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Abstract

Nonconvex regularization has been popularly used in low-rank matrix learning. However, extend-
ing it for low-rank tensor learning is still computationally expensive. To address this problem,
we develop an efficient solver for use with a nonconvex extension of the overlapped nuclear norm
regularizer. Based on the proximal average algorithm, the proposed algorithm can avoid expen-
sive tensor folding/unfolding operations. A special “sparse plus low-rank” structure is maintained
throughout the iterations, and allows fast computation of the individual proximal steps. Empir-
ical convergence is further improved with the use of adaptive momentum. We provide conver-
gence guarantees to critical points on smooth losses and also on objectives satisfying the Kurdyka-
Lojasiewicz condition. While the optimization problem is nonconvex and nonsmooth, we show that
its critical points still have good statistical performance on the tensor completion problem. Experi-
ments on various synthetic and real-world data sets show that the proposed algorithm is efficient in
both time and space and more accurate than the existing state-of-the-art.

Keywords: Low-rank tensor, Proximal algorithm, Proximal average algorithm, Nonconvex regu-
larization, Overlapped nuclear norm.

1. Introduction

Tensors can be seen as high-order matrices and are widely used for describing multilinear relation-
ships in the data. They have been popularly applied in areas such as computer vision, data mining
and machine learning (Kolda and Bader, 2009; Zhao et al., 2016; Song et al., 2017; Papalexakis
et al., 2017; Hong et al., 2020; Janzamin et al., 2020). For example, color images (Liu et al., 2013),
hyper-spectral images (Signoretto et al., 2011; He et al., 2019), and knowledge graphs (Nickel et al.,
2015; Lacroix et al., 2018) can be naturally represented as third-order tensors, while color videos
can be seen as 4-order tensors (Candes et al., 2011; Bengua et al., 2017). In YouTube, users can
follow each other and belong to the same subscribed channels. By treating channel as the third
dimension, the users’ co-subscription network can also be represented as a third-order tensor (Lei
et al., 2009).
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In many applications, only a few entries in the tensor are observed. For example, each YouTube
user usually only interacts with a few other users (Lei et al., 2009; Davis et al., 2011), and in knowl-
edge graphs, we can only have a few labeled edges describing the relations between entities (Nickel
etal., 2015; Lacroix et al., 2018). Tensor completion, which aims at filling in this partially observed
tensor, has attracted a lot of recent interest (Rendle and Schmidt-Thieme, 2010; Signoretto et al.,
2011; Bahadori et al., 2014; Cichocki et al., 2015).

In the related task of matrix completion, the underlying matrix is often assumed to be low-
rank (Candes and Recht, 2009), as its rows/columns share similar characteristics. The nuclear
norm, which is the tightest convex envelope of the matrix rank (Boyd and Vandenberghe, 2009),
is popularly used as its surrogate in low-rank matrix completion (Cai et al., 2010; Mazumder et al.,
2010). In tensor completion, the low-rank assumption also captures relatedness in the different
tensor dimensions (Tomioka et al., 2010; Acar et al., 2011; Song et al., 2017; Hong et al., 2020).
However, tensors are more complicated than matrices. Indeed, even the computation of tensor rank
is NP-hard (Hillar and Lim, 2013). In recent years, many convex relaxations based on the ma-
trix nuclear norm have been proposed for tensors. Examples include the tensor trace norm (Cheng
et al., 2016), overlapped nuclear norm (Tomioka et al., 2010; Gandy et al., 2011), and latent nuclear
norm (Tomioka et al., 2010). Among these convex relaxations, the overlapped nuclear norm is the
most popular as it (i) can be evaluated exactly by performing SVD on the unfolded matrices (Cheng
et al., 2016), (ii) has better low-rank approximation (Tomioka et al., 2010), and (iii) can lead to
exact recovery (Tomioka et al., 2011; Tomioka and Suzuki, 2013; Mu et al., 2014).

The (overlapped) nuclear norm equally penalizes all singular values. Intuitively, larger singular
values are more informative and should be less penalized (Mazumder et al., 2010; Lu et al., 2016b;
Yao et al., 2019b). To alleviate this problem in low-rank matrix learning, various adaptive non-
convex regularizers have been recently introduced. Examples include the capped-/; norm (Zhang,
2010b), log-sum-penalty (LSP) (Candes et al., 2008), truncated nuclear norm (TNN) (Hu et al.,
2013), smoothed-capped-absolute-deviation (SCAD) (Fan and Li, 2001) and minimax concave
penalty (MCP) (Zhang, 2010a). All these assign smaller penalties to the larger singular values.
This leads to better recovery performance in many applications such as image recovery (Lu et al.,
2016b; Gu et al., 2017) and collaborative filtering (Yao et al., 2019b), and lower statistical errors of
various matrix completion and regression problems (Gui et al., 2016; Mazumder et al., 2020).

Motivated by the success of adaptive nonconvex regularizers in low-rank matrix learning, there
are recent works that apply nonconvex regularization in learning low-rank tensors. For example,
the TNN regularizer is used with the overlapped nuclear norm regularizer on video processing (Xue
et al., 2018) and traffic data processing (Chen et al., 2020). In this paper, we propose a general non-
convex variant of the overlapped nuclear norm regularizer for low-rank tensor completion. Unlike
the standard convex tensor completion problem, the resulting optimization problem is nonconvex
and more difficult to solve. Previous algorithms in (Xue et al., 2018; Chen et al., 2020) are compu-
tationally expensive, and have neither convergence results nor statistical guarantees.

To solve this issue, based on the proximal average algorithm (Bauschke et al., 2008), we develop
an efficient solver with much smaller time and space complexities. The keys to its success are on (i)
avoiding expensive tensor folding/unfolding, (ii) maintaining a “sparse plus low-rank™ structure on
the iterates, and (iii) incorporating the adaptive momentum (Li and Lin, 2015; Li et al., 2017; Yao
et al., 2017). Convergence guarantees to critical points are provided under the usual smoothness
assumption for the loss and further Kurdyka-t.ojasiewicz (Attouch et al., 2013) condition on the
whole learning objective.
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Besides, we study its statistical guarantees, and show that critical points of the proposed objec-
tive can have small statistical errors under the restricted strong convexity condition (Agarwal et al.,
2010). Informally, for tensor completion with unknown noise, we show that the recovery error can
be bounded as || X* — X||» < O(Akg Zf\il V'k;) (see Theorem 16), where O omits constant terms,
X* (resp. 5C) is the ground-truth (resp. recovered) tensor, M is the tensor order and k; is the rank
of unfolding matrix on the 7th mode. When Gaussian additive noise is assumed, we show that the
recovery error also depends linearly with the noise level o (see Corollary 17) and /log I™/ ||€2]|,
where I™ is the tensor size and ||€2||; is the number of observed elements (see Corollary 18).

We further extend it for use with Laplacian regularizer as in spatial-temporal analysis and non-
smooth losses as in robust tensor completion. Experiments on a variety of synthetic and real-world
data sets (including images, videos, hyper-spectral images, social networks, knowledge graphs and
spatial-temporal climate observation records) show that the proposed algorithm is more efficient and
has much better empirical performance than other low-rank tensor regularization and decomposition
methods.

Difference with the Conference Version

A preliminary conference version of this work (Yao et al., 2019a) was published in ICML-2019.
The main differences with this conference version are as follows.

1). Only third-order tensor and square loss are considered in (Yao et al., 2019a), while the proposed
algorithm here, which is enabled by Proposition 4, can work on tensors with arbitrary orders.
The difficulties of extending to higher order tensors are also discussed after Proposition 4.

2). Statistical guarantee of the proposed model for the tensor completion problem is added in Sec-
tion 3.5, which shows that tensors that are not too spiky can be recovered. We also show how the
recovery performance can depend on noise level, tensor ranks, and the number of observations.

3). In Section 4, we enable the proposed method work with robust loss function (which is non-
convex and nonsmooth) and Laplacian regularizer. These enable the proposed algorithm to be
applied to a wider range of application scenarios such as knowledge graph completion, spatial-
temporal analysis and robust video recovery.

4). Extensive experiments are added. Specifically, quality of the obtained critical points is studied
in Section 5.1.3; application to knowledge graphs in Section 5.3, application to robust video
completion in Section 5.4, and application to spatial-temporal data in Section 5.5.

Notation

Vectors are denoted by lowercase boldface, matrices by uppercase boldface, and tensors by Euler.

For a matrix A € R™*"™ (without loss of generality, we assume that m > n), o;(A) denotes its
ith singular, its nuclear norm is || Al = ), 04; || A||oc returns its maximum singular.

For tensors, we follow the notation in (Kolda and Bader, 2009). For a M -order tensor X €
RIVXIY (without loss of generality, we assume I! > ... > IM) its (i1,...,4y7)th entry is
Xi,...ip - One can unfold X along its dth mode to obtain the matrix X @ € Rldx(%) with I™ =
1M, I, whose (iq, j) entry is X;,. i, with j = 1+ Z{Zl7l¢d(il - 1) Hi;il,myéd I'™. One can
also fold a matrix X back to a tensor X = X (@) with Xiy...iny = Xiyj> and j as defined above. A
slice in a tensor X is a matrix & obtained by fixing all but two X’s indices. The inner product of
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™

. 1 . .
two M -order tensors X and Y is (X, Y) = Zillzl EiM:I Xiy...ins Biy..ins » the Frobenius norm is

IX]| 7 = /(X, X), || X||max returns the value of the element in X with the maximum absolute value.
For a proper and lower-semi-continuous function f, 0 f denotes its Frechet subdifferential (At-
touch et al., 2013).
Finally, Pq (-) is the observer operator, i.e., given a binary tensor € {0, 1}/1%*/M and an
arbitrary tensor X € RV [P (X0)]iy iny = Xiyoing if Qiyiny = 1 and [P (X)]iy.i,, = 0
otherwise.

2. Related Works
2.1 Low-Rank Matrix Learning

Learning of a low-rank matrix X € R™*™ can be formulated as the following optimization prob-
lem:

minx f(X) + \r(X), (1)
where 7 is a low-rank regularizer, A > 0 is a hyperparameter, and f is a loss function that is p-
Lipschitz smooth!. Existing methods for low-rank matrix learning generally fall into three types:
(1) nuclear norm minimization; (ii) nonconvex regularization; and (iii) matrix factorization.

2.1.1 NUCLEAR NORM MINIMIZATION

A common choice for r is the nuclear norm regularizer. Using the proximal algorithm (Parikh and
Boyd, 2013) on (1), the iterate at iteration ¢ is given by X1 = proxa (Z), where

1
Zy = X; — ;Vf(Xt). 2)
Here, 7 > p controls the stepsize (1/7), and
1 A
prox%H.”*(Z) = argminy 9 X - Z”%? + = X1 3)

is the proximal step. The following Lemma shows that prox » I (Z) can be obtained by shrinking
the singular values of Z, which encourages X, to be low-rank.

Lemma 1 (Cai et al., 2010) proxy . (Z) = U(X — M) V', where USV " is the SVD of Z,
and [(X')+];; = max(X;;,0).

A special class of low-rank matrix learning problems is matrix completion, which attempts to
find a low-rank matrix that agrees with the observations in data O:

1
minx o ||Po (X = O) +AIX]l,. S

Here, positions of the observed elements in O are indicated by 1’s in the binary matrix 2. Setting
f(X)=1%|Pa(X - 0)||% in (1), Z; in (2) becomes:

1
Zy =Xy — —Pa (X —0). &)

1. In other words, ||V f(X) = Vf(Y)|lr < p||X =Y ||z forany X,Y.
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Note that X; is low-rank and %Pg (X — O) is sparse. Z; thus has a “sparse plus low-rank”
structure. This allows the SVD computation in Lemma 1 to be much more efficient (Mazumder
et al., 2010). Specifically, on using the power method to compute Z;’s SVD, most effort is spent on
multiplications of the forms Z;b and a' Z, (where a € R” and b € R™). Let X} in (5) be low-rank
factorized as UtVt'T, where U, € R™*%t and V; € R™"*** with rank k;. Computing

1
Zb=U, (V;Tb) ~~Pa(Yi-0)b 6)

takes O((m + n)k; + ||€2]]1) time. Usually, k4 < n and [|€2||; < mn. Thus, this is much
faster than directly multiplying Z; and b, which takes O(mn) time. The same holds for computing
a' Z;. The proximal step in (3) takes a total of O((m + n)kikiy1 + || 2||1k41) time, while a direct
computation without utilizing the “sparse plus low-rank™ structure takes O(mnk;1) time. Besides,
as only Pg (X;) and the factorized form of X; need to be kept, the space complexity is reduced
from O(mn) to O((m + n)k: + ||Q2]1).

2.1.2 NONCONVEX LOW-RANK REGULARIZER

Instead of using a convex r in (1), the following nonconvex regularizer has been commonly used (Gui
et al., 2016; Lu et al., 2016b; Gu et al., 2017; Yao et al., 2019b):

n
o(X) =3 wloi(X)), @)
where « is nonconvex and possibly nonsmooth. We assume the following on «.

Assumption 1 x(«) is a concave and non-decreasing function on o > 0, with k(0) = 0 and
lim,,_,o+ k' () = Ko for a positive constant k.

Table 1 shows the x’s corresponding to the popular nonconvex regularizers of capped-¢; penalty
(Zhang, 2010b), log-sum-penalty (LSP) (Candes et al., 2008), truncated nuclear norm (TNN) (Hu
et al., 2013), smoothed-capped-absolute-deviation (SCAD) (Fan and Li, 2001), and minimax con-
cave penalty (MCP) (Zhang, 2010a). These nonconvex regularizers have similar statistical guar-
antees (Gui et al., 2016), and perform empirically better than the convex nuclear norm regularizer
(Lu et al., 2016b; Yao et al., 2019b). The proximal algorithm can also be used, and converges to a
critical point (Attouch et al., 2013). Analogous to Lemma 1, the underlying proximal step

1 A
proxy;(Z) = argminx o || X — Z||% + ~6(X) (8)

can be obtained as follows.

Lemma 2 (Luetal., 2016b) proxw(Z) = UDiag (y1,...,yn) V|, where UESV " is the SVD of
Z, and y; = argming>o 5(y — 0:(Z))? + As(y).

2.1.3 MATRIX FACTORIZATION

Note that the aforementioned regularizers require access to individual singular values. As comput-
ing the singular values of a m x n matrix (with m > n) via SVD takes O(mn?) time, this can be
costly for a large matrix. Even when rank-k truncated SVD is used, the computation cost is still
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Table 1: Common examples of x(o;(X)). Here, 6 is a constant. For the capped-¢;, LSP and MCP,
6 > 0; for SCAD, 6 > 2; and for TNN, 6 is a positive integer.

| k(0 (X))
nuclear norm (Candés and Recht, 2009) ‘ o:(X)
capped-{; (Zhang, 2010b) ‘ min(o;(X),0)
LSP (Candés et al., 2008) | log(Z4X) 4 1)
(X)) ifi>40
TNN (Hu et al., 2013) oi(X) ifi>0
0 otherwise
SCAD (Fan and Li, 2001) 200X XD if 1 < 0y(X) < 6
% otherwise
(X)) =2 ifo(X) <0
MCP (Zhang, 2010a) ‘;f )= 5 foi(X) <
5 otherwise

O(mnk). To reduce the computational burden, factored low-rank regularizers are proposed (Srebro
et al., 2005; Mazumder et al., 2010; Wang et al., 2021). Specifically, equation (1) is rewritten into a
factored form as

miny g f(WH") + \-h(W, H), )

where X is factorized as W H " with W € R™*¥ and H € R™**_ hisa regularizer on W and H,
and A > 0 is a hyperparameter. When A = 0, this reduces to matrix factorization (Vandereycken,
2013; Boumal and Absil, 2015; Tu et al., 2016; Wang et al., 2017). After factorization, gradient
descent or alternative minimization are usually used for optimization. When certain conditions
(such as proper initialization, restricted strong convexity (RSC) (Negahban and Wainwright, 2012),
or restricted isometry property (RIP) (Candes and Tao, 2005)) are met, statistical guarantees can be
obtained (Zheng and Lafferty, 2015; Tu et al., 2016; Wang et al., 2017).

