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Abstract

The sequence of moments of a vector-valued random variable can characterize its law. We
study the analogous problem for path-valued random variables, that is stochastic processes,
by using so-called robust signature moments. This allows us to derive a metric of maximum
mean discrepancy type for laws of stochastic processes and study the topology it induces on
the space of laws of stochastic processes. This metric can be kernelized using the signature
kernel which allows to efficiently compute it. As an application, we provide a non-parametric
two-sample hypothesis test for laws of stochastic processes.
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1. Introduction

Many inference tasks about data in a topological space X involves
(A) making inference about a function f € F from a class F C RY,
(B) making inference about the probability measure p from which the data was sampled.

A common approach is to use a “feature map”, ® : X — FE, that maps X into a linear space F
which is rich enough so that both tasks, (A) and (B), can be addressed by linear methods in the
“feature space” F.

Example 1 (vector-valued data) If X C R? is compact, the map

zdm

. X — H (Rd)®m7 T = ( m! >m20

m>0
has the property that
(a) any f € F = C(X,RY) can be arbitrary well-approzimated by a linear functional of ®,
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(b) the map p+— E[®(x)] € [],,>0 (Rd)®m, which maps a probability measure p on X to a
sequence of tensors, is injective.

Here, (a) follows directly from the Stone—Weierstrass theorem which guarantees that linear
combinations of monomials approximate continuous functions arbitrary well; (b) is the
well-known fact that the moments of a bounded random variable characterize its law.

This article studies these two questions, (A) and (B), for the case that X is a space of paths,
x clJe(o,¢,rY .
t

This includes the case of sequence-valued data since any sequence of vectors x(t1), ..., z(tL) €
R? can be identified as a path z € C ([0, tL},Rd) by piecewise linear interpolation between
the points x(t1),...,x(ty). However, first understanding the general continuous time
case guarantees that the resulting approach is robust and well-defined for sequence-valued
data in the high-frequency limit when the time-discretization gets finer; see also Remark 3.
Moreover, this covers important classes of processes such as stochastic differential equations or
semimartingales and allows us to use tools from stochastic analysis. By using embeddings into
linear spaces, such as through reproducing kernels, we are further able to handle paths
evolving in general topological spaces.

Path-valued data. A classical theme from stochastic analysis is that for a path z =
(#(t))te(o,1), the “signature” map

T ( / d:v®m)m>0 e [T ®H*™ (2)

m>0

is an injection up to tree-like equivalence! and the tensor [dz®™ € (R?)®™ behaves in a
precise algebraic sense analogous to a monomial y%n € (RY)®™ of degree m of a vector y € R%;
here we use the shorthand notation [ dz®™ for the iterated integral

/ dz®m™ = dr(ty) @ - @ d(t) 3)
0<t1 <<ty <T

= i(t) @ -+ @ (ty)dty - - - dt, € (RY)E™, (4)
0<t1 <+ <ty <T

where #(t) == (dx;t(t),..., dx;t(t)) € R%. The iterated integrals are defined through either

classical Riemann-Stieltjes integrals, or as stochastic or rough path integrals if x is not
smooth. It is then a natural question whether the expected value of these iterated integrals
characterizes the law of random paths, analogous to Example 1.

Example 2 IfY ~ N(0,1), the standard normal on R, then

(E[;L!Y@m})mzo = exp (%el ® 61) € H R®™

m>0

1. Tree-like equivalence is a very useful equivalence relation on pathspace; e.g. it identifies paths up to a
time-change. From an analytic point of view, tree-like equivalence is the analogous notion of Lebesgue
almost sure equivalence of sets in R? on pathspace. We give a precise definition in Section B.1.
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where ey is the unit basis vector of R and exp denotes the natural generalisation of the
exponential map, see Appendix A. The classical Carleman’s condition implies that this moment
sequence uniquely determines the law of Y. A Brownian motion X = (Xt)te[o,T} in R? s
arquably the natural infinite-dimensional analogue of the normal distribution; indeed one has
the analogous formula (Fawcett, 2003)

@m T d d\®m
(E[/dx szozexp(526i®ei)€ IT ®H™™, (5)

=1 m2>0

where {e1,...,eq} is an orthonormal basis of R and the stochastic integrals are in the
Stratonovich sense. It was shown in (Chevyrev and Lyons, 2016) that (5) uniquely determines
the law of Brownian motion (up to tree-like equivalence).

Example 2 motivates the signature of a path (resp. expected signature of a stochastic
process) as a generalisation of polynomials (resp. moments) to path-valued data. This
viewpoint is well-known in stochastic analysis but has become increasingly popular in
machine learning; we refer to (Chevyrev and Kormilitzin, 2016) for a short overview and
to (Lyons et al., 2007) for a concise mathematical introduction. We emphasize that such
sequences of iterated integrals go at least back to the 20th century and certain aspects
of it are studied by various communities in algebra, topology, and control theory (for example,
the terms time-ordered exponential, chronological calculus, and Chen-Fliess series all refer
to essentially the same object that we call signature; see (Kiraly and Oberhauser, 2019, Section
1.4(iii)) for such references).

Remark 1 It is natural to ask that, if Example 2 generalizes the moment sequence of
Ezample 1 from vector-valued to path-valued random variables (i.e. the moment generating
function), then what is the natural generalization of the Fourier transform (i.e. the characteris-
tic function)? Indeed, Chevyrev and Lyons (2016) introduce and study such a “Fourier
transform”, but the resulting objects are quite abstract involving unitary representations of the
signature group; in particular it is not clear how to turn this theory into computable features
or kernels. Nevertheless, we believe this to be an interesting research question since already for
vector-valued data, both approaches—moment sequences and Fourier transforms—are useful,
although arguably moment sequences are more popular for inference tasks.

Remark 2 There are other ways to characterize the law of a stochastic process. Arguably, the
most popular approach is to use finite-dimensional time marginals (via Kolmogorov’s extension
theorem). However, this heavily depends on time-parametrization, whereas signature moments
are parametrization invariant. Finally, other kernels for times series exist such as (Chan
and Vasconcelos, 2005; Berndt and Clifford, 1994; Cuturi and Doucet, 2011; Moreno et al.,
2003) as do methods coming from dynamic-warping; we refer to (Kiraly and Oberhauser, 2019,
Section 1.4 and Section 5) for an attempt of an overview of this large literature. What distin-
guishes the signature kernel is that (i) it applies to general continuous time processes with dis-
crete time arising as a special case—this ensures that it behaves well under high-frequency sam-
pling (see Remark 8)—and (ii) it allows to use strong theoretical results from stochastic analy-
sis which is essential for the proofs of our main theorems.
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What’s Wrong With (Signature) Moments. Already the feature map from Example 1
runs into trouble if one replaces the compact subset X' of R¢ with a non-compact subset of
RY: in this case, neither (A) or (B) hold in general; a well-known example is that a log-normal
random variable is not characterized by its moments. Unfortunately this applies, a fortiori, to
path-valued data and signature moments: even the laws of “trivial” stochastic processes that
have straight lines as sample trajectories are in general not characterized by their signature
moments; see Appendix B.5 for a concrete example.

Even worse, for vector-valued random variables a compact state space can be a reasonable
assumption, but this is no longer the case for path-valued random variables since the space
of paths is not even locally compact. A more reasonable alternative is to derive moment decay
conditions that ensure that the sequence of moments still characterizes the law despite
a non-compact support analogous to how a normally distributed (vector-valued) random
variable is characterized by its moments. This was done in (Chevyrev and Lyons, 2016) for
signature moments, see Example 2. However, these signature moment decay conditions firstly
lead to strong assumptions that are hard to verify, in particular making them unsuitable for a
non-parametric machine learning approach; secondly, such decay conditions exclude many
important processes such as geometric Brownian motion.

Another related drawback of moments (classical and signature moments) is that of
statistical robustness: already for R%valued random variables, the mean p — Ey.,[Y®] =
J yu(dy) is not robust to outliers, e.g. for mixtures of the form p = (1 — €)v + €4, the Dirac
measure at y has too much influence, and the median would be a better “order m = 1”
statistic; the same happens for higher moments m > 1 and such considerations motivated the
development of “robust statistics”, see (Hampel et al., 1986; Huber and Ronchetti, 2009).

1.1 Contribution

Our main contribution is to derive a “normalization” A(x) so that the robust signature

zH@x:Axm/dm@)m 6
(2) = (Ma) )50 (6)
(a) is a robust, characteristic and universal feature map on pathspace; more precisely

(i) wniversal means that any continuous bounded function f(z) of paths can be

approximated by linear functionals of ®(x),

(ii) characteristic means that the map p — Ex.,[®(X)], which maps the law of a
stochastic process X to the expected value of ®(X), is injective.

(iii) robust means that the influence function (in the sense of Huber) of & is finite.
(b) gives rise to a characteristic and universal kernel k(z,y) = (®(x), ®(y)) for paths,

(c) the associated maximum mean discrepancy (MMD) is a metric for laws of stochastic
processes that yields a topology comparable to the topology of weak convergence under
natural assumptions.

The need for such kernel mean embeddings of laws of stochastic processes has been pointed out
in the recent survey (Muandet et al., 2017, Section 6.2):
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“Highly structured data can be taken into account using a kernel, but it is not clear
how to employ kernel mean embedding for stochastic processes-i.e., distributions
over infinite dimensional objects (...).”

Our robust signature kernel and MMD provides an answer to this question; additionally, it
provides the option to ignore the time-parameterization of stochastic processes, which can
make the learning much more efficient by quotienting out invariance under a very large space of
transformations. Some of our results remain interesting without the normalization A, see
Remark 4. Below we give a brief outline of our approach.

Robust Signatures. A recent observation is that universality and characteristicness are in
duality and therefore often equivalent, see (Simon-Gabriel and Schélkopf, 2018).2 Hence, it is
sufficient to show universality, but this is more involved than in the finite-dimensional case due
to the non-local compactness of pathspace. To address this, we use a convenient generalization
of the Stone—Weierstrass theorem due to Giles (1971) together with a carefully constructed
normalization map A. We refer to the map ®, as defined in (6), as the robust signature for
two reasons: firstly, and most importantly, it is robust in the sense that no assumptions on the
probability measure p are needed to ensure characteristicness (except that the iterated inte-
grals are well-defined). Secondly, the resulting signature moments Ex ., [®(X)] that character-
ize the law p of X are robust in the sense of statistical robustness to outliers mentioned above,
(Hampel et al., 1986).

A MMD for Laws of Stochastic Processes. A natural distance between probability
measures /v on a topological space X is the “maximum mean discrepancy” (MMD)

d(p,v) = Sup Ex~ulf(X)] = Eyn [f(N)]] (7)

where the sup is taken over a sufficiently large set of functions from X to R. To approxi-
mate (7) from finite samples of the laws u (resp. v), naive approaches are troublesome
because of the supremum over a large space of functions. To address this, we follow (Berlinet
and Thomas-Agnan, 2011; Gretton et al., 2012; Sriperumbudur et al., 2010) and kernelize
the robust signature feature map ®. That is, we define the normalized signature kernel
k(z,y) = (®(z),P(y)) and take the sup in (7) over functions in the unit ball of the
reproducing kernel Hilbert space (henceforth RKHS) of k. This gives the identity

die(n,v) = E[k(X, X")] = 2E[k(X,Y)] + E[k(Y, Y")] , (8)

where X’ and Y’ denote independent copies of X ~ p and Y ~ v. Efficient recursive
algorithms for inner products of signatures have been developed, see (Kiraly and Oberhauser,
2019), and we can extend this to the robust signature ®. This allows to evaluate dx(u, ) from
finite samples, even if the paths X, Y evolve in high-dimensional spaces (large d) or general
topological spaces. Unfortunately, topologies induced by MMDs are typically hard to relate
to standard topologies, see (Rachev, 1991). However, one of our main results is that di
is a metric that induces a topology on probability measures strictly weaker than classical weak

2. The subtlety is that probability measures form a convex space but not a linear space, so one has to work with
general distributions rather than probability measures for characteristicness.
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convergence® (also called narrow convergence/convergence in law) and give conditions when
these topologies are equal.

Application: Hypothesis Testing for Laws of Stochastic Processes. We apply our
theoretical results to the problem of two-sample hypothesis testing for stochastic processes.
A two-sample test for a stochastic processes X = (Xt)icjo,r), ¥ = (Yi)ielo,r), tests the
null-hypothesis

Hy : Px = Py against the alternative Hy : Px # Py,

where Py := Po X1 and Py := Po Y ! are the laws of X and Y. Our results about
the characteristicness allow us to use the framework of Gretton et al. (2009, 2012) for this
problem. The data we use is a popular archive of multi-variate time series data that contains
heterogeneous datasets from various domains such as speech, handwriting, motion, etc. We
benchmark against classical tests for multi-variate data and MMD tests using classical kernels.

