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Abstract

In online linear optimisation with stochastic losses it is common to bound the pseudo-regret of
an algorithm rather than the expected regret. This is attributed to the expected fluctuations for
i.i.d sums making expected regret bounds better than Ω(

√
T ) impossible. In this paper we show

that when there is a unique optimal action and the action set is a polytope the difference between
pseudo-regret and expected regret is o(1). This means that the existing upper bounds on pseudo-
regret in the literature can immediately be extended to also upper bound the expected regret. Our
results are independent of the algorithm used to select the actions and apply equally to the bandit
and full-information settings.
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1. Introduction

In online linear optimisation we choose an action xt each turn from the domain X ⊂ Rd. The
adversary then chooses a loss vector `t ∈ Rd and we suffer loss `t ·xt. In the full-information setting
we observe `t as feedback while in the bandit setting we only observe `t · xt. Then we proceed to
turn t + 1. Our aim is to select actions that minimise the regret RT =

∑T
t=1 `t · xt −

∑T
t=1 `t · x∗T

with respect to the benchmark x∗T ∈ argmin
x∈X

∑T
t=1 `t · x.

The standard model of an easy opponent is when `1, `2, . . . are independent and identically
distributed random variables with each E[`t] = ¯̀. In this case superior performance is expected,
and we would like to minimise the expected regret E[RT ] = E

[∑T
t=1 `t · xt

]
− E

[∑T
t=1 `t · x∗T

]
where the expectation is over the loss vectors. Here x∗T is a random variable that depends on the
realisations of `1, `2, . . . , `T .

Unfortunately, the expected regret can be Ω
(√
T
)

in general, which matches the worst-case
bound for adversarial losses. To remedy this, many classical performance bounds instead use the
pseudo-regret RT = E

[∑T
t=1 `t · xt

]
− E

[∑T
t=1 `t · y∗

]
with benchmark y∗ ∈ argmin{` · x : x ∈ X}

that minimises the expected loss rather than the actualised loss. For example early work by Dani
et al. (2008) established an O(log(T )/∆) upper bound on the pseudo-regret with bandit feedback,
where ∆ is the difference between the smallest and second smallest component of `. This bound was
subsequently improved by Abbasi-yadkori et al. (2011) while Auer and Chiang (2016) shows that
a player can simultaneously achieve O(log(T )/∆) pseudo-regret for stochastic losses and O(

√
T )

pseudo-regret for adversarial losses. In the full information setting Anderson and Leith (2020);
Mourtada and Gäıffas (2019) establish an O(1/∆) upper bound on the pseudo-regret when the
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loss vectors are stochastic, and Anderson and Leith (2021) prove an O(logN) bound for strongly
convex domains.

Since the benchmark y∗ ∈ argmin{` · x : x ∈ X} from the pseudo-regret depends only on the
average loss ` it does not depend on the specific realisation of `1, `2, . . . , `T . This simplifies the
analysis but comes at the price that RT ≤ E[RT ]. Hence an upper bound on pseudo-regret RT
need not imply an upper bound on expected regret E[RT ]. Indeed, it is often claimed in the bandit
literature that the difference between expected regret and pseudo-regret is always Ω(

√
T ). In this

paper we show that in the favourable case of a unique optimal action and action set X a polytope
this difference vanishes, i.e. 0 ≤ E[RT ] − RT ≤ o(1). This means that the existing upper bounds
on pseudo-regret in the literature can immediately be extended to also upper bound the expected
regret. Our results are independent of the algorithm used to select the actions and apply equally
to the bandit and full-information settings.