Note that in Table 1, the nuclear norm is the only regularizer (X)) that has an equivalent
factored form h(W, H). For a matrix X with ground-truth rank no larger than k, it has been
shown that the nuclear norm can be rewritten in a factored form as (Srebro et al., 2005)

. 1 2 2
1X 1, = ming_we 5 (IWIE+ I HIE)

However, the other nonconvex regularizers need to penalize individual singular values, and so can-
not be written in factored form.

2.2 Low-Rank Tensor Learning

A M-order tensor X has rank one if it can be written as the outer product of M vectors, i.e.,
X =a!lox?o- - oxM where o denotes the outer product (i.e., Xj, .. i, = 33211 . a:?2 ~~~~~ :BZ]»VI{I).

In general, the rank of a tensor X is the smallest number of rank-one tensors that generate X as their
sum (Kolda and Bader, 2009).
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To impose a low-rank structure on tensors, factorization methods (such as the Tucker / CP (Kolda
and Bader, 2009; Hong et al., 2020), tensor-train (Oseledets, 2011) and tensor ring (Zhao et al.,
2016) decompositions) have been used for low-rank tensor learning. These methods assume that
the tensor can be decomposed into low-rank factor matrices (Kolda and Bader, 2009), which are
then learned by alternating least squares or coordinate descent (Acar et al., 2011; Xu et al., 2013;
Balazevic et al., 2019). Kressner et al. (2014) proposed to utilize the Riemannian structure on the
manifold of tensors with fixed multilinear rank, and then perform nonlinear conjugate gradient de-
scent. It can be speeded up by preconditioning (Kasai and Mishra, 2016). However, these models
suffer from the problem of local minimum, and have no theoretical guarantee on the convergence
rate. Moreover, its per-iteration cost depends on the product of all the mode ranks, and so can be
expensive. Thus, they may lead to worse approximations and inferior performance (Tomioka et al.,
2011; Liu et al., 2013; Guo et al., 2017).

Due to the above limitations, the nuclear norm, which has been commonly used in low-rank
matrix learning, has been extended to the learning of low-rank tensors (Tomioka et al., 2010; Sig-
noretto et al., 2011; Gu et al., 2014; Yuan and Zhang, 2016; Zhang and Aeron, 2017). The most
commonly used low-rank tensor regularizer is the following (convex) overlapped nuclear norm:

Definition 3 (Tomioka et al., 2010) The overlapped nuclear norm of a M -order tensor X is || X||
M
=D im1 Ai Hx<i>|

Note that the nuclear norm is a convex envelop of the matrix rank (Candes and Recht, 2009).
Similarly, [|X|| is a convex envelop of the tensor rank (Tomioka et al., 2010, 2011). Em-
pirically, ||I)C\|Oveﬂap has better performance than the other nuclear norm variants in many tensor
applications such as image inpainting (Liu et al., 2013) and multi-relational link prediction (Guo
et al., 2017). On the theoretical side, let X* be the ground-truth tensor, and X be the tensor ob-
tained by solving the overlapped nuclear norm regularized problem. The statistical error between
X* and X has been established in tensor decomposition (Tomioka et al., 2011) and robust tensor
decomposition problems (Gu et al., 2014). Specifically, under the restricted strong convexity (RSC)
condition (Negahban and Wainwright, 2012), ||XX* —X||  can be bounded by O (o Zf\i 1 Vi), where
o is the noise level and k; is the rank of DC%. Furthermore, we can see that when ¢ = 0 (no noise),
exactly recovery can be guaranteed.

overlap

,» Where {\i > 0} are hyperparameters.

overlap

2.3 Proximal Average (PA) Algorithm

Let H be a Hilbert space of X, which can be a scalar/vector/matrix/tensor variable. Consider the
following optimization problem:

K
mingey F(X) = F(X0)+ Y~ Xigi(X), (10)
i=1
where f is the loss and each g; is a regularizer with hyper-parameter {\;}. Often, g(X) = Zfi 1
Ai 9i(X) is complicated, and its proximal step does not have a simple solution. Hence, the prox-
imal algorithm cannot be efficiently used. However, it is possible that the proximal step for each
individual g; can be easy obtained. For example, let g1(X) = || X||; and ¢2(X) = || X||,. The
closed-form solution on the proximal step for g; (resp. g2) is given by the soft-thresholding opera-
tor (Efron et al., 2004) (resp. singular value thresholding operator (Cai et al., 2010)). However, the
closed-form solution does not exist for the proximal step with g; + go.
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In this case, the proximal average (PA) algorithm (Bauschke et al., 2008) can be used instead.
The PA algorithm generates X;’s as

K .
Xe=) . Y (1
1
Zy = Xy — ;Vf(xt), (12)
Yii1 =proxng (2e), i=1,...,K. (13)

As each individual proximal step in (13) is easy, the PA algorithm can be significantly faster than
the proximal algorithm (Yu, 2013; Zhong and Kwok, 2014; Yu et al., 2015; Shen et al., 2017).
When both f and g are convex, the PA algorithm converges to an optimal solution of (10) with a
proper choice of stepsize 7 (Yu, 2013; Shen et al., 2017). Recently, the PA algorithm has also been
extended to nonconvex f and g;’s (Zhong and Kwok, 2014; Yu et al., 2015). Moreover, 7 can be
adaptively changed to obtain an empirically faster convergence (Shen et al., 2017).

3. Proposed Algorithm

Analogous to the low-rank matrix completion problem in (1), we consider the following low-rank
tensor completion problem with a nonconvex extension of the overlapped nuclear norm:

D
min . Y4 (DCZ-LJ-M, Oil...iM) + Zi:l A ¢(X<i>). (14)
Here, the observed elements are in O;,__;,,, X is the tensor to be recovered, (-, -) is a smooth loss
function, and ¢ is a nonconvex regularizer in the form in (7). Unlike the overlapped nuclear norm in
Definition 3, here we only sum over D < M modes. This is useful when some modes are already
small (e.g., the number of bands in color images), and so do not need to be low-rank regularized.
When D = M and k(a) = « in (7), problem (14) reduces to (convex) overlapped nuclear norm
regularization. When D = 1 and / is the square loss, (14) reduces to the matrix completion problem:

. 1 9
min_ g [P (X = 0[5+ Xe(X),

which can be solved by the proximal algorithm as in (Lu et al., 2016b; Yao et al., 2019b). In the
sequel, we only consider D > 1.

3.1 Issues with Existing Solvers

First, consider the case where « in (7) is convex. While D may not be equal to M, it can be easily
shown that existing optimization solvers in (Tomioka et al., 2010; Boyd et al., 2011; Liu et al., 2013)
can still be used. However, when & is nonconvex, the fast low-rank tensor completion (FaLRTC)
solver (Liu et al., 2013) cannot be applied, as the dual of (14) cannot be derived. Tomioka et al.
(2010) used the alternating direction of multiple multipliers (ADMM) (Boyd et al., 2011) solver for
the overlapped nuclear norm. Recently, it is used in (Chen et al., 2020) to solve a special case of
(14), in which ¢ is the truncated nuclear norm (TNN) regularizer (see Table 1). Specifically, (14) is
first reformulated as

. D .
ming Y A (Xipiagy Oiriae) + ) Nid(Xi) st Xi =Xy, i=1,...,D.
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Using ADMM, it then generates iterates as

: (P 1 2
X¢41 = argminy Z (s, ing Oi1~--iM)+§ Zi:l H(Xi)t_x(i>+E(Mi)tHF7 (15)
Qi .ip,=1
1 .
(Xi)t+1 :prox%((Xi)tJrl + E(Ml)t)’ i=1,...,D, (16)
1 .
(Mi)t-‘rl = (Ml)t + = ((Xi)t'i‘l - (x<z>)t+l) , 1=1,...,D, (17)

¢

where M;’s are the dual variables, and ¢ > 0. The proximal step in (16) can be computed from
Lemma 2. Convergence of this ADMM procedure is guaranteed in (Hong et al., 2016; Wang et al.,
2019). However, it does not utilize the sparsity induced by 2. Moreover, as the tensor X needs
to be folded and unfolded repeatedly, the iterative procedure is expensive, taking O(I™) space and
o(Ir Zil I%) time per iteration.

On the other hand, the proximal algorithm (Section 2.1) cannot be easily used, as the proximal
step for ZZZ 1 Aip(X ;) is not simple in general.

3.2 Structure-aware Proximal Average Iterations

Note that ¢ in (7) admits a difference-of-convex decomposition (Hartman, 1959; Le Thi and Tao,
2005), i.e., ¢ can be decomposed as ¢ = ¢1 — ¢2 where ¢1 and ¢ are convex (Yao et al., 2019b).
The proximal average (PA) algorithm (Section 2.3) has been recently extended for nonconvex f and
gi’s, where each g; admits a difference-of-convex decomposition (Zhong and Kwok, 2014). Hence,
as (14) is in the form in (10), one can generate the PA iterates as:

D .
Xe = ), Y (18)
1
Zt = f)Ct - ;W(xt), (19)
%H = [proxm([z,tkw)] <i>, i=1,...,D. (20)

P

where £(X;) is a sparse tensor with

[@(X)];, ., = {0, G, 800) €02 1)
¢ ([xt]h---iM’ Oil---iM) (Zlv s 72M) €N
In (20), each individual proximal step can be computed using Lemma 2. However, tensor folding
and unfolding are still required. A direct application of the PA algorithm is as expensive as using
ADMM (see Table 2).

In the following, we show that by utilizing the “sparse plus low-rank” structure, the PA iterations
can be computed efficiently without tensor folding/unfolding. In the earlier conference version (Yao
etal., 2019a), we only considered the case M = 3. Here, we extend this to M > 3 by noting that the
coordinate format of sparse tensors can naturally handle tensors with arbitrary orders (Section 3.2.1)
and the proximal step can be performed without tensor folding/unfolding (Section 3.2.2).
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3.2.1 EFFICIENT COMPUTATIONS OF X; AND Z; IN (18), (19)
First, rewrite (20) as Yi_ ; = [Y;ZH]< i), where Y, = ProX o (Z}) and Z} = [Z4] (y- Recall that
Y, obtained from the proximal step is low-rank. Let its rank be ki. Hence, Y}’ can be represented

as U}(V;)T, where Uj € RI"*Ft and V} € RU7)** n each PA iteration, we avoid constructing
the dense Y; by storing the above low-rank factorized form of Y}* instead. Similarly, we also avoid
constructing X; in (18) by storing it implicitly as

D o 5
Xe=) (Ui, (22)
Z¢ in (19) can then be rewritten as
D NG 1
=), (Ut’ (W)T) — (%) (23)

The sparse tensor £(X;) in (21) can be constructed efficiently by using the coordinate format? (Bader
and Kolda, 2007). Using (22), each [{(X;)];,...i,, can be computed by finding the corresponding
rows in {U}, V;'} as shown in Algorithm 1. This takes O(Y>2 | k?) time.

Algorithm 1 Computing the pth element v, with index (i} .. 0" in £(X;).
Require: factorizations {U}(V;)",... . UP(V;P)T} of Y,}, ..., Y,P, and observed elements in Pq (O);
1: v, < 0;
2: ford=1,...,Ddo
30w« ilthrow of Uf;
vl (Z,ﬂid ik I™ 4 id)th row of V;%;

4
5 Up < Up + uTv;
6: end for

T vp < E/(Up, Ozzl)li)u)’
8: return v,

3.2.2 EFFICIENT COMPUTATION OF y 11 IN(20)

Recall that the proximal step in (20) requires SVD, which involves matrix multiplications in the

form aT(Zt)@ (where a € R”") and (Z¢) iyb (where b € R%). Using the “sparse plus low-rank”
structure in (23), these can be computed as

a’(Z) = (@ UNV)T+3 e [ (V))))Y >}<i>—%aT[é(xt)]<@->7 (24)
and
(Z)b=Ui[(Vi) ]+ [0 (V)] b~ f[soct)]@b (25)

The first terms in (24) and (25) can be easily computed in O(( + I")k?) space and time. The last
terms (a ' [£(X;)] (iy and [(X¢)] ;) b) are sparse, and can be computed in O(|[€2|1) space and time

2. For a sparse M -order tensor, its pth nonzero element is represented in the coordinate format as (zzl,, . ,iﬁ/[, Up),

where i,l77 e ii,” are indices on each mode and v, is the value.

10
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by using sparse tensor packages such as the Tensor Toolbox (Bader and Kolda, 2007). However,
a direct computation of the a' (U} (V;))")V!];y and [(U} (V;?)T)¥)];yb terms involves tensor
folding/unfolding, and is expensive. By examining how elements are ordered by folding/unfolding,
the following shows that these multiplications can indeed be computed efficiently without explicit
folding/unfolding.

Proposition 4 Let U € R*F V ¢ Rk

; Tl
Foranyi# j,a € R andb € RT, we have

, and u,, (resp.v),) be the pth column of U (resp.V ).

) k o
a’ [(UVT)m] 0 = szl u];r ® [aTmat(vp; I, I”)], (26)

. k ... .. .
[(UV Y] wb= szl mat(vy; I', I mat (b; I, IV )y, (27)

where ® is the Kronecker product, IV = I™ /(I'I7), and mat(x; a, b) reshapes a vector x of length
ab into a matrix of size a X b.

In the earlier conference version (Yao et al., 2019a), Proposition 3.2 there (not the proposed
algorithm) limits the usage to M = 3. Without Proposition 4, the algorithm can suffer from expen-
sive computation cost, and thus has no efficiency advantage over the simple use of the PA algorithm.
Specifically, when mapping the vector v, back to a matrix, we do not need to take a special treat-
ment on the size of matrix. The reason is that, v, has I;I; elements and we just need to map it back
to a matrix of size I; x I;. Thus, we do not have parameters for mat operation in the conference
version. However, when M > 3, v, has I™/I" elements, we need to check whether ideas used in
the conference version can be done in a similar way. As a result, we have two more parameters for
the mat operation here, which customize reshaping matrix to a proper size.

Remark 5 For a second-order tensor (i.e., matrix case with M = 2), Proposition 4 becomes

k

a' [(UVTHI] = szl(a%p)u; and [(UV )] b= >

k
i vp(b ).

With the usual square loss (i.e., Zn_l (X iy Odyiy) in (14) equals 5 | Po (X — 0)[|%),
K 7/]\/1

(25) then reduces to (6) when D = 1. When D = 2, Y2\, ¢(Xyyy) in (14) becomes A\1p(X) +

Md(XT) = (M + Xo)o(X), and is the same as the corresponding regularizer when D = 1.

