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Abstract

Dynamical Systems (DS) are fundamental to the modeling and understanding time evolving
phenomena, and have application in physics, biology and control. As determining an
analytical description of the dynamics is often difficult, data-driven approaches are preferred
for identifying and controlling nonlinear DS with multiple equilibrium points. Identification
of such DS has been treated largely as a supervised learning problem. Instead, we focus
on an unsupervised learning scenario where we know neither the number nor the type of
dynamics. We propose a Graph-based spectral clustering method that takes advantage of
a velocity-augmented kernel to connect data points belonging to the same dynamics, while
preserving the natural temporal evolution. We study the eigenvectors and eigenvalues of
the Graph Laplacian and show that they form a set of orthogonal embedding spaces, one
for each sub-dynamics. We prove that there always exist a set of 2-dimensional embedding
spaces in which the sub-dynamics are linear and n-dimensional embedding spaces where
they are quasi-linear. We compare the clustering performance of our algorithm to Kernel
K-Means, Spectral Clustering and Gaussian Mixtures and show that, even when these
algorithms are provided with the correct number of sub-dynamics, they fail to cluster them
correctly. We learn a diffeomorphism from the Laplacian embedding space to the original
space and show that the Laplacian embedding leads to good reconstruction accuracy and a
faster training time through an exponential decaying loss compared to the state-of-the-art
diffeomorphism-based approaches.
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1. Introduction

Relying on the mathematical framework of differential equations, Dynamical Systems (DS)
describe how a system evolves temporally and spatially. Their application span various
fields, such as physics, biology, engineering, and economics. In recent years, DS have been
successfully applied to model and control robots (e.g. Heinzmann and Zelinsky (2003);
Corteville et al. (2007)).
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Finding an analytical description of the dynamics is, however, often difficult. This led
researchers to turn to data-driven identification of the dynamics using machine learning
algorithms. Data is usually provided by an expert, within the generic framework of learning
from demonstration (Billard et al. (2016)). Data can also be gathered from trial and error
in a reinforcement learning framework (Wabersich and Zeilinger (2018)).

From a machine learning perspective, approximating a DS can be framed as a regression
problem. One estimates a non-linear function f : R — R? mapping the d-dimensional
input state x(t) € R? to its time-derivative x(t) € R%, such that:

x(t) = £(x(t))- (1)

Training data consists of a set of trajectories, as examples of path integrals of the DS. These
trajectories cover a limited portion of the state space. To ensure that the learned DS stably
generalizes over regions not covered by the data represents one of the most challenging and
active research area. One option to tackle this problem is to embed constraints explicitly
in the algorithm so that the learned dynamics offers similar guarantees as those generated
from control theory. One desirable property is stability at an equilibrium point, or attractor.
If x* is the attractor, we wish to guarantee that

lim x(t) =x*, f(x*)=0. (2)

t—o0

1.1 Learning Stable Dynamical Systems

In the Stable Estimator of Dynamical Systems (SEDS) proposed by Mohammad Khansari-
Zadeh and Billard (2014), the density estimation with Gaussian Mixture Models is reformu-
lated to enforce constraints on the parameters of the Gaussian Mixtures, by imposing condi-
tions derived via Lyapunov’s second method for stability. The DS is then estimated through
Gaussian Mixture Regression (GMR). This approach was, however, limiting. Constraints
from a quadratic Lyapunov function were conservative and led to a poor approximation of
the flow when the dynamics was highly nonlinear.

Accuracy and stability turned out to be conflicting objectives whilst constraints were de-
rived from a quadratic Lyapunov function, and this prevented modeling dynamics that are
non-monotonic, namely temporarily moving away from the attractor. To address this issue,
other works used more complex expression for the Lyapunov function (e.g. Mirrazavi Sale-
hian (2018); Figueroa and Billard (2018)). An alternative to using Lyapunov stability is
Contraction Theory (CT) introduced by Lohmiller and Slotine (1998). Stability under CT
is less restrictive, as it follows a differential perspective and enforces solely that the flow con-
tracts locally. Further, it does not require prior knowledge of the location of the attractor.
Ravichandar et al. (2017) used CT to reformulate the SEDS constraints. Similarly Sind-
hwani et al. (2018) constraints a Support Vector regression problem with CT constraints.
Although CT represents a promising approach, current works adopting it are limited to local
stability guarantees making the approximated vector field unsuitable for regions with sparse
or no data.

A third approach to tackle the problem of increasing accuracy while preserving stability
is based on the idea of using latent representation to ease the stabilization of the DS. That is
achieved via diffeomorphic mapping. One of the first attempts was offered in Neumann and



Steil (2015), which uses a diffeomorphic map to send a complex Lyapunov function, learned
from the sampled trajectories, to a space where it appears quadratic. In this space, SEDS
is applied, and the original vector field is recovered via the inverse diffeomorphic map. The
two-step learning approach requires fitting both a Lyapunov function (or a diffeomorphism)
and a DS from training data, increasing the number of tunable parameters and the overall
learning time for non-convex optimization problems. Perrin and Schlehuber-Caissier (2016)
follow a similar approach but apply the diffeomorphism directly to the DS using one single
sampled trajectory. The diffeomorphism learning process is purely geometrical, namely only
original and target points’ position are considered. Reconstruction of the proper velocity
profile is achieved via re-scaling the learned DS. The recent work proposed by Rana et al.
(2020) follows a similar approach but introduces a formulation of the optimization framework
that includes dynamics information (e.g., velocity) within the process, providing for a one-
step learning algorithm.

All the methods reviewed above focus on single-attractor DS, and, except for works using
stability constraints based on CT-derived conditions, they require prior knowledge of the
location of the attractor. Assuming single dynamics and single attractor DS considerably
constrains the applicability of these methods to learn uni-modal dynamics. Embedding
multiple dynamics in a single control law based on DS increases the complexity of the
dynamics that we can model. Next, we review recent efforts that have been dedicated to
learning DS with multiple attractors.

1.2 Learning Dynamical Systems with Multiple Attractors

Learning DS with multiple-attractor can be achieved by explicitly partitioning the space
to separate each dynamics and their respective attractors, as shown by Shukla and Billard
(2012). This work requires knowing how many sub-dynamics exist in the system and the
attractors’ locations. Such knowledge may not always be easy to obtain.

Hence, if, for learning single-attractor DS, the main requirement is to know the location of
the attractor, when learning multiple-attractor DS, correct labelling and classification of data
points to distinguish the attractors and their associated dynamics is necessary. In realistic
scenarios, proper segmentation and labeling might not be available either because data are
generated by naive users or because the dataset is constructed by sampling demonstrations of
complicated physical tasks (e.g., cleaning up a messy office). One cannot expect lay users to
properly identify the number of sub-dynamics with the relative attractors location. Asking
users to divide the task into sub-segment will be very cumbersome and prevent proper skill
display and transfer; finally, even for expert users, it might often be difficult to classify the
dynamics, especially when these require data that are not easy to interpret, such as force
and haptic information.

In order to overcome this limitation, one option is to offer automatic segmentation and
identification of the dynamics. Such an approach was followed by Medina and Billard (2017),
using Hidden Markov Models to extract automatically the attractors’ positions of multiple-
attractor DS. The algorithm assumes that such multiple-attractor DS can be thought of as
a long sequence of multiple sub-dynamics to be performed one after the other. Such ap-
proach implicitly assumes time labeling of the points and can handle only multiple-attractor
DS considered as a long sequence of dynamics. Manschitz et al. (2018) presented another
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interesting application of multiple-attractor DS. The DS-based control law is modeled as a
weighted combination of linear systems, each of which is stable with respect to an attractor.
The location of the attractors along with the parameters of each linear sub-dynamics is au-
tomatically derived via optimization problem. However the minimum number of attractors
necessary to solve a specific task is a user-defined hyper-parameter that has to be known a
priori.

To avoid providing prior information on both the number of dynamics and attractors,
we see a need for a fully unsupervised learning approach to the identification of multiple-
attractor DS. In this light, we offer an algorithm whose goal is to: (a) cluster the sub-
dynamics within a certain data set, (b) find underlying interesting structure of the data
that would allow to locate the attractors and ease the task of learning stable vector field.
To do so, we seek to exploit structure discovery techniques to identify the number of sub-
dynamics automatically.

1.3 Manifold Learning for Latent Embedding Spaces of Dynamical Systems

Manifold learning techniques, such as Laplacian Figenmaps (Belkin and Niyogi (2003))
and Isometric Mapping (Tenenbaum et al. (2000)), are particularly relevant to our problem.
These techniques can generate Euclidean spaces recovering the intrinsic geometry of a certain
manifold (e.g., Tenenbaum et al. (2000)). Asin Kernel PCA (Principal Component Analysis)
(Scholkopf and Smola (2002)), these methods are based on eigenvalue decomposition of a
matrix. The matrix embeds information about the feature of the data, as encapsulated
by the kernel. Depending on the kernel used, different features can be extracted by the
manifold.

