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Abstract

The statistical analysis of Randomized Numerical Linear Algebra (RandNLA) algorithms
within the past few years has mostly focused on their performance as point estimators.
However, this is insufficient for conducting statistical inference, e.g., constructing confidence
intervals and hypothesis testing, since the distribution of the estimator is lacking. In
this article, we develop an asymptotic analysis to derive the distribution of RandNLA
sampling estimators for the least-squares problem. In particular, we derive the asymptotic
distribution of a general sampling estimator with arbitrary sampling probabilities in a
fixed design setting. The analysis is conducted in two complementary settings, i.e., when
the objective of interest is to approximate the full sample estimator, and when it is to
infer the underlying ground truth model parameters. For each setting, we show that the
sampling estimator is asymptotically normally distributed under mild regularity conditions.
Moreover, the sampling estimator is asymptotically unbiased in both settings. Based on
our asymptotic analysis, we use two criteria, the Asymptotic Mean Squared Error (AMSE)
and the Expected Asymptotic Mean Squared Error (EAMSE), to identify optimal sampling
probabilities. Several of these optimal sampling probability distributions are new to the
literature, e.g., the root leverage sampling estimator and the predictor length sampling

*A short preliminary conference version of this paper has appeared as Ma et al. (2020).
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estimator. Our theoretical results clarify the role of leverage in the sampling process, and
our empirical results demonstrate improvements over existing methods.

Keywords: least squares, randomized numerical linear algebra, leverage scores, asymp-
totic distribution, mean squared error, asymptotic mean squared error

1. Introduction

Recent work in Randomized Numerical Linear Algebra (RandNLA) focuses on using random
sketches of the input data in order to construct approximate solutions more quickly than
with traditional deterministic algorithms. In this article, we consider statistical aspects of
recently-developed fast RandNLA algorithms for the least-squares (LS) linear regression
problem. Given Y = (Y7,...,Y,)T € R* and X = (x1,...,%,)7 € R™ P, we consider
the model

Y = X3, +e¢, (1)

where 3, € RP is the coefficient vector, and &€ = (e1,...,e,)7 € R", where ¢;s are i.i.d
random errors with mean 0 and variance 02 < co. This is the so-called fixed design setup
since design matrix X is fixed and given. We assume the sample size n is large and that X
has full column rank. The ordinary least squares (OLS) estimator of 3 is

BoLs = arg m[;ﬂ Y — X8| = (XTX)"'x"Y, (2)

where || - || is the Euclidean norm. While the OLS estimate is optimal in several senses, the
run time for computing it is O(np?),! i.e., it does not grow faster than np?, up to a constant
factor (in fact, with the usual algorithm, it equals np?, up to a constant factor), as its input
size increases, which can be daunting when n and/or p are large.

Motivated by these algorithmic considerations, randomized sketching methods have been
developed within RandNLA to achieve improved computational efficiency (Mahoney, 2011;
Drineas and Mahoney, 2016; Halko et al., 2011; Woodruff, 2014; Mahoney and Drineas,
2016; Drineas and Mahoney, 2018). With these methods, one takes a (usually nonuniform)
random sample of the full data (perhaps after preprocessing or preconditioning with a
random projection matrix (Drineas and Mahoney, 2016)), and then the sample is retained
as a surrogate for the full data for subsequent computation. Here is an example of this
approach for the LS problem.

e Step 1: Sampling. Draw a random sample of size r < n with replacement from
the full sample using sampling probabilities {m;}? ;. Denote the resulting sample as
X* = (x5,...,x)T,Y* = (Y, ..., Y,)T and the corresponding sampling probability for
sampling i*" data point (x7,Y*) as 7}, where ¢ = 1,...,r. That is, if the 4t data point

in the resulting sample is the k" point data point in the full sample, we have 77; = Tg.

e Step 2: Estimation. Calculate the weighted LS solution, using the random sample, by
solving

'f(n) = O(g(n)) if there exist positive integer numbers M and ng such that f(n) < Mg(n) for all n > nq.
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B = arg ming||®*Y* — @*X*B|
— (X*T(I’*QX*)_IX*T@*QY* (3)

where ®* = diag{1/\/r7}}i_;.

Popular RandNLA sampling approaches include the uniform sampling estimator (UNIF),
the basic leverage-based sampling estimator (BLEV), where m2LFV = h;; /S | hy;, where
hi = x! (XTX)"!x; are the leverage scores of X, and the shrinkage leverage estimator
(SLEV), which involves sampling probabilities 775EYV = Ah;; /S | hyi + (1 — X)/n, where
A € (0,1) (Drineas et al., 2006, 2008, 2012a; Ma et al., 2014).2

In this article, we study the statistical properties of these and other estimators. Sub-
stantial evidence has shown the practical effectiveness of core RandNLA methods (Ma et al.,
2014, 2015; Drineas and Mahoney, 2016) (as well as other randomized approximating meth-
ods, including the Hessian sketch (Wang et al., 2017a; Pilanci and Wainwright, 2016) and
iterative/divide-and-conquer methods (Avron et al., 2010; Meng et al., 2014)) in providing
point estimators. However, this is not sufficient for statistical analysis since the uncertainty
of the estimator is lacking. In statistics, uncertainty assessment can be conducted through
confidence interval construction and significance testing. It is well-known that the con-
struction of confidence intervals and significance testing are interrelated with each other
(Lehmann and Romano, 2006). Performing these two analyses is more difficult than point
estimation, since it requires the distributional results of the estimator, rather than just mo-
ment conditions or concentration bounds. In the RandNLA literature, distribution results
of estimators are still lacking.

There are two main challenges in studying the statistical and distributional properties
of RandNLA algorithms. The first challenge is that there are two sources of randomness
contributing to the statistical performance of RandNLA sampling estimators: one source is
the random errors in the model, i.e., the g;s, which are typically attributed to measurement
error or random noise inherited by Y; and the other source is the randomness in the random
sampling procedure within the approximation algorithm. The second challenge is that these
two sources of randomness couple together within the estimator in a nontrivial way. More
formally, the sampling estimator can be expressed as B = (XTWX) I XTWY, where W
is a random diagonal matrix, with the i*"* diagonal element being related to the probability
of choosing the i*" sample. The random variable used to denote the random sampling
procedure, i.e., W, is involved in the sampling estimator in a nonlinear fashion, and it
pre-multiplies Y, which contains randomness from the &;s.

We address these challenges to studying the asymptotic distribution of general RandNLA
sampling estimators for LS problems. Our results are fundamentally different from previ-
ous results on the statistical properties of RandNLA algorithms (e.g., Ma et al. (2014,
2015); Raskutti and Mahoney (2015); Chen et al. (2016); Wang et al. (2017b); Clarkson

2Importantly, these algorithms are robust to the approximation of leverage scores. This is important
since the exact computation of leverage scores takes time of the same order as is needed to solve the OLS
problem exactly. Faster approximations to all the leverage scores can be accomplished with the algorithm
of Drineas et al. (2012a); and it corresponds to the approximate leverage score (ALEV) method of Ma et al.
(2014, 2015). See also Appendix 4 for details.
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et al. (2019)), in that we provide asymptotic distribution analysis, rather than finite-sample
concentration inequalities. The resulting asymptotic distributions open the possibility of
performing statistical inference tasks such as hypothesis testing and constructing confidence
intervals, whereas finite sample concentration inequality results may not. It is worth men-
tioning that the results of asymptotic analysis are usually practically valid as long as the
sample size is only moderately large.

1.1 Main Results and Contributions

We study the asymptotic distribution of a general RandNLA sampling estimator for the LS
linear regression problem, from both a theoretical and empirical perspective.

Main Theoretical Results. Our main theoretical contribution is to derive the asymp-
totic distribution of RandNLA estimators in two complementary settings.

Data are a random sample. We first consider the data as a random sample from a
population, in which case the goal is to estimate the parameters of the population model (1).
In this case, there are two sources of randomness: the noise within the data € and the sub-
sampling within the estimator. For this unconditional inference, we establish the asymptotic
normality, i.e., deriving the asymptotic distribution, of sampling estimators for the linear
model under general regularity conditions. The convergence is with respect to the noise ¢
within the data and the sampling of the full sample. We show that sampling estimators
are asymptotically unbiased estimators with respect to the true model coefficients, and we
obtain an explicit form for the asymptotic variance, for both fixed number of predictors
(Theorem 1) and diverging number of predictors (Theorem 2). Sampling Estimators.
Using these distributional results, we propose several efficient and asymptotically optimal
estimators. Depending on the quantity of interest (e.g., B, versus some linear function
of By such as Y = X3, or X"Xg3,), we obtain different optimal sampling probabilities
(Propositions 1, 2, and 3) that lead to sampling estimators that minimize the Asymptotic
Mean Squared Error (AMSE) in the respective context. None of these distributions is pro-
portional to the leverage scores, but one (RL of Proposition 2) is constructed using the
square roots of the leverage scores, and another (PL of Proposition 3) is constructed using
the row norms of the predictor matrix.

Data are given and fixed. We then consider the data as given/fixed, in which
case the goal is to approximate the full sample OLS estimate. There is only one source
of randomness: the subsampling within the estimator. In this case, for this conditional
inference, we establish the asymptotic normality, i.e., deriving the asymptotic distribution,
of sampling estimators for the linear model under general regularity conditions. We show
that sampling estimators are asymptotically unbiased with respect to the OLS estimate, and
we obtain an explicit form of the asymptotic variance and the Expected Asymptotic Mean
Squared Error (EAMSE) of sampling estimators (Theorem 3). Sampling Estimators.
Using these results, we construct sampling probability distributions that lead to sampling
estimators that minimize the EAMSE. Depending on the quantity of interest (here, Bo LS
versus some linear function of B¢ such as Y = X85 or XTX B¢, we obtain different
optimal sampling probabilities (Propositions 4, 5, and 6).
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Main Empirical Results. We conduct a comprehensive empirical evaluation of the per-
formance of these sampling estimators, on both synthetic and real data sets. This involves
both conditional and unconditional inference cases, using predictor matrices generated from
various distributions, including heavy-tailed and asymmetric distributions. For all settings
under consideration, we calculate the squared bias and variance of the sampling estima-
tors. We demonstrate that the squared bias decreases as sample size increases, and we
demonstrate that the squared biases are typically much smaller than the variances. These
observations are consistent with our theory stating that the sampling estimators are asymp-
totically unbiased. The variance of sampling estimators also decreases as sample size in-
creases, indicating the consistency of the sampling estimators. Depending on the specific
objective considered, we also demonstrate that the novel estimators we derive have better
performance, e.g., smaller variances, than existing ones, confirming the optimality results
established in this paper. Another goal of the simulation study is to evaluate the necessity
of our regularity conditions for the theorems. In the case of the predictor matrix generated
from the ¢-distribution with 1 degree of freedom, the regularity conditions of our theory are
technically not satisfied. The estimators, however, are shown to have performance similar
to those in the aforementioned settings. Also, on two real-world data examples, we show
that all the observations concerning asymptotic unbiasedness and asymptotic consistency
in simulated data sets also appear. In particular, our proposed sampling methods for condi-
tional inference have smaller variances, compared to other leverage-based estimators, such
as BLEV/ALEV (Drineas et al., 2006, 2012a) and SLEV (Ma et al., 2014, 2015).