Hence, the reduction from (25) to (6) still holds.

3.2.3 TIME AND SPACE COMPLEXITIES

A direct computation of aT[(Ug(‘Qj)T)U)]@-) takes O(k:I™) time and O(I™) space. By using the
computation in Proposition 4, these are reduced to O((% + 15 )k{I™) time and O((; + 75 )ki{I™)
space. This is also the case for [(U] (V) ")V >]<i>b. Details are in the following.

11
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operation ‘ time ‘ space

reshaping ‘ mat(v,; [7, 1) ‘ o(+) ‘ o(+)

multiplication a' (") ‘ O(+) ‘ o)

Kronecker product | u) @ (-) | O(f7) | O(77)
summation Z;;l( ) ‘ O(ka—;) ‘ O((f5 + F)kiI™)
total for (26) ‘ O(( ™) ‘ O((%*‘%)kzp)

‘ operation ‘ time ‘ space

reshaping mat (b; 17, I%) | O(%) | o(%)

multiplication ‘ ()up ‘ O(IIL) ‘ O(%)

reshaping ‘ mat (vy; 17, 17) ‘ O(+) ‘ o(+)

multiplication ‘ mat (vy; I7,17) ( ‘ O(%) ‘ O(IT”)

summation ‘ 21;‘21() ‘ O(kzli) ‘ O(kiI")
total for (27) | o(( )I7) | O(( + L)kirm)

Combining the above, and noting that we have to keep the factorized form U}(V;?)" of Y},
computing all the proximal steps in (20) takes

b 1 1 i T
O(Z¢=1 Z#i(ﬁ + kT + 1€2/11) (28)
space and
Zl 1 Zﬁéz it ktktﬂﬂ + 12U (K + ki) (29)

time. Empirically, as will be seen in the experimental results in Section 5.1.2, kf, ki, < I".
Hence, (28) and (29) are much smaller than the complexities with a direct usage of PA and ADMM
in Section 3.1 (Table 2).

Table 2: Comparison of the proposed NORT with PA and ADMM for (14) in Section 3.1.

. complexity adaptive
algorithm . . .
time per 1teration ‘ Space momentum
PA (Zhong and Kwok, 2014) | O(I I | oumy | x
ADMM (Chen etal., 2020) | O(I I | oum) | x
NORT (Algorithm2) | see(29) | see (28) | v

12
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3.3 Use of Adaptive Momentum

The PA algorithm uses only first-order information, and can be slow to converge empirically (Parikh
and Boyd, 2013). To address this problem, we adopt adaptive momentum, which uses historical
iterates to speed up convergence. This has been popularly used in stochastic gradient descent (Duchi
etal., 2011; Kingma and Ba, 2014), proximal algorithms (Li and Lin, 2015; Yao etal.,2017; Liet al.,
2017), cubic regularization (Wang et al., 2020), and zero-order black-box optimization (Chen et al.,
2019). Here, we adopt the adaptive scheme in (Li et al., 2017).

The resultant procedure, which will be called NOnconvex Regularized Tensor (NORT), is
shown in Algorithm 2. When the extrapolation step X; achieves a lower function value (step 4),
the momentum -y is increased to further exploit the opportunity of acceleration; otherwise, y; is
decayed (step 7). When step 5 is performed, V; = Xy + (X — X¢—1). Z; in step 9 becomes

Zy = (1 +%)Zi (Ut(V; —’Ytz (U, (Vi) ) W %f(vt% (30)

which still has the “sparse plus low-rank” structure. When step 7 is performed, V; = X;, and
obviously the resultant Z, is “sparse plus low-rank”. Thus, the more efficient reformulations in
Proposition 4 can be applied in computing the proximal steps at step 11. Note that the rank of X} 1
in step 11 is determined implicitly by the proximal step. As X; and Z; are implicitly represented
in factorized forms, V; and X; (in step 3) do not need to be explicitly constructed. As a result, the
resultant time and space complexities are the same as those in Section 3.2.3.

Algorithm 2 NOnconvex Regularized Tensor (NORT) Algorithm.
1: Initialize 7 > p + Dkg, v1,p € (0,1], Xo =Xy =0and ¢t = 1;
2: while not converged do
3 Xt = Xt + 7 (X — Xi—1);

5: Vi < X; and 441 min(%7 1);

6.

7

8

else
Vi = Xp and yep1 < pyss
: endif
9:  Zy+V,— % (Vy); /1 compute (V) using Algorithm 1
10. fori=1,...,Ddo

11: Xy proxags ((Ze)y): / keep as U} (V) T

12:  end for ’ )
// implicitly construct Xi1 Eil (U1 (Vi) )m;

13: t=t+1

14: end while
15: return X;.

3.4 Convergence Properties

In this section, we analyze the convergence properties of the proposed algorithm. As can be seen
from (14), we have f(X) = Zﬂn =1 0(Xiy..ips Oiy iy, ) here. Moreover, throughout this sec-

tion, we assume that the loss f is (Lipschitz-)smooth.
Note that existing proofs for PA algorithm (Yu, 2013; Zhong and Kwok, 2014; Yu et al., 2015)
cannot be directly used, as adaptive momentum has not been used with the PA algorithm on noncon-

13
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vex problems (see Table 2), and also that they do not involve tensor folding/unfolding operations.
Our proof strategy will still follow the three main steps in proving convergence of PA:

1. Show that the proximal average step with g;’s in (13) corresponds to a regularizer;

2. Show that this regularizer, when combined with the loss f in (10), serves as a good approximation
of the original objective F'.

3. Show that the proposed algorithm finds critical points of this approximate optimization problem.

First, the following Proposition shows that the average step in (18) and proximal steps in (20)
together correspond to a new regularizer g,.

Proposition 6 For any 7 > 0, Zfil[prox;Ai¢([Z] <Z~))]<i> = prox1; (2), where

_ Ad D2
gT(x):T[mln{Xd}Zd 1X xzd 1 d”F_’_?qb(Xd))_EHxHF]
Analogous to (10), let the objective corresponding to regularizer g, be
Fr(X) = £(X) + §-(X). (€29)

The following bounds the difference between the optimal values (F™" and F™", respectively) of
the objectives F' in (10) and F’-. It thus shows that F; serves as an approximation to F', which is
controlled by 7.

Proposition 7 (0 < [™in — pmin < gg i 1 )\ where kg is defined in Assumption 1.

Before showing the convergence of the proposed algorithm, the following Proposition first
shows the condition of being critical points of F(X).

Proposition 8 If there exists T > 0 such that X = prox g (X —V f(X)/7), then X is a critical point
of F-(X).

Finally, we show how convergence to critical points can be ensured by the proposed algorithm
under smooth assumption of loss f (Section 3.4.1) and Kurdyka-F.ojasiewicz condition for the ap-
proximated objective F- (Section 3.4.2).

3.4.1 WITH SMOOTHNESS ASSUMPTION ON LOSS f

The following shows that Algorithm 2 converges to a critical point (Theorem 9).

Theorem 9 The sequence {X;} generated from Algorithm 2 has at least one limit point, and all
limits points are critical points of F(X).

Proof [Sketch, details are in Appendix B.5.] The main idea is as follows. First, we show that (i) if
step 5 is performed, Fr(Xi11) < Fr(X;) — thﬂ
Fr(Xig1) < Fr(X) — 3 | Xq1 — X3 Combmmg the above two conditions, we obtain

Xy i,; (ii) if step 7 is performed, we have

2

;(Fr(xl) = Fr(X141)) 2 Z [ %1 — it“i’ + ZjEXQ(T) 141 — el %,

jexa(T)

14
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where x1(T') and x2(T) are partitions of {1, ..., T} such that when j € x1(T') step 5 is performed,
and when j € x2(T) step 7 is performed. Finally, when T' — oo, we discuss three cases: (i) x1(00)
is finite, x2(00) is infinite; (ii) x1(00) is infinite, x2(00) is finite; and (iii) both x1(00) and x2(c0)
are infinite. Let X be a limit point of {X;}, and {X;,} be a subsequence that converges to X. In all
three cases, we show that

. o N
Tim |2, 41 — X, [[7 = [[proxax (X — =V f(X)) - X||F = 0.
Jt—00 ks T

Thus, we must have X is also a critical point based on Proposition 8. It is easy to see that we have
not made any specifications on the limit points. Thus, all limit points are also critical points. |

Recall that X;1 is generated from V; in steps 9-12 and X;; = V; indicates convergence to a
critical point (Proposition 8). Thus, we can measure convergence of Algorithm 2 by || X1 — V¢|| .
Corollary 10 shows that a rate of O(1/7") can be obtained, which is also the best possible rate for
first-order methods on general nonconvex problems (Nesterov, 2013; Ghadimi and Lan, 2016).

77777

Remark 11 A larger T leads to a better approximation to the original problem F (Proposition 7).
However, it also make the stepsize 1 /T smaller (step 11 in Algorithm 2) and thus slower convergence
(Corollary 10).

3.4.2 WITH KURDYKA-LOJASIEWICZ CONDITION ON APPROXIMATED OBJECTIVE F;

In Section 3.4.1, we showed the convergence results when f is smooth and g is of the form in (7).
In this section, we consider using the Kurdyka-t.ojasiewicz (KL) condition (Attouch et al., 2013;
Bolte et al., 2014) on F’;, which has been popularly used in nonconvex optimization, particularly
in gradient descent (Attouch et al., 2013) and proximal gradient algorithms (Bolte et al., 2014; Li
and Lin, 2015; Li et al., 2017). For example, the class of semi-algebraic functions satisfy the KL.
condition. More examples can be found in (Bolte et al., 2010, 2014).

Definition 12 A function h: R™ — (—o0, 00| has the uniformized KL property if for every com-
pact set S € dom(h) on which h is a constant, there exist €, ¢ > 0 such that for all u € S
and all w € {u : minyes|u—v|, < e} N{u : f(u) < f(u) < f(u)+ c}, one has
Y (f(u) = f(@) mingepr) V]I, > 1, where ¢(a) = G for some C > 0, a € [0,c) and
x € (0,1].

Since the KL property (Attouch et al., 2013; Bolte et al., 2014) does not require & to be smooth or
convex, it thus allows convergence analysis under the nonconvex and nonsmooth setting. However,
such a property cannot replace the smoothness assumption in Section 3.4.1, as there are example
functions which are smooth but fail to meet the KL condition (Section 4.3 of (Bolte et al., 2010)).

The following Theorem extends Algorithm 2 to be used with the uniformized KL property.

Theorem 13 Assume that F, in (31) has the uniformized KL property, and let ry = Fy(X;) — F™®,
For a sufficiently large t,
a) If x in Definition 12 equals 1, then ry = 0 for all t > ty;

15



YAO, WANG, HAN, KWOK

2
b) Ifx € [3,1), 1 < (1111?02)'5_7507”150 where dy = 2(1 + p)? /1);
2x—1

c) If z € (0, %) Ty < (m)l/(k%) where ds = min (ﬁ, &(2%72 — 1)7“t0)-

Proof [Sketch, details are in Appendix B.7.] The proof idea generally follows that for (Bolte et al.,
2014) with a special treatment for V; here. First, we show

Jlim ming, eop, () [ Ul p < Jim (7 + ) | Xesr = Vil = 0.

Next, using the KL condition, we have
1< (Pr(Xes1) = E0) (74 p) 1 X1 — Vel
Then, let 1y = F,(X;) — F™®, From its definition, we have
Tt — 41 > Fr (Vi) = Fr(Xig).
Combining the above three inequalities, we obtain

2(r + P)2 [

; Y (re1))? (re = ren1).-

1<

Since ¢p(a)) = €2, then ¢/(a) = Ca®L. The above inequality becomes 1 < d1C?r77%(ry —

Ti41), where dq = W. It is shown in (Bolte et al., 2014, Li and Lin, 2015; Li et al., 2017) that
for the sequence {r.} satisfying the above inequality, we have convergence to zero with the different
rates stated in the Theorem. |

In Corollary 10 and Theorem 13, the convergence rates do not depend on p, and thus do not
demonstrate the effect of momentum. Empirically, the proposed algorithm does have faster con-
vergence when momentum is used, and will be shown in Section 5. This also agrees with previous
studies in (Duchi et al., 2011; Kingma and Ba, 2014; Li and Lin, 2015; Li et al., 2017; Yao et al.,
2017).

3.5 Statistical Guarantees

Existing statistical analysis on nonconvex regularization has been studied in the context of sparse
and low-rank matrix learning. For example, the SCAD (Fan and Li, 2001), MCP (Zhang, 2010a)
and capped-¢; (Zhang, 2010b) penalties have shown to be better than the convex ¢;-regularizer on
sparse learning problems; and SCAD, MCP and LSP have shown to be better than the convex nu-
clear norm in matrix completion (Gui et al., 2016). However, these results cannot be extended to the
tensor completion problem here as the nonconvex overlapped nuclear norm regularizer in (10) is not
separable. Statistical analysis on tensor completion has been studied with CP and Tucker decompo-
sitions (Mu et al., 2014), tensor ring decomposition (Huang et al., 2020), convex overlapped nuclear
norm (Tomioka et al., 2011), and tensor nuclear norm (Yuan and Zhang, 2016; Cheng et al., 2016).
They show that tensor completion is possible under the incoherence condition when the number
of observations is sufficiently large. In comparison, in this section, we will (i) use the restricted
strong convexity condition (Agarwal et al., 2010; Negahban et al., 2012)) instead of the incoherence
condition, and (ii) study nonconvex overlapped nuclear norm regularization.

16



LOW-RANK TENSOR LEARNING WITH NONCONVEX NUCLEAR NORM REGULARIZATION

3.5.1 CONTROLLING THE SPIKINESS AND RANK

In the following, we assume that elements in {2 are drawn i.i.d. from the uniform distribution.
However, when the sample size ||€2]|; < I”, tensor completion is not always possible. Take the
special case of matrix completion as an example. If X is an almost-zero matrix with only one
element being 1, it cannot be recovered unless the nonzero element is observed. However, when X
gets larger, there is a vanishing probability of observing the nonzero element, and so Po (X) = 0
with high probability (Candes and Recht, 2009; Negahban and Wainwright, 2012).

To exclude tensors that are too “spiky” and allow tensor completion, we introduce

mspike(:x) = \/FHmeax/ H:X:HF7 (32)

which is an extension of the measure V1112 || X|| .. /|| X || in (Negahban and Wainwright, 2012;
Gu et al., 2014) for matrices. Note that mgpire (X) is invariant to the scale of X and 1 < mypike(X) <
VI™. Moreover, Mepike(X) = 1 when all elements in X have the same value (least spiky); and
mspike(f)C) = /I™ when X has only one nonzero element (spikiest). Similarly, to measure how
close is X to low-rank, we use

D

mrank(x) = Zi:l Q; Hx(z> H* / Hx||F’ (33)
where «; = \;/ Zfl):l Ag’s are pre-defined constants depending on the penalty strength. This is
also extended from the measure || X||, /|| X||» in (Negahban and Wainwright, 2012; Gu et al.,
2014) on matrices. Note that M (X) < Efi e 1/rank(DC@), with equality holds when all

nonzero singular values of X;’s are the same. The target tensor X should thus have small mpike (X)
and Myank (X). In (14), assume for simplicity that D = M and A; = A fori = 1,..., M. We then
have the following constrained version of (14):

1
ming 3 [P (X = O)[} + Ar(X) st [0 < C, (34)

where 7(X) = Zf): 1 #(X3y) encourages X to be low-rank (i.e., small m,nk), and the constraint on
(| X|| jpasx @voids X to be spiky (i.e., small mgpike).

max

3.5.2 RESTRICTED STRONG CONVEXITY (RSC)

Following (Tomioka et al., 2011; Negahban and Wainwright, 2012; Loh and Wainwright, 2015; Zhu
et al., 2018), we introduce the restricted strong convexity (RSC) condition.