Polytope domains are used for example in ranking user preferences, travelling salesman prob-
lems, and assigning “vehicles” to “routes” in a transportation problem. In the more general setting
of combinatorial optimisation, we seek an optimal action from a large finite set. For example we
want to select a permutation of n elements. The nature of the loss function allows us to embed
the actions as points in a lower-dimensional space. The polytope arises as the convex hull of the
embedded actions, with each interior point treated as a probabilistic choice of the vertices. Then
we can optimise over the polytope to obviate the computationally infeasible task of checking each of
the n! permutations individually. For examples of learning permutations see Zhang (2004); Helm-
bold and Warmuth (2009); Suehiro et al. (2012); Lim and Wright (2014); Ailon (2014); Ailon et al.
(2016); Linderman et al. (2018) and the references therein. For other polytopes see Warmuth and
Kuzmin (2008) and Kalai and Vempala (2016). For overviews see Martin Grötschel, László Lovász,
Alexander Schrijver (1993) or Mark Hickman, Pitu Mirchandani, Stefan Voß (2008).

1.1 Previous Bounds on Expected Regret

Most of the stochastic online linear optimisation literature focuses on the pseudo-regret. However
there are some notable exceptions. Gaillard et al. (2014) consider a new variant of the Prod
algorithm on the simplex, with different learning rates for each arm and full information feedback.
Their Theorem 11 shows that for i.i.d loss vectors the algorithm gives E[RT ] ≤ O(1) provided
the expected loss vector has a unique optimiser. Corollary 11 of Huang et al. (2016) says that
the Follow-The-Leader algorithm with full information feedback gives E[RT ] ≤ O(1) when the loss
vectors are i.i.d, the domain is a polytope and the expected loss vector has a unique optimiser.
For strongly convex domains their Theorem 5 implies that for i.i.d loss vectors running Follow-
The-Leader gives E[RT ] ≤ O(log T ). Wei and Luo (2018) consider problems on the simplex under
bandit feedback. In Section 4.2 they give an algorithm with the standard O(

√
T log T ) regret bound

against adaptive adversaries, which specialises to give E[RT ] ≤ O(log T/∆) when the loss vectors
satisfy the martingale 1 inequality E[`t(j) − `t(j∗) | `1, . . . , `t−1] > ∆ for fixed j∗ and all j 6= j∗.
For strongly-convex loss functions it is well-known we can get O(log T ) regret by running online
gradient descent (Hazan et al., 2007) or follow-the-leader (Cesa-Bianchi and Lugosi (2006) Section
3.2). If the functions are generated by an i.i.d sequence we immediately have E[RN ] ≤ O(log T ).

The existing literature therefore creates the confusing situation where, on the one hand most
papers say that obtaining bounds on the expected regret is impossible, while on the other hand a
few papers do manage to bound the expected regret. However they do this without commenting

1. Martingales are slightly more general than i.i.d sequences. Many of the common concentration inequalities used
for i.i.d sequences generalise immediately to martingales.
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on whether this is surprising or not and without dwelling on the assumptions. The present paper
is a first step towards clarifying the situation.

2. Notation

For vectors x ∈ Rd we write x(j) for the j-component and ‖x‖ for the Euclidean norm. By a
polytope we mean the convex hull of a finite set. Polytopes are always compact and convex. For
every polytope P there exists a unique finite set V of vertices such that P is the convex hull of V
and not the convex hull of any proper subset of V. -

Assumption 1 The domain X ⊂ Rd is compact and convex. The diameter is bounded by D =
sup{‖x− y‖, x, y ∈ X}.

Assumption 2 The loss vectors `1, `2, . . . ∈ Rd are independent random variables with each E[`t] =
`. The expected optimiser y∗ = argmin{` · x : x ∈ X} is unique. There are constants L,B such
that each ‖`t‖ ≤ L and ‖`t − `‖ ≤ B almost surely.

Note Assumption 1 holds if X is a polytope. Note also we can always take B = 2L in Assumption
2. The expected regret of a sequence of losses and actions is defined as

E[RT ] = E

[
T∑
t=1

`t · xt −
T∑
t=1

`t · x∗T

]
x∗T ∈ argmin

x∈X

T∑
t=1

`t · xt.

The pseudo-regret is defined as

RT = E

[
T∑
t=1

`t · xt −
T∑
t=1

`t · y∗
]

y∗ = argmin
x∈X

` · x.

By definition of x∗T we always have RT ≤ E[RT ].