1.2 Related Work

There is a large body of related work in RandNLA (Mahoney, 2011; Drineas and Mahoney,
2016; Halko et al., 2011; Woodruff, 2014; Mahoney and Drineas, 2016; Drineas and Ma-
honey, 2018). However, very little of this work addresses statistical aspects of the methods.
Recently, significant progress has been made in the study of the statistical properties of
RandNLA sampling estimators (Ma et al., 2014, 2015; Raskutti and Mahoney, 2015; Chen
et al., 2016; Wang et al., 2017b; Clarkson et al., 2019). The work most related to ours is
that of Ma et al. (2014, 2015), who employed a Taylor series expansion up to a linear term
to study the MSE of RandNLA sampling estimators. Ma et al. (2014, 2015) failed to char-
acterize the detailed convergence performance of the remainder term. They concluded that
neither leverage-based sampling (BLEV) nor uniform sampling (UNIF) dominates the other
in terms of variance; and they proposed and demonstrated the superiority of the SLEV sam-
pling method. To find the sampling distribution of estimators, leading to statistically-better
RandNLA sampling estimators, it is important to examine the convergence properties of
the remainder term. To accomplish this, we consider the asymptotic distribution of the
sampling estimator. Such asymptotic analysis is common in statistics, and it can substan-
tially simplify the derivation of complicated random variables, leading to simpler analytic
expressions (Le Cam, 1986).

Chen et al. (2016) proposed optimal estimators minimizing the variance that account for
the randomness of sampling and model error. Our results and those of Chen et al. (2016)
have similar goals, but they are different. First, Chen et al. (2016) used bias and variance,
while we use AMSE and EAMSE. Second, we consider the asymptotic distribution of the
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sampling estimators, going beyond just the bias and variance of Chen et al. (2016). Thus,
our results could be used for downstream statistical inferences, e.g., constructing confidence
intervals and hypothesis testing, while those of Chen et al. (2016) could not. Third, the
exact expression of optimal sampling probabilities in Chen et al. (2016) depends on the
unknown true parameter of the model, 3y and o (Eqn. (4) in Chen et al. (2016)), while our
optimal sampling probabilities (see Section 2) are readily computed from the data. Fourth,
Chen et al. (2016) only studied properties of sampling estimators for estimating true model
parameters, while we consider both estimating the true parameter and approximating the
full sample estimate.

Wang et al. (2017b) proposed an approximated A-optimality criterion, which is based on
the conditional variance of the sampling estimator given a subsample. Since the randomness
of sampling is not considered in the criterion, they obtained a simple analytic expressions
of the optimal results. Clarkson et al. (2019) also consider experimental design from the
RandNLA perspective, and they propose a framework for experimental design where the
responses are produced by an arbitrary unknown distribution. Their main result yields
nearly tight bounds for the classical A-optimality criterion, as well as improved bounds for
worst-case responses. In addition, they propose a minimax-optimality criterion (which can
be viewed as an extension of both A-optimal design and RandNLA sampling for worst-
case regression). Related works on the asymptotic properties of subsampling estimators in
logistic regression can be found in Wang et al. (2018) and Wang (2019).

1.3 Outline

The remainder of this article is organized as follows. In Section 2, we introduce technical
notations and definitions of MSE, AMSE, and EAMSE, we derive the asymptotic distribu-
tion of the sampling estimators, and we propose several criteria which give rise to optimal
sampling probability distributions. In Section 3, we present empirical results on simulated
data and two real-world data examples. In Section 4, we provide a brief discussion and
conclusion. All technical proofs are presented in Appendix 4. Fast approximation methods
for approximating the sampling probabilities are presented in the Appendix 4. A short
preliminary conference version of this paper has appeared as Ma et al. (2020).

2. Sampling Estimation Methods

In this section, we review the well-known Mean Squared Error (MSE) criterion, and we also
define and discuss the standard but less well-known criterion, Asymptotic Mean Squared
Error (AMSE) (see section 2.5.2 of Shao (2003)) and its generalization Expected Asymptotic
Mean Squared Error (EAMSE). We also derive asymptotic properties of the RandNLA sam-
pling estimator B under two scenarios: unconditional inference, which involves estimating
the true model parameter 3,; and conditional inference, which involves approximating the
full sample OLS estimator 8. We use the AMSE and EAMSE to develop two criteria
for sampling estimators, and we obtain several optimal estimators.
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2.1 MSE and AMSE: Technical Definition

Let T',, be a p x 1 estimator of a p x 1 parameter v, for every n. One popular quality metric
for the estimator T, is the MSE, which is defined to be

MSE(T,;v) = E[(T,-v) (T, -v)]
= tr(Var(Ty)) + (E(T,) —v)T (E(T,) — v),

where Var(T,,) = E[(T,, — E(T,,))(T,, — E(T,))"]. The MSE can be decomposed into two
terms: one term, tr(Var(T),)), quantifying the variance of the estimator; and one term,
(E(T,) — v)T(E(T,) — v), quantifying the squared bias of the estimator. To evaluate the
RandNLA sampling estimator ,B in estimating the true model parameter 3, and the full
sample OLS estimate Bo s we will be interested in the AMSE and EAMSE, respectively.
These are the asymptotic counterparts of MSE in large sample theory.

To define the AMSE, let T',, be a p x 1 estimator of a p x 1 parameter v, for every n,
and let X, be a sequence of p x p positive definite matrices. Assume X, 1/2 (T, —v) 4z

as n — oo, where <4 denotes convergence in distribution, and assume Z is a p x 1 random
vector such that its i*" element Z; satisfies 0 < E(Z?) < oo, for i = 1,...,p. Then, the
AMSE of T,,, denoted AMSE(T,;v), is defined to be

AMSE(T,;v) = E(Z'%,Z)
= tr(Z?Var(Z2)2Y?) + (E(2)TS,E(2))
= tr(AVar(T,)) + (AE(T,) — v)T(AE(T,) — v), (4)

where the second equality was obtained by noticing that the expectation of a quadratic form
ZT%,Z follows Theorem 1.5 of Seber and Lee (2003), and AVar(T,,) = E%/2Var(Z)E%/2

and AE(T),) = v + Eyll/QE(Z) denote the asymptotic variance-covariance matriz and the
asymptotic expectation of T, in estimating v, respectively. Intuitively, we have that
E;l/Q(AE(Tn) —v) equals E(Z), and EflUQAVM(T”)E#/2 equals Var(Z). Note that the
asymptotic variance-covariance is not unique. Different asymptotic variance-covariances
could differ by constant multipliers or negligible smaller order terms. Such a difference
does not have a significant impact on the resulting asymptotic analysis under very general
regularity conditions; see Section 2.5 of Shao (2003). Therefore, we can choose one from
the family.

If E(Z) = 0, we say T, is an asymptotically unbiased estimator of v. If tr(AVar(T',)) —
0 as n — oo, we say T, is an asymptotically consistent estimator.

In this paper, the basic estimator is denoted as B (i.e., the counterpart for T, in the
definitions above will be 3, or a linear function of B) We will obtain the explicit form for
both AVar(B) and AE(B) by deriving the large sample distributions of sampling estimators,
when performing unconditional inference in Section 2.2.

2.2 Unconditional Inference: Estimating Model Parameters

For Model (1), from the traditional statistical perspective of using the data to perform
inference, one major goal is to estimate the underlying true model parameters, i.e., 3.
We refer to this as unconditional inference. For unconditional inference, both randomness
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in the data and randomness in the algorithm contribute to randomness in the RandNLA
sampling estimators.

The following theorem states that, in unconditional inference, the asymptotic distri-
bution of the sampling estimator B is a normal distribution (with mean 3, and variance
023). The proof of Theorem 1 is provided in Appendix 4.

Theorem 1 (Unconditional inference, fixed p) Assume the number of predictors p is
fized and the following regularity conditions hold.

e (A1)[Data condition]. For sufficiently large n, there exist positive constants b and
B such that b < Apin < Amaz < B, where Apin and Apmqz are the minimum and
mazimum eigenvalues of matriz XX /n, respectively.

o (A2)[Sampling condition]. The sample size® r = O(n'~%), where 0 < a < 1 and the
minimum sampling probability mp, = Q(n~7°), where vy > 1. The parameters vy and
o satisfy vo + a < 2.

Under these assumptions, as the sample size n — oo, we have

(0730) 2 (B - By) % N(O,L,), (5)

where
3o = (XTX) (XTI, + Q)X) (XTX) ™, Q= diag{1/rm}_,,

and I, is the p x p identity. The convergence is with respect to the randomness in the noise
e and the subsampling of the full sample. Thus, for unconditional inference, the asymptotic
mean of B is

AE(B) = By, (6)

i.e., B is an asymptotically unbiased estimator of By, and the asymptotic variance of,é 18
AVar(B) = 02%. (7)

Remark. Theorem 1 considers the case of a fixed parameter dimension p. The case of
diverging parameter dimension p — oo is considered in Theorem 2 below.

Remark. Theorem 1 shows that, as the number of data points n gets larger, the
distribution of B is well-approximated by a normal distribution, with mean 3, and variance
0'220.

Remark. Condition (A1) in Theorem 1 indicates that X?X/n is positive definite (as
opposed to being just positive semi-definite). This condition requires the predictor matrix X
to be of full column rank and that the elements in X are not over-dispersed. This condition
ensures the consistency of the full sample OLS estimator (Lai et al., 1978), and it has been
used in many regression related problems, e.g., variable selection (Zou, 2006).

Remark. Condition (A2) in Theorem 1 sets restrictions on the subsample size r and
minimum sampling probability 7,;,. Since we study subsampling, we require that the sub-
sample size r is of smaller order than the full sample size, i.e, » = O(n!~%), where 0 < a < 1.

5We say that f(n) = Q(g(n)) if there exists some positive integer numbers m and no, f, > mg(n) for
all n > no. Similarly, f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)).
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Since the parameters o and « satisfy 79 + « < 2, as stated in condition (A2), the condition
ON Tomin, 1.€., Tmin = (n77°), can be rewritten as mpyi, > @(n_@_a)), which provides a
lower bound on the smallest sampling probability. The smallest sampling probability can-
not be too small. Bounding sampling probabilities from below mitigates the inflation of the
variance X, which is proportional to the reciprocal sampling probability. The importance
of this condition for establishing statistical properties of RandNLA algorithms was high-
lighted by Ma et al. (2014, 2015). Condition (A2) can also be rewritten as rmy,, > O(n~1),
which states that if there is a data point such that its expected number of times being
sampled is very small, one compensates by making the sample size large.
Remark. In Theorem 1, the asymptotic variance AVar(,é) can be written as

AVar(B) = 2(XTX) ' + 2(XTX) ' XTOQX(XTX) 7L, (8)

where the first term is the variance of the full sample OLS, and the second term is the
variation related to the sampling process. The second term of Eqn. (8) has a “sandwich-
type” expression. The center term, €2, depends on the reciprocal sampling probabilities,
suggesting that extremely small probabilities will result in large asymptotic variance and
large AMSE of the corresponding estimator. This was observed previously in the non-
asymptotic case by Ma et al. (2015).

Remark. In light of efficient estimation methods such as iterative Hessian sketch and
dual random projection, we emphasize that besides estimation, our distribution results can
be used for performing additional inference analysis, e.g., constructing a confidence intervals
and conducting hypothesis testing. These inference analyses cannot be achieved by other
iterative methods as far as we know.

Given Theorem 1, it is natural to ask whether there is an optimal estimator, i.e., one
with the smallest AMSE for estimating 3,. Using the asymptotic results in Theorem 1, we
propose the following three estimators.

