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Abstract
We consider a model of robust learning in an adversarial environment. The learner gets uncorrupted
training data with access to possible corruptions that may be affected by the adversary during
testing. The learner’s goal is to build a robust classifier, which will be tested on future adversarial
examples. The adversary is limited to k possible corruptions for each input. We model the learner-
adversary interaction as a zero-sum game. This model is closely related to the adversarial examples
model of Schmidt et al. (2018); Madry et al. (2017).

Our main results consist of generalization bounds for the binary and multiclass classification,
as well as the real-valued case (regression). For the binary classification setting, we both tighten the
generalization bound of Feige et al. (2015), and are also able to handle infinite hypothesis classes.
The sample complexity is improved fromO( 1

ε4 log( |H|
δ )) to O

(
1
ε2 (kVC(H) log

3
2+α(kVC(H)) +

log( 1
δ )
)

for any α > 0. Additionally, we extend the algorithm and generalization bound from the
binary to the multiclass and real-valued cases. Along the way, we obtain results on fat-shattering
dimension and Rademacher complexity of k-fold maxima over function classes; these may be of
independent interest.

For binary classification, the algorithm of Feige et al. (2015) uses a regret minimization algo-
rithm and an ERM oracle as a black box; we adapt it for the multiclass and regression settings. The
algorithm provides us with near-optimal policies for the players on a given training sample.
Keywords: Adversarial Robustness, PAC Learning, Sample Complexity, Zero-Sum Game.

1. Introduction

We study the classification and regression problems in a setting of adversarial examples. This setting
is different from standard supervised learning in that examples, at testing time, may be corrupted in
an adversarial manner to disrupt the learner’s performance. As standard supervised learning meth-
ods have demonstrated vulnerabilities, the challenge to design reliable robust models has gained
significant attention, and has been termed adversarial examples. We study the adversarially robust
learning paradigm from a generalization point of view.

We consider the following robust learning framework for multiclass and real-valued functions
of Feige et al. (2015). There is an unknown distribution over the uncorrupted inputs domain. The
learner receives a labeled uncorrupted sample (the labels can be categorical or real valued) and has
knowledge during the training phase of all possible corruptions that the adversary might effect. The
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learner selects a hypothesis from a fixed hypothesis class (in our case, a mixture of hypotheses from
base class H) that gives a prediction (a distribution over predictions) for a corrupted input. The
learner’s accuracy is measured by predicting the true label of the uncorrupted input while they ob-
serve only the corrupted input during test time. Thus, their goal is to find a policy that is robust
against those corruptions. The adversary is capable of corrupting each future input, but there are
only k possible corruptions for each point in the instance space. This suggests the game-theoretic
framework of a zero-sum game between the learner and the adversary. The model is closely re-
lated to the one proposed by Schmidt et al. (2018); Madry et al. (2017) and other common robust
optimization approaches (Ben-Tal et al., 2009), which deal with bounded worst-case perturbations
(under `∞ norm) on the samples. In this work we do not assume any metric for the corruptions: the
adversary can map an input from the instance space to any other space, but is limited with finitely
many possible corruptions for each input.

Our main results are generalization bounds for classification and regression. For the binary clas-
sification setting, we improve the generalization bound given in Feige et al. (2015). In particular, we
allow for the use of infinite base hypothesis classes H. The sample complexity has been improved
from O( 1

ε4
log( |H|δ )) to O

(
1
ε2

(kVC(H) log
3
2

+α(kVC(H)) + log(1
δ )
)

for any α > 0. Roughly
speaking, the core of all proofs is a bound on the Rademacher complexity of the k-fold maximum
of the convex hull of the loss class of H. The k-fold maximum captures the k possible corruptions
for each input. In the regression setting we provide three different generalization bounds. One of
the main contributions in this setting is an upper bound on the empirical fat-shattering dimension of
k-fold maximum class.

Our algorithm is an adaptation of the regret minimization algorithm proposed for binary classifi-
cation by Feige et al. (2015) for computing near optimal-policies for the players on the training data
to the multiclass classification settings. It is a variant of the algorithm found in Cesa-Bianchi et al.
(2007) and based on the ideas of Freund and Schapire (1999). An ERM (empirical risk minimiza-
tion) oracle is repeatedly used to return a hypothesis from a fixed hypothesis classH that minimizes
the error rate on a given sample, while weighting samples differently every time. The learner uses a
randomized classifier chosen uniformly from the mixture of hypotheses returned by the algorithm.

Thus, we extend the ERM paradigm by using adversarial training techniques instead of merely
find a hypothesis that minimizes the empirical risk. In contradistinction to “standard” learning,
ERM often does not yield models that are robust to adversarially corrupted examples (Szegedy
et al., 2013; Biggio et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016; Moosavi-Dezfooli
et al., 2016; Tramèr et al., 2017).

1.1 Subsequent Work: Montasser, Hanneke, and Srebro (2019, 2020b)

Following the conference version (Attias et al., 2019) of this work, Montasser, Hanneke, and Srebro
(2019) have proved that VC classes are robustly PAC-learnable only improperly (that is, the hy-
pothesis is selected from a broader class than that of the true concept), with respect to any arbitrary
perturbation set, possibly of infinite size. The sample complexity1 is independent of the number of
allowed perturbations, Õ

(
VC(H) VC∗(H)

ε + 1
ε log 1

δ

)
in the realizable setting and Õ

(
VC(H) VC∗(H)

ε2
+

1
ε2

log 1
δ

)
in the agnostic setting, where VC∗(H) denotes the dual VC-dimension. Their approach

relies on sample compression arguments whereas uniform convergence does not hold. As a by-

1. Õ(·) hides poly-logarithmic factors of VC,VC∗, 1/ε, 1/δ.
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product, for the case of k < ∞ possible corruptions for each input, they obtained a sample com-
plexity of size O

(
VC(H) log k

ε2
polylog(VC(H) log k

ε ) + 1
ε2

log(1
δ )
)

for the zero-one robust loss (which
is defined below).

The main difference of between the two works is the definition of the loss function. Specifically,
for functions h1, . . . , hT , in the binary classification setting, we define the loss ` : ∆(H)×X×Y →
[0, 1] by

`1(h1, . . . , hT , x, y) = max
z∈ρ(x)

1

T

T∑
i=1

I [hi(z) 6= y] = max
z∈ρ(x)

∣∣∣∣∣ 1

T

T∑
i=1

hi(z)− y

∣∣∣∣∣ , (1)

which we refer to as the [0, 1]-robust loss. Montasser et al. (2019, 2020b) defined a loss function
` : H×X × Y → {0, 1} as follows

`2(h, x, y) = max
z∈ρ(x)

I [h(z) 6= y] , (2)

which we refer to as the zero-one robust loss. More specifically, they consider for functions
h1, . . . , hT the loss

`3(h1, . . . , hT , x, y) = max
z∈ρ(x)

I [Majority(h1(z), . . . , hT (z)) 6= y] , (3)

where Majority takes the majority of its the Boolean inputs (and assume that T is odd). Clearly, if
`1(h1, . . . , hT , x, y) < 1/2 then `3(h1, . . . , hT , x, y) = 0. However, if `3(h1, . . . , hT , x, y) = 0 it
only guarantees that `1(h1, . . . , hT , x, y) < 1/2 but can be very far from zero. This is why an upper
bound on sample complexity of `1 implies an upper bound on the sample complexity of `3, but not
vice versa. We summarize the main results for both definitions in Section 1.3.

The work of Montasser et al. (2019), that considers the zero-one robust loss, improper learning
is necessary due to the lack of uniform convergence, which may arise in the case of infinite set of
corruptions. The learner competes with the single optimal hypothesis in the class, and outputs a
mixture of hypothesis to do so. In this work, considering the [0, 1]-robust loss, we would like to
guarantee and ε-optimal value for the learner in a zero-sum game, via a mixed strategy, and so we
find an ε-optimal mixture of hypothesis. That is, we compete with the optimal mixture of hypothesis
from the function class. In that sense, we are having a proper learning algorithm, with respect to the
convex hull of the hypothesis class.

In another closely related work from the computational perspective, Montasser, Hanneke, and
Srebro (2020b) reduced the problem of robust learning to non-robust learning. Namely, their algo-
rithm using access to only a black-box PAC learner, similar to the algorithm of Feige et al. (2015)
that we employ in this paper. They provided an algorithm that achieves small robust risk in the real-
izable setting with sample complexity (that is independent of k) of Õ

(
VC(H)(VC∗(H))2

ε + 1
ε log 1

δ

)
,

and uses O
(
log2(nk) + log 1

δ

)
black-box oracle calls to any PAC-learner, where n is the sample

size. Their result relies on sample compression and not uniform convergence.