3. Preliminaries

Our first observation is that even though E[RT ] and RT are defined in terms of on the action
sequence, the gap E[RT ] − RT depends only on the loss vectors. This is because the first sums in
the two definitions cancel with each other.

Lemma 1 We have E[RT ]−RT = E
[∑T

t=1 `t · (y∗ − x∗T )
]
.

Hence the gap E[RT ]−RT is independent of our choice of online algorithm. Indeed it is independent
of whether we are in the full-information or bandit setting. Next we use Lemma 1 to bound the
gap in terms of the probability that the realised optimiser coincides with the expected optimiser:

Lemma 2 For D = sup{‖x− y‖ : x, y ∈ X} we have the bounds

E[RT ]−RT ≤
√

E‖x∗T − y∗‖2
√

E
∥∥∑T

t=1(`t − ¯̀)
∥∥2 ≤ D

√
P (x∗T 6= y∗)

√
E
∥∥∑T

t=1(`t − ¯̀)
∥∥2

Proof Expand the right-hand-side of Lemma 1 to get

E[RT ]−RT = E

[
T∑
t=1

¯̀· (y∗ − x∗T )

]
+ E

[
T∑
t=1

(`t − ¯̀) · (y∗ − x∗T )

]
.
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Since y∗ minimises ¯̀· x the first term is nonpositive and Cauchy-Schwarz gives

E[RT ]−RT ≤ E

[
(y∗ − x∗T ) ·

T∑
t=1

(`t − ¯̀)

]
≤ E

[
‖y∗ − x∗T ‖

∥∥∥ T∑
t=1

(`t − ¯̀)
∥∥∥] (1)

Next use Cauchy-Schwarz with the L2 inner product (f, g) = Eω[f(ω)g(ω)] to bound the right-
hand-side and get

E[RT ]−RT ≤
√
E‖y∗ − x∗T ‖2

√
E
∥∥∑T

t=1(`t − ¯̀)
∥∥2
.

Since ‖x∗T − y∗‖2 = 0 for x∗T = y∗ and ‖x∗T − y∗‖2 ≤ D2 otherwise, the first factor on the right is
at most

√
D2P (x∗T 6= y∗) = D

√
P (x∗T 6= y∗).

To bound the second factor in Lemma 2 we use the following vector concentration inequality that
is a special case of Pinelis (1994) Theorem 3.5.

Theorem 1 Suppose X1, X2, . . . ∈ Rd are independent random variables with expectation zero
and each ‖Xn‖ ≤ B. For each ε ≥ 0 we have

P

(∥∥∥ T∑
t=1

Xt

∥∥∥ ≥ ε) ≤ 2 exp

(
− ε2

2TB2

)
The full version of the Pinelis theorem applies to martingales that take values in so-called (2, D)-
smooth Banach spaces. This allows us to generalise our main theorem. See Section 6 for discussion.

4. Polytopes

Henceforth P ⊂ Rd is a polytope with vertex set V. Since every linear function on a polytope is
minimised on a vertex we know y∗ ∈ V and write v∗ = y∗ to stress this. We also assume x∗T is
selected to be a vertex. Define the suboptimality gap ∆ = min

{
` · (v − v∗) : v ∈ V/{v∗}

}
.

Theorem 2 Suppose we have an online optimisation problem on a polytope domain, and the loss
vectors satisfy Assumption 2. For expected regret E[RT ] and pseudo-regret RT we have:

E[RT ]−RT ≤ o(1) E[RT ]−RT ≤ (5/2)D2B2/∆.

Proof Write LT = 1
T

∑T
t=1 `t for the normalised cumulative loss vector. Then E[LT ] = `. Suppose

we have ‖LT − `‖ < ∆/D. Then for each v ∈ V/{v∗} we have

LT · (v − v∗) = ` · (v − v∗) + (LT − `) · (v − v∗) > ∆ + (LT − `) · (v − v∗)

≥ ∆− ‖LT − `‖‖v − v∗‖ > ∆− ∆

D
D = 0 (2)

where the second line uses Cauchy-Schwarz. The above shows LT · (v − v∗) > 0. Hence LT · x is
uniquely minimised at v∗ and so x∗T = v∗.