Definition 14 (Restricted strong convexity (RSC) condition (Agarwal et al., 2010)) Let A be an
arbitrary M -order tensor. It satisfies the RSC condition if there exist constants a1, o > 0 and
71, Ty > 0 such that

ar Al - R (SX Apll,)*  # Al <1
a2 ”AH% 724/ %(Zf\il HA@H*) otherwise

Letd; = %(IZ + %) fori =1,..., M. Consider the set of tensors parameterized by n,~y > 0:

P (A7 > (35)

1 . n
C(n,'y) = {DC € R XIM; X#0 ‘ mspike(x> : mrank(x) < E z:rll,ln}M d; log d; } ,
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where L is a positive constant. The following Lemma shows that the RSC condition holds when the
low-rank tensor is not too spiky. If the RSC condition does not hold, the tensor can be too hard to
be recovered.

Lemma 15 There exists co, c1, ¢a, c3 > 0 such that VA € C(||Q|, , co), where | Q| > c3 r{laxM(di log d;),
i=1,...,

we have
Po (A 1 128[/"”%1’6A
Pa @y Ly [ ()| 56
1€21; VI1€24

with a high probability of at least 1 — max;—; . ar ¢1 exp(—cad; log d;).

Another condition commonly used in low-rank matrix/tensor learning is incoherence (Candes
and Recht, 2009; Mu et al., 2014; Yuan and Zhang, 2016), which prevents information of the
row/column spaces of the matrix/tensor from being too concentrated in a few rows/columns. How-
ever, as discussed in (Negahban and Wainwright, 2012), the RSC condition is less restrictive than
the incoherence condition, and can better describe “spikiness” (details are in Appendix A). Thus,
we adopt the RSC instead of the incoherence condition here.

3.5.3 MAIN RESULTS

Let X* € RI1XXInm be the ground-truth tensor, and X be an estimate of X* obtained as a critical
point of (34). The following bounds the distance between X* and X.

Theorem 16 Assume that k is differentiable, and the RSC condition holds with 3koM /4 < .
Assume that there exists positive constant R > 0 such that Ef\il Hx@ H* < R, and X satisfies

4 * 8%)
- — ) ™ <AL
p max (mzax H[PQ (X (‘))]@)HOO ,aq/log I /Hﬂ|]1> <A< 1Ry’ 37)

where |21 > max (7, 73) %. Then,
2

[ > Vs (38)

Ay
_ 3M,‘i0 _ 1 . *
where a, = oy — =0, ¢, = 1 — 557, and k; is the rank 0ff)C<Z.>.

Proof [Sketch, details are in Appendix B.9.2.] The general idea of this proof is inspired from (Loh
and Wainwright, 2015).3 There are three main steps:

o LetV = X — X*. We prove by contradiction that ||V||p < 1. Thus, we only need to consider the
first condition in (35).

o Let hi(X) = ¢(Xy;y). From Assumption 1, we have that hi(X) + 5 |X||2 is convex. Using this
together with the first condition in (35), we obtain

ILLM iy M * Y )\K; M \/

3. Note, however, that Loh and Wainwright (2015) use different mathematical tools as they consider sparse vectors with
separable dimensions, while we consider overlapped tensor regularization with coupled singular values.
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o Using the above inequality and properties of h;, we obtain

~ M ~
ao|[VIE <A bohi(X7) = euhi(X),

where a, = a1 — %/{0, by = 1+ ﬁ and ¢, = 1 — ﬁ Finally, using Lemma 30 in Ap-
pendix B.9.1 on the above inequality, we have ||V||p < /\%C” M VE u
Since [|X||,,.. < C in (34), we have Zf\il HDC<,>H* < Zf\il ki(I; + %)C (as | X||, <

VE | X||p < Vmnk || X||,,, for a rank-k matrix X € R™*"). Thus, in Theorem 16, we can take
R = Zf‘i 1 Vki(li + I™/1;)C, which is finite and cannot be arbitrarily large. While we do not
have access to the ground-truth X* in practice, Theorem 16 shows that the critical point X can be
bounded by a finite distance from X*, which means that an arbitrary critical point may not be bad.
From (38), we can also see that the error ||X* — X||r increases with the tensor order M and rank
k;. This is reasonable as tensors with higher orders or larger ranks are usually harder to estimate.
Besides, recall that x in Assumption 1 reflects how nonconvex the function x(«) is; while «; in
Definition 14 measures strong convexity. Thus, these two quantities play opposing roles in (38).
Specifically, a larger o leads to a larger a,,, and subsequently smaller || X* — X|| p; whereas a larger
Ko leads to a larger MOC“ , and subsequently larger ||X* — X|| .

Finally, note that the range for A is (37) can be empty, which means there can be no A to ensure
Theorem 16. To understand when this can happen, consider the two extreme cases:

C1. There is no noise in the observations, i.e., Pn (X* — Q) = 0: In this case, (37) reduces to

40&2
I7r
o /190, <

4R

Thus, such a A\ may not exist when the number of observations ||€2||; is too small.

C2. All elements are observed: we then have | P (A)||z = ||Al|p.andsoa; = ap = land 7 =
75 = 0 in Definition 14. Besides, the noise is not too small, which means /log I™ /|||, <
max; || [X* — O]y [loo- Then, (37) reduces to

4
[

RO

<A< .
oo _4RI€0

Thus, such a A may not exist when the noise is too high.

Overall, when A does not exist, it is likely that the tensor completion problem is too hard to have
good recovery performance.

On the other hand, there are cases that A always exists. For example, when O = X* = 0, we
have R = 0. The requirement on \ is then 4a2 V1og I™/{|€2]|; < A < 400, and such a A always
exists.

3.5.4 DEPENDENCIES ON NOISE LEVEL AND NUMBER OF OBSERVATIONS

In this section, we demonstrate how the noise level affects (38). We assume that the observations
are contaminated by additive Gaussian noise, i.e.,

X + &y I Qi =1
O. . — 1.2 1.2\ 1.0 7 39
et {0 otherwise (39)
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where &, _i,, is a random variable following the normal distribution A/ (0, 02). The effects of the
noise level o and number of observations in §2 are shown in Corollaries 17 and 18, respectively,
which can be derived from Theorem 16.

Corollary 17 Let € = O — X* and X = bymax; || [Pa ()] loo- When |||, is sufficiently
large and b; € | (to ensure X satisfies (37)), then E[||X* — X|z] <

4 Qg ]

k0’ 4Rko max; [[[Pa(E)] ;oo
KoCy VI M -

o HOC > iny Vi

Corollary 17 shows that the recovery error decreases as the noise level o gets smaller, and
we can expect an exact recovery when ¢ = 0, which is empirically verified in Section 5.1.4. When
k(a) = a, 7(X) becomes the convex overlapping nuclear norm. In this case, Theorem 2 in (Tomioka
etal., 2011) shows that the recovery error can be bounded as || X* — 5CHF <O0(cSM V). Thus,
Corollary 17 can be seen as an extension of Theorem 2 in (Tomioka et al., 2011) to the nonconvex
case.

Corollary 18 Let A = b3y/log I™/ ||Q||,. Suppose that the noise level o is sufficiently small and
& b v [logI™ <M )
X _:X:HFS 3220 \/ |C|)s%z||l > i1 Vki.

Corollary 18 shows that the recovery error decays as 4/[|€2]|; gets larger. Such a dependency
on the number of observed elements is the same as in matrix completion problems with nonconvex
regularization (Gui et al., 2016). Corollary 18 can be seen as an extension of Corollary 3.6 in (Gui
et al., 2016) to the tensor case.

bs € |4, R logllﬂ/nnlll) (to ensure \ satisfies (37)). Then,

4. Extensions

In this section, we show how the proposed NORT algorithm in Section 3 can be extended for ro-
bust tensor completion (Section 4.1) and tensor completion with graph Laplacian regularization
(Section 4.2).

4.1 Robust Tensor Completion

In tensor completion applications such as video recovery and shadow removal, the observed data
often have outliers (Candes et al., 2011; Lu et al., 2016a). Instead of using the square loss, more
robust losses like the ¢; loss (Candes et al., 2011; Lu et al., 2013; Gu et al., 2014) and capped-¢;
loss (Jiang et al., 2015), are preferred.

In the following, we assume that the loss is of the form ¢(a) = k¢(|a|), where £y is smooth and
satisfies Assumption 1. The optimization problem then becomes

D
miny Fy(X) = e (1Xiycing = Oiciag )+ Y~ Aid(Xy)- (40)

Q 1

i.ipg =
Since ky¢(|a|) is non-differentiable at a = 0, Algorithm 2 cannot be directly used. Motivated by

smoothing the ¢; loss with the Huber loss (Huber, 1964) and the difference-of-convex decompo-
sition of xy (Le Thi and Tao, 2005; Yao and Kwok, 2018), we propose to smoothly approximate

re(lal) by
Re(lal;8) = ko £(]al;8) + (e(lal) = o - lal), (4D
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where kg is in Assumption 1, § is a smoothing parameter, and / is the Huber loss (Huber, 1964):
- >0
fasy<fldl M=o
550~ + 50 otherwise

The following Proposition shows that ky is smooth, and a small J ensures that it is a close approxi-
mation to xy.

Proposition 19 7,(|a|; d) is differentiable and lims_,o R¢(|al; §) = Ke(|al).

Problem (40) is then transformed to
. - D
miny » I Fo(|1Xi ing — Oy 56) + Z¢:1 Aip(Xzy)- (42)

In Algorithm 3, we gradually reduce the smoothing factor in step 3, and use Algorithm 2 to solve
the smoothed problem (42) in each iteration.

Algorithm 3 Smoothing NORT for (40).
1: Initialize 6o € (0,1) and s = 1;
2: while not converged do
3 transform to problem (42) with %, using 6 = (do)*;
4:  obtain X by solving the smoothed objective with Algorithm 2;
5
6
7

s=s+1;
: end while
: return X,.

Convergence of Algorithm 3 is ensured in Theorem 20. However, the statistical guarantee in
Section 3.5 does not hold as the robust loss is not smooth.

Theorem 20 The sequence {Xs} generated from Algorithm 3 has at least one limit point, and all
limits points are critical points of Fy(X) = 29‘1 1 ke (X in — Odying ) + G2 (X).
D M

.2

4.2 Tensor Completion with Graph Laplacian Regularization

The graph Laplacian regularizer is often used in tensor completion (Narita et al., 2012; Song et al.,
2017). For example, in Section 5.5, we will consider an application in spatial-temporal analy-
sis (Bahadori et al., 2014), namely, climate prediction based on meteorological records. The spatial-
temporal data is represented by a 3-order tensor O € R/ IXI*xI® where I' is the number of loca-
tions, 12 is the number of time stamps, and I? is the number of variables corresponding to climate
observations (such as temperature and precipitation). Usually, observations are only available at a
few stations, and slices in O corresponding to the unobserved locations are missing. Learning these
entries can then be formulated as a tensor completion problem. To allow generalization to the unob-
served locations, correlations among locations have to be leveraged. This can be achieved by using
the graph Laplacian regularizer (Belkin et al., 2006) on a graph G with nodes being the locations
(Bahadori et al., 2014). Let the affinity matrix of G be A € R™*"™, and the corresponding graph
Laplacian matrix be G = D — A, where D;; = j A;j;. As the spatial locations are stored along the

tensor’s first dimension, the graph Laplacian regularizer is defined as h(Xy) = Tr(f)C<Tl>Gf)C<1>),
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which encourages nearby stations to have similar observations. When G = 1, it reduces to the
commonly used Frobenius-norm regularizer || X||3. (Hsieh et al., 2015). With regularizer (X (1))s
problem (14) is then extended to:

mlnxz Xiy.oiings Oiy g +ZZ_ x(l +'uh(x< >) 43)

where i is a hyperparameter.
Using the PA algorithm, it can be easily seen that the updates in (18)-(20) for X; and Y; remain
the same, but that for Z; becomes

1
Zy= % — —€(%) + pVTr(X [, GX ).

To maintain efficiency of NORT, the key is to exploit the low-rank structures. Using (22), Z; can be
written as

D
20 = S0 WHVHTY - e - ulGx ). )
GX (1) can also be rewritten in low-rank form as

GX ) = (GU})( +GZ (U} (V) )9

For matrix multiplications of the forms a ' () ;) and (Z;) ;b involved in the SVD of the proximal
step, we have

a’ (2))=(a’ T-p@UH(V) '+ a (I uG)[<U5<W>T><ﬂ'>](i>—§aT[§<xt>]@,<4s>
and
(Z) b = (TG (V)] + (1= pG) S [TV b~ (@] b @46)

Thus, one can still leverage the efficient computational procedures in Proposition 4 to compute
a' (U] (V))")9] ;). where @'=a"(I—uG) in (45), and [(U7 (V) 7)) ;b in (46).

By taking f(X) = ZQ” =1 C(Xiyings Oy i) + 1 h(f)C<1>), it is easy to see that the statis-
tical analysis in Section 3.4 and convergence analysis in Section 3.5 still hold.

S. Experiments

In this section, experiments are performed on both synthetic (Section 5.1) and real-world data sets
(Sections 5.2-5.5), using a PC with Intel-19 CPU and 32GB memory. To reduce statistical variation,
all results are averaged over five repetitions.

5.1 Synthetic Data

We follow the setup in (Song et al., 2017) First, we generate a 3-order tensor (i.e., M = 3)
0 =17, si(a; o b, o c;), where a; € R, b; € R and ¢; € R!”, o denotes the outer product
(ie, [aobo c]wk = a;bjcy). T4 denotes the ground-truth rank and is set to 5, with all k;’s equal
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to ry = 5. All elements in a;’s, b;’s, ¢;’s and s;’s are sampled independently from the standard
normal distribution. Each element of O is then corrupted by noise from A/(0, 0.012) to form O. A
total of ||2||; = g Z?:1 I'log(I™) random elements are observed from O. We use 50% of them
for training, and the remaining 50% for validation. Testing is evaluated on the unobserved elements
in O.

We use the square loss and three nonconvex penalties: capped-¢; (Zhang, 2010a), LSP (Candés
et al., 2008) and TNN (Hu et al., 2013). The following methods are compared:

o PA-APG (Yu, 2013), which solves the convex overlapped nuclear norm minimization problem;

o GDPAN (Zhong and Kwok, 2014), which directly applies the PA algorithm to (14) as described
in (18)-(20);

e LRTC (Chen et al., 2020), which uses ADMM (Boyd et al., 2011) on (14) as described in (15)-
(17); and

e The proposed NORT algorithm (Algorithm 2), and its slower variant without adaptive momentum
(denoted “sNORT”). Recall from Corollary 10 that 7 has to be larger than p + Drxy. However, a
large 7 leads to slow convergence (Remark 11). Hence, we set 7 = 1.01(p + Dkg). Moreover,
asin (Lietal., 2017), we set y; = 0.1 and p = 0.5 in Algorithm 2.