1.2 Uniform Convergence of the Zero-One Robust Loss Class

For the case of finite set of corruptions, and learning with respect to the zero-one robust loss, we
show that the VC dimension of the robust loss class remains finite (as opposed to the case of in-
finite corruptions). As a result, we have uniform convergence, and robust ERM suffices to ensure
learning. (The proof is in Appendix A).
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Lemma 1 For any classH of VC dimension d, and any adversary ρ : X → 2X such that |ρ(x)| ≤

k, the VC-dimension of the zero-one robust loss classLρH =

{
(x, y) 7→ max

z∈ρ(x)
I [h(z) 6= y] : h ∈ H

}
is at most O(d log k).

Via a standard uniform convergence argument, we have the following result.

Theorem 2 For any class H ⊆ {0, 1}X of VC dimension d, and any adversary ρ : X → 2X

such that |ρ(x)| ≤ k. For the robust zero-one loss function `(h, x, y) = max
z∈ρ(x)

I[h(z) 6= y], the

sample complexity for the realizable setting isMRE(ε, δ,H, ρ) = O
(
d log k
ε log 1

ε + 1
ε log 1

δ

)
, and

the sample complexity for the agnostic setting isMAG(ε, δ,H, ρ) = O
(
d log k
ε2

+ 1
ε2

log 1
δ

)
.

1.3 Main Results

We provide a summary of the results for the [0, 1]-robust loss and the zero-one robust loss (see
Eqs. (1) and (2) for the definitions) for robust (ε, δ)-PAC learning with finite set of possible corrup-
tions.

Notation. d denotes the VC dimension, d∗ denote the dual dual-VC dimension, fatγ(·) is the
γ−fat shattering dimension, and k is the size of possible corruptions for each input. Õ(·) stands for
for omitting poly-logarithmic factors of d, d∗, 1/ε, 1/δ.

Sample complexity for agnostic learning with [0, 1]-robust loss

GENERALIZATION BINARY CLASSIFICATION REFERENCE

Uniform Convergence O
(

1
ε4

log |H|δ

)
Feige et al. (2015)

Sample Compression
Õ
(
dd∗

ε4
+ 1

ε4
log 1

δ

)
Montasser et al.

(2019)Õ
(
d log k
ε4

+ 1
ε4

log 1
δ

)
Uniform Convergence Õ

(
kd
ε2

+ 1
ε2

log 1
δ

)
This work

REGRESSION

Uniform Convergence Õ
(

infβ≥0

{
β +

√
k
n

∫ 1
β

√
fatγ(H)dγ

}
+

√
log( 1

δ )
n

)
This work
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Sample complexity for binary classification with zero-one robust loss

GENERALIZATION REALIZABLE AGNOSTIC REFERENCE

Sample Compression
Õ
(
dd∗

ε + 1
ε log 1

δ

)
Õ
(
dd∗

ε2
+ 1

ε2
log 1

δ

)
Montasser et al. (2019)

Õ
(
d log k
ε + 1

ε log 1
δ

)
Õ
(
d log k
ε2

+ 1
ε2

log 1
δ

)
Uniform Convergence O

(
d log k
ε log 1

ε + 1
ε log 1

δ

)
O
(
d log k
ε2

+ 1
ε2

log 1
δ

)
This work

Whether we can achieve a sample complexity of ≈ d log k
ε2

or dd∗

ε2
for agnostic learning with the

[0, 1]-robust loss remains an open question. The method of Montasser et al. (2019) can be modified
to accommodate learning with respect to the [0, 1] robust loss. Specifically, taking the majority of
weak learners is not sufficient for obtaining an ε-optimal mixed strategy. Rather, we take a majority
of strong learners (each with ε error), each of which takes≈ d

ε2
samples (and not≈ d). This implies

a sample complexity (via sample compression scheme) of dd
∗

ε4
or d log(k)

ε4
.

1.4 Other Related Work

The most closley related works studying robust learning with adversarial examples are Schmidt
et al. (2018); Madry et al. (2017). Their model deals with bounded worst-case perturbations (under
`∞ norm) on the samples. This is slightly different from our model as we mentioned above. Other
related works that analyze the theoretical aspects of adversarial robust generalization are Montasser
et al. (2019); Yin et al. (2019); Awasthi et al. (2020); Cullina et al. (2018); Khim and Loh (2018);
Raghunathan et al. (2019); Diochnos et al. (2018); Balda et al. (2019); Pydi and Jog (2019); Tu
et al. (2019); Chen et al. (2020); Carmon et al. (2019); Alayrac et al. (2019); Zhai et al. (2019);
Najafi et al. (2019); Levi et al. (2021); Attias et al. (2022); Attias and Hanneke (2022). A different
notion of robustness by Xu and Mannor (2012) is shown to be sufficient and necessary for standard
generalization. Learning with adversarial examples is extensively studied from the computational
point of view as well (Bubeck et al., 2018; Mahloujifar et al., 2019; Mahloujifar and Mahmoody,
2019; Chen et al., 2017; Awasthi et al., 2019b,a; Sinha et al., 2017; Diakonikolas et al., 2019, 2020;
Montasser et al., 2020a; Gourdeau et al., 2019; Ashtiani et al., 2020).

All of our results based on a robust learning model for binary classification suggested by Feige
et al. (2015). The works of Mansour et al. (2014); Feige et al. (2015, 2018) consider robust inference
for the binary and multiclass case. The robust inference model assumes that the learner knows both
the distribution and the target function, and the main task is given a corrupted input, derive in
a computationally efficient way a classification which will minimize the error. In this work we
consider only the learning setting, where the learner has only access to an uncorrupted sample, and
need to approximate the target function on possibly corrupted inputs, using a restricted hypothesis
classH.

The work of Globerson and Roweis (2006) and its extensions Teo et al. (2008); Dekel et al.
(2010) discuss a robust learning model where an uncorrupted sample is drawn from an unknown
distribution, and the goal is to learn a linear classifier resilient against missing attributes in future
test examples. They discuss both the static model (where the set of missing attributes is selected
independently from the uncorrupted input) and the dynamic model (where the set of missing at-
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tributes may depend on the uncorrupted input). The model we use (Feige et al., 2015) extends the
robust learning model to handle corrupted inputs (and not only missing attributes) and an arbitrary
hypothesis class (rather than only linear classifiers).

There is a vast literature in statistics, operation research and machine learning regarding various
noise models. Typically, most noise models assume a random process that generates the noise. In
computational learning theory, popular noise models include random classification noise (Angluin
and Laird, 1988) and malicious noise (Valiant, 1985; Kearns and Li, 1993). In the malicious noise
model, the adversary gets to arbitrarily corrupt some small fraction of the examples; in contrast, in
our model the adversary can always corrupt every example, but only in a limited way.

2. Model

There is an unknown distribution D over some domain X of uncorrupted examples and a finite
domain of corrupted examples Z , possibly the same as X . Our setting is the agnostic PAC-learning
framework in a deterministic scenario. The label of each input is uniquely determined by an arbi-
trary unknown target function c : X → Y . The function c maps each uncorrupted input x ∈ X to a
label c(x) = y, where the set of labels Y can be {1, . . . , l} or R.

The adversary is able to corrupt an input by mapping an uncorrupted input x ∈ X to a corrupted
one z ∈ Z . There is a mapping ρ which for every x ∈ X defines a set ρ(x) ⊆ Z , such that
|ρ(x)| ≤ k. The adversary can map an uncorrupted input x to any corrupted input z ∈ ρ(x). We
assume that the learner has an access to ρ(·) during the training phase.