Now let Xt = `t − ` and ε = T∆/D. Since 1
T

∑T
t=1Xt = LT − ` our Theorem 1 says the

event ‖LT − `‖ < ∆/D fails with probability at most 2 exp(−∆2T/2B2D2). Hence P (x∗T 6= v∗) ≤
2 exp(−∆2T/2B2D2) and Lemma 2 gives

E[RT ]−RT ≤ D
√
P (x∗T 6= v∗)

√
E
∥∥∑T

t=1(`t − ¯̀)
∥∥2 ≤ D

√
2 exp

(
− ∆2

4B2D2
T

)√
E
∥∥∑T

t=1(`t − ¯̀)
∥∥2
.
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To bound the second factor use Theorem 1 to get P
(∥∥∑T

t=1(¯̀− `t)
∥∥ > ε

)
≤ 2 exp

(
−ε2/2TB2

)
for each ε ≥ 0. For x = ε2 we get P

(∥∥∑T
t=1(¯̀− `t)

∥∥2
> x

)
≤ 2 exp

(
−x/2TB2

)
and Lemma 6

gives

E

[∥∥∥ T∑
t=1

(¯̀− `t)
∥∥∥2
]
≤
∫ ∞

0
P

(∥∥∥ T∑
t=1

(¯̀− `t)
∥∥∥2
> x

)
dx ≤ 2

∫ ∞
0

exp
(
− x

2TB2

)
dx = 4TB2.

Hence we get

E[RT ]−RT ≤ D
√

2 exp

(
− ∆2

4B2D2
T

)√
4TB2 = 2

√
2BD

√
T exp

(
− ∆2

4B2D2
T

)
.

To prove the right-hand side is o(1) recall that, since any exponential function grows faster than any
polynomial, we have

√
Te−βT → 0 as T →∞ for any β ≥ 0. To prove E[RT ]−RT ≤ (5/2)D2B2/∆.

Lemma 5 says
√
Te−βT ≤ 1/

√
2eβ. Hence for β = ∆2/4B2D2 the above gives

E[RT ]−RT ≤ 2
√

2BD
√
Te−βT ≤ 2

√
2BD√
2e

√
4B2D2

∆2
=

4√
e

B2D2

∆
≤ 5

2

B2D2

∆
.

5. Examples

In Theorem 2 we assume (a) the expected loss vector has a unique optimiser and (b) the domain is
a polytope. Under these assumptions we prove the gap E[RT ]−RT tends to zero. In this section we
give examples to show that both assumptions are needed. If we drop either of the two assumptions,
we risk the gap becoming Ω(

√
T ).

5.1 A Unique Optimiser is Necessary

The following toy example demonstrates that if several optimisers are allowed we might have
E[RT ] − RT ≥ Ω(

√
T ). i.e. the gap is the same size as the expected fluctuation E

∥∥∑T
t=1(`t − ¯̀)

∥∥
between the actual and expected loss vectors. This also matches the worst-case regret bound against
adversarial losses.

Lemma 3 There exists an i.i.d sequence `1, `2, . . . ∈ R of loss vectors with all ‖`t‖, ‖`t − `‖ ≤ 1
such that for domain the interval [0, 1] we have E[RT ]−RT ≥

√
T/10 for T sufficiently large.

Proof Let `t be i.i.d with each P (`t = 1) = P (`t = −1) = 1/2. Then we have ` = 0. Lemma

1 says E[RT ] − RT = E
[∑T

t=1 `t(y
∗ − x∗T )

]
where y∗ minimises ¯̀ and x∗T minimises

∑T
t=1 `tx over

[0, 1]. Consider the expression S =
∑T

t=1 `t(y
∗ − x∗T ) inside the expectation. Since ` = 0 we can

take y∗ = 0 to get S = −
∑T

t=1 `tx
∗
T . In the event that

∑T
t=1 `t < 0 we have x∗T = 1. In particular

the event 1√
T

∑T
t=1 `t < −1 implies S = −

∑T
t=1 `t ≥

√
T .