1.2 Outline

Section 2 introduces the equivalence between universality and characteristicness of a feature
map ¢ : X — F, as well as the strict topology that becomes useful when X is a general
non-locally compact space. Section 3 focuses on the tensor algebra, E := T(V'), as the natural
feature space for moments and introduces the concept of a tensor normalization A : T1(V) —

T (V). As an application, we revisit Example 1 and show how such a normalization turns
classical monomials on X = R? into a robust feature map for R%valued random variables. Sec-
tions 4 and 5 introduce the robust signature map which extends this argument from R%valued
random variables to path-valued random variables. Section 6 introduces a bounded, continu-
ous, universal and characteristic kernel k(z,y) = (®(x), ®(y)) for paths z, y and discusses the
associated MMD on the space of laws of stochastic processes, the topology it induces, and its
discretisations and computability. Section 7 contains as application a two-sample test between laws
of stochastic processes. The Appendices contain technical details on rough paths, kernels, and the
conducted experiments.

Remark 3 Kiraly and Oberhauser (2019) introduced discretized signature kernels for sequence-
valued data and provide efficient algorithms with a focus on supervised classification. We
emphasize that, even for sequence-valued data, the question of characteristicness is non-trivial
due to the lack of local compactness. This is even more the case for path-valued data, which
we consider here. The move from sequence-valued to path-valued data is not only of theoretical
interest: although real-world data sets often consist of sequences (x(t;))i=1,..1 rather than
paths (z(t))ejo,r), understanding the limiting behaviour as max; [tiy1 —t;| — 0 is crucial;
e.g. it guarantees that no constants blow up in the high-frequency limit.

3. This provides a natural example of a bounded, continuous, characteristic kernel which does not metrize
weak convergence on a Polish space. The existence of such a kernel was raised as an open question
in (Simon-Gabriel and Schélkopf, 2018). During the writing of this article, this question was additionally
answered in (Simon-Gabriel et al., 2020) for even a locally compact Polish space. Additionally, the latter
corrected an error in (Simon-Gabriel and Schélkopf, 2018) with regards to characterising kernels which
metrize weak convergence.
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Remark 4 If one ignores the normalization, that is replaces A\(z) by 1 in (6), then the
signature features and kernel are in general not universal or characteristic; for example, the ex-
pected signature fails to characterize even some trivial stochastic processes, see Appendix B.5.
However, their use might still be justified in certain situations (for example, if additional
moment decay assumptions are known) and many of our results remain interesting in this case,
e.g. the (non-robust) signature MMD can still be used for hypothesis testing, albeit under much
stronger assumptions. Nevertheless, the computational cost of normalization is negligible
and the robust signature (kernel) enjoys beyond universality and characteristicness also B-
robustness which is in particular relevant for real-world data for the same reasons why robust-
ness matters for vector-valued data; hence, in general we recommend the use of the robustified
signature kernel resp. MMD.

1.3 Notation

We collect some commonly used notation in the following table.

Symbol Meaning Page
Spaces
X topological space
E topological vector space (TVS) over R
E* algebraic dual of F, i.e., space of linear functionals £ — R
£ topological dual of E, i.e., subspace E' C E* of continuous functionals
H Hilbert space over R
V Banach space over R
v V=VaoR 17
Paths and sequences
ct the subset of Ur~oC([0,T7], V) of absolutely continuous paths 14
p pseudo-metric on C* 15
P metric on C*(V) 17
Pl tree-like equivalence classes of absolutely continuous paths in V' 16
x ~yy  tree-like equivalence relation between x,y € Ur~oC([0,7],V) 33
T partition of [0, 77, i.e., a collection of points 0 < ¢; < --- <t <T
™ the sequence z™ := (z(t;))i=1,.; given by sampling z along 7
Signatures and normalization
[ dz®™  shorthand for fOShS---SthT dr(t1) @ -+ @ dx(ty) 15
S signature map, S(x) = ([ dz®™), .5, 15
T(V) square summable elements in the tensor algebra [],,,~ yem 11
Ti(V) subset of T(V) with zero-th component equal 1 11
A a tensor normalization 11
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2. Learning in Non-locally Compact Spaces

As discussed in the Introduction, two classical problems of learning in a topological space X
are: (A) make inference about a function f € F € RY, and (B) make inference about a
probability measure g on X'. A standard approach is to map X into a (typically infinite or high
dimensional) linear space E and address the learning problem there by using linear methods.
All vector spaces in the sequel are over R.

Definition 5 Let X' be a topological space. For a topological vector space (TVS) E, we call
any map ® : X — E a feature map for which E is the feature space. We denote by E' and E*
the topological and algebraic duals of E respectively.

Universal and Characteristic Features. To address Point (A), we require that E’
is large enough to approximate the elements of the function class F C R?, i.e. for every
f € F, there exists £ € E’ such that f(-) &~ (¢, ®(-)) as real-valued functions on X. To address
Point (B), we require that the feature map is non-linear enough to distinguish measures p on
X, i.e. the map

e p(P) = /){@(m)u(daz) )

is injective. Since E can be infinite dimensional, it is more convenient to write this map as
MH(M+A@@@mmm)ewT.
More generally, we can replace the integral by any distribution D € F’, i.e. require that
D~ (L D(x— (L, P(x)))

is injective. The definition of universality and characteristicness of ® makes this precise.

Definition 6 Fiz X and o« TVS F C RY. Consider a feature map ® : X — E such that
(0, D(-)) € F forallt € E'. We say that ® is

(a) universal to F if the following map has a dense image:

1B = F, L= (0,9(4)) . 9)

characteristic to a subset P C if the following map is injective:
b) ch teristic t bset P C F' if the followi s injecti

k:P — (B, Dws [0 D{,3(-))].

Universality directly addresses Point (A); characteristicness addresses Point (B) in a much
more general sense since the dual F’ is larger than the set of probability measures on X'. This
generalization allows to work on the linear space F' (instead of a convex subset) and allows for
the following simple statement of duality.
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Theorem 7 Suppose that F is a locally convexr TVS. A feature map ® is universal to F iff @
is characteristic to F'.

The proof of Theorem 7 employs the Hahn—-Banach theorem and is identical to that of a
corresponding result for kernels (Simon-Gabriel and Schélkopf, 2018, Thm. 6). We will see
that this result is useful since universality is often much easier to show than characteristicness.

&
Example 3 (Example 1 revisited) Here, X C R? compact, E = [],,¢ (Rd) " and
O(x) = (%) oo The image 1(E'") is the space of polynomials on X. By Stone-Weierstrass,
: m

it follows that ® is universal to F = C(X,R) equipped with the uniform topology. By
Theorem 7, ® is characteristic to F' which is the space of reqular Borel measure on X. In
particular, this implies the well-known result that the law of a bounded random variable is
determined by its moments.

2.1 The Strict Topology

To extend Example 3 from a compact subset X of R? to a general non-compact data domain X,
we need to

(a) find a map ® : X — E that behaves like “monomials” so that linear functionals and
consequently linear functionals (¢, ®(z)) behave like “polynomials” in x; put more
abstractly, Fo := {x — (¢, ®(z)) : £ € E'} should form a point-separating algebra,

(b) find a TVS F C R? such that F’ includes the probability measures on X,
(c) have a Stone-Weierstrass-type result that shows that Fy is dense in F.

Point (a) must take into account the concrete choice of X. Unfortunately, already for the
arguably simple case X = R? we know that the standard monomial map from Examples 1
and 3 does not work since there exist unbounded random variables that have different laws but
the same moment sequence, see Appendix B.5. Further, for non-locally compact spaces X (like
the space of paths) it is often easy to find a function class F such that exactly one of (b) and (c)
holds, but not both; typically the dual space F' is either too small, or Stone—Weierstrass-type
results are not known or involve conditions that are hard to verify.

Below we recall a result of Giles (1971) which provides a surprisingly elegant and general
roadmap on what is needed to addresses all points (a), (b), and (c).

Definition 8 Let X be a topological space. We say that a function v : X — R vanishes at
infinity if for all € > 0 there evists a compact set K C X such that sup e\ x [¢(7)] < e.
Denote with By(X,R) the set of functions that vanish at infinity. The strict topology on
Cy(X,R) is the topology generated by the seminorms

py(f) = jlelg\f(ﬂf)l/f(x)l , Y€ B(X,R).

Theorem 9 (Giles (1971)) Let X be a metrizable topological space.

(i) The strict topology on Cy(X,R) is weaker than the uniform topology and stronger than
the topology of uniform convergence on compact sets.
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(ii) If Fo is a subalgebra of Cy(X,R) such that

(a) Vx #y € X there exists f € Fy such that f(x) # f(y), and
(b) Yx € X there exists f € Fo such that f(zx) # 0,

then Fo is dense in Cyp(X,R) under the strict topology.

(7ii) The topological dual of Cp(X,R) equipped with the strict topology is the space of finite
regular Borel measures on X.

Proof Point (i) follows from the definition. Point (ii) is (Giles, 1971, Thm. 3.1); in fact, the
result holds more generally for any topological space and one only needs that point-separating
and non-vanishing functions are in the closure of Fy. Point (iii) is (Giles, 1971, Thm. 4.6). ®

The specific construction of ® must depend on the domain X. However, often one has a natu-
ral candidate for monomials on X. For example, for X = R? one can use the standard monomi-
als as used in Examples 1 and 3; for X the space of paths, stochastic analysis suggests that the
iterated integrals [ dz®™ are the “natural monomials” of degree m. It remains to have a
method that generically turns such monomials into “bounded monomials” to which Theorem 9
applies. In Section 3 we introduce a generic normalization that accomplishes this. In Section 4
we apply this construction to the space of paths to derive our robust signature features.

3. Robustification by Normalization

Already the standard monomials in R%, Example 1, are unbounded on non-compact domains
X, hence linear functionals of them (polynomials) are not bounded and thus Theorem 9 does
not apply. On the other hand, polynomials have many nice properties: they are closed
under multiplication and they separate points. In this section we show that there exists a
generic “normalization” that makes monomials bounded while preserving their algebra and
point-separating property. Moreover, this normalization also turns them into robust statistics
in the sense of Huber and Ronchetti (2009). Even for the case X = R¢ this leads to a novel
moment sequence that characterize the law of any R%valued random variable, Section 3.4.
More importantly for our purposes, this method also applies to signature features on paths.

3.1 The Tensor Algebra

Throughout the rest of this article let us denote with V' a Banach space. Recall that V®™
denotes the space of tensors of degree m. A sequences of tensors of increasing degree is an
element of the space [],,50 V®™. We will denote elements t € [],,~o V™ by

t = (tm)mzo S H V®m

m>0

where t™ € V™. The space [],,5o V®™ becomes a linear space by defining

S+t:= (so +t9 s+t .. ) for s = (s")m>0, t = (™) m>0 € H yem,
m>0

10
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This space is the natural state space for monomials; for general background on tensors we refer
to Appendix A. Of particular relevance is the subspace T(V) C [],,50 V®™ of elements that
have a finite norm.

Definition 10 Let V be a Banach space.* We denote by T(V) the Banach space

T(V)={te [T v : [t = (X Hth?V@m)l/2 < oo}

m>0 m>0
Define further the subset T1(V) == {t € T(V) : t° = 1}.
Remark 11 IfV = H is a Hilbert space, we will always equip H®™ with the canonical inner

product (which induces an admissible system of norms) given on elementary tensors by

m

(T1® ... @ Ty, Y1 ® ... @ Ym) gom = | [ (@5, y;) 1 »
j=1

and extended by linearity to H®™. Consequently, T(H) becomes a Hilbert space with inner
product (s,t) () = Ym>0(s™,t") gem.
3.2 Normalization

Naive approaches to make monomials bounded such as dividing them by their norm destroys
that they form an algebra and that they are point-separating. The idea of a tensor
normalization, is that these “nice” properties of monomials can be preserved while making
them bounded.

Definition 12 A tensor normalization is a continuous injective map of the form
AZTl(V)%{tETl(V) : ||t|| SR} s Ait’—>5)\(t)t,

where R > 0 is a constant, A : T1(V) — (0,00) is a function, and, for c € R, d. is the dilation
map 3.(t) = (t°,ct!, c?t2,...).

The existence of tensor normalizations is not trivial. In the rest of this section, we give
a general method to construct such maps and determine their regularity properties. In
Sections 6.4 and 7.3 we show that tensor normalization can be carried out in a kernel learning
setting with minor computational cost.

Lemma 13 Suppose that A > 0 and t € T(V) such that oxt € T(V). Then ||oxt — t||> <
ot — [I£]1%].