All algorithms are implemented in Matlab, with sparse tensor and matrix operations performed
via Mex files in C. All hypeprparamters (including the A;’s in (14) and hyperparameter in the base-
lines) are tuned by grid search using the validation set. We early stop training if the relative change
of objective in consecutive iterations is smaller than 10~* or reaching the maximum of 2000 itera-
tions.

5.1.1 RECOVERY PERFORMANCE COMPARISON

In this experiment, we set I' = I? = I3 = ¢, where ¢ = 200 and 400. Following (Lu et al.,
2016b; Yao et al., 2017, 2019b), performance is evaluated by the (i) root-mean-square-error on
the unobserved elements: RMSE = HPQ(X - @)H P/ ’ QH?’E), where X is the low-rank tensor
recovered, and €2 contains the unobserved elements in O; (ii) CPU time; and (iii) space, which is
measured as the memory used by MATLAB when running each algorithm.

Results on RMSE and space are shown in Table 3. We can see that the nonconvex regularizers
(capped-/1, LSP and TNN, with methods GDPAN, LRTC, sNORT and NORT) all yield almost
the same RMSE, which is much lower than that of using the convex nuclear norm regularizer in
PA-APG. As for the space required, SNORT and NORT take orders of magnitude smaller space
than the others. LRTC takes the largest space due to the use of multiple auxiliary and dual variables.
Convergence of the optimization objective is shown in Figure 1. As can be seen, NORT is the fastest,
followed by sNORT and GDPAN, while LRTC is the slowest. These demonstrate the benefits
of avoiding repeated tensor folding/unfolding operations and faster convergence of the proximal
average algorithm.

5.1.2 RANKS DURING ITERATION

Unlike factorization methods which explicitly constrain the iterate’s rank, in NORT (Algorithm 2),
this is only implicitly controlled by the nonconvex regularizer. As shown in Table 2, having a large
rank during the iteration may affect the efficiency of NORT. Figure 2 shows the ranks of (2;) ; and
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Table 3: Testing RMSE and space required for the synthetic data.

¢ = 200 (sparsity:4.77%) | ¢ = 400 (sparsity:2.70%)
\ RMSE | space (MB) | RMSE | space (MB)

convex | PA-APG | 0.0110£0.0007 | 600.8+70.4 | 0.0098+0.0001 | 4804.5+£598.2

| GDPAN | 0.0010-£0.0001 | 423.1411.4 | 0.0006-:0.0001 | 3243.3+489.6

nonconvex | LRTC | 0.0010:£0.0001 | 698.9421.5 | 0.0006+-0.0001 | 5870.6:514.0
(capped-¢1) | sNORT | 0.0010+0.0001 | 10.1+0.1 | 0.0006::0.0001 |  44.6+-0.3
| NORT | 0.0009£0.0001 | 14.440.1 | 0.0006-£0.0001 |  66.3+0.6

GDPAN | 0.0010-£0.0001 | 426.949.7 | 0.0006::0.0001 | 3009.3:376.2

|
nonconvex | LRTC | 0.0010+0.0001 | 714.0+24.1 | 0.0006-0.0001 | 5867.7+529.1
(LSP) | sNORT | 0.0010+0.0001 | 10.840.1 | 0.0006+-0.0001 |  44.6-:0.2
| NORT | 0.0010-£0.0001 | 14.040.1 | 0.0006+0.0001 | 62.1+0.5
| GDPAN | 0.0010+£0.0001 | 427.3£10.1 | 0.0006--0.0001 | 3009.2+412.2
nonconvex | LRTC | 0.0010+0.0001 | 759.0+24.3 | 0.0006-0.0001 | 5865.5+519.3
(TNN) | sNORT | 0.0010£0.0001 | 10.2+0.1 | 0.00063-0.0001 |  44.7+0.2
| NORT | 0.0010£0.0001 | 14.4+0.2 | 0.00060.0001 | 63.1+£0.6

X! 11 at step 11 of Algorithm 2. As can be seen, the ranks of the iterates remain small compared
with the tensor size (¢ = 400). Moreover, the ranks of X/, ,, X7, and X}, all converge to the
true rank (i.e., 5) of the ground-truth tensor.

5.1.3 QUALITY OF CRITICAL POINTS

In this experiment, we empirically validate the statistical performance of critical points analysed
in Theorem 16. Note that Xy and X; are initialized as the zero tensor in Algorithm 2, and X;
is implicitly stored by a summation of D factorized matrices in (22). We randomly generate
Xo =X = 32, (u"(vi)T)m, where elements in u®’s and v%’s follow N(0,1). The statisti-
cal error is measured as the RMSE between X; during iterating of NORT (Algorithm 2) and the
underlying ground-truth X* (i.e., ||X; — X*||%), while the optimization error is measured as the
RMSE between iterate X; and the globally optimal solution X of (14) (i.e., ||X; — X[|%). We use the
same experimental setup as in Section 5.1.1. As the exact X is not known, it is approximated by the
X which obtains the lowest training objective value over 20 repetitions.

Figure 3 shows the statistical error versus optimization error obtained by NORT with the (smooth)
LSP regularizer and (nonsmooth) capped-¢; regularizer. While both the statistical and optimization
errors decrease with more iterations, the statistical error is generally larger than the optimization
error since we may not have exact recovery when noise is present. Moreover, the optimization
errors for different runs terminate at different values, indicating that NORT indeed converges to
different local solutions. However, all these have similar statistical errors, which validates Theo-
rem 16. Finally, while the capped-¢; regularizer does not satisfy Assumption 1 (which is required
by Theorem 16), Figure 3(b) still shows a similar pattern as Figure 3(a). This helps explain the good
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Figure 1: Convergence of the objective versus number of iterations (top) and CPU time (bottom)
on the synthetic data (with ¢ = 400).
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Figure 2: Ranks of {(Z);, X/, }i=1,2,3 versus number of iterations on synthetic data (with ¢ =

400).

empirical performance obtained by the capped-¢; regularizer (Jiang et al., 2015; Lu et al., 2016b;

Yao et al., 2019b).

5.1.4 EFFECTS OF NOISE LEVEL AND NUMBER OF OBSERVATIONS

In this section, we show the effects of noise level o and number of observed elements |€2||; on the
testing RMSE and training time. We use the same experimental setup as in Section 5.1.1. Since PA-
APG is much worse (see Table 3) while LRTC and sNORT are slower than NORT (see Figure 1),
we only use GDPAN as comparison baseline.
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Figure 3: Statistical error (red) and optimization error (black) versus the number of NORT iterations
(with ¢ = 400) from 20 runs of NORT (with different random seeds).

Figure 4(a) shows the testing RMSE with ¢ at different ||Q||;’s (here, we plot s = ||€2|; /I™).
As can be seen, the curves show a linear dependency on o when ||€2||, is sufficiently large, which
agrees with Corollary 17. Figure 4(b) shows the testing RMSE versus /log ™/ ||€2]|; at different
0’s. As can be seen, there is a linear dependency when the noise level o is small, which agrees
with Corollary 18. Finally, note that NORT and GDPAN obtain very similar testing RMSEs as both
solve the same objective (but with different algorithms).

----- GDPAN(s=0.1%) =-=-=~NORT(s=0.1%) 009 - —- GDPAN(0=10"") ====NORT(s=10"")
ggsm;sﬂ;:zﬂ; """""‘:g§1§5=0-530; 0081 |+ GDPAN(0=1072) "+ NORT(6=107?)
5=2.5% $=2.5% 10° —10°
10°F |- - ~GDPAN(5=12.5%) - - ~NORT(s=12.5%) 007 GOPAN(e=10" ) ™ NORT(e=10")
—— GDPAN(5=62.5%) NORT(s=62.5%) = 7 GDPAN(o=10") NORT(0=10") .
1 0.06 | —=— GDPAN(0=10") NORT(r=10®)| _.»*

105 104 10% 102 107! E'0 0.002 0.004 0.006 0.008 001 0012 0014 0016 0.018
Viog@/Tl:
(a) Different noise levels. (b) Different numbers of observations.

Figure 4: Effect of noise level and number of observations on the testing RMSE on the synthetic
data (with ¢ = 400). Note that NORT and GDPAN obtain similar performance and their
curves overlap with each other.

Figure 5 shows the effects of noise level on the convergence of testing RMSE versus (training)
CPU time. As can be seen, testing RMSEs generally terminates at a higher level when the noise
level gets larger, and NORT is much faster than GDPAN under all noise level.
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Figure 5: Effects of the noise level on the convergence on synthetic data (with ¢ = 400, s = 2.5%).

Figure 6 shows the effects of numbers of observations on the convergence of testing RMSE
versus (training) CPU time. First, we can see that NORT is much faster than GDPAN under various
numbers of observations. Then, when s gets smaller and the tensor completion problem is more

ill-posed, more iterations are needed by both NORT and GDPAN, which makes them take more
time to converge.
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Figure 6: Effect of the number of observations on the convergence on synthetic data (with ¢ = 400,
o=1072).

5.1.5 EFFECTS OF TENSOR ORDER AND RANK

In this experiment, we use a similar experimental setup as in Section 5.1.1, except that the tensor
order M is varied from 2 to 5. As high-order tensors have large memory requirements, while we
always set I' = 12 = [? = ¢ = 400, we set [* = 5 when M = 4 and I* = I® = 5 when M = 5.
Figure 7(a) shows the testing RMSE versus M. As can be seen, the error grows almost linearly,
which agrees with Theorem 16. Moreover, note that at M = 5, GDPAN runs out of memory
because it needs to maintain dense tensors in each iteration.

Figure 7(b) shows the testing RMSE w.r.t. /74 (where ry is the ground-truth tensor rank). As
can be seen, the error grows linearly w.r.t. | /7y, which again agrees with Theorem 16.
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Figure 7: Effects of tensor order and ground-truth rank on the testing RMSE on the synthetic data

(with ¢ = 400). Note that NORT and GDPAN obtain similar performance and their
curves overlap with each other.
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Figure 8(a) shows the convergence of testing RMSE versus (training) CPU time at different
tensor orders. As can be seen, while both GDPAN and NORT need more time to converge for
higher-order tensors, NORT is consistently faster than GDPAN. Figure 8(b) shows the convergence
of testing RMSE at different ground-truth ranks. As can be seen, while NORT is still faster than
GDPAN at different ground-truth tensor ranks (r,), the relative speedup gets smaller when r, gets
larger. This is because NORT needs to construct sparse tensors (e.g., Algorithm 1) before using
them for multiplications, and empirically, the handling of sparse tensors requires more time on
memory addressing as the rank increases (Bader and Kolda, 2007).
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10*

Figure 8: Effects of tensor order and ground-truth rank on the convergence on the synthetic data
(with ¢ = 400). GDPAN runs out of memory when M = 5.

5.2 Tensor Completion Applications

In this section, we use the square loss. As different nonconvex regularizers have similar perfor-
mance, we will only use LSP in the sequel. The proposed NORT algorithm is compared with:*

4. We used our own implementations of LRTC, PA-APG and GDPAN as their codes are not publicly available.
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Table 4: Algorithms compared on the real-world data sets.

algorithm model | basic solver
ADMM (Tomioka et al.,
2010, ADMM

accelerated proximal algorithm
on dual problem

PA-APG (Yu, 2013) ‘ accelerated PA algorithm

|

FaLRTC (Liu et al., 2013) | overlapped nuclear norm
| |

| |

convex
FFW (Guo et al., 2017) latent nuclear norm ‘ efficient Frank-Wolfe algorithm
TR-MM (Nimishakavi squared latent nuclear Riemannian optimization on
et al., 2018) norm dual problem
TenNN (Zhang and Aeron, tensor-SVD ADMM
2017)
RP (Kasgloailéc)l Mishra, Turker decomposition Riemannian preconditioning
TMac (Xu et al., 2013) multlple' ma't rees alternative minimization
factorization
o CP-WOPT (Hong et al., .. . . .
factorization 2020) CP decomposition nonlinear conjugate gradient
TMaC-TT2((1)31e7r;gua etal, tensor-train decomposition alternative minimization
TRLRF (Yuan et al., 2019) ‘ tensor-ring decomposition ADMM
GDPAN (Zhong and .
Kwok, 2014) nonconvex PA algorithm
nonconvex overlapped
NON-CONVEX | | RTC (Chen et al., 2020) nuclear norm ADMM
regularization
| NORT (Algorithm2) | proposed algorithm

(i) algorithms for various convex regularizers including: ADMM (Boyd et al., 2011)°, PA-
APG (Yu, 2013), FaLRTC (Liu et al., 2013)®, FFW (Guo et al., 2017)7, TR-MM (Nimishakavi
etal., 2018)8, and TenNN (Zhang and Aeron, 2017)%;

Nolie JBEN e V)]

.https://web.stanford.edu/~boyd/papers/admm/
.https://github.com/andrewssobral/mctcdbmi/tree/master/algs_tc/LRTC
.https://github.com/quanmingyao/FFWTensor
.https://github.com/madhavcsa/Low—Rank-Tensor-Completion
.http://www.ece.tufts.edu/~shuchin/software.html
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(i) factorization-based algorithms including: RP (Kasai and Mishra, 2016)', TMac (Xu et al.,
2013)!', CP-WOPT (Hong et al., 2020)'?, TMac-TT (Bengua et al., 2017)'3, and TRLRF (Yuan
etal., 2019)'4;

(iii) algorithms that can handle nonconvex regularizers including GDPAN (Zhong and Kwok,
2014) and LRTC (Chen et al., 2020).

More details are in Table 4. We do not compare with (i) SNORT, as it has already been shown to be
slower than NORT; (ii) iterative hard thresholding (Rauhut et al., 2017), as its code is not publicly
available and the more recent TMac-TT solves the same problem; (iii) the method in (Bahadori
et al., 2014), as it can only deal with cokriging and forecasting problems.

Unless otherwise specified, performance is evaluated by (i) root-mean-squared-error on the un-
observed elements: RMSE = || P (X — O0)|| 5/ HQLH(F, where X is the low-rank tensor recov-
ered, and Q1 contains the unobserved elements in O; and (ii) CPU time.

5.2.1 COLOR IMAGES

We use the Windows, Tree and Rice images from (Hu et al., 2013), which are resized to 1000 x
1000 x 3 (Figure 9). Each pixel is normalized to [0, 1]. We randomly sample 5% of the pixels for
training, which are then corrupted by Gaussian noise A/(0,0.012); and another 5% clean pixels are
used for validation. The remaining unseen clean pixels are used for testing. Hyperparameters of the
various methods are tuned by using the validation set.

L
B
13

(a) Windows. (b) Tree. (c) Rice.
Figure 9: Color images used in experiments. All are of size 1000 x 1000 x 3.

Table 5 shows the RMSE results. As can be seen, the best convex methods (PA-APG and
FalLLRTC) are based on the overlapped nuclear norm. This agrees with our motivation to build
a nonconvex regularizer based on the overlapped nuclear norm. GDPAN, LRTC and NORT have
similar RMSEs, which are lower than those by convex regularization and the factorization approach.
Convergence of the testing RMSE is shown in Figure 10. As can be seen, while ADMM solves the
same convex model as PA-APG and FaLRTC, it has slower convergence. FFW, RP and TR-MM
are very fast but their testing RMSEs are higher than that of NORT. By utilizing the “sparse plus
low-rank” structure and adaptive momentum, NORT is more efficient than GDPAN and LRTC.

