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Abstract

This paper studies some asymptotic properties of adaptive algorithms widely used in opti-
mization and machine learning, and among them Adagrad and Rmsprop, which are involved
in most of the blackbox deep learning algorithms. Our setup is the non-convex landscape
optimization point of view, we consider a one time scale parametrization and the situation
where these algorithms may or may not be used with mini-batches. We adopt the point of
view of stochastic algorithms and establish the almost sure convergence of these methods
when using a decreasing step-size towards the set of critical points of the target function.
With a mild extra assumption on the noise, we also obtain the convergence towards the set
of minimizers of the function. Along our study, we also obtain a “convergence rate” of the
methods, in the vein of the works of Ghadimi and Lan (2013).

Keywords: Stochastic optimization; Stochastic adaptive algorithm; Convergence of ran-
dom variables.

1. Introduction

Minimizing a differentiable non-convex function f : Rd −→ R when f is defined through
an expected loss in a statistical model is a common way of estimating from an empirical
set of observations in machine learning problems. In particular, some difficult optimization
is generally involved in neural networks learning, we refer to Bottou et al. (2018), where
the major challenge of a such problem is the large scale statistical settings (large number
of observations n involved in the definition of f and large dimension of the ambient space
d) and the non-convex landscape property when using a cascade of logistic regressions. We
consider in this work the generic formulation:

∀θ ∈ Rd : f(θ) = EX∼P[f̃(θ,X)],

where X is a random variable sampled according to an unknown distribution P. To perform
the optimization of f under the uncertainty on P, we assume that we can compute all along
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the process of our algorithm some noisy but unbiased approximations of the gradient of f
computed at the current point of the algorithm. One typical example of a such algorithm is
the so-called Stochastic Gradient Descent (SGD) introduced in the famous work of Robbins
and Monro (1951), which is governed by the stochastic evolution:

θk+1 = θk − γk+1∇θf̃(θk, Xk+1),

where (γk)k≥1 is a well chosen step sequence and the observations (Xk)k≥1 are some random
realizations identically distributed according to the distribution P. The early success of this
algorithm in the sixties has been at least rejuvenated if not resurrected with the development
of massive learning problems, in the last fifteen years. We refer among others to Bottou and
Bousquet (2008); Moulines and Bach (2011) or to Bach (2014) and the references therein
for various applications in machine learning. Although being one of the state-of-the-art
methods to handle massive datasets, SGD suffers from several issues: difficulty to tune the
step-size sequence or dependence on the gradient flow that may be lazy in flat areas, which
is especially the case when looking at non-convex neural network problems.

Some popular improvements are commonly patched to SGD, and among others we refer
to the popular acceleration obtained with the Polyak-Ruppert averaging studied by Polyak
and Juditsky (1992); Ruppert (1988); Moulines and Bach (2011); Cardot et al. (2017);
Gadat and Panloup (2020), and to the variance reduction with mini-batch strategies in
Le Roux et al. (2012); Johnson and Zhang (2013).

While these two last improvements do not modify the underlying gradient flow, other
strategies rely on a modification of the dynamical system exploiting acceleration brought
by momentum with additional second order terms. The first historical example is the
Heavy Ball with Friction optimization based on the contribution Polyak (1964) and then
translated into a stochastic framework in Gadat et al. (2018); Sebbouh et al. (2020); Loizou
and Richtárik (2020). Another example is the Nesterov Accelerated Gradient Descent of
Nesterov (1983) studied in the noisy situation recently in a large number of works, among
others by Ghadimi and Lan (2016); Jin et al. (2018).

Alternative recent strategies used to improve the behaviour of stochastic algorithms
rely on adaptive methods: they consist in tuning the step-size sequence either with a per-
coordinate strategy or with a matricial inversion in front of the gradient ∇θf̃(θk, Xk+1).
Among others, Adagrad introduced by Duchi et al. (2011) (with a long range memory of
past gradients) and Rmsprop (with an exponential moving average) taught by Hinton et al.
(2012) are typical examples of step-size adaptations with second-order moments learned on-
line and these two algorithms are at the core of our work. Another state-of-the-art algorithm
is ADAM introduced by Kingma and Ba (2015) and used for example in GAN optimization
in Goodfellow et al. (2014). These algorithms are referred to as adaptive methods and have
encountered a striking raise of attention these recent years in machine learning (see e.g.
Ward et al. (2019) Zou et al. (2019)). In the statistical community, stochastic Newton and
stochastic Gauss-Newton methods may also be seen as adaptive algorithms with a direct
matricial inversion and multiplication: these methods have shown both good theoretical
and numerical abilities for regressions (Cénac et al., 2020), logistic regression (Bercu et al.,
2020b), average consensus research (Loizou and Richtárik, 2020) or optimal transport prob-
lems (Bercu et al., 2022).
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To the best of our knowledge, there are little convergence mathematical results on adap-
tive algorithms: Belotto da Silva and Gazeau (2020) studied the deterministic dynamical
system behind adaptive algorithms and obtained long-time behaviour of the trajectories of
the value function following the ideas of Cabot et al. (2009a); Su et al. (2016). More recently,
Barakat and Bianchi (2020) (that is more closely related to our present work) obtain the
almost sure convergence of their algorithms towards critical points with a parametrization
that is different from ours but they leave as an open problem the important question of the
convergence towards a minimizer of f .1 A version of Adagrad is also studied by Li and
Orabona (2019), where the authors prove an almost sure convergence of the gradients to zero
under stronger assumptions on the noise sequence (bounded support when the cost function
is non-convex). Finally, some recent contributions in machine learning (Ward et al., 2019;
Zou et al., 2019; Défossez et al., 2020) address some “convergence” questions for adaptive
algorithms with constant step-size. They provide a non-asymptotic study with a step-size
that is tuned according to the finite horizon of simulation. Even though these results are
of major interest from a numerical point of view, they do not really answer the question of
convergence from a trajectorial point of view (see Section 2.2 below). The objective of this
work may be seen as modest at the moment: we aim to study the asymptotic behaviour
of Adagrad and other related methods, i.e. we aim to show the almost sure convergence
towards a local minimizer of the objective function f . However limited at first sight, we
will see that the convergence of the trajectories outside local traps is already challenging,
especially when a mini-batch strategy is used.

2. Adaptive Algorithms and Main Results

The algorithms we consider in this paper use the vectorial division/multiplication notations
introduced in Adagrad (see Duchi et al. (2011)) and now widely used in machine learning.
The vectorial division u

v and multiplication u·v are the coordinate per coordinate operations
defined by: (u

v

)
i

=
ui
vi
, and (u · v)i = uivi ∀i ∈ {1, . . . , d}

In the meantime, the notation u�2 corresponds to the coordinate per coordinate square:

∀i ∈ {1, . . . , d} {u�2}i = u2
i ,

whereas
√
u denotes the coordinate per coordinate square root:(√

u
)
i

=
√
ui, ∀i ∈ {1, . . . , d}

Finally, the sum of a vector u ∈ Rd and a scalar ε ∈ R is given by:

(u+ ε)i = ui + ε ∀i ∈ {1, . . . , d}.

1. The same week we sent our paper on Arxiv, Barakat et al. (2020) also published some results on the trap
avoidance of adaptive algorithms but do not consider the mini-batch effect that is known to be a crucial
ingredient for the efficiency of adaptive methods. We refer to Theorem 1 and 3 below for the conditions
we obtained on the mini-batch sequence.
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2.1 Definition of the Methods

Following the recent work of Belotto da Silva and Gazeau (2020), we consider the joint
evolution of (θn, wn)n≥1 in Rd × Rd of a stochastic algorithm defined by:θn+1 = θn − γn+1

gn+1√
wn + ε

wn+1 = wn + γn+1(png
�2
n+1 − qnwn)

, (1)

where ε > 0, (γn)n≥1, (pn)n≥1, (qn)n≥1 are some deterministic positive sequences and
(gn)n≥1 corresponds to a noisy stochastic evaluation of the gradient of the function f ,
corrupted by an additive noise sequence (ξn+1)n≥1:

gn+1 = ∇f(θn) + ξn+1.

Following the initial vectorial notations, we emphasize that (1) means that for any coordi-
nate i ∈ {1, . . . , d}, (θn)n≥1 and (wn)n≥1 are updated according to:θin+1 = θin − γn+1

gin+1√
win+ε

win+1 = win + γn+1(pn(gin+1)2 − qnwin)
.

We could also have chosen to write the previous parametrization with γ̃n+1 = γn+1pn or
γ̃n+1 = γn+1qn, which corresponds to the natural time scale on the w coordinate. We have
finally used the initial one of Equation (1) to obtain a more convenient description of the
possible behaviour of the algorithm according to (pn)n≥1 and (qn)n≥1.

2.2 Link with Other Parametrizations

We discuss here our choice of the Adagrad/Rmsprop parametrization (1) using the one
of Belotto da Silva and Gazeau (2020), and its link with the standard parametrization
introduced in (Duchi et al., 2011; Hinton et al., 2012) and used in later works for ADAM
(Défossez et al., 2020; Zou et al., 2019) and Adagrad (Ward et al., 2019).

2.2.1 Historical Parametrization

We have chosen to use formulation (1), which is inspired from the limiting O.D.E. of the
continuous time adaptive gradient system following previous works on accelerated or second
order dynamics and among other we refer to Memory gradient diffusion (Gadat and Panloup,
2014), Ruppert-Polyak averaging (Gadat and Panloup, 2020), Heavy Ball systems (Attouch
et al., 2000; Cabot et al., 2009a,b; Gadat et al., 2018) or more generally Nesterov acceleration
(Nesterov, 2004; Su et al., 2016; Attouch et al., 2019) and dissipative systems (Haraux, 1991;
Alvarez et al., 2002).

The pioneering works of Duchi et al. (2011) and of Hinton et al. (2012) use the following
parametrization that is at first sight different:θ̃

Imp
n+1 = θ̃Impn − α gn+1√

vn+1 + ε̃

vn+1 = β2vn + g�2
n+1,

(2)
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for β2 ∈ (0, 1] when no heavy ball momentum (Polyak, 1964) is used in the algorithm
(which is also the case we are considering in this work). We observe that Algorithm (2)
uses vn+1 instead of vn to calculate the new position θ̃n+1. Even if it has been observed
that this “implicit” dependency with vn+1 instead of vn improves the numerical stability
of the algorithm, we will consider instead the “explicit” counterpart where θ̃n+1 depends
on vn and not on vn+1, which certainly does not really modify our (asymptotic) theoretical
conclusions, but that permits to strongly limit the supplementary technical difficulties due
to the implicit dependency of θ̃n+1 with vn+1. The sequence (θ̃n)n≥1 is defined as:θ̃n+1 = θ̃n − α

gn+1√
vn + ε̃

vn+1 = β2vn + g�2
n+1

. (3)

The use of an implicit parametrization may help to improve the dependency with ε of the
non-asymptotic upper bounds derived in Theorem 2 below.

Introducing the natural normalizing sequence (Sn)n≥1, defined by S0 = 1 and the fol-
lowing recursion:

Sn+1 = β2Sn + 1,

we then define w̃n = vn/Sn and ε̃n = ε̃/Sn and observe that Equation (3) yields:

θ̃n+1 = θ̃n −
α√
Sn

gn+1√
w̃n + ε̃n

,

whereas the second coordinate evolves according to:

w̃n+1 =
β2vn + g�2

n+1

Sn+1
=
g�2
n+1

Sn+1
+ w̃n

β2Sn
Sn+1

= w̃n +
1

Sn+1

[
g�2
n+1 − w̃n

]
.

Following the recommendation of Ward et al. (2019); Défossez et al. (2020), in particular
(Défossez et al., 2020, Equation (2.4)), we can introduce a new step-size sequence (γn)n≥1

such that α = γn+1

√
Sn and we recover in this case a joint evolution:
θ̃n+1 = θ̃n − γn+1

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + γn+1

[ √
Sn

αSn+1
g�2
n+1 −

√
Sn

αSn+1
w̃n

]
. (4)

We then deduce that Rmsprop and Adagrad with a step-size α and an hyperparameter β2

may be embedded in the framework of Equation (1) according to the following association:

γn+1 =
α√
Sn
, Sn+1 = β2Sn + 1, εn =

ε

Sn
and pn = qn =

√
Sn

αSn+1
.

• Case of constant β2 = 1 - Adagrad of Duchi et al. (2011). This case is certainly the
easiest to understand since the natural rescaling Sn of the sequence (vn)n≥1 is Sn = n. In
this case, we recover a joint evolution:{

θ̃n+1 = θ̃n − α√
n

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + 1
n+1 [g�2

n+1 − w̃n]
,
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which entails γn+1 = α√
n

. The evolution of (θn, w̃n)n≥1 follows a two-time scale stochastic

dynamic, with a decaying learning rate proportional to n−1/2 on the location and a decaying
learning rate proportional to n−1 on (w̃n). Nevertheless, a decreasing value of (αn)n≥1 ∝
(n−1/2) which is standard for non-convex stochastic optimization procedures then induces
a unique time scale on (θ̃n, w̃n)n≥1.
• Case of constant β2 ∈ (0, 1) - Rmsprop of Hinton et al. (2012) or Adam of Kingma

and Ba (2015) with no momentum. Since Sn converges exponentially fast towards (1−β2)−1,
the system is close to: θ̃n+1 = θ̃n −

√
1− β2α

gn+1√
w̃n+ε(1−β2)

w̃n+1 = w̃n + (1− β2)[g�2
n+1 − w̃n]

, (5)

which entails a constant step-size evolution whose values are α
√

1− β2 and 1− β2.

2.2.2 Other Two-time Scale Possible Parametrization

We finally consider the situation where β2 may depend on the current iteration n, while
keeping close to 1, and that may be calculated as β2(n) = 1−bn−β with b ∈ (0, 1). This last
case where the sequence goes to 1 with n corresponds to an intermediary situation between
β2 = 1 and β2 < 1, this transition being parametrized by β ∈ [0,+∞]. We shall introduce
the sequence of products:

πk = β2(1) . . . β2(k) with π0 = 1,

and a straightforward computation yields

Sn+1 =

n∑
k=0

πnπ
−1
k .

When β = 1, using (Bercu et al., 2020a, Lemma 5.2), we have:

lim
n−→+∞

n−bπ−1
n = Γ(1− b),

whereas when β 6= 1

lim
n−→+∞

exp(b(1− β)−1n1−β)π−1
n = exp(Λ)

where Λ can be made explicit in terms of the Riemann zeta function. We then conclude
the following behaviour of (Sn)n≥1 using (Gadat et al., 2018, Appendix B):

Sn ∼ c−1
b,βn

β∧1,

which implies that the joint evolution shall be written as a two-time scale evolution:{
θ̃n+1 = θ̃n − αn−

β∧1
2

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + cb,βn
−β∧1

2 [n−
β∧1
2 g�2

n+1 − n−
β∧1
2 w̃n]

.
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Adagrad β2 = 1, α constant Two-time scale ∝ (α/
√
n, 1/n)2

Adagrad β2 = 1, α ∝ 1/
√
n Unique time scale ∝ (1/n)

Rmsprop β2 < 1, α constant Unique scale constant step-size (
√

1− β2α, 1− β2)

β2 = 1− cn−β, α constant Two-time scale ∝
(
n−

β∧1
2 , n−β∧1

)
Table 1: Left: Standard parametrization. Right: Algorithm described by Equation (1)

We then observe a continuum of possible time scales when β varies between 0 and +∞, which
corresponds to the limiting situation of Adagrad and Rmsprop. Conversely, a straightfor-
ward argument shows that if γn ∝ n−β and pn = qn ∝ n−r with β > r in (1), then we

recover an adaptive algorithm tuned with 1− β2(n) ∝ n−(β+r) and αn ∝ n−
β−r
2 .