Proof We may suppose without loss of generality that A > 1 (otherwise we swap t with Jyt
and X\ with A™!). Taking derivatives in A at some A € [1,\),

d - Y\ 2m— \m— m - y\2m— m d
—=llaxt —t]* = > 2m(A T = AT [Fem < D 2mAT 67 [Fem = <1038,
X — o} dX

4. We implicitly assume that V®™ for all m > 2 are Banach spaces formed by the completion with respect to
some admissible system of tensor norms || - ||y;em, see (Lyons and Qian, 2002, Sec. 3.1).

11
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where all sums are convergent by the assumption that >0 _; A?™|[t"||? < oo. Since both
derivatives are positive and the first is bounded above by the second, the conclusion follows. B

Proposition 14 Let v : [1,00) — [1,00) with ¢(1) = 1. Fort € T1(V), let A(t) > 0 denote
the unique non-negative number such that ||6y)t||* = ¢(|[t]]). Define A : T1(V) — Ty(V),
A(t) = dx)t. Denote further ||{|l = sup,y>q ¥(z).

(1) It holds that A takes values in the set {t € T1(V) : ||t]] < V]|Y]loo}-
(ii) If v is injective, then so is A.

(iii) Suppose that sup,s; ¥ (z)/2? < 1, [¢]| < 00, and that v is K-Lipschitz for some
K > 0. Then

IA(s) = A < (1+ K2+ V2012 (lls — ¢l v [Is — t]) -

Proof (i) is clear by construction. For (ii) suppose that 1 is injective and that A(t) = A(s). If
t =1 :=(1,0,0...), then evidently s = t. We thus suppose t # 1. By definition of A,
it holds that s = 05t for some A > 0. On the other hand, we also have v (]|t||) = ¥ (||s||). Since
1 is injective and A — ||0xt]|| is strictly increasing by the assumption that t = 1, it follows that
s = t, which proves (ii). For (iii), note that 1(z) < 22 implies A(t) < 1, and thus ) is
1-Lipschitz on T1(V'). Hence

[9x(s)8 — Iae)tll < [[ox)s — dae)tll + [[ox(s)s — dace)sll
< lIs = t]| + [lIxs)slI® — I0rceysl?M2
< lIs = sl + [ (lIsll) = LN + [10xe tlI* = oxesl®IT?
< s — bl + K2 )ls — ¢/ + V2l s — ¢/

where we used in the second line Lemma 13 and in the fourth line that v is K-Lipschitz and
without loss of generality that A(t) < A(s) (hence [|0x)s]| < [[0x)sll < [[¥]loo)- [ ]

Corollary 15 Let ¢ : [1,00) — [1,00) be injective satisfying (1) = 1 and the conditions of
Proposition 14(iii). Then A constructed in Proposition 14 is a tensor normalization.

Example 4 The tensor normalization A we use in our experiments is built as in Corollary 15
from the function 1 : [1,00) — [1,00) defined by

T ife <C,

Qﬂ(\/@ = {C’ + CHa(Cw -z % /a ifx>C,

where a > 0,C" > 1 are constants. Note that 1) satisfies all the conditions of Corollary 15; in

particular, 1 is 2C-Lipschitz and bounded above by C(1 + é) Figure 1 shows the graph of
Y(y/x) with a =1 and C = 4; note that A(t) =t if ||t]| < 4.

12
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0 2 4 6 8 10 12 14 16 18 20
x
Figure 1: The graph of ¢ (y/z) from Example 4 with a = 1 and C' = 4.

3.3 B-robust Statistics

In addition to allowing us to applying Theorem 9, tensor normalizations guarantee that
the statistics which are linear functionals (¢, (X)) of a normalized feature map ® = Aoy are
robust to outliers in a precise statistical sense.

Definition 16 (Hampel et al. (1986)) Let P(X) denote the space of Borel probability
measures on X. For a map T : P(X) — R define the influence function of T' at p € P(X) by
T(ed 1- -T
I (0 T, ) o= lim e 0 =) = T(w)
e\0 €
for x € X for which this limit exists. T is called B-robust at p if sup,cy | IF(z; T, )| < oo.

Example 5 Suppose f : X — R is measurable and T(p) = p(f) = [y f(x)p(dz) if f
is p integrable (and arbitrary otherwise). Then, provided f is p-integrable, IF(z; T, p) =
f(x) — u(f), and therefore T is B-robust at p if and only if f is bounded.

The previous example shows that if X C R and T : P(X) — R is the m-th moment
T(p) = Ex~p[X™] for some m > 1, then T' is B-robust (at any p with finite m-th moment) if
and only if X is bounded. The same example, however, shows the following.

Proposition 17 Consider A a tensor normalization, ¢ : X — T1(V) measurable, and
e T(V). Define ® =Aoy and f(x) = ({,P(x)). Then u v p(f) is B-robust at any pu.

The significance of this result is that linear functionals of the feature maps ‘@’ appearing in
our results below (Proposition 18, Theorems 21 and 26, etc.) are automatically B-robust
statistics. The focus of this article is to characterize probability measures on pathspace, but
the above observation that B-robustness is intimately linked to moment normalization and
characteristicness is already interesting for R%-valued random variables.

3.4 Example: Robust Moments for Vector-valued Data

We now demonstrate the usefulness of the tensor normalization by turning the standard
monomial feature map from Example 3 into a robust, characteristic, and universal feature map
on the whole of R?. We emphasise that our argument does not rely on local compactness and
thus paves the way to apply the same reasoning to pathspace.

13
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Proposition 18 Consider the map

Xm
. od dy. TN
o RS TyRY;, 2o ( — )m:o' (10)

Let A : T1(RY) — T1(R?) be a tensor normalization. Then the map
d:RT— T (RY), d=Aoyp
(i) is a continuous injection from R into a bounded subset of T1(R?),
(i) is universal to F = Cb(Rd, R) equipped with the strict topology,
(iii) is characteristic to F', the set of finite, signed Borel measures on R,
Moreover, for any ¢ € T(V) the map p — (¢, Ex~u[P(X)]) is B-robust.

Proof (i) follows from the definition of the tensor normalization A and the fact that
¢ : R — T1(RY) is a continuous injection. To show (ii), we claim that the family
of functions Fy = {z — ({,®(x)),¢ € (R™), m > 0} C Cy(R%R) satisfies the con-
ditions of Theorem 9(ii). Indeed, for m,n > 0 and £ € (RH)®™ [ € (RY)®" we have
(6, ®(2)) (0, (x)) = Mp()™ (0, 20 (0,2 = (™) (¢ @ F, ®(x)), which shows that F
is a subalgebra of Cj,(R%,R). The family Fy separates points since ® is injective. Finally,
note that ®(z) # 0 for all € R%. It follows by Theorem 9(ii) that ® is universal to Cj(R¢, R)

equipped with the strict topology which shows (ii); (iii) now follows by Theorem 9(iii). W

An informal point of view of Proposition 18 is to recall the difference between the moment gen-
erating function and the characteristic function of R%valued random variable X. The former
can fail to characterize laws of unbounded random variables, whereas the latter characterizes the
law of any random variable. The characteristic function accomplishes this by using a Fourier trans-
form that spins faster in a circle in the complex plane for large value of X. The above proposition
shows that the same can be accomplished by “smearing out” large realizations of X into a ball in
T(R%).

4. Robust Features for Smooth Paths

In this section, we apply the robustification introduced in Section 3 on pathspace. We
first focus on the case when X = C! denotes the subset of Up~oC([0,T],V) of absolutely
continuous paths. The case for more irregular paths is covered in Section 5.

4.1 Iterated Integrals: Monomials of Paths

We consider first absolutely continuous paths parameterized over any finite interval [0, 7]
whose starting point is the origin:

vy = {zec(o.1.v): 30 € L'(0.T1V) , 2= /';a(t)dt} ,
T>0 0

n

T -1
]| ~varsfo,71 ::/0 le(®)lldt = sup > llztivn) — 2 (@)l -
1

0<ty < <tn<T

14
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When the space V is clear from the context we just write C! instead of C1(V). When we
speak of an element x € C!, we let [0, 7] denote the corresponding time interval. Due
to the arbitrary time interval [0, T, C! is not a vector space (since two paths on different time
intervals can not be added). To define a topology on C!, consider for 2,y € C' the quantity®

p($7y) :ir;fo_yOTHlfvar;[O,Tz] ) (11)

where the infimum is taken over all increasing bijections 7 : [0, 7] — [0, T ]; we call such a 7
a reparameterization. Note that p satisfies all the properties of a metric except that p(z,y) = 0
does in general not imply that z = y (i.e., p is a pseudo-metric). We equip C' with the
(non-Hausdorff) topology induced by p. The C! regularity of the paths allows us to use
Riemann-Stieltjes integration to define (see also (4))

t
/ dz®m ;:/ do(t) @ --- @ da(tm) €EVE™  forte[0,Th].  (12)
0 0<t1 <<t <t

We will often use the shorthand [dz®™ = fOT * dx®™. A guiding principle that plays a
prominent role in stochastic analysis is that the so-called signature map

S:Cl S T(V), ze (1,/d:z:,/d:c®2,/d:c®3,...) : (13)
is the natural generalization of the monomial feature map from Example 1 to pathspace.

Example 6 Let V = R%. Consider the linear path x : [0,1] — R%, x(t) = tv, for a fized
vector v € R%. A simple calculation shows [ dx®™ = %. Hence, S is a generalization of the

monomial feature map on R from Ezample 1.

An algebraic reason why (12) can be seen as sequence of monomials on pathspace C' is
that their linear span is closed under multiplication. The so-called shuffle product makes
this precise: considering for simplicity V = R?, we have for i = (iy, ..., i) € {1,...,d}™,j =
(Giy--rdn) € {1,...,d}"

/dm?m/dx?n = Z/dxf(m+”) , (14)
k

where the sum is taken over all k = (k, ..., kn1n) that are shuffles® of i and j, see (Lyons
et al., 2007, Thm. 2.15). The signature map furthermore identifies paths up to tree-like
equivalence.

Theorem 19 (Boedihardjo et al. (2016)) The map S : C! — T1(V) is injective up to
tree-like equivalence: for x,y € C*, S(x) = S(y) if and only if x ~; y.

The tree-like equivalence relation x ~; y is a natural generalization of the reparameterization
relation on pathspace, see Footnote 1 and Appendix B.1. In particular, and perhaps
most importantly, two paths x,y are tree-like equivalent if they are reparameterizations,
x(t) = y(7(t)) for all t (or more generally if p(z,y) = 0). We show in Section 4.3, that, if
desired, it is easy to remove the tree-like equivalence relation in Theorem 19. Nevertheless,
the identification of tree-like equivalent paths (read: reparameterized paths) can be a powerful
dimensionality reduction.

5. Readers will notice the similarity with dynamic time warping and Fréchet distance.
6. A shuffle k = (k1,...,km+n) of i and j is a permutations of (i1,...,%m,J1,...,jn) sSubject to the condition
that the order of elements in i and j is preserved.
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4.2 Features for Unparameterized Paths

The empirical success of dynamic time warping and Fréchet distances show that for path-
valued data it can beneficial to ignore the time-parameterization. Motivated by this we
identify paths that are reparameterizations. Hence, instead of the space of paths C' we first
derive robust features for the space of equivalence classes of paths P! := C!/ ~;.

Definition 20 We define the space of unparameterized absolutely continuous paths P as the
set of equivalence classes C'/ ~;. We equip P! with the initial topology” induced by the
signature map embedding S : Ct — T1(V).

In the above definition, recall that given a set ) and a topological space X, the initial topology
on Y induced by a function f: ) — X is the weakest topology on Y such that f is continuous;
remark that we can view S as a function P! — T1(V) due to Theorem 19.

In complete analogy to our toy example of the monomial feature map for R? in Proposi-
tion 18, we apply a tensor normalization to the signature map S to get a robust, universal, and
characteristic feature map.

Theorem 21 Let A : T1(V) — T1(V) be a tensor normalization. The robust signature
d:Pl - T(V), ®=AoS
(i) is a continuous injection from Pl into a bounded subset of T1(V),
(ii) is universal to F = Cy(P,R) equipped with the strict topology,
(iii) is characteristic to the space of finite reqular Borel measures on PL.

Moreover, ¥¢ € T(V) the map p — (¢, Ex~,[®(X)]) is B-robust.

Proof (i) follows from the definition of tensor normalization and the fact that S : P! — T (V)
is a homeomorphism onto its image. For (ii), define L := @,,~o(V®™)’, which we identify
with a dense subspace of T(V)’ via £(t) = 3,,50(¢™,t™). Define further Fo = {{o®: (€
L} C F. By point (i), Fy separates the points P'. Furthermore, S takes values in the
group-like elements of T(V') (Cass et al., 2016, Cor. 3.9) which implies Fy is closed under
multiplication (in the case V = R?, this is equivalent to the shuffle product (14)). It follows
that Fo satisfies the assumptions of Theorem 9(ii). Hence Fy is dense in F under the strict
topology, which proves (ii). Point (iii) in turn follows from Theorem 7 and Theorem 9(iii). B

4.3 Features for Parameterized Paths

While it can be useful to ignore time-parameterization, there are also many situations where
time-parameterization matters, e.g. financial data. The simple observation is that we can
record the parameterization of a path by adding time as a state-space coordinate.