Estimating 3,. By Theorem 1, we could express the AMSE(B,8,) as a function of
{m;}_,, as shown, e.g., in Eqn. (9) below. Since this expression is a function of the sampling
probabilities, it is straightforward to employ the method of Lagrange multipliers to find
the minimizer of the right-hand side of Eqn. (9), subject to the constraint » ;" ,m; = 1.
The minimizer is then the optimal sampling probabilities for estimating 3,. The proof of
Proposition 1 is provided in Appendix 4.

Proposition 1 For the AMSE(B,ﬁO), we have that

no 9
AMSE(.By) = (X7} S0 T IXTR) (9)
i=1 "

Given (9), the sampling estimator with the sampling probabilities

I(XTX) ™ x|
2 i (XX~ |

i=1,...,n, (10)

m =

(which we call the inverse-covariance (IC) sampling estimator) has the smallest AMSE(B; B,).
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Remark. The implication of this optimal estimator is two-fold. On the one hand, as
defined, the proposed IC estimator has the smallest AMSE. On the other hand, if given
the same tolerance of uncertainty, i.e., to achieve a certain small standard error, the IC
estimator requires the smallest sample size.

Remark. The IC sampling probabilities can be computed in O(np?) time, using stan-
dard methods. In Appendix 4, we present an approximation algorithm, similar to that
of Drineas et al. (2012a), by which the IC sampling probabilities can be approximated in
O(nplog(n)/e) time, where € is an approximation error parameter.

Estimating linear functions of 3;. In addition to making inference on 3;, one may
also be interested in linear functions of B, i.e., LB,, where L is any constant matrix of
suitable dimension. Here, we present results for X3, and X? X3, (although clearly similar
results hold for other functions of the form Lg3,).

We start with estimating Y = X3, since, in regression analysis, inference on the true
regression line X3, is crucially important. The proof of Proposition 2 (and other similar
propositions below) is similar to that of Proposition 1, and thus it is omitted.

Proposition 2 For the AMSE(XB,XBO), we have that
AMSE(XB,X8,) = po’+- Z HX (XTX) 1| . (11)

Given (11), the sampling estimator with the sampling probabilities

o IXXIX) x| Vhii
Z S X XTX) x| S, Vi

(which we call the root leverage (RL) sampling estimator) has the smallest AMSE(X3; X3,).

i=1,...,n, (12)

Remark. Note that
[X(XTX) " xy]|? = (X(XTX) " 1x) T X(XTX) " xy = xD(XTX) 7 Ixy = hy;.

These quantities, the so-called leverage scores (called BLEV, in Ma et al. (2014, 2015)),
have been central to RandNLA theory (Mahoney, 2011; Drineas et al., 2012a; Drineas and
Mahoney, 2016; Mahoney and Drineas, 2016). Using the main Algorithm 1 in Drineas et al.
(2012a), they can be computed in O(nplog(n)/e) time, where € is an approximation error
parameter (and called ALEV by Ma et al. (2014, 2015)).

Remark. The probabilities in RL are a nonlinear transformation of the probabilities in
BLEV. Comparing to the BLEV estimator, the RL estimator shrinks the large probabilities
and pulls up the small probabilities. Thus, we expect RL to provide an estimator with
smaller variances, in a way similar to SLEV.

Remark. Chen et al. (2016) proposed optimal sampling estimators for estimating
By and predicting Y. Their sampling probabilities depend on the unknown parameters,
and they proposed the probabilities in (12) as a rough approximation of their proposed
probabilities, without demonstration.

We next consider estimating X7 X3, which is also of interest in regression analysis.

10
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Proposition 3 For the AMSE(XTXB,XTXBO), we have that
~ 02~ 1
AMSE(X"XB,X"XB)) = o*tr(X"X)+ — > —Ixil]*. (13)
T
=1

Given (13), the sampling estimator with the sampling probabilities

il

2ie il

(which we call the predictor-length (PL) sampling estimator) has the smallest value for the
AMSE(XTX3; XTXA3,).

T =

i=1,...,n, (14)

Remark. The PL probabilities have a connection with the Fisher information of the
full sample OLS estimate. The Fisher information measures the “amount of information”
about the parameter that is present in the data (see Section 11.10 of Cover and Thomas
(2006)). The inverse of the Fisher information matrix gives a lower bound (the Cramer-
Rao lower bound) on the variance of any estimator constructed from the data to estimate
a parameter (see Section 3.1.3 of Shao (2003)). Since the Fisher information of the full
data can be written as the summation of the Fisher information of each data point, i.e.,
LXTX = L5  xx!, we have that tr{ 5X7X} = 5 3" | [|x;|[>. The PL probability
is high if the data point has a high contribution to the Fisher information.

Diverging number of predictors, p — oo. Theorem 1 considers the number of pre-
dictors/features, p, as fixed. It is also of interest to study the asymptotic properties of
RandNLA estimators in the scenario that p diverges with n — oo (at a suitable rate rel-
ative to n). The following theorem states our results concerning this case. Observe that,
in the case of a divergent p, the vector (B — By) is of divergent dimension. Thus, we
characterize its asymptotic distribution via the scalar aT(B — By), where a is an arbitrary
bounded-norm vector. The proof of Theorem 2 is provided in Appendix 4.

Theorem 2 (Unconditional inference, diverging p) In addition to Condition (A1) in
Theorem 1, assume the following reqularity conditions hold.

e (B1)[Data condition]. The number of predictors p diverges at a rate p = O(n'™"),
. 12
2/3<k<1;and % = O(L), where x; is the i'" row of X.

e (B2)[Sampling condition]: The parameters o, o satisfy o+ vo < 3k — 1.

Under these assumptions, as the sample size n — 00, we have

(®a"Sa) 2a” (B~ By) S N(O.1), (15)
a € R? is a norm one vector, i.e., ||al|> = 1. The convergence is with respect to the

randomness in the noise € and the subsampling of the full sample.

Remark. Condition (B1) indicates the divergence rate of p is lower than the growth
rate of the full sample size n. Condition (B2) is more stringent than Condition (A2), and

11
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this is required for accommodating a divergent p. It implies that given the divergence rate
p = n'"" P > O(n?73%), which indicates a lower bound on the expected number of
times any data point is sampled. Notice that if we let x = 1, which indicates no divergence
of p with respect to n, the condition (B2) reduces to the condition (A2) requiring a+y < 2.

Remark. It is easy to verify that the sampling estimators in Propositions 1, 2, and 3 are
still the optimal sampling estimators for their respective purposes. Thus, we omit restating
the results.

2.3 EAMSE: Technical Definition

We shall now define a generalization of the AMSE, called EAMSE. To define the EAMSE,
let T, be an p x 1 estimator of a p x 1 parameter v, for every sample size r, and let 3, be a

sequence of p X p positive definite matrices. Assume that 2;1/2 (T, —ve) LA Zeas T — 00,
and that Z. is a p x 1 random vector such that its i** element Z.,; satisfies 0 < E(ZE?) < 00,
fori =1,...,p. The EAMSE of T',, denoted EAMSE(T,;v.), is defined to be

EAMSE(T,;ve) = Eo(E(ZL%,Z.))
= E.(tr(ZY?Var(Z.)ZY?) + B (B(Z.)TS,E(Z.))
= Ec(tr(AVar(T,))) + E<((AE(T,) — ve) T (AE(T,) — ve)), (16)

where AVar(T,) = 2%/2Var(Z€)2,1«/2 and AE(T,) = ve + E%/2E(Z€) denote the asymp-
totic variance-covariance matriz and the asymptotic expectation of T, in estimating v,
respectively.

We may think of the EAMSE as the expectation of the AMSE. An important subtlety,
however, in the use of the AMSE versus the use of the EAMSE lies in the limiting distribu-
tion. In unconditional inference (i.e., where we consider a statistical model, and where we
will use the AMSE), the limiting distribution is Z, i.e., it does not involve noise within the
data e; whereas, in conditional inference (i.e., where we consider the data set Y and sample
size n as fixed and given, and where we will use the EAMSE), the limiting distribution is
Z., i.e., it involves noise within the data €. As in Section 2.2, we will obtain the explicit
form for both AVar(8) and AE(B) by deriving the large sample distributions of sampling
estimators, when performing conditional inference (Section 2.4). As we show in Section 2.4,
the sequences of X, involve statistics based on the full sample. Thus, the motivation for tak-
ing the expectation of AMSE to construct EAMSE is to avoid calculating those full sample
statistics in proposing the optimal RandNLA sampling estimators in conditional inference.

2.4 Conditional Inference: Approximating the Full Sample OLS Estimate

For Model (1), a second major goal is to approximate the full sample calculations, say the
OLS estimate BO s in Eqn. (2), regardless of the underlying true model parameter 8,. We
refer to this as conditional inference. For conditional inference, we consider the full sample
as given, and thus the only source of randomness contributing to the RandNLA sampling
estimators is the randomness in the sampling algorithm. The following theorem states that,
in conditional inference, the asymptotic distribution of the sampling estimator ,B is a normal
distribution (with mean B¢ and variance 023,.). The proof of Theorem 3 is provided in
Appendix 4.

12
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Theorem 3 (Conditional inference) Assume the following regularity conditions hold.
e (C1)[Data condition]. The full sample data {X, Y}, i.e., the full sample size n and the
number of predictors p are considered fixed; X is of full column rank, and ||x;|| < oo,
fori=1,...,n, where x; is the i" row of X.

e (C2)[Sampling condition]. The sampling probabilities {m;}I"_, are nonzero.

Under these assumptions, as the sample size r — oo, we have

D=

()28 Bors) = N(0,1,), (17)

where
n

1 _ e - %
Be = —(XIX) (Z ;Xz'x?> (XTX)™ e =Y =%/ BoLs,
i=1""

and I, is the p x p identity. The convergence is with respect to the subsampling of the full
sample. Thus, for conditional inference, the asymptotic mean of 3 is

AE(B) = BoLs: (18)
i.e., ﬁ s an asymptotically unbiased estimator of Bprg, and the asymptotic variance of,é
18

AVar(B) = X.. (19)

Remark. Theorem 3 shows that as the sample size r gets larger, the distribution of B
is well-approximated by a normal distribution, with mean BO s and variance 0?%.. Note
that, in theory, r can be bigger than n, i.e., one can perform oversampling, but this is
beyond the scope of this paper.

Remark. Similar to unconditional inference, the asymptotic variance AVar(3) here

also has “sandwich-type” expression, where the center term (here, (Z?:l fr—%xzx;[)) de-
pends on the reciprocal sampling probabilities. Thus, we also expect that extremely small
probabilities will result in large variances of the corresponding estimators.

Remark. In Theorem 3, AVar(B) depends on the full sample least square residuals,
i.e., the e;s. These are not readily available from the sample. To solve this problem and to

obtain meaningful results, we take the expectation of the e?s. The metric we use is thus
the EAMSE,

EAMSE(B; Bors) = E<(AMSE(B; BoLs))- (20)

The EAMSE is a function of the sampling probabilities {m;}? ;.

It is natural to ask whether there is an optimal estimator, i.e., a sample estimator with
the smallest EAMSE for estimating 3. Using the asymptotic results in Theorem 3, we
propose the following three estimators for various purposes.