We provide in Table 1 a summary of the previous conclusions about the link between
the parametrizations of (1) and the corresponding standard adaptive algorithms.

2.2.3 Final Remark on Step-size Sequences

We emphasize that when (γn, pn)n≥1 is chosen as a constant sequence (which is the case for
the Adam and Rmsprop algorithms), the sequence (θn)n≥1 evolves as an ergodic Markov
chain and therefore the trajectory cannot converge towards a minimizer of f (indeed it
cannot converge anywhere). Hence, RMSProp and ADAM are not encompassed in our
work, even with a time varying sequence αn −→ 0, as it would generate some unbounded
sequences (pn)n≥1 and (qn)n≥1. Nevertheless, using a finite time horizon strategy with a
small enough value of the step-size, Zou et al. (2019); Défossez et al. (2020) derive some
theoretical guarantees on E[‖∇f(θ̃n)‖2].

In this work, we have chosen to state asymptotic results within a standard framework of
stochastic algorithms: ∑

n≥1

γn+1 = +∞ and lim
n→+∞

γn = 0.

We observe that the time-scale of the algorithm is driven by (γn+1)n≥1 on the θ coordinate,
and by (γn+1pn)n≥1 on the w coordinate, which leads to a possibly two time-scale algorithm
according to the behaviour of (pn)n≥1. We leave serious two-time scale considerations for
future investigations as we are essentially interested in the (γn+1)n≥1 component, and refer
to Borkar (1997); Mokkadem and Pelletier (2006); Bercu et al. (2020a); Costa and Gadat
(2020) for other examples of such stochastic algorithms in various (but simpler) situations.

2.3 Assumptions and Convenient Notations

We introduce (Fn)n≥0, the canonical filtration associated to our random sequence Fn =
σ ((θk, wk)1≤k≤n) and list below the main assumptions used in our work.

We use the symbols .d,&d to refer to inequalities up to a multiplicative constant that
are independent from the dimension d: for two positive sequences (un)n≥0 and (vn)n≥0, we

2. This can be achieved by setting γn = pn = qn = 1/
√
n
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write
un .d vn if there exists C > 0 such that un ≤ Cvn, ∀n ∈ N,

and the constant C is independent from the dimension of the ambient space d. We will
also use the notation un = Od(vn) when un .d vn. We use the symbol . that refers to an
inequality up to a multiplicative constant that can depend on d, mainly in the proof of the
local trap avoidance since for this result we are not interested in a quantitative effect of the
dimension.

2.3.1 Assumptions on the Noise and Mini-batch.

We first describe our main assumption on the sequence (gn)n≥1.
• Assumption Hp

σ. We assume that the sequence (gn)n≥1 used in (1) provides an unbiased
estimation of the true gradient of f at position θn, i.e. we assume that:

E[gn+1 |Fn] = ∇f(θn).

We furthermore assume that the noise sequence (ξn+1)n≥1 satisfies:

∀n ≥ 1 ξn+1 := gn+1 −∇f(θn) = σn+1ζn+1 with E[‖ζn+1‖p|Fn] ≤ c(d+ f(θn))p/2,
(6)

where c is a positive constant independent from d.We assume that we use a mini-batch of
size bn = σ−2

n+1 to estimate ∇f(θn): we observe at step n a set of independent unbiased

noisy gradients (g
(1)
n+1, g

(2)
n+1, . . . , g

(bn)
n+1) and we compute gn+1 with a simple averaging;

gn+1 =
1

bn

bn∑
k=1

g
(k)
n+1.

Assumption Hp
σ stands for a classical framework in stochastic optimization methods:

(σn)n≥1 is an auxiliary sequence that translates a possible use of mini-batches when σn −→ 0
as n −→ +∞. The moment assumption on (ζn)n≥1 is the convenient assumption to handle
standard problems like on-line regression, logistic regression or cascade of logistic regressions
used in deep learning. We emphasize that we do not make any restrictive and somewhat
unrealistic boundedness assumption of the noise (ζn)n≥1 or of the sequence (θn)n≥1 itself.
Below, we will use this assumption with p = 4 in Theorem 1. Finally, we should observe that
this assumption introduces a possible linear dependency with d on the size of the variance
of the noise. A such assumption is reasonable in the Gaussian case where the variance is
exactly linear with d and Hp

σ may be seen as a generalization to higher moments to a larger
class of noise distributions.

To derive the convergence of our algorithms towards a local minima, we will need a more
stringent condition on the noise sequence. We then introduce the next assumption that will
replace Hp

σ in our second main result of almost sure convergence (see Theorem 3 below).
• Assumption H∞σ .

• (H∞σ − 1). The noise sequence (ξn+1)n≥1 is centered and satisfies:

ξn+1 = σn+1ζn+1 with E[‖ζn+1‖2|Fn] ≤ 1 and E[‖ζn+1‖4|Fn] ≤ C. (7)
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• (H∞σ − 2). The noise sequence is elliptic uniformly in n:

∃m > 0 ∀n ≥ 1 ∀u ∈ Sd−1 E[〈u, ζn+1〉2] ≥ m > 0.

We stress that the upper bound (H∞σ −1) on the second order moment is not restrictive, up
to a modification of the calibration of the sequence (σn)n≥1. The second assumption will
be of course used to exit local traps. We briefly compare this set of assumptions with the
ones of the literature of trap avoidance results. First, (H∞σ − 1) involves both a second and
fourth order moment, when compared to Brandiere and Duflo (1996); Benaim and Hirsch
(1995); Pemantle (1990) that only use a second order moment. Indeed, in our adaptive
algorithm, we will need to manage the second order moment of ξ⊗2

n+1, which induces an
assumption on the fourth order moment. Second, we have chosen to use the point of view
of Benaim and Hirsch (1995); Pemantle (1990) instead of the one of Brandiere and Duflo
(1996), which is an argument that is conditioned to a set Γ(z∗) of convergence towards a
local trap z∗. In Brandiere and Duflo (1996), a uniform upper bound on the second order
moment is assumed conditionally to Γ(z∗). Since we do not make any assumption on the
location of traps z∗, an assumption on Γ(z∗) is not so different from a uniform upper bound
assumption like (H∞σ − 1).

2.3.2 Assumptions on the cost function f

• Assumption Hf We now introduce some standard assumptions on f .

• (Hf − 1). The function f is positive and coercive, i.e. f satisfies:

lim
‖x‖−→+∞

f(x) = +∞ and min(f) > 0.

Demanding the lower bound of f to be strictly positive is mostly a convenient technical
constraint and not fundamentally more restrictive than the classical assumption of
positivity.

• (Hf − 2). We assume that f satisfies the so-called Lipschitz continuous gradient prop-
erty:

∃L > 0 ∀(x, y) ∈ Rd ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

We emphasize that this implies the famous descent inequality, ∀h ∈ Rd:

f(x) + 〈h,∇f(x)〉 − L

2
‖h‖2 ≤ f(x+ h) ≤ f(x) + 〈h,∇f(x)〉+

L

2
‖h‖2. (8)

This assumption is commonly used in optimization theory and statistics. Even though
it is possible to address some more sophisticated situations (see e.g. Bauschke et al.
(2017)), it is generally admitted that most of machine learning optimization problems
fall into the Lipschitz continuous gradient framework.

• (Hf − 3). We also assume that another constant cf exists such that:

‖∇f‖2 ≤ cff. (9)
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This last assumption prevents a too large growth of the function f and it is im-
mediate to verify that (Hf − 3) implies that f has a subquadratic growth, i.e.

lim sup‖x‖−→+∞
f(x)
‖x‖2 < +∞. It has been widely used in the literature of stochas-

tic algorithm, see e.g. (Gadat et al., 2018) and the references therein.

• (Hf − 4). Finally, we assume that ∀ x ∈ Rd, the set Ax= {θ, f(θ) = x}∩{θ,∇f(θ) = 0}
is locally finite (meaning that ∀θ ∈ Ax, there exists a neighborhood Nθ of θ such that
A ∩Nθ is finite).

2.3.3 Assumptions on the step-size sequences

We finally introduce our assumptions on the step-size sequences used all along the paper
that involve (pn)n≥1, (qn)n≥1 and (γn)n≥1. To easily assess some convergence results with
quantitative conditions on our gain sequences, we will consider the following situations.
• Assumption HSteps (Case q∞ > 0)

• (HSteps − 1). The sequences (pn)n≥1 and (qn)n≥1 satisfy:

∃(r, p∞) ∈ R+ × R+ : |pn − p∞| .d n
−r and lim

n−→+∞
qn = q∞ > 0.

and
∀n ≥ 1 γn+1qn < 1.

• (HSteps − 2). The mini-batch sequence (σn)n≥1 satisfies:

σn = σ1n
−s with s ≥ 0.

• (HSteps − 3). As already discussed in Section 2.2.3, the sequence (γn)n≥0 satisfies:∑
n≥1

γn+1 = +∞ and
∑
n≥1

γ2
n+1σ

2
n < +∞ and

∑
n≥0

pnγn+1σ
2
n+1 < +∞.

We point out that, for this set of assumptions, (pn)n≥1 and (σn)n≥1 may be (or not)
some vanishing sequences (if r > 0 and p∞ = 0 or if s > 0).
• Assumption H′Steps (Case q∞ = 0)

We also introduce H′Steps which corresponds to the same set of assumptions as the ones in
HSteps while replacing (HSteps − 1) by (H′Steps − 1) defined as:

• (H′Steps − 1). The sequences (pn)n≥1 and (qn)n≥1 satisfy p∞ = q∞ = 0 and

∃r, ρ ∈ R+ such that pn .d n
−r and qn .d n

−ρ

and
∀n ≥ 1 γn+1qn < 1.

Finally, we also suppose that there exists a positive sequence (υn)n≥1 such that υn →
+∞ and

υn+1

υn
(1− qnγn+1) ≤ 1;

∑
n≥1

pnγn+1σ
2
n+1υn+1 < +∞ and pnυn+1 ≤ c.

10
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(pn)≥1 (qn)≥1 Theorem 1 Theorem 3

p∞ +O(n−r) q∞ +O(n−ρ) β + 2s > 1 -

O(n−r) q∞ +O(n−ρ) β + r + 2s > 1 1−β−r
2 < s < β

2 ∧
1−β

2 ∧
(

(r ∧ ρ)− β
2

)
O(n−r) O(n−ρ)

β + r + 2s > 1
ρ+ β ≤ 1

1−β−r
2 < s < β

2 ∧
1−β

2 ∧
(

(r ∧ ρ)− β
2

)
Table 2: Conditions on the sequences (pn, qn)n≥1 to verify Theorem 1 and Theorem 3 with

γn+1 = n−β, β ∈ (1/2, 1] and σn = σ1n
−s, with s ≥ 0.

Condition (H′Steps − 1) is not particularly restrictive. For example, if γn = γ0n
−β, it is

sufficient to assume that r + 2s + β > 1 (which is rather close to (HSteps − 3)) and that
ρ + β ≤ 1. With this choice of parameters, one can show that (H′Steps − 1) is satisfied
by choosing υn = nυ, with υ = min (β + 2s+ r − 1, r) > 0. This set of assumptions is
essentially used to prove that the sequence (wn)n≥0 converges a.s. to 0, even when q∞ = 0.

2.4 Main Results

We now state our three main convergence results for the stochastic algorithm defined in
Equation (1).

2.4.1 Almost Sure Convergence Towards a Critical Point

Theorem 1 Assume that Hf , and Hp
σ hold for p = 4. Under HSteps or H′Steps the sequence

(θn, wn)n≥1 converges almost surely towards (θ∞, 0) where ∇f(θ∞) = 0.

A careful inspection of the previous result shows that it does not permit to address the
Adagrad algorithm with a mini-batch of a fixed size, because for the Adagrad algorithm
the property

∑
γ2
n+1 < +∞ trivially fails (since γn+1 = 1√

n+1
). However, it is possible to

bypass this issue with the help of slowly logarithmic increasing mini-batches, σ−2
n ∝ log(n)2.

Theorem 1 is a purely asymptotic convergence result. It provides the convergence of
our adaptive algorithm defined in Equation (1) towards a set of critical points under mild
assumptions on the noise sequence and on the function f . We emphasize that this result
holds for a standard setup on stochastic algorithms with a decreasing learning rate (γn)n≥1.
We observe that the essential condition involved in this result is the convergence of the series
that depend on (γn, pn, σ

2
n). In particular, when γn = γ1n

−β, we observe that Theorem 1
holds when:

β ∈ (0, 1] and β + r + 2s > 1 and 2β + 2s > 1.

From a theoretical point of view, the less restrictive situation corresponds to the choice
β = 1 since the series converges as soon as σ2

n+1pn decreases like log(n)−2. It implies that
either we need to use a very lengthy decrease of the update induced by (pn)n≥1, or use a
very lengthy increase of the minibatch proportional, with a batch of size log2(n) at step
n. Of course, this last condition holds as soon as r + 2s > 0. When β is chosen lower

11
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than 1, the condition becomes r + 2s > 1 − β, which may lead to a larger computational
cost. Oppositely, the more restrictive situation appears when β < 1/2, which asks for
a polynomially increasing mini-batch all over the iterations to guarantee the almost sure
convergence. The optimal tuning of the parameters may not be read in Theorem 1, as it
does not provide any quantitative information on the rate of convergence of the method.
Some insights are however offered in Theorem 2.

A key tool for the proof of Theorem 1 and for the analysis of the algorithm is the
following Lyapunov function:

Va,b(θ, w) := ‖
√
w + ε‖2 + af(θ)2 + bf(θ)‖(w + ε)1/4‖2,

where a and b are two well chosen constants (see proof of Proposition 6 for more details).

2.4.2 Rate of “Convergence”

Using the point of view introduced in Ghadimi and Lan (2013) to assess the computational
cost of non-convex stochastic optimization, it is possible to derive a more quantitative result
on the sequence (θn)n≥1. This result is stated in terms of the expected value of the gradient
of f all along the algorithm. A δ-approximation computational cost is then defined as the
number of samples that are necessary to obtain an average value below δ.

Theorem 2 Assume that Hf and Hp
σ hold for p = 4 and consider an integer N > 0 and τ

an integer sampled uniformly over {1, . . . , N}:

i) If γn = γ =
√
ε√
dN

and pn = qn = p = q = 1√
dN

and σ2
n = 1, then:

E
[
‖∇f(θτ )‖21

]
= O

(
d√
εN

)
and the computational cost to obtain a δ-approximation is d/(εδ2).

ii) If γn = γ =
√

ε
N and γn+1pn = γn+1qn = γp = γq =

√
ε
n and σ2 = 1

d , then

E
[
‖∇f(θτ )‖21

]
= O

(
(εN)−1/2

)
and the computational cost to obtain a δ-approximation is of order d/(εδ2).