By the central limit theorem 1√
T

∑T
t=1 `t converges in distribution to a standard normal. Hence

as T → ∞ we have P
(

1√
T

∑T
t=1 `t < −1

)
→ P (N(0, 1) < −1). The right-hand-side can be

computed numerically as 0.158655... ≥ 0.15. Hence with probability at least 0.15 we have S ≥
√
T .
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Since S is nonnegative we get E[RT ]−RT = E[S] ≥ 0.15
√
T ≥

√
T/10.

Note that while the example in Lemma 3 seems trivial, it is in fact characteristic of all problems
where Theorem 2 fails. This is because every problem with several optimisers contains a copy of
the example. In all such problems the domain has vertices w, v such that the behaviour of the loss
vectors over the line segment from w to v behaves like the interval [0, 1] in the above example. We
sketch the proof below.

Suppose P ⊂ Rd is a polytope such that (a) the face F ∗ = {x ∈ P : ` · x = ` · v∗} of expected
optimisers has dimension m > 1 and (b) the projections at of `t − ` onto the affine hull A of F ∗

are not essentially zero. By translating we can assume A is a hyperplane through the origin. Write
{w, v2, . . . , vM} for the vertices of F ∗. Since F ∗ has full dimension in A the vectors w − vj span
A and we can extract a basis, without loss of generality B = {w − vj : j = 2, . . . ,m}. Then
‖x‖B = max{|x · (w − vj)| : j = 1, . . . ,m} is a norm on A.

By assumption (b) there are ε′, p > 0 such that P (‖at‖ > ε′) > p. Since all norms on Rm
are equivalent we have P (‖at‖B > ε) > p for some ε > 0. Hence with probability p we have
some |at · (w − vj)| > ε. Since there are m − 1 choices for j there exists some fixed v = vj with
P (|at · (w − v)| > ε) > p/m. By symmetry we can assume P (at · (w − v) < −ε) > p/2m.

Since w− v ∈ A and at is the projection of `t onto the plane A we have at · (w− v) = `t · (w− v)
and so P (−`t · (w − v) > ε) > p/2m. In particular −`t · (w − v) are essentially nonzero random
variables. Since v, w ∈ F ∗ we have E[−`t · (w − v)] = 0.

By the central limit theorem 1√
T

∑T
t=1 `t ·(w−v) converges in distribution to some N(0, σ) where

σ > 0 depends on ε and p/2m. Hence for T sufficiently high we have P
(
− 1√

T

∑T
t=1 `t · (w−v)>σ

)
>

0.15. Like in Lemma 3 consider the expression S =
∑T

t=1 `t · (y∗ − x∗T ). We can take y∗ as any
element of F ∗. For y∗ = v we have

S =
T∑
t=1

`t · v −min
x∈P

T∑
t=1

`t · x = max
x∈P

(
T∑
t=1

`t · v −
T∑
t=1

`t · x

)

= max
x∈P

(
−

T∑
t=1

`t · (x− v)

)
≥ −

T∑
t=1

`t · (w − v)

We have already shown the right-hand-side is greater than σ
√
T with probability 0.15. Since S is

nonnegative we get E[RT ]−RT = E[S] ≥ 0.15σ
√
T ≥ σ

√
T/10.

5.2 A Unique Minimizer Is Not Sufficient

In Theorem 2 we assume the expected optimiser is unique and the domain is a polytope. Lemma
3 shows the first assumption is necessary, by giving a polytope with several distinct optimisers
for which the theorem fails. Lemma 4 tackles the second assumption. It shows that, even if the
expected optimiser is unique, the theorem can fail if the domain is not a polytope.

Lemma 4 Let ε > 0 be arbitrary. There exists a compact convex domain in R2 and i.i.d sequence

`1, `2, . . . ∈ R2 of loss vectors with all ‖`t‖, ‖`t − `‖ ≤
√

2 such that E[RT ] − RT ≥
T

1
2
−ε

20
for T

sufficiently large.