13
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Estimating 3,;5. We can use the results of Theorem 3 to obtain expressions of interest
for the EAMSE of various quantities. As with the AMSE, these will depend on the sampling
probabilities. Thus, we can derive the optimal sampling probabilities for various quantities
of interest. We start with EAMSE(B; Bors)-

The following proposition gives the minimum FAMSE (B, BO 1) sampling estimator.
For this result, we denote that Ec(e?) = (1 — hy;)o?.

Proposition 4 For the EAMSE(B;BOLS), we have that

o ) "1 B
EAMSE(B; Bors) = Ee(tr(AVar(B))) = %Z (1:“)0’
i=1 ¢

((XTX) Tl (21)

Given (21), the sample estimator with the sampling probabilities
oo V1- hii | (XTX) x| P
i = ,0=1,...
i1 V1 = Ry | (XTX) = x|

(which we call the inverse-covariance negative-leverage (ICNLEV) estimator) has the small-

est EAMSE(B; BOLS)-

? n7 (22)

Estimating linear functions of BO s- In addition to approximating ,BO g, one may

also be interested in linear functions of BO 1.5 Here, we present results for Y = XBO s and

XTX B s (although clearly similar results hold for other functions of the form L3o; ).
We start with estimating Y = X3o4.

Proposition 5 For the EAMSE(Xj3; X[iOLS), we have that

n

P 7 1 (1-— hz‘z‘)‘72 T~ry\—1 2
EAMSE(XB;XBors) = - > THX(X X)Xl (23)
i=1 ¢

Given (23), the sample estimator with the sampling probabilities
VI = Ry | X(XTX) x| (1 — hgi)hi; i1
E—— — = = i=1,..
Yot VI = ha I X(XTX) x| S /(1 — hii) b

(which we call the root leveraging negative-leverage (RLNLEV) estimator) has the smallest
value for the EAMSE(X3;XBoLs)-

., (24)

We next consider estimating X” X8 ..
Proposition 6 For the EAMSE(XTXB;X"X30;), we have that

EAMSE(XTX3: XTX 3 _1! Y A=hi)o? e 25
( B: Bors) = " Z — |3 |* (25)
i=1 v

Given (25), the sampling estimator with the sampling probabilities

B e 1.
2iza V1= il
(which we call the predictor-length negative-leverage (PLNLEYV) estimator) has the smallest
value for the EAMSE(XTX3; XTXB019)-

)1, (26)
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. Sampling o
Estimator Probabilities Criterion Results
UNIF =+ — —
BLEV/ALEV = ?Jj;vh“ — Drineas et al. (2006, 2012a)
SLEV i = Ayt + (1= ) —— Ma et al. (2014, 2015)
Data are random Two sources of randomness
T 7IX' ~ .
IC T = % AMSE(B; B,) Section 2.2, Eqn. (10)
RL = =Y Vi AMSE(X,@; XBo) Section 2.2, Eqn. (12)
i=1 V hii
PL m= szl AMSE(XTXB; X" X3,) Section 2.2, Eqn. (14)
i=1 1%
Data are given and fixed One source of randomness
o V1=hi [[(XTX) " x| 2.7 .
ICNLEV m = T oAl KTX0)—tx] EAMSE(B;Bors) Section 2.4, Eqn. (22)
vV (A=hii)hii 2 P .
RLNLEV T = o o EAMSE(X3;XBoLs) Section 2.4, Eqn. (24)
PLNLEV P VA 171 51 EAMSE(XTXB3; X" XBo.s) Section 2.4, Eqn. (26)

.=
TV I=hallxll

Table 1: Summary of three existing sampling estimators (UNIF, BLEV, SLEV) and the six
sampling estimators (IC, RL, PL, ICNLEV, RLNLEV, PLNLEV) presented in this paper.

Remark. All these proposed metrics can be approximated in the time it takes to
approximate leverage scores, i.e., to implement a random projection, using the algorithm
of Drineas et al. (2012a), since they are essentially strongly related to leverage scores.

As a summary, the six proposed estimators (IC, RL, PL, ICNLEV, RLNLEV, PLNLEV),
along with three existing estimators (UNIF, BLEV/ALEV, SLEV) are presented in Table 1.

2.5 Relationship of the Sampling Estimators

Here, we study the relationships between the probability distributions given by IC, RL, PL,
ICNLEV, RLNLEV, PLNLEV, and those given by SLEV and BLEV.

2.5.1 “SHRINKAGE” PROPERTIES OF PROPOSED ESTIMATORS

We illustrate the “shrinkage” property of the proposed optimal sampling probabilities, com-
pared to the BLEV sampling probabilities. For convenience, we refer to the numerators of
the sampling probabilities in a sampling estimators as the scores, e.g., the RL score is v/h;
and the RLNLEV score is /(1 — hj;)hi. In Figure 1, we plot the RL score, RLNLEV
score, and SLEV score (0.9h;; + 0.1p/n with p/n = 0.2) as functions of the leverage score
hii (i.e., the BLEV score in Figure 1). Observe that the RLNLEV scores amplify small hj;s
but shrink large h;s. RL scoress provide nonlinear amplification of hys. The probability
counterparts of RL scores, i.e., RL scores divided by their summation, shrink large h;;s and
amplify small h;s. The SLEV scores also shrink large h;;s and amplify small hy;s, but in a
linear fashion.
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Figure 1: Relationship between different sampling methods. Left panel: RLNLEV score
(v/(1 = hj;)hi;) versus BLEV score (hy;). Middle panel: RL score (v/hg;) versus BLEV score
(hii). Right panel: SLEV score (0.9h;; +0.1p/n, where p/n = 0.2) versus BLEV score (h;;).

Sampling methods (IC,RL,PL) are derived under the AMSE criterion, whereas sampling
methods (ICNLEV, RLNLEV, PLNLEV) are deveried under the EAMSE criterion. Thus,
they are not comparable. However, they do have interesting connections. Comparing the
sampling probabilities of (IC,RL,PL) to those of (ICNLEV, RLNLEV,PLNLEV), we can see
that the only difference is the inclusion of the shrinkage /1 — h;; in the latter probabilities.
This is due to the following fact: (IC,RL,PL) aim for the ground truth, whereas (ICNLEV,
RLNLEV, PLNLEV) aim for OLS estimators. When aiming for the ground truth, we have
a regression problem with constant variance noise, i.e., E(e?) = ¢2. When aiming for OLS
estimators, we have a regression problem with heteroscedastic residuals. That is, treating
the OLS estimator BOLS as the “ground truth,” we have that the variance of residual
e, =Y; — x?ﬁo LS is Es(e?) = (1 — hy;)o?. Thus, our sampling methods naturally take such
a heterogeneity into account, leading to sampling probabilities proportional to standard
deviation of residuals /1 — hy;.

2.5.2 THE ROLE OF h;;S.

On the one hand, if the h;s are homogeneous, then the sampling probabilities of the ICN-

. v1—h;; XTx)-1 i . XTxX)~! i
LEV estimator ( - \/1—|l‘z(ii||(XT)X)>il”xi||) and those of the IC estimator (Z?l(l H(XT‘ZX));HXZ.”)

will be similar to each other. On the other hand, since Y ;" | h; = p, given a fixed value
of p, we expect that h;s are small when sample size n is large. When h;; = o(1) for all
i=1,...,n, ie., hys are extremely small compared to 1, the sampling probabilities of the
ICNLEV estimator and those of the IC estimator will also be similar. Analogous arguments
also apply to PLNLEV and PL.

2.5.3 Two EXAMPLES.

We now use two examples to illustrate the relationship between the sampling probabilities
in various sampling estimators.

Example 1: Orthogonal predictor matrix, i.e., X’X = I. Consider a linear
regression model with an orthogonal predictor matrix, i.e., XX = I. In this case, we have
hi = xI (XTX)"x; = ||x;/|?>. Further, the ICNLEV score, RLNLEV score, and PLNLEV
score are the same and equal /(1 — hj;)hi;. Analogously, the IC score coincides with the
RL score and the PL score, and all equal ||x;]| = v/hj;.
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(a) Scatter plots (first row) of data points generated from a bivariate normal distribution with colors coding
the sampling probability in the IC (left panel), PL (middle panel), and BLEV (right panel). Below each
scatter plot is the histogram of the corresponding sampling probabilities, with the dot representing the
maximum probability.

(b) Same as in (a), except that the data points are gemerated from a bivariate noncentral t

T3(IC) T3(PL) T3(BLEV)
Probabilities
0,0.0005, .
101 * (308908l 00n) L 10 . 10
= (0.001,0,003] st L st )
00031 ) 3 ) £ ) &
2 B 2 0 R -t 2 0 N
-10 E -10 -10
=20 -20 =20
=20 -10 0 10 -20 -10 0 10 -20 -10 0 10
X1 X1 X1
800 800 800
€ 600 2 600 2 600
3 400 3 400 3 400
© 200 l © 200 l © 200
0 0 047
0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
Tic T TBLEV

distribution with three degrees of freedom.
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(c) Same as in (a), except that the data points are generated from a bivariate noncentral ¢
distribution with one degree of freedom.

Figure 2: Scatter plots of 1000 data points generated from three distributions in Example 2 in Section 2.5.3
and the histograms of sampling probabilities.

Example 2: A two dimensional example. Consider also a toy example of a linear
regression model with p = 2 correlated predictors. We generated 1000 data points for two
predictors from a multivariate normal distribution, a multivariate noncentral ¢ distribution
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with three degrees of freedom, and a multivariate noncentral ¢ distribution with one degree
of freedom.

In Figure 2, we present scatter plots of these data points. In each scatter plot, the color
of points indicates the magnitude of sampling probabilities in IC, PL and BLEV meth-
ods. Below each scatter plot, we also present histograms of the corresponding sampling
probabilities. Examination of Figure 2 reveals one pattern shared by all sampling distri-
butions, i.e., the sampling probabilities of data points in the center are smaller than those
of data points at the boundary. In addition, note that, compared to 771 o |||, both
71C o |(XTX)"1x;|| and 7PEEY o xT'(XTX)1x; depend on (XTX)~!, which normalizes
the scale of the predictors. Such normalization causes the directions (principle components)
with the smallest eigenvalue have higher sampling probabilities. This is evident in Figure
2. Specifically, the colored clouds associated to IC and BLEV are more skewed, and the
data points with high probabilities in IC and BLEV form contours toward the exterior of
the data clouds. For PL, the colors simply depend upon the distance (norm) from (0,0).

The histograms in each row also show the key difference between the sampling probabil-
ities of BLEV and those of IC and PL, i.e., the sampling probability distribution of BLEV
is more dispersed than others. In other words, there are a significant number of data points
with either extremely large or extremely small probabilities in BLEV. This phenomenon is
also observed in Figure 3 in Section 3.

3. Empirical Results

In this section, we present a summary of the main results of our empirical analysis, which
consisted of an extensive analyses on simulated and real data sets.

3.1 Simulation Setting

We generated synthetic data from Model (1) with p = 10, n = 5000,* and random error
€ b N(0,1). We set the first and last two entries of 3, to be 1 and the rest to be 0.1. We
generated the predictors from the following distributions.

e Multivariate normal distribution N(1,D), where 1 is a p x 1 column vector of 1s, and
the (i, 7)™ element of D is set to 1 x 0.7"=7|, for i,j = 1,...,p. We refer to this as
MN data.

e Multivariate noncentral t-distribution with 3 degrees of freedom, noncentrality pa-
rameter 1, and scale matrix D, i.e., t3(1,D). We refer to this as T3 data.

e Log-normal distribution LN(1,D). We refer to this as LN data.

e Multivariate noncentral ¢-distribution with 1 degree of freedom, noncentrality param-
eter 1, and scale matrix D, i.e., t;(1,D). We refer to this as T1 data.

