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Appendix A. Computer Vision: Marginalization versus Model Selection
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Figure 15: Comparison of performance of the “best” ensemble member from an ensemble
of 50 ResNet-50 predictor (dashed) against the average performance from averaging
the predictions of differently-sized subsets of the ensemble (solid). ImageNet Test is an
iid evaluation; the other three panels show stress tests. See main text for full description. Iid
performance on ImageNet improves as ensemble size increases, and this is associated with correlated
improvements in stress tests. The larger the variability in stress test performance within the ensemble,
the larger the ensemble needs to be to out-perform the best single ensemble member. In some cases,
the ensemble average never out-performs the best single model.

In the discussion in the main text, we argue that marginalization may not be the best response
to underspecification when the goal is to obtain predictors that encode the “right” structure for a
given application. We suggest instead that model selection may be a reasonable approach here. This
is because, by the nature of underspecification, some predictors returned by the pipeline will exhibit
worse behavior in deployment domains than others, so averaging them together does not guarantee
that the ensemble average will out-perform the best member. Notably, this represents a departure
from the argument made in favor of marginalization for improving iid performance: in the training
domain, all of the models in the validation-equivalent class F* (recall this definition from Section 2
of the main text) contain a “right” answer for iid generalization, so one would expect that averaging
them could only lead to improvements.

In this section, we provide some empirical support for this argument. Broadly, there is an interplay
between iid performance and performance on stress tests that can make marginalization beneficial,
but when there is large variability in stress test performance across an ensemble, selecting the best
single model can out-perform large ensemble averages.

In Figure 15, we show a comparison between performance of individual ensemble members and
ensemble averages on several test sets. We calculate these metrics with respect to the ensemble of 50
ResNet-50 models used to produce the result in Section 5. The dashed line shows the performance
of the best model from this ensemble, while the solid line shows the average performance from
marginalizing across differently-sized subsets of models in this ensemble. The ImageNet test set is
the iid evaluation, while the other test sets are from the ImageNet-C and ObjectNet benchmarks. As
expected, performance on the ImageNet test set improves substantially as more ensemble members are
averaged together. This translates to correlated performance improvements on stress test benchmarks,
which is a well-known phenomenon in the image robustness literature (see, e.g. Taori et al., 2020;
Djolonga et al., 2020). Interestingly, however, it takes marginalizing across a larger subset of models
to surpass the performance of the best predictor on stress tests compared to the iid evaluation. In the
case of the iid evaluation, even a small ensemble is sufficient to surpass the best member. However,
for the stress tests, the higher the variance of performance across the ensemble, the more predictors
need to be averaged to beat the best single model. In the case of the pixealate task, the full ensemble
of 50 models is never able to surpass the best single model.
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Appendix B. Natural Language Processing
B.1 Analysis of Static Embeddings

In the main text, we showed that underspecification plays a key role in shortcut learning in BERT-
based NLP models. However, highly parameterized models pre-date this approach, and here we
provide a supplementary analysis suggesting that underspecification is also present in static word
embeddings such as word2vec (Mikolov et al., 2013). Here, we examine stereotypical associations
with respect to demographic attributes like race, gender, and age, which have been studied in the
past (Bolukbasi et al., 2016).

We train twenty different 500-dimensional word2vec models on large news and wikipedia datasets
using the demo-train-big-model-v1.sh script from the canonical word2vec repository,® varying
only the random seeds. These models obtain very consistent performance on a word analogy task,
scoring between 76.2% and 76.7%.

As a stress test, we apply the Word Embedding Association Test, which quantifies the extent to
which these associations are encoded by a given set of embeddings (Caliskan et al., 2017). Specifically,
the WEAT score measures the relative similarity of two sets of target words (e.g., types of flowers,
types of insects) to two sets of attribute words (e.g., pleasant words, unpleansant words). Let X and
Y be the sets of target words, and A and B the sets of attribute words. The test statistic is then:

s(X,Y,A,B) = Z s(z, A, B) — Z s(y, A, B)
reX yey

where
s(w, A, B) = mean,¢ acos(w, a) — meanyec gcos(w, b)

and cos(a,b) is the cosine distance between two word vectors. This score is then normalized by
the standard deviation of s(w, A, B) for all w in X UY. If the score is closer to zero, the relative
similarity difference (i.e., bias) is considered to be smaller. Caliskan et al. (2017) provide a number
of wordsets to probe biases along socially salient axes of gender, race, disability, and age.

For each model and test, we compute statistical significance using a permutation test that
compares the observed score against the score obtained under a random shuffling of target words.
As shown in Figure 17, we find strong and consistent gender associations, but observe substantial
variation on the three tests related to associations with race: in many cases, whether an association
is statistically significant depends on the random seed. Finally, we note that the particular axes
along which we observe sensitivity depends on the dataset used to train the embeddings, and could
vary on embeddings trained on other corpora (Babaeianjelodar et al., 2020).