Proof Let α ≥ 3 be such that 1
2(α−1) < ε. Let the domain be X = X1∩X2 for X1 = {(x, y) ∈ R2 :

y ≥ |x|α} and X2 = {(x, y) ∈ R2 : y ≤ 1}. Since |x|α is a convex function the domain is convex.
Since X ⊂ [−1, 1]× [0, 1] the domain is bounded hence compact. Let the loss vectors be `t = (Bt, 1)
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for independent Bt with P (Bt = 1) = P (Bt=−1) = 1/2. Then `= (0, 1) with expected optimiser
y∗=(0, 0). Write B(T )=B1+. . .+BT and LT =

∑T
t=1 `t = (B(T ), T ) for the cumulative loss vector.

Lemma 1 says E[RT ] − RT = E [LT · (y∗ − x∗T )] where x∗T minimises LT · x. Since y∗ = 0 it
is enough to show −E [LT · x∗T ] ≥ Ω(

√
T ) . To determine x∗T is is enough by symmetry of the

domain to consider the case B(T ) ≤ 0. We claim x∗T is the point (x0, |x0|α) on the graph for
x0 = (−B(T )/αT )1/(α−1).

Since |x|α is strictly convex it is enough to show |x| < 1 and LT is normal inwards at the point
above. For any x ∈ [0, 1) the slope at the point (x, |x|α) of the graph is αxα−1 and the inward normal
is along (−αxα−1, 1). Rescale to get (−Tα|x|α−1, T ). Plug in x0 and use how |B(T )| = −B(T ) to
get (−Tα|x|α−1, T ) = LT as claimed. Hence we have

LT · x∗T =

(
B(T )

T

)((
−B(T )

αT

) 1
α−1

,

(
−B(T )

αT

) α
α−1

)

= B(T )

(
−B(T )

αT

) 1
α−1

+ T

(
−B(T )

αT

) α
α−1

= −α
1

1−αT
1

1−α |B(T )|1+ 1
α−1 + α

α
1−αT 1+ α

1−α |B(T )|
α

α−1

= −α1+ α
1−αT

1
1−α |B(T )|

α
α−1 + α

α
1−αT

1
1−α |B(T )|

α
α−1

= (1− α)α
α

1−αT
1

1−α |B(T )|
α

α−1 (3)

In Lemma 3 we showed P
(
B(T ) ≤ −

√
T
)
> 1/10 for T sufficiently high. When the event occurs we

have |B(T )|
α

α−1 ≥ T
α

2(α−1) and T
1

1−α |B(T )|
α

α−1 ≥ T
1

1−αT
α

2(α−1) = T
1
2
− α

2(α−1) . Hence with probability
at least 1/10 we have

−LT · x∗T = (α− 1)α
α

1−αT
1

1−α |B(T )|
α

α−1 ≥ (α− 1)α
α

1−αT
1
2
− α

2(α−1) ≥ (α− 1)α
α

1−αT
1
2
−ε

Since −LT ·x∗T is nonnegative we get E[RT ]−RT ≥ 1
10(α− 1)α

α
1−αT

1
2
−ε. To complete the proof we

claim (α−1)α
α

1−α ≥ 1/2 for α sufficiently high. To that end write (α−1)α
α

1−α =
(
1− 1

α

)
α1+ α

1−α =(
1− 1

α

)
α

1
1−α . The first factor tends to 1. To see the second factor tends to 1 observe logα

1
1−α =

logα
1−α = − logα

α−1 . Since α− 1 grows faster than logα we have logα
1

1−α → 0 and so α
1

1−α → 1.

5.3 Numerical Example

We present a brief example illustrating the application of our results. Similar to the discussion at
the end of Section 5.1, this simple example captures all of the key behaviour.

In the usual multi-armed bandit setup the loss incurred by taking action x at time t is ¯̀·x+ ηt
where ηt ∈ R is i.i.d and the action set X is a polytope with unit vectors as vertices. In other words,

the loss when arm i is pulled at time t is ¯̀(i)+ηt. Hence argmin
x∈X

(∑T
t=1

¯̀· x+ ηt

)
= argmin

x∈X

∑T
t=1

¯̀·x
since the ηt term does not depend on x, and so the expected regret equals the pseudo-regret.