We find applications of manifold learning techniques for DS in biology for analyzing emer-
gent dynamics behaviors in data measured from bioelectric signals (Erem et al. (2016)), or
for person identification from ECG (Sulam et al. (2017)); in control theory for data-driven
time series analysis (Shnitzer et al. (2017)); in finance for describing the characteristics of fi-
nancial system (Huang et al. (2018)); in chemistry for stochastic model of cellular chemotaxis
(Dsilva et al. (2018)).

In the works reviewed above, the primary goal is to use manifold learning to reduce the
dimensionality of the data and simplify the estimation of the DS. The scope of our work is
different. We do not aim at reducing the dimensionality but rather at finding an embedding
that can simplify the control of DS by linearizing a non-linear dynamics that would otherwise
be difficult to stabilize.

The success of manifold learning depends heavily on the choice of kernel. We define a
velocity-augmented kernel to extract the temporal evolution of data points. We generate the
desired graph structure with this kernel and compute the associated Laplacian. We study
the embedding spaces generated by the eigendecomposition of such a graph-based Laplacian
matrix. We show that an analysis of the eigenvalues enables us to determine the number of
underlying dynamics and to identify a set of eigenvectors that forms an embedding space in
which the DS is linearized.

We validate our technique for sub-dynamics clustering and stable equilibria localization of
multiple-attractor DS using theoretical and noisy instances of DS. We compare our algorithm
to Kernel K-Means, Spectral Clustering, and Gaussian Mixtures. We showcase that even



when these algorithms are provided with the correct number of sub-dynamics, they fail to
cluster them correctly.

2. Problem Formulation

Let x € R? be the state of a DS. Its temporal evolution is governed by the non-linear function
f(x(t)):
f:RY 5 RY, x(t) = f(x(t)). (3)

Assume that f is composed of Q) sub-dynamics, each asymptotically stable at one equilibrium
point, the attractor.

Figure 1: Schematic representation of a multiple-attractor DS. Each sub-dynamics f; takes within a sub-
space B, and converges towards the attractor xj.

Let the g-th sub-dynamics be
x(t) = fo(x(t)) Vge[l,Q CN. (4)

Each sub-dynamics, £;(x), is Lyapunov stable and there exists ¢ > 0 such that if HX(O) — Xy H <
d, then

limt%OOHx(t) — XZH =0, (5)

*

» is the attractor of the sub-dynamics f;(x), Fig. 1.

We know neither the number of sub-dynamics @, the shape of the dynamics f;, nor the
number and location of the attractors. All we have at our disposal is a finite set of obser-
vations, samples of trajectories from the DS. These are constituted by wunlabeled position-
velocity pairs V = {v; = (x;,%;),i = 1,..., M} sampled from f(x) at a constant frequency,
fsampling- Among these trajectories, a subset belongs to some of the sub-dynamics, but we
know neither to which dynamics they belong nor how many trajectories belong to the same
dynamics. All sampled trajectories end at the attractor of the associated sub-dynamics.

This paper presents a method by which we can a) determine the number @ of sub-
dynamics present in the dataset, b) identify to which sub-dynamics each data point belongs
and the attractor of the corresponding sub-dynamics and c) project each dynamics into a
separate subspace in which the dynamics is linear. The method is based on a representation
of the data through a graph and exploits properties from the eigendecomposition of the
graph-based Laplacian matrix, as we present next.

where x
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3. Graph Embedding and Linearization of Dynamical Systems

Consider a symmetric weighted graph G(V, ). The nodes v; € V represent the data points
v; = {xi,%i}, i ={1,..., M} sampled from our DS, where M = Z "1 pq with p, being the
number of data points sampled from each of the sub-dynamics and @ being the number of
sub-dynamics. £ is the set of edges e;; € £ connecting nodes v; and v;. For a generic DS
containing ) sub-dynamics, the graph G is the result of the union of ) sub-graphs F such
that G = FUFU---UFg and Fy N FaN---NFg = 0. Each sub-graph F is given by
the composition of K path graphs, equal to the number of sampled trajectories. We order
the nodes (vertices) of F monotonically as {vf, v, ..., pk} k=1,. ; K, such that each
I/ . 1s the last node of the k-th path graph and py > 1. The edges are eZJ = {vF,vF | }. The
K nodes {v! Vppseees PK} form a cyclic graph (or simple circuit). Each node belonging to the
cyclic path has degree 3. All other nodes along each path graph have degree 1 or 2. The
nodes are numbered as

1 1.2 2

{I/l,...l/pl,l/l,...,l/p2,...,V ,...,pK} {1,2,...,M}
With reference to Fig. 2, {Vf, e pk represents the nodes of the k-th path graph where
P is the number of samples within the k-th path graph.

Figure 2: Each sub-dynamics is embedded in a graph where each trajectory forms a path connected by a
k kk are the first and last of the

set of termination nodes that form a cyclic path around the attractor. vy v,
k-th path graphs, respectively. pi is the number of nodes with the k-th path graph.

The Graph Laplacian matrix, L(G) = D(G)— A(G), where A(G) is the adjacency matrix

1, ife,; €&
A=< J 6
Y {0, otherwise (6)

and D(G) is a diagonal matrix composed of the sum of the rows of A(G)
J

L(G) is positive semi-definite and, hence, admits an eigendecomposition. The eigenvalues of
the L(G) are non-negative and we have at least one eigenvalue equal to zero. The multiplicity
of the eigenvalue zero allows to determine the number of sub-dynamics embedded in the
graph.

Proposition 1 The eigendecomposition of the Laplacian generates a set of M positive
eigenvalues A = {0 = N} = A\ = -+ = )\OQ < A <o < Ay—qg}. The maltiplicity of
the eigenvalue 0 is equal to the number of sub-dynamics Q.



Proof The multiplicity of the eigenvalue zero of the Laplacian matrix is equal to the number of connected

components, hence, by construction of G is equal to the number of sub-dynamics Q. |

As the graph G is composed of a set of disconnected components, the eigendecomposition
of L(G) can be performed by blocks and we can associate a subset of eigenvectors to each of
the @ blocks. We show in the next subsection that each set of eigenvectors of L(G) generates
Q) separate sub-spaces in which each sub-dynamics is linearized.

Observe first that, in each of the graph connected component, the nodes are connected
in such a way that each trajectory forms a path in the graph. With K trajectories for each
sub-dynamics, we have K paths. Each trajectory is connected to another trajectory through
the last node of each path graph.

3.1 Determining the Eigenvectors that Generate a Linear Embedding

We are now ready to present the main results of this paper, namely that a well-chosen set
of eigenvectors of the graph Laplacian generates a linear embedding of the sub-dynamics.

We start by showing that, for each path in the graph, the corresponding entries in the
eigenvectors follow a recursive law.

Lemma 2 Consider K different path graphs that form a graph G with one connected com-

ponent. Let u be an eigenvector of the Graph Laplacian L(G). The elements of u entail K
sets of scalars {u’f, . ,u’p“k}, corresponding to the nodes within the k-th path graph. Fach

set follows the recursive relation:

uf € R,
Ug = (1 - )‘)ullcv
k(9 Nk . — ok f =3 8
Up, ( )un—l Up—2; orn yo s Pk ( )
Proof See Appendix A. |
Lemma 3 In each of the K sets of elements in u denoted as {u’f, . ,ul;k}, the recursive

relation in Eq. 8 corresponds to a combination of Chebyshev polynomials T and V', of first
and second kind, given by:

ub = u¥ [Tn()\) - ;\Vn_l()\)} forn>1. 9)

Let 0 == cos™! (1 — %) Eq. 9 can be expressed as the following combination of trigonometric
functions:

WE (A, 0(V)) = b [COS((n —1)0) - ;W} . (10)

Proof See Appendix B. |
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Next, we show that, when we select a specific set of eigenvectors, the coordinates of the
path graphs in these eigenvectors either grow or decrease monotonically. This a key property
to prove the linearity of the embedding.

Proposition 4 If each of the path graphs have at least 3 nodes, pr > 3 Vk, the coordinates

of a path graph {u’f, . ,u’;k} in the eigenvectors u with corresponding eigenvalues 0 < X <

2 [1 — cos (ﬁ)} , either increase or decrease monotonically within each path graph, s.t.:
2

uZZ(g)quH form=1,....px, andke{l,...,K} (11)

Proof See Appendix C. u

Next, we prove that, when all the path graphs have the same length, i.e pp = N, Vk,
there always exist, at least, one pair of eigenvectors with properties of Prop. 4, by showing

that there exists an eigenvalue A < 2 [1 — cos ( T+ )| with algebraic multiplicity 2.