7. The quotient map C' — P!, when C' is equipped with the pseudo-metric p, is continuous due to the
continuity of S : C* — T1(V) (Lyons and Qian, 2002, Thm. 3.1.3). In particular, the quotient topology on
Pl is stronger than the initial topology we consider.
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Let V :=V @ R. Observe that the map
C'V)ysz—zeCl(V) with T:[0,T,] =V, Z(t) = (z(t),t)

realises C'(V) as a subset of C}(V). Furthermore, for x,y € C(V), it holds by strict
monotonicity of the second component that T ~; 7 if and only if x = y. Hence, denoting by
p(x,y) the quantity (11) with x,y replaced by T, 7, it holds that (C*(V'),p) is a genuine metric
space (which is sensitive to the parameterization of paths).

Corollary 22 The statement of Theorem 21 holds with P replaced by (C*,5) and ® replaced
by the map @ : CH(V) — T1(V), x — Ao S(T).

Proof The above remarks imply that the map z + T injects (C'(V),p) continuously into
PL(V), and the conclusion follows from Theorem 21. |

A particularly important corollary is that that the robust signature moments characterize laws
of stochastic processes.

Corollary 23 Let u,v be probability measures on C*(V). Then
p=v iff Ex,[®(X)"] =Ey.,[®(Y)"] Vm>1.

Corollary 23 is in stark contrast to classical signature moments, i.e. it does not hold when
P(X),®(Y) are replaced by S(X),S(Y); see Appendix B.5.

4.4 Lifting State Space Features to Pathspace Features

So far we have focused on paths that evolve in a linear space. In this section we briefly discuss
how one can generalize the robust signature maps from Sections 4.2 and 4.3 into a feature map
for paths that evolve in general topological spaces.

Example 7 Let X be the space of finite graphs® with vertex set {1,...,N}. Consider
the feature map ¢ : X — E = RN*N that maps a graph to its adjacency matriz. Then
x — (Poy)(x) is a natural candidate for a feature map for paths evolving in the space of graphs
(an evolving network). Other choices for ¢ are of course possible and often more sensible,
e.g. those arising from kernels and we return to this in Section 6.1.

Even for paths that evolve in a linear space X = R? precomposition of ® with a
state-space non-linearity ¢ can be beneficial in terms of efficiency since the state space
non-linearity can make it easier to linearize non-linear functions.

Definition 24 Let X be a topological space and ¢ : X — V. Denote with C;O(X) the subset
of paths x in UrsoC([0,T], X) such that z(0) = zo and p(z) = (©(x(t)))iep,n) € CH(V).
Denote with P} (X) = Ca,(X)/ ~¢ the quotient space® under tree-like equivalence.

8. Say, directed and weighted graphs without multiple edges; however, any definition of a graph for which an
adjacency matrix is well-defined is allowed.
9. Equipped with the initial topology induced by the signature map Sogp : P;O (X) = T1(V).
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Corollary 25 Suppose ¢ : X — V is injective and A is a tensor normalization. The
statement of Theorem 21 holds with P(V') replaced by Py (V)and ® replaced by the map

Y CHAX) = T(V), ¥ :=doyp.

Furthermore, the same statement holds when Py (X) is replaced by (C3,(X),p) and ®% is
replaced by ®° = A o S(p(z)).

Proof Injectivity of ¢ implies that for all 2,y € C} (X), ¢(x) ~¢ ¢(y) if and only if x ~¢ y.
All the desired claims now follow from Theorem 21 and Corollary 22. |

Applied with X =V and ¢ = id : X — V, this just recovers the feature map ®'9 = & for P!
Lifts of X-valued sequences were introduced for sequence kernels in (Kiraly and Oberhauser,
2019).

5. Robust Features for Rough Paths

In this section we enlarge the domain of the feature map ® (resp. ®) to paths of unbounded
1-variation. This allows to include important classes of stochastic processes such as stochastic
differential equations, semimartingales, Markov processes, and Gaussian processes. The
main obstacle is that the iterated integrals [ dz®™ can no longer be defined by Riemann—
Stieltjes integration since the trajectories of x are too irregular. Rough paths theory
provides a complete integration theory for a large class of processes; for the special case of
(semi)martingales, the theory agrees with Itd integration. We focus here on the main ideas but
give a detailed account and examples in Appendix B.

Rough path theory provides a family of spaces (C?),>1 called geometric p-rough paths over
V. These spaces satisfy the inclusions C? C C? for p < ¢, and larger values of p allow for paths
with “rougher” trajectories. For every p > 1, there exists a map C? — T1(V') which has the
same properties as the signature map S from Section 4. In fact, for p = 1, C! is just the space of
absolutely continuous paths and we recover the setting of Section 4. Similar to before, we
define the space PP = CP/ ~y, where ~; denotes tree-like equivalence, which we equip with the
topology induced by embedding PP — T (V). The following is a significant generalisation of
Theorem 21 to large classes of processes, see Example 8. The proof follows however, analogous
to the proof of Theorem 21.

Theorem 26 Letp>1 and A: T1(V) — T1(V) a tensor normalization. The map
O:PP 5 Ty(V), ®=AoS
(i) is a continuous injection from PP into a bounded subset of T1(V),
(i) is universal to F := Cp(PP,R) equipped with the strict topology,
(iii) is characteristic to the space of finite reqular Borel measures on PP.

Moreover, Y¢ € T(V)' the map p — ((,Ex~,[®(X)]) is B-robust. The same statement holds
when PP is replaced by CP and ® is replaced by ®(x), see Appendiz B.S5.
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6. A Computable Metric for Laws of Stochastic Processes

Sections 4 and 5 provide us with a robust feature map ® (resp. ®) such that its expected value
Ex~u[®(X)] characterizes the law p of the stochastic process X [with the option to ignore
parameterization]|. In this section we use this to derive a metric on the space of laws of
stochastic processes and study the topology it induces.

A natural distance for probability measures on any topological space X is given by fixing a
class of functions G C R* and define the mazimum mean discrepancy (MMD) between p and v
as

d(p,v) = Sup [Ex~ulf(X)] = By [f(Y)]] -

If G is sufficiently large, then d defines a metric between probability measures, see (Rachev,
1991; Miiller, 1997). However, the supremum makes it hard to compute or estimate d(u, ).
An insight from kernel learning is that if G is the unit ball of a RKHS (#,k), then the
reproducing property implies

d(u,v) = E[k(X, X")] — 2E[k(X,Y)] + E[k(Y,Y")] , (15)

where X, X’ ~ pand Y, Y’ ~ v are pairwise independent. The above can be simply estimated
from finite samples of y and v provided k is cheap to evaluate.

We are interested in the case when X = CP is the space of p-rough paths and p
and v are the laws of stochastic processes X = (X;) and Y = (Y;). The robust signature
feature map ® gives us a natural candidate to define a kernel k(z,y) = (®(z), P(y)).
A well-known disadvantage of MMDs is that they metrize a topology that is usually
not comparable (i.e. neither weaker nor stronger) to weak convergence, see (Rachev, 1991;
Miiller, 1997). Progress on this question was made recently in (Simon-Gabriel and Scholkopf,
2018; Simon-Gabriel et al., 2020) in the case of locally compact spaces X building on
(Sriperumbudur, 2016; Sriperumbudur et al., 2011). However, already the space of absolutely
continuous paths C! is not locally compact.

6.1 Kernel Learning

We briefly recall notation and terminology from kernel learning (Cucker and Smale, 2002;
Schoélkopf and Smola, 2002; Berlinet and Thomas-Agnan, 2011). Throughout this section, let
X be a topological space. Let us fix a feature map X — R, 2 — k,, and denote by Hg C RY
the linear span of {k, : x € X}. Under the condition that k(z,y) = k;(y) is a symmetric
positive definite kernel (which we assume henceforth), the completion of H under the inner
product (k;,k,) = k(z,y) is the RKHS of k. We further fix a locally convex TVS F C R
containing Ho for which the inclusion map Ho < F is continuous.

Definition 27 (Simon-Gabriel and Scholkopf (2018)) We say that the kernel k is

e universal to F if the kernel embedding = id : Ho — F, f — f, is dense,
e characteristic to F' if the kernel mean embedding pn : F' — H{, D+ Dy, is injective.

Proposition 28 (Simon-Gabriel and Scholkopf (2018)) The kernel embedding ¢ and
the kernel mean embedding p are transpose: * = pu and u* = 1. Moreover, k is universal to F
iff k is characteristic to F'.
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A common way to construct the feature map x — k, is through another map & : X — E
taking values in an inner product space (F,(-,-)). Then one defines k,(y) = k(z,y) =
(®(x),P(y)). We recall the important details of this construction in Appendix C. As expected,
universality and characteristicness of ® and k are equivalent.

Proposition 29 Consider a map ® : X — E into an inner product space (E, (-,-)) such that
k(z,y) = (®(x), ®(y)). Then

o & is universal to F iff k is universal to F,
e O is characteristic to F' iff k is characteristic to F'.

Proof This follows from Proposition 43 in Appendix C. |

6.2 The Robust Signature Kernel and its MMD

The feature map ¢ defined in Section 5 is universal and characteristic for (unparameterized)
paths that evolve in a Banach space V. It takes values in the feature space T(V') that is itself a
Banach space. In particular, ® can be applied to (unparameterized) paths that evolve in a
Hilbert space (H,(-,-)). In this case the feature space T(H) is also a Hilbert space, see
Section 3.1. This allows to take an inner product in the feature space which immediately gives
rise to a kernel on PP(H) that is also universal and characteristic.

Theorem 30 Letp >1 and A: T1(H) — T1(H) a tensor normalization. Define
k:PP(H) x PP(H) = R, (z,y) = (2(z), ()

where ® = A o S is the normalized signature map. We call k the robust signature kernel and
denote with

[ @t - [ fwwiay)

dic(p,v) = sup
FET(H)| flI<1

the associated MMD. Then k is a bounded, continuous, positive definite kernel and
(i) k is universal to Cyp(PP(H),R) equipped with the strict topology,
(ii) k is characteristic to finite, signed Borel measures on PP(H),
(iii) dy is a metric on the space of finite, signed Borel measures on PP(H), and
d2(p,v) = Ek(X, X")] — 2E[k(X,Y)] + E[k(Y,Y")]
where X, X' ~ p and Y,Y' ~ v are pairwise independent,

(iv) for probability measures on PP(H), convergence in dy does not imply weak convergence.
Suppose now that H is finite dimensional. Then weak convergence implies convergence
in dy. Furthermore, if M is a set of probability measures on PP(H) which is compact
under weak convergence, then dy induces the topology of weak convergence on M.
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The same statement holds when PP(H) is replaced by (CP(H),p,) and ® in k(x,y) =
(®(x), ®(x)) is replaced by ®(x) = A o S(X).

Proof All claims, except (iv), follow from combining Theorem 26 and Proposition 29. The
proof of (iv) is more involved and follows from Proposition 40 in Appendix B.4. [ ]

6.3 Lifting State Space Kernels to Pathspace Kernels

In Section 4.4 we discussed how precomposing the feature map ® with a state space
non-linearity ¢ can be beneficial. The same applies to the robust signature kernel k.

Proposition 31 Let (H,x) be a RKHS on X such that ¢ : X — H, ¢(x) = k(z,-),
is injective’® and continuous. For x € C([0,T],X) denote by x — K, = (p(x(t))): €
C([0,T), H) the lift of = to a path evolving in H. We cal*

k" PHX) x PHX) = R, (2,y) = k(kg, Ky)

the robust signature lift of the kernel kK : X x X — R. Then k" is a bounded, continuous,
positive definite kernel and, using the notation from Definition 24, for any rg € X

(i) k* is universal to Cy(PL (X),R) equipped with the strict topology,

o
(ii) k" is characteristic to finite, signed Borel measures on Py (X)),
(iii) dy~ is a metric on the space of finite, signed Borel measures on Py (X).

The same statement holds when Py (X) is replaced by (CL (X),p) and ® (implicit in the
definition of k) is replaced by ®(z) :== A o S(T).

If X is itself a Hilbert space, the choice k(-,-) = (-, -) corresponds to ¢ = id and recovers the
signature kernel k from Theorem 30, k) = k.