B.2 Exploratory Analysis of Gendered Correlations in STS Task

Here, we present an additional exploratory analysis of how different predictors in the semantic
text similarity prediction ensemble in Section 7.1.1 process gender information. Specifically, we
use principal component analysis to analyze the structure in how similarity scores produced by the
predictors in our ensemble deviate from the ensemble mean. Here, we find that the main axis of
variation aligns, at least at its extremes, with differences in how predictors represent sterotypical
associations between profession and gender. Specifically, we perform principal components analysis
(PCA) over similarity score produced by 20 fine-tunings of a single BERT checkpoint. We plot
the first principal components, which contains 22% of the variation in score deviations, against
BLS female participation percentages in Figure 16. Notably, examples in the region where the first
principal component values are strongly negative include some of the strongest gender imbalances.

8. Canonical codebase is https://code.google.com/archive/p/word2vec/; a GitHub export of this repository is
available at https://github.com/tmikolov/word2vec.
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Figure 16: The first principal axis of model disagreement predicts differences in handling
stereotypes. (Left) A plot of (profession, gender, template) examples from our STS stress test
set. Each point is an example; the x-axis is the example’s coordinate along first principal axis of
disagreement between similarity predictions from our ensemble fine-tuned for STS-B; the y-axis is the
% female participation of a profession in the BLS data. The top panel shows examples with a male
subject (e.g., “a man”) and the bottom panel shows examples with a female subject. The region to
the far left shows that the first principal component aligns with apparent gender contradictions: ‘man’
partnered with a female-dominated profession (top) or ‘woman’ partnered with a male-dominated
profession (bottom). (Right) Predicted similarities from four predictors in our ensemble on the
examples highlighted in red on the left plot. These red examples are shown along with their BLS
percentages in parentheses. Each column in the table next to the examples corresponds to similarity
predictions from a particular predictor. The ’- Loading’ columns show predicted similarities produced
by the two predictors with the most negative loadings on the first PC; the '+ Loading’ columnes
show predicted similarities from the two predictors with the most positive loadings. These predictors
produce systematically different predictions on examples with apparent gender contradictions.

The right side of Figure 16 shows some of these examples (marked in red on the scatterplots), along
with the predicted similarities from models that have strongly negative or strongly positive loadings
on this principal axis. The similarity scores between these models are clearly divergent, with the
positive-loading models encoding a sterotypical contradiction between gender and profession—that
is, a contradiction between ‘man’ and ‘receptionist’ or ‘nurse’; or a contradiction between ‘woman’
and ‘mechanic’, ‘carpenter’, and ‘doctor’—that the negative-loading models do not.

Appendix C. Clinical Prediction with EHR: Additional Details and
Supplementary Ablation Experiment

This section provides additional details and results for the analysis of the model in TomagSev et al.
(2019a) performed in the main text. In particular, we provide some descriptive statistics regarding
AKI prevalence, and additional summaries of model performance across different time slices and
dataset shifts.

46



UNDERSPECIFICATION PRESENTS CHALLENGES FOR CREDIBILITY IN MODERN MACHINE LEARNING

Variation in WEAT Scores for Word2Vec Models
with Different Random Initializations
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Figure 17: Static word embeddings also show evidence of stereotype-aligned underspecifi-
cation. Word Embedding Association Test (WEAT) scores across twenty word2vec models. Each
group corresponds to a specific association test, and each bar corresponds to the score on the test for
a specific word2vec model.

C.1 Lab Order Patterns and Time of Day

In the main text, we investigate how reliant predictors can be on signals related to the timing and
composition of lab tests. Here, we show some descriptive statistics for how these tests tend to be
distributed in time, and some patterns that emerge as a result.

Table 5 shows patterns of AKI prevalence and creatinine sampling. Even though AKI prevalence
is largely constant across time windows, creatinine is sampled far more frequently in between 12am
and 6am. Thus, when creatinine samples are taken in other time windows, the prevalence of AKI
conditional on that sample being taken is higher.

Figure 18 shows the distributions of number of labs taken at different times of day. The distribution
of labs in the first two time buckets is clearly distinct from the distributions in the second two time
buckets.

Table 5: Patterns of creatinine sampling can induce a spurious relationship between time
of day and AKI. Prevalence of AKI is stable across times of day in the test set (test set prevalence
is 2.269%), but creatinine samples are taken more frequently in the first two time buckets. As a
result, conditional on a sample being taken, AKI prevalence is higher in the latter two time buckets.