In the linear bandit setup we instead have loss `t·x = (¯̀+ηt)·x = ¯̀·x+ηt·x where ηt ∈ Rd are i.i.d.
vectors. The product with x in the random term gives argmin

x∈X

∑T
t=1(¯̀+ ηt) · x 6= argmin

x∈X

∑T
t=1

¯̀· x
in general. Hence the expected regret does not equal the pseudo-regret. Nevertheless, our analysis
in this paper shows that the difference between the expected regret and pseudo-regret is uniformly
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Figure 1: Example illustrating constant gap between expected regret and pseudo-regret.

bounded. We can therefore apply standard multi-arm bandit analysis techniques to upper bound
pseudo-regret, and by extension upper bound the expected regret.

Figure 1 shows numerical simulations of a 2-arm linear bandit setup with d = 2, X the polytope
with vertices (1, 0), (0, 1) and loss vector `t = (0,−24.9) with probability 0.5 and (0, 25.1) with
probability 0.5. Hence the expected loss is ` = (0, 0.1) with optimiser y∗ = (1, 0). The pseudo-regret
is E

[∑T
t=1 `t ·xt

]
− ` · y∗ = E

[∑T
t=1 `t ·xt

]
. The expected regret is E

[∑T
t=1 `t · (xt−x∗T )

]
where x∗T

minimises the sample path sum
∑T

t=1 `t ·x =
∑T

t=1(¯̀+ ηt) ·x and so varies from run to run. Figure
1(a) shows the measured pseudo-regret and expected regret for the UCB algorithm with bandit
feedback. Figure 1(b) shows the corresponding values for the Lazy Gradient Descent algorithm
of Anderson and Leith (2020) with full information feedback. It can be seen that, as expected,
in both cases the difference between the expected regret and pseudo-regret is uniformly bounded
and so the existing analytic results in terms of the pseudo-regret can be immediately generalised
to encompass the expected regret.

6. Variants of the Main Theorem

Theorem 2 requires the domain to be a polytope. Our first observation is that, since we only use
the polytope assumption in equation (2) of the proof, it is enough to assume the domain X and
expected loss ` admit a nonzero suboptimality gap. i.e there is a unique point y∗ ∈ X such that
` · (x − y∗) > ∆ > 0 for all x ∈ X/{y∗}. For example the domain whose boundary is the union
of the semicircular arc from (1, 0) to (−1, 0) and the line segments from (−1, 0) to (0,−1) to (1, 0)
satisfies the theorem if the loss vectors are such that y∗ = (0,−1).

The second set of observations comes from using the full version of Pinelis (1994) Theorem 3.5
rather than our special case of Theorem 1. This allows us to replace the independent losses in
Theorem 2 with more general martingale losses. It also allows us to replace the Euclidean norm
with any (2, D)-smooth norm. These are norms that satisfy a weakening of the parallelogram
law. For a more general norm | · | we can replace the use of Cauchy-Schwarz in (2) with the fact
(LT − `) · (v − v∗) ≥ −|LT − `||v − v∗|∗ for | · |∗ the dual norm. This lets us prove a variant
of Theorem 2 with the quantities D,B in Assumptions 1 and 2 replaced with sup |`t − `| and
sup{|x − y|∗ : x, y ∈ X} respectively. For example Pinelis Proposition 2.1 says the ‖ · ‖p norm is
(2,
√
p− 1) smooth. It is well known the dual norm is the Hölder conjugate.

8
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For some norms that are not (2, D) smooth it is still possible to prove analogous bounds to
Theorem 1. For example suppose the domain is the simplex and we have ‖`t − `‖∞ ≤ B∞. We
can apply Azuma-Hoeffding to each component separately to see LT is uniquely minimised at v∗

except on a set with probability at most max
{

1, d exp
(
− ∆2

8B2
∞
T
)}

. Using Lemma 6 to compute

the expectation by integrating separately over two suitably chosen intervals will then yield a version
of Theorem 2 with the quantities D,B replaced with 2 and B∞ respectively.