Pk—3
The proof is done in two steps: first, we show that the spectrum of L(G) presents

repeated eigenvalues; second, we show that there is at least one repeated eigenvalue upper
bounded by a value inferior to the monotonicity constraint introduced in Prop. 4.

Following Gupta et al. (2022), observe that the graph Laplacian, analyzed in this work,
has the following structure:

L(G) =2I - J(G), (12)
where J has a block circulant matrix structure of the following type
o (NxN)
J(G) - Cer(B()?Bla 0 ,7Bl)7 (]‘3)
K—3 times

with K the number of path graphs and N the number of nodes in each path graph. The

matrices By € RV*V is a tri-diagonal matrix of the form
ol -
1 0 .
By = (14)
1
1 -1

and By € RY*N ig defined as

By =

[O(N—lxN—l) 0} 15)

0 1

We repeat results from Gupta et al. (2022) in Proposition 5 and 6:

Proposition 5 If the number of paths K is even, %—1 eigenvalues of L(G) have multiplicity
2 and for K odd, % eigenvalues of L(G) have multiplicity 2.



Proof See Appendix D. |

Proposition 6 The second smallest eigenvalue of the Graph Laplacian L(G) with algebraic
multiplicity 2 is denoted by Apin (L) and is bounded above and below as follows:

1 —2cos (%) <)\mm(L)<2<1—cos (Ni%>> (16)

where N is the number of nodes in each of the K paths.

Proof See Appendix E. [ |

We have shown that there exist at least a pair of eigenvectors with same eigenvalues in
which the corresponding entries of our path graph grow or decrease monotonically.
Next, we show that the DS is linear in the embedding formed by these two eigenvectors.

Corollary 7 For each eigenvector u with associated eigenvalue 0 < A < 1, the rate of
change r(up) = up — up—1 along the entries {ui,...,u,, }, for each path k = 1,..., K
decreases monotonically according to:

7(u) = —Au. (17)

Proof (Unt+1) = Un — Un—1 — AUp = 7(Un) — AUn. [ |

Theorem 8 If the graph Laplacian L(G) admits a set of eigenvectors u, with same eigen-
value, the K paths of the graph expressed in the domain spanned by u form K lines.

Proof Consider a group of three consecutive nodes {vn—1,vn,Vnt+1} of one of the paths of the graph.

The coordinate of these points when projected in the space spanned by two eigenvectors u® and u* are

{ui’fl,ui’k,ui’fl}. We show that the three points are on the same line, as illustrated in Fig.3. We prove

Figure 3: Coordinates of three points on two eigenvectors with constant rate of change, resulting in a
linear path.



FiCcHERA, BILLARD

that these coordinates grow at the same rate for all the eigenvectors that have equal eigenvalues A < 1.
Hence the spacing across each group of coordinates on each axis is the same, as illustrated in Fig.3.

In the following, we drop the upper index referring to the specific eigenvector. For any eigenvector with
eigenvalue 0 < A < 1, using Eq. 33, we have

U1 = YUn — Un—1, (18)

with v = 2—X, v > 1. Furthermore, for the first two points on the path graph, we have, from Eq. 32: us = dus,
with 6§ =1 — \,§ > 0. Combining these two equations, the third point can be expressed as a function of the
first coordinate w1 only: ug = y(du1) — u1 = (79 — 1)uq. Similarly the fourth point can be expressed solely
as a function of the first coordinate ui. We have: uq = yug — u2 = v(v6 — 1)ur — du1) = (y(v0 — 1) — §)us.
The same reasoning holds for all points and hence by induction, we have:

Up = Pp(A)us. (19)

P,()) is a polynomial of order n — 2 that depends only on the eigenvalue A. If the eigenvectors considered
have same eigenvalue A, the coordinates along each axis grow with the same series of polynomial P, ()\).
k

Hence, all points are located on a line. For a pair of eigenvectors z, k, the line has slope Z—i |
1

Note that, while Thm. 8 holds for all the eigenvectors in the spectrum of L(G), the origi-
nal ordering of the nodes along each path graph is preserved only when A < 2 [1 — cos (p;;i T )] .

3
For the eigenvectors with larger A, the coordinates of the nodes change sign within the path
graph. Hence, while the path may still appear linear in the embedding, the order of the

nodes will not be preserved anymore.

3.2 Creating a Linear Embedding

We summarize how the above theoretical results allow us to find embedding spaces so that
we can separate each of the () sub-dynamics and that they are linear in each embedding.

First, let us recall that, since the matrix L(G) can be decomposed by block with each
block representing data points that belong to each sub-dynamics f;, we can generate a set
of @) separate embedding spaces by using only the subset of eigenvectors associated to each
sub-block. By orthogonality of the eigenvectors, all other sub-dynamics fy, k # ¢ will project
to the origin in the embedding space of the ¢-th dynamics. We now need to determine the
existence of such embedding spaces.

Given a K-paths graph, from Prop. 5, for N > 3 and K > 3, there is at least one pair of

eigenvector with eigenvalue 0 < A < 2 {1 — cos ( N” T )] It follows that if the @) dynamics
2

of the graph have at least N > 3 nodes and K > 3, we have 2() eigenvectors with properties
of Prop. 4 and hence ) embedding spaces.

The properties stated in the previous propositions are illustrated in Fig. 4a. We see
a three-path graph connected by a cycle path across nodes {5,10,15}.The entries of the
second and third eigenvectors (we exclude the first eigenvector, as it corresponds to the
eigenvalue zero) are displayed in Fig. 4c. To ease the interpretation, we enumerate the data
points in increasing order as we move from the start to the end of each path. We plot the
entries of the eigenvectors against the point label. Observe that, within each path graph, the
corresponding entries on the eigenvectors are either strictly increasing or decreasing. Further,
observe that the spectrum of the Laplacian, see Fig. 4b, entails a pair of eigenvalues with
algebraic multiplicity equal to 2. The embedding space reconstructed using the eigenvectors

10
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Figure 4: (a) Toy graph composed by 3 path graphs connected each other with a cycle graph passing through
nodes {5,10,15}; (b) Spectrum of the first 9 eigenvalues of the Laplacian applied to graph in Fig. 4a; (c)
Entries of the first 2 components {u?, u®}; (d) 2D embedding space reconstructed using components {u?, u®}.

{u?,u} corresponding to these two eigenvalues is shown in Fig. 4d. Observe that the
structure now entails 3 paths all of which are linear. The original non-linear structure is
hence linear in the embedding space.

In practice, we observe that several pairs of eigenvectors provide these embedding spaces.
We also observe that the third and above eigenvalues are numerically close to the pair of
smallest eigenvalues, and hence allow quasi-linear embedding spaces larger than 2 dimensions
and up to K —1. This follows by observing that the polynomial P,(\) in Eq. 19 is continuous
and continuously differentiable up to N — 1.

Figure 5: (a) Toy graph composed by 4 path graphs connected each other with a cycle graph passing
through nodes {5,10,15,20}; (b) Spectrum of the first 9 eigenvalues of the Laplacian applied to graph
in Fig. 5a; (c) 2D embedding space reconstructed using components {u',u?}; (d) 3D embedding space
reconstructed using components {ul, u2, u3},

We illustrate this property in two examples using 4-path and 5-path graphs, respectively,
see Fig. 5 and 6. As in our previous example with a 3-path graph, the path graph are
connected through one cycle graph. For the 4-path graph, we see that the spectrum of the
Laplacian entails two eigenvalues of equal magnitude. The third eigenvalue has magnitude
comparable but larger than the previous two, Fig. 5b. The graph can be linearized using
the two eigenvectors with equal eigenvalues, see Fig. bc. Quasi-linearization in the 3D
embedding space can be achieved by using as coordinates the first three components, see
Fig. 5d.

Using the 5-path graphs, we obtain two pairs of eigenvalues with equal magnitude, visible
in the spectrum, Fig. 6b. We can hence reconstruct two distinct 2D embedding spaces
where the DS is perfectly linear. While the embedding space constructed using eigenvectors

11
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0.00 -

Figure 6: (a) Toy graph composed by 5 path graphs connected each other with a cyclic graph passing
through nodes {5, 10,15, 20,25}; (b) Spectrum of the first 9 eigenvalues of the Laplacian applied to graph
in Fig. 6a; (c) 2D embedding space reconstructed using components {u',u?}; (d) 2D embedding space
reconstructed using components {u®, u*}.