Note that for ¢1(1,D), its expectation and variance do not exist. This violates Condition
(A1) in Theorem 1. We include this distribution in the simulation to explore the estimators’
performance, in a situation which has no guarantees by our theoretical analysis.

4We have also done simulation with p up to 100 and n up to 1 x 10°. The observations discussed below
in this section are generally applicable
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Figure 3: Box plots of the sampling probabilities (in log scale) of all data points for IC, RL,
PL, ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV (from left to right in each panel) for
MN, T3, LN, and T1 data, for p=10 and n =5000. In each box plot, the dot inside the box
indicates the mean of corresponding sampling probabilities (in log scale). The dashed red
lines represent the uniform sampling probabilities.

In Figure 3, we present box plots of the sampling probabilities (in log scale) of all the
data points in IC, RL, PL, ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV (from left to
right) for MN, T3, LN, and T1. The sampling probability distributions of BLEV are more
dispersive than those of other estimators. There exist a significant number of extremely
small sampling probabilities in BLEV, especially when the data distribution has heavier
tails, such as is the case for LN and T1. These extremely small sampling probabilities in
BLEV are effectively mitigated in SLEV. However, the medians of the sampling probabilities
in SLEV are still smaller than the first quartiles of the sampling probabilities in ICNLEV,
IC, PLNLEV, and PL in T3, LN, and T1. The relatively small sampling probabilities in
BLEV and SLEV will inflate the variance of the sampling estimators (recall the expression
for the asymptotic variances in Theorems 1 and 3). Thus, it is expected that BLEV and
SLEV will give rise to estimates with relatively large variances, especially when data were
generated from more heavy-tailed distributions, e.g., LN and T1. It is also observed that
sampling probabilities in PL in T1 have large variance. The observation is consistent with
the fact that PL sampling probabilities are constructed directly from the more heavy-tailed
T1 data.

3.2 Sampling Estimators for Estimating Model Parameters

Here, we evaluate the performance of the proposed sampling estimators in estimating 3y,
X By, and X Tx Bo- Under the simulation settings of Section 3.1, we generated 100 repli-
cates of MN, T3, LN, and T1 data. We applied IC, RL, PL, SLEV (with A = 0.9 here
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Figure 4: Squared biases (first row) and variances (second row) of IC, RL, PL, SLEV, and
BLEV estimates in estimating 3, (in log scale) at different sample sizes.

and after), and BLEV to each replicated data set to obtain sampling estimates at sample
sizes r = 100, 200, 500, 700, 1000. Then, we calculated the squared bias and variance for
each method. In particular, let Bb be the subsampling estimator in the b replicated sam-
ple, and ,B = ﬁ 2,1201 Bl be the sample mean of ,Bb across the replicated samples. The
sample squared bias and variance of 3 are calculated as below,

Sample Squared Bias(8) = HE — Boll%,
100
. ~ o 1 ~ 12
Sample Variance(3) = 100 bgl 18y — BII~ (27)

The sample squared biases and variances of X ,é and XTX B are analogously calculated.
In Figure 4, we plot the squared biases (first row) and the variances (second row) (in
log scale) for IC, RL, PL, SLEV, and BLEV estimates in estimating 3, in MN, T3, LN,
and T1. First, both the squared biases and the variances show decreasing patterns as r
increases. The squared biases of different methods are similar to each other and are much
smaller than the corresponding variances. These observations are expected, since Theorem 1
states that the RandNLA estimators are asymptotically unbiased and consistent estimators
of By. Second, the variances of estimates using IC, whose sampling probabilities minimize
AMSE (B, Bo), are slightly smaller than the variances of estimates using other methods in
MN and T3, at most sample sizes. The variances of estimates using IC, RL, and PL are
all smaller than those of BLEV and SLEV estimates in T3. As mentioned in the discussion
of Figure 3, the larger variances of BLEV estimates are caused by the extremely small
sampling probabilities in BLEV. Taking a weighted average of the sampling probability
distribution of BLEV and that of UNIF shows a beneficial effect on the variances for SLEV
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Figure 5: The variances of IC, RL, PL, SLEV, and BLEV estimates in predicting X 3o (in
log scale) at different sample sizes.
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Figure 6: The variances of IC, RL, PL, SLEV, and BLEV estimates in estimating X* X3,
(in log scale) at different sample sizes.

estimators. However, the variances of SLEV estimators are still larger than those of IC in
T3, LN, and T1 at larger sample sizes. Third, for T1, despite the violation of the regularity
condition in Theorem 1, our proposed estimators IC, RL, and PL still outperform BLEV
and SLEV in terms of variances, when sample size is greater than 200. Fourth, the squared
biases and variances of all estimates get smaller from left panels to right panels.

For estimating X 3¢ and XTX,BO, the biases of all sampling estimators are very similar
to each other and are much smaller than the corresponding variances. This observation is
consistent with what we observed in estimating 3, in Figure 4. We thus only present the
variances of IC, RL, PL, SLEV, and BLEV estimates in estimating X8 and X7 XS, at
different sample sizes in Figure 5 and Figure 6. As shown, the variances of the estimates for
estimating both X Bp and X7Xg3,, using PL, IC, and RL, are smaller than the variances
of estimates using BLEV and SLEV in T3 and LN, at most sample sizes. We observe that
1C does perform as well as BLEV and SLEV for T1 data, which has a very large variation
with many outliers as suggested in Figure 2. This observation is consistent with the fact
that the IC probability relies on the computation of (X7X)~!, which is very unstable for
T1 distributed X, resulting in larger variances for the resulting estimates.

3.3 Sampling Estimators for Approximating the Full Sample OLS Estimate

Here, we evaluate the performance of the proposed sampling estimators for approximating
BoLs, XBors, and XTX By, s. Under the simulation settings of Section 3.1, we gen-
erated four data sets without replicates from MN, T3, LN, and T1, respectively. For
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Figure 7: Squared biases (first row) and variances (second row) of ICNLEV, RLNLEV,
PLNLEV, SLEV, and BLEV estimates in approximating B¢ (in log scale) at different
sample sizes.

each data set, the full sample OLS estimate was calculated. We set samples sizes at
r = 100, 200, 500, 700, 1000. We repeatedly applied ICNLEV, RLNLEV, PLNLEV, SLEV,
and BLEV methods 100 times at each sample size to get sampling estimates Bb, where
b=1,...,100. Using these estimates, we calculated the squared bias and variance for each
method for approximating BO LS-

In Figure 7, we plot the squared biases and variances (in log scale) for ICNLEV,
RLNLEV, PLNLEV, SLEV, and BLEV estimates for approximating BOLS at different
sample sizes in all data sets. Several observations are worth noting in Figure 7. First,
the squared biases are negligible compared to the corresponding variances. For all sampling
methods, both the squared biases and the variances decrease as sample size increases. These
observations are in agreement with Theorem 3, which states that the sampling estimators
are asymptotically unbiased estimators of BO g, brovided that the regularity conditions
are satisfied. Second, the variances of estimates using ICNLEV and RLNLEV are slightly
smaller than the variances of estimates using other methods in T3 and LN at most sample
sizes. The variances of estimates using ICNLEV, RLNLEV, and PLNLEV are consistently
smaller than those of SLEV and BLEV in LN and T1. Third, all sampling estimators per-
form better in LN and T1 than in T3 and MN, i.e., the squared biases and variances of all
estimates in LN and T1 are smaller than those in T3 and MN.

To examine the performance of the RandNLA sampling estimators for approximating
Yo Ls(= X,BO Ls), we plot the variances (in log scale) of X,@b, at different sample sizes,
for all sampling estimators in Figure 8. The variances of estimates using RLNLEV, whose
sampling probabilities minimize FAMSFE (X,B, XBO Ls), are slightly smaller than those of
estimates using other methods at all sample sizes in T3 and at most sample sizes in LN.
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Figure 9: The variances of ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV estimates in
approximating X7 X3, ¢ (in log scale) at different sample sizes.

To assess the performance of the RandNLA sampling estimators for approximating
XTXBO s, we plot the variances (in log scale) of XTXBb, at different sample sizes, for all
sampling estimators in Figure 9. For all estimators, the variances decrease as the sample
size increases. Also, in T3, the variances of estimates using PLNLEV, whose sampling
probabilities minimize EAMSE(XTX33; XTXBO 1s) are smaller than the variances of es-
timates using other methods at most sample sizes. In this case, despite the violation of the
conditions for the proper definition of EAMSE in T1, the variances of PLNLEV estimates
are still the smallest, when sample sizes are greater than 200.

3.4 Flight Delay Data set

Here, we evaluate the performance of the sampling estimators on a flight delay data
set we compiled from the website of the US Department of Transportation.” The data
set contains records of 3,274,894 US domestic flights during weekdays from Mondays to
Thursdays in 2017. There are five variables for each flight record: arrival delay (difference
in minutes between scheduled and actual arrival time, and early arrivals show negative
numbers), arrival taxi in time (in minutes), departure taxi out time (in minutes), departure
delays (difference in minutes between scheduled and actual departure time, and early depar-

5U. S. Bureau of Transportation Statistics. Rita airline delay data was downloaded from: https:
//www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236.
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Figure 10: Flight delay data set. Left: the box plots of sampling probabilities (in log scale)
of all data points in PL, ICNLEV, RLNLEV, PLNLEV, and BLEV. Middle and Right:
the scatter plots of the 200 sampled response vector (ARRIVAL.DELAY) and two pre-
dictors (DEPARTURE DELAY and TAXI_OUT) using the ICNLEV sampling probability
distribution.

tures show negative numbers), and computer reservation system based elapsed time of the
flight (in minutes; a measure for the distance of the flight). We are interested in predicting
the arrival delay of each flight using the rest of the variables. We fitted Model (1), with
the response being flight arrival delay. In addition to using the four variables (other than
arrival delay) in our data set as linear predictors, we also included their quadratic and all
pairwise interaction terms. We thus have 14 predictors. Considering the large number of
flights, we use the sampling methods to approximate the full sample OLS estimate. Note
that the computation of the OLS estimates in Sections 3.4 and 3.5 was conducted in a
supercomputer in the Pittsburgh Supercomputing Center.

In the left panel of Figure 10, we present the box plots of sampling probabilities (in log
scale) of all data points in PL, ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV. Observe
that the sampling probability distributions are right-skewed, similar to those in Figure 3
in the simulation study. Using the sampling probability distribution in ICNLEV, we took
a sample of size 200 from the full data. The middle and right panels in Figure 10 are
the scatter plots of the sampled response and the first two predictors, respectively. These
scatter plots provide a visual sketch of the full sample data.

We repeatedly applied the PL, ICNLEV, IC, PLNLEV, SLEV, and BLEV methods to
this data set for 100 times at sample size r = 20p, 50p, 70p, 100p, 200p, where p = 14. We
calculated the squared bias and variance of the resulting estimates in approximating BO LS
Y oLs and XTX,BO s for each method. The results are summarized in Figure 11. Observe
that the squared biases of all methods are all much smaller than the corresponding variances
for all methods at all sample sizes. For approximating Bo g, the ICNLEV estimates have
the smallest variance consistently at all sample sizes among all estimators. For approxi-
mating Y ors and XTXB,; g, the estimates using PLNLEV, PL, and RLNLEV are very
similar to each other, and they have better performance in terms of variances at all sample
sizes than those using BLEV and SLEV.