We emphasize that this last result is not a real convergence result, which is indeed impossible
to derive with a constant step-size stochastic algorithm. Nevertheless, it may be seen as
a benchmark result following the usages in non-convex machine learning optimization. As
indicated by Ghadimi and Lan (2013), it is a convenient way to assess a mean square
convergence of stochastic optimization algorithms with non-convex landscape.

We recover here a more quantitative result that translates both the linear effect of the
dimension on the “convergence” rate and the dependency of the final bound in terms of
N−1/2 when the algorithm is randomly stopped uniformly between iteration 1 and N . The
presence of both d and of N−1/2 is not surprising as it already appears to be the minimax
rate of convergence in stochastic optimization with weakly convex landscapes (Nemirovski
and Yudin, 1983).

12
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The optimal tuning of the algorithm seem to be the ones that are indicated in our
statement, even though other ones could be possible to achieve a δ approximation: σ2 may
be chosen of the order d−1 and γn ∝ ε1/2N−1/2, or σ2 = 1 and γ = ε1/2(dN)−1/2, which
leads to a dδ−2ε−1 computational cost. As discussed in Section 3.2, with this strategy, it
seems impossible to improve the dδ−2ε−1 computational cost obtained with other choices
of the parameters. The dependency with the dimension of the ambient space is also in-line
with former works on stochastic algorithms and especially on adaptive algorithms. For
example, Défossez et al. (2020) also obtain a linear dependency with the dimension d of the
computational cost, while a former d3/2 dependency was obtained in (Zou et al., 2019).

Even if of rather minor importance, our result is stated with the help of E
[
‖∇f(θτ )‖21

]
,

instead of E
[
‖∇f(θτ )‖2

]
used by Ward et al. (2019); Défossez et al. (2020) and instead of

E
[
‖∇f(θτ )‖4/3

]2/3
used in (Zou et al., 2019). It is therefore slightly stronger since (using

our vectorial notations):

‖∇f(θτ )‖21 =
∥∥∥√|∇f |∥∥∥4

≥ ‖∇f‖2.

This improvement comes from a careful tuning of a Lyapunov function that is not exactly
the same as the one used in these previous works. We refer to Sections 3.1 and 3.2 for further
details. Finally, we also point out that when the sequence (γn)n≥1 is kept fixed, as indicated
in the paragraph 2.2.2 it corresponds to a choice of β2 < 1 kept constant all over the time
evolution (see Equation 5) and p = q = 1√

N
. This result, with this range of parameters

appears to be similar to those of Ward et al. (2019); Défossez et al. (2020), but in our work
the assumptions on the noise sequence and on the function f are significantly weaker. In
particular, we emphasize that we do not make any boundedness assumption on the noisy
gradients nor on the space where θ is living, which would highly simplify the analysis of the
algorithm, and do not really correspond to a practical situation where these algorithms are
used. Of course, the price to pay without this set of boundedness assumption is that our
constants in Theorem 2 are not explicit, which is not the case in the results obtained by
Défossez et al. (2020); Ward et al. (2019) that provide some explicit upper bounds.

2.4.3 Almost Sure Convergence Towards a Minimizer

In this paragraph, we assess the almost sure convergence of the sequence (θn)n≥1 towards
a local minimum of f and state that the algorithm cannot converge towards a linearly
unstable point of the dynamical system, e.g. cannot converge towards a saddle point or a
local maximum of f . More precisely, we assume that all the critical points of f that are
not a local minimum are linearly unstable, i.e. with at least one eigenvalue with a negative
real part, which may lead to a local maximum or a saddle point.

Theorem 3 Assume that Hf , HSteps or H′Steps and H∞σ hold and that σ1 > 0. Assume that
f is twice differentiable and that all the critical points of f that are not a local minimum
are linearly unstable.

13
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• Suppose p∞ = 0, q∞ > 0, |q∞ − qn| . n−ρ, γn = γ1n
−β and that (β, r, ρ, s) are such

that: (
1

2
− β + r

2

)
∨
(

1

2
− β

)
≤ s < β

2
∧ 1− β

2
∧
(
r − β

2

)
∧
(
ρ− β

2

)
.

Then almost surely the sequence (θn)n≥1 does not converge towards a local maximum
or a saddle point of f .

• If q∞ = 0, the same conclusion holds if we furthermore assume that:

β + ρ ≤ 1

.

Several remarks are necessary after our last theorem, that identifies not only the limit
points as the critical points of f but as the local minimizers. Hence, our contribution
should be understood as a new example of stochastic method that avoids local traps, and
then connected to the contributions of Pemantle (1990); Brandiere and Duflo (1996); Gadat
et al. (2018); Barakat et al. (2020).
• Needed properties on f Of course, this result needs some important assumptions on the
function f , and especially that all the critical points t of f such that ∇f(t) = 0 that are not
a local minima have at least one repulsive direction, i.e. D2f(t) has at least one negative
eigenvalue.

The second important assumption on f that concerns the nature of the attainable equi-
libria is (Hf−4) that prevents from the existence of a uncountable set of unstable equilibria
where the algorithm may be trapped: from Theorem 1, (θn)n≥1 almost surely converges to-
wards a critical point of f and since (f(θn))n≥1 is also an a.s. convergent sequence, we
deduce from (Hf − 4) that the set of the possible limits for (θn)n≥1 is discrete, which pre-
vents from the existence of some pathological situations highlighted by Pemantle (1990,
pages 699-700): the limit points of (θn)n≥1 is necessarily a discrete countable set of Rd.
• Nature of the result Moreover, we point out that our result holds for every initialization
point and does not use any integration over (θ0, w0). Hence, the nature of our result is
different from the ones obtained in recent contributions in the field of machine learning (Lee
et al., 2016, 2017): we establish that our stochastic algorithm converges with probability 1
to a minimizer, which is different from proving that a deterministic or randomized algorithm
randomly initialized converges to a local minimum with probability 1, this is for example
the result obtained by Lee et al. (2017) for the gradient descent.
• Fixed minibatch This situation is the easiest case since σ2

n = σ2 > 0 helps to avoid traps.
When the variance of the noise sequence is kept fixed all along the iterations (no mini-batch
is used, so that s = 0), the previous conditions on the parameters can be summarized as:
p∞ = 0 (pn −→ 0 as n −→ +∞) and β ∈ (1/2, 1); r ∈ (1 − β, β), when β < 2/3 and
r ∈ (β/2, β) when β ≥ 2/3.
• Increasing minibatch Finally, we should emphasize that this last result is rather difficult to
obtain when the mini-batch parameter s is chosen strictly greater than 0 since it translates
a possible vanishing level of noise when the number of iterations is increasing.

Our assumption shows that the size of the mini-batch should not grow too fast (induced
by the condition s ≤ (1 − β)/2 for example when β > 1/2) to obtain the convergence
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Figure 1: Nature of our convergence results when (s, r) are chosen according to the state-
ments of Theorem 1 and Theorem 3 when γn = γ1n

−β. Top Left: 1/3 ≤ β ≤ 1/2.
Top Right: 1/2 ≤ β ≤ 2/3. Bottom: β ≥ 2/3. The mini-batch size is σ−2

n ∝ n2s

and q∞ > 0. To simplify the pictures we also suppose that ρ ≥ r.
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towards a local minimizer of f . Up to our knowledge, a such explicit phenomenon is new
in the stochastic algorithm community. It would deserve further numerical or theoretical
investigations to identify whether this condition is necessary to convert an almost sure
convergence result towards critical points into a convergence result towards a stable point
of the differential system.
• Adagrad case It is possible to address the specific case of Adagrad, which corresponds to

p∞ = q∞ = 0, pn = qn = 1√
n

and γn+1 = 1√
n

(see Table 1 and Section 2.2.1). We observe

that Theorem 3 holds since in this case β + ρ = 1
2 + 1

2 = 1 as soon as:

log2(n) . σ−2
n . n1/4.

Therefore, Adagrad avoids local traps (linearly unstable critical points of f) as soon as the
minibatches are at least of the order log(n)2, which is rather a slowly increasing sequence,
and less than n1/4, which is the theoretical limit we found in our analysis that generates a
sufficient amount of noise to escape from traps.
•What about SGD, mini-batches and trap avoidance? The proof of Theorem 3 can also be
adapted to obtain the same results for SGD as soon as s ≤ (1− β)/2. Said differently, we
may adapt our proof to establish that SGD avoids local traps almost surely as soon as the
learning rate γn+1 ∝ n−β and the mini-batch σ2

n ∝ n−2s satisfy:

1

2
− β ≤ s ≤ β ∧ (1− β)

2
,

which finally yields to the same condition with the popular (popular at least theoretically)
choice γn+1 ∝ n−1/2 in the non-convex case. Up to our knowledge, the maximal size
of the mini-batch that guarantees convergence to local minimizer is still an unresolved
question even for the SGD. As a really ambitious question, we leave this problem for future
developments.

2.5 Organization of the Paper

The rest of the paper consists in showing the proofs of the previous results. Theorem 1 and
Theorem 2 are proven in Section 3. In particular, Proposition 4 studies the average one-step
evolution of the algorithm through several key functions. This proposition permits to derive
a Lyapunov function in Section 3.2 that translates both the average quantitative result of
Theorem 2 and the asymptotic convergence result of Theorem 1. The main difficulties in
these two results is to derive a mean reverting effect in terms of ‖∇f(θn)‖2 without using
some extra boundedness assumption, and to assess the influence of d on the quantitative
result. Theorem 3 is a typical result of stochastic algorithms, and is inspired from the
contributions of Pemantle (1990) and Benaim and Hirsch (1995). The proof is detailed
in Section 4 and the cornerstone of this proof is the use of the stable/unstable manifold
Lemma that provides an ad-hoc Lyapunov function of the dynamical system, denoted by
η in Proposition 10. We also refer to the recent contribution of Barakat et al. (2020) for
another typical application to stochastic algorithms. The main novelty brought in our proof
is the a.s. escape of local maximum when the mini-batch has a low noise level. In particular,
from a technical point of view, we take advantage of the boundedness series of Proposition
6, which is a key ingredient in the proof of Proposition 16.
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3. Almost Sure Convergence to the Set of Critical Points

The purpose of this section is to prove Theorem 1 and Theorem 2. In particular, we will
obtain Theorem 2 during the proof of the almost sure convergence result as a specific point
of Proposition 6, i). The basic ingredient of our proof relies on the result of Robbins and
Siegmund (1971), that will be applied with the help of an ad-hoc Lyapunov function on
(θn, wn)n≥1.

3.1 Preliminary Computations

Below, we will pay a specific attention to the dimension dependency in the inequalities we
will obtain. We first state the following proposition that will create a mean reverting effect
from iteration n to iteration n+ 1 on the pair (θn, wn).

Proposition 4 Assume that ‖γnqn‖∞ < 1, that ‖pn‖∞ < +∞, that Hf and Hp
σ hold for

p = 4.

i) For any n ≥ 1, one has:

E[‖
√
wn+1 + ε‖2|Fn] ≤ ‖

√
wn + ε‖2 − qnγn+1‖

√
wn‖2

+ γn+1pn‖∇f(θn)‖2 + γn+1σ
2
n+1pn(d+ f(θn)).

ii) A constant c1 independent from n, d and ε exists such that for any n ≥ 1:

E[f(θn+1) ||Fn] ≤ f(θn)(1 +
c1γ

2
n+1

ε
(1
γn+1>

√
ε

L2
+ σ2

n+1)) +
c1d

ε
γ2
n+1σ

2
n+1

− γn+1

2

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 .
iii) Let k2 = min

(√
ε

L2 ,
√
ε

cf

)
. If we define:

sn = 1γn+1>k2

(
γ2
n+1

ε
+ d

γ4
n+1

ε2

)
+
d

ε
σ2
n+1γ

2
n+1 +

d2

ε
σ4
n+1γ

4
n+1

then a constant c2 independent from d and ε exists such that:

E[f(θn+1)|Fn] ≤ f(θn)2 [1 + c2sn] + c2sn −
γn+1

2
f(θn)

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2

iv) If we define k3 = ε
2L2 and tn as:

tn := 2γn+1pn

(
d√
ε
σ2
n+1 +

γ2
n+1

ε
√
ε

(1 + σ4
n+1d

2)

)
,
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then a large enough constant c3 (independent from n, d and ε) exist such that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn] ≤ f(θn)‖(wn + ε)1/4‖2
(

1 + c3
γ2
n+1

ε
(1γn+1>k3 + dσ2

n+1)

)
− γn+1

2

∥∥∥√|∇f(θn)|
∥∥∥4

+ γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+ c3

[
tnf(θn)2 + tn

]
.

Proof We consider each point separately.

• Proof of i): We observe that:

E[‖
√
wn+1 + ε‖2 |Fn] = E

[∥∥∥∥√wn + γn+1[png
�2
n+1 − qnwn] + ε

∥∥∥∥2

|Fn

]

= E

[
d∑
i=1

win + ε+ γn+1[pn{gin+1}2 − qnwin] |Fn

]
≤ ‖
√
wn + ε‖2 − qnγn+1‖

√
wn‖2 + γn+1pn‖∇f(θn)‖2 + γn+1pnσ

2
n+1(d+ f(θn)),

where the last line comes from the definition of ξn+1 = σn+1ζn+1 and the fact that:

E[ζn+1 |Fn] = 0 and E[‖ζn+1‖2 |Fn] .d (d+ f(θn)).

This concludes the proof. �
• Proof of ii): We develop f(θn+1) using the descent inequality (8):

f(θn+1) = f

(
θn − γn+1

gn+1√
wn + ε

)
≤ f(θn)− γn+1〈∇f(θn),

gn+1√
wn + ε

〉+
L2

2
γ2
n+1

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2

:= m+
n (10)

≤ f(θn)− γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 − γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+
L2

2
γ2
n+1

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2

We start by computing the conditional expectation of the last term:

E

[∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2

|Fn

]
=

∥∥∥∥ ∇f(θn)√
wn + ε

∥∥∥∥2

+ E

[∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2

|Fn

]

≤ 1√
ε

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+
cσ2
n+1

ε
(d+ f(θn)), (11)
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where in the last line we use the assumption Hp
σ for p = 2. Inserting this in (10) we obtain

that :

E[f(θn+1) |Fn] ≤ f(θn)− γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2
+
L2

2
γ2
n+1

(
1√
ε

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+
cσ2
n+1

ε
(d+ f(θn))

)

Finally using the sub-quadratic growth assumption given by (9), we have that:

γ2
n+1

L2

2
√
ε

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

≤ γ2
n+1

L2cf
ε

f(θn)1
γn+1>

√
ε

L2
+
γn+1

2

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

1
γn+1≤

√
ε

L2

Regrouping all these terms, we can conclude that a constant c1 = L2(c ∨ cf ) exists such
that:

E[f(θn+1) |Fn] ≤ f(θn)(1+
c1γ

2
n+1

ε
(1
γn+1>

√
ε

L2
+σ2

n+1))+
c1dγ

2
n+1σ

2
n+1

ε
−γn+1

2

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 .
We emphasize that at this stage, this last inequality does not create any repelling effect

on the position (θn)n≥1 and we need to deal with the denominator (wn + ε), which is the
purpose of iii). �
• Proof of iii): We consider the evolution of f2 from θn to θn+1. Using (10) and the
positivity of f , we deduce that:

f(θn+1)2 ≤ {m+
n }2.