{u?, u?} preserves the radial ordering of the path graphs, Fig. 6¢c, the embedding constructed
with components {u* u®} does not, as shown Fig. 6d.

4. Generating the Graph with Real Data

To exploit the results stated in the previous section, we must first embed the data in a
graph. To achieve this, we propose a kernel that takes advantage of positions and velocities.
4.1 Velocity-Augmented Kernel

The kernel provides a distance measure across nodes v;, v;:

directionality

2 C (2 N
k(visvj) = exp| =g | ki = 35017 + (lg(xi, x5, %) )+ (l9(xj %2, %)) | | (20)
————

locality

where x; = f(x;) is the DS map that relates positions to velocities.

We introduce g a function to measure the angular distance across the velocity vectors
for a pair of data points x; and x;. We relate the distance vector x; — x; and the velocity
vector x; through a cosine kernel

x: %) =34 |~ - J v ? 21
a3 5) = 0y (3 s )+ ( e 72 (21)
Filter
Cosine similarity kernel
where 5Jf is a normal Gaussian distribution (5Jf () = exp (—;;) centered in ||X]| = 0,
¥

with o set approximately to 0. The presence of the filtering part in Eq. 21 is necessary to
withhold the "directionality" penalization among zero velocity points potentially close to an
attractor. The filter d,, takes care of this situation outputting 1 whenever the velocity is
zero. The parameter oy can be regulated to take into account known noise, e.g., when one
knows that the velocity at an attractor point is not zero for numerical reasons.

The linear function v : R — R in Eq. 20 is defined as

1) = 50, (1~ g)o (22)

12



The co-domain the function g, in Eq. 21, is in between —1 and 1. The function 7, in Eq. 22,
maps the part of the co-domain of g in between cos(6,) and 1 to the range between 30 and
0. Consequently, the range of values of g in between —1 and cos(6,) will be mapped to
values greater than 30. When the angle between two velocity vectors is 6, the linear map
yields a value equal to 30 causing a penalization of the weight about 99%. When the output
of the cosine is proximal to 1, due to the almost complete co-linearity, the linear function
will yield 0 causing no penalization over the weight produced by the standard RBF (Radial
Basis Functions) kernel. The reference angle, 6,, is a parameter that can be set depending
on the sampling frequency. High frequencies allow for a more strict (6, ~ 0) selection of
such angle and vice-versa.

In order to understand the kernel better, we illustrate the effect of each term in three
scenarios depicted in Fig 7. The directed kernel encompasses two components: "locality"
and "directionality". The locality term gives a measure of the spatial distance between pairs

. [Ix; = x> ~ 0 llxi = xj[1* =~ 0

7 (lg(xi, x4, %)) ~ 0 7 (lg(xi, 3, %)) ~ 0 7 (lg(xi, %5 %)) >> 0

7 (lg(x;, %, %;))* >> 0

®

7 (l9(xjxi,%7)))* = 0 7 (l9(xj, %1, %7)))° >> 0

(a) (b) (c)

Figure 7: Tllustration of the effect of the spatial distribution of points and velocity vectors on the kernel
Eq. 20: (a) the first term in the exponential generates low values for points that are far apart; (b) the
third term in the exponential generates low values when consecutive velocity vectors are not aligned; (c) the
second and third term in the exponential generate low values whenever the distance vector connecting two
points is not aligned with the velocity vector of one of them.

of points based on the Euclidean distance, similar to the standard RBF kernel. The two
directionality terms measure the co-linearity of the velocity vectors. Two points far apart
with co-linear velocity vectors or two points close with distinct velocity vector will have a
small value on the kernel and hence a loose connectivity in the similarity matrix used to
generate the graph. Sole points that are both close and with co-directed velocity will reach
the maximum kernel value, 1.

Points x; and x9 in Fig. 7a will have negligible connection weights due to the large
distance between them even though the "directionality" terms would yield values closed to
1 (about 0 after mapping ) since x2 — x1 || X1 and x; — X2 || X2. The second example in
Fig. 7b considers the possibility of having intersecting trajectories perhaps due to second
order dynamics or imprecise user demonstration. Since the figure might be misleading we
clarify that point x; belongs to the beginning of the trajectory while point xo lies at the
end, close to the attractor. In this situation we would like to "separate" the two points since
they are not close from a dynamical perspective. Due to the proximity of the points, the
"Locality" part contributes to generate a strong connection between the two points. The
second component of the "directionality" part will take care of drastically decreasing the
weight connection. Indeed, if the first term yields a high value, xo —x; || X1, the second term
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will be decisive in cutting of the connection between the points since x; — xo &= %1 | Xo.
As last scenario in Fig. 7c, we consider the case of two proximal trajectories belonging to
different sub-dynamics. As in the previous example the "Locality" cannot account for this
situation; the "directionality" part will take care of decreasing the weight connection given
that X9 — X1 1 )'(1 and X1 — X2 1 )'(2.

Fig. 8a shows streamlines of an expanding vector field x = x and a reference point with
its velocity vector. In Fig. 8b it is possible to see how the proposed kernel generates, with

Figure 8: (a) Background vector field and reference evaluation point/velocity; (b) Contour of the velocity-
augmented kernel.

respect to the considered vector field, high value regions symmetrically placed with respect
to the plane orthogonal to reference velocity in the proximity of the evaluation point.

4.2 Selecting the Hyperparameters

The choice of the hyperparameter o is important as it modulates the granularity of the
distance measure in Cartesian space. To inform the choice of o, we can use the sampling
frequency fsampiing of the acquisition system, when recording trajectories. The higher the
frequency, the closer the two consecutive data points. The maximum distance between two
consecutive point is dyqr = a;ff:nmiiﬁ? with D :={x;,i=1,...,m}. If sampling is perfect
(no frame loss), we can set 0 = dypq,. Otherwise, a margin of error may be warranted.

The adjacency matrix is computed as follows: A;; = 1 if k(v;, ;) > € otherwise A;; = 0.
The tolerance ¢ must be chosen in relation to o. For instance, if 0 = d,q, the kernel will
be equal to at maximum 0.6 for the two most distant pair of points.

5. Clustering Dynamics & Attractor Search

We consider as toy example a 2-attractor DS where each sub-dynamics is constituted by
3 sampled trajectories. Fig. 9 shows the connection strength generated by the velocity-
augmented kernel in Eq. 20. Connection between nodes belonging to different trajectories
will have very low weight. Only points at the end of each trajectory, close to an attractor,
will have high weight even if they belong to different trajectories.

The labeling of points, for clustering dynamics, is done by taking advantage of the first
right eigenvectors, {ul,...,uQ}, connected to the eigenvalues equal to zero. Assuming
n data points for each of the ) demonstrated dynamics the k-th eigenvectors extracted
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Figure 9: Toy data set of 2-attractor samples DS.

will have non-zero entries between u,,;_1);1 and upg, see Fig. 10. For each eigenvector the
coefficients corresponding to the points belonging to a particular DS (sub-graph) are equal to
a constant value ¢ while all the others are 0. In summary, the number of 0 eigenvalues is used

ul 112 HQ
u:ui% c 0 0
c H 0
: 0 ) :
wn =l —| ¢ o R S I
0 : C — ud = u
. 2 __ 1 n(@—1)+1
0 6 Uy = Uon C @1
0 0 ¢ Hug:umg:um

Figure 10: Structure of the constant right eigenvectors associated to eigenvalues equal to 0.

to determine the number of attractors present in the DS. The corresponding eigenvectors
are then used to cluster the data points, belonging to each sub-dynamics. Plotting the
first four eigenvectors, Fig. 11, it is possible to observe that the spectral decomposition
of the Laplacian produces a set of eigenvectors that are "expanding" one dynamics while
"compressing", in zero, the other ones for each projected space. In this example u® and

Figure 11: (left) {us, us} embedding space; (center) Scatter matrix of the embedding space for the DS in
9; (right) {u4, us} embedding space.

u® focused on sub-dynamics A while u* and u® on sub-dynamics B. The selection of the
"interesting" components can be easily achieved by checking the change of the slope in
the spectrum of the Laplacian matrix. Fig. 12 gives the spectrum analysis for varying
the number of attractors, keeping the number of demonstrated trajectories to three. The
number of relevant components grows proportionally to the number of sub-dynamics present
in the dataset, npg = Zé{zl K, — 1 with @ being the total number of sub-dynamics and
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Figure 12: Spectrum analysis of the multiple-attractor DS for three demonstrated trajectories and increas-
ing number of attractors.

K, the number of sampled trajectories for the g-th sub-dynamics. As shown in Alg. 1,
taking advantage of the stationary right eigenvectors used to label points, each eigenvector
is assigned to either one dynamics or the other.