Finally we remark that replacing the finite quantities D,B with finite quantities specialised
to other norms is less significant than showing E[RT ] − RT ≤ o(1) in the first place. This is
because all norms are equivalent on a finite-dimensional vector space. Hence if sup |`t − `| and
sup{|x − y|∗ : x, y ∈ X} exist for any norm | · | then the Euclidean quantities B,D also exist and
are finite. Hence we can apply Theorem 2 to see E[RT ]−RT → 0 without going to the trouble to
reprove the theorem for the new norm.

7. Summary and Conclusions

In this paper we show that when there is a unique optimal action and the action set X is a polytope
the difference between pseudo-regret and expected regret is o(1). This means that the existing upper
bounds on pseudo-regret in the literature can immediately be extended to also upper bound the
expected regret. Our results are independent of the algorithm used to select the actions and apply
equally to the bandit and full-information settings. This analysis can be extended to include i.i.d
convex loss functions rather than just linear loss functions.

Importantly, while uniqueness of the optimal action is necessary for pseudo-regret and expected
regret to be within o(1) of one another, it is not sufficient and additional assumptions are needed.
Here we use the additional assumption that the action set is a polytope. Another compatible
assumption is that the action set is smooth and strongly convex. See Anderson and Leith (2021)
Section 4. Other choices for the action set are likely possible.

Another direction for future work is to make stronger assumptions on the loss vectors, to allow
a wider range of domains. For example the Bernstein condition (see Bartlett and Mendelson (2006)
and van Erven et al. (2015)) quantifies how well the losses of almost optimal actions are correlated
with the loses of optimal actions. For works about online problems under the Bernstein condition
see Koolen and Van Erven (2015); van Erven et al. (2015); Koolen et al. (2016); van Erven and
Koolen (2016); Mourtada and Gäıffas (2019).
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Appendix

Lemma 5 Let A ≥ 0. The function F (X) =
√
Xe−AX is maximised at X = 1/2A and F (1/2A) =

1/
√

2eA. The function is increasing on [0, 1/2A] and decreasing on [1/2A,∞).

Proof Consider the function G(X) = Xe−2AX . The derivative G′(X) = (1 − 2AX)e−2AX is
positive for before X ≤ 1/2A and vanishes for X = 1/2A and is negative for X ≥ 1/2A. Hence
the function is increasing on [0, 1/2A] and decreasing on [1/2A,∞) and maximised at X = 1/2A.
Since the square root is monotone, the same holds for

√
G(X) = F (X). The maximum value is
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F (1/2A) =
√

1/2Ae−A(1/2A) = e−A(1/2A)/
√

2A = e−1/2/
√

2A = 1/
√

2eA

The following fact about computing the expectation in terms of the CDF is well-known. But
we were unable to find a suitably general proof in the literature.

Lemma 6 Suppose X is a nonnegative random variable. Then E[X] =
∫∞

0 P (X > x)dx.

Proof The integral can be written as∫ ∞
0

P (X > x)dx =

∫ ∞
0

Ey
[
1X(y)>x(y)

]
dx = Ey

[∫ ∞
0

1X(y)>x(y)dx

]
.

For fixed y define the function g(x) = 1X(y)>x(y). We have g(x) = 1 for all x > X(y) and g(x) = 0
elsewhere. Since X(y) is nonnegative that means g(x) is the indicator function of [0, X(y)). It
follows the inner integral equals X(y) and the above becomes Ey[X(y)] = E[X].
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Martin Grötschel, László Lovász, Alexander Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin Heidelberg, 1993.

11

https://doi.org/10.1007/s00440-005-0462-3
https://arxiv.org/pdf/1402.2044.pdf
https://arxiv.org/pdf/1402.2044.pdf
http://jmlr.org/papers/v10/helmbold09a.html
http://jmlr.org/papers/v10/helmbold09a.html
https://proceedings.mlr.press/v84/linderman18a.html
https://proceedings.mlr.press/v84/linderman18a.html


Anderson and Leith
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