Metric 12am-6am 6am-12pm 12pm-6pm 6pm-12am
Prevalence of AKI (%) 2.242 2.153 2.287 2.396
Creatinine samples 332743 320068 89379 67765
Creatinine samples (%) 3.570 3.433 0.959 0.727
Prevalence of AKI (%) in cre- 6.236 5.425 8.824 9.154
atinine samples

C.2 Details of Predictor Performance on Intervened Data

Here, we perform a stratified evaluation of model performance across different time buckets in the
standard and intervened test data. This analysis is repeated for each of the 15 models trained, and
acoss the Shift and Shift+Labs intevened datasets described in the main text. Table 6 displays model
performance on each model instance for the test set as well as for time windows where creatinine
samples were taken.
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Figure 18: Distribution of number of lab values observed on average across 100000 time steps (random

sample in the test set), per time of day. Each violin plot represent a time of day while the y-axis
represents the number of lab values observed.
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When perturbing the correlation between AKI label, time of day and number of labs on a per
patient basis, we observe a decrease in model performance, as well as a widening of the performance
bounds (reported in the main text). This widening of performance bounds displays a differential
effect of the shifts on the different models of the ensemble, both on the individual patient timepoints
risk (Figures 19, 20, 21) and on the model’s decisions (Table 7).
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Figure 19: Variability in AKI risk predictions from ensemble of RNN models processing
electronic health records (EHR). Histograms showing showing risk predictions from two models,
and changes induced by time of day and lab perturbations. Histograms show counts of patient-
timepoints where creatinine measurements were taken in the morning (6am-12pm). LSTM 1 and 5
differ only in random seed. “Test” shows histogram of risk predicted in original test data. “Shift”
and “Shift + Labs” show histograms of proportional changes (in %) Ferturbed=Bascline i,qyiced by the

Baseline
time-shift perturbation and the combined time-shift and lab perturbation, respectively.
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Figure 20: Same as Figure 19 for the afternoon (12pm-6pm).
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Figure 21: Same as Figure 19 for the evening (6pm-12am).

Table 7: Flipped decisions under time-shift and lab order composition interventions
depend on random seed. Each cell is number of patient-timepoints at which decisions changed
when the time range feature and lab order composition were changed, for patient timepoints with
creatinine measured. “+ to -” indicates a change from the “at risk of AKI in next 48 hrs" to “not
at risk”; “- to +” indicates the opposite change. Model 1 and model 2 are LSTM models that differ
only in random seed. Overlap indicates the number of patient-timepoint flips shared between the
two models. The number of flips in each direction changes as a function of random seed, and the
patient-timepoints that flip are largely disjoint between random seeds.

Shifted E. Morning Morning Afternoon Night
(12am-6am) (6am-12pm) (12pm-6pm) (6pm-12am)

Original +to- -to+ +to- -to+ +to- -to+ +to- -to-+
E Mormine Model 1 1417 251 1378 456 1400 394 1700 396
(12am. Gamf model 2 1560 285 1425 553 1206 764 1663 499
overlap 570 31 459 70 423 103 646 76
Mormine  M0del L 1202 321 1279 188 1616 278 1523 215
(6am-12 m“§ model 2 1368 281 1437 193 1694 297 1395 366
PV overlap 483 42 508 26 700 49 585 50
Afterngoy  Model 1 588 221 509 318 601 161 767 150
(12pm-Gpm) 7001 2 738 191 555 271 607 109 708 189
PPV verlap 255 32 209 67 258 23 294 33
Nige | ™odel 1 422 199 423 349 410 223 441 124
6 m_12agm ) model 2 520 124 542 233 417 181 468 95
P overlap 189 35 188 73 159 41 186 19

C.3 Preliminary Ablation Experiment

Finally, to test the hypothesis that our results point to the possibility of modifying the signals a
predictor uses to make its predictions without affecting iid performance, we perform an experiment
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where we ablate the timestamp feature entirely while training a predictor. In particular, we rerun the
pipeline with an LSTM architecture. This simple ablation leads to a test set population performance
similar to the rest of our ensemble of predictors where that feature was included (normalized PRAUC
of 0.368, compared to a range of 0.346 to 0.366).

In addition, there is evidence that underspecification here results from a collinearity between
features, similar to that discussed in the Genomics example in the main text. In particular, this
ablated model can predict time of day with an accuracy of 85% using an auxiliary head (without
backpropagation). These results suggest that the signal related to time of day is present through
different correlations that the training pipeline is unable to pull apart.

Appendix D. Genomics: Full Experimental Details

In this section we provide full details of the random featurization experiment using linear models in
genomic medicine, along with a brief overview of the relevant research areas.

D.1 Background

In genetics research, a genome-wide association study (GWAS) is an observational study of a large
group of individuals to identify genetic variants (or genotypes) associated with a particular trait
(phenotype) of interest. One application of GWAS results is for construction of a polygenic risk score
(PRS) Wray et al. (2007); International Schizophrenia Consortium et al. (2009) for the phenotype
for each individual, generally defined as a weighted sum of the associated genotypes, where the
weights are derived from the GWAS. One crucial factor to consider in this construction is that
genetic variants are not independent and may contain highly correlated pairs due to a phenomenon
called linkage disequilibrium (LD) Slatkin (2008). The most common way to correct for LD is to
partition the associated variants into clusters of highly-correlated variants and to only include one
representative of each cluster for the PRS (e.g. International Schizophrenia Consortium et al. (2009);
CARDIoGRAMplusC4D Consortium et al. (2013)). There are other more advanced methods (e.g.
Bayesian modeling of LD Vilhjalmsson et al. (2015)) which will not be discussed here.