3.5 “YearPredictionMSD” Data set
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Figure 11: Squared biases (first row) and variances (second row) of PL, ICNLEV, RLNLEV,
PLNLEV, SLEV, and BLEV estimates for approximating 3o (first column), Y org (sec-
ond column) and XTX 3 5 (third column) (in log scale) at different sample sizes for Airline
Delay data.

Here, we evaluate the performance of the sampling estimators on the “YearPrediction-
MSD” data set (Bertin-Mahieux et al., 2011), which we downloaded from the UCI machine
learning repository. The data set consists of records of 515,345 songs released between
the year 1922 and 2011. For each song, multiple segments are taken, and each segment is
characterized by 12 timbre features. These timbre features capture timbral characteristics,
such as brightness and flatness, of each segment. The mean and variance of each timbre
feature, as well as the covariances between every two timbre features, are calculated. Our
primary interest for our analysis is to use all timbre feature information to predict the year
of release. We fitted Model (1), where the response is the year (in log scale) of releasing of
the song, and the predictors include all timbre features.

In the left panel of Figure 12, we present the box plots of sampling probabilities (in log
scale) of all data points in PL, ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV. Inspecting
the box plots reveals that all sampling distributions are right-skewed and that the sampling
distributions of SLEV and BLEV are much more dispersed than those of other estimators.
Using the sampling probability distribution in ICNLEV, we took a sample of size 200 from
the full data. The middle and right panels of Figure 12 are the scatter plots of the sampled
response and two timbre features, respectively.

5See http://archive.ics.uci.edu/ml/.
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Middle and Right: the scatter plots of sampled response and two timbre feature predictors.
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Figure 13: Squared biases (first row) and variances (second row) of PL, ICNLEV, RLNLEV,
PLNLEV, SLEV, and BLEV estimates for approximating B¢ (first column), ¥ org (sec-

ond column), and X”XB,,¢ (third column) (in log scale) at different sample sizes for
“YearPredictionMSD” data.

We repeatedly applied the ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV methods
to the data set for 100 times at sample sizes r = 10p, 20p, 50p, 70p, 100p, where p = 90.
In Figure 13, we plot the squared biases and the variances (1n log scale) of the estimates
for all weighted sampling methods for approximating ,30 S Yors, and X7 X,@O rg- For
all three scenarios, the squared biases are much smaller than the corresponding variances,
for all methods at all sample sizes. For approximating BO g, the variances of ICNLEV,
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RLNLEV, and PLNLEV estimates are comparable to each other and consistently smaller
than those of SLEV and BLEV estimates at all sample sizes. For approximating Y oLs and
XTX,@O s, the variances of PLNLEV and PL estimates are consistently smaller than those
of other estimates.

4. Conclusion

We have studied the asymptotic properties of RandNLA sampling estimators in LS linear
regression models. We showed that under certain regularity conditions on the data distri-
butions and sampling probability distributions, the sampling estimators are asymptotically
normally distributed. Moreover, the sampling estimators are asymptotically unbiased for
approximating the full sample OLS estimate and for estimating true coeflicients. Based on
these asymptotic results, we proposed optimality criteria to assess the performance of the
sampling estimators, based on AMSE and EAMSE. In particular, we developed six sam-
pling estimators, i.e., IC, RLEV, PL, ICNLEV, RLNLEV, and PLNLEV, for minimizing
AMSE and EAMSE, under a variety of settings. These empirical results demonstrate that
these new sampling estimators outperform the conventional ones in the literature. For gen-
eralization, depending on the application, one may consider criteria other than AMSE and
EAMSE. For example, when hypothesis testing problems are of primary interest, the power
of the test is a more reasonable choice to serve as a criterion. Developing scalable sampling
methods to optimize criteria such as this are of interest.
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Appendix A. Proofs of Our Main Results

In this Appendix, we collect the proofs of our main results.

A.1 Notation and Technical Preliminaries

Let K; represent the number of times the i** observation is sampled. It is easy to see that
(Ki,...,Ky,) follows a multinomial distribution, Mult(r, {m;} ;), with sample size r as the
total number of trials. Define K = diag{K;}!" ;, Q = diag{1/rm;}_,, and W = QK. For
the ¥ diagonal element of matrix W, denoted as Wj;, we have

1 —m T
EW;) =1, Var(W;) = a-m) ), Cov(W;,Wj)=——, i#j, 4,j=1,...,n. (28)
T

iy
Simple algebra yields that the sampling estimator of Eqn. (3) can be written as
B =XTe?2xX") 11X T2y = (XTWX) ' XTWY. (29)
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O, Notation. The O, notation is the stochastic counterpart of the nonstochastic big-O
notation, i.e., it describes the limiting behavior of (or the order of) a sequence of random
variables, rather than that of sequence of fixed or deterministic variables.

For a sequence of random variables, {Ay}, and a sequence of constants, {a,}, the no-
tation Ay, = Op(ay), means that { Ay, /ay} is stochastically bounded (or bounded in probabil-
ity). That is, for any T > 0, there exit a constant K(7) and an integer n(t) such that if
n > n(t), then

P(|A,/an| < K(1))>1—T.

More details and examples of this can be found in Section 14.4 of Bishop et al. (1975) and
Section 1.2 of Serfling (2001).

Remark. If Var(4,) = O(n*) and E(A,) = 0, where § is a real number, then we have
that {A,,/n’} is bounded in probability by Chebyshev’s inequality. We write A,, = Op(n°).

Remark. Throughout this paper, for a sequence of matrices A,,, we write A,, = O(n‘s)
to denote that [|A,|lcc = O(n®), where ||A, |l = max; > |1Anli,j]], and Ay, j] is the
(i,5)" entry of A,,. For a sequence of matrices A,,, we write A, = Op(n5) to denote that
| Ao = Op(n).

Remark. The notation A,, = Q(a,) means that for some constant ¢ and ng, 4, > ca,
for all n > ng. The notation A,, = O(a,) means that A, = O(a,) and A, = Q(ay).

Other than in the statement and proof of Theorem 2, we assume that the dimension p
is fixed in all lemmas and theorems. The Cramer-Wold Device and Lemma 1 below govern
the proofs for Theorem 1, Theorem 2, and Theorem 3.

Cramer-Wold Device. For random vectors Zy, = (Zn1, ..., Znp)t andZ = (Z1,...,Z,)7,

a necessary and sufficient condition for Z, % 7 is that b'Z, 4T asn — oo, for each
beRP.

Remark. To derive the asymptotic distribution for the sampling estimator B in (29),
which is a vector of random variables, we use the Cramer-Wold device to reduce the deriva-
tion of the asymptotic distribution for vectors to the usual scalar case. For more details
about the Cramer-Wold device, see Section 29 of Billingsley (1995).

Convergence of Geometric Series of Matrices. Let A be an n X n square matrix.
We use p(A) to denote the spectral radius of matriz A, i.e., p(A) = max {|\],..., | \n|},
where A1,..., A\, are the eigenvalues of matriz A. If p(A) < 1, then (I — A) is invertible,
and the series

S = I+A+A%+...

converges to (I — A)~1.

Remark. The convergence of geometric series of matrices will be used in the proof of
Lemma 1 below. For more details and a proof of this result, see Section 1.5 of Hubbard and
Hubbard (1999).

Uniform Equicontinuity. The family of functions { f,,} defined on [a, b] is said uniformly
equicontinuous if and only if for any € > 0, there exits a constant 7 > 0, such that for any
n € N, and any s,t € [a,b],|s — t| < 7,then

|fn(t) - fn(3)| <e€
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Remark. We use uniform equicontinuity in the proof of Lemma 3.

Lemma 1 Assume that 0 <m; <1, fori=1,...,n. If

XTX)'XT(W-D)X = 0, (15> : (30)

r2

where 6 is a positive constant, then the weighted sample estimator in (29) can be written as

B =Bors+ (X"X)'X"We +0,(1/r), (31)
where e =Y — XBOLS.

Proof
Eqn (30) implies [|(XTX)"'XT(W — )Xo = O, (r—%). Noting that || - ||sc is sub-
multiplicative (Theorem 1.3.8.6 in van de Geijn and Myers (2019)), we have

J

(XTX)"'XT(W - D)X)! = O, (r_§6> . > (32)
Therefore, by the convergence of geometric series of matrices,
- _ _ 1
I+ X'X) ' XT(W -DX] =1 (XIX)"'XT (W -1)X + O, (ré> . (33)

Once again, by the submultiplicaive property of the matrix norm, (X7 X)) 'X7(W —I)X,
(XTX)"IXT(W-1)Y, and (XTX)~ !XT (W —1)e are of the same order, since the variances
of Y and e are both bounded. It follows that

B = XTWX) (XTWY)
= [+ XI'X)"XT(W-DX] ' XTX) " HXTWY)
= - XTX)"IXT(W - D)X + 0,(1/r))(XTX)" L (XTY + XT(W - 1)Y), (34)
where the expansion in (34) is by the convergence of geometric series of matrices and the
assumption that § > 0. Note that (X7 X)™!XT(W —I)X and (X?X)"'XT(W —~1)Y are of

the same order O,(1/7°) since the variance of Y is bounded. Therefore, (X7X)™'XT(W —
DX(XTX)"'XT(W —1)Y is of the order O(1/r%9). Tt follows that

B = [I-X'X)'XH(W -D)X +0,(1/r)](Bors + (X X) ' X" (W - 1)Y)
Bors + (XTX)'XT(W —T)e + O, (1/r°)
= Bors + (X'X)'XTWe + 0, (1/r), (35)
where the equality in (35) holds since X”e = 0. This completes the proof.

Remark. Lemma 1 relates the sampling estimator B to the quantity BO g, With an
order constraint on the residual term, i.e., Op(1 /1:‘5/ 2). In the application of Lemma 1 to
the proof of Theorem 1 (asymptotic normality of 3 in estimating 3,), we subtract 3 from
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both sides of (35) to relate B to By. In the proof of Theorem 3, Lemma 1 is directly applied
(asymptotic normality of B in approximating ,60 Ls)-

Remark. The assumption that § > 0 implies that p((X7X)" !XT (W-I)X) — 0 asr —
oo. By the convergence of geometric series of matrices, the inverse of [I+ (X7 X) ! XT(W —
I)X] = X"WX exists, and the expansion in (34) is valid asymptotically. In the proof of
Theorem 1, Theorem 2, and Theorem 3, we will verify the condition in Lemma 1, i.e., that
d > 0. The exact magnitude of § depends on (W —1I), and it is different in Theorem 1 and
Theorem 3.

In Appendix 4 and Appendix 4, we present the proofs of Theorem 1 and Theorem 3,
respectively. The proof of Theorem 1 is much more complicated than that of Theorem 3. In
conditional inference of Theorem 3, the data are given and the only randomness comes from
sampling. However, in unconditional inference of Theorem 1, we consider both unobserved
hypothetical data sampled from the underlying population as well as the sample sampled
from observations. Thus, one more layer of randomness needs to take into account.

A.2 Proof of Theorem 1

We start by establishing several preliminary technical lemmas, and then we will present the
main proof of Theorem 1.