6.4 Computing the Signature Kernel

We now turn to the computational aspects of the robust signature kernel k and associated
MMD. In practice, we are not given a path sample x = (x(t));c(o,r), but a sequence sample
™ = (x(t;)); that measures the values of x at times ¢; in a partition T = {0 <t; < --- < T} of
[0,T]. This partition = might even change from path to path in a given dataset. Hence,
instead of working with probability measure on paths we work with probability measures on
sequences. Below we define the discrete robust signature (resp. kernel resp. MMD) on the
domain of sequences and then quantify how far these are from the robust signature ®¥
(resp. kernel k” resp. MMD dy~ ) that is defined on the domain of paths. Further, we show that
the algorithms of Kiraly and Oberhauser (2019) can be used to compute these quantities
efficiently.

For the rest of this section, we fix an integer M > 1, a RKHS (H,k) on X, and a
K-Lipschitz function % as in Corollary 15 with associated tensor normalization A.

10. ¢ is injective whenever & is characteristic to, say, the space of finite, signed Borel measures on X
11. Note that k in k(ka, ky) is the signature kernel on P*(H) from Theorem 30.
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Definition 32 Denote by X+ = Ue>o0 X' the space of sequences in X of arbitrary length.
Define

K Xt < XT SR, (2,y) = (4 (ky), I () (16)
where, for v = (zo,...,2s), ke is the H-valued sequence (k(zo,"), .., k(xe, ) anal?
) M ) J4
et o I Bo, ol = A(T[ 4+ e ) — w(@ir, ). (17)
m=0 i=1

As we show in Proposition 44 of Appendix C.1, kﬁ/f : XT x XT — R is a bounded,
positive semidefinite kernel for X*. The reason why k'f\/f is of practical interest is that it
approximates k" with an explicit convergence rate. More precisely. for z,y € C1(X) and
partitions 7 C [0, T,], 7" C [0,T],

-+ / 1/2 1/2
[k*(z, ) =Xy (@, y™)| < C(max limalh Zars,_ e + 8% Iyl S

ti—lati}) ’

where 2™ (resp. y"/) denote the sequences given by sampling x, y along 7 (resp. 7’), and where

C depends only on ||¢||«, K, ||kz|[1 —~var, and ||ky|[1 -var. A similar approximation result holds

for the associated MMDs dy» and d, «,+. See again Proposition 44 for a precise statement.
M

The following result provides a bound on the computation cost of kﬁ’[.

Proposition 33 The kernel k7™ (z7,y™) can be evaluated in O((|7|?+|7'|?)(c+M)+q) time
and O(|m|>+|7'|>+ M +r) memory, where || is the number of time points in 7, c is the cost of
one evaluation of the kernel k, and q and r are the total time and memory costs respectively
of a single evaluation of ¥ and of finding the unique non-negative root of a polynomial
P\ = %:0 a2 with ag <0< ay,...,ay.

Proof Denote S¥#°*" (k) := TT¢_, (1+h; — hi_1). The sequence of norms ||(SE¥%" (kprn )| goom ,
m=0,...,M, can be computed in O(|7|*(c + M)) time and O(|r|> + M) memory due to
(Kiraly and Oberhauser, 2019, Alg. 3). In the same way, the sequence of inner products
((S%}lear(/imw)m,Slﬁear(my,r/)m)H@m)%:O can be computed in O(|x||7'|(c + M)) time and
O(|x||7'| + M) memory. We now claim that, for s,t € [[?_, H®™, once the three sequences
(IIs™INM_,, (Jt™DM_,, and ((s™,t™))M_, are given, we can compute the normalized inner
product (A(s), A(t)) in O(q) time and O(r) memory, which will finish the proof. Indeed,
let A(t) > 0 be as in Proposition 14. Then (A(s),A(t)) = M A(s)™A(t)™ (s, t™), so
it suffices to compute A(s) and A(t). These can be computed in the claimed time and memory
since A(t) is the unique non-negative root of the polynomial P()) := [|0xt||? — o (||t]]) =

(Zho A2mI1E™(12) = (1) m

The quadratic complexity in the sequence length || can be reduced to linear complexity by using
the simultaneous dynamic programming and low-rank algorithm from (Kiraly and Oberhauser,
2019, Algorithm 5, Section 6); however, although the low-rank assumption works well in practice,
it is unclear how to justify it theoretically in the context of paths and signatures.

12. We use the shorthand notation 14+x(x;, ) —k(xi—1, ) = (1, k(xs, ) —K(xi-1,),0,...,0) € HZ:O H®™ and
Hé x; denotes the product r1 ® 2 ® - -+ ® x4 in the tensor algebra, see Appendix A.

=1
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7. Application: Two-sample Tests for Stochastic Processes

We apply the MMD metric developed in the previous sections to the two-sample testing
problem

Hy : p = v against the alternative Hy : p # v (18)

where 1 := Law(X) := Po X ! and v := Law(Y) := PoY ~! denote the laws of the stochastic
processes X and Y. We compare the resulting MMD test against classical multi-variate tests
as well as MMD tests using classical kernels for vector-valued data.

7.1 Test statistics

Denote with X = (X (t1),...,X(tr)),Y = (Y(s1),...,Y(sr)) two independent, discrete-time
stochastic processes that evolve in R?. We are given m (resp. n) i.i.d. samples from X
(resp. Y), which we denote with X = {X3,...,X,,} and Y = {Y1,...,Y,}. That is, each
X; is a sequence of L vectors in R%. The probability of falsely rejecting the null is called
the Type I error, and similarly the probability of falsely accepting the null is called the Type IT
error. If the Type I error can be bounded from above, uniformly over all P under which X and
Y are independent, by a constant a, then we say that the test is of significance level a. Given a
statistic 7'(X,Y) one can construct a simple permutation test: under the null Hy one can
sample from the distribution of T'(X,Y) by sampling uniformly at random from the (m+n)!
permutations 7 of {1,...,m + n} and evaluate

T(Zﬂ'(l)7 SR) Zﬂ'(m)7 ZTr(erl)a cee Zfr(ern))

where Z = (X1,..., X, Y1, ..., Y,). In particular, this allows to estimate the 95% quantile
of T'(X,Y) under the null Hy. Hence, if T'(X,Y) is not in this 95% quantile, we can reject the
null with significance level 5%. For background on testing and (permutation) test statistics we
refer to (Lehmann and Romano, 2006, Chapter 15).

MMD statistics. Using the sequence signature kernel k?\/fr from Definition 32, we can use
the MMD

o (1, 0) = BIK (X, X)) = B[ (X, V)] + E[K5; (¥, V) (19)
where X, X’ (resp. Y,Y”’) denote pairwise independent sequences sampled from p (resp. v).
The unbiased (quadratic complexity) estimator from (Gretton et al., 2009, 2012) turns (19)
into a test statistic T'(X,Y) and combining this with the results of Section 6 allows to
efficiently estimate (19). Moreover, we can do the same by replacing the robust sequence
signature kernel k'fv’f in (19) with any kernel k for vector-valued data by flattening se-
quence samples; e.g. if X evolves in the state space R%, we identify the sequence of vectors

(X (t1),...,X(t1)) as a single vector in R4L. The choices for the kernel x we used (both in the
signature MMD and for the vector kernel MMD of the flattened sequence) were the linear ker-
nel x(x,y) = (z,y), the RBF kernel k(z,y) = exp(—||z — y||?/(20?)), and the Laplace kernel
k(z,y) = exp(—||lx—y|| /o) for a parameter o > 0. Kernels depend on parameters: for the sig-
nature MMD these parameters are the truncation level M, the parameters a, C' that determine the
tensor normalization (Example 4), and the parameters of the kernel x; for the classical kernel choices
of k the only parameter is the length scale o.
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Classic multi-variate statistics. By flattening a sequence observations into a long vector
(as described above), one can also use classical multi-variate test statistics 7'(X,Y). Many
of these classical tests like Biau-Gyorfi scale poorly and the high-dimensionality of our testing
problem makes it impossible to use them; see (Gretton et al., 2012) for more on this. As in
(Gretton et al., 2012) we settled for the Friedman—Rafsky multivariate Wald—Wolfowitz
test statistic from (Friedman and Rafsky, 1979), (Wolf), and the Hotelling t-test statistic,
(Hotelling), since they are still computable in moderately high-dimension. However, even here,
computing these tests requires building a graph for (Wolf) and matrix inversion for (Hotelling).
This makes them scale at least cubically in dL and thus are only applicable if both, the
dimension of the state space d and the sequence length L, are small.

7.2 Data

As data sources we use the multi-variate time series datasets from UAE & UCR, see (Bagnall
et al., 2018) for a detailed description. This archive consists of 30 time series datasets from
various domains, including speech, motion, handwriting, robotics, etc. The state space
R of these datasets varies between low-dimensional d = 2 (e.g. Pendigits) to high-dimensional
d = 1345 (e.g. DuckDuckGeese).

For each time-series dataset we define p (resp. v) as follows: under the null Hy a
sample from p (resp. v) is generated by choosing uniformly at random a time-series
W = (W(t1),...,W(tr,)) from this dataset and double the sequence length by concatenation;
that is X = (W (t1),...,W(tL,), W(t1),...,W(tr,)). Under the alternative H;, a sample
from p is generated as above, but a sample from v is generated by concatenating in reverse,
Y =W(t1),...,W(tr,), W(try), ..., W(t1)). Despite its simplicity, we will see that this
problem is challenging for many statistics, since a statistic needs to capture the order structure
to achieve a high test power. In our experiments, we varied the length Ly € {10, 100,200} by
truncating after the first Ly entries of the time-series in the original dataset. Further, we
restricted to the case of balanced samples, m = n, and varied the number of samples m €
{30,70,200}. This allows to also compare the sensitivity of the different statistics to length and
sample size.

7.3 Implementation Details

As base for our signature MMD computations we use Csaba Toth’s KSig library!'3 that
provides efficient GPU implementations of signature kernels in Python. As base for general
kernel MMD two-sample permutation test, we built on code from the DS3 summer school
course “Representing and comparing probabilities with kernels” provided by H. Strathmann
and D. Sutherland* but we rewrote much of it to make it compatible with the KSig package.
To find the non-negative root of the polynomial P()) from Proposition 33 we used an
optimization of Brent’s method (Brent, 1973, Ch. 3-4) implemented as optimize.brentq in
the SciPy package (Jones et al., 2001-).

13. https://github.com/tgcsaba/KSig
14. https://github.com/karlnapf/ds3_kernel_testing
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7.4 Discussion of results

For each test statistic we used the permutation test with significance level 5% and repeated
the following for each dataset 20 times: (i) Generate samples X,Y under the null Hy and
record the number of false rejections of the null Hy (Type I error). (ii) Generate samples XY
under the alternative H; and record the number of false acceptances of the null Hy (Type IT
error). The power of the test—the probability of rejecting the null Hy when H; is true—then
determines which test performs best; the closer to 1 the better. As mentioned above for
classical statistics the above was computationally only possible when the effective dimension is
small hence these are only included in the tables when feasible.

Table 2 and Table 3 show the empirical Type I error and 1 minus the Type II error (i.e. the
power of the test) for the different statistics for sequence length Lo = 10 and m = 30. Table
entries are rounded to two decimal digits and the most powerful test for each dataset is
highlighted in bold. The remaining results for the Type II error with varying sequence length
L and sample size m are shown in Tables 4, 5, and 6. For brevity we do not include tables with
the Type I error for these other regimes since, by construction of the permutation test, these
errors converge to a number less than 5% as m increases (that is, they all look very similar to
Table 2, just more entries are less or equal to 0.05).

The experiments show that, as one expects, the linear (inner product) kernel MMD
does poorly overall and generally fails to distinguish two different distributions. The standard
MMDs with RBF and Laplace kernel outperform the linear kernel, but in turn rarely reach the
test power of any of the signature MMDs. As the length increases and thus samples carry more
distinguishable structure, the performance of all MMDs improves. However, qualitatively the
same behaviour remains. The same is true when the number of samples m increases; see Ta-
bles 3-6. Among the classical statistics, the Hotelling test statistic is not competitive, even for
small sequence length. The Friedman-Rafsky multivariate version of the Wald-Wolfowitz test
statistic performs well overall and is only beaten by the linear Signature MMD. However, this
test comes at a huge computational cost even for short sequences since it involves computing a
minimal spanning tree. Similarly Hotelling involves a matrix inversion. This is the reason why can
report these two, Hotelling and Wolf, only for the shortest sequence length Ly = 10 and even there
only for time-series that evolve in relatively low-dimensional state spaces (these experiments took
several days on a multicore machine,'® as opposed for the MMD experiments which took about an
hour).

Overall, these results show that signature MMDs efficiently exploit the sequence structure
whereas classical MM Ds need much more data to reach a similar test power. A more surprising
observation is that for the signature MMDs, the linear kernel does better than non-linear
kernels. This is in stark contrast to supervised time-series classification where non-linear
signature kernels strongly outperform the linear signature kernel as in (Toth and Oberhauser,
2020). We believe the reason is that the additional parameter selection for the non-linear
kernel introduces additional variance, but unlike for the non-signature MMDs, the linear
signature MMD is already expressive enough so that the additional non-linearities only
result in more variance. This trade-off might change considerably if one switches to other data
resp. hypothesis tests.