Finally, Table 6 compares NORT with PA-APG and RP, which are the best convex-regularization-
based and factorization-based algorithms, respectively, as observed in Table 5. Table 6 shows the

10. https://bamdevmishra.in/codes/tensorcompletion/

11. http://www.math.ucla.edu/~wotaoyin/papers/tmac_tensor_recovery.html

12. https://www.sandia.gov/~tgkolda/TensorToolbox/

13. https://sites.google.com/site/jbengua/home/projects/efficient-tensor-completion-
for-color-image—and-video-recovery-low—-rank—-tensor-train

14. https://github.com/yuanlonghao/TRLRF
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Table 5: Testing RMSESs on color images. For all images 5% of the total pixels, which are corrupted
by Gaussian noise N'(0,0.012), are used for training.

dataset Rice | Tree | Windows
| ADMM | 0.0680-£0.0003 | 0.0915+0.0005 | 0.0709+0.0004
| PA-APG | 0.0583+0.0016 | 0.0488+0.0007 | 0.0585+0.0002
| FaLRTC | 0.0576:+0.0004 | 0.049440.0011 | 0.0567+0.0005
| FFW | 0.0634:£0.0003 | 0.059940.0005 | 0.07720.0004
|
|
|

convex

TR-MM | 0.0596:0.0005 | 0.051540.0011 | 0.0634+0.0002

TenNN | 0.0647-£0.0004 | 0.056240.0004 | 0.05860.0003

RP | 0.0541£0.0011 | 0.0575+0.0010 | 0.038840.0026

| TMac | 0.1923£0.0005 | 0.175040.0006 | 0.1313+£0.0005
factorization | CP-WOPT | 0.091240.0086 | 0.0750+0.0060 | 0.0964-£0.0102
| TMac-TT | 0.0729+0.0022 | 0.066540.0147 | 0.1045+0.0107

| TRLRF | 0.0640£0.0004 | 0.078040.0048 | 0.0588-0.0035

| GDPAN | 0.046740.0002 | 0.0394:0.0006 | 0.0306-0.0007

nonconvex | LRTC | 0.0468+0.0001 | 0.0392+0.0006 | 0.0304:£0.0008
| NORT | 0.0468--0.0001 | 0.0386+-0.0009 | 0.0297-£0.0007

testing RMSEs at different noise levels ¢’s. As can be seen, the testing RMSEs of all methods
increase as o increases. NORT has lower RMSEs at all o settings. This is because natural images
may not be exactly low-rank, and adaptive penalization of the singular values can better preserve
the spectrum. A similar observation has also been made for nonconvex regularization on images
(Yao et al., 2019b; Lu et al., 2016b). However, when the noise level becomes very high (¢ = 0.1
with pixel values in [0, 1]), though NORT is still the best, its testing RMSE is not small.

Table 6: Testing RMSEs on image Tree at different noise levels o. The percentage followed by the
marker 1 indicates the relative increase of testing RMSE compared with NORT.

| o=0001 | o0=001 | c=01
(convex) PA-APG | 0.0149 (35.8%7) | 0.0488 (24.6%1) | 0.1749 (18.6% 1)
(factorization) RP | 0.0139(26.0%1) | 0.0575 (15.6%1) | 0.1623 (10.1% 1)
(nonconvex) ~ NORT | 0.0110 | 0.0386 | 0.1474
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(a) Rice. (b) Tree. (c) Windows.

Figure 10: Testing RMSE versus CPU time on color images. Top: All methods; Bottom: For
improved clarity, methods which are too slow or with too poor performance are removed.

5.2.2 REMOTE SENSING DATA

Experiments are performed on three hyper-spectral images (Figure 11): Cabbage (1312x432x49),
Scene (1312x951x49) and Female (592x409x 148).13: The third dimension is for the bands of
images.

(a) Cabbage. (b) Scene. (c) Female.
Figure 11: Hyperspectral images used in the experiment.

We use the same setup as in Section 5.2.1, and hyperparameters are tuned on the validation set.
ADMM, TenNN, GDPAN, LRTC, TMac-TT and TRLRF are slow and so not compared. Results
are shown in Table 7. Again, NORT achieves much lower testing RMSE than convex regularization
and factorization approach. Figure 12 shows convergence of the testing RMSE. As can be seen,
NORT is the fastest.

15. Cabbage and Scene images are from https://sites.google.com/site/
hyperspectralcolorimaging/dataset, while the Female images are downloaded from http:
//www.imageval.com/scene-database-4-faces-3-meters/.
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Table 7: Testing RMSEs on remote sensing data.

‘ Cabbage ‘ Scene ‘ Female
| PA-APG | 0.091340.0006 | 0.1965+0.0002 | 0.1157-0.0003
| FaLRTC | 0.090940.0002 | 0.1920£0.0001 | 0.113340.0004
| FFW | 0.0962:£0.0004 | 0.203740.0002 | 0.2096-0.0006
|
|

TR-MM | 0.0959:£0.0001 | 0.1965+0.0002 | 0.13970.0006

RP | 0.0491£0.0011 | 0.1804+0.0005 | 0.0647+0.0003

factorization | TMac | 0.4919+0.0059 | 0.597040.0029 | 1.9897+0.0006
| CP-WOPT | 0.1846:£0.0514 | 0.481140.0082 | 0.1868+0.0013

nonconvex | NORT | 0.0376:-0.0004 | 0.1714+0.0012 | 0.0592-:0.0002
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(a) Cabbage. (b) Female. (c) Scene.
Figure 12: Testing RMSE versus CPU time on remote sensing data.

5.2.3 SocCIAL NETWORKS

In this experiment, we consider multi-relational link prediction (Guo et al., 2017) as a tensor com-
pletion problem. Experiment is performed on the YouTube data set'® (Lei et al., 2009), which con-
tains 15,088 users and five types of user interactions. Thus, it forms a 15088 x 15088 x5 tensor, with
a total of 27,257,790 nonzero elements. Besides the full set, we also experiment with a YouTube
subset obtained by randomly selecting 1,000 users (leading to 12,101 observations). We use 50%
of the observations for training, another 25% for validation and the rest for testing. Table 8 shows
the testing RMSE, and Figure 13 shows the convergence. As can be seen, NORT achieves smaller
RMSE and is also much faster.

5.3 Link Prediction in Knowledge Graph

Knowledge Graph (KG) (Nickel et al., 2015; Toutanova et al., 2015) is an active research topic in
data mining and machine learning. Let £ be the entity set and R be the relation set. In a KG, nodes
are the entities, while edges are relations representing the triplets S = {(h,r,t)}, where h € & is
the head entity, t € £ is the tail entity, and r € R is the relation between h and ¢.

16. http://leitang.net/data/youtube-data.tar.gz
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Table 8: Testing RMSEs on YouTube data sets. FaLRTC, PA-APG, TR-MM and CP-WOPT are
slow, and thus not run on the full set.

| subset | full set
| FaLRTC | 0.65740.060 | —
| PA-APG | 0.65140.047 | —
| FFW | 0.697+0.054 | 0.395:0.001
|
|

TR-MM | 0.670+0.098 | —

RP | 0.522+0.038 | 0.410+0.001

factorization | TMac | 0.795+0.033 | 0.611:£0.007
| CP-WOPT | 0.78540.040 | —

nonconvex ‘ NORT ‘ 0.482+0.030 ‘ 0.370+0.001

——FFW

——RP
TMac

——NORT

FaLRTC

testing RMSE
testing RMSE

10% 10 10 10% 10% 10°
CPU time (seconds) CPU time (seconds)

(a) Subset. (b) Full set.
Figure 13: Testing RMSE versus CPU time on Youtube.

KGs have many downstream applications, such as link prediction and triplet classification. It
is common to store KGs as tensors, and solve the KG learning tasks with tensor methods (Lacroix
et al., 2018; Balazevic et al., 2019). Take link prediction as an example. The KG can be seen as a 3-
order incomplete tensor O = {£1} € R XI**I* ‘where I' = I2 = |€] and I3 = |R|. O4,ii, = 1
when entities 7 and ¢o have the relation ¢3, and —1 otherwise. Let {2 be a mask tensor denoting the
observed values in O, i.e., ;4,55 = 1 1if O;,4,4, 1s observed and 0 otherwise. The task is to predict
elements in O which are not observed. Since O is binary, it is common to use the log loss as ¢(-, -)
in (14). The objective then becomes:

) D
mingy Z(ilim)eﬂ log(1 + exp(—Xiyiyis Oiaia)) + D XNid(Xge))- (47)
In step 9 of Algorithm 2, it is easy to see that

—0iyigig XP(=Xiyigiz Oiyigis) L Q
[ () iizis = T+exp(— X1, 1515 011 i) (@@3) €
0 (i172i3) ¢ Q2
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Experiments are performed on two benchmark data sets: WNISRR!” (Dettmers et al., 2018)
and FB15k-237'8 (Toutanova et al., 2015), which are subsets of WNI8 and FB15k (Bordes et al.,
2013), respectively. WNIS is a subset of WordNet (Miller, 1995), and FB15k is a subset of the
Freebase database (Bollacker et al., 2008). To avoid test leakage, WNISRR and FB15k-237 do
not contain near-duplicate and inverse-duplicate relations. Hence, link prediction on WNI8RR and
FB15k-237 is harder but more recommended than that on WNI8 and FB15k (Dettmers et al., 2018).
To form the entity set £, we keep the top 500 (head and tail) entities that appear most frequently
in the relations (r’s). Relations that do not link to any of these 500 entities are removed, and those
remained form the relation set R. Following the public splits on entities in £ and relations in
R (Han et al., 2018), we split the observed triplets in S into a training set Syain, validation set Sy,
and testing set Siesr. For each observed triplet (h,r,t) € Siain, We sample a negative triplet from
S(h,r,t) = {(h,r,t) ¢ S|h € E} N {(h,r i) ¢ S|i € E}. We avoid duplicate negative triplets
during sampling. We then represent the KG’s by tensors O’s of size 500 x 500 x 8 for WNISRR,
and 500 x 500 x 39 for FB15k-237 with corresponding mask tensors €2’s.

Following (Bordes et al., 2013; Dettmers et al., 2018), performance is evaluated on the testing
triplets in Q by the following metrics: (i) mean reciprocal ranking: MRR = 1/||Q||o D (iriniz)eQ
1/rank;,, where rank;, is the ranking of score X;,;,;; among {X;,;} with j = 1,... |R]| in
descending order; (ii) Hits@l = 1/€]|o 2 (irigig)eq L(ranks; < 1), where I(c) is the indica-
tor function which returns 1 if the constraint ¢ is satisfied and 0 otherwise; and (iii) Hits@Q3 =
/1120 2 (irinis)en L(rank;; < 3). For these three metrics, the higher the better.

The aforementioned algorithms are designed for the square loss, but not for the log loss in (47).
We adapt the gradient-based algorithms including PA-APG, ADMM and CP-WOPT, as we only
need to change the gradient calculation for (47). As a further baseline, we implement the classic
Tucker decomposition (Tucker, 1966; Kolda and Bader, 2009) to optimize (47). While RP (Kasai
and Mishra, 2016) is the state-of-the-art Tucker-type algorithm, it uses Riemannian preconditioning
and cannot be easily modified to handle nonsmooth loss.

Results on WNI8RR and FB15k-237 are shown in Tables 9 and 10, respectively. As can be seen,
NORT again obtains the best ranking results. Figure 14 shows convergence of MRR with CPU time,
and NORT is about two orders of magnitude faster than the other methods.

Table 9: Testing performance on the WNI8RR data set.
|  MRR | Hits@l | Hits@3

ADMM | 0.3620.029 | 0.156+0.024 | 0.42240.038

convex ‘
| PA-APG | 0.399+0.017 | 0.20340.023 | 0.500+0.038
.| Tucker | 0.43940.013 | 0.30940.016 | 0.43840.026
factorization
| CP-WOPT | 0.41740.018 | 0.266+0.027 | 0.453+0.019
nonconvex | NORT | 0.523+0.022 | 0.375:£0.033 | 0.578--0.024

17. https://github.com/TimDettmers/ConvE
18. https://www.microsoft.com/en-us/download/details.aspx?i1d=52312
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Table 10: Testing performance on the FB15k-237 data set.
|  MRR | Hits@l | Hits@3

ADMM | 0.46620.006 | 0.41120.006 | 0.452+0.011

convex ‘
| PA-APG | 0.514£0.013 | 0.46340.015 | 0.59040.016
.| Tucker | 0.471£0.018 | 0.355+0.017 | 0.465+0.015
factorization
| CP-WOPT | 0.420+0.021 | 0.373+0.015 | 0.488+0.014
nonconvex | NORT | 0.677+0.007 | 0.609-£0.007 | 0.698-:0.011
DFS ——ADMM v —— ADMM
0.55 ——PA-APG 0.8 ——PA-APG
Tucker Tucker
. - zg—;:'OPT — Eg—;erPT
o m::PUIime(secondsw)U‘ - i A CPUtimz;Ogseconds) - ‘DJ
(a) WNISRR. (b) FB15k-237.

Figure 14: Testing MRR versus CPU time on the WNI/SRR and FB15k-237 data sets.

5.4 Robust Tensor Completion

In this section, we apply the proposed method on robust video tensor completion. Three videos
(Eagle'®, Friends*® and Logo®') from (Indyk et al., 2019) are used. Example frames are shown in
Figure 15. For each video, 200 consecutive 360 x 640 frames are downloaded from Youtube, and
the pixel values are normalized to [0, 1]. Each video can then be represented as a fourth-order tensor
O with size 360 x 640 x 3 x 200. Each element of O is normalized to [0, 1]. This clean tensor O
is corrupted by a noise tensor N to form O. N is a sparse random tensor with approximately 1%
nonzero elements. Each entry is first drawn uniformly from the interval [0, 1], and then multiplied
by 5 times the maximum value of O. Hyperparameters are chosen based on performance on the first
100 noisy frames. Denoising performance is measured by the RMSE between the clean tensor O
and reconstructed tensor X on the last 100 frames.

(a) Eagle. (b) Friends. (c) Logo.
Figure 15: Example image frames in the videos.

19. http://youtu.be/ufnf_q_ 30fg
20. http://youtu.be/xmLZsEfXEgE
21. http://youtu.be/L5HQoFIaT4l
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For the robust tensor completion, we take RTDGC (Gu et al., 2014) as the baseline, which
adopts the ¢; loss and overlapped nuclear norm in (40) (i.e., k¢(x) = x and ¢ is the nuclear norm).
As this is non-smooth and non-differentiable, RTDGC uses ADMM (Boyd et al., 2011) for the
optimization, which handles the robust loss and low-rank regularizer separately. As discussed in
Section 4.1, we use the smoothing NORT (Algorithm 3, with Jg = 0.9) to optimize (42), the
smoothed version of (40). Table 11 shows the RMSE results. As can be seen, NORT obtains
better denoising performance than RTDGC. This again validates the efficacy of nonconvex low-
rank learning. Figure 16 shows convergence of the testing RMSE. As shown, NORT leads to a
lower RMSE and converges much faster as folding/unfolding are avoided.