Going back to the bound on m+
n we observe that:

m+
n ≤ f(θn)− γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 − γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+ L2γ2
n+1

(∥∥∥∥ ∇f(θn)√
wn + ε

∥∥∥∥2

+

∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2
)

≤ f(θn)− γn+1

2

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 − γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+ L2γ2
n+1

(∥∥∥∥ ∇f(θn)√
wn + ε

∥∥∥∥2

1
γn+1>

√
ε

L2
+

∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2
)

≤ f(θn)

(
1 + γ2

n+1

L2

ε
1
γn+1>

√
ε

L2

)
− γn+1

2

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2
− γn+1〈∇f(θn),

ξn+1√
wn + ε

〉+ L2γ2
n+1

∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2
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Denote by an the coefficients of f(θn) in the previous inequality, an = 1 + γ2
n+1

L2

ε 1
γn+1>

√
ε

L2
.

Expanding {m+
n }2 we get :

{m+
n }2 ≤ f(θn)2a2

n +
γ2
n+1

4

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣4 + γ2
n+1〈∇f(θn),

ξn+1√
wn + ε

〉2 +
L4

4
γ4
n+1

∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥4

− 2anγn+1f(θn)〈∇f(θn),
ξn+1√
wn + ε

〉 − γn+1f(θn)

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2
+ L2γ2

n+1anf(θn)

∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2

+ γ2
n+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 〈∇f(θn),
ξn+1√
wn + ε

〉

+ 2L2γ3
n+1

∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2 ∣∣∣∣〈∇f(θn),
ξn+1√
wn + ε

〉
∣∣∣∣

(12)

When taking the conditional expectation in the previous inequality we treat some of
these terms separately. Using the Cauchy-Schwarz inequality together with assumption H2

σ

and (9) we have that:

E[〈∇f(θn),
ξn+1√
wn + ε

〉2|Fn] ≤ ‖∇f(θn)‖2E

[∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2

|Fn

]
≤ cσ2

n+1

cf
ε
f(θn)(d+ f(θn))

≤ 2cfc
dσ2

n+1

ε
(1 + f(θn)2)

The term L4

4 γ
4
n+1

∥∥∥ ξn+1√
wn+ε

∥∥∥4
can be easily bounded using H4

σ:

E

[∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥4

|Fn

]
≤ 2

ε2
σ4
n+1(d2 + f(θn)2)

We bound the conditional expectation of the last term using the same type of arguments

E

[∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥2 ∣∣∣∣〈∇f(θn),
ξn+1√
wn + ε

〉
∣∣∣∣
]
≤ ‖∇f(θn)‖E

[∥∥∥∥ ξn+1√
wn + ε

∥∥∥∥3

|Fn

]

≤ cff(θn)
cσ3
n+1

ε
√
ε

(d+ f(θn))3/2

.d

(
d

ε

)3/2

σ3
n+1(1 + f(θn)2)

Taking the conditional expectation in (12), using the centering of the noise sequence (ξn),
the fact that

√
ab ≤ (a+b)/2 and inserting these previous bounds, we have that there exists
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a constant c2 independent of d and ε such that

E[f(θn+1)|Fn] ≤ f(θn)2

[
1 + c2

[
1
γn+1>

√
ε

L2

(
γ2
n+1

ε
+ d

γ4
n+1

ε2

)
+
d

ε
σ2
n+1γ

2
n+1 +

d2

ε
σ4
n+1γ

4
n+1

]]
− γn+1f(θn)

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 +
γ2
n+1

4

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣4
+ c2

[
1
γn+1>

√
ε

L2

(
γ2
n+1

ε
+ d

γ4
n+1

ε2

)
+
d

ε
σ2
n+1γ

2
n+1 +

d2

ε
σ4
n+1γ

4
n+1

]

Observing that

γ2
n+1

4

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣4 ≤ γ2
n+1cf

4
√
ε
f(θn)

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2
≤ 1

γn+1>
√
ε

cf

γ2
n+1c

2
f

4ε
f(θn)2 + 1

γn+1≤
√
ε

cf

γn+1

2
f(θn)

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2

we can conclude by taking k2 =
√
εmin(1/cf , 1/L

2) and re-denoting the constant c2.

• Proof of iv): We observe that:

‖(wn+1 + ε)1/4‖2 =
d∑
i=1

√
win + ε+ γn+1[pn{gin+1}2 − qnwin]

=

d∑
i=1

√
(win + ε)

(
1 + γn+1

pn{gin+1}2 − qnwin
win + ε

)

=
d∑
i=1

√
win + ε

(
1 + γn+1

pn{gin+1}2 − qnwin
win + ε

)1/2

,

where the last line comes from the fact that win/(w
i
n + ε) < 1, which implies that the last

term of the right hand side exists.

Using
√

1 + a ≤ 1 + a/2 for any a > −1, we deduce that:

‖(wn+1 + ε)1/4‖2 ≤
d∑
i=1

√
win + ε

(
1 +

γn+1

2

pn{gin+1}2 − qnwin
win + ε

)
≤ ‖(wn + ε)1/4‖2 +

γn+1

2
〈 1√

wn + ε
, png

�2
n+1 − qnwn〉.
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Now observe that the second term can easily be bounded by:

〈 1√
wn + ε

, png
�2
n+1 − qnwn〉 =

d∑
i=1

pn{gin+1}2√
win + ε

− 〈 1√
wn + ε

, qnwn〉︸ ︷︷ ︸
positive term

≤
d∑
i=1

pn{gin+1}2√
win + ε

≤ 2pn

(∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+ ε−1/2σ2
n+1‖ζn+1‖2]

)

We use this last inequality and f(θn+1) ≤ m+
n to conclude that:

f(θn+1)‖(wn+1+ε)1/4‖2 ≤ m+
n

(
‖(wn + ε)1/4‖2 + γn+1pn

(∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+
σ2
n+1√
ε
‖ζn+1‖2]

))
.

We use the following decomposition :

m+
n ≤ f(θn)− γn+1

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

− γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+ L2ε−1/2γ2
n+1

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+ L2ε−1γ2
n+1σ

2
n+1‖ζn+1‖2

≤ f(θn)− γn+1

2

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

− γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+ L21γn+1>k3ε
−1γ2

n+1 ‖∇f(θn)‖2 ,

where k3 is a small enough constant (k3 ≤
√
ε/2L2). We then develop and obtain that:

f(θn+1)‖(wn+1 + ε)1/4‖2 ≤

(
f(θn)− γn+1

2

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 − γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+ L2ε−11γn+1>k3γ
2
n+1 ‖∇f(θn)‖2 + L2ε−1γ2

n+1σ
2
n+1‖ζn+1‖2

)(
‖(wn + ε)1/4‖2

+ γn+1pn

(∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+ ε−1/2σ2
n+1‖ζn+1‖2]

))
The baseline remark is that thanks to the Cauchy-Schwarz inequality, we have:∥∥∥√|∇f(θn)|

∥∥∥4
=

(
d∑
i=1

|∂if(θn)|

)2

≤
d∑
i=1

{∂if(θn)}2√
win + ε

d∑
i=1

√
win + ε

=

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 ‖(wn + ε)1/4‖2.
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We then compute the conditional expectation of the previous terms with respect to
Fn, using the previous inequality, the centering of ξn+1, and obtain that a constant c3

independent from d exists such that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn]

≤ f(θn)‖(wn + ε)1/4‖2 + γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

− γn+1

2

∥∥∥√|∇f(θn)|
∥∥∥4

+ c3E

γn+1√
ε
σ2
n+1pnf(θn)‖ζn+1‖2︸ ︷︷ ︸

:= 1©

+
γ2
n+1√
ε
pnσ

3
n+1

∣∣∣∣〈∇f(θn),
ζn+1√
wn + ε

〉
∣∣∣∣ ‖ζn+1‖2︸ ︷︷ ︸

:= 2©

+ 1γn+1>k3ε
−1γ2

n+1 ‖∇f(θn)‖2‖(wn + ε)1/4‖2︸ ︷︷ ︸
:= 3©

+
γ3
n+1

ε
pn‖∇f(θn)‖2

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

︸ ︷︷ ︸
:= 4©

+
γ3
n+1

ε
√
ε
pnσ

2
n+1‖∇f(θn)‖2‖ζn+1‖2︸ ︷︷ ︸

:= 5©

+
γ2
n+1

ε
σ2
n+1‖ζn+1‖2‖(wn + ε)1/4‖2︸ ︷︷ ︸

:= 6©

+
γ3
n+1

ε
σ2
n+1pn‖ζn+1‖2

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

︸ ︷︷ ︸
:= 7©

+
γ3
n+1

ε
√
ε
pnσ

4
n+1‖ζn+1‖4

∣∣︸ ︷︷ ︸
:= 8©

Fn


We then study each terms in the large bracket separately. Using f ≤ 1 + f2 and Hp

σ, we
have:

E[ 1©
∣∣Fn] =

γn+1√
ε
σ2
n+1pnf(θn)E

(
‖ζn+1‖2

∣∣Fn)
≤ γn+1√

ε
σ2
n+1pnf(θn)(d+ f(θn))

≤ γn+1√
ε
σ2
n+1pnd(1 + f(θn))2.

The second term is handled with the help of Hp
σ (for p = 3) and the Cauchy-Schwarz

inequality:

E[ 2©
∣∣Fn]≤

γ2
n+1

ε
pnσ

3
n+1‖∇f(θn)‖E[‖ζn+1‖3

∣∣Fn]

≤
γ2
n+1

ε
pnσ

3
n+1‖∇f(θn)‖(d+ f(θn))3/2

≤
γ2
n+1

ε
pnσ

3
n+1

√
cf (1 + f(θn))d3/2(1 + f(θn))3/2

.d
γ2
n+1

ε
pnσ

3
n+1d

3/2(1 + f(θn))2.
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3© is Fn measurable and the subquadratic growth assumption given by (9) ensures that:

3© ≤ 1γn+1>k3

cfγ
2
n+1

ε
f(θn)‖(wn + ε)1/4‖2.

The term 4© is Fn measurable and we use once more that ‖∇f‖2 .d f to obtain that:

4© .d
γ3
n+1

ε
pnf(θn)

d∑
i=1

{∂if(θn)}2√
win + ε

≤
γ3
n+1

ε
pnf(θn)ε−1/2

d∑
i=1

{∂if(θn)}2

.d
γ3
n+1

ε
pnf(θn)2.

For 5© we use Assumption Hp
σ with p = 2 and obtain that:

E[ 5©
∣∣Fn] =

γ3
n+1

ε
√
ε
pnσ

2
n+1‖∇f(θn)‖2E[‖ζn+1‖2

∣∣Fn]

.d
γ3
n+1

ε
√
ε
pnσ

2
n+1f(θn)(d+ f(θn))

.d
γ3
n+1

ε
√
ε
pnσ

2
n+1d(1 + f(θn))2.

6© is close to 3©, we use Hp
σ with p = 2 and obtain that:

E[ 6©
∣∣Fn] ≤

γ2
n+1

ε
σ2
n+1‖(wn + ε)1/4‖2E[‖ζn+1‖2 |Fn] .d

γ2
n+1

ε
σ2
n+1(d+ f(θn))‖(wn + ε)1/4‖2

.d
γ2
n+1

ε
dσ2

n+1f(θn)‖(wn + ε)1/4‖2.

The last line comes from the fact that as soon as f is uniformly lower bounded by a positive
constant, then ‖(wn + ε)1/4‖2 .d f(θn)‖(wn + ε)1/4‖2.

The term 7© is close to 5© and we immediately get :

E[ 7©
∣∣Fn]=

γ3
n+1

ε
σ2
n+1pn

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

E[‖ζn+1‖2
∣∣Fn]

≤
γ3
n+1

ε
√
ε
σ2
n+1pn‖∇f(θn)‖2E[‖ζn+1‖2

∣∣Fn]

≤ E[ 5©
∣∣Fn].

For 8© Assumption Hp
σ with p = 4 implies that:

E[ 8©
∣∣Fn] .d

γ3
n+1

ε
√
ε
pnσ

4
n+1(d2 + f(θn)2).
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Our bounds on 1© − 8© and the fact that (1 + f(θn))2 ≤ 2(1 + f(θn)2) ensure that a
constant c3 exists, independent from d and ε, such that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn] ≤ f(θn)‖(wn + ε)1/4‖2
(

1 + c3
γ2
n+1

ε
(1 + dσ2

n+1)

)
− γn+1

∥∥∥√|∇f(θn)|
∥∥∥4

+ γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+ c3

[
γn+1√
ε
pn

(
σ2
n+1d+ γn+1σ

3
n+1d

3/2 +
γ2
n+1

ε
(1 + σ2

n+1d+ σ4
n+1d

2)

)
(1 + f(θn)2)

]
Since γn+1σ

3
n+1d

3/2 ≤ 1/2(σ2
n+1d+ γ2

n+1σ
4
n+1d

2), using the definition of tn, we deduce that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn] ≤ f(θn)‖(wn + ε)1/4‖2
(

1 + c3
γ2
n+1

ε
(1γn+1>k3 + dσ2

n+1)

)
− γn+1

2

∥∥∥√|∇f(θn)|
∥∥∥4

+ γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

+ c3

[
tnf(θn)2 + tn

]
.

Remark 5 Proposition 4 will permit do derive a Lyapunov function on (θn, wn)n≥1 (see
the next result) which implies the convergence of:

E

∑
n≥1

γn+1 ‖∇f(θn)‖2
 < +∞.

This kind of bound has also been obtained by Défossez et al. (2020, Theorem 4) with the
help of a somewhat artificial boundedness assumption of the noisy gradients, which is not
used in our work. We also point out that Zou et al. (2019) propose another function that
generates a mean reverting term:∑

n≥1

γn+1E[‖∇f(θn)‖4/3] <∞,

and the major difference with our result is the weaker 4/3 instead of 2 in the series. In
particular, a such 4/3 will not allow to prove the a.s. asymptotic pseudo-trajectory result,
and consequently the a.s. convergence of the trajectory towards a critical point of f .

3.2 Proof of Theorem 2

Using Proposition 4, we are now ready to state the next important result, which will be key
for the almost sure convergence of (θn)n≥1.

Proposition 6 Under the assumptions of Proposition 4 :
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i) Two constants c(θ0, w0) and κ exist such that, for all n ≥ 1:

E

(
n∑
k=1

γk+1qk‖
√
wk‖2 + γk+1‖

√
|∇f(θk)|‖4

)
≤ (1 + Va,b(θ0, w0)) exp

(
κ

n∑
k=1

(sk + tk)

)
,

where (tn)n≥0 and (sn)n≥0 are the auxiliary sequences defined in Proposition 4.

ii) If
∑

n≥1(γ2
n+1σ

2
n+1 + γn+1σ

2
n+1pn) < +∞ , then almost surely:∑

n≥1

[
γn+1qn‖

√
wn‖2 + γn+1‖

√
|∇f(θn)|‖4

]
< +∞. (13)

iii) Suppose that additionally (H′Steps−1) holds. Then ‖√wn‖2υn is almost surely bounded,
where υn is introduced in H′Steps.