While PRS show potential for identifying high-risk individuals for certain common diseases (e.g.
Khera et al. (2018)) when derived and tested within one ancestry group (mostly European), recent
work has shown that the prediction accuracy of PRS from one ancestry group does not necessarily
generalize to other ancestry groups Martin et al. (2017); Duncan et al. (2019); Berg et al. (2019).
When combined with the fact that more than three quarters of individuals in widely-used GWAS
are of European ancestry Morales et al. (2018) (while representing less than a quarter of global
population), this has raised scientific and ethical concerns about the clinical use of PRS and GWAS
in the community Martin et al. (2019); Need and Goldstein (2009); Popejoy and Fullerton (2016).

D.2 Methods

In this work we investigate the issue of generalizability of PRS from a slightly different angle. Instead
of focusing on the loss of predictive accuracy of a PRS when transferred to a different ancestry group,
we investigate the sensitivity of the PRS to the choice of genotypes used in the derivation of the
score, when evaluated within the same ancestry group versus outside of the group. Our phenotype of
interest is the intraocular pressure (IOP), a continuous phenotype representing the fluid pressure
inside the eye. This metric is an important aspect in the evaluation of risk of eye diseases such as
glaucoma. We aim to predict IOP of individuals with their demographic information (age, sex, and
BMI) and their genomic variants only, using the UK Biobank dataset Sudlow et al. (2015), a large,
de-identified biobank study in the United Kingdom.

We first performed a GWAS on IOP and identified 4,054 genetic variants significantly associated
with IOP distributed over 16 human chromosomes. We partitioned the variants into 129 clusters,
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Table 8: Distribution of IOP associated variants. 129 variant clusters are distributed over 16
chromosomes.

chrom | clusters || chrom | clusters
chrl 19 chr9 10
chr2 10 chrll 16
chr3 10 chrl3 2
chr4 13 chrl4 2
chrb 1 chrl6 2
chr6 9 chrl7 4
chr7 15 chr20 2
chr8 11 chr22 3

where variants in the same cluster are highly-correlated and the ones in different clusters are relatively
less correlated, and constructed the set of “index variants”, consisting of the best representative of
each cluster. We identified and clustered the IOP-associated variants with PLINK v1.9 Purcell et al.
(2007), a standard tool in population genetics, using the --clump command. We used 5 x 108 for
the index variant p-value threshold, 5 x 1079 for the p-value threshold for the rest of the associated
variants, 0.5 for the 72 threshold, and 250 kb for the clumping radius. Table 8 summarizes the
distribution of IOP-associated variant clusters over chromosomes.

After identifying the 129 clusters of variants, we created 1,000 sets of variants, each set consisting
of 129 variants, exactly one variant in each cluster. The first of those sets is the set of index variants
identified by PLINK. We then sampled 999 sets of cluster representatives by sampling one variant in
each cluster uniformly at random. Each of these 1,000 sets defines a set of 129 genomic features to
be used in our regression models.

For training and evaluation we partitioned the UK Biobank population into British and “non-
British” individuals, and then we randomly partitioned the British individuals into British training
and evaluation set. We leave the “non-British” individuals out of training and use them solely for
evaluation. We measured the “British-ness” of an individual by the distance from the coordinate-wise
median of the self-reported British individuals, in the 10-dimensional vector space of the top 10
principal components (PCs) of genetic variation Price et al. (2006). Individuals whose z-scored
distance from the coordinate-wise median are no greater than 4 in this PC space, are considered
British. We then randomly partitioned 91,971 British individuals defined as above into a British
training set (82,309 individuals) and a British evaluation set (9,662 individuals). All remaining
“non-British” set (14,898 individuals) was used for evaluation.

We trained linear regression models for predicting IOP with (a) demographics and a set of 129
genomic features (one of the 1,000 sets created above) and (b) demographic features only, using
the British training set. We used Ls regularization whose strength was determined by 10-fold cross
validation in the training set.

We observed drastically increased sensitivity (Figure 3, left, in the main text) for the genomic
models (blue dots) in the “non-British” evaluation set compared to the British evaluation set or the
training set. Genomic models’ margin of improvement from the baseline demographic model (gray
line) is also decreased in the “non-British” evaluation set. In the “non-British” evaluation set we still
see in general some improvement over the baseline, but the margins are highly variable. We also
observed that the performance in British and “non-British” evaluation sets are mostly uncorrelated
(r =0.131) given the same set of genomic features (Figure 3, middle, in the main text).

Another interesting point is that the model using the original index variants (red dot) outperforms
models with other choices of cluster representative in the British evaluation set, but not in the
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"non-British" evaluation set. This implies the cluster representatives chosen in the training domain
are not always the best representatives outside of the British ancestry group.