There is a fixed hypothesis class H of hypothesis h : Z 7→ Y over corrupted inputs. The
learner observes an uncorrupted sample Su = {〈x1, c(x1)〉, . . . , 〈xm, c(xm)〉}, where xi is drawn
i.i.d. from D, and selects a mixture of hypotheses from H, h̃ ∈ ∆(H). In the classification setting,
h̃ : Z → ∆(Y) is a mixture {hi|H 3 hi : Z → Y}Ti=1 such that label y ∈ Y = {1, . . . , l} gets
a mass of

∑T
i=1 αiI [hi(z) = y] where

∑T
i=1 αi=1. For each hypothesis h ∈ H in the mixture we

use the zero-one loss to measure the quality of the classification, i.e., `(h(z), y) = I [h(z) 6= y].
The loss of h̃ ∈ ∆(H) is defined by `(h̃(z), y) =

∑T
i=1 αi`(hi(z), y). In the regression setting,

h̃ : Z → R is a mixture {hi|H 3 hi : Z → R}Ti=1 and is defined by h̃(z) =
∑T

i=1 αihi(z). For
each hypothesis h ∈ H in the mixture we useL1 andL2 loss functions, i.e., `(h(z), y) = |h(z)−y|p,
for p = 1, 2. We assume the L1 loss is bounded by 1. Again, the loss of h̃ ∈ ∆(H) is defined by
`(h̃(z), y) =

∑T
i=1 αi`(hi(z), y).

The test phase proceeds as follows. First, an uncorrupted input x ∈ X is drawn from D. Then,
the adversary selects z ∈ ρ(x), given x ∈ X . The learner observes a corrupted input Z and outputs
a prediction, as dictated by h̃ ∈ ∆(H). Finally, the learner incurs a loss as described above. The
main difference from the classical learning models is that the learner will be tested on adversarially
corrupted inputs z ∈ ρ(x). When selecting a strategy this needs to be taken into consideration.

The goal of the learner is to minimize the expected loss, while the adversary would like to
maximize it. This defines a zero-sum game which has a value v which is the learner’s error rate. We
say that the learner’s hypothesis is ε-optimal if it guarantees a loss which is at most v + ε, and the
adversary policy is ε-optimal if it guarantees a loss which is at least v − ε. We refer to a 0-optimal
policy as an optimal policy.

Formally, the error (risk) of the learner when selecting a hypothesis h̃ ∈ ∆(H) is

Risk(h̃) = Ex∼D[ max
z∈ρ(x)

`(h̃(z), c(x))],

6



IMPROVED GENERALIZATION BOUNDS FOR ADVERSARIALLY ROBUST LEARNING

and their goal is to choose h̃ ∈ ∆(H) with an error close to

min
h̃∈∆(H)

Risk(h̃) = min
h̃∈∆(H)

Ex∼D[ max
z∈ρ(x)

`(h̃(z), c(x))] = v.

3. Definitions and Notation

For a function classH with domain Z and range Y = {1, . . . , l}, denote the zero-one loss class

LH := {Z × {1, . . . , l} 3 (z, y) 7→ I [h(z) 6= y] : h ∈ H} .

ForH with domain Z and range R, denote the Lp loss class

LpH := {Z × R 3 (z, y) 7→ |h(z)− y|p : h ∈ H} .

Throughout the article, we assume a bounded loss `(h(z), y) ≤ M . Without the loss of gener-
ality we use M = 1, since otherwise, M can be re-scaled.

We define the operator conv as the convex hull of a real-valued function class,

conv(F) :=

{
W 3 w 7→

T∑
t=1

αtft(w) : T ∈ N, αt ∈ [0, 1],
T∑
t=1

αt = 1, ft ∈ F

}
.

We also define the convex hull of loss class L, where the data is corrupted by ρ(·),

convρ(L) :=

{
X × Y 3 (x, y) 7→ max

z∈ρ(x)

T∑
t=1

αtft(z, y) : T ∈ N, αt ∈ [0, 1],

T∑
t=1

αt = 1, ft ∈ L

}
.

For 1 ≤ j ≤ k define,

F (j)
H := {X × Y 3 (x, y) 7→ I [h(zj) 6= y] : h ∈ H, ρ(x) = {z1, . . . , zk}} , (4)

where we treat the set-valued output of ρ(x) as an ordered list, and F (j)
H is constructed by taking the

jth element in this list, for each input x.
For a set W and k function classes A(1), . . . ,A(k) ⊆ RW , define the max operator

max
(

(A(j))j∈[k]

)
:=

{
W 3 w 7→ max

j∈[k]
f (j)(w) : f (j) ∈ A(j)

}
.

The composition of max and conv operators max
(
(conv(A(j)))j∈[k]

)
is well-defined, note that

convρ(LH) ⊆ max
(

(conv(F (j)
H ))j∈[k]

)
. (5)

Denote the error (risk) of hypothesis h : Z 7→ Y under corruption of ρ(·) by

Risk(h) = Ex∼D[ max
z∈ρ(x)

`(h(z), c(x))],

and the empirical error on sample S under corruption of ρ(·) by

Risk̂(h) =
1

|S|
∑

(x,y)∈S

max
z∈ρ(x)

`(h(z), c(x)).

7
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3.1 Combinatorial Dimensions and Capacity Measures

Rademacher Complexity. LetH be of real valued function class on the domain spaceW . Define
the empirical Rademacher complexity on a given sequence w = (w1, . . . , wn) = w1:n ∈ Wn:

Rn(H|w) = Eσ sup
h∈H

1

n

n∑
i=1

σih(wi).

Fat-Shattering Dimension. For F ⊂ RX and γ > 0, we say that F γ-shatters a set S =
{x1, . . . , xm} ⊂ X if there exists an r = (r1, . . . , rm) ∈ Rm such that for each b ∈ {−1, 1}m
there is a function fb ∈ F such that

∀i ∈ [m] :

{
fb(xi) ≥ ri + γ if bi = 1

fb(xi) ≤ ri − γ if bi = −1
.

We refer to r as the shift. The γ-fat-shattering dimension, denoted by fatγ(F), is the size of the
largest γ-shattered set (possibly∞).

Graph Dimension. Let H ⊆ YX be a categorical function class such that Y = [l] = {1 . . . , l}.
Let S ⊆ X . We say that H G-shatters S if there exists an f : S 7→ Y such that for every T ⊆ S
there is a g ∈ H such that

∀x ∈ T, g(x) = f(x) and ∀x ∈ S \ T, g(x) 6= f(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is G-shattered
byH.

Natarajan Dimension. Let H ⊆ YX be a categorical function class such that Y = [l] =
{1 . . . , l}. Let S ⊆ X . We say that H N -shatters S if there exist f1, f2 : S 7→ Y such that
for every y ∈ S f1(y) 6= f2(y), and for every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The Natarajan dimension of H, denoted dN (H), is the maximal cardinality of a set that is N -
shattered byH.

Growth Function. The growth function ΠH : N 7→ N for a binary function classH : X 7→ {0, 1}
is defined by

∀m ∈ N, ΠH(m) = max
{x1,...,xm}⊆X

| {(h(x1), . . . , h(xm)) : h ∈ H} |

And the VC-dimension ofH is defined by

VC(H) = max {m : ΠH(m) = 2m} .
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4. Algorithm

We have a base hypothesis class H with domain Z and range Y that can be {1, . . . , l} or R. The
learner receives a labeled uncorrupted sample and has access during the training to possible cor-
ruptions by the adversary. We employ the regret minimization algorithm proposed by Feige et al.
(2015) for binary classification, and extend it to the regression and multiclass classification settings.

A brief description of the algorithm is as follows. Given x ∈ X , we define a |ρ(x)| × H
loss matrix Mx such that Mx(z, h) = I [h(z) 6= y], where y = c(x). The learner’s strategy is a
distribution Q over H. The adversary’s strategy Px ∈ ∆(ρ(x)), for a given x ∈ X , is a distribution
over the corrupted inputs ρ(x). We can treat P as a vector of distributions Px over all x ∈ X . Via
the minimax principle, the value of the game is

v = min
Q

max
P

Ex∼D[P Tx MxQ] = max
P

min
Q

Ex∼D[P Tx MxQ]

For a given P , a learner’s minimizing Q is simply a hypothesis that minimizes the error when the
distribution over pairs (z, y) ∈ Z × Y is DP , where

DP (z, y) =
∑

x: c(x)=y∧z∈ρ(x)

Px(z)D(x).

Hence, the learner selects

hP = arg min
h∈H

E(z,y)∼DP [`(h(z), y)].

A hypotheses hP can be found using the ERM oracle, when DP is the empirical distribution over a
training sample.

Repeating this process multiple times yields a mixture of hypotheses h̃ ∈ ∆(H) (mixed strategy-
a distribution Q over H) for the learner. The learner uses a randomized classifier chosen uniformly
from this mixture. This also yields a mixed strategy for the adversary, defined by an average of
vectors P . Therefore, for a given x ∈ X , the adversary uses a distribution Px ∈ ∆(ρ(x)) over
corrupted inputs.