Proof • Proof of i). Our proof relies on a Lyapunov function defined by:

Va,b(θ, w) := ‖
√
w + ε‖2 + af(θ)2 + bf(θ)‖(w + ε)1/4‖2,

with a careful tuning of a and b.

Using i), iii) and iv) of Proposition 4 and the fact that f(θn) ≤ 1 + f(θn)2, we deduce
that a constant κ that depends on c1, c2, c3 and of the next choice of a and b exists such
that:

E [Va,b(θn+1, wn+1) |Fn] ≤ Va,b(θn, wn) [1 + κ(sn + tn)] + κ(sn + tn)

− qnγn+1‖
√
wn‖2

+
[
γn+1pn‖∇f(θn)‖2 − bγn+1

2
‖
√
|∇f(θn)|‖4

]
+ [bγn+1pn − a

γn+1

2
]f(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2

.

We observe that for any vector u, we have ‖
√
|u|‖4 ≥ ‖u‖2 and that (pn)n≥1 is a bounded

sequence, so that we can find b large enough b > 4 supn≥1 pn, and a/2 ≥ bpn, such that:

∀n ≥ 1 E [Va,b(θn+1, wn+1) |Fn] ≤ Va,b(θn, wn) [1 + κ(tn + sn)] + κ(tn + sn)

− γn+1

[
qn‖
√
wn‖2 +

b

4
‖
√
|∇f(θn)|‖4

]
. (14)

We introduce the products (πj)j≥0 defined by:

πj =

j∏
u=1

(1 + κ(tu + su)) = πj−1 (1 + κ(tj + sj)) .
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We observe that κ(tj + sj) = π−1
j−1[πj − πj−1]. A straightforward recursion, associated with

a sequence of conditional expectation argument, yields:

E [Va,b(θn+1, wn+1)] ≤ Va,b(θ0, w0)πn +
n∑
j=1

κ(tj + sj)
n∏

u=j+1

(1 + κ(tu + su))

− E

 n∑
j=1

γj+1qj‖
√
wj‖2 +

b

4

n∑
j=1

γj+1‖
√
|∇f(θj)|‖4


≤ Va,b(θ0, w0)πn +

n∑
j=1

πj − πj−1

πj−1
× πn
πj

− E

 n∑
j=1

γj+1qj‖
√
wj‖2 +

b

4

n∑
j=1

γj+1‖
√
|∇f(θj)|‖4


≤ Va,b(θ0, w0)πn + πn

n∑
j=1

(π−1
j−1 − π

−1
j )

− E

 n∑
j=1

γj+1qj‖
√
wj‖2 +

b

4

n∑
j=1

γj+1‖
√
|∇f(θj)|‖4


A telescopic sum argument then shows that:

E

 n∑
j=1

γj+1qj‖
√
wj‖2 +

b

4

n∑
j=1

γj+1‖
√
|∇f(θj)|‖4

 ≤ (1 + Va,b(θ0, w0))πn.

We conclude using 1 + x ≤ ex, which entails πn ≤ exp
(
κ
∑n

j=1(tj + sj)
)

.
�

• Proof of ii). This point proceeds with standard arguments: we use the Robbins-
Siegmund Lemma: using our assumption on the series, we deduce that

∑
tn and

∑
sn

are convergent and we obtain that:

1. Va,b(θn, wn)→ V∞ a.s. (and in L1) and supn E[Va,b(θn, wn)] < +∞

2. More importantly, the next series are convergent:∑
n≥0

γn+1‖∇f(θn)‖2 <
∑
n≥0

γn+1‖
√
|∇f(θn)|‖4 < +∞ a.s. (15)

and ∑
n≥0

γn+1qn‖
√
wn‖2 < +∞ a.s.. (16)

This ends the proof of ii). �
• Proof of iii). This point is meant to also encompass the particular case corresponding

to Adagrad with parameters β2 = 1 and α constant, which according to Table 1 can be
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recovered with our parametrization by setting γn = qn = pn = 1√
n

.

We study the evolution of the sequence ϕn = ‖wn‖2υn, and we will use the Robbins-
Siegmund theorem in order to prove its convergence. With that in mind, we start by
writing a recursive relation on ϕn:

ϕn+1 = υn+1‖
√
wn+1‖2

= υn+1

[
‖
√
wn‖2 + pnγn+1‖gn+1‖2 − qnγn+1‖

√
wn‖2

]
= υn‖

√
wn‖2

[
υn+1

υn
(1− qnγn+1)

]
+ pnγn+1υn+1‖gn+1‖2

= ϕn

[
υn+1

υn
(1− qnγn+1)

]
+ pnγn+1υn+1‖gn+1‖2.

Therefore, as soon as υn+1

υn
(1− qnγn+1) ≤ 1, we have that:

E[ϕn+1|Fn] ≤ ϕn + pnγn+1υn+1E[‖gn+1‖2|Fn]

In order to apply the Robbins-Siegmund theorem we study the following series:∑
n≥1

pnγn+1υn+1E[‖gn+1‖2|Fn] =
∑
n≥1

pnγn+1υn+1

(
‖∇f(θn)‖2 + E[‖ξn+1‖2|Fn]

)
≤
∑
n≥1

pnυn+1γn+1‖∇f(θn)‖2 +
∑
n≥1

pnγn+1υn+1E[‖ξn+1‖2|Fn].

As soon as there exists a constant c such that pn/υn+1 ≤ c, the first term is bounded by
c
∑

n≥1 γn+1‖∇f(θn)‖2 which, according to ii), is almost surely finite. For the second term,

we use the noise assumption H2
σ:∑

n≥1

pnγn+1υn+1E[‖ξn+1‖2|Fn] ≤
∑
n≥1

pnγn+1υn+1σ
2
n+1(d+ f(θn))

≤ (d+ sup
n≥1

f(θn))
∑
n≤1

pnγn+1σ
2
n+1υn+1

Since by ii) Va,b(θn, wn) is almost surely bounded, so is f(θn). Thus, when the series∑
n≤1 pnγn+1σ

2
n+1υn+1 < +∞, we can conclude that∑

n≥1

pnγn+1υn+1E[‖gn+1‖2|Fn] < +∞ almost surely.

Finally, we can apply the Robbins Siegmund theorem to obtain that ϕn → ϕ∞ a.s. and
that ϕ∞ < +∞ a.s. which ends the proof.

We emphasize that i), ii) are standard consequences of the Robbins-Siegmund approach
on stochastic algorithms. In particular, the use of i) with the calibrations of (γn)1≤n≤N ,
(σn)1≤n≤N and (pn)1≤n≤N that are given in the statement of Theorem 2 instantaneously
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lead to the conclusion of the proof. We also point out that the basic fact to obtain this
result is a tuning of the parameters that leads to:

N∑
n=1

(sn ∨ tn) .d 1.

Considering constant step-size sequences, it entails the following constraints on (p, γ, σ):

γ2

ε
∨ γp√

ε
σ2d ∨ γ

2

ε
σ2d .d 1,

whereas the size of N needed to obtain a δ approximation should verify that:

E

[
1

N

N∑
k=1

‖
√
|∇f(θk)|‖4

]
≤ δ ⇐⇒ 1

Nγ
E

[
N∑
k=1

γ‖
√
|∇f(θk)|‖4

]
≤ δ ⇐= N ≥ (δγ)−1.

The computational cost associated to a such N is then Nσ−2 since each iteration generates
σ−2 computations. We then observe that the two alternative tunings of the parameters
suggested in i) and ii) of Theorem 2 lead to a dε−1δ2 computational cost to obtain a δ
approximation.

We can finally address the bound we obtain for the Rmsprop situation, which corre-
sponds to a constant step-size algorithm with γ = α

√
1− β2 and p =

√
1− β2α

−1. We then
recover a dε−1δ−2 computational cost with the following tuning of the parameters: α =

√
ε

and 1− β2 =
√
ε/(nd).

3.3 Proof of Theorem 1

For the sake of convenience, from now on we denote Vn = Va,b(θn, wn). Since we are now
interested in purely asymptotic results, we omit the dependency on d in the bounds we
obtain hereafter. The main difficulty here is to convert the result of Proposition 6 ii) into
an a.s. convergence result on (θn)n≥1.

3.3.1 Asymptotic Pseudo-trajectory

We remind the standard definition of asymptotic pseudo-trajectories of a semiflow Φ.

Definition 7 (Pseudo-trajectory) A continuous trajectory Z is a pseudo-trajectory of
Φ if for any finite time horizon T > 0

lim
t−→+∞

sup
0<u<T

|Zt+u − Φu(Zt)| = 0.

We refer to Benäım and Hirsch (1996); Benäım (1999) for further details. We will use in
particular the cornerstone result which is reminded below:

Theorem 8 (Theorem 3.2 of Benäım (1999)) If Z is an asymptotic pseudo-trajectory
of Φ with a compact closure in Rd, then every limit point of (Z(t + .))t≥0 when t → +∞
(equipped with the topology of uniform convergence on compact sets) is a trajectory induced
by the semiflow Φ.
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In what follows we use the results of Benäım (1999) to show that a linear interpolation
of the sequence (Zn)n≥ is an asymptotic pseudo-trajectory of the flow induced by the vector
field H : R2d → R2d of our adaptive algorithm defined by:

H(θ, w) =

 − ∇f(θ)√
w + ε

p∞∇f(θ)�2 − q∞w

 . (17)

For this part, the value of q∞ is of no importance, so we can treat at the same time the two
regimes (q∞ > 0 or q∞ = 0). The main difference between the two, is in the convergence
proof for the coordinate wn and this will be highlighted at the appropriate moment.
Denote τ0 = 0, τn =

∑n
k=1 γk and consider (Z̄t)t≥0 the continuous time process correspond-

ing to a linear interpolation of (Zn)n≥0, given by:

Z̄(τn + s) = Zn + s
Zn+1 − Zn
γn+1

; ∀n ∈ N; ∀ 0 ≤ s ≤ γn+1.

The Robbins-Siegmund Lemma ensures that the sequence (Vn)n≥1 converges a.s. to a
finite random variable V∞. Since all the terms of Vn are positive, (f(θn))n≥0 and (‖wn‖)n≥0

are a.s. bounded as well. The coercivity of f implies thus that (Zn)n≥0 is a.s. bounded.
The evolution of the sequence (Zn)n≥0 can be written as:

Zn+1 = Zn + γn+1(H(Zn) + en),

where en is a rest term:

en =

 ∇f(θn)− gn+1√
wn + ε

png
�2
n+1 − p∞∇f(θn)�2 − (qn − q∞)wn

 . (18)

The next result allows us to control the rest term and ensures that the assumptions of
Proposition 4.1 of Benäım (1999) are satisfied, which in turn implies that (Z̄t)t≥0 is indeed
an asymptotic pseudo trajectory of the flow induced by H.

Lemma 9 Suppose that the assumptions of Proposition 4 and (HSteps − 1) hold and that∑
γk+1σ

2
k+1pk < +∞. Let N(n, t) = supk≥0{t+ τn ≥ τk} and (en)n≥1 defined in Equation

(18). Then, for all T > 0:

lim sup
n→∞

sup
t∈[0,T ]

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkek

∥∥∥∥∥∥ = 0 a.s.

Proof We consider a finite horizon T > 0. In order to deal with the previous sum, we

write en as an + ∆Mn+1 − cn, with an =

(
0

(pn − p∞)∇f(θn)�2 − (qn − q∞)wn

)
, ∆Mn+1 =∇f(θn)− gn+1√

wn + ε
0

 and cn =

(
0

pn(∇f(θn)�2 − g�2
n+1)

)
. We use the fact that:

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkek

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk∆Mk+1

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkck

∥∥∥∥∥∥ ,
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and proceed to upper bound each term of the right hand side.
• The convergence of the first term is mainly a consequence of Equations (15), (16) (con-
vergence of the Robbins-Siegmund series), of the convergence of (qn)n≥1 towards q∞ and
the fact that (pn − p∞)n≥1 is a bounded sequence:

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk
(
(pk − p∞)∇f(θk)

�2 − (qk − q∞)wk
)∥∥∥∥∥∥

≤

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk(pk − p∞)∇f(θk)
�2

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk(qk − q∞)wk

∥∥∥∥∥∥
≤

N(n,t)+1∑
k=n+1

γk|pk − p∞|
∥∥∇f(θk)

�2
∥∥+

N(n,t)+1∑
k=n+1

γk|qk − q∞| ‖wk‖ .

Assumption (HSteps − 1) (or (H′Steps − 1)) ensures that a constant P exists such that

|pn − p∞| < P and that for n large enough |qn − q∞| ≤ qn. Moreover, ∀a, b ∈ R+,
√
a+ b ≤√

a +
√
b thus ‖∇f(θn)�2‖ ≤ ‖∇f(θn)‖2 and ‖wn‖ ≤ ‖

√
wn‖2. Inserting these bounds in

the previous inequality gives:∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥ ≤
N(n,t)+1∑
k=n+1

Pγk ‖∇f(θk)‖2 +

N(n,t)+1∑
k=n+1

γkqk‖
√
wk‖2.

Using the convergence of the series (15) and (16) we conclude that, ∀t > 03:

lim sup
n→∞

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥ = 0.

• To control the second term we observe that (γk+1∆Mk+1)k≥0 is a sequence of martingale
increments, since

∀k ≥ 1 E

[
γk+1

ξk+1√
wk + ε

|Fk
]

= 0,

that the associated martingale Mn =
∑n

k=1 γk∆Mk is square integrable and that further-
more:

E[‖Mn+1 −Mn‖2|Fn] = E

[
γ2
n+1

∥∥∥∥ ξn+1√
wk + ε

∥∥∥∥2

|Fn

]
≤ γ2

n+1

σ2
n+1

ε
(d+ f(θn))

Since supn f(θn) is almost surely bounded,
∑

n≥1 E[‖Mn+1 − Mn‖2|Fn] < +∞ a.s. and
according to Theorem 1.3.11 of (Duflo, 1996) we can conclude that Mn converges a.s. to a
finite random vector M∞, and so

∑
n≥1 γn∆Mn < +∞ a.s.. This implies that:

∀t > 0 lim sup
n→∞

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk∆Mk+1

∥∥∥∥∥∥ = 0.

3. This last limit holds regardless t < T
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• The assumptions made on the noise sequence and the fact that (E[Vn])n≥1 is uniformly
bounded (Vn −→ V∞ in L1) imply that the last term can be handled using the same type
of arguments.

We start by decomposing ck as its expected value plus a martingale increment:∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkck

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk+1pkE[ξ�2
k+1 |Fk]

∥∥∥∥∥∥
+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk+1pk
(
2ξk+1 · ∇f(θk) + ξ�2

k+1 − E[ξ�2
k+1|Fk]

)∥∥∥∥∥∥ .
Since

∑
n≥0 γn+1pnσ

2
n+1 < +∞ the first sum converges to 0 when n goes to infinity.