Algorithm 1: Clustering Dynamics & Embedding Reconstruction.
Input: A={\1,...; A}, U={uy,...,un}
Output: x7, Q
Nsub-Ds = (A == 0) // Compute the number of attractors
Uctusters = {uh_g, . .., uy=Ps // Right "stationary" eigenvectors
while stop = false do

stop = false

/* From the first non-stationary eigenvector till the last

one */
for i = Nattractors + 1 to m do
/* Iterate over the number of attractors */

/* Assign eigenvector to sub-dynamics/attractor k %/
if 17(uk_, o |u;]) # 0 then
U u;
/* Stop loop at the spectral gap */

if |Aiy1 — Ai| > tol then
| stop = true

For the toy case in exam we have two eigenvectors associated to zero eigenvalues. The
eigenvectors associated the least two eigenvalues, with algebraic multiplicity equal to two,
are used for the reconstruction of the embedding spaces as shown in Fig. 11.

The search of the attractor positions is carried out by exploiting the particular structure
of the embedding spaces. In each embedding space the related dynamics is "linearized",

Algorithm 2: Attractors Search ’
Input: UF = {u, ..., ug}, natractors 7
Output: x;
for k =1 to natractors do u4®

i~ Puniform () 4 7
uy = U (i) . 4 _
uy = Uk (arg ming;(||lus — U*(0)]])) N N , o 8=ug + mga

while stop = false do A4
. ‘u
i~ Puniform () . 2
uz = U(i)
\ ~

Uy = Uk(argmin,#l(Hug — Uk([)H))

N
if%<&9thcn r:ul—|—mTﬁ N
stop = true N N
end N
end N
end
(a) (b)

Figure 13: Finding the attractor in the embedding space.

while the other ones, as said before, are "compressed" in zero. In this space the position of
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the attractor, u*, is easily found at the intersection of the lines whose slopes can be calculated
using diffusion distances. With reference to Fig. 13b, the algorithm randomly selects a point
in the embedding space, u; representing the vector containing the embedding coordinates
of the chosen point. For a clear visualization of the problem, the process is illustrated in
2-dimensional space but, as shown before, the embedding space can have a higher dimension
depending on the number of demonstrated trajectories or the input space dimension. us
is selected searching among the nearest neighbors of uy. The line direction m, = uy — 0y
is stored. The process is repeated until all the line directions, ms = ugy — ug, have been
found. Pairwise intersections of the of the found lines can be simply calculated by solving
the overdetermined linear system Ax = b, where A = [m,, m,], ¢ = [o, 3] and b = uz—wy
for the two parametric lines, r = u; +m,«a and s = ug+m B. The mean of the intersection
points calculated is used to established the position of the attractor, u*, in the embedding
space.

6. Results

We validate our approach first at correctly identifying the underlying dynamics of well-
known DS. We choose three nonlinear DS known to embed two separate sub-dynamics which
are asymptotically stable at two separate attractors. Second, to test the sensitivity of the
approach to real and noisy data, we validate the approach to decompose DS generated from
handwritten data. For each of the systems, we generate a set of three example trajectories
so as to obtain an embedding of the same dimension as the original system, namely D = 2.

To quantify the clustering results, we compare our approach, to three clustering tech-
niques: Kernel K-means, Spectral Clustering and Gaussian Mixture Model (GMM). GMM
adopts full covariance matrix. Kernel K-means and GMM require the number of clusters. For
those, we provide them with the correct number of dynamics. For Kernel K-means we adopt,
as similarity metric, a Radial Basis Functions (RBF) kernel with the hyper-parameter o set
as previously explained. Spectral Clustering adopts k-nearest neighborhoods technique for
building the adjacency matrix and the identification of the sub-dynamics clusters is achieved
through spectral decomposition of the symmetric normalized Laplacian. In order to provide
the same information to all the algorithms, the feature state for the compared approaches
has been augmented with the velocities.

As none of the clustering techniques we compare can extract the attractors, we compute
the reconstruction error for the attractors only for our approach., the Orthogonal Expansion.
The error is calculated as the squared error between the actual and the extracted location,
normalized by the standard deviation of the position data set

[V

*

T
B(X*) = ((X:eal - XZstimated) by (Xreal - X:stimated)) ’ (23)
where ¥ is the diagonal matrix containing the standard deviation of the dataset.

Note that K-means and GMM are iterative approaches sensitive to initialization. For
each of them we provide average performance over 10 trials as the number of iterations
increases.
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Example 1 As a first ezample we consider the following 2-dimensional DS

T1 = 2x] — X122

By = 227 — 1y, (24)
which present two stable equilibrium points in (—1,2) and (1,2). The vector field generated

from Eq. 24 and the sampled trajectories are shown in Fig. 14, case (a) and (b) respec-
tively. Such multiple-attractor DS represents a challenging case for our algorithm due to

1072 1072

\/N 4 4
6 .
n ;- 2 2
o A 9 '5§ ‘.k B o =
D O
0 Jk‘ -2 -2
-2
//é —4 -2 0 2 1 ! 4 2 0 2 ! 4 3 0 2
71 s 10 " 10
(a) (b) (c) (d)

Figure 14: (a) Vector field generated by Eq. 24. (b) Sampled trajectories from the DS in Fig.14a. (c)
Embedding space of the sub-dynamics with local attractor in (1,—2). (d) Embedding space of the sub-
dynamics with local attractor in (1, 2).

the proximity of the trajectories belonging to different sub-dynamics, symmetrically displaced
with respect to the vertical axis passing through zero, Fig. 14b. In order to have a success-

# CLUSTER | A B |e(x) " »
Our Approach

Cluster 1 100% 0% 0.061

Cluster 2 ‘ 0%  100% | 0.061 AN A~ *

Kernel K-Means
0%  100% [ -
5842% 41.58% | -
Spectral Clustering
0%  100%

79.04%  20.96%
Gaussian Mixture Models

Cluster 1 | 1271% 87.20% [ -
. & W E I
12.71% 87.29% # iterations # iterations

(a) (b) (c)

Cluster 1
Cluster 2

% correct
% correct

Cluster 1
Cluster 2

Table 1: For sampled points in Fig. 14b: (a) Clustering labeling and attractor location error results, (b)
Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model clustering error over iteration.

ful reconstruction of the graph we sampled from the DS for 10s at a frequency of 100H z
reaching a total of 6006 points sampled. The correct reconstruction of the graph can be as-

Our Approach Kernel K-Means Spectral Clustering Gaussian Mixture Models

5 of SN
0 ol 0 0
-2 21 -2 . -2

1 2 0 2 1 1 2 2 1 1 2 0 2 A 1 2 0 2 4

Figure 15: Clustering results of Tab. la.

sessed by looking at Fig. 14c and 14d, where the two sub-dynamics are correctly linearized.
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In particular using components usz and us the embedding space linearizes sub-dynamics B
while sub-dynamics A is compressed in zero; vice-versa for the embedding space constructed
adopting ug and ug components. Results of clustering are reported in Tab. 1a and Fig.15.
Kernel K-means does not yield good performance and, as shown in Fig. 1b, it remains fairly
sensitive to centroids initialization. Spectral Clustering shows good performance being able
to cluster correctly the two high-density region areas. Although it fails in clustering correctly
regions with sparse data. GMM present stable solution with respect to parameters initializa-
tion, see Fig. 1c, but poor performance failing in placing the mixtures in a consistent way
with respect to the two sub-dynamics. In particular the two high-density regions around the
attractors are described by a single component yielding incorrect clustering.