Table 11: Testing RMSEs on the videos.
‘ Eagle ‘ Friends ‘ Logo
convex RTDGC ‘ 0.122+0.007 ‘ 0.128+0.005 ‘ 0.112+0.008
nonconvex  NORT ‘ 0.090+£0.003 ‘ 0.075+0.002 ‘ 0.088+0.004

——RTDGC ——RTDGC
045 — NORT o ——NORT orr

035+ 0.25

testing RMSE
testing RMSE
testing RMSE

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 0 100 200 300 400 500 600
CPU time (seconds) CPU time (seconds) CPU time (seconds)

(a) Eagle. (b) Friends. (c) Logo.
Figure 16: Testing RMSE versus CPU time on the videos.

5.5 Spatial-temporal Data

In this experiment, we predict climate observations for locations that do not have any records. This
is formulated as a regularized tensor completion problem in (43). We use the square loss with a
graph Laplacian regularizer constructed as in (43).

We use the CCDS and USHCN data sets from (Bahadori et al., 2014). CCDS?2 contains monthly
observations of 17 variables (such as carbon dioxide and temperature) in 125 stations from January
1990 to December 2001. USHCN?? contains monthly observations of 4 variables (minimum, max-
imum, average temperature and total precipitation) in 1218 stations from from January 1919 to
November 2019. As discussed in Section 4.2, these records are collectively represented by a 3-
order tensor O € R IXIPXT 3, where I is the number of locations, I2 is the number of recorded time
stamps, and I2 is the number of variables corresponding to climate observations. Consequently,
CCDS is represented as a 125 x 156 x 17 tensor and USHCN is represented as a 1218 x 1211 x 4

22. https://viterbi-web.usc.edu/~1iu32/data/NA-1990-2002-Monthly.csv
23. http://www.ncdc.noaa.gov/oa/climate/research/ushcn
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tensor. The affinity matrix is denoted A, with A;; being the similarity s(i, j) = exp(—2b;;) be-
tween locations 7 and j (b;; is the Haversine distance between 7 and 7). Following (Bahadori et al.,
2014), we normalize the data to zero mean and unit variance, then randomly sample 10% of the
locations for training, another 10% for validation, and the rest for testing.

Algorithms FalLL.RTC, FFW, TR-MM, RP and TMac cannot be directly used for this graph
Laplacian regularized tensor completion problem, while PA-APG, ADMM, Tucker and CP-WOPT
can be adapted by modifying the gradient calculation. Hence we adapt and implement PA-APG,
ADMM, Tucker and CP-WOPT as baselines in this section. In addition, we compare with a
greedy algorithm (denoted “Greedy”)?* from (Bahadori et al., 2014), which successively adds a
rank-1 matrix to approximate the mode-n unfolding with the rank constraint. For the factorization-
based algorithms Tucker and CP-WOPT, the graph Laplacian regularizer h takes the correspond-
ing factor matrix rather than Xy as the input. Specifically, recall that Tucker factorizes X into
[G: B, B2, B3], where § € RF' *K*xK° Bi ¢ RI'K i — 1 9 3 and ks are hyperparameters.
When k' = k% = k3 and G is superdiagonal, this reduces to the CP-WOPT decomposition. The
graph Laplacian regularizer is then constructed as h(B') to leverage location proximity. As an addi-
tional baseline, we also experiment with a NORT variant that does not use the Laplacian regularizer
(denoted “NORT-no-Lap”).

Table 12: Testing RMSEs on CCDS and USHCN data sets.
| CccDS | USHCN
| ADMM | 0.890+0.016 | 0.691:£0.005
| PA-APG | 0.866£0.014 | 0.680+0.009
| Tucker | 0.85640.026 | 0.647+0.006
| CP-WOPT | 0.887+0.018 | 0.688-£0.009
rank constraint | Greedy | 0.871+0.008 | 0.658+0.012
| NORT-no-Lap | 0.99740.001 | 1.39140.001
| NORT | 0.793+0.002 | 0.583-£0.012

convex

factorization

nonconvex

Table 12 shows the RMSE results. Again, NORT obtains the lowest testing RMSEs. Moreover,
when the Laplacian regularizer is not used, the testing RMSE is much higher, demonstrating that
the missing slices cannot be reliably completed. Figure 17 shows the convergence. As can be
seen, NORT is orders of magnitude faster than the other algorithms. The gaps on the performance
and speed between NORT and the other baselines are more obvious on the larger USHCN data
set. Further, note from Figures 17(a) and 17(b) that though NORT-no-Lap has converged, it cannot
decrease the testing RMSE during learning (Figures 17(c) and 17(d)). This validates the efficacy of
the graph Laplacian regularizer.

6. Conclusion

In this paper, we propose a low-rank tensor completion model with nonconvex regularization. An
efficient nonconvex proximal average algorithm is developed, which maintains the “sparse plus

24. This method is denoted “ORTHOGONAL” in (Bahadori et al., 2014) and obtains the best results there.
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Figure 17: Convergence of the training objective (below) and testing RMSE (top) versus CPU time
on the spatial-temporal data.

low-rank”™ structure throughout the iterations and incorporates adaptive momentum. Convergence
to critical points is guaranteed, and the obtained critical points can have small statistical errors. The
algorithm is also extended for nonsmooth losses and additional regularization, demonstrating broad
applicability of the proposed algorithm. Experiments on a variety of synthetic and real data sets

are performed. Results show that the proposed algorithm is more efficient and more accurate than
existing state-of-the-art.

In the future, we will extend the proposed algorithm to simultaneous completion of multiple
tensors, e.g., collaborative tensor completion (Zheng et al., 2013) and coupled tensor comple-
tion (Wimalawarne et al., 2018). Besides, it is also interesting to study how the proposed algorithm

can be efficiently parallelized on GPUs and distributed computing environments (Phipps and Kolda,
2019).
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Appendix
Appendix A. Comparison with Incoherence Condition

The matrix incoherence condition (Candeés and Recht, 2009; Candes et al., 2011; Negahban and
Wainwright, 2012) is in form of the singular value decomposition X = UXV T € R™*", where
U € R™7 (resp. V € R™7) contains the left (resp. right) singular vectors and 3 € R"*" is the
diagonal matrix containing singular values. The purpose of this condition is to enforce that the left
and right singular vectors should not be aligned with the standard basis (i.e., vector e;’s with the ith
dimension being 1 and others being 0). Typically, this condition is stated as

r
max |[UU'];;| < po—, and  max
. 27 )
7j=1,....m m Jj=1,...,n

Vv ]J‘ < uo (48)

for some constant g > 0. Note that (48) does not depend on the singular values of X. However,
this condition can be restrictive in realistic settings, where the underlying matrix is contaminated
by noise. In this case, the observed matrix can have small singular values. Therefore, we need to
impose conditions related to the singular values, and (32) shows such a dependency. An example
matrix satisfying the matrix RSC condition but not the incoherence condition is in Section 3.4.2
of (Negahban and Wainwright, 2012). As a result, the RSC condition, which involves singular
values, is less restrictive than the incoherence condition, and can better describe “spikiness”.

Appendix B. Proofs

B.1 Proposition 4

Proof For simplicity, we consider the case where U € R/ *k (resp V e R( ) k) has only one

single column u € R” (resp. v € ]R 7). We need to fold uv " along with the jth mode and then
unfold it along its ith mode. Let us consider the structure of X = (uwv )Y}, we can express it as

T T i X—
= [u’vl y ey, LU I } GR s
(1°19)

where v = [v1;...;v_s=_] with each v, € Rf '. When unfolding X with the ith mode, the unfold-
1717y
ing matrix is

T

(v’ v ]eR“ . (49)
(1117)
Thus,
a’ ['uluT, - ,’U]s’u,T] = [(aT'vl)uT, ceny (aTvls)uT],
_ <aTmat (fvp;ﬁ,f"j)) 2ul. (50)
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Similarly, let b = [by;...;b i= |, where each b, € R . From (49), we have

It1J

T

[vluT,...,v P uT]b = Zﬁvi(uTbi),

(1°19) Jj=1

’U,Tbl
= [’l)l;...;'l}j_ﬁl )
MU Tl e
1813
= [’01;.. ;U 17r Hb17_”;bL]Tu,
g

= mat (v; ", I”) mat (b; I, I’) u. (51)

When U (resp. V) has k columns, combining with the fact that UV T = ZI;ZI upv;or with (50)
and (51), we obtain (26) and (27). [ |

B.2 Proposition 6
Proof Define \; = \g/7, then

D . 1 _
> minx, 5 ([ Xa = 2[5+ Ad ¢<Xd>

. D D
= mingx) 5 1211~ (%), 1X“> Zd 1|er||F+Z ad(Xa),
. D D
me{xd}QHZ—Zd . sz .

Next, we introduce an extra parameter as X = ZdDzl X C<ld>, and express (52) as

+ S S IXalE A (X)- (52

2 p [1 y <
Y [l + R

. D 2 D D <d>
min ey, xg0 g 12X E szzl X

. | D . D [1 < D
—mjgn{QHZ—xH%Jr mn 37 [zuxdu%wmxcn]—zuxu%}- (53

{(Xa} T, X=X
We transform the above equation as
1 s 1
miny 5 [|2 — X[/ + ~g-(X) = proxaz (X),
where g, (X) is defined as
_ . D 1 _ D
70 =7 mingoey 3, (51Xl + Aad(Xa) = 3 1313 . (54)
D
s.t. X§d> =X.
d=1

Thus, there exists g, such that prox g, (2) = S.2 | [proxy, 4 ([Z] <Z->)] @, [
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B.3 Proposition 7

Let g(X) = Zfl):l Ai#(X(q)). Before proving Proposition 7, we first extend Proposition 2 in (Zhong
and Kwok, 2014) in the following auxiliary Lemma.

B.3.1 AUXILIARY LEMMA

Lemma 21 0 < g(X) — g-(X) < g—f’_ dD:1 A2,
Proof From the definition of g, in (54), if X = X1<1> =..= X<DD>, we have
_ D 1 H? 5 D
() <7(X, G [ X+ Aao(x) -5 120%).

_ ZdD:l (X ) = Zle Aad(Xqy) = g(X).

Thus, g(X) — g-(X) > 0. Next, we prove the “<” part in the Lemma. Note that

! <
supx, Aa¢(Xa) — rminy (5 [|Y ~ Xa[f + ag(Y)).

= supx, y Aad(Xa) = 2 ¥ = Xallz = Mg (Y). (55)

Since ¢ is ko-Lipschitz continuous, let o« = ||Y — X |

> We have

(55) = supx, y M [6(Xa) — 6(X)] = S 1Y = Xall7.

.
< supx, y Aaro Y = Xl = 2 IV = Xl
2

T 4 1 AdK0o12 )\31{0 )\?lfi%
Sup, [)\d/ioa 204 ] sup,, 5 [a - } + 9 = Tor (56)
Next, we have
_ 1 2 1_
9(X) — §-(X) < g(X) — 7(miny 5 16 =YlE + ;gr(‘d)), (57)

D D . 1 A
=D s Xa) =Ty mmm}*Hx@—Yd\\%%m)) (58)

<Supxz Aad(X(q)) —TZd . mm{Yd}QHf’C<d> Y2+ 2 “o(Ya),

d’io
Zd oL, (59)

Note that (57) comes from the fact that

o1 1_ 1 1_ 1_
miny 1 = Y13+ —g0(4) < 5 20— XY + —40(X) = —g(20),

then (58) is from the definition of g, in Proposition 6, and (59) is from (56). [ ]
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B.3.2 PROOF OF PROPOSITION 7

Proof From Lemma 21, we have

m:%n F(X) - m:%n F.(X) > m:%n F(X) - F(X) = g(X) — g-(X) > 0.

Let X; = argminy F'(X) and X; = arg miny F;(X). Then, we have

2 D
maén F(DC)—mD%n F (X)) =F(Xq)—F;(X;) <F(X;)=Fr(X;)=9(X;)—G-(X;) < ;—0 it )\5.
7_ =
. . ng D 2
Thus, 0 < min F' — min 7 < 52 ) 7, A [ ]

B.4 Proposition 8

Proof The proof of this proposition can also be found in (Zhong and Kwok, 2014), we add one here
for the completeness. Recall that

2

- ~ 1 -1 > 1
proxz, (X — Vf(X)/7) = argmin — HDC - (X — Vf(f)C)) + —3-(X).
G X 2 T Fr T
Let Z = prox g, (X — Vf(X)/7). Thus,
-1 < 1.
0eZ— (f)C - Vf(ﬁ)C)) + —0g-(X).
T T
When Z = X, we have 0 € V f(X) + 97, (X). Thus, X is a critical point of F. [

B.5 Theorem 9

First, we introduce the following Lemmas, which are basic properties for the proximal step.

Lemma 22 (Parikh and Boyd, 2013) Let T > p+Drko andn = 7—p+Drg. Then, F-(proxz, (X)) <
2 T

Fr(X) = 2||x - prox%(DC)HF.

Lemma 23 (Parikh and Boyd, 2013) If X =prox g (X— 2V f (X)), then X is a critical point of F.

Lemma 24 (Hare and Sagastizdbal, 2009) The proximal map prox g, (X) is continuous.

Proof (of Theorem 9) Recall that prox g. (X) = ZZ’; 1 Prox ;e (X ;). From Lemma 22,
o If step 7 is performed, we have

Fr(Xiy1) < Fr(Vy) — g X1 — Vel 7 < Fr(Xy) — g [ (60)
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e [f step 5 is performed,

Fr(Xes1) < Fr(Ve) = 4 [ X1 = Vel < Br(Xe) = 2 [[%1 = T

< Br(X) = 2 [ % — Tl (6D
Combining (60) and (61), we have

2 3 112 2
— — > — —
n(FT(xl) FT(:X:T—I—I)) = E jexi (T) th+1 :X:t”F + E jexa(T) ||I)Ct+1 I)Ct||F , (62)

where x1(7) and x2(T) are a partition of {1, ..., T'} such that when j € x1(7') step 5 is performed,
and when j € x2(T) step 7 is performed. As F’ is bounded from below and lim | o0 F-(X) =
o0, taking T' = oo in (62), we have

X — 2 X - 2 _
Doy 1t =Yl > I = Xl = e

where ¢ < % [F-(X1) — F™n] is a positive constant. Thus, the sequence {X;} is bounded, and it
must have limit points. Besides, one of the following three cases must hold.

1. x1(o0) is finite, x2(00) is infinite. Let X be a limit point of {X;}, and {X},} be a subsequence
that converges to X. In this case, on using Lemma 24, we have

1 2

proxg- (Xj, — ;Vf(xjt)) — Xy,

T

)

F

J

. ‘ 12— T
tim, [0~ 5 =t |

2
=0.
F

prOXgTT(DNC — %Vf(DNC)) - X

Thus, X = prox

(X — 1V f(X)), and X is a critical point of F from Lemma 23.

A

2. x1(oc) is infinite, x2(co) is finite. Let X be a limit point of {X;}, and {X;, } be a subsequence
that converges to X. In this case, we have

1 2
. 2 .
im0 = 90 = i o (2, ~ 297C60) <8,
-1 _ |2
~[Jrox - sy -2 ~o
T T F
Thus, X = Proxg- (56 — %Vf(ffC)), and X is a critical point of F, from Lemma 23.

3. Both x;(00) and x2(co) are infinite. From the above cases, we can see that either y;(c0) or
X2(00) is infinite, and limit points are also the critical points of F.

Thus, all limit points of {X;} are critical points of F. [
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B.6 Corollary 10

This corollary can be easily derived from the proof of Theorem 9.
Proof Since X;1; = proxg. (V; — %V f(V4)), conclusion (i) directly follows from Lemma 23.