A.2.1 PRELIMINARY MATERIAL FOR THE PROOF OF THEOREM 1

To facilitate the proof of Theorem 1, we first present the Hajek-Sidak central limit theorem
(CLT), as well as Lemma 2 and Lemma 3, as follows.

Theorem 4 (Hajek-Sidak CLT) Let Xi,..., X, be independent and identically distributed
(i.i.d.) random variables such that BE(X;) = p and Var(X;) = o? are both finite. Define
T, =d1X1+...+d,X,, then

—T “rXind 4y g, (36)
U\/ Zz 1 z

whenever the Noether condition,

2
maxj<i<n d

Zz 1d12

— 0, asn— o0, (37)

is satisfied.
Remark. The Hajek-Sidak CLT is used in the proof of Lemma 2.

Lemma 2 Define U = diag(Uy,...,U,), where for i = 1,...,n the independent random
variables UwPoisson(rm) and € = (e1,...,en)T, where g;5 are i.i.d. with mean 0 and
variance o2. If conditions (A1) and (A2) in Theorem 1 hold, then as n — oo,

(02%0) 2(XTX)"'XTQUe % N(0,L,), (38)

where X and § are defined in Theorem 1.
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Proof
We derive the asymptotic normality of the random vector (X7 X)~!X7QUe using the
Cramer-Wold device. For any nonzero constant vector b € RP, we write

b (XTX) ' XTQUe = Y diG;, (39)
i=1
N/ T2
where d; = bT(XTX)_lxi% and §; = Ug;/ 7“7Ti+’l“271'i2, E(¢;) = 0, and where
Var((;) = o2.
Since Eqn. (39) is a weighted average of independent random variables (;, it suffices to

verify the Noether condition (37) of the Hajek-Sidak CLT to show the asymptotic normality
of b7 (XTX)~'XTQUe. For d?, we have

> (a"x;)* < (1 +

where a = (XTX)71b, M, = max{x]x;}? , and the last inequality is derived using the
Cauchy-Schwarz inequality. Thus, maxj<ij<, d? < (14+ ——)a’aM,. For Y., d?, we have

1
TTTmin =1 "%

d? < (1 + ) a’all,, (40)

T'Tmin T'Tmin

n

de = Z(l + —)alxia’x; > 14+ ——)a’'XTXa > (n+
i=1

i1 Ty T"TTmazx TTTmazx

))\mmaTa, (41)

where A is the minimum eigenvalue of X7 X /n. Combining (40) and (41), we have

<n 43 14 )M M 1 -
e Y d; =00 (0 + ) Amin — Amin 100 (N1 min + 77 )

where the last equality is obtained since condition (A2) implies nrmy,;; — o0 as n — oo.
Since

n n 1
> Var(dii) = 0” > (a"x:)’(1+ —) = 0*a’ X" (I, + Q)Xa,
=1 =1

T
then by Theorem 4, we have,
b7 (XTX)1XTQUe 4 N(0,0%b" (XTX) X7 (I, + )X (XTX)b).
= N(0,0%*b"3od) (43)
By applying the Cramer-Wold device, we have (X7 X) 1 XTQUe LA N(0,0%%). The proof

is thus complete.

In the following statement and proof of Lemma 3, as well as in the proof of Theorem 1
below, we use A|B to denote random variable A given random variable B.

Lemma 3 Given any nonzero constant vector b € RP, as n — oo we have

(0207 Zeb) 267 (XTX)1XTQUe| Y U =r 4 N(0,1), (44)
i=1

where , U, and X are defined in Lemma 2, and where r is the subsample size.
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Proof
Fori=1,...,n, we have

Cov(b" (X"X)'X"QU;e;, Y Ui) =D b"(X"X)"'X"QCov(Uie;, U;) =0, (45)
=1 =1
and thus we have

Cov(b" (X"X)'X"QUe, ) "U;) =0
=1

By Eqn. (43), we have
(0267 2ob) 26T (XTX)1XTQUe % N(0,1).

By the Lyapunov CLT (Section 27 in Billingsley (1995)), we have

ZU r) % N(0,1).

Combining this with the fact that U; is independent of &, we have

() ()6 ))

Furthermore, with

n
(0267 2ob) 267 (XTX)1XTQUe Y U; =+ 4 N(0,1) (47)
i=1
provided, we can show the convergence of conditional distributions is the uniform equicon-

tinuity of conditional characteristic functions (Steck, 1957), as we do below.
Here, for the ease of notation, we define Q,, = b7 (X"X)"'X"QUe, L, = #(ZLI U;—

r), and s2 = o2b? Zpb. Let

Un(tn;t) = E (exp (itcjn | iUi = tn>> , (48)
=1

where i denotes the imaginary unit. Hence, we aim to show the uniform equicontinuity of
Yn(tn;t). When Ly, =1, >y Uy = r++/rly; when L, = l,+h, Y1 Uy = r+/rl,++/Th.
Note that

(Qu|Ln = L, + h) £ b7 (XTX)XTQ(M + R,

where % denotes two random variables have the same ditribution, M = diag{M;}?_,,
(M, ..., M,) ~ Mult(h/r, (m1,...,7)), R = diag{R;}} ;, and (Ry,...,Ry) ~ Mult(r +
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/Tl (m1,...,m,)). Thus, we have that

tn(ln + B3 t) — Yn(ln;t)]
= ‘E <eXp iibT(XTX)*leQ(M + R)e>> -E <exp (i;bT(XTX)1XT9R5>> '

(.
< E ( exp (ith(XTX)_leQ(M + R)s) — exp (ith(XTX)_1XT9R5> ) (49)

Sn Sn
< LB (W XTX) XM + R)e — 7 (XTX) X 0Re]) (50)
_ SLE(\bT(XTX)—leQMe\)
n
— 0 as h — 0,

where (49) is by Jensen’s inequality, and (50) is by the fact that

. . —b —-b
et — el = Jm — cos(“—)) = 2l sin(=—)| < fa — b,

for any a, b. Thus, the uniform equicontinuity of conditional characteristic function is
verified, and the proof is complete.

Remark. The proof of Lemma 3 is a simplified version of the proof of Theorem 2.1 in
Morris (1975).

Remark. The key difference between Lemma 2 and Lemma 3 is that we consider a
conditional distribution in Lemma 3, whereas we consider an unconditional distribution in
Lemma 2.

We will also need the following lemma, the proof of which can be found in Section 6.4
of Sheldon (2006).

Lemma 4 If independent random variables U; ~ Poisson();), i = 1,...,n, then
TRERT) SI SRPYRY (8 T
1y---9Un i = ~ ") N1\ .

A.2.2 MAIN PART OF THE PROOF OF THEOREM 1

We first verify that the condition in Lemma 1 holds. To do this, we derive the magnitude
of § in Eqn. (30). Note that

XTX)IXT(W - D)X = (XX /n) ' XT(W - 1)X/n.
By Condition (A1), we have
I(XTX /) Moo < VBIXTX /1) l2 < V/B/Amin- (51)

Since the dimension p we considered in Theorem 1 is fixed, we further have ||[(X7X /n) ™0 =
O(1). Thus, the order of (XTX)~!XT(W —I)X depends on that of XT(W — I)X/n. We
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next derive the order of the (s, )" element of X7 (W —I)X/n, i.e., of 2 37 | ;2,4 (W; —1).
To do so, we have

B (Z?zl Tisxit(Wi — )) _ Yoy wisragB(W; — 1) 0 (52)
n n ’
and
" zisa(Wi— 1 1 "
Var <ZZl xlsx;bt( ! )> = ﬁ\/ar (Z Tisxit (Wi — 1))
i=1
1 [ 1—m 1
= i (l‘isl‘it)Z o L2 Z xisxit:cjsxjt;
=1 1<j
= (1)1533215)2 ' ‘L - (Z xis$zt> - Z(xisl'it)
= v i=1 i=1
n . .

Combining the fact that > | = < -2 and Condition (A2), we have that the order of
(XTX)"'XT(W — DX is not larger than Op(n~" % ). Thus 0 < 2 — 79— a < 6 in
Eqn. (30), and we verify that the condition in Lemma 1 holds.

Subtracting B, from both sides of Eqn. (31) in Lemma 1, we get

B—By=X"X)"'X"We + Bors — By + O, (;;) ; (54)

where e = Y — X85 g. Since Var(Bp1s—By) = O (1/n), we have Bors— By = Op (1/+/1).
Thus, both BO s — B¢ and the residual term in the right hand side of (54) are negligible.
Hence, the asymptotic distribution of 3 — B, is equivalent to that of (X7X) 1 X"We.

Thus, for the rest of the proof, we derive the asymptotic normality of (X7 X) !X We.
Note that

(XTX)"'XTWe = (XTX)"'XTWe + (XTX)'XTW(e - ¢), (55)

where € is the random noise in Model (1). We will show that the order of (X7 X) 1 XTW (e—
e) is bounded by calculating the variances of s element of X" W (e — €)/n. We have

Var (Zil zisWile; — €i)>

n
1 n
=3 Zx?SVar(Wi(ei —&))+ 2Z$isxjsCov (Wilei —e;), Wi(ej —ej)] | . (56)
i=1 i<j
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Now, we analyze the two terms on the right hand side of Eqn. (56). For the first term, we
have that

ZVar(Wi(ei—ai)) = ZE Wi(ei —ei)?)
i=1

=1
U 1

= Ve it =0 (), 67)
im1 T TTmin

where the last equality holds since 1" | hi; = p.
For the second term, we have that

D Cov (Wile; — &), Wylej —g5)) = ZE (WiWj(e; — €i)(e5 — €5))

- Z E(W;W;)E((e; — €:)(ej — €5))

where the facts that E[(e; —¢;)(e; — €;)] = hijo? and E(W;W;) = 1— 1 are used in the third
equality. Substituting (57) and (58) into (56), we have that

Var <Z:’L1 TisWilei = 5”) —0 <1> (59)

n n

Combining (55) and (59), we aim to show that (X1X)"!XTW (e — €) is of higher order
than (X7X)~!X7"We. Thus, if we establish the asymptotic normality of (X7 X) !X"Wge,
then the asymptotic normality of 8- By in Eqn. (54) will follow directly.

Note that W can be written as W = QK. By Lemma 4, it follows that (K,..., K,)
and [(Un,...,Up)| > 1, Ui = r| are identically distributed. Hence,

(XTX)'X™We and (XTX)'XTQUe| D> U
=1

are identically distributed. Thus, Lemma 3 can be applied, and the asymptotic normality
is obtained using the Cramer-Wold device.

Finally, combining Eqn. (54), Lemma 2, and Lemma 3, we have that

(0?20)"2(B - By) % N(0,1,), asn— oo, (60)

where Xy = (XTX) !XT (I, + 2)X(XTX) L. This completes the proof.
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A.3 Proof of Proposition 1

By Theorem 1, the asymptotic squared bias for B is 0. By the definition of AMSE in
Eqn. (4), AMSE(,B;,BO) = tr(Avar(B)), i.e., the expression given in Eqn. (9). We consider
minimizing AMSE(B; By) as a function of {m;}" ;. It is straightforward to employ the
method of Lagrange multipliers to find the minimizer of the right-hand side of Eqn. (9),
subject to the constraint y ;- m; = 1. If we do this, then we let

L(my, ..., m) = tr(Avar(8)) + A m — 1).
=1

Then, we can solve OL/0m; =0, i =1,...,n, for the optimal sampling probabilities.
The proofs of Propositions 2-6 all follow in a manner similar to that of Proposition 1,
and thus they will be omitted.