Example 2 We consider in this example the pendulum equation with friction. The second

102 1072
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050 e . 1
\/ H 5o Us 1
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(a

Figure 16: (a) Vector field generated by Eq. 25. (b) Sampled trajectories from the DS in Fig.16a. (c)
Embedding space of the sub-dynamics with local attractor in (0,0). (d) Embedding space of the sub-
dynamics with local attractor in (0, 27).

order differential equation describing the dynamics of the pendulum is 6= —Lsin(e) — ki,

where | is the length of the pendulum, g the gravity constant and k the friction coefficient.
The phase space of such system yields a multiple-attractor vector fields with periodic stable
equilibria at k2w, with k € Z. Let 1 = 0 and z9 = 0. The pendulum dynamics can be
rewritten as a system of first order differential equations

ilzl’g

l
t9 = ——sin(x1) — klxs (25)
g

We consider a domain x1 € [0,27] where such DS presents 2 attractors at the boundary

£ CLUSTER | A B | e(x)
Our Approach
Cluster 1 100% 0%

Cluster 2 0% 100% | 1.34%

Kernel K-Means

0% 100% -
97.671%  2.33% -

Cluster 1
Cluster 2

% correct
% correct

Spectral Clustering

Cluster 1 3.63% 96.37%
Cluster 2 100% 0%

Gaussian Mixture Models
Cluster 1 ‘ 0% 100% - o 3

; 9 £} B3 W to 1 @ £ o o
Cluster 2 97.00%  3.00% - # iterations # iterations
(a) (b) (c)

Table 2: For sampled points in Fig. 16b: (a) Clustering labeling and attractor location error results, (b)
Kernel K-Means clustering error over iteration, (c¢) Gaussian Mixture Model clustering error over iteration.

of the domain and one unstable point at w. In order to asses the ability of our kernel
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to generate the desire graph structure to build the Laplacian matriz we appositely sampled
prozimal trajectories pointing to two different attractors (central region in Fig. 16b). Fach
trajectories has been sampled for 60s at a frequency of 10Hz for a total 3592 points. As it
1s possible to see from the embedding spaces extracted, Fig. 16c and 16d, the kernel is able
to approximate the theoretical graph proposed leading to linearization of the sub-dynamics.
In Tab. 2a and Fig. 17 the results of clustering are shown. All the algorithms yields good

Our Approach Kernel K-Means Spectral Clustering Gaussian Mixture Models

-4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10
£ 1 1 £

Figure 17: Clustering results of Tab. 2a.

performance in this case correctly assigning points belonging to high-density regions around
attractors. Nevertheless, with exception of our approach, they all fail to achieve perfect
clustering due to mis-clustering in regions with sparse data.

Example 3 As a third ezample we consider the Duffing equation (or oscillator), a non-

102 1072
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Figure 18: (a) Vector field generated by Eq. 27. (b) Sampled trajectories from the DS in Fig.18a. (c)
Embedding space of the sub-dynamics with local attractor in (0,+/—a/f3). (d) Embedding space of the
sub-dynamics with local attractor in (0, —y/—a/B).

linear second-order differential equation used for modeling damped oscillator
i+ 6@ + ax + fa® = 0. (26)

Differently from a simple harmonic oscillator such equation models more complex potential
by including a non-linear spring with restoring force ax + Ba3. Such DS exhibits chaotic
behavior. We consider positive damping case, 6 = 0.3, with a = —1.2 <0 and 8 =03 >0

which present two stable at ++/—a/f and —\/—a/B. The phase space of the duffing equation
can be achieved by the following two dimension DS

.’ilzxg

i9 = 0.3(4x1 — 23 — 13). (27)
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As for example 1, due the presence of highly compact and non-linear regions, high frequency
sampling s required. Each trajectory is sample at 200H z for 5s yielding o dataset of 6006
samples. For this case eigenvectors usg and us yield an embedding space where sub-dynamics

CLUSTER | A B | e(x) 100 100
Our Approach
Chuster 1 0% 0% | 131% . =P w
Cluster 2 0% 100% | 134%
Kernel K-Means ; -
Cluster 1 100% 0% 8 g
Cluster 2 27.81%  7219% | - ] g
= =

Spectral Clustering
9461%  5.39%
5.65%  94.35%

Cluster 1
Cluster 2

Gaussian Mixture Models
Cluster 1 412%  95.88%
Cluster 2 94.88% 5.12%

) 150 130 w @ 150 120
# iterations # iterations.

(a) (b) (c)

Table 3: For sampled points in Fig. 18b: (a) Clustering labeling and attractor location error results, (b)
Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model clustering error over iteration.

A s linearized while the space generate by uy and ug achieve linearization of sub-dynamics
B. The results of clustering in Tab. 3a and Fig. 19 show a similar behavior for Spectral

Our Approach Kernel K-Means Spectral Clustering Gaussian Mixture Models

Figure 19: Clustering results of Tab. 3a.

Clustering and GMM. Both algorithms yields quantitative good results. Although, due to the
chaotic behavior of the DS they fail in clustering correctly trajectories close to the attractor
belonging to another sub-dynamics. Kernel K-means is able to cluster correctly points lying
close to the attractors but it is incapable of clustering the magjority of the trajectories.

Example 4 As last examples we show applicability to hand-drawn multiple-attractor DS
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Figure 20: (a) Demonstrated trajectories. (b) Embedding space of the red sub-dynamics. (d) Embedding
space of the cyan sub-dynamics.

where our algorithm can be used to cluster the sub-dynamics and locate the various attractors
for then providing such information to stable learning algorithms present in the literature.
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Fig. 20a shows the demonstrated trajectories for a 2-attractor DS in 2D. For drawing such
trajectories we took advantage of Wacom tablet and the software provided by ML _toolboa®.
Spectral Clustering is able to achieve perfect clustering while GMM misplaces the Gaussian

/ CLUSTER | A B | e(x’) 100 100
Our Approach
Cluster 1 00% 0% | 1.56%
3 w0 o —
Cluster 2 0% 100% | 1.56% - ~___
Kernel K-Means | ’\\/\/\/ N \/ —
w @

Cluster 1
Cluster 2

48.85% 5L15% [ -
48.67% 51.33% | -
Spectral Clustering
Cluster 1 00% 0%
Cluster 2 0% 100%
Gaussian Mixture Models
Cluster 1 55.23% 44.77%
Cluster 2 47.1%  52.29%

% correct
% correct

@ 150 0
# iterations.

(a) (b) (c)

) 150 1=
# iterations.

Table 4: For sampled points in Fig. 20a: (a) Clustering labeling and attractor location error results, (b)
Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model clustering error over iteration.

components yielding poor results. Kernel K-means yields particular poor results in this case

Our Approach Kernel K-Means Spectral Clustering Gaussian Mixture Models
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Figure 21: Clustering results of Tab. 4a.

when a small kernel width such the one adopted for our algorithm is used. In order to in-
crease the performance of Kernel K-means we set the kernel width equal to the standard
deviation of the dataset. Nevertheless Kernel K-means is not able to consistently cluster the

Figure 22: Quasi-zero velocity heuristic for attractor location. Threshold at (a) 10%, (b) 5% and (c) 1%
of the average velocity.

two sub-dynamics as shown in Fig. 4b. For such case the real attractor location is assumed
to be the mean average of the position of the last point of the demonstrated trajectories. For
this specific case we show results for the location of the attractor based on quasi-zero velocity

1. https://github.com/epfl-lasa/ML __toolbox
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heuristic. Fig.22 shows the identification of potential locations for the attractors based on
different velocity thresholds. Notice that zero-velocity crossing ends up with identifying mul-
tiple and incorrect attractor locations. This happens often at the beginning of a trajectory or
wn region of high curvature where the velocity can be proximal to zero.

7. Dynamical System Learning via NVP Transformations

From a differential geometry perspective Manifold Learning has a simple and straightforward
interpretation. Consider the differentiable manifold M in Fig. 23. The maps x and u,
generally called chart maps, represent two different (local) representation of the manifold in
the Euclidean spaces R% and R*.

RS i

Figure 23: (left) Original Euclidean Space where the dataset is sampled from; (center) manifold where the
DS is taking place (right) extracted Euclidean embedding space.

Going back to the problem of learning stable DS, we view trajectories as motions over
a differentiable manifold M. Starting from an Euclidean representation R¢ of such motions
(the original dataset), our approach is capable of reconstructing an alternative Euclidean
representation R® of the manifold in which the DS looks linear. If the number of selected
eigenvectors to reconstruct the embedding space is equal to the dimension of the original
space, namely s = d, such ensemble represents the discrete counterpart of the continuous
diffeomorphic map that links the two different representation of the manifold u o x~! :
R?Y — R*. A differentiable manifold ensures that any two charts (representations of the
same manifold) are differentiable-compatible, namely u o x~! and its inverse x o u™! are
continuous and differentiable. This properties allows to relate velocity components in the
two different Euclidean spaces by the means of the so called Jacobian. For easier notation

let the diffeomorphism be ¢ = uox~!, and the Jacobian Jy = Ox¥ then
u=Jyx. (28)

It is easy to show that if Lyapunov stability is guaranteed in one Euclidean representation of
M the diffeomorphism induces the same property in the other one. Consider the existence
of a Lyapunov function V : R¢ — R radially unbounded and positive in all the space with
V(x) < 0 except in x*, equilibrium point, where V(x) = V(x) = 0. The diffeomorphism 1)
generates a Lyapunov function V : R® — R and a related attractor u* = h(x¥)

S 2 VT ou v oV
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Given the bijectivity of the diffeomorphism if V is a Lyapunov function defining a stable
equilibrium point at u*, x* is a globally asymptotically stable equilibrium point. We apply
this principle to reconstruct the dynamics in the original space.