Algorithm 1
parameter: η > 0

1: for all (x, y) ∈ S, z ∈ ρ(x) do . initialize weights and distributions vector
2: w1(z, (x, y))← 1, ∀(x, y) ∈ S, ∀z ∈ ρ(x)

3: P 1(z, (x, y))← w1(z,(x,y))∑
z′∈ρ(x) w1(z′,(x,y)) . for each (x, y) ∈ S we have a distribution over ρ(x)

4: end for
5: for t = 1:T do
6: ht ← arg min

h∈H
E(z,y)∼DPt [`(h(z), y] . using the ERM oracle forH

7: for all (x, y) ∈ S, z ∈ ρ(x) do . update weights for P t+1

8: wt+1(z, (x, y))← (1 + η · [`(ht(z), y)]) · wt(z, (x, y))

9: P t+1(z, (x, y))← wt+1(z,(x,y))∑
z′∈ρ(x) wt+1(z′,(x,y))

10: end for
11: end for
12: return h1, . . . , hT for the learner, 1

T

∑T
t=1 P

t for the adversary

9
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Similar to Feige et al. (2015, Theorem 1), for the binary classification case and zero-one loss we
have:

Theorem 3 (Feige, Mansour, and Schapire, 2015, Theorem 1) Fix a sample S of size n, and let
T ≥ 4n log k

ε2
, where k is the number of possible corruptions for each input. For an uncorrupted

sample S we have that the strategies P = 1
T

∑T
t=1 P

t for the adversary and h1, . . . , hT (each one
of them chosen uniformly) for the learner are ε-optimal strategies on S.

Assuming a bounded loss, i.e., `(h(z), y) ≤ 1 ,∀x ∈ X ,∀z ∈ Z,∀h ∈ H, the result remains the
same for the other settings.

5. Generalization Bound for Classification

We would like to show that if the sample S is large enough, then the policy achieved by the al-
gorithm above will generalize well. We both improve a generalization bound, previously found in
Feige et al. (2015), which handles any mixture of hypotheses from H, and also are able to han-
dle an infinite hypothesis class H. The sample complexity is improved from O( 1

ε4
log( |H|δ )) to

O
(

1
ε2

(kVC(H) log
3
2

+α(kVC(H)) + log(1
δ )
)
for any α > 0.

Theorem 4 (Generalization bound for binary classification) Let H : Z 7→ {0, 1} be a hypothe-
sis class with finite VC-dimension. For any α > 0 there exists a constant Cα and there is a sample
complexity n0 = Cα

ε2

(
kVC(H) log

3
2

+α(kVC(H)) + log(1
δ )
)

, such that for |S| ≥ n0, for every

h̃ ∈ ∆(H)

|Risk(h̃)− Risk̂(h̃)| ≤ ε

with probability at least 1− δ.

Theorem 5 (Mohri et al., 2018, Theorem 3.3) Let G be a family of functions mapping from W
to [0, 1]. Then, for any δ > 0 with probability at least 1 − δ over the draw of an i.i.d. sample
S = (w1, · · · , wn) = w from distribution D, for all g ∈ G:

Ew∼D[g(w)]− 1

n

n∑
i=1

g(wi) ≤ 2Rn(G|w) + 3

√
log
(

2
δ

)
2n

.

Remark. The corresponding result in the conference version of this paper, Attias et al. (2019),
Theorem 2, was proved via Lemma 3 therein. The latter contained a mistake, as pointed out to us by
Digvijay Pravin Boob and Praneeth Netrapalli. The current proof relies on a recent result of Foster
and Rakhlin (2019).

Theorem 6 (Foster and Rakhlin, 2019) Let F be a Rk-valued function class, such that the coordi-
nate projection class is denoted by Fj = {w 7→ f(w)j | f ∈ F}, for 1 ≤ j ≤ k. Let (ϕt)t≤n be
a sequence of functions such that each ϕt is L-Lipschitz with respect to `∞ norm. For any α > 0,

10
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there exists a constant Cα > 0 such that if |ϕt(f(w))| ∨ ||f(w)||∞ ≤ B, then it holds for any
sequence w = (w1, · · · , wn),

Rn(ϕ ◦ F|w) := Eσ sup
f∈F

1

n

n∑
t=1

σtϕt(ft(wt))

≤ CαL
√
k ·max

i∈[k]
sup

a=(a1,...,an)
Rn(Fi|a) · log

3
2

+α

(
Bn

maxi∈[k] supa=(a1,...,an)Rn(Fi|a)

)
.

Proof [Proof of Theorem 4]. Our strategy is to bound the empirical Rademacher complexity (over
the sample points) of the loss class of h̃ ∈ ∆(H). As we mentioned in Eq. (5), convρ(LH) ⊆
max(conv(F (j)

H ))j∈[k]). Recall that functions contained in F (j)
H are loss functions of the learner

when the adversary corrupts input x to zj ∈ ρ(x). We are left to bound the Rademacher complexity
of the function class max((conv(F (j)

H ))j∈[k]). Formally,

|Risk(h̃)− Risk̂(h̃)| = |E(x,y)∼D max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)− 1

n

∑
(x,y)∈S

max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)|

≤ 2Rn

(
max((conv(F (j)

H ))j∈[k])|x× y
)

+ 3

√
log
(

2
δ

)
2n

,

where the inequality stems from applying Theorem 5 on the function class convρ(LH) and Eq. (5).
By taking ϕ(z1, · · · , zk) = maxj∈[k] zj , which is a 1-Lipschitz with respect to `∞, and F =

{(x, y) 7→ (f1(x, y), · · · , fk(x, y)) | fj ∈ conv(F (j)
H ), 1 ≤ j ≤ k} we can apply Theorem 6,

for any α > 0, there exists a constant Cα > 0 such that

Rn

(
max((conv(F (j)

H ))j∈[k])|x× y
)

≤ Cα
√
k ·max

j∈[k]
max

w=w1:n

Rn(conv(F (j)
H )|w) · log

3
2

+α

(
n

maxj∈[k] maxw=w1:n Rn(conv(F (j)
H )|w)

)

= Cα
√
k ·max

j∈[k]
max

w=w1:n

Rn(F (j)
H |w) · log

3
2

+α

(
n

maxj∈[k] maxw=w1:n Rn(F (j)
H |w)

)
,

where the last equality follows from the well-known identity Rn(F|w) = Rn(conv(F)|w), (see,
e.g., Boucheron et al. (2005, Theorem 3.3)).

The function x 7→ x log3/2+α(n/x) has a maximum point at x = n/e3/2+α, and for x ∈
(0, n/e3/2+α] is monotonic increasing. We bound the empirical Rademacher complexity (on any

given sequence) via the VC-dimension (Bartlett and Mendelson, 2002): Rn(F|w) ≤ C
√

VC(F)
n ,

and for
(
C
√

VC(FH)e3/2+α
)2/3

≤ n, by the monotonicity of the function x log3/2+α(n/x) we

11
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get an upper bound of

CαC

√
kmaxj∈[k] VC(F (j)

H )

n
· log

3
2

+α

(
n

3
2

C
√

maxj∈[k] VC(F (j)
H )

)

= CαC

√
kVC(H)

n
· log

3
2

+α

(
n

3
2

C
√

VC(H)

)

= O

(
Cα

√
kVC(H)

n
· log

3
2

+α(n)

)
,

where the inequality follows from Lemma 8. We require that

Cα

√
kVC(H)

n
· log

3
2

+α(n) +

√
log
(

1
δ

)
n

≤ ε,

and a standard inversion of this inequality yields sample complexity n0 = O
(
Cα
ε2

(kVC(H) log
3
2

+α(kVC(H))+
log(1

δ )
)
.

We find it instructive to provide an alternative (albeit worse) bound of

Rn

(
max((conv(F (j)

H ))j∈[k])|x× y
)
≤ O

√VC(H) log2(VC(H))k log k log9(n)

n

 (6)

on the Rademacher complexity, via a different technique (In Appendix A).

Remark. Theorem 4 provides an improvement to Theorem 7 in Raviv, Hazan, and Osadchy
(2018), where they considered learning with intersection of hyperplanes for imbalanced binary clas-
sification problem.

5.1 Multiclass Classification

LetH ⊆ YZ be a function class such that Y = [l] = {1 . . . , l}. We follow similar arguments to the
binary case.

Theorem 7 (Generalization bound for multiclass classification) Let H be a function class with
domain Z and range Y = [l] with finite Graph-dimension dG(H). For any α > 0 there exists
a constant Cα and there is a sample complexity n0 = Cα

ε2

(
kdG(H) log

3
2

+α(kdG(H)) + log(1
δ )
)

,

such that for |S| ≥ n0, for every h̃ ∈ ∆(H),

|Risk(h̃)− Risk̂(h̃)| ≤ ε

with probability at least 1− δ.