The terms of the second sum are martingale increments:

E[2ξk+1 · ∇f(θk) + ξ�2
k+1 − E[ξ�2

k+1 |Fk] |Fk] = 0.

Denote M̃n+1 :=
∑n

k=1 γk+1pk
(
2ξk+1 · ∇f(θk) + ξ�2

k+1 − E[ξ�2
k+1|Fk]

)
the associated martin-

gale. Using the fact that (a + b)2 ≤ 2(a2 + b2), we get a first bound on the conditional
second order moments of the increments:

E[‖2ξk+1 · ∇f(θk) + ξ�2
k+1 − E[ξ�2

k+1|Fk]‖
2|Fk] ≤ 8

(
E[‖ξk+1 · ∇f(θk)‖2|Fk] + E[‖ξ�2

k+1‖
2|Fk]

)
.

Now using Hp
σ for p = 2 and Inequality (9):

E[‖ξk+1 · ∇f(θk)‖2|Fk] =

d∑
i=1

∂if(θk)
2E[ξ2

k+1,i|Fk] ≤ cσ2
k+1(d+ f(θk))‖∇f(θk)‖2

≤ cfσ2
k+1(d+ f(θk))

2.

The second term can be dealt with in a similar manner, using the assumption Hp
σ for p = 4:

E[‖ξ�2
k+1‖

2|Fk] ≤ cσ4
k+1E[‖ζk+1‖4|Fk] ≤ cσ4

k+1(d+ f(θk))
2

Denoting by m = supn≥1(d+ f(θn))2 which is almost surely bounded, we have that :

E[‖∆M̃n+1‖2|Fn] . mγ2
n+1p

2
n(σ2

n+1 + σ4
n+1).

Hence, as soon as
∑

n≥1 γ
2
n+1p

2
n(σ2

n+1+σ4
n+1) < +∞ Theorem 1.3.11 of (Duflo, 1996) implies

that the sequence M̃n converges almost surely to a finite random vector. In other words∑+∞
k=1 γkck < +∞ almost surely and so:

lim sup
n→∞

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkck

∥∥∥∥∥∥ = 0,

which ends the proof.
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3.3.2 Proof of the Almost Sure Convergence Towards a Critical Point

We now give the proof of the leading result of Section 3.
Proof The proof is divided into tree steps.
• Identification of the possible limit points. The a.s. boundness of (Zn)n≥0 and Lemma 9
show that the assumptions of Proposition 4.1 of Benäım (1999) hold, which implies that
(Z̄t)t≥0 is an asymptotic pseudo-trajectory of the differential flow induced by H (defined in
(17)) almost surely.

We shall deduce from Theorem 8 that all limit points Z∞ = (θ∞, w∞) of Z̄t are stationary
points for the differential equation ż = H(z) and thus that H(Z∞) = 0. Since ‖wn‖ is
a.s. bounded, the first coordinate of the equation H(Z∞) = 0 implies that ∇f(θ∞) = 0.
• Convergence of (w)n≥1. For this point, the two different regimes [q∞ > 0 with HSteps] and
[q∞ = 0 with H′Steps], are treated separately.
First, suppose that q∞ = 0. Under H′Steps, Proposition 6 iii) implies that (wnυn) is almost
surely bounded. Thus, since υn → +∞, we obtain that wn also converges to 0 almost
surely.
Now, suppose that q∞ > 0. Since ∇f(θn) → 0 when n → ∞, we observe that for any
limit point Z∞, the second coordinate of H(Z∞) = 0 also implies that w∞ = 0, as soon
as q∞ > 0. We have shown that wn is almost surely bounded. Moreover, Va,b given in
Proposition 6 being a strict Lyapunov function for the O.D.E. ż = H(z), we deduce from
Corollary 6.6 of Benäım (1999) that the limit set of the O.D.E. is included in H(Z∞) = 0.
Hence, (Z̄(τn + .))n≥0 being an asymptotic pseudo-trajectory of the O.D.E., Theorem 3.2
of Benäım (1999) implies that every adherence point of the w coordinate of (Zn)n≥0 is
necessarily zero, since the limit sets of the O.D.E. satisfies w∞ = 0. Therefore, (wn)n≥0 is
a compact sequence with 0 as a unique adherence value, which implies that (wn)n≥0 almost
surely converges to 0.
• Convergence of (θn)n≥1.

We shall deduce from this last result a convergence on the overall sequence (θn)n≥0.

lim
n→∞

Va,b(θn, wn) = lim
n→∞

‖
√
wn + ε‖2 + af(θn)2 + bf(θn)‖(wn + ε)1/4‖2

= lim
n→∞

af(θn)2 + bd
√
εf(θn) + dε = V∞.

Since a and b are non-negative and f(θn) positive, the last equality implies that a real value
f∞ exists such that the sequence (f(θn))n≥0 is a.s. convergent towards it:

lim
n−→+∞

f(θn) = f∞ a.s.

Now, (θn)n≥0 is an a.s. bounded sequence and we prove that the set of possible limit points
for its sub-sequences is connected. We study

‖θn+1 − θn‖2 =

∥∥∥∥−γn+1
gn+1√
wn + ε

∥∥∥∥2

≤ 1

ε
γ2
n+1‖gn+1‖2

≤ 2
γ2
n+1

ε

(
‖∇f(θn)‖2 + σn+1‖ζn+1‖2

)
.

33



Gadat and Gavra

We then deduce from H2
σ and the Cauchy-Schwarz inequality that:

E[‖θn+1 − θn‖2] ≤ 2
γ2
n+1

ε

(
E[‖∇f(θn)‖2] + cσ2

n+1(d+ E[f(θn)])
)

Using the fact that supn E[Va,b(θn, wn)] < +∞, we deduce that a constant K exists such
that:

E[‖θn+1 − θn‖2] ≤ Kγ2
n+1E[‖∇f(θn)‖2] +Kγ2

n+1σ
2
n+1,

Another consequence of the Robbins-Siegmund Theorem in ii) of Proposition 4 is that∑
n≥1 γn+1E[‖∇f(θn)‖2] < +∞ which implies with HSteps that:∑

n≥1

E[‖θn+1 − θn‖2] < +∞.

The Borel-Cantelli Lemma then yields θn+1 − θn −→ 0 almost surely, so that the set of
possible limit points for its sub-sequences is connected.

We denote below by A the closed set of adherence points of (θn)n≥:

A =
⋂
n≥0

{θk, k ≥ n}.

If A contains two different adherence points θ0
∞ 6= θ1

∞, then a continuous path (θs∞) of
adherence points, from θ0

∞ to θ1
∞, would exist since A connected. But we also know that

A ⊂ {θ : f(θ) = f∞} ∩ {θ : ∇f(θ) = 0}.

Since {θ : f(θ) = f∞} ∩ {θ : ∇f(θ) = 0} is locally finite, we observe that A cannot be
connected, which is a contradiction. Hence, A is reduced to a singleton, and (θn)n≥1 is a
convergent sequence:

lim
n−→+∞

θn = θ∞ with ∇f(θ∞) = 0.

4. Almost Sure Convergence and Traps Avoidance

In this paragraph, we prove that the sequence (θn)n≥1 almost surely converges towards a
critical point that is not linearly unstable. In particular, if we assume the hyperbolicity of
the equilibria of the dynamical system, i.e. all the eigenvalues of the Hessian are non-zero
around critical points of f , it is equivalent to the almost sure convergence towards a local
minimum.
To make our study meaningful, we restrict our analysis to the situation where Theorem 1
holds, i.e we assume that either HSteps or H′Steps hold.
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4.1 Unstable Equilibria

We begin with a simple statement that identifies the unstable hyperbolic points of the
dynamical system

(θ̇t, ẇt) = H(θt, wt) with H(θ, w) =

(
− ∇f(θ)√

w + ε
, p∞[∇f(θ)�2]− q∞w

)
. (19)

These equilibria may correspond to purely repulsive equilibria or saddle points. The next
proposition makes this last sentence more precise and introduces the cornerstone function
η that measures in each neighborhood of an unstable (or saddle) point the distance of any
point x to the local stable manifold in the expanding direction.

Proposition 10 Consider the dynamical system (19), and assume that f is twice differen-
tiable, then:

(i) If q∞ > 0, the equilibria are (t, 0) where t is a critical point of f .

(ii) If t is a local maximum of f and D2f(t) has non-zero eigenvalues, the dynamical
system is unstable near (t, 0).

(iii) If t is a local minimum of f and D2f(t) has non-zero eigenvalues, the dynamical
system is stable near (t, 0).

(iv) If t is a linearly unstable equilibria (D2f(t) has at least one negative eigenvalue), then
a compact neighborhood N of (t, 0) and a C2 positive function η exist such that:

(a) ∀z ∈ N ∀u ∈ Rd × Rd η(z + u) ≥ η(z) + 〈∇η(z), u〉 − Γ‖u‖2.

(b) If E+ is the eigenspace associated to the negative eigenvalues of D2f(t) and π+

is the orthogonal projection on E+, then:

∀z ∈ N ∀u = (u1, u2) ∈ Rd × Rd b〈∇η(z), u〉c+ ≥ c1‖π+(u1)‖.

(c) A constant κ > 0 exists such that:

∀z ∈ N 〈∇η(z), H(z)〉 ≥ κη(z). (20)

Proof • Proof of i). The proof of i) is immediate by observing that H(θ, w) = 0 and
q∞ 6= 0 implies that ∇f(θ) = 0 and w = 0.
• Proof of ii) and iii). We use a linearization of the drift around an equilibria (t, 0). Since
t is a critical point of f , we observe that:

∇f(t+ h) = D2f(t)h+ o(‖h‖).

Consequently, we observe that (∇f(t+ h))2 = (D2f(t)h)2 = O
(
‖h‖2

)
, which entails:

H(t+ h, ω) =

(
−D

2f(t)h√
ε

+O (‖h‖‖ω‖) , p∞O(‖h‖2)− q∞ω
)

=

(
−D2f(t)√

ε
0

0 −q∞Id

)(
h
ω

)
+ o (‖h‖+ ‖ω‖) .
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The conclusion follows from the spectral decomposition of D2f(t).

• Proof of iv). The last point is a consequence of Benaim and Hirsch (1995, Proposition
3.1) or Benäım (1999, Proposition 9.5). We only need to observe that the coordinates in u2

always correspond to the attractive manifold so that π+(u) = π+(u1).

Remark 11 This proposition holds for any p∞ ∈ R+. In particular it does so for p∞ = 0.

4.2 Preliminary Estimates

In what follows, we establish the non-convergence towards “‘traps”. More specifically, we
consider any position t such that D2f(t) has a negative eigenvalue and N a neighborhood of
(t, 0) given by (iv) of Proposition 10. In particular, (t, 0) corresponds to a linearly unstable
point.

For a given integer n0 when (θn0 , wn0) is in N , we introduce the exit time of N defined by:

Tn0 := inf {n ≥ n0 : (θn, wn) /∈ N} . (21)

We shall observe that if P (Tn0 < +∞) = 1, then (θn, wn) cannot converge almost surely to
the unstable point (t, 0) located in N since the exit time is almost surely finite.

This last observation will be our keystone argument to establish Theorem 3. In particular,
it encompasses the case where q∞ > 0 thanks to i) + iv) of Proposition 10 and the case
where q∞ = 0 because in the situation of H′Steps, we already know that a.s. wn −→ 0.

For this purpose, we introduce the sequence of random variables (Xn)n≥n0+1 defined by:

∀n ≥ n0 Xn+1 := [η(θn+1, wn+1)− η(θn, wn)]1n<Tn0 + γn+1σn+11n≥Tn0 , (22)

and the associated cumulative sum:

∀n ≥ n0 + 1 Sn := η(θn0 , wn0) +
n∑

k=n0+1

Xk. (23)

We prove the following upper bound on the second order moment of (Xn)n≥n0+1.

Proposition 12 A constant c > 0 exists such that:

∀n ≥ n0 E[X2
n+1 | Fn] ≤ cγ2

n+1.

Proof

We decompose Xn+1 according to the position of n with respect to Tn0 :

Xn+1 = Xn+11n<Tn0 +Xn+11n≥Tn0 = Xn+11n<Tn0 + γn+1σn+11n≥Tn0 .

If n ≥ Tn0 , there is nothing to prove, because (σn) is a bounded sequence.
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We then consider the case when n < Tn0 and define m = supz∈N ‖∇η(z)‖. A first order
Taylor expansion yields:

X2
n+11n<Tn0 = (η(θn+1, wn+1)− η(θn, wn))21n<Tn0

≤ m2[‖θn+1 − θn‖2 + ‖wn+1 − wn‖2]1n<Tn0

≤ γ2
n+1m

2

(∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2

+ ‖png�2
n+1 − qnwn‖

2

)
1n<Tn0

≤ γ2
n+1

m2

ε

(
‖gn+1‖2 + 2(pn‖g�2

n+1‖
2 + qn‖wn‖2)

)
1n<Tn0 .

When n < Tn0 , the process Zn = (θn, wn) ∈ N so that ‖wn‖2 is bounded. It remains to
study the terms that involve ‖gn+1‖2 and ‖g�2

n+1‖2. We shall observe that:

1n<Tn0E[‖gn+1‖2 | Fn] = 1n<Tn0
(
‖∇f(θn)‖2 + E[‖ξn+1‖2| Fn]

)
≤ 1n<Tn0

(
sup
z∈N

(‖∇f(θn)‖2 + σ2
n+1

)
≤ K ′1n<Tn0 .

because (σn)n≥1 is bounded by definition and ∇f is continuous and N is compact.

We then study 1n<Tn0E[‖g�2
n+1‖2| Fn] and observe that:

‖g�2
n+1‖

2 = ‖(∇f(θn)+ξn)�2‖2 ≤ 4[‖∇f(θn)�2‖2+‖ξ�2
n+1‖

2] = 4[‖∇f(θn)�2‖2+σ4
n+1‖ζ�2

n+1‖
2].

Thus from the assumption H∞σ it follows that:

1n<Tn0E[‖Xn+1‖2| Fn] ≤ Kγ2
n+11n<Tn0 ,

where K is a constant that depends on ∇η, m, ε, ‖p‖∞ and ‖q‖∞. This ends the proof.

Below, we will use the consequence of iv)− (a) of Proposition 10: if z = (θ, w) is a point
in N , then a constant Γ exists such that:

∀(z, u) ∈ N × R2d : η(z + u)− η(z) ≥ 〈∇η(z), u〉 − Γ‖u‖2 (24)

We write the joint evolution of the algorithm (Zn)n≥1 as:

Zn+1 = Zn + γn+1 (H(Zn) + ∆n+1 + Un+1) ,

where (∆n+1)n≥1 is a sequence of martingale increment defined by:

∆n+1 :=

(
∆Mn+1

∆Nn+1

)
,

with

• ∆Mn+1 = − ξn+1√
wn+ε
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• ∆Nn+1 = pn(ξ�2
n+1 + 2∇f(θn) · ξn+1 − E[ξ�2

n+1|Fn])

and

Un+1 =

(
0

(pn − p∞)∇f(θn)�2 − (qn − q∞)wn + pnE[ξ�2
n+1|Fn]

)
.