In summary, we investigated the sensitivity to the choice of features (variants) representing
clusters of highly correlated features in the context of genomics in this section. We observed that the
prediction errors become highly sensitive when the evaluation domain is distinct from the training
domain, in addition to being higher in magnitude. As previously discussed the robust generalization
of PRS in underrepresented ancestry groups is one of the major open questions for its real-world
application in clinical settings.

Appendix E. Random Feature Model: Complete Theoretical Analysis

In this section we presents definitions and asymptotic formulas for the random features model that
is presented in Section 3 of the main text. Before focusing on the random features model, we will
describe the general setting and define some quantities of interest.

Our general focus is to investigate the validity of two main hypotheses that arose from our
empirical case studies: (i) The model learnt depends strongly on the arbitrary or random choices in
the training procedure; (i) As a consequence, for most choices of the training procedure, there exist
test distributions that are close to the train distribution and have much higher test error, while the
test error on the same test distribution is unchanged for other choices of the training procedure.

E.1 General Definitions

We consider for simplicity a regression problem: we are given data {(x;,y;)}i<n, with ; € R? vector
of covariates and y; € R a response. We learn a model f, : R? — R, where 7 captures the arbitrary
choices in the training procedure, such as initialization, stepsize schedule, and so on. Also, to be
concrete, we consider square loss and hence the test error reads

R(7,Pes) = Eeec{(y — fr(2))*} . (1)

Our definitions are easily generalized to other loss functions. The notation emphasizes that the test
error is computed with respect to a distribution P, that is not necessarily the same as the training
one (which will be denoted simply by P). The classical in-distribution test error reads R(7, P).

As a first question, we want to investigate to what extent the model f,(x) is dependent on the
arbitrary choice of 7, in particular when this is random. In order to explore this point, we define the
model sensitivity as

8(7—177—25 Pte:;t) = Etest{[f‘l'l (iL’) - f7'2 (w)]z} . (2)

We next want to explore the effect to this sensitivity on the out-of-distribution test error. In
particular, we want to understand whether the out-of-distribution error can increase significantly,
even when the in-distribution error does not change much. Normally, the out-of-distribution risk is
defined by constructing a suitable neighborhood of the train distribution P, call it M'(P), and letting
Roiee (TO) 1= SUPp,_eN(P) R(TO; Ptest)'

Here we extend this classical definition, as to incorporate the constraint that the distribution
shift should not damage the model constructed with an average choice of 7:

Rshift(TO; 6) = sup {R(TO; Ptest) : ETR(T; Ptest) < 5} . (3)
Ptest EN(P)
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E.2 Random Featurization Maps

A broad class of overparametrized models is obtained by constructing a featurization map ¢, : R —
RY. We then fit a model that is linear in ¢, (x), e.g. via min-norm interpolation

minimize |02, (4)
subject to y=®,(X)0. (5)

(Other procedures make sense as well.) Here ®,(X) € R™™¥ is the matrix whose i-th row is ¢, (x;).
The corresponding estimator is denoted by 6., and the predictive model is f,(x) = (0., ¢-(x)). It is
useful to consider a couple of examples.

Example 1. Imagine training a highly overparametrized neural network using SGD. Let F'(-;w) :
R? — R be the input-output relation of the network. In the lazy training regime, this is well
approximated by its first-order Taylor expansion around the initialization wqg (Chizat et al., 2019).
Namely F(z; w) =~ F(x; wo)+{VF(x;wg), w—wp). If the initialization is symmetric, we can further
neglect the zero-th order term, and, by letting @ = w — wy, we obtain F(x;w) ~ (V. F(x; wy), 6).
We can therefore identify 7 = (wg) and ¢, (x) = Vo, F(z; wo).

Example 2. Imagine x; € R? represents the degree of activity of d biological mechanism in patient
i. We do not have access to x;, and instead we observe the expression levels of Ny > d genes, which
are given by ug; = Wox; + 20,;, where Wy € RNoxd and zp,; are unexplained effects. We do not fit
a model that uses the whole vector ug ;, and instead select by a clustering procedure 7 a subset of
N genes, hence obtaining a vector of features u; = W, x; + z; € R, In this case we identify the
featurization map with the random map ¢, (x;) := Wrx; + z;.

As a mathematically rich and yet tractable model, we consider the random features model of
Rahimi and Recht (2008), whereby

o-(x) =0c(Wx), W eRV*I, (6)

Here 0 : R — R is an activation function: it is understood that this applied to vectors entrywise.
Further, W is a matrix of first-layer weights which are drawn randomly and are not optimized over.
We will draw the rows (w;)i<y independently with w; ~ Unif(S¢~*(1)). (Here and below S~1(r) is
the sphere of radius r in d dimensions.) We identify the arbitrary training choice with the choice of
this first-layer weights 7 = W.