From (62), we have

. 1
ming 7 [ Xee1 = Vel < T Do X = VelE,
2

< —

(Fr(X1) = Fy (Xr41)) < —= (Fp(20) — B2,

2
nl

Thus, we obtain Conclusion (ii). |

B.7 Theorem 13
We first bound OF; in Lemma 25, then prove Theorem 13.

Lemma 25 For iterations in Algorithm 2, we have miny, cop, (x,) ||Utl| o < (7 + p) [|[ X1 =V -

Proof Since X is generated from the proximal step, i.e., X471 = proxg, (V; — %V f(V)), from
its optimality condition, we have

1 1

xt+1 — (Vt — ;Vf(\?t)) + ;8§T(3Ct+1) > 0.
Let Ut =T [xt+1 - Vt] - [Vf(\?t) - Vf(xt+1)] We have

OFr (Xi1) = [VF(Xig1) 4+ 0gr (Xis1)] € Us
Thus, [[Usllp < 7 [[Xes2 = Vel pHIVF (Vo) =V F (Xes ) o < (7 + p) [ X1 = Vil - u
Proof (of Theorem 13). From Theorem 9, we have Tlim F,(X;) = F™n, Then, from Lemma 25,

—00
we have
Jim minyg, o () Ul < im (74p) | Xe1 = Ve[ =0.
Thus, for any €, ¢ > 0 and ¢ > ¢y where ?¢ is a sufficiently large positive integer, we have
X € {DC | minyepr, (x) |Ul|p < e, FMn < (X)) < Fmin 4 c} .

Then, the uniformized KL property implies for all ¢ > %,

1< (Fr(Xeg1) — F™™) ming,epr, ox,) [Well g
=" (Fr(Xpy1) = FF) (7 4+ p) | Xegr — Vell - (63)

Moreover, from Lemma 22, we have

\]

1241 = Vel |7 < p [Fr (Vi) = Fr(Xeg)] - (64)
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Letry = F,(X;) — F™", we have
re =T = Fr(Xy) — B — [Fr(Xyg) — B
> Fr(Vy) — FP0 — [Fr(Xpp1) — F0] = Fr(Vy) — Fr(Xiega). (65)
Combine (63), (64) and (65), we have
1< [0/(r)]” (7 + )% 1K1 — Vel

2(r + 1Y 2 2 2r + p 2

O gt 5 90) — Fg] < 2L |
Since ¢(a) = %oﬂﬁ, then ¢/ () = Ca*1, (66) becomes 1 < dlCQTtZ_ff2(7“t ~ rey), where
dy = 270" Finally, it is shown in (Bolte et al., 2014; Li and Lin, 2015; Li et al., 2017) that the
sequence {r;} satisfying the above inequality, convergence to zero with different rates stated in the
Theorem. c

< W (reen))? (re = ren1). (66)

B.8 Lemma 15
First, we introduce the following Lemma.

Lemma 26 (Theorem 1 in (Negahban and Wainwright, 2012)) Consider a matrix X € R™*",

X
Letd = % (m + n) and mrank(X) = %

Lo/
C ={ X e R™" X £ 0| mgire(X) - Mg (X) < — L
(n,co) { € , X # 0| Mypike(X) - i >_c0L dlogd [’

where L is a constant. There are constants (co, c1, c2, c3) such that when [|§2||; > c3 max(dlog d),
we have

. Define a constraint set C (with parameters cy, n) as

Pqo (X 1 128L - ike (X
1P ( >||FZHXHF{1 Mpite (X)

1214 VI

with a high probability greater at least of 1 — ¢1 exp(—cadlogd).

} VX e (€l o),

Proof (of Lemma 15) For a Mth-order tensor A, using Lemma 26 on each unfolded matrix A ;)
(t=1,...,M), we have

HPQ (A(”L)) HF > 1 HAHF 1 128 - mspike(A(i>) ’
1€2[]; 8 €214

for all A,y € C'(||€2]|; , co). Note that the L.H.S. of (67) is the same for all i = 1, ..., M. Thus, to
ensure (67) holds for all A ;), we need to take the intersection of all A ;y, which leads to

Y]
11><...>(I]\/[ . . i < 1
{DC eR ,DC 7& 0 | msplke(f)C) mrank(x@)) < C[)L dz‘ log di . (68)

Recall that mnk(X) = ﬁ Zf\il mmnk(xm as defined in (33). Thus, @(n, ¢p) is a subset of (68).
As aresult, (36) holds. |

(67)
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B.9 Theorem 16

Here, we first introduce some auxiliary lemmas in Appendix B.9.1, which will be used to prove
Theorem 16 in Appendix B.9.2.

B.9.1 AUXILIARY LEMMAS

Lemma 27 (Lemma 4 in (Loh and Wainwright, 2015)) For k in Assumption 1, we have
(i). The function oo — ( ) s nonincreasing on o > 0;

(ii). The derivative of k is upper bounded by kg,

(iii). The function o — k(o) + %26 is convex only when ¢ > Ko;

(iv). Ma] < A(lal) + 25,

Lemma 28 (X, Y) < mini—1,...x [[X¢s |, [[900 .-

Proof First, we have (X,Y) = (X ‘z)@ ) forall i € {1,...,M}. Then, since |||, and
||I-||, are dual norm with each other, é Yuy) < || Xq H H Thus, we have (X,Y)

<
mimer 1t [Tl [ -

Lemma 29 Forall i€ {1,...m}, we have ||X|| < HDC<Z>H* and HDC@H*S \/min(l?, %) ||| -

Proof Note that || X||, = HDC HF and HI)C<Z HF HDC , thus || X, < HI)C<Z H Then, since

1 X, < \/WHXHFforamatrlxXofs1zep><q,wehaveHDC H < /min(I%, I7/I%) HDC HF
= /min(I%, I7/I?) || X|| .

Lemma 30 Define hi(X) = ¢(X;y). Let ®;(A) produce the best rank k approximation to ma-
trix A and Ui,(A) = A — & (A). Suppose e; > 0 fori € {1,..., M} are constants such that
€ihi(Pr, (Ay)) — hi(P,(Agy)) = 0. Then,
hi

eihi (@ (Ap) = ha( i (A))) < molei || @r (A, = (1% (Ae)]],)- (69)

Moreover, ifDC’&> is of rank k;, for any tensor X satisfying 5ihi(DC’<‘i>) —hi(Xy) > 0ande; > 1, we
have

eihi(Xp) —hi(X) < roleq | P, (Vi) ||, — 1k (Ve I, (70)
where V = X* — X.

Proof We first prove (69). Let h(a) =
non-decreasing function. Therefore,

[k (Al = > (5 (A)) A (os (Aqy))
<h(on(Aa) D 5 (0 (Aw)) =h (o1 (Aw)) - hi (B (Ap)) . TD

ﬁ on a > 0. From Lemma 27, we know h(a) is a
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Again, using non-decreasing property of h, we have

ki

hi (@ (A) b (ki1 (Agp)) = b (one1 (Ap)) D27 5 (05 (A))
ki
< Zj:1“ (o5 (Awy)) B (o5 (Awy)) = |9k (A, - (T2
Note that h(a) > 1/ko from Lemma 27, and combining (71) and (72), we have

0 < i~ hi(®r,(A))) — i (51 |2k, (A, = 12 (A@) ) /7 (01(Ag))

o (i || @r (A, = (19 ( ﬂ<¢> 1)

Thus, (69) is obtained. Next, we prove (70). The triangle inequality and subadditivity of h; (see
Lemma 5 in (Loh and Wainwright, 2015)) imply that

0 <ei-hi(Xp) — hi(Xpy) = €i - hi( P, (X75)) = hi(Pm, (X)) — hi(Pm, (X)),
< i i (P (Viiy)) = i (P (Vi)
< k0 (&3 ||k, (Ve [l, = 1%, (Vi) [, )-

Thus, (70) is obtained. [ |

Lemma 31 |0¢(X)||, < ko where ¢ is defined in (7).

Proof Let X be of size mxn withm < n,and SVD of X be USV " where & = Diag (071,...,0.,).
From Theorem 3.7 in (Lewis and Sendov, 2005), we have

9¢(X) = U Diag (k' (01), ..., &' (om)) v’

From Lemma 27, we have £'(01) < £(02) < ... < K. Since || X || returns the maximum singular
value of X, we have [|0¢(X)||, < K'(om) < Ko. [
Lemma 32 ¢(X) + 3 | X ||3 is convex.

Proof Using the definition of ¢ in (7) and the fact | X |3 = 3, 0:(X), we have

Y(X) = ¢(X) +ro/2|| X[ =) w(o(X

where ¥(a) = k(a) + Kpa? /2. Since ¥(a) is convex (Lemma 27), (X)) is convex (using Propo-
sition 6.1 in (Lewis and Sendov, 2005)). |
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B.9.2 PROOF OF THEOREM 16

Proof Part 1). Let V = X — X*, we begin by proving ||V||z < 1. If not, then the second condition
in (35) holds, i.e.,

(VIE) = V@), D) > aal| PR~ movloa /IR S (Al a3

Since X is a first-order critical point, then
<Vf(5€) +ar(X), X — x> >0, (74)
Vf(X) 4 ar(X) > 0. (75)
Taking X = X*, from (74), we have
<Vf(5C) +ar(X), —Y7> > 0. (76)

Combining (73) and (76), we have

(~0r(X) - V5 (), V) > 0| VI~ g /RIS [Apl,. @D

Let v; = HV yll+ and & = Zf\il ¥;. For the L.H.S of (77),

<6r( )+ VF (X)), Y7>:<Vf (X0 ~>+AZ < V->> (78)
< max [|[V £ (X*)] vﬁ—)\z 06Xl i (79)

Next, note that the following inequalities hold.

e From the left part of (37) in Theorem 16, we have max; ||[V f (X*)] ;) HOO < Mo,

e From Lemma 31, we have [|0¢(X)|| ., < ko.
Combining with (79), we have

Ak A
<8r( )+ V(XY ><TO+3)\ 0_134*””0.

(80)

Combining (77) and (80), then rearranging terms, we have

1 13X
IVF < — <72\/1og17r/\\n 14+ ko) & < — (72 log I7/[Q + “0) R.

Finally, using assumptions on [|€2[|; and ), we have V|l < 1, which is in the contradiction with
our assumption at the beginning of Part 1). Thus, ||V|| < 1 must hold.

Part 2). Let h;(X) = ¢(X ;). Since the function h;(X)+p/2 |X|% is convex (Lemma 32), we have

Ohi(X),X* = X) < hi(X). (81)
( )
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where h;(X) = h;(X*) — hy(X) + éHjC — X*||%.. From the first condition in (35), we have

logI
"l

(VIV) = Vf(X*),=X) > aq|[V|F — (82)

Combining (74) and (82), we have
- 10gI . o -
2 2 o *
[Pl = mp o < (9r(X),7) = (VS00), V),

S (0m(%),7) — (Vf(x), 7).

Together with (81), we have
~ l I - * 7
|V} — e 2<AZH (30) = (V1(X),7),
<>\ZZ X +maxH V)@ || B
<)\ZZ  ha(X) + max [V (X |, 7,

where the second inequality is from Lemma 28. Rearranging items in the above inequality, we have

M. ) log I™
(1 = 2P A Y () @) + <mgx 097 |+ ﬁ) B 63)

Note that from the Assumption in Theorem 16, we have the following inequalities.

® 1nax; H [Vf(x*>]<l> Hoo < /io)\/4.

e Since |||y > 16R? max (1£,73) log(I™) /a3 and ap+/log I™ /|21 < koA /4, then

Tilogl™ . 11 [loglI™ . logI™ 1 |a3logl™ _ log I™  Akg
< — V- Q9 < — a3 U2 < —.
€21 az \[ (1921 121 — a2 | 16027 2 — 4

Combing above inequalities into (83), we further have

M. - M AKQ
(00 = S5V IVIE < A (ha(X) = hi(D)) + =57, (84)

Part 3). Combining (84) and Lemma 27, as well as the subadditivity of h;, we have

LM, -, Mo r Mo oM (V) LMoo
(o = S5 IVIF < MDD () = ha()) + 50 (= P + o5 VIR,
M . - AYM hz-(f)C*)Jrhi(ffC) LM
<Ay (ha(X) —hi(X)) + 5D IVIE- @5
Next, define
3M 1 1
av_al—T,‘ig, bv—l—f—m, CU—1—72M.
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Rearranging terms in (85), we have

al P < A buhi(X) — eohi(X). (86)
From Lemma 30, we have
buhi(X%) = chi(X) < L(by [ @1, (V)| — o || (Vi) )- (87)
Besides, we have the cone condition
e, < 3 {lo ), (88)

Combining (86), (87) and (88), we have
~ M ~ ~
aullVIF < Ako - (b [ @k (V)| — e |2 (V)| )
M - M -
<o Y b |k (V|| <m0 DS eov/RilVile

where the last inequality comes from Lemma 29. Since a,, > 0 as assumed, we conclude that

[Vl < 202 S

a

which proves the theorem. |

B.10 Corollary 17

Proof When noisy level is sufficiently small, (37) reduces to

1
logI™/||€2||; <A <L .
Vo 17/ 192, < A< o 59)

Let A = by max; || [P (€)] ;) [l where by € [é S ﬁﬁjn(g)ww]

. It is easy to check (89)

holds. Then, from Theorem 16, we will have

- b =M
27 = X[l < brmax | [Pa ()] oo - 2 D0 Ve (90)
Next, note that
E[I[Pa (€)] ] <E[IlPa (@)l lIr] =El- Qs =olQlr <ovVIT. O

Combining (90) and (91), we then have

B [l - x,] <o VR

Qy =1
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B.11 Corollary 18
Proof When ||€2||, is sufficiently larger, (37) reduces to

1
44 /1og I™/ ||€2]|; €A < —. 92
Vg I/ 90, <3 < ©2)

- log I I .
Let A = b3 o where b3 € [4, iR log”/llﬂlll]' It is easy to check (92) holds. Then, from

Theorem 16, we will have

. & log I™ Kocy M
= 0, <oy [T o 5

B.12 Proposition 19

Proof First, from Proposition 1 in (Yao and Kwok, 2018), we know that the function «(|a|) — ko -|al
is smooth. Since / is also smooth, thus &, is differentiable. Finally, note that lims_,o ¢(a;J) = |al.
Then, we have

limg o f2¢(|al; §) = limg . [HO U(|al; 8) + (ke(|al) — ko - Ial)],
= rolal + (re(|al) - rolal) = re(lal).

Thus, the Proposition holds. [ ]

B.13 Theorem 20
Proof First, by the definition of %y in (41), when |a| < §, we have

lim 0fy(a;d) = Elio €
0—0

{[O,mo) ifa>0
)

(—ko,0) otherwise -
Thus,

lims 0 OF¢(a; 6) = Ore(lal). (93)
Define FT(.')C; 0) = Z(il...iM)EQ g(f)CilmiM — Oiy.ing30) + ZZDZI Aip(X5)). Since X is obtained
from solving (42) at step 4 of Algorithm 3, we have X, € OF, (X; (6y)®). Take s — oo and use (93),

we have limg_, oo Xs € lim,_s00 OF, (X; (00)°) = lims_,o DF,(X;6) = OF,(X). Thus, Theorem 20
holds. |
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