15. All experiments were run on a machine with 36 cores (2 x 18 Core with HT), 2.6/3.9 GHz, 1536GB RAM.
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Related to this is also the question of kernel parameter choice. All our tables show the
results when the approach in (Fukumizu et al., 2009) is applied for the kernel parameter choice.
We also experimented with the median heuristic as well as (Sutherland et al., 2016) that uses a
part of the data for training to directly minimize the Type II error. The median heuristic
was not competitive and the price for learning the parameters is that the training data can not
be used for the test itself and the choice of the train-test split is itself a heuristic. In our experi-
ments this choice had big effects from dataset to dataset so that ultimately (Fukumizu et al.,
2009) yielded overall the best and consistent performance for all MMDs. Nevertheless, im-
proving the parameter choice for MMD tests is an ongoing research effort and any progress can
potentially improve the results of all MMDs. The parameter selection resulted in a value for M
that was less or equal to 5 for all signature MMDs. Furthermore, for the signature MMDs build
on top of a non-linear kernel x, the value of M was typically even lower, often equal to 2. This is
in line with the discussion in Section 4.4 and Section 6.3 that state-space non-linearities help to lin-
earize so that a few iterated integrals suffice. In contrast, for the signature MMD build on top of
the linear kernel, large values of M could be in principle required. However, the price of using it-
erated integrals [ dX ®M for Jarge values of M is that their variance increases since we only have
access to an empirical measure that approximates their expectation. This explains why for the lin-
ear signature MMD), the optimal parameter M is typically higher than for signature MMDs with
non-linear x but still relatively low. The other parameters of the signature MMD a, C' determine
the tensor normalization, Example 4. For simplicity we kept both fixed (a = 1, C' = 103) since the
theoretical guarantees apply to any choice and the signature MMD already outperform the base-
lines. However, learning them could potentially improve the signature MMD results further. The
parameter for the length scale o varied over several orders of magnitude from dataset to dataset,
for both signature MMDs and the other MMDs.

Finally, we note that one of the biggest strengths of the signature MMD is that it applies
to sequences of different length. None of the other statistics that identify a sequence as a long
vector can be used here since the vectors that result from flattening the sequence would not
have the same dimension. To test how much this influences the signature MMDs, we drew for
each sequence sample a random integer k between 0 and 0.3- Ly and then deleted uniformly at
random k sequence entries. The result is that each datasets contains sequences of varying
length. The signature MMDs can be applied without modifications and we repeated the above
experiments. The performance slightly deteriorates but remains very close to the signature
MMD results given in the tables, hence we omit it for brevity.

To sum up, we recommend to try both, the linear signature MMD and RBF signature
MMD, for testing no matter what regime (small/large samples, small /large length, small /large
state space).
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MMDs Signature MMDs Classic Statistics

Linear RBF Laplace Linear RBF Laplace Hotelling Wolf
ArticularyWordRecognition 0.1 0.05 0.1 0.05 0 0 0.05 0.2
AtrialFibrillation 0.1 0.05 0.05 0 0 0.1 0.1 0.1
BasicMotions 0.05 0 0.1 0.05 0.1 0.1 0.08 0
CharacterTrajectories 0 0.1 0.05 0 0.1 0.05 0.1 0.15
Cricket 0.05 0 0.1 0.1 0.05 0 0.1 0.05
DuckDuckGeese 0.15 0.15 0.05 0.05 0 0.1 - -
ERing 0 0.05 0.1 0.05 0 0 0.05 0.1
EigenWorms 0.05 0.05 0 0 0.05 0.1 0 0
Epilepsy 01 005 01 0.1  0.05 0 0 0.15
EthanolConcentration 0 0 0.05 0.1 0 0 0.05 0
FaceDetection 0.05 0 0.05 0.05 0 0.1 -
FingerMovements 0 0.1 0 0.1 0 0.05
HandMovementDirection 0 0.05 0 0.05 0 0.05 0 0.0:
Handwriting 0.15 0 0.05 0 0.1 0.1 0.1 0.05
Heartbeat 0 0.05 0.15 0 0.1 0.05 - -
InsectWingbeat 0.05 0.25 0.05 0.1 0 0 - -
JapaneseVowels 0.25 0 0.05 0 0 0.05 0.05 0.1
LSST 0.05 0.1 0.15 0.05 0.1 0.05 0 0.15
Libras 0.1 0.05 0.1 0 0.1 0.05 0.1 0.1
MotorImagery 0.05 0.1 0.1 0.1 0.05 0.05 -
NATOPS 0.05  0.05 0.1 0 0.05 0 - -
PEMS-SF 0.05  0.05 0 0.05  0.05 0.05 - -
PenDigits 0.05 0 0.15 0 0 0.1 0.05 0.1
PhonemeSpectra 0.05 0.05 0.15 0.1 0.05 0.05 0.05 0
RacketSports 0 0.05 0.05 0.2 0 0.1 0.1 0
SelfRegulationSCP1 0.15  0.05 0.1 0 0.1 0 0.05 0.05
SelfRegulationSCP2 0.05  0.05 0.05 0 0.05 0.15 0.05 0.1
SpokenArabicDigits 0 0.15 0.05 0.15 0.1 0 0 0.05
StandWalkJump 0.05 0.1 0 0.1 0.15 0.1 0 0.15
UWaveGestureLibrary 0.05 0 0.05 0.05 0 0.05 0.05 0.05

Table 2: Type I error for sequence length Ly = 10 and m = n = 30 samples.

MMDs Signature MMDs Classic Statistics

Linear RBF Laplace Linear RBF Laplace Hotelling Wolf
Articulary WordRecognition 0 0 0.2 0.55 0.25 0.3 0.05 0.3
AtrialFibrillation 0.2 0.2 0.15 0.7 0.65 0.85 0.15 0.8
BasicMotions 0.2 0.45 0.45 1 1 1 0.4 1
CharacterTrajectories 0.3 1 1 1 1 1 0.2 1
Cricket 0.4 0.9 0.95 1 1 1 1 1
DuckDuckGeese 0.05  0.05 0 0.9 0.45 0.2 - -
ERing 0.05 045 0.3 1 0.9 0.8 0.3 0.95
EigenWorms 0 0.2 0.35 1 0.15 0.15 0.1 0.15
Epilepsy 01 015 0.1 035 0.1 0.1 0.1 0.7
EthanolConcentration 0.05 0.05 0.1 0.3 0 0.05 0 0.3
FaceDetection 0 0.75 0.15 0.2 0.05 0.05 - -
FingerMovements 0.3 0.65 0.5 1 0.15 0.05 - -
HandMovementDirection 0.05 0.05 0.05 0.95 0.15 0.1 0.05 0.3
Handwriting 1 1 1 1 1 1 0.8 1
Heartbeat 0.05 0 0.1 0.25 0 0.05 -
Insect Wingbeat 0.05 0 0.05 0.1 0.2 0.1 -
JapaneseVowels 1 1 1 1 1 1 1 1
LSST 0.1 0.1 0.05 0.35  0.05 0.05 0.14 1
Libras 0.05 0.05 0.2 0.15 0.25 0.15 0.2 0.95
MotorImagery 0.05  0.05 0.05 1 0.7 0.35 -
NATOPS 0.1 0.15 0.15 0.65 0.15 0.1 - -
PEMS-SF 0.05 0.1 0.05 095 0.25 0.25 - -
PenDigits 1 1 1 1 1 1 1 1
PhonemeSpectra 0.1 0.1 0 0.3 0.15 0.05 0 0.95
RacketSports 0.3 0.25 0.3 0.6 0.25 0.15 0.24 0.55
SelfRegulationSCP1 0.15 0.1 0.1 1 1 1 0.05 1
SelfRegulationSCP2 0.05 0.1 0.05 1 1 1 0.05 1
SpokenArabicDigits 0.15 0.2 0.2 1 0.1 0.05 0.35 1
StandWalkJump 0.05 0.35 0.35 0.55 0.9 0.85 0.35 0.7
UWaveGestureLibrary 0 0 0.1 0.2 0.05 0.05 0.05 0

Table 3: 1 minus the Type II error for sequence length Ly = 10 and m = n = 30 samples.
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MMDs Signature MMDs Classic Statistics
Linear RBF Laplace Linear RBF Laplace Hotelling Wolf

Articulary WordRecognition 0 0.1 0.35 1 0.65 0.85 0.15 1
AtrialFibrillation 0.1 0.25 0.4 1 1 1 0.6 1
BasicMotions 0.9 1 0.95 1 1 1 0.47 1
CharacterTrajectories 0.85 1 1 1 1 1 1 1

“ricket 1 1 1 1 1 1 1 1
DuckDuckGeese 0.2 0.2 0.05 1 0.95 0.75 -
ERing 0.8 0.95 1 1 1 1 0.85 1
EigenWorms 0.05 0.3 0.45 1 0.35 0.52 0.05 0.5
Epilepsy 0.05  0.15 0.3 0.8 0.4 0.1 0.1 1
EthanolConcentration 0.05 0 0.45 0.7 0.05 0.05 0
FaceDetection 0.05 1 0.65 0.8 0.15 0.1 - -
FingerMovements 1 1 1 1 0.25 0.05 - -
HandMovementDirection 0.05 0 0.1 1 1 0.6 0.1 1
Handwriting 1 1 1 1 1 1 1 1
Heartbeat 0.1 0 0.15 0.9 0.05 0 - -
InsectWingbeat 0.2 0.1 0.2 0.2 0.2 0.15 - -
JapaneseVowels 1 1 1 1 1 1 1 1
LSST 0 0.1 0.1 0.45 0 0.05 0.14 1
Libras 0.05 0.1 0.15 0.6 0.8 0.55 0.75 1
MotorImagery 0.05 0 0.2 1 0.7 0.25 - -
NATOPS 0.15  0.35 0.15 1 0.25 0.2 - -
PEMS-SF 0.4 0.3 0.4 1 0.05 0.2 - -
PenDigits 1 1 1 1 1 1 1 1
PhonemeSpectra 0 0.15 0 0.7 0.1 0.1 0.05 1
RacketSports 0.85 0.8 0.9 0.95  0.55 0.3 0.25 1
SelfRegulationSCP1 0.1 0.25 0.1 1 1 1 0.1 1
SelfRegulationSCP2 0.05 0.1 0.05 1 1 1 0.05 1
SpokenArabicDigits 0.35 0.85 0.65 1 0.15 0.2 1 1
StandWalkJump 0.05 0.6 1 1 1 1 0.75 1
UWaveGestureLibrary 0.05  0.05 0.1 0.15  0.05 0 0.05 0.1

Table 4: 1 minus the Type II error for sequence length Ly = 10 and m = n = 70 samples.

MMDs Signature MMDs
Linear RBF Laplace Linear RBF Laplace

ArticularyWordRecognition 1 1 1 1 1 0.95
AtrialFibrillation 0.45 0.9 0.8 0.7 0.7 0.6
BasicMotions 0.5 0.9 0.55 1 1 1
CharacterTrajectories 1 1 1 1 1 1
Cricket 1 1 1 1 1 1
DuckDuckGeese 0.15  0.05 0.2 0.25 0.2 0.15
ERing 0.85 1 1 1 1 1
EigenWorms 0.15 0.65 0.45 1 1 1
Epilepsy 0.05  0.05 0.05 0.25 0.1 0.1
EthanolConcentration 0.1 0 0 0.15 0.05 0.05
FaceDetection 0 0 0.15 0.2 0.05 0.1
FingerMovements 1 1 1 1 0.95 1
HandMovementDirection 0.6 0.9 0.85 1 0.15 0.5
Handwriting 0.75 1 1 0.9 0.95 0.75
Heartbeat 0.05  0.05 0 0.4 0.05 0.1
InsectWingbeat 0 0.05 0.1 0 0.25 0.2
JapaneseVowels 1 1 1 1 1 1
LSST 0.05 0 0.05 0.05 0.1 0.05
Libras 0.6 0.4 0.3 0.9 0.85 0.5
MotorImagery 0 0 0.1 1 1 0.6
NATOPS 0.3 0.95 0.95 1 0.2 0
PEMS-SF 1 0.35 1 1 1 0.15
PenDigits 1 1 1 1 0.95 0.9
PhonemeSpectra 0 0 0 0.3 0.15 0
RacketSports 0.35 0.65 0.9 0.5 0.05 0.25
SelfRegulationSCP1 1 1 1 1 1 1
SelfRegulationSCP2 1 1 1 1 1 1
SpokenArabicDigits 1 1 1 0.95 0 0.1
StandWalkJump 0.1 0.95 0.8 0.65 0.75 0.6
UWaveGestureLibrary 1 1 1 0.85 1 1

Table 5: 1 minus the Type II error for sequence length Ly = 100 and m = n = 30 samples.
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MMDs Signature MMDs
Linear RBF Laplace Linear RBF Laplace

ArticularyWordRecognition 1 1 1 1 1 1
AtrialFibrillation 1 1 1 1
BasicMotions 1 1 1 1 1 1
CharacterTrajectories 1 1 1 1 1 1
Cricket 1 1 1 1 1 1
DuckDuckGeese 0.2 0.2 1 1 1 1
ERing 1 1 1 1 1 1
EigenWorms 0.45 1 1 1 1 1
Epilepsy 015 075 0.3 0.95 085 08
EthanolConcentration 0.15 0.05 0 0.6 0.05 0.1
FaceDetection 0.05 0.15 1 1 1 1
FingerMovements 1 1 1 1 1 1
HandMovementDirection 1 1 1 1 1 1
Handwriting 1 1 1 1 1 1
Heartbeat 0.1 0.15 0.1 1 1 1
Insect Wingbeat 0.1 0.1 0.55 0.05 1 1
JapaneseVowels 1 1 1 1 1 1
LSST 0.15  0.85 0.3 0.45 0.5 0.35
Libras 1 1 1 1 1 1
MotorImagery 0.05 0.2 0.15 1 1 1
NATOPS 1 1 1 1 1 1
PEMS-SF 1 1 1 1 1 1
PenDigits 1 1 1 1 1 1
PhonemeSpectra 0.15 0.05 0.15 0.7 0.35 0.4
RacketSports 1 1 1 1 1 1
SelfRegulationSCP1 1 1 1 1 1 1
SelfRegulationSCP2 1 1 1 1 1 1
SpokenArabicDigits 1 1 1 1 1 1
StandWalkJump 1 1 1 1 1 1
UWaveGestureLibrary 1 1 1 1 1 1

Table 6: 1 minus the Type II error for sequence length Ly = 200 and m = n = 200 samples.