We assume an extremely simple data distribution, namely x; ~ Unif (S~ (v/d)) and y; = f.(x;) =
(Bo, ). Note that || f[|> = [|Boll2-

We will derive exact characterizations of the sensitivity and risk under shifted test distribution in
the proportional asymptotics N,n,d — co, with

N

E*)zvblv %4)1/}25 (7)

for some 91,19 € (0,00). In what follows we will assume to to be given sequences of triples (N, n,d)
which without loss of generality we can think to be indexed by d. When we write d — oo, it is
understood that N,n — oo as well , with Eq. (7) holding. Finally, we assume limg_, ||Bol|3 = 72 €
(0, 00).

E.3 Random features model: Risk

We begin by recalling some results and notations from Mei and Montanari (2019). We refer to the
original paper for formal statements.
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In this section we consider the random features model under a slightly more general setting than
the one introduced above. Namely, we allow for Gaussian noise y; = f.(x;) + €, €; ~ N(0, s?), and
perform ridge regression with a positive regularization parameter A > 0:

j 3) i argmin d LS (4 — 2+ Vg2
O(W. X, yi) = axgmin {73 (= (0.0(W=)" + 0I5} ®)

In the following we will omit all arguments except W, and write é(W) = é(W7X7y;A). By
specializing our general definition, the risk per realization of the first layer weights W is given by

R(W.P....) = R(r,P...) = E..{ly — (O(W),0c(W))]*} . 9)

The activation function is assumed to be o € L?(R, ), with v the Gaussian measure. Such an
activation function is characterized via its projection onto constant and linear functions

o = E{o(@)}, w1 =E{Go(G)}, p?i=E{o(G)} — 313 (10)

In particular, we define the following ratio

1231
(="—. 11
o (11)
Let v1,v5 : C4 — C be analytic functions such that, for $(§) > C' a large enough constant v1(§), v2(€)
satisfy
2V —1
V1=1/J1(—§—V2—<722) ;
1= (12)
_ ¢ -1
V2—1/J2(—§—V1—717<2V1V2) .
We then let
X = v (812 N)?) v (1)) /?), (13)
- A

*

Finally, define

(G012, ) = — X0 4+ 3x ¢+ (W1he — o — 1 + 1) — 2x3 ¢! — 3xP¢?
+ (b1 + b2 — 30100 + 1)X2CH + 243 + X2 + 3U1¢axC? — Y1ty ,
E(C 1,92, N) = Yax® ¢t — o + Pr1hax( — Prtda,

E (¢ 1,2, A) = X7 = 3xHCH + (1 — 1P+ 203 +3x3C + (= — DX =23 = P
(15)
We then have, from (Mei and Montanari, 2019, Theorem 1), the following characterization of the
in-distribution risk®

2 51(C7¢17¢27X) + 82 gZ(C7wlvaaX)
50(C7 ’(/}17 wQaX) éoO(C? wla ¢27X)

Here the op(1) term depends on the realization of W, and is such that E|op(1)| — 0 as N,n,d — co.

RW,P)=r

+op(1). (16)

Remark 1 Notice that the right-hand side of Eq. (16) is independent of W . Hence we see that the
in-distribution error is (for large N,n,d) essentially the same for most choices of W'.
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Figure 22: Random features model trained via min-norm least squares: sensitivity to the initial
condition, normalized by the risk. Here the input dimension is d = 40, N is the number of neurons,
and n the number of samples. We use ReLU activations; the ground truth is linear with ||3g||2 = 1.
Circles are empirical results obtained by averaging over 50 realizations. Continuous lines correspond
to the analytical prediction of Eq. (34).

E.4 Random features model: Sensitivity to random featurization

Let W7, W5 be two realizations of the first-layer weights. We can decompose
o(Wa) = po + mWa + p.z", (17)

where, under P, we have E{z*(21)T} =T+ ¢, 117 + A, [|Allop = op(1), and E{(Wz)z1} = 0. We
therefore have (writing 6; := 6(W;))

S(W1, Wa) = E{((0(W1),0(Whz)) — (B(W2),0(Wae)))? }
= 1FE{((0(W1), Wiz) — (B(W3), Waz))?} + 12E{((0(W1) — O(W>), 2T))?}
= 13Ex o { | W0 — W3 025} + (12 + 0p(1))Ex 5 {[16:1 — 62} .