We start by constructing a linear DS in embedding space that follows the linearized
trajectories of our DS: 1 = u* — u. This system is globally asymptotically stable at u*.
Stability can be proved easily by considering the quadratic Lyapunov function V(u) =

2(u* — u)T(u* — u). Observe that V is also the potential of the vector field (namely
u= Vf/) Following from Eq. 28, the original dynamics can be recovered through
k= 35w —u) = 35 () — (x). (30)

The corresponding (deformed) Lyapunov function in original space can be recovered as
V= Vot = L(x7) — 6(x))T ((x7) — $(x)).

In order to reconstruct the diffeomorphic map using the embedding space as a ground
truth, we adopt Non-Volume Preserving (NVP) transformations introduced by Dinh et al.
(2016). The diffeomorphism is obtained through a sequence of k coupling layers each of
which is given by:

ui:n = X1:n

(31)
Upti:d = Xp+1:d © eXP(S(Xlzn)) + t(Xlzn)

with n < d, d the dimension of the original space. s(-) and ¢(-) are scaling and translating
functions, respectively. Each of these functions is approximated through Random Fourier
feature approximation (Rahimi and Recht (2007)) of a vector-valued isotropic Radial Basis
Functions kernel as shown by Rana et al. (2020). As loss function, we use the standard Mean

nnnnn

nnnnn

00288

aaaaa

(a) (b) ()

Figure 24: (a) Linear DS generated when using identity diffeomorphism; (b) reconstructed dynamics
through learned diffeomorphism; (c) initial quadratic potential function generating a linear DS in Fig. 24a;
(d) deformed potential under the action of the learned diffeomorphism generating the nonlinear DS in
Fig. 24b.

Squared Error, MSE = ZZ]\LDlHuZ — (x;)||%, adopting the embedding space coordinates as
ground truth.

We applied the diffeomorphism to learn a mapping from our original space to the em-
bedding spaces for the hand-drawn multiple-attractor unknown DS, presented in Fig. 20a.
Fig. 24 focuses on the red sub-dynamics. Fig. 24a shows the original linear dynamics pro-
duced by Eq. 30 when the diffeomorphism 1 is the identity. After having learned the
diffeomorphism, the deformed nonlinear DS is shown in Fig. 24b. Fig. 24c and 24d show
the potential function V = V o ¢ with identity and learned diffeomorphism, respectively.
Results for the second extracted sub-dynamics are shown in Fig. 25.
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Our approach to learning DS through diffeomorphic mapping is highly inspired by the
works of Perrin and Schlehuber-Caissier (2016) and Rana et al. (2020). Different from the
approach of Perrin and Schlehuber-Caissier (2016), our learned diffeomorphism generates a
map from the original space to the embedding space, rather than the opposite. This leads

Figure 25: (a) Linear DS generated via identity diffeomorphism; (b) deformed DS under the action of the
learned diffeomorphism; (c) initial quadratic potential function generating the linear DS in Fig. 25a; (d)
deformed potential under the action of the learned diffeomorphism generating the nonlinear DS in Fig. 25b.

to a different formulation of the deformed non-linear DS. The advantage of our approach
is that it does not require to construct explicitly the inverse diffeomorphism. This comes
at the cost of having to invert the Jacobian when reconstructing the DS. Compared to the
approach proposed in Rana et al. (2020), we rely solely on the geometrical deformation of the
space, induced by the embedding space information, without taking into account dynamics
information. As consequence our loss function considers only position information (original

600 800 1000 0 1

%0 7 3
epochs dataset

(a) (b)

Figure 26: For Laplacian Embedding (LE) and Euclideanizing Flows (EF) approaches: (a) loss decay over
1000 epochs; (b) training time for 1000 epochs.

vs. embedding space) discarding the velocities. This allows to achieve faster convergence,
due to the simpler learning problem, and sensible lower learning time due to the advantage of
not having to calculate and invert the Jacobian in the process. Fig.26 shows a comparison
between our approach, termed as Laplacian Embedding (LE), and Euclideanizing Flows
(EF) presented in Rana et al. (2020). All the tests have been performed on a machine
endowed with an Intel 9-10900K CPU and a NVIDIA GeForce RTX 2080Ti GPU?. On the
left it is possible to see how the easier formulation proposed in LE leads to a fast, exponential
decaying of the loss while EF generally requires more epochs to properly converge. On the

2. Repository available at: https://github.com/nash169/learn-diffeomorphism
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right the training time over 1000 epochs is shown. As LE does not require to invert the
Jacobian, it requires approximately half training time compared to EF.

I
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Figure 27: For each demonstrated DS (column wise), the first row shows the DS generated by the identity
diffeomorphism (no train), the second row shows the DS generated after having learned the diffeomorphism
between the original space and the embedding space, the third row shows the embedding space reconstructed
using the eigenvectors extracted from the eigen-decomposition of the Laplacian matrix.

We evaluate the ability of the proposed non-volume preserving transformation to re-
construct the diffeomorphism between the original and the embedding space on the LASA
dataset?, a dataset composed of hand-drawn letters, that has been often used to compare
performance of learned non-linear DS. Each demonstration is composed by 7 trajectories
(1000 samples of position-velocity pairs). Since, in two dimensions, the reconstruction of
the embedding does not require more than three trajectories, for each demonstration, we
discard 4 trajectories that we use at testing time to evaluate performance.

For the reconstruction of the embedding to be successful, it is necessary that the demon-
strated trajectories are instances of a first order DS. While noise is tolerated, the trajectories
should not intersect, as this would violate a fundamental property of first order DS and core
assumption of the DS graph representation. Therefore, whenever it was possible, from each
demonstration, we selected trajectories in line with this requirement. In those cases where it
was not possible, in order to retain a good statistical analysis on the diffeomorphism learning
part, we reconstructed the graph structure manually.

Fig. 28 shows the deformed quadratic potential function under the action of the learned
diffeomorphism for a subset of demonstrations, while Fig. 28 shows the relative learned DS.
In order to evaluate the performance of the algorithm we employ three metrics: (1) prediction
FOG TR

Np

cosine similarity error é = Ny YA 5:?6 > (2) average Dynamic Time Warping
K2

" oo

3. https://bitbucket.org/khansari/lasahandwritingdataset
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Figure 28: Deformed potential under the action of the learned diffeomorphism generating the nonlinear
DS for the LASA dataset.

Distance (DTWD) Salvador and Chan (2007) and (3) prediction Root Mean Square Error

RMSE = NLD S Dl‘ xrel — p(xref )H Table 5 shows the performance at reconstructing each

of the demonstrations for each of the 12 dynamics shown in Figure 27.

Angle CShape GShape JShape RShape Trapezoid

RSME | 23.92 16.55 18.50 16.11 14.36 15.13
DTWD | 0.015  0.066 0.098 0.060 0.046 0.073
CS 0.679  0.992 0.979 0.861 0.504 0.749

Table 5: Performance evaluation at reconstructing the demonstrations for each of the 12 handdrawn
examples of Figure 27. Performance is measured according to three metrics: root mean square error (RSMR),
dynamic time warping distance (DTWD) and cosine similarity error (CS).

The proposed implementation of the diffeomorphism appears more capable at shaping
the streamlines of the vector field according to the demonstrated trajectories. It also has
good accuracy, with values of prediction cosine similarity error and average DTWD about
0.5 and 0.2, respectively, all of which are comparable to the current state-of-the-art (e.g.
Figueroa and Billard (2018); Rana et al. (2020)) as shown in Fig.29. This comes at the cost of

- =

LE-DTWD LE-CS EF - DTWD EF-Cs

Figure 29: For Laplacian Embedding (LE) and Euclideanizing Flows (EF) approaches box plots comparison
of DTWD and CS metrics.

a poor RMSE, over the velocities, given that the velocity information has been discarded in
the learning process. Reconstruction of the desired velocity profile can be achieved through
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proper re-scaling techniques of the reconstructed DS as shown, for instance, by Perrin and
Schlehuber-Caissier (2016).

8. Discussion & Conclusion

This paper showed that it is possible to automatically decompose a set of unlabelled data,
stemming from a multiple-attractor DS, and to identify the number of underlying dynamics
and their associated attractors. We further provided theoretical guarantees for DS lineariza-
tion based on Manifold Learning reconstruction of multiple embedding spaces. We proved
that, for a graph structure of the shape described in Sec. 3, the eigenvectors of the Laplacian
matrix generate an embedding space where the sampled trajectories from a given DS are
linearized. We proposed a novel velocity-augmented kernel to achieve the desired graph
structure from real data.