The following Lemma is standard and holds for the function classes F (j)
H (defined in Eq. (4)).

12
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Lemma 8 Let H be a function class with domain Z and range Y = [l]. Denote the Graph-
dimension ofH by dG(H). Then for all j ∈ [k]

VC(F (j)
H ) ≤ dG(H).

In particular, for binary-valued classes, VC(F (j)
H ) ≤ VC(H) — since for these, the VC- and Graph-

dimensions coincide.

Proof Suppose that the binary function class F (j)
H shatters the points {(x1, y1), . . . , (xd, yd)} ⊂

X × Y . That means that for each b ∈ {0, 1}d, there is an hb ∈ H such that I [hb(zj(xi)) 6= yi] = bi
for all i ∈ [d], where zj(x) is the jth element in the (ordered) set-valued output of ρ on input x.
We claim that H is able to G-shatter S = {zj(x1), . . . , zj(xd)} ⊂ Z . Indeed, for each T ⊆ S, let
b = b(T ) ∈ {0, 1}S be its characteristic function. Taking f : S → Y to be f(xi) = yi, we see that
the definition of G-shattering holds.

For the proof of Theorem 7, we follow the same proof of Theorem 4 and use the Graph-dimension
property of Lemma 8.

Remark. A similar bound to that of Theorem 4 can be achieved by using the Natarajan dimension
and the fact that

dG(H) ≤ 4.67 log2(|Y|)dN (H)

as previously shown Ben-David et al. (1995).

6. Generalization Bounds For Regression

Let H ⊆ RZ be a hypothesis class of real functions. In the following, we provide three different
generalization bounds, which, as far as we can tell, are mutually incomparable uniformly over the
parameter regimes.

Theorem 9 (Generalization bound for Regression) LetH be a function class with domain Z and
range [0, 1]. Assume H has a finite γ-fat-shattering dimension for all γ > 0. Denote the sample
size |S| = n and

mn(H) = inf
β≥0

4β +O

√ log4(n)

n

∫ 1

β

√
fatcγ(H) log

(
1

γ

)
dγ

 ,

where c is a universal constant. For the L1 loss function and for every h̃ ∈ ∆(H), for any α > 0
there exist a constant Cα such that,

|Risk(h̃)− Risk̂(h̃)| ≤ O

Cα√k ·mn(H) · log
3
2

+α

(
n

mn(H)

)
+

√
log
(

1
δ

)
n

 ,

with probability at least 1− δ.
Moreover, in the case of L2 loss function, the same result holds with fat cγ

2
(H) plugged into

mn(H).

13
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In the following corollary (proof is in Appendix A) we derive a simplified bound for hyperplanes.

Corollary 10 Let H be a function class of homogeneous hyperplanes with domain Rm. Using the
same assumptions as in Theorem 9, we have

|Risk(h̃)− Risk̂(h̃)| ≤ O

Cα√k

n
log

7
2 (n) log

3
2

+α

(
n

log
7
2 (n)

)
+

√
log
(

1
δ

)
n

 ,

with probability at least 1− δ.

The class of hyperplanes can be learned with SGD, as the maximum of finite convex functions
remains convex. However, our bound works for an arbitrary hypotheses class.

Theorem 11 (Generalization bound for Regression) Let H be a function class with domain Z
and range [0, 1]. AssumeH has a finite γ-fat-shattering dimension for all γ > 0. Denote the sample
size |S| = n and

mn(H) = inf
α≥0

4α+O

(√
k log(k) log4(n)

n

∫ 1

α

√√√√log

(
1

γ

)(
fat cγ

4
(H)

γ2
log2

(
fat cγ

4
(H)

γ

))
dγ

) .

For the L1 loss function and for every h̃ ∈ ∆(H),

|Risk(h̃)− Risk̂(h̃)| ≤ O

mn(H) +

√
log
(

1
δ

)
n

 ,

with probability at least 1− δ.
Moreover, in the case of L2 loss function, the same result holds with fat cγ

8
(H) plugged into

mn(H).

Theorem 12 (Generalization bound for Regression) Let H be a function class with domain Z
and range [0, 1]. AssumeH has a finite γ-fat-shattering dimension for all γ > 0. Denote the sample
size |S| = n and d = fat ε

4
(H). For the L1 loss function, there is a sample complexity

n0 = O
(

1

ε2

(
k log(k)

d

ε2
log2 d

ε
log2 1

ε
log2

(
k log(k)

d

ε4
log2 d

ε
log2 1

ε

)
+ log

1

δ

))
,

such that for |S| ≥ n0, for every h̃ ∈ ∆(H)

|Risk(h̃)− Risk̂(h̃)| ≤ ε

with probability at least 1− δ.

We would like to compare the bounds in Theorems 9, 11 and 12. In terms of dependence in the
fat-shattering dimension and k, Theorem 9 would give a better bound than Theorem 11. However,
the latter has a better dependence in log(n) factors. Regarding Theorem 12, on the one hand, the
dependence in n (sample size) is 1/n1/4. On the other hand, we have the fat-shattering dimension
with a specific scale (the error parameter, ε). In some cases, we can obtain an improved learning
rate. For example, by taking fatγ(H) = 1/γ6, Theorem 9 guarantees learning rate of 1/n1/6 and so
Theorem 12 provides a sharper bound.
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6.1 Shattering Dimension of the Class max
(
(A(j))j∈[k])

)
The main result of this section is bounding the fat shattering dimension of max

(
(A(j))j∈[k]

)
class.

Theorem 13 (Fat-shattering of k-fold maxima) Let S = {x1, . . . , xm}. For any k real valued
functions classes F1, . . . ,Fk ⊆ RS ,

fatγ
(
max

(
(Fj)j∈[k]

))
≤ O

log(k) log2(m)
k∑
j=1

fatγ(Fj)

 .

Remark. It was pointed out to us by Yann Guermeur that the corresponding result in the con-
ference version of this paper, Attias et al. (2019), Theorem 12, contained a mistake — the root of
which was an erroneous claim in Lemma 14 therein. The corrected version of that result was proved
by Alon, Hanneke, Holzman, and Moran (2022), Lemma 15 below, allows for a corrected version
of Theorem 12, with an additional log2(m) factor. In a subsequent work (Kontorovich and Attias,
2021, Theorem 1), this result was further improved,

fatγ
(
max

(
(Fj)j∈[k]

))
≤ O

 k∑
j=1

fatγ(Fj) log2

 k∑
j=1

fatγ(Fj)

 .

Moreover, Attias and Hanneke (2022) studied the regression setting with `p losses and arbitrary
perturbation sets.

Before presenting the proof, we introduce some auxiliary notions. We say that F “γ-shatters a
set S at zero” if the shift r is constrained to be 0 in the the usual γ-shattering definition (has appeared
previously in Gottlieb et al. (2014)). The analogous dimension will be denoted by fat0

γ(F).

Lemma 14 For all F ⊆ RX and γ > 0, we have

fatγ(F) = max
r∈RX

fat0
γ(F − r), (7)

where F − r = {f − r : f ∈ F} is the r-shifted class; in particular, the maximum is always
achieved.

Proof Fix F and γ. For any choice of r ∈ RX , if F − r γ-shatters some set S ⊆ X at zero, then
then F γ-shatters S in the usual sense with shift rS ∈ RS (i.e., the restriction of r to S). This proves
that the left-hand side of Eq. (7) is at least as large as the right-hand side. Conversely, suppose that
F γ-shatters some S ⊆ X in the usual sense, with some shift r ∈ RS . Choosing r′ ∈ RX by r′S = r
and r′X\S = 0, we see that F − r′ γ-shatters S at zero. This proves the other direction and hence
the claim.

Consider an ambiguous function class F ? ⊆ {0, 1, ?}X . We say that F ? shatters a set S ⊆ X if
F ?(S) ⊇ {0, 1}S . We say that f̄ ∈ {0, 1}X is a disambiguation of f? ∈ F ? if the two functions
agree on x ∈ X whenever f?(x) 6= ?. We say that F̄ ⊆ {0, 1}X is a disambiguation of F ? if each
f̄ ∈ F̄ is a disambiguation of some f? ∈ F ? and every f? ∈ F ? has a disambiguated representative
f̄ ∈ F̄ . We define VC(F ?) as the maximum size of a shattered set (possibly,∞).