We consider two random independent choices of Wy, Wy, and define S,, := E{S(W7, W3)}, thus
obtaining:

Su = 263 {E[IWTOW)3] — E[|[EIWTOW)IX, Boll[3]] | + 262E{ 103} +0(1).  (18)

9. Theorem 1 in Mei and Montanari (2019) holds for the risk, conditional on the realization of X, y. The statement
given here is obtained simply my taking expectation over X, y.
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In order to evaluate the asymptotics of this expression, we recall some formulas that follow from Mei
and Montanari (2019):

2 Y 2 By
WTéW QZL. 91(<?w1’¢2aA) _ i 92(47w17¢27i) 1 7 19
H ( )||2 /j‘z (X<271)@0(<7/¢17w27>‘) /‘Lz 90(Ca¢17¢27>\) +OP( ) ( )
EWTOW) 00) = { A (G0 X+ o(1) | o, (20)
2 2g(<7¢17¢27x) 52 gQ(C7¢17¢27X)
w2 =" 45 4 1), 21
H ( )||2 /j‘z gO(Caq;bl,wQ’)‘) +/J’E %0(C7¢17¢2>)‘) +OP( ) ( )
Here the terms op(1) converge to 0 in L', and we used the following notations:

Do(C, b1, 102, X) = XPC8 = 3XACH + (b1 + b2 — igpa — 1)XPCE + 2x3¢* + 3x3¢2 (22)

+ (BYh1ths — 2 — 1 — DX = 2x3C% = x* — 3v1vhax (P + P1a,
D1(C b1, 2, X) = XOC8 — 2x°CH — (a2 — 1 — b + 1)x*C® + X! (23)

+ X =201 = )X Pt — (V1 + ¥ + i + DX — X2,

Do(Co 1,2, A) = —(1 — DX = XPC 4+ (W + DX + 2, (24)
Go(Cop1, 92, A) = —XPC8 +3xHCH + (Wr1tha — P2 — 1 + 1)XPCC — 243 ¢* — 333 (25)

+ (1 + b2 — 31t + D)X+ 2¢3C% + X7 + 3vax( — Y1ee,
gl (C7 d)lv 1/)2,X) = —X2(XC4 - XCZ + 1/)242 + <2 - X¢2<4 + 1 ) (26)
gQ(valvw%X) = X2(X<-2 - 1)(X2<4 - 2XC2 + CQ + 1) ) (27)

_ <2
%(<7¢17w2a )‘) = <2X>i 1 . (28)
We also claim that, for s = 0 we have
E(WTO(W)|X, Bo) = %XTX(%%XTX FI2( 4 QL) Bo+ ere(d. ). (29)
g= B2V (30)
X0
2 2 _ —
S B Sl J(lrgzc? NCP AN 1)
where the error term err(d, \) satisfies

lim lim E{[lerr(d,\)||3} =0. (32)

A—0d—o0

We refer to Section E.6 for a sketch of the proof of this claim.
Using Eq. (29) and the asymptotics of the Stieltjes transform of the spectrum of Wishart matrices,
it follows that

lim lim E[|[EWTa(\)|X, Bol[[3] = r22(¢, w1, 2) ,

A—=0d—o0
1 1 1 2 1
A=ttt + (9 )
(33)
i) = B IR A= T ks,

222 22A
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Using Egs. (19), (21), (33) in Eq. (18), we finally obtain:

2
lim lim S,, = 2T2{<7% -2+ %} .
A—0 d— o0 (x¢2—-1)2 “%

In Figure 3 in the main text we compare this asymptotic prediction with numerical simulations for
d = 40. We report the in-distribution sensitivity S,, normalized by the risk R(W,P). In the classical
underparametrized regime N/n — 0, the sensitivity is small. However, as the number of neurons
increases, S/ R grows rapidly, with S/R not far from 2 over a large interval. Notice that S/R = 2 has a
special meaning. Letting h;(x) = f-, (x) — f.(x), it corresponds to [|h1 — hal|3. = 2||h1[|72 = 2||h2]|72,
ie. (hi,ha)r2 = 0. In other words, two models generated with two random choices of 7 as ‘as
orthogonal as they can be’.

(34)

E.5 Random features model: Distribution shift

In order to explore the effect of a distribution shift in the random features model, we consider the case
of a mean shift. Namely, ..., = ©¢ +  where x ~ Unif (Sd_l(\/&)) is again uniform on the sphere,
and xg is deterministic and adversarial for a given choice Wy, under the constraint ||zglz < A. We
denote this distribution by Pw, A. We will construct a specific perturbation xy that produces a large
increase in R(Wy, Pw, a) but a small change on R(W, Pw, a) for a typical random W independent
of Wy. We leave to future work the problem of determining the worst case perturbation x.

We next consider the risk when the first layer weights are W, and the test distribution is Py, .
Using the fact that ||xgll2 = A < ||]|2, we get

R(W,Pw,.a) = E{((Bo, #ocee) — (O(W), o(W2...0)))* }
= E{((Bo, @) + (Bo, zo) — (B(W),0(Wx)) — (0(W),0'(Wa) © Wao))*} + 0p(1)

(a) - .
= E{({(Bo, @) + (Bo, x0) — (0(W),0(Wa)) — 111 ((W), W0))*} + 0p(1)

b ~

Y R(W . Pw,.a) + (B0 — mWTO(W), o) + op(1),

where (a) follows by replacing o’ ({w;, x)) by its expectation over & Eo’({x;,x)) = Eo'(G) + o(1) =
w1 + o(1), and (b) since E(x) = 0.