Relying on these theoretical results, we proposed an algorithm to cluster the sub-
dynamics and identify the equilibria locations of multiple-attractor DS through eigendecom-
postion of a graph-based Laplacian matrix. In particular, we utilized the spectral properties
of a Laplacian matrix applied to the particular graph proposed to reconstruct multiple em-
bedding spaces, where each sub-dynamics is linearized while the others are compressed into
a single point at zero. We showcased that, in such space, it is possible to identify the position
of the attractor while, at the same time, clustering the sub-dynamics.

In comparison to alternative clustering techniques, our approach clusters correctly all
examples we tested, even the complicated, chaotic DS generated by the Duffing equation.
Our approach also allowed to identify correctly in each cases the attractors’ location within
an error inferior to 5%. Nevertheless, our algorithm relies heavily on the reconstruction
of the correct graph. Whenever the velocity-augmented kernel is not able to reconstruct
the correct graph, the clustering performance degrades drastically and it is not possible to
locate the attractors anymore. This generally happens in extreme cases of considerable high
curvature of the sampled trajectories. In addition we highlight that Spectral Clustering
taking advantage of the kernel proposed in this work is capable of matching the clustering
performance of our algorithm. However Spectral Clustering does not exploit the particular
structure of the DS in the embedding space, and therefore, it is incapable of assessing the
location of the attractors.

A usual approach to determining the attractors is to search for zero-velocity crossing.
Velocity-crossing usually performs poorly around sharp curvatures since, at the junction, the
velocity may decrease importantly. By using the velocity-augmented kernel, our approach
is robust to sharp curvatures and can embed highly curvy dynamics, while determining the
true attractors.

In all examples used in this paper, the DS were 2-dimensional and represented single
motion patterns, However, our algorithm is not limited theoretically to 2D and scales well to
higher dimensions since both the proposed kernel and the Laplacian matrix are dimension-
independent. The dimension of the embedding space is upper bounded by the number of
trajectories sampled and it does not depend on the dimension of the original space.

Combined with state-of-the-art techniques for learning diffeomorphic maps, our method
provides an algorithm for stable learning of multiple-attractor DS in a complete unsupervised
learning scenario.
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Appendix A. Proof of Lem. 2 from Sec 3

For each m-th row L, of L(G), we have D + 1 non-zero entries, where D is the degree of
the m-th node with L,,,, = D for m = n and L,,,, = —1 for m # n. In the following, for
the sake of clarity, we will drop the upper index k for the eigenvector’s entries.

The first node, n = 1 has degree D = 1, as it is connected only to its direct neighbor.
Using the monotonic ordered labelling of the nodes, Liu = Auy yields u; — ug = Aug, that
simplifies into:

U9 = (1 — )\)ul. (32)

The second node of the path graph is connected to the previous and next node. It has
hence degree D = 2. Lou = Aug yields 2us — u; — ug = Aug. The same holds for all the
other nodes in the path. Hence, we have 2u,, — up—1 — up41 = Au,. This recurrence can be
rewritten into the recursion:

Unt1 = (2= Nup —up—1 forn=2,...,px—1, (33)

or, equivalently,
Up = (2= Nup—1 —up—o forn=3,... pg. (34)

Appendix B. Proof of Lem. 3 from Sec 3

Consider the following Chebyshev polynomial of first kind 7T

) =1
Ty(\) =1 - %
(M) =2 <1 - ;) Ty 1(N) — Tos() forn >3, (35)

equivalent to the following trigonometric expression:

T,,(\) = cos <(n —1)cos™? (1 - ;)) for n > 1. (36)

Consider the following Chebyshev polynomial of the second kind V:

Vi) = 1
Vy(A) = 2 (1 _ ;)
Vo(A) =2 (1 _ 2) Vi 1(A) — Via(A) forn > 3, (37)

equivalent to the following trigonometric expression:
sin (n cos ™! (1 — %))
sin (cos™1 (1 — %))

The combination of the Chebyshev polynomials in Eq. 36 and 38, as indicated in Eq. 9,
yields the trigonometric expression in Eq. 10.

Va(N) = for n > 1. (38)
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Appendix C. Proof of Prop. 4 from Sec 3

For simplicity, we remove the superscript & in ©* and denote it as u,. To preserve mono-
tonicity, we must determine the conditions for which the entries do not change sign along
one path. From Lem. 3, we know that u, follows periodic functions that are expressed as a
combination of trigonometric functions given by Eq. 10 for n > 1. We study the stationary
points of Eq. 10 with respect to the index n:

D=y |~Bsin((n —1)0) - prcos(n — 1))

on 2 sin(h)
. Acos((n—1)0)
=sin((n — 1)0) + 3 sin(d) = 0. (39)
Let the eigenvalue A be
A=2(1—cos(fd —27j)), jeN (40)

This expression of X is sufficient to represent all eigenvalues in [0,4]. Replacing Eq. 40 in
Eq. 39, we obtain

2(1 — cos(0 — 2myj)) cos((n —1)0)
2

sin((n —1)0) + sin(f — 2mj)

sin((n —1)0) + tan(g —mj)cos((n—1)8) =0
tan((n — 1)0) + tan(g —7j) =0. (41)

The stationary points correspond to all n, such that:

_m, 1
=5 +5 (42)

Expressing the stationary points in term of A\, we have:

mj 1
n=—"9J 4 43
cosTH1—13) 2 (43)

The monotonicity of the entries w,, is hence preserved until one reaches a stationary point.

Observe, from Eq. 43, that the smaller A\, the larger the number of nodes in the path
with monotonicity preserved. If py is the number of nodes within each path graph k, we can
determine an upper bound on A for which all u,, within one path would evolve monotonically

1—cos< F1>]. (44)
Pr— 3

From (44), it is clear that for p; > 3 one has additionally A < 1. From Prop. 2, we have
ug = (1 — A)ug, hence ug < uj if uy positive and ug > wuj, otherwise.

A<2
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Appendix D. Proof of Prop. 5 from Sec 3

In the following we will drop the reference to the underlying graph structure G. Given the
circulant block structure of the matrix J in Eq. 13, as shown by Tee (2007), the eigenvalues
and corresponding eigenvectors of such matrix are determined by the following K equations,
each giving us N eigenvalues and eigenvectors

Hjv =\ j€{0,...,K —1}, (45)
with the matrix H; defined as
Hj = By + B: (Pj + Pf_1> ) (46)
where p; = exp (z%) Observe that p]K_l = pj_l for all j. Further,
_ 2wy 2n(K — j) _
1 1
pj + p; = 2cos <K> = 2c08 (K = PK—j + Pr_; (47)
Therefore the matrices H; and Hg_j, for j > 1, yield the same eigenvalues. This shows

how in the matrix J has at least (K;D, if K is odd, or % — 1, if K is even, eigenvalues with

algebraic multiplicity equal to 2.

Appendix E. Proof of Prop 6 from Sec 3

In the following we will drop the reference to the underlying graph structure G. The eigen-
values of the Laplacian matrix L are given by

Ay =2 — Ay, (48)

where A, and A are the diagonal matrices containing the eigenvalues of L and J, respec-
tively. Therefore the smallest non-zero eigenvalue of L corresponds to the largest non-zero
eigenvalue of J. The matrices H; in Eq. 46 can be expressed as

Hj =71+ Mj, (49)
where M; is the matrix
01 _
1 -1 .
M]: .'. .'. .'. :M17J+M2’ (50)
-1 1
L 1 Oéj — 2_
wherein ) )
0
\ -1
My; = L}T aj — 2] , My = (51)
-1
. 0—
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with a; = 2cos (%) and

M= |1 T ], w=0,....01". (52)

Mjy is the adjacency matrix of a single path graph with N — 1 vertices. From Thm. 3.7 in
Bapat (2010) the eigenvalues of M are given by
™

)\n(P):2cos<W>, n=1,...,N—1. (53)

Let Apaz and Ay, the largest and the smallest eigenvalues in the spectrum, respectively.
From Thm 4.3.17 in Horn and Johnson (2012), the largest eigenvalue of each M; (i) matrices
is equal or larger than the largest eigenvalue of My. The largest eigenvalue of My is found
for n = 1. Hence, we have

2 cos (%) < An(My ), V. (54)

From Cor. 4.3.15 in Horn and Johnson (2012) the largest eigenvalue among all M; matrices
is bounded above and below by

2c0s (%) 1= Amaa(M13) + Amin(Ma) < Amaz(M;) < 2cos (%) Vi (55)

The inequality is strict as M; ; and My do not have a common eigenvector. Recalling that
A(L) =1 — A(Mj), this is equivalent to

1 —2cos (%) < Amin(L) < 2 (1 — Cos (%)) , (56)

being A\pin(L) the smallest non-zero eigenvalue of the Laplacian matrix. Since cos (%) >

oS ( NT_F T ) for N > 2, we obtain the inequality in Eq. 16.
2
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