It will be convenient to visually represent such function classes as (possibly infinite) matrices,
where the rows correspond to f ∈ F and the columns correspond to x ∈ X .

15



ATTIAS, KONTOROVICH AND MANSOUR

Example 1 It might be the case that VC(F ?) = 1 while any disambiguation F̄ verifies VC(F̄ ) =
2: 

x1 x2 x3

f1 1 1 1
f2 0 1 1
f3 1 0 1
f4 ? 0 0
f5 0 ? 0

.
It was mistakenly claimed in the conference version (Attias et al., 2019, Lemma 14) that one can al-
ways find a disambiguation F̄ such that VC(F̄ ) ≤ VC(F ?). We thank Yann Guermeur for pointing
out this error.

The following result provides a generic disambiguation rule that upper bounds the size of any
disambiguated function classes. We reproduce it in Appendix A for completeness.

Lemma 15 (Alon, Hanneke, Holzman, and Moran, 2022, Theorem 13) For X = N = {1, 2, . . .}
and any F ? ⊆ {0, 1, ?}X with VC(F ?) ≤ d, there is a disambiguation F̄ ⊆ {0, 1}X with the
following property: For each prefix Xm := [m] = {1, 2, . . . ,m}, we have

|F̄ (Xm)| ≤ mO(d logm).

Example 2 (Alon, Hanneke, Holzman, and Moran, 2022) Consider the following ambiguous class
F ? consisting of 5 functions acting on the 3 points X = {x1, x2, x3}:



x1 x2 x3

f1 0 0 0
f2 1 1 1
f3 ? 1 0
f4 0 ? 1
f5 1 0 ?

.

It is straightforward to verify that VC(F ∗) = 1 and further that any disambiguation F̄ verifies
|F̄ (X)| = 5. Contrast this with the Sauer-Shelah lemma, which upper-bounds the number of be-
haviors that a class of VC-dimension 1 can achieve on 3 points by 4.

Remark. There exist an ambiguous function class F ?, such that for any disambiguation F̄ it holds
that VC(F̄ ) =∞. See Alon, Hanneke, Holzman, and Moran (2022), Theorem 1.

Lemma 16 Let G : {−1, 1}k → {−1, 1} and let F1, . . . ,Fk ⊆ {−1, 1}X be hypothesis classes
with VC(Fj) = dj . Denote d̄ := 1

k

∑k
i=1 dj . Define the function class G (F1, . . . ,Fk) =:

{X 3 x 7→ G (f1(x), . . . , fk(x)) : fi ∈ Fi}. Then,

VC (G (F1, . . . ,Fk)) ≤ 2k log(3k)d̄

Proof We adapt the argument of Blumer et al. (1989, Lemma 3.2.3), which is stated therein for
k-fold unions and intersections. The k = 1 case is trivial, so assume k ≥ 2. For any S ⊆ X , define
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G (F1, . . . ,Fk) (S) ⊆ {−1, 1}S to be the restriction of G (F1, . . . ,Fk) to S. The key observation
is that

|G (F1, . . . ,Fk) (S)| ≤
k∏
j=1

|Fj(S)|

≤
k∏
j=1

(e|S|/dj)dj

≤ (e|S|/d̄)d̄k.

The last inequality requires proof. After taking logarithms and dividing both sides by k, it is equiv-
alent to the claim that

d̄ log d̄ ≤ 1

k

k∑
j=1

dj log dj ,

an immediate consequence of Jensen’s inequality applied to the convex function f(x) = x log x.
The rest of the argument is identical that of Blumer et al.: one readily verifies that for m =

|S| = 2d̄k log(3k), we have (em/d̄)d̄k < 2m.

Proof [Proof of Theorem 13] To prove the Theorem, it suffices to show that for all Fj ⊆ RS

fat0
γ(max((Fj)j∈[k])) ≤ O(log(k) log2(m)

k∑
j=1

fat0
γ(Fj)). (8)

Indeed, we observe that r-shift commutes with the max operator:

max((Fj − r)j∈[k]) = max((Fj)j∈[k])− r. (9)

By applying Lemma 14 to the function class max((Fj)j∈[k]) and using Eq. (9), we have

fatγ(max((Fj)j∈[k])) = max
r

fat0
γ(max((Fj)j∈[k])− r) = max

r
fat0

γ(max((Fj − r)j∈[k])).

Applying Eq. (8) to classes Fj − r obtains

max
r

fat0
γ(max((Fj − r)j∈[k]) ≤ max

r
O(log(k) log2(m)

k∑
j=1

fat0
γ(Fj − r)),

Then,

max
r
O(log(k) log2(m)

k∑
j=1

fat0
γ(Fj − r)) ≤ O(log(k) log2(m)

k∑
j=1

max
rj

fat0
γ(Fj − rj))

= O(log(k) log2(m)
k∑
j=1

fatγ(Fj)),
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where the last identity follows from Lemma 14.
Now we proceed to prove Eq. (8). First, convert Fj ⊆ RS to a finite class F?j ⊆ {−γ, γ, ?}

S

for S = {x1, . . . , xm}, as follows. For every vector in v ∈ Fj , define v? ∈ F?j by: v?i = sgn(vi)γ
if |vi| ≥ γ and v?i = ? else. The notion of shattering (at zero) remains the same: a set T ⊆ S is
shattered if {−γ, γ}T ⊆ F?j (T ). Note that F?j and Fj has the same γ-shattering dimension at zero.

Lemma 15 furnishes a mapping ϕ : F?j → {−γ, γ}
S such that (i) for all v ∈ F?j and all i ∈ [m],

we have vi 6= ? =⇒ (ϕ(v))i = vi and (ii) ϕ(F?j ) does not shatter more points than F?j times
log2(m). Together, properties (i) and (ii) imply that for all j ∈ [k],

fat0
γ(ϕ(F?j )) ≤ O(fat0

γ(Fj) · log2(m)).

Finally, observe that any set of points in S γ-shattered by max((Fj)j∈[k]) are also shattered by
max((ϕ(F?j ))j∈[k]). Applying Lemma 16 with G(f1, . . . , fk)(x) = maxj∈[k] fj(x) shows that
max((ϕ(F?j ))j∈[k]) cannot shatter 2 log(3k)

∑k
j=1 dj points, where

dj = fat0
γ(ϕ(F?j )) ≤ O(fat0

γ(Fj) · log2(m)).

We have shown that,

fat0
γ(max((Fj)j∈[k])) ≤ O(log(k) log2(m)

k∑
j=1

fat0
γ(Fj)),

this concludes the proof of Eq. (8).

6.2 Shattering Dimension of L1 and L2 Loss Classes

Lemma 17 Let H ⊂ Rm be a real valued function class on m points. denote L1
H and L2

H the L1

and L2 loss classes ofH respectively. Assume L2
H is bounded by M . For anyH,

fatγ(L1
H) ≤ O(log2(m) fatγ(H)), and fatγ(L2

H) ≤ O(log2(m) fatγ/2M (H)).

Lemma 18 Let ` : Y × Y → R be an arbitrary loss function. For j ∈ [k] define

F (j),`
H := {X × Y 3 (x, y) 7→ `(h(zj), y) : h ∈ H, ρ(x) = {z1, . . . , zk}} ,

and

L`H := {Z × Y 3 (z, y) 7→ `(h(z), y) : h ∈ H} .

Then, for all γ > 0,

fatγ(F (j),`
H ) ≤ fatγ(L`H).

Proof The claim stems from the inclusion F (j),`
H ⊆ L`H.

18
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Proof [Proof of Lemma 17] For any X and any function class H ⊂ RX , define the difference class
H∆ ⊂ RX×R as

H∆ = {X × R 3 (x, y) 7→ ∆h(x, y) := h(x)− y;h ∈ H} .

In words: H∆ consists of all functions ∆h(x, y) = h(x)− y indexed by h ∈ H.
It is easy to see that for all γ > 0, we have fatγ(H∆) ≤ fatγ(H). Indeed, ifH∆ γ-shatters some

set {(x1, y1), . . . , (xk, yk)} ⊂ X×R with shift r ∈ Rk, thenH γ-shatters the set {x1, . . . , xk} ⊂ X
with shift r + (y1, . . . , yk).