8. Summary

We generalized the classical moment map from the domain of random variables in finite
dimensions to the domain of path-valued random variables. This yields a robust, universal,
and characteristic feature map for stochastic processes, that can be kernelized. The associated
MMD becomes a metric for laws of stochastic processes that can be efficiently estimated
from finite samples. Let us highlight that our non-parametric approach of studying probability
measures on Jp-o C([0,T7], X') encompasses a large class of examples which are important to
different communities, e.g.

e genuinely discrete sequential data such as text,'®

e classical time series such as (G)ARCH, ARMA, etc. as used in econometrics,
e stochastic differential equations and semimartingales used in stochastic calculus,

e stochastic processes in space and time, e.g. stochastic partial differential equations seen
as evolution equations (ODEs with noise in infinite-dimensional state space),

16. If X is linear, sequences in X embed into paths in X', X" — C([0, 1], X), via the Donsker embedding
(zi)jmy — (t = T ne) + (nt — |nt)) Z{ZT x1> This pushes measures on sequences to measures on paths

and allows to treat genuinely discrete data in our framework; e.g. for text, X is the free vector space spanned
by letters and the path associated with a text (a sequence of letters) is a lattice path; multi-variate time
series are sequences in X = R?, etc.
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e persistence paths as they arise in topological data analysis (Chevyrev et al., 2020),

e the evolution of structured, non-Euclidean objects, such as networks, molecules, images,
provided a kernel for the state space X in which they evolve is given.

From a theoretical perspective, the existence of a universal and characteristic feature map for
stochastic processes opens several research venues; two of them are

Statistics in high/infinite dimensions Non-parametric testing in high dimensions suf-
fers from decreasing test power (Ramdas et al., 2015). Indeed, the classic kernels
perform poorly in our experiments, but the robust signature kernel does well. This is not
too surprising from a stochastic analysis perspective since sequences of iterated integrals
provide a natural basis for functions of paths. Signatures are classical in stochastic
analysis, but applications in statistics are much more recent, e.g. Papavasiliou and
Ladroue (2011) use it for SDE parameter estimation and it would be interesting to
connect this with the methods developed in this paper.

Parametric Statistics The focus of this article is the non-parametric learning of laws of
stochastic processes. However, for some applications it can be useful to focus on a small
class of stochastic processes, e.g. certain parameterized stochastic differential equations
as they appear in finance. For some of these cases, semi-explicit formulas for the
resulting signature moments are known (as for Brownian motion in Example 2 or more
generally Lévy processes (Friz and Shekhar, 2017; Chevyrev, 2018)), or can be described
by a PDE, see (Lyons and Ni, 2015). It is natural to ask whether such strong model
assumptions can be leveraged to yield signature MMDs with (semi-)explicit expressions.
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A. Tensors and the Tensor Algebra [],,5o V®"

For general background on tensors we refer to (Lang, 2002, Chapter 16). Recall that if V, W
are vector spaces (possibly infinite-dimensional) then there exists another vector space V@ W
and a bilinear map ¢ : V x W — V ® W with the universal property that any other bilinear
map V x W — Z factors uniquely through (.17 This map ® is called the tensor product and
we call the elements of V®W tensors. In particular, for m > 0, we call an element of V®---®
V = V™M a tensor of degree m; by convention, VY = R. For any vector space V, the space

[T Vo™ = {t = (t™)mzo | t™ € V™)

m>0

17. Concretely, if A C V and B C W are bases of V and W respectively, then {a®b : a € A, b € B} is a basis
of Vo W.
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is also a vector space but also carries a product. This product is the so-called tensor
convolution product and is defined by!'®

m
SRt = (Z s'® tm_i) = (s%tY,s't? + s%!, s%t0 + st @ t! + 52, 0). (20)
i=0 m=

The unit element for this product is 1 := (1,0,0,...).

The reason why [,,~0 V®™ is a fundamental mathematical object is that [],,~o V™ is
the most general algebra containing V', namely [Lnso VE™ is the “free algebra” that contains
V', see (Reutenauer, 1993, Chapter 1). Further, it is convenient to define

s®m

exp : H yem _, H Ve exp(s) == Z ol

m>0 m>0 m2>0

(Applied with s = (0,v,0,0,...) for v € R? this reduces to the usual vector exponential). In
the main text we also use the truncated tensor algebra H%:o V@™ which is again a linear
space and also forms an algebra with the tensor convolution product (20) restricted to the first
M tensors.

B. Features for Geometric Rough Paths

In this appendix we give a brief introduction to rough paths theory. For a detailed introduc-
tion see the lecture notes (Lyons et al., 2007) or the monographs (Friz and Hairer, 2014; Friz
and Victoir, 2010; Lyons and Qian, 2002).

To define the iterated integrals [dx®™ using Riemann-Stieltjes—Young integration
requires x : [0,7] — V to have finite p-variation for some p € [1,2). In particular, many
processes of interest in stochastic analysis fall outside this scope. The rough paths approach
is to flesh out the abstract properties of maps that associate with a path x over a time interval
[s, 1], an element of HTLSJ:() V&M guch that it “behaves like” [ dz®™.

Throughout this appendix, let V' be a Banach space and p > 1. Recall from Appendix A
that [JM_, V®™ is an algebra with tensor multiplication (20).

Definition 34 A p-rough path is a continuous map x = (x°,x!,... xP}) : [0,7y] —
HTLSJ:() VE™ such that x° = 1 and, denoting'® x(s,t) == x(s)"! ® x(t), for all 0 < m < |p]

n—1
sup ST (ki tia) IP/™ < o0 (21)
2l i=1

0<ty <<t <Tye

If v € C([0,T],V) and there exists a p-rough path x such that x*(t) = z(t), then we call X a
p-rough path lift of x.

18. Since V®° = R, note that s°,t° are real numbers, and therefore so is s°t° € V®° = R. Furthermore,
s't0, 5%, s%t0,s%¢2, . .. are well-defined products of a tensor with a scalar.

19. Here, for t € H}fio V@™ with t° = 1, we denote by t ™' the unique element of H}:JZO V@™ such that t ®
t7l=1 (theset of all t € H}:J:O VO™ with t° = 1 is readily seen to be a group, so in particular t~* exists).
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For p = 1, we recover the setting of Section 4 since every x € C! is a 1-rough path by
identifying H}nzo Vem — RV with V. Furthermore, for any p > 1, every & € C! canonically
defines a p-rough path x by setting x™(¢) = f(f dx®™ where we used the notation (12). We
call x the canonical p-rough path lift of z.

A p-rough path x is called geometric if there exist p-rough paths (x;),>1 which are the
canonical lifts of smooth paths such that x,, — x in the p-variation metric dp,var.20

Example 8 (1) (Semi)martingales. With 2 < p < 3 we cover the theory of continuous
(semi)martingales (Friz and Victoir, 2010, Sec. 14): every continuous semimartingale
X :[0,T] — R? is of bounded p-variation for any p > 2. Stochastic (Ité or Stratonovich)
integration can be used to the define the first 2 = |p| iterated integrals X(t) =
(1, fg dX, fg dX®2%). One can verify that (21) holds almost surely, hence X is a p-rough
path. Moreover, if Stratonovich integration is used, then X is geometric. Extensions
exist to the discontinuous setting (Chevyrev and Friz, 2019).

(2) Gaussian processes. Many Gaussian processes admit canonical lifts to geometric
p-rough paths. A criterion for such a lift to exist can be given in terms of the covariance
function (Coutin and Qian, 2002; Friz et al., 2016), which in particular covers fractional
Brownian motion with Hurst parameter H > 1/4.

(3) Markov processes. Likewise, many Markov processes admit canonical lifts to geomet-
ric p-rough paths (typically 2 < p < 3). These include diffusions on fractals (Bass et al.,
2002) and Markov processes arising from elliptic Dirichlet forms (Friz and Victoir, 2008;
Chevyrev and Ogrodnik, 2018). Such processes are typically not semimartingales and
thus fall outside the scope of Ito—Stratonovich calculus.

To mimic the construction in Section 4, we define the space of geometric p-rough paths
Lp]
CP = U {x [0, 7] — H V@™ . x is a geometric p-rough path} ,

T>0 m=0

equipped with the (non-Hausdorff) topology induced by

pp(X,y) = inf dp var(x,y 0 7) (22)
where the infimum is over all increasing bijections 7 : [0, 7] — [0, Ty].
Remark 35 In the case V = R%, a geometric p-rough path satisfies the shuffle identity (14).

B.1 Tree-like Equivalence

For a topological space X, a function z : [0, T,] — X is called tree-like if x is continuous and
there exists an R-tree T, a continuous function ¢ : [0, 7] — T, and a map ¢ : T — X such that

20. See (Lyons and Qian, 2002, Eq. (3.70)) for the definition of the p-variation metric; for brevity, we do not give
a definition here, particularly because its explicit form plays no role in the sequel.
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$(0) = ¢(Ty) and & = pog. Let T : [0,T,] — X, T (t) = 2(T—t) denote the time-reversal of
x. For another function y : [0,T,] — &, we denote the concatenation of z with y by
z(t) ifte[0,Ty]

cxy: 0, T, +T, =X, xxy(t) =
y:l y y() {y(t) ifte (TyTo+T,).

Note that xx*y is a continuous path if z and y are continuous and z(7,) = y(0). We say that =
and y are tree-like equivalent, and write x ~y y, if = * ? is tree-like.

Example 9 An important example of tree-like equivalence is when x is a reparameterization
of y i.e. there exists an increasing bijection T : [0,T,] — [0,T,] such that x =yo .

Example 10 Another way in which paths can be tree-like equivalent is if they differ only
through back-tracking excursions. For example the following two paths x,y: [0,4] — R?

depicted in the figures below are tree-like equivalent: x(t) := [t,t] and
[2t, 2t] ift €0,1)
0 — 2+20E—1),2-2(t—1)] ifte[l,2)
Y=Y — o —2), 200 - 2)] ifte23)
2+2(t—3),2+2(t—3)] iftel3,4].
41 41
31 3+
oo | Yool
1 1
1 2 3 4 1 2 3 4

B.2 Ordered Moments for Rough Paths

A key result of Lyons (1998) is that the signature map S defined by (13) extends to the space
of p-rough paths: for any x € CP, the integrals [ dx®™ are canonically defined for all m > |p].
Moreover, S is injective on CP up to tree-like equivalence (Boedihardjo et al., 2016). We
summarise these results in the following extension of Theorem 19.

Theorem 36 There exists a map S : CP — T1(V), S(x) = (1,8'(x),S?%(x),...) such that
S™(x) = x™(Ix) for allm =0,...,|p|. Furthermore, S(x) = S(y) if and only if x ~¢ y.

Example 11
o Let x € Ct. Then S(z) € T1(V) defined by (13) agrees with S(x) in Theorem 36.

o Let X = (X(t))iefo,r) be a continuous semimartingale in R? with geometric p-rough path
lift X = (1, XY, X?) = (1, [ dX, [ dX®?) as in part (1) of Ezample 8. Then

T T T
8(%) = (1 [ ax, ["ax®2 [axe ) e Ty(ro),

where the stochastic integrals are taken in the Stratonovich sense.