The choice xy that maximizes the risk R(Wy,Pw, a) is zo = A(Bo — 1 W7 0(Wy))/||Bo —
Wy é(VVb)Hg However this mean shift can have a significant component along By, which results
in a large increase of R(W;Pw, a) for other W as well. To avoid this, we project this vector
orthogonally to By:

PS5 WoO(W,
2y = —A—2 gA( 0 (35)
P53, Wo 6(Wo)ll2

This results in the following expression for the test error on the shifted distribution:
R(W7 PW07A) = R(Wv P) + AQ”%T(Wa WO) + OP(I) ) (36)
(P5,WTO(W),Ps Wi 6(Wy))

T(W,Wy) := - (37)
1P, Wo 6(Wo)l|3
We first consider the case W = W,. We then have

ET(Wo, Wy) := E{|[P5, Wy 0(Wy)|[3} (38)

~ 1 o
= E{|WJ0(Wo)3} — —5E{(Bo, W 6(W5))*} (39)

(@ 2 %) 2 22Dy
= — 1 40
e #2522 o), (40)
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where (a) follows by Egs. (19) and (20).
For W independent of Wy, we have (for s = 0)

(WTO(W), WJ (Wy)) — r~2(Bo, Wy 8(Wp)) (8o, W) 6(W)))? }

ET(W,W,) := E - A
( 2 { Wy 0(Wo)l[5 —r=2(Bo, Wy (Wp))?

_ Exo{IEwWTOW)IX Yl =1 Ewx (B WIOW)P)”
Ew x y{[WTO(W)|3} — r2(Ew,x .y (Bo, WTO(W)))?
’%(Ca¢1aw25X)2
S A IR SR IR 1 41
%(C,T/Jl,wg,)\) +OP()5 ( )
where
kY ngl(Calblan»X) 2 BY
T ; ; aA = = —H ) y 7)‘ ) 42
0(Cs 1,12, A) (X< = D) Z0(C. 61, 9o, %) (€, 91,92, ) (42)
%lif}) %(C7w17¢2ax> = X(C7wl7w2) - C%2(4-7’(/}17/¢27 0) . (43)
In Figure 3 of the main text, we plot the ratios
Ew, R(Wo; Pw; a) Ew w, R(W;Pw, a) (44)
EwR(W;P) Ew R(W;P)

Note that the perturbation introduced here is extremely small in ¢, norm. Namely ||x¢]oo =~
A+/(2logd)/d: as d gets larger, this is much smaller than the typical entry of @, which is of order 1.

E.6 Random features model: Derivation Eq. (29)

In this section we outline the derivation of Eq. (29). Let U, = ¢(XWT) € R™*¥ (where ¢ is applied
entrywise to the matrix XWT). Then

E{(WTO(W)|X,y} = E(W (U U, + du’)"'UJy| Xy} (45)
=Ew{WT(UJU, +du®1)"'UJ X By} . (46)

where u? = \p11po. We will work within the ‘noisy linear features model’ of Mei and Montanari
(2019) which replaces U, with

U=uXW +p.2, (47)
where (Zij)iénngj\[ ~iid N(O, 1), (Xij)ign,jgd ~iid N(O, 1), (Wij)iSN,jgd ~iid N(O, ]./d) The univer-
sality results of Mei and Montanari (2019) suggest that this substitution produces an error that is
asymptotically negligible, namely:

E{WTO(W)|X,y} = Q(X)Bo +erro(d, \), (48)

Q(X) =Ew z{WT(U'U, + du’Iy)"'UT X }. (49)

Note that, conditional on X U, W are jointly Gaussian, and therefore it is easy to compute the
conditional expectation

—1
E(WT|U, X} = i (pfdld n prTX) XU. (50)
We therefore get
- —1
QUX) = (p2dla+ EXTX) XTQX)X, (51)
Q(X):=Ew z{UUU + du’Iy)"'UT}. (52)
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At this point we claim that, for ¥, # 1,
,u2 /~L2 1
QX) = (HXXT+p2(1+ L) (FXXT+42(1+gL,)  +Err(\d), (53)

where the Err(), d) is negligible for our purposes (namely |11 (,ufdld + M%XTX> 1XTEerﬁO||2 =
op(1) when A — 0 after d — oo0). The main claim of this section —Eq. (29)— follows by substituting
(53) in Egs. (48), (51) after some algebraic manipulations.

In the overparametrized regime t; > 1o (which is the main focus of our analysis) Eq. (53)
is straightforward. Notice that in this case ¢ = 0, and therefore this claim amounts to Q(X) =
I, +Err()\ d). Indeed this is straightforward since in that case U has full column rank, and minimum
singular value bounded away from zero. Therefore

|Q(X) —Ew z{UUTU)'UT}Y|| < Cu®=C"A, (54)
and UUTU)"'WUT =1,.

In the underparametrized regime 11 < ¥y the result can be obtained making use of Ledoit and
Péché (2011).
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