Next, we observe that taking the absolute value does not significantly increase the fat-shattering
dimension. Indeed, for any real-valued function class F , define abs(F) := {|f |; f ∈ F}. Observe
that abs(F) ⊆ max((Fj)j∈[2]), where F1 = F and F2 = −F =: {−f ; f ∈ F}. It follows from
Theorem 13 that

fatγ(abs(F)) < O(log2(m)(fatγ(F) + fatγ(−F))) < O(log2(m) fatγ(F)). (10)

Next, define F as the L1 loss class ofH:

F = {X × R 3 (x, y) 7→ |h(x)− y)|;h ∈ H} .

Then

fatγ(F) = fatγ(abs(H∆))

≤ O(log2(m) fatγ(H∆))

≤ O(log2(m) fatγ(H));

this proves the claim for L1.
To analyze the L2 case, consider F ⊂ [0,M ]X and define F◦2 :=

{
f2; f ∈ F

}
. We would like

to bound fatγ(F◦2) in terms of fatγ(F). Suppose that F◦2 γ-shatters some set {x1, . . . , xk} with
shift r2 = (r2

1, . . . , r
2
k) ∈ [0,M ]k (there is no loss of generality in assuming that the shift has the

same range as the function class). Using the elementary inequality

|a2 − b2| ≤ 2M |a− b|, a, b ∈ [0,M ],

we conclude thatF is able to γ/(2M)-shatter the same k points and thus fatγ(F◦2) ≤ fatγ/(2M)(F).
To extend this result to the case where F ⊂ [−M,M ]X , we use Eq. (10). In particular, define

F as the L2 loss class ofH:

F =
{
X × R 3 (x, y) 7→ (h(x)− y)2;h ∈ H

}
.

Then

fatγ(F) = fatγ((H∆)◦2)

= fatγ((abs(H∆))◦2)

≤ fatγ/(2M)(abs(H∆))

≤ O(log2(m) fatγ/(2M)(H∆))

≤ O(log2(m) fatγ/(2M)(H)).
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6.3 Auxiliary Results

Finally, before providing formal proofs, we use the following result on the fat-shattering of convex
hulls. We then conclude a bound on the fat-shattering dimension of k-fold maximum of convex
hulls using Theorem 13.

Theorem 19 (Mendelson, 2001, Theorem 1.5) There is an absolute constant C, such that for every
function class F bounded by [0, 1] and every γ > 0,

fatγ(conv(F )) ≤ C
fat γ

4
(F)

γ2
log2

(
2 fat γ

4
(F)

γ

)

Corollary 20 Let S = {x1, . . . , xm}. For any k real valued functions classes F1, . . . ,Fk ⊆
[0, 1]S ,

fatγ(max((conv(Fj))j∈[k])) ≤ O

(
k log(k) log2(m) max

j∈[k]

(
fat γ

4
(Fj)
γ2

log2

(
fat γ

4
(Fj)
γ

)))
.

Proof

fatγ(max((conv(Fj))j∈[k])(S))
(i)

≤ O

log(k) log2(m)

k∑
j=1

fatγ(conv(Fj))


(ii)

≤ O

log(k) log2(m)
k∑
j=1

fat γ
4
(Fj)
γ2

log2

(
fat γ

4
(Fj)
γ

)
≤ O

(
k log(k) log2(m) max

j∈[k]

(
fat γ

4
(Fj)
γ2

log2

(
fat γ

4
(Fj)
γ

)))
,

where (i) stems from Theorem 13 and (ii) stems from Theorem 19.

Theorem 21 (Dudley, 1967; Mendelson and Vershynin, 2003) For any F ⊆ [−1, 1]X , any γ ∈
(0, 1) and S = (w1, . . . , wn) = w ∈ Wn,

Rn(F|w) ≤
√
C

n

∫ 1

0

√
fatcγ(F) log

(
2

γ

)
dγ,

where c and C are universal constants.
When the integral above diverges, the bound can be refined by

Rn(F|w) ≤ inf
α≥0

{
4α+

√
C

n

∫ 1

α

√
fatcγ(F) log

(
2

γ

)
dγ

}
.
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6.4 Proofs

We now formally prove our main results for this section, generalization bounds in the case of real-
valued functions.
Proof [Proof of Theorem 9] We follow the same steps as in the proof of Theorem 4 with two
changes. The first one is bounding the empirical Rademacher complexity via the fat-shattering
dimension (instead of the VC-dimension in the binary case), using Theorem 21,

Rn(F|w) ≤ inf
β≥0

{
4β +

√
C

n

∫ 1

β

√
fatcγ(F) log

(
2

γ

)
dγ

}
:= gn(F),

this bound holds for every sequence of points. The second difference is that we now need to bound
the maximum fat-shattering dimension (instead of the VC-dimension) over the classes F (j)

H , for that
purpose we use Lemma 17 and Lemma18,

max
j∈[k]

fatγ(F (j)
H ) ≤ O(log2(n) fatγ(H)).

Denote

mn(H) = inf
β≥0

4β +O

√ log4(n)

n

∫ 1

β

√
fatcγ(H) log

(
1

γ

)
dγ

 .

Similar to Theorem 4, the function x log3/2+α(n/x) is monotonic increasing for x ∈ (0, n/e3/2+α].
For sufficiently large n

(
gn(F) ≤ n/e3/2+α

)
and considering the aforementioned changes we have

that for any α > 0 there exists a constant Cα > 0 such that

Rn(max((conv(F (j)
H ))j∈[k])|x× y)

≤ Cα
√
k ·max

j∈[k]
max

w=w1:n

Rn(F (j)
H |w) · log

3
2

+α

(
n

maxj∈[k] maxw=w1:n Rn(F (j)
H |w)

)

≤ O

(
Cα
√
kmax
j∈[k]

gn(F (j)
H ) · log

3
2

+α

(
n

maxj∈[k] gn(F (j)
H )

))

= O
(
Cα
√
k ·mn(H) · log

3
2

+α

(
n

mn(H)

))
.

We conclude that

|Risk(h̃)− Risk̂(h̃)| ≤ O

Cα√k ·mn(H) · log
3
2

+α

(
n

mn(H)

)
+

√
log
(

1
δ

)
n

 .
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Proof [Proof of Theorem 11] Similar to the proof for binary case, we bound the empirical Rademacher
complexity of the loss class of h̃ ∈ ∆(H).

|Risk(h̃)− Risk̂(h̃)| = |E(x,y)∼D max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)− 1

n

∑
(x,y)∈S

max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)|

≤ 2Rn(max((conv(F (j)
H ))j∈[k])|x× y) + 3

√
log
(

2
δ

)
2n

,

where the inequality stems from applying Theorem 5 on the function class convρ(LH) and Eq. (5).
From Theorem 21 we have

Rn(max((conv(F (j)
H ))j∈[k])|x× y)

≤ inf
α≥0

{
4α+

√
C1

n

∫ 1

α

√
fatcγ(max((conv(F (j)

H ))j∈[k])) log

(
2

γ

)
dγ

}
.

Using Corollary 20 we upper bound the inner term by

O


√
k log(k) log2(n)

n

∫ 1

α

√√√√log

(
1

γ

)
max
j∈[k]

(
fat cγ

4
(F (j)
H (S))

γ2
log2

(
fat cγ

4
(F (j)
H (S))

γ

))
dγ

 .

Lemmas 17 and 18 concludes the proof with

O

(√
k log(k) log4(n)

n

∫ 1

α

√√√√log

(
1

γ

)(
fat cγ

4
(H)

γ2
log2

(
fat cγ

4
(H)

γ

))
dγ

)
.

Proof [Proof of Theorem 12] Denote the sample size by |S| = n. We start off with a known
generalization bound by Bartlett and Long (1998), showing that for any function class H : Z →
[0, 1], the sample size is at least

n ≤ O
(

1

ε2

(
fat ε

5
(H) log2 1

ε
+ log

1

δ

))
.

In our case, the function class we are interested in is max((conv(F (j)
H ))j∈[k]). by Corollary 20 we

have that

fatε(max((conv(F (j)
H ))j∈[k])) ≤ O

(
k log(k) log2(n)

(
fat ε

4
(H)

ε2
log2

(
fat ε

4
(H)

ε

)))
.