We introduce below the sequence (νn)n≥1 that stands for the convergence rate of (pn)n≥1

towards p∞ and (qn)n≥1 towards q∞:

νn := |pn − p∞| ∨ |qn − q∞|. (25)

Proposition 13 For a large enough non negative constant cδ the sequence (δn)n≥1 defined

by δn
def
= cδ(νn + pnσ

2
n+1 + γn+1) is such that:

1Sn≥δnE[Xn+1| Fn] ≥ 0.

Proof

We start once more from the decomposition of (Xn)n≥n0+1 before or after Tn0 and
observe that:

E[1n>Tn0Xn+1 |Fn] = γn+1σn+11n>Tn0
≥ 0. (26)

The definition of the stopping time Tn0 ensures that when n < Tn0 , Zn belongs to the
neighborhood N so we can apply Equation (24) and obtain the following lower bound:

E[1n<Tn0Xn+1| Fn] = 1n<Tn0E[η(Zn+1)− η(Zn)| Fn]

≥ 1n<Tn0

(
E

[
〈∇η(Zn), γn+1(H(Zn) +

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)
〉 |Fn

]
− Γγ2

n+1E

[∥∥∥∥H(Zn) +

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)∥∥∥∥2

| Fn

])
.

We treat the two terms separately:

1n<Tn0
E

[
〈∇η(Zn), γn+1(H(Zn) +

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)
〉 |Fn

]
= 1n<Tn0

γn+1

(
〈∇η(Zn), H(Zn)〉+ E

[
〈∇η(Zn),

(
∆Mn+1

∆Nn+1

)
〉|Fn

]
+ 〈∇η(Zn),

(
0

Un+1

)
〉
)

≥ 1n<Tn0
γn+1

(
kη(Zn) + 〈∇η(Zn),

(
0

Un+1

)
〉
)
,

where the last inequality comes from (iv)c of Proposition 10 (Equation (20)). Using that
‖∇η‖ is upper bounded on N by m, the definition of Tn0 leads to:

1n<Tn0
‖∇η(Zn)‖ ≤ m.
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This inequality associated with the Cauchy-Schwarz inequality implies that:

1n<Tn0

∣∣∣∣〈∇η(Zn),

(
0

Un+1

)
〉
∣∣∣∣ ≤ 1n<Tn0

‖∇η(Zn)‖
∣∣∣∣∣∣∣∣( 0

Un+1

)∣∣∣∣∣∣∣∣
≤ m1n<Tn0‖Un+1‖
≤ m1n<Tn0‖νn‖∇f(θn)�2‖+ νn‖wn‖+ pnE[ξ�2

n+1|Fn]‖

≤ m1n<Tn0

(
νn sup

z∈N
(‖∇f(θn)�2‖+ ‖wn‖) + pnE[‖ξ�2

n+1‖ |Fn]

)
.

Observing that ‖ξ�2
n+1‖ =

√∑d
i=1 ξ

4
n+1,i ≤

∑d
i=1 ξ

2
n+1,i = ‖ξn+1‖2, we deduce that:

E[‖ξ�2
n+1‖ |Fn] ≤ σ2

n+1.

We then define k′ = sup(θ,w)∈N ‖∇f(θ)�2‖+ ‖w‖ < +∞ (because N is compact and ∇f is
continuous). We deduce that:

1n<Tn0

∣∣∣∣〈∇η(Zn),

(
0

Un+1

)
〉
∣∣∣∣ ≤ k′m1n<Tn0 (2νn + pnσ

2
n+1

)
.

Concerning the last term, it is sufficient to show that the expected value is bounded. We
start by using the fact that (a+ b+ c)2 ≤ 4(a2 + b2 + c2) to split the squared norm and to
obtain that:

E[‖H(Zn)+

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)
‖2 |Fn]

≤ 4

(
‖H(Zn)‖2 + E

[∥∥∥∥(∆Mn+1

∆Nn+1

)∥∥∥∥2

|Fn

]
+ ‖Un+1‖2

)
.

Since H is continuous, (‖H(Zn)‖2)n0≤n<Tn0 is a bounded sequence. Moreover, we have seen
that when n < Tn0 :

‖Un+1‖ ≤ k′(2νn + σ2
n+1pn),

thus we are only left to study E

[∥∥∥∥(∆Mn+1

∆Nn+1

)∥∥∥∥2

| Fn

]
.

E

[∥∥∥∥(∆Mn+1

∆Nn+1

)∥∥∥∥2

|Fn

]
= E

[
‖∆Mn+1‖2 + ‖∆Nn+1‖2|Fn

]
≤
σ2
n+1

ε
+ p2

nE[‖ξ�2
n+1 + 2∇f(θn) · ξn+1 − E[ξ�2

n+1|Fn]‖2| Fn]

≤
σ2
n+1

ε
+ 4p2

n

(
E[‖ξ�2

n+1‖
2 + 2‖∇f(θn) · ξn+1‖2 + ‖ξ�2

n+1‖
2|Fn]

)
≤
σ2
n+1

ε
+ 4p2

n

(
2E[‖ξn+1‖4| Fn] + 2E[‖∇f(θn) · ξn+1‖2| Fn]

)
.
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When n < Tn0 , we observe that:

E[‖∇f(θn) · ξn+1‖2| Fn] ≤ sup
z∈N
‖∇f(θ)2‖∞E[‖ξn+1‖2| Fn],

and

E[‖ξn+1‖4| Fn] = σ4
n+1E[‖ζn+1‖4| Fn].

Again, using the compactness of N , the continuity of ∇f and the assumption H∞σ on the
noise (ζn)n≥1, we deduct that K2 > 0 exists such that:

E
[
‖∆Mn+1‖2 + ‖∆Nn+1‖2|Fn

]
≤ K2(σ2

n+1 + σ4
n+1).

We now gather all the terms and use the fact that the sequences (σn)n≥0, (pn)n≥0 and
(νn)n≥0 are all bounded, to conclude that a constant K3 exists such that:

E[1n<Tn0Xn+1| Fn] ≥ 1n<Tn0γn+1

(
kη(Zn)− k′m(2νn + pnσ

2
n+1)−K3γn+1

)
. (27)

Finally, as long as n < Tn0 , Sn = η(Zn) and thus setting cδ > max(2k′m,K3)/k and (δn)n≥1

as announced in the statement ends the proof.

We now study the evolution of S2
n.

Proposition 14 If δn = cδ(νn + pnσ
2
n+1 + γn+1) is such that γn+1δ

2
n = o(γ2

n+1σ
2
n+1) then:

E[S2
n+1 − S2

n | Fn] & γ2
n+1σ

2
n+1.

Proof Our starting point is:

S2
n+1 − S2

n = (Sn +Xn+1)2 − S2
n

= X2
n+1 + 2SnXn+1

= X2
n+1 + 2Sn(1Sn≥δnXn+1 + 1Sn<δnXn+1).

We then use Proposition 13 and get:

E[S2
n+1 − S2

n | Fn] ≥ E[X2
n+1 | Fn] + 2Sn1Sn<δnE[Xn+1 |Fn]. (28)

To derive a lower bound of 2Sn1Sn<δnE[Xn+1 |Fn], we observe that (Sn)n≥0 and η are
positive, so that if we use Equations (27) and (26), we obtain:

2Sn1Sn<δnE[Xn+1 |Fn] ≥ −2Sn1Sn<δnE[1n<Tn0 |Xn+1| |Fn]

≥ −2δnγn+1[k′m(2νn + pnσ
2
n+1) +K3γn+1]

≥ −2δ2
nγn+1.
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We are led to analyze E[X2
n+1]. According to the definition of (Xn)n≥n0 , to the definition

of the hitting time Tn0 and to the construction of η, we observe that from Equation (24):

1n<Tn0
Xn+1 = 1n<Tn0

[η(Zn+1)− η(Zn)]

= 1n<Tn0
[η[Zn + (Zn+1 − Zn)]− η(Zn)]

≥ 1n<Tn0

[
〈∇η(Zn), Zn+1 − Zn〉 − Γ‖Zn+1 − Zn‖2

]
≥ 1n<Tn0

γn+1〈∇η(Zn), H(Zn)〉+ 1n<Tn0
γn+1〈∇η(Zn),∆n+1 + Un〉

− Γ1n<Tn0γ
2
n+1‖H(Zn) + ∆n+1 + Un‖2

≥ κγn+1η(Zn)1n<Tn0 + 1n<Tn0
γn+1〈∇η(Zn),∆n+1〉

− γn+11n<Tn0
‖Un‖‖∇η(Zn)‖ − Γ1n<Tn0γ

2
n+1‖H(Zn) + ∆n+1 + Un‖2,

where in the last line we used the reverting effect translated in Equation (20) and the
Cauchy-Schwarz inequality. Since η is positive, we then obtain that:

1n<Tn0
Xn+1 ≥ 1n<Tn0

γn+1〈∇η(Zn),∆n+1〉
− 1n<Tn0

[
γn+1‖Un‖‖∇η(Zn)‖+ Γγ2

n+1‖H(Zn) + ∆n+1 + Un‖2
]
. (29)

We denote the positive part of any real value a by bac+ and we use that a ≥ b =⇒
bac+ ≥ bbc+ and the inequality

ba− |b|c+ ≥ bac+ − |b|.

Considering Equation (29), we then observe that:

b1n<Tn0Xn+1c+ ≥1n<Tn0γn+1 [b〈∇η(Zn),∆n+1〉c+
−‖Un‖‖∇η(Zn)‖ − Γγn+1‖H(Zn) + ∆n+1 + Un‖2

]
.

Once more the regularity of ∇η, the compactness of N and the definition of Un, guarantee
that a constant κ > 0 exists such that:

1n<Tn0
‖Un‖‖∇η(Zn)‖ ≤ κ(νn + pnσ

2
n+1).

Computing the conditional expectation and using the arguments of (27), we have

1n<Tn0
E[‖H(Zn) + ∆n+1 + Un‖2 |Fn] < K3,

so that:

E[b1n<Tn0Xn+1c+ |Fn] ≥1n<Tn0γn+1E[b〈∇η(Zn),∆n+1〉c+ |Fn]

− 1n<Tn0
[
κ(νn + pnσ

2
n+1)γn+1 + ΓK3γ

2
n+1

]
.

Using that when n < Tn0 , Zn ∈ N , we can apply iv)− (b) of Proposition 10 so that:

E[b1n<Tn0Xn+1c+ |Fn] ≥ 1n<Tn0
γn+1 (c1E[‖π+(∆Mn+1)‖ |Fn]

−
[
κ(νn + pnσ

2
n+1) + ΓK3γn+1

])
,
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where π+ is the orthogonal projection on E+, the eigenspace associated to the negative
eigenvalues of D2f(t). For n large enough, the almost sure convergence of (wn)n≥0 to 0 and
our elliptic assumption (H∞σ − 2) on the sequence (ξn+1)n≥0 yield:

E[‖π+(∆Mn+1)‖ |Fn] ≥ σn+1

2
,

which entails:

E[b1n<Tn0Xn+1c+ |Fn] ≥ 1n<Tn0
γn+1

[
c1
σn+1

2
− C(νn + pnσ

2
n+1 + γ2

n+1)
]
.

Decomposing now Xn+1 = bXn+1c+ − b−Xn+1c+, we deduce that:

E[1n<Tn0X
2
n+1 |Fn] = E[1n<Tn0 bXn+1c2+ |Fn] + E[1n<Tn0 b−Xn+1c2+ |Fn]

≥ E[1n<Tn0 bXn+1c2+ |Fn]

≥ E[1n<Tn0 bXn+1c+ |Fn]2

≥ 1n<Tn0
γ2
n+1

[
c1
σn+1

2
− C(νn + pnσ

2
n+1 + γ2

n+1)
]2
.

& 1n<Tn0
γ2
n+1σ

2
n+1.

The last line is justified by the assumption γn+1δ
2
n = o(γ2

n+1σ
2
n+1) which ensures that

δn = o(σn). We shall also observe that:

E[1n≥Tn0X
2
n+1 |Fn] = (γn+1σn+1)2.

We then deduce that:

E[X2
n+1 |Fn] & (γn+1σn+1)2.

Since γn+1δ
2
n = o((γn+1σn+1)2), we can now conclude by inserting the previous bounds in

Inequality (28).

4.3 End of the Proof

We mimic the strategy of Lemma 9.6 of Benäım (1999) and of Theorem 3.2 of Gadat et al.
(2018) with the help of the two sequences defined in (23) and (22).

Sn = η(Zn0) +
n∑

k=n0+1

Xk with Xn+1 = (η(Zn+1)− η(Zn))1n<Tn0 + γn+1σn+11n≥Tn0 .

We summarize the preliminary results proven in the previous subsection as they will be
used in what follows:

(I1) Proposition 12 states that:

E[X2
n+1Fn] ≤ c(γn+1σn+1)2.
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(I2) Proposition 13 yields that if δn = cδ(νn + pnσ
2
n+1 + γn+1), then

1Sn≥δnE[Xn+1 |Fn] ≥ 0.

(I3) Proposition 14 yields: if γn+1δ
2
n = o((γn+1σn+1)2) (which also means that δn = o(σn)),

then
E[S2

n+1 − S2
n |Fn] & (γn+1σn+1)2.

For any integer q, we consider an integer n ≥ q and introduce the two sequences (un)n≥q
and (Ūn)n≥q defined by:

un =
∑
i≥n

γ2
i+1σ

2
i+1 and Ūn =

n∑
i=0

γ2
i+1σ

2
i+1.

For any positive real value b > 0 and any integer q > 0, we consider the sequence of
stopping times (T qb )q≥0 defined by:

T qb := inf
{
i ≥ q : Si ≥

√
bui

}
.

A stopping times T qb stands for the first time the sequence (Sn)n≥1 becomes larger than
the threshold (

√
bun)n≥1, which converges towards zero at a controlled rate. We prove the

following result.

Proposition 15 If γ2
n = o(un), then a small enough b > 0 and a large enough q exist such

that:

P(T qb < +∞|Fq) ≥
1

2
.

Proof Our starting point is the lower bound given by Proposition 14 and we observe that
a small enough a > 0 exists such that:

Mn := S2
n − aŪn,

is a submartingale since:

E[Mn+1 |Fn] = E[S2
n+1 − aŪn+1 |Fn]

≥ S2
n + a(γn+1σn+1)2 − a(Ūn + (γn+1σn+1)2)

=Mn.