33



CHEVYREV AND OBERHAUSER

Theorem 36 suggests the following generalization of Definition 20.

Definition 37 We define the space of unparameterized geometric p-rough paths PP as the
set of equivalence classes CP/ ~y. We equip PP with the topology induced by the signature map
embedding S : PP — T1(V).

B.3 Time Parameterization

As in the bounded variation setting of Section 4.3, we can make the map S variant to the
parameterization of time by adding a time component. For any x € CP(V'), there is a canonical
p-rough path lift of ¢t — (x!(t),t), denoted by X € CP(V @ R), and which extends x in the
sense that (£,x™) = ((,X™) forallm =0,...,|p] and £ € (V®™) see (Lyons and Qian, 2002,
Sec. 3.3.3). As such, we can identify CP(V') with a subset of CP(V &R). Furthermore, X ~; ¥ if
and only if x =y, and thus (CP(V'), p) is a genuine metric space, where p,, is the quantity (22)
associated to CP(V @& R).

B.4 Topological Properties and MMD for Measures on Rough Paths

Lemma 38 Let (x,)52, be a Cauchy sequence for p,. Then p,(x,,x) — 0 for some x € CP.

Proof Denoting by Cﬁ) 7] the space of geometric rough paths defined on [0,77], recall

that (Cﬁ) T],dp,var) is a complete metric space (Lyons and Qian, 2002, Lem. 3.3.3). We

can find a subsequence n(k) and time-changes 73 : [0,1] — [0, Tk such that, denoting

n(k’)]
Y = Xn(k) © Tk € Cﬁ) 1 dp—var(YE, Yi+1) < 27F. In particular, yy, is Cauchy for dj, v,y and

converges to some x € Cfg 1 which implies that p,(x,,x) — 0. |

Proposition 39 The topological space PP is metrizable and the metric space (C?,p,) is
complete. Moreover, if V is separable, then so are (CP, p,) and (CP,p,).

Proof Since S is injective and T1(V) is a metric space, PP is metrizable. Complete-
ness of (C?,p,) follows from Lemma 38 and the fact that {X : x € CP} is a closed
subset of (CP(V @ R,p,). If V is separable, then C*([0,T],V) is separable under the
Cl-norm || - ||c1, see (Friz and Hairer, 2014, Sol. 2.13). Since the canonical lift map
(C=, I lc1) 2 =+ x € (CP, pp) is continuous, separability of (C?, p,) and (C?,p,) follows. B

We conclude this section with the proof of Theorem 30(iv). Let notation be as in
Section 6.2 and Theorem 30.

Proposition 40 (i) There exist probability measures i, r, on PP such that di(fin, 1) — 0
but such that u, does not converge weakly to .

(ii) Suppose H is finite dimensional and that M is a set of probability measures on PP which
is compact under weak convergence. Then dy and weak convergence induce the same
topology on M. In particular, weak convergence implies convergence in dy.

The same statements hold with PP replaced by (C?,p,,).
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Proof (i) Let p < p’ < |p] + 1. Consider x € PP and a sequence x,, € PP such that x,
does not converge to x as elements of of PP but such that x,, — x as elements of PP ie. inthe
p/-variation metric (it is a simple exercise to construct such a sequence for any x € PP). Due
to continuity of ® : PP — T(H), we conclude that ||®(x,,)—®(x)|| — 0. In particular, for the
corresponding Dirac delta measures, we have

dic(0x,,0x) = sup — [(t, ®(xn)) — [(t, D(x))[ = 0.
teT(H),[|t] <1

However, due to the assumption that x,, does not converge to x in PP, it holds that dx, does
not converge weakly to dx as probability measures on PP.
(ii) Let u and pu,, be probability measures on PP such that p, — p weakly. Observe that

dilpn? = sup | [ (@00 = [ (6,06 (dx)
teT( )IItII<1 7”’ pr

:H/ D (x) o, (dx) / d(x dx)H
-3 | [ A6 smix / A" S (00|

‘ 2

Note that for every m > 0, x — A(S(x))" S™(x) is a continuous bounded function from
PP into the finite dimensional vector space H®™. It follows from the weak convergence
n — w1 that the final quantity converges to zero as n — oo, thus weak convergence implies
convergence in di. Therefore M is also compact under dy, and since the topologies induced by
di and weak convergence are comparable, the two topologies necessarily coincide on M.
Therefore M is also compact under di, and since the topologies induced by dy and weak
convergence are comparable, the two topologies necessarily coincide on M.

The corresponding claims for CP follow in an identical manner. |

B.5 Example: Non-robust Signature Moments gone wrong

Define X,Y:[0,1] = R2by X; =t-NT and Y; = t- M, where N = (N1, Np) consists
of two-independent lognormal distributions and M = (M;, Mz) consists of two indepen-
1 —log?(n;) _
o exp(—%—~) and g(mi,mz) =
p(m1,ma) [12-1(1 + sin(2wlogm;)). Then all signature moments of X and Y coincide
although X and Y have different laws,

dent perturbed lognormals, i.e. p(ni,ng) = [[L,

E[ / dX®™" = E| / dY®™] for allm >0 . (23)

(X(l)—X'(O))@””

The moment equality (23) holds since a direct calculation shows that [ dX®™ =
N m

. Hence the only information captured in E[[ dX®™]
and E[[ dY®™] are the m-th moments of M and N, but E[M®™] = E[N®™] follows from a
direct calculation.
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C. Kernel Background

Throughout this appendix, we fix a topological space X', an inner product space (E, (-, )g)
and feature map ® : X — E. For z € X, we define the kernel function k, € RY by k,(y) =
k(z,vy), where k(z,y) == (®(x), ®(y)). Consider the subspace Hg := span{k, : x € X} C R
equipped with the inner product defined by (kz, k)3, = k(x,y). We first recall the following
theorem of Moore—Aronszajn.

Theorem 41 (Moore—Aronszajn) There exits a unique Hilbert space H C RY with k as
the reproducing kernel. Moreover, Hg is dense in H.

The following theorem clarifies the relation to our original feature map = +— ®(z) and
x +— ky and shows how to construct # as a subspace of (the completion of) E.

Theorem 42 (i) There exists a unique linear map V : Hy — E such that the following

diagram commutes:
r—ky

X Ho
ol
E.

(ii) The map W is injective and is an isometry onto its image.

(7ii) Denote by x — 2’ the canonical map E — E' which identifies E with (a subspace of) E'.
Then

and the following diagram commutes:

X Tk Ho id RY
& J‘P J
E 222 g

(iv) The image of Ho in E' under h s W (h)" is a dense subspace of Ker(2)™ .

Proof For Point (i), existence and uniqueness of ¥ follows from the observation that if
> aiky, =0, then > a;(®(z;), P(y)) =0 for all y € X, and thus Y a;P(x;) is an element of
both ®(X)* and span [®(X)], and thus must be zero. For Point (ii), note that ¥(3" a;k,,) = 0
is equivalent to > a;®(z;) = 0, so that

S ai(®(x:), @(y)) = 3 aiky,(y) =0, Yy € X.

It follows that W is injective. The fact that ¥ is an isometry follows from Point (i). Point (iii)
follows immediately since for all z,y € X

U@ (2))(y) = 2(x) 0 O(y) = ((2), D(y)) = k(=z,y) = ka(y).

For Point (iv), we define for any subset F' C E the set F° :={f" € E' | f'(f) =0,Vf € F}.
Now Ker(z) consists of all z € E’ such that 2/(®(z)) = 0 for all z € X, so that Ker(z) =
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®(X)° C E'. Since span [®(X)] = W(Hy), it follows that Ker(:z) = W(H()°. The conclusion
now follows from the fact that for any subspace F' C E, the image of F' under x — 2’ is dense
in (F°)*L. [ |

Proposition 43 Suppose F C RY is a locally convexr TVS and that Ho continuously embeds
into F. Then the map 1: E' — RY given by (9) maps E' continuously into F. Furthermore

o & is universal to F iff the kernel k is universal to F,
o O is characteristic to F' iff the kernel k is characteristic to F'.

Proof Substituting F by its completion if necessary, we may assume F is complete. Write
Fy = V(Hp) C E'andlet F C E’ denote the closure of Fy in E’. By Point (iii) of Theorem 42,
it holds that

id(Ho) = +(Fo) C F, (24)

so by the assumption that id : Ho — F is continuous, the restriction (g, : Fo — F
is continuous. By definition of 7, it is easy to see that the restriction ¢|p agrees with the
unique continuous extension of ¢|g, to F'. Hence ¢ |p: F' — F is continuous. We now write
E' = F @ F*. By Point (iv) of Theorem 42, we have F = Ker(z)".

Note that Ker(z) is closed in the weak topology of E’, and thus, a fortiori, under
the strong (norm) topology. Indeed, if ¢, — ¢ pointwise in E’, then for all z € X,
limy, o0 € (P(x)) = £(P(z)). In particular, if £, € Ker(2) for all n > 1, then ¢ € Ker(z).

As a consequence, it holds that Ker(z) = F*, and thus

E' = F & Ker(1), (25)

from which the continuity of ¢+ : B/ — F follows.

Finally, by (25) and the continuity of ¢, the closures in F of «(Fp) and «(E’) coincide.
Combining with (24), it holds that +(E’) is dense in F iff id(#p) is dense in F, from which the
first equivalence follows. The second equivalence now follows from Theorem 7 and Proposition
28. |

C.1 Signature Kernel Discretization

Suppose we are in the setting of Section 6.4.

Proposition 44 (i) The kernel kﬁ/fr Xt x Xt — R is a bounded, positive semidefinite
kernel for X+.

Moreover, for z,y € C1(X) and partitions = C [0,T,], 7' C [0,T,]
k*(2,y) — k37 (27,5 )| < K(F(Qx) + F(Qy) + F(AD) + F(A])),  (26)

37



CHEVYREV AND OBERHAUSER

where 2™ (resp. y™ ) denote the sequences given by sampling x, y along 7 (resp. 7') and

A7 = H“96||17var6”1%|‘1 ver rtngsrc H“xulfvar;[ti_l,ti] )
_ M+1
Q = 6”an1 Var||’€x||1;\i/_ar
* (M +1)!
K =2+ K2+ V2| 1)

F(z)=zVx.
(ii) Consider probability measures u,v on C1(X) whose marginals on X+ along partitions
7, are f" ™ . Then
|her (p1 V) = dyr o+ (17, V)| <AKE[F(Qx) + F(A%) + F(Qy) + F(AY)] .

The same inequality applies if the partitions are also random (see the proof for the formal
statement).

Proof For brevity we denote Si° () := [T¢_, (1+h; —hi_1). (Kiraly and Oberhauser, 2019,
Cor. 4.3) implies that

ISR (am) = Sar (k)| < AT (27)

The first part of (i) simply follows from the boundedness of A and the fact that an inner
product, in this case on [\ _o H®™ is positive definite. The remaining estimate (26) follows
by using (27) in the technical Lemmas 45 and 46 that quantifies the factorial decay in the
truncation level M.

For point (ii) we directly prove the more general statement that allows for random
partitions. Therefore denote II := UpoII(T) with I(7T) = {7 : 7 = {0 < t; < --- <
T}]}[ and set S = {(z,7) € CHX) x Il : @ € I(T,)}. We define a kernel on S as

((z,7), (y, 7 )) = kY, Jr( ,y™ ). Note that the associated MMD dyxn equals dx+ for
the special case of determlnlstlc partitions. The claim then follows by using the represenjkc{ation
of MMD as a sum of expectations of kernels (equation (15)), and point (i). [ |

In the proof of Proposition 44, we used the following two lemmas. We keep notation as in
Proposition 44.
Lemma 45 For any s,s,t,t € T1(H)
[(A(s), A(t)) — (A(5), A(t))| < K(F(|Is —sl)) + F([[t — t])) - (28)

Proof This follows from Proposition 14(i)-(iii) and the Cauchy—Schwarz inequality. [ |

Setting p(x) = k(z,-) as in Proposition 31, recall the space C!'(X) from Definition 24.
Lemma 46 Let z,y € C1(X). Then

K" (2, y) = ki (,9)] < K(F(Qx) + F(Qy)) - (29)
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Proof Denoting t = (t°,t!,...) := S(k,) € T1(H), recall that ||t™| < ||#z|[7* var/m! (Lyons
et al., 2007, Prop. 2.2). Let my: T(H) — [[M_, H®™ denote the level-M truncation map.
Then

[Fal[T var 2\ /2 |k ]I7% ellmall—var || o || 7]
It =t < (30 (Fo7™)) < X < = Qs
| | |
m>M m: m>M (M +1)!
The conclusion now follows from Lemma 45. [ |
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