Thus, it suffices to solve the following

n ≤ O

((
1

ε2

(
k log(k) log2(n)

(
fat ε

4
(H)

ε2
log2

(
fat ε

4
(H)

ε

))
log2 1

ε
+ log

1

δ

)))
.
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Denote d = fat ε
4
(H), A = 1

ε2
log 1

δ , and B = k log(k) d
ε4

log2 d
ε log2 1

ε . It suffices to take n0 =

O
(
B log2B +A

)
, therefore,

n ≤ O
(

1

ε2

(
k log(k)

d

ε2
log2 d

ε
log2 1

ε
log2

(
k log(k)

d

ε4
log2 d

ε
log2 1

ε

)
+ log

1

δ

))
.
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Appendix A. Additional Proofs

Proof [of Lemma 1] Take an arbitrary sample S = {(x1, y1), ...., (xn, yn)}. Construct the set that
contains all possible corrupted examples on inputs from S, Sρ =

⋃
i∈[n] {z : z ∈ ρ(xi)}, the size

of Sρ is at most nk. Denote by LρH(S) the set of all possible behaviors on S using functions
in LρH, and by H(Sρ), the set of all possible behaviors on Sρ using functions in H. Namely,
LρH(S) =

{
(`(x1, y1), . . . , `(xn, yn)) : ` ∈ LρH

}
and H(Sρ) = {(h(z1), . . . , h(zm)) : h ∈ H}.

Observe that each pattern in the set LρH(S) will map to at least one pattern in H(Sρ), implying
that the size of LρH(S) is at most the size of H(Sρ). Using Sauer’s lemma, the size of H(Sρ) is at
most (nk)d, solving for n such that (nk)d < 2n yields the stated bound.

Proof [Proof of Corollary 10] We seek an upper bounds on the following term in the case of homo-
geneous hyperplanes with norm bounded by 1.

mn(H) = inf
β≥0

4β +O

√ log4(n)

n

∫ 1

β

√
fatcγ(H) log

(
1

γ

)
dγ

 ,

≤ inf
β≥0

4β +O

√ log4(n)

n

∫ 1

β

1

γ

√
log

(
2

γ

)
dγ

 ,

where the inequality stems from the bound fatδ(H) ≤ 1
δ2

(Bartlett and Shawe-Taylor, 1999).
Compute ∫ 1

β

1

t

√
log

2

t
dt =

2

3

(
(log 2/β)3/2 − (log 2)3/2

)
,

choosing β = 1/
√
n yields

mn(H) ≤ O

(√
1

n
log

7
2 (n)

)
.

The function x log3/2+α(n/x) is monotonic increasing for x ∈ (0, n/e3/2+α]. Then, for sufficiently

large n,
(

log7/2(n)e3/2+α
)2/3

≤ n we have

mn(H) · log
3
2

+α

(
n

mn(H)

)
≤ O

(√
1

n
log

7
2 (n) log

3
2

+α

(
n

log
7
2 (n)

))
.

Proof [of Lemma 15] For any finite sequence (x1, y1), . . . , (xk, yk) with xi ∈ X , yi ∈ {0, 1}, and
x1 < . . . < xk, denote by F ?|(x1,y1),...,(xk,yk) the subfamily of those members of F ? that label the
point xi with yi, for all i. For such a constrained subfamily, we define its weight:

w(F ?|(x1,y1),...,(xk,yk)) =
∑
S

1

n(S)d+1
,
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where the summation is over all nonempty subsets S of N \ {1, . . . , xk} that are shattered by this
subfamily, and n(S) denotes the largest element of S. The definition applies verbatim to the special
case where k = 0, i.e., F ?|∅ = F ?. Clearly, if c is a prefix of c′, then w(F ?|c) ≥ w(F ?|c′), and
hence the maximum weight is achieved by F ?|∅ = F ?. The latter is upper-bounded by

w(F ?) ≤
∑
n∈N

nd−1

nd+1
=
∑
n∈N

1

n2
=
π2

6
, (11)

where the numerator nd−1 accounts for the number of of subsets of [n] of size at most d which have
n as their largest element.

Any constrained subfamily F ?|(x1,y1),...,(xk,yk) induces the “majority” classifierM [F ?|(x1,y1),...,(xk,yk)] :
X → {0, 1} as follows:

M [F ?|(x1,y1),...,(xk,yk)](x) =
r
w(F ?|(x1,y1),...,(xk,yk),(x,1)) > w(F ?|(x1,y1),...,(xk,yk),(x,0))

z
(12)

(ties may be broken arbitrarily, and the rule above favors 0 in such cases). We observe that

w(F ?|(x1,y1),...,(xk,yk)) ≥ w(F ?|(x1,y1),...,(xk,yk),(x,1)) + w(F ?|(x1,y1),...,(xk,yk),(x,0)),

with equality occurring iff no f? ∈ F ? verifies f?(x) = ?.
We now describe the disambiguation procedure. We proceed one “row” f? ∈ F ? at a time. For

a given f? ∈ F ?, initialize the “constraint” sequence c to be empty (i.e., to be of length k = 0).
Predict the label at x = 1 via y = M [F ?|c](x). The prediction is said to be a mistake if f?(x) 6= ?
and y 6= f(x). In case of a mistake, append (x, f?(x)) to the end of the constraint sequence c
and leave c unchanged otherwise. Repeat the procedure for x = 2: predict y = M [F ?|c](x) and
append (x, f?(x)) to c in case of a mistake. Repeating these steps for x = 1, 2, . . . ,m produces a
disambiguation f̄ of f?. To disambiguate the next “row” of F ?, re-initialize c := ∅ and repeat the
procedure above for x = 1, 2, . . . ,m.

Having described the construction of F̄ , it remains to analyze the number of behaviors that it
can possibly attain on a prefix of lengthm— that is, to bound |F̄ (Xm)|. The first key observation is
that if c is the constraint before a mistake and c′ immediately after, then (12) implies thatw(F ?|c) ≥
1
2w(F ?|c′) (i.e., the weight of the constrained family is reduced by a half or more). This is because
a mistake is caused by the majority being wrong, and the updated constraint effectively removes
those members of F ? that contributed to the mistake. The second key observation is that if some
x ≤ m witnesses the last2 mistake when disambiguating a given f?, the weight prior to updating
the constraint on this mistake is at least 1/md+1 — because in this case, {x} must be a shattered
set.

Together with (11), these two estimates on the weight immediately prior to the last update imply
that the number of updates u satisfies

1

md+1
2u−1 ≤ w(F ?) ≤ π2

6
,

which implies that u = O(d logm). To translate this into an estimate on |F̄ (Xm)|, observe that any
f̄ ∈ F̄ is uniquely defined by the indices on which a mistake was made during its disambiguation
procedure. It follows that |F̄ (Xm)| ≤ O(

(
m
u

)
) ≤ mO(d logm).

2. The case where no mistakes are made is trivial.

25



ATTIAS, KONTOROVICH AND MANSOUR

Additional Generalization Bound for Binary Classification. We derive the result in Eq. (6). De-
note the sample size |S| = n and VC(H) = d. Using Theorem 11 for binary valued function classes
we upper bound the empirical Rademacher complexity on the sampleRn(max((conv(F (j)

H ))j∈[k])|x×
y) by

inf
α≥0

4α+O

(√
k log(k) log4(n)

n

∫ 1

α

√√√√log

(
2

γ

)(
fat cγ

4
(H)

γ2
log2

(
fat cγ

4
(H)

γ

))
dγ

) .

For a binary valued class this is upper bounded by

inf
α≥0

4α+O

√dk log(k) log4(n)

n

∫ 1

α

√
log

(
2

γ

)(
1

γ2
log2

(
d

γ

))
dγ


= inf

α≥0

4α+O

√dk log(k) log4(n)

n

∫ 1

α

1

γ
log

(
d

γ

)√
log

(
2

γ

)
dγ

 .

Computing

∫ 1

α

1

γ
log

(
d

γ

)√
log

(
2

γ

)
dγ = log(d)

∫ 1

α

1

γ

√
log

(
2

γ

)
dγ +

∫ 1

α

1

γ
log

(
1

γ

)√
log

(
2

γ

)
dγ

≤ log(d)

∫ 1

α

1

γ

√
log

(
2

γ

)
dγ +

∫ 1

α

1

γ
log

3
2

(
2

γ

)
dγ

=
2

3
log(d)

(
log

3
2

(
2

α

)
− log

3
2 (2)

)
− 2

5

(
log

5
2 (2)− log

5
2

(
2

α

))
≤ log(d) log

3
2

(
2

α

)
+ log

5
2

(
2

α

)
and choosing α = 1√

n
yields

log(d) log
3
2 (2
√
n) + log

5
2
(
2
√
n
)
≤ O

(
log(d) log

5
2 (n)

)
and

Rn(max((conv(F (j)
H ))j∈[k])|x× y) ≤ O

√d log2(d)k log(k) log9(n)

n

 .
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