We consider an integer n ≥ q + 1, apply the Optional Stopping Theorem and verify that:

E[Mn∧T qb
]−Mq |Fq] ≥ 0⇐⇒ E[S2

n∧T qb
− S2

q |Fq] ≥ aE

n∧T qb∑
i=q

γ2
i+1σ

2
i+1 |Fq


⇐⇒ E[S2

n∧T qb
− S2

q |Fq] ≥ aP
(
T qb > n |Fq

) n∑
i=q

γ2
i+1σ

2
i+1. (30)

43



Gadat and Gavra

In the meantime, we observe that:

{Sn∧T qb }
2 − {Sq}2 = {Sn∧T qb }

2 − {S(n∧T qb )−1}2 + {S(n∧T qb )−1}2 − {Sq}2

= {S(n∧T qb )−1 +Xn∧T qb
}2 − {S(n∧T qb )−1}2 + {S(n∧T qb )−1}2 − {Sq}2

≤ {S(n∧T qb )−1}2 + 2S(n∧T qb )−1Xn∧T qb
+ {Xn∧T qb

}2

≤ 2
(
{S(n∧T qb )−1}2 + {Xn∧T qb

}2
)

≤ 2bu(n∧T qb )−1 + 2{Xn∧T qb
}2,

where the last inequality is a consequence of the definition of the stopping time T qb . Since
(un)n≥0 is a decreasing sequence, we then have that:

{Sn∧T qb }
2 − {Sq}2 ≤ 2buq−1 + 2{Xn∧T qb

}2, (31)

and we are led to upper bound the term {Xn∧T qb
}2.

The definition of (Xn)n≥1 yields:

X2
n∧T qb

=
(
η(Zn∧T qb

)− η(Z(n∧T qb )−1)
)2
1(n∧T qb )−1<Tn0

+ γ2
n∧T qb

σ2
n∧T qb

1(n∧T qb )−1≥Tn0
.

Using a similar argument as the one used in the proof of Proposition 12, a Taylor expansion
associated with the smoothness of η and f leads to:

1(n∧T qb )−1<Tn0

(
η(Zn∧T qb

) −η(Zn∧T qb −1)
)2

. 1n∧T qb −1<Tn0
γ2
n∧T qb

(
1 + ‖ξn∧T qb ‖

2 + ‖ξ2
n∧T qb
‖2
)

. 1n∧T qb −1<Tn0
γ2
n∧T qb

(
1 + σ2

n∧T qb
‖ζn∧T qb ‖

2 + σ4
n∧T qb
‖ζn∧T qb ‖

4
)

. γ2
q+1 +

n∑
i≥q

γ2
i+1σ

2
i+1‖ζi+1‖2 +

n∑
i≥q

γ2
i+1σ

4
i+1‖ζi+1‖4,

where in the last line we used that (γn)n≥q+1 is a decreasing sequence and a rough upper
bound of σn∧T qb

‖ζn∧T qb ‖. We then compute the expectation with respect to Fq and observe

that E[‖ζi+1‖2 |Fq] ≤ 1 and E[‖ζi+1‖4 |Fq] ≤ C and thus:

E[X2
n∧T qb

|Fq] . γ2
qσ

2
q + γ2

q+1 + uq.

This last bound, together with Inequality (31) implies that a constant C > 0 exists such
that:

E[{Sn∧T qb }
2 − {Sq}2|Fq] ≤ C

(
buq + γ2

q+1

)
.

Finally we obtain from (30) that:

aP
(
T qb > n |Fq

) n∑
i=q

γ2
i+1σ

2
i+1 ≤ C

(
buq + γ2

q+1

)
.
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We therefore deduce an upper bound on the probability that the stopping time is larger
than n:

P
(
T qb > n |Fq

)
≤

C
(
buq + γ2

q+1

)
a
∑n

i=q γ
2
i+1σ

2
i+1

=
Cb

a

uq
uq − un

+ C
γ2
q

a(uq − un)
.

We then take the limit n −→ +∞ in the previous inequality and obtain that:

P
(
T qb = +∞|Fq

)
≤ Cb

a
+ C

γ2
q

auq
,

because limn−→+∞ un = 0. We then observe that uq =
∑

i≥q γ
2
i+1σ

2
i+1 and then the second

term on the right hand side goes to zero as soon as:

γ2
q = o

∑
i≥q

γ2
i+1σ

2
i+1

 = o(uq).

Using our assumption on the two sequences, we can conclude the proof of the proposition
by setting b small enough (b < a/3C for example).

The next result states that Sn may remain larger than 1
2

√
buq with a positive probability

when Sq ≥
√
buq. For this purpose, we introduce

S := inf

{
n > q : Sn <

1

2

√
buq

}
,

that stands for the first time (Sn)n≥q comes back below the threshold
√
buq.

Proposition 16 Assume that αn+1 = σn+1γn+1 and δn = o(
√
un) and γn = O(un). Then

there exits q large enough and a constant c > 0 such that:

1
Sq≥
√
buq

P (S = +∞|Fq) ≥ 1
Sq≥
√
buq

b

b+ c
.

Proof From our assumption δn = o(
√
un), we observe that for q large enough if Sq is greater

than 1
2

√
buq then Sq ≥ δq, so Proposition 13 implies that (Sn∧S)n≥q is a submartingale.

For such a choice of n and q, we can use the Doob decomposition and write that:

Sn∧S = Wn + In,

where In is an increasing Fn predictable process with Iq = 0 and Wn is a martingale. We
then observe that

P (S = +∞|Fq) = P

(
∀n ≥ q : Sn ≥

1

2

√
buq|Fq

)
≥ P

(
∀n ≥ q : Wn ≥

1

2

√
buq|Fq

)
.

Furthermore, if Sq ≥
√
buq, then Wq ≥

√
buq, which entails:

1
Sq≥
√
buq

P (S = +∞|Fq) ≥ 1
Sq≥
√
buq

P

(
∀n ≥ q : Wn −Wq ≥ −

1

2

√
buq|Fq

)
. (32)
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Using the fact that (Wn)n≥q is a martingale and the definition of Sn, we can use the
quadratic decomposition of (Wn −Wq)

2 and observe that:

E
[
(Wn −Wq)

2 |Fq
]

=
n−1∑
i=q

V ar[Xi+1|Fq] ≤
n−1∑
i=q

E[X2
i+1|Fq].

The upper bound obtained in Proposition 12 is not sharp enough to be directly applied
here, so in order to deal with the term on the right hand side we return to the upper bound
obtained in the proof of Proposition 12 which gives for all i:

X2
i+11i<Tn0

. γ2
i+1

(
‖gi+1‖2 + 2(pi‖g�2

i+1‖
2 + qi‖wi‖)

)
1i<Tn0

. (33)

Now, for i ≥ q we have:

E[‖gi+1‖2|Fq] = E[E[‖gi+1‖2|Fi]|Fq]
≤ 2(‖∇f(θi)‖2 + E[E[‖ξi+1‖2|Fi]|Fq])
≤ 2(‖∇f(θi)‖2 + σ2

i+1),

and

E[‖g�2
i+1‖

2|Fq] ≤ 8(‖∇f(θi)
�2‖2 + σ4

i+1E[E[‖ζ2
i+1‖2|Fi]|Fq])

. ‖∇f(θi)
�2‖2 + σ4

i+1.

The sequences (σi)i≥0 and (pi)i≥0 are bounded and Theorem 1 shows that the sequence
(‖∇f(θi)‖)i≥0 converges almost surely to 0, so there exists q > 0 such that ∀i ≥ q:

piσ
4
i+1 ≤ ‖p‖∞‖σ‖2∞σ2

i+1 and ‖∇f(θi)
�2‖2 ≤ ‖∇f(θi)‖2.

Inserting this into our previous bound (33) we get that (for q large enough and i ≥ q)

X2
i+11i<Tn0

. γ2
i+1

(
‖∇f(θi)‖2 + qi‖wi‖+ σ2

i+1

)
1i<Tn0

.

Using the definition of Xn, we have that:

X2
i+1 . γ2

i+1

(
‖∇f(θi)‖2 + qi‖wi‖+ σ2

i+1

)
,

which implies that:

E
[
(Wn −Wq)

2 |Fq
]
.

n−1∑
i=q

γ2
i+1σ

2
i+1 +

n−1∑
i=q

γ2
i+1

(
‖∇f(θi)‖2 + qi‖

√
wi‖2

)
+

n−1∑
i=q

γ2
i+1piσ

4
i

. uq + γq+1

n−1∑
i=q

γi+1

(
‖∇f(θi)‖2 + qi‖

√
wi‖2

)
.

For the second term of the right-hand side we use the almost sure convergence of the series
stated in (13) of Proposition 6. It leads to:

E
[
(Wn −Wq)

2 |Fq
]
.

n−1∑
i=q

γ2
i+1σ

2
i+1 + γq+1.
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Thus there exists a constant a > 0 such that for all n ≥ q:

E
[
(Wn −Wq)

2 |Fq
]
≤ a(uq + γq).

Using a similar argument as the one of Benaim and Hirsch (1995) or Gadat et al. (2018),
for all h, t ∈ R+ we deduce that:

P

(
inf

q≤i≤n
(Wi −Wq) ≤ −h |Fq

)
≤ P

(
sup
q≤i≤n

|Wi −Wq − t| ≥ h+ t |Fq

)

≤ E[(Wn −Wq)
2 |Fq] + t2

(h+ t)2
.

Setting t = a(uq + γq)/h in the last term we have:

E[(Wn −Wq)
2 |Fq] + t2

(h+ t)2
≤
a(γq + uq) +

a2(γq+uq)2

h2

(h+
a(γq+uq)

h )2

=
a(γq + uq)h

2 + a2(γq + uq)
2

(h2 + a(γq + uq))2

=
a(γq + uq)

h2 + a(γq + uq)
.

Now when h = 1/2
√
buq we obtain that:

P

(
inf

q≤i≤n
(Wi −Wq) ≤ −

√
buq

2
|Fq

)
≤ 4a(γq + uq)

buq + 4a(γq + uq)
.

Using the second assumption γq . uq, a constant c > 0 exists such that for q large enough:

P

(
inf

q≤i≤n
(Wi −Wq) ≤ −

√
buq

2
|Fq

)
≤ c

b+ c
.

Inserting this bound in (32) ends the proof.

At this point, Propositions 15 and 16 enable us to prove that the sequence (Sn) does
not converge to 0 a.s. using the arguments of Benäım (1999). We are now able to conclude
the proof of Theorem 3. We gather below the conditions involved by Theorem 1, and
Propositions 14, 15 and 16.

• (A) Theorem 1 requires that HSteps or H′Steps hold, namely that:∑
pnγn+1σ

2
n+1 < +∞ and

∑
γ2
n+1σ

2
n+1 < +∞. (34)
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• (B) Proposition 14 needs:

δn = |pn − p∞|+ |qn − q∞|+ pnσ
2
n + γn = o (

√
γnσn) . (35)

We observe in particular that pnσ
2
n = o(

√
γnσn) and γn = o(

√
γnσn), which implies

that:
p∞ = 0.

In particular, since (σn)n≥1 is a bounded sequence, we deduce that pnσ
2
n = O(pn) and

therefore, (35) entails:
νn + γn = o(

√
γnσn),

which yields:
β

2
+ s < r ∧ ρ and s <

β

2
.

• (C) Proposition 15 necessitates:

γn = o(
√
un). (36)

• (D) Proposition 16 finally requires that:

δn = o(
√
un) and γn = O(un). (37)

We observe that condition (36) is already included in condition (37) because by def-
inition δn ≥ γn. Therefore, we can forget (C), which is contained in (D). Using
un ∼ nγ2

nσ
2
n, we observe that the first condition of (37) leads to νn = o(

√
nγnσn) and

σn
√
n −→ +∞. Since

√
γnσn = o(

√
nγnσn), we conclude that the condition on νn

in (D) is already included in (B). Moreover, the term pnσ
2
n of δn is already negligi-

ble when compared to
√
nγnσn. Finally, the only additional constraint brought by

δn = o(
√
un) is

√
nσn −→ +∞.

The second condition in (37) shows that nγnσ
2
n 9 0 which is stronger than the pre-

vious one. We then deduce that Proposition 16 finally needs:

s ≤ 1− β
2

.

We then aggregate all the constraints on s with respect to the choice of the step-size sequence
(γn)n≥1 and (pn, qn)n≥1 and observe that:(

1

2
− β + r

2

)
∨
(

1

2
− β

)
≤ s < β

2
∧ 1− β

2
∧
(
r − β

2

)
∧
(
ρ− β

2

)
(38)

while when s attains the lower bound given by the left hand side, we need to tune the
mini-batch size as σ−1

n & log(n).

Remark 17 When the variance of the noise sequence does not converge to 0 (s = 0), the
previous conditions on the parameters can be summarized as: β ∈ [1/2, 1); ρ > β/2 (and
ρ ≤ 1− β if q∞ = 0); r > 1− β, when β < 2/3 and r > β/2 for β ≥ 2/3.
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Proof [Proof of Theorem 3] The proof is divived into two steps.
Step 1: Sn does not converge to 0 a.s. Let G denote the event:

G :=

{
lim

n−→+∞
Sn 6= 0

}
.

The definition of T qb implies that for any q ∈ N∗ and n ≥ q:

E[1G |Fn]1T qb =n = E[1G |Fn]1T qb =n1Sn≥
√
bun
.

In the meantime, if S = +∞ then (Sn) does not converge to 0, so {S = +∞} ⊂ G. For q
large enough, such that Proposition 16 holds, and for all n ≥ q:

E[1G |Fn]1T qb =n1Sn≥
√
bun
≥ P(S = +∞|Fn)1T qb =n1Sn≥

√
bun
≥ b

c+ b
1T qb =n1Sn≥

√
bun
.

Thus, if we consider all the integers n larger than q, we obtain:

E[1G |Fq] ≥
∑
n≥q

E[1G1T qb =n |Fq] =
∑
n≥q

E[E[1G | Fn]1T qb =n |Fq]

≥
∑
n≥q

b

c+ b
E[1T qb =n |Fq]

≥ b

c+ b
P(T qb < +∞|Fq).

We now apply Proposition 15 and obtain that:

E[1G |Fq] ≥
b

2(c+ b)
> 0.

By definition, G ⊂ F∞ so limq→+∞ E[1G |Fq] = 1G and thus the previous inequality guaran-
tees that 1G = 1 almost surely.
Step 2: the algorithm escapes any neighborhood of an unstable point in a finite time a.s.

As mentioned before, we shall prove that if the algorithm is at step n0 in a neighborhood
N of a local maximum, it escapes N a.s. in a finite time, meaning that P(Tn0 = +∞) = 0,
where Tn0 is the stopping time defined by (21).
Suppose that Tn0 = +∞. In this case, by definition, Xn+1 = η(θn+1, wn+1)− η(θn, wn) for
all n ≥ n0 and thus:

Sn = η(θn, wn), ∀n ≥ n0.

Theorem 1 ensures that (θn, wn) converges a.s to a point (θ∞, 0). This together with the
regularity of the function η implies that the sequence Sn goes to η(θ∞, 0) when n→ +∞.
Since N is compact, the limit point (θ∞, 0) belongs to N and according to Proposition 10
c) there exists k > 0 such that:

0 ≤ kη(θ∞, 0) ≤ 〈∇η(θ∞, 0), H(θ∞, 0)〉.

As seen in the proof of Theorem 1, the limit point (θ∞, 0) is almost surely an equilibrium
point for the dynamical system driven by H, so H(θ∞, 0) = 0. As a result we have that:

lim
n−→+∞

Sn = η(θ∞, 0) = 0.
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From Step 1, we have seen that P( lim
n→+∞

Sn = 0) = 0, which concludes the proof.
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