A.4 Proof of Theorem 2

We first verify the condition that § > 0 in Lemma 1; and the rest of the proof of Theorem 2,
in which we allow the number of predictors p to diverge, is readily derived from that of
Theorem 1.

By (51), we have [[(X?X/n) ||« = O(y/p). We next derive the order of || X*(W —
I)X/7n||s0. To do so, we derive the magnitude of the absolute sum of the st row of X7 (W —
DX/n, ie., of L3P |3 zisxu(W; — 1)|. We have

. (Zfl | > wisar (Wi — 1)|)2 piE (ZL wisit (Wi — 1)>2 (61)

n

I\
el ]
M@

™

|
N
M:
8
~
[\

IA
.
N
3
NE
3 ‘;Hw
—
NE
s IS
| I

2
_ p
_ 0 (mm> , (62)

where (61) is by Cauchy-Schwarz inequality and Eqn. (62) is by the results of Eqn. (53)
and Condition (B1). Notice the above equations holds for any row of X7 (W — I)X/n,

2—yp—«

whose bound is Op(p/n~ 2 ) by Markov’s inequality. Therefore, by the submultiplicative
property of the matrix norm, we have that the order of (X7X)™'X”T(W —1I)X is no larger

—2+v0ta

than Op(p%n 2 ). Recall that p = O(n'~*). Under Condition (B1), we have 3(1 — ) —
2+ 90+ a < 0. We thus can find some § such that 0 < § < 3k — 9 — ag — 1 and verify that
the assumption in Lemma 1 holds.

By combining Eqns. (54) and (55), it follows that

a”(B - By) = a” (X"X) X" We +a" (X"X) "X W(e - €) +a” (Bors — Bo) + O, (15 ) |
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By results in (Huber, 1973; Yohai and Maronna, 1979; Portnoy, 1984, 1985), we note
that ||a||? = 1, and a” (Bos — By) = Op(1/4/n), which is of the highest order. Further, by
a similar argument in Theorem 1 (from (55) to (59)) we have that a” (X7X) "' XT"W (e —¢)
is of higher order than a” (X7 X)!XTWe. To prove Theorem 2, it suffices to establish the
asymptotic normality of @’ (X?TX)"'XTWe. This follows from applying Condition (B2)
to Lemma 2 and by noting that M, = nmax; [|x;]|> = O(p) in (42).

A.5 Proof of Theorem 3

Given the data {X,Y}, we first determine the value of ¢ in Eqn. (30) in order to use
Lemma 1. Since ||x;|| < oo, where x; is the i'® row of X, each element of X*X is a
fixed matrix and is finite in norm. Since the (s, )" element of X7 (W — I)X is equal to
oy wiszi (Wi — 1), it follows that

" 1 [« 1—m; 1
Var (Z isxit(W; — 1)) = Z($isxit)2 —— 2Z$isxit$jsx]‘t =0p <r> , (63)
i=1

i=1 t i<j

i.e.,, 6 =1 in Eqn. (30).
Next, note that K can be written as K = E;:1 K, where KUY = Diag{Ki(j)}?zl,

and where (Kfj),...,K,(lj)) i Mult(1, {m})?* 4, for j = 1,...,n. Combining Eqn. (31) in

Lemma 1 and Eqn. (63), we can show that

B-Bors = (XTX)'XTWe+ 0,(1/r)
= (XTX)"'> XTQKYe + 0,(1/r).
j=1

Given this, we can use the Cramer-Wold device to establish the asymptotic normality of

(XTX)™ Y " xTaKVe.
j=1

To do this, for any constant vector b € RP such that b # 0, we will consider the quantity
> et bT (XTX)'XTQKWe. This is a summation of r independent random variables.
Since the elements in X and e are fixed numbers, finite in norm, and m; > 0, the Noether
condition in Hajek-Sidek CLT is satisfied.
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Without loss of generality, we have

Var(b? (XTX)1XTQKVe) = Var (ZbT(XTX)_lxil'Ki(l)eZ)

r
=1 v

1—m 1
= E (aTx,-el- ZeixiTa) -2 E asz-erejx;Fa
, T L r
=1 1<J
n

n
1 e? 1
= —a’ g “ixx? | a—-a® E Xiefx?+2§ xieiejxjr a
r — T; r —
1= 1=

i<j

where a = (X7X)~'b, and where Eqn. (64) follows since X”'e = 0. By the Lindeberg-Lévy
CLT, we have that

pT(XTX)"1 Y XTaKWe 4 N(0,b7%.b),
j=1

where 2. = (XTX)7!'8,(XTX)! and =, = 237, fr—fxleT Thus, by the Cramer-Wold
device, Theorem 3 follows.

Appendix B. Approximation Analysis

In this Appendix, we consider several related algorithmic questions. First, what is the
effect (on MSE/AMSE/EAMSE) of computing approximately-optimal sampling probabil-
ities? Second, can approximate sampling probabilities be computed more quickly than
computing them exactly (which often takes time of the same order as solving the original
problem exactly)? We will show that approximately optimal sampling probabilities incur
negligible error, relative to exactly optimal sampling probabilities; and we show that ap-
proximate sampling probabilities can be computed quickly, either using the main algorithm
of Drineas et al. (2012a), or using a variant of the main algorithm of Drineas et al. (2012a).

B.1 Approximation of RL estimator and its relative-error for AM SE(XB,XBO)

Recall that the RL sampling estimator with sampling probabilities m; = /h;;i/ > IR /h;j; has

the smallest AMSE (XE}, XBy). These depend on the leverage scores, which can be expen-
sive to compute exactly. We can use Theorem 1 in Drineas et al. (2012a) to approximate
these sampling probabilities. Here is Theorem 1 of Drineas et al. (2012a).

Theorem B.1 Let X be a full-rank n x p matriz, with n > p; let € € (0,1/2] be an error
parameter; and define the statistical leverage scores l; = hi;. Then, using Algorithm 1 in
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Drineas et al. (2012a), which returns values I;, for all i € {i,...,n}, we have that with
probability at least 0.8,
|l — U] < el

holds for alli € {1,...,n}. Assuming p < n < eP, the running time of the algorithm is
O(npln (pe™!) + npe2Inn + p3e 2(Inn)(Inpe1)).

We now examine the impact of using the approximated sampling probabilities on the
resulting AMSE. Let C denote the value of the smallest AMSFE (XB , XB) and C denote the
value of AMSE (XB, X3,) using the approximately-optimal leverage scores from Theorem
B.1. The following theorem states that C is a relative-error approximation of C.

Theorem B.2 Assume the conditions in Theorem B.1 hold. Then, using the approrima-
tions from Algorithm 1 in Drineas et al. (2012b), we have

1+e

l—eC

c<C<

with probability at least 0.8.

Proof (of Theorem B.2)
By Proposition 2 in our main text, we get the smallest value of AMSE(X3,X3,),

denoted by C, by setting the sampling probabilities m; = hii Vi ,i=1,...,n,
y C, by g pling p o 2;,:1 S TD
C = min AMSE(XS3,X03)
T1y 3T

. 1 o o2 _
= min (po?+ . Z ?HX(XTX) Ixi| )
i=1 "

1, T

PRy SRV _
= pot Y SR
i=1 ¢

Instead of exact sampling probabilities, we calculate approximated sampling probabilities

T = #, i =1,...,n. Now the corresponding value of AMSE(X,[;,XﬁO), denoted
VA
by C, is

~ 0?2 & Z?:l le

C = po*+—) = IX(XTX) x?
T Vi

0?2 & Z?:l lj

= p02+f

where the last equality holds since we have HX(XTX)*lxiHQN: l;. Since C is the smallest
value of AMSE(X3,XBp) for all possible ;s, we have C < C.

li7

39



MA, CHEN, ZHANG, XING, MA, AND MAHONEY

By Theorem B.1, with probability at least 0.8, we have

S/l S, L
Vi A—el

Combining all these facts, we have

~ 1+eo?
cC<C < po? — 1;)?
<C < po +\/1_6T(;f)
< 1—1—60'
1—c¢

The proof is thus completed.

B.2 Approximation of IC estimator and its relative-error for AM SE(B, Bo)
Recall that the IC sampling estimator with sampling probabilities

mi = [[(XTX) /Y0 (XTX) g
j

has minimal AMSFE (B, Bo)- These are related to but different than leverage scores. How-
ever, we can approximate these IC sampling probabilities quickly. Our algorithm to approx-
imate s; = ||(XTX)71x;||? is a modified version of Algorithm 1 in Drineas et al. (2012a).

Algorithm 1 Modified Algorithm 1 in Drineas et al. (2012b)

Input: X € R™? (with SVD X = UXVT), error parameter € € (0,1/2].
Output: 5, i=1,---,n.

e 1. Let II; € R"™"*™ be an € — FJLT for U, using Lemma 3 in Drineas et al. (2012b)
with r; = Q(—qle%n In —C“;;").

2. Compute I;X € R™? and its SVD, IHX = U, xZSm,xVi,x. Let R7! =
(I X)T (I, X)HT. (Here, (II;X)T = VHIX(EHIX)*IUﬁlx is the Moore-Penrose
pseudoinverse of IT;X.)

3. View the normalized rows of XR~' € R"*P as n vectors in R?, and construct
II, € RP*"™2 to be an € — JLT for n? vectors, using Lemma 1 in Drineas et al. (2012b)
with 7o = O(e 21Inn)

e 4. Construct the matrix product €2 = XRII,.

5. Forall i =1,---,n compute and return 5; = [[Q; 3.

Remark. The major difference between this algorithm and Algorithm 1 in Drineas
et al. (2012a) is step 2; while the running times of the two algorithms are the same, i.e.,
the IC scores can be computed more quickly than solving the original problem.
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The following theorem provides our main quality-of-approximation and running time
result for Algorithm 1.

Theorem B.3 Let X be a full-rank n X p matriz, with n > p; let € € (0,1/2] be an error
parameter. Then, using Algorithm 1, we have that with probability at least 0.8,

|si — 3i| < es;
holds for alli € {1,...,n}. Assuming p < n < eP, the running time of the algorithm is
O(npln (pe™t) + npe 2Inn + p3e 2(Inn)(Inpe1)).
To prove Theorem B.3, we introduce some notation. We define
w = (XTX) 1%, 4= R HTXTe;, and @ = IR HTXTe,.

Then, s; = ||u||3, 3 = ||%;]|3, and 3; = ||%;]|3. The proof of Theorem B.3 will follow from
the following two lemmas.

Lemma B.4 We assume that the same conditions of Theorem B.3 hold. Then, using
Algorithm 1, we have that with probability at least 0.8,

B\? €
i — 5| <2 — i

holds for all i € {1,...,n}, where B and b are the upper and lower bounds of eigenvalues of
the of matriz XTX /n, respectively as stated in Condition (A1) in Theorem 1.

Lemma B.5 We assume that the same conditions of Theorem B.3 hold. Then, using
Algorithm 1, we have that with probability at least 0.8,

18; — 8] < 2€8;.
holds for alli € {1,...,n}.
The proof of Lemma B.5 can be found in Section 4.2 Drineas et al. (2012a).

Proof (of Lemma B.4)
Combining the SVD of X, i.e., X = UXV7, and Eqn. (10) in Lemma 2 in Drineas
et al. (2012a), we have

§i = eiTX(f{_l)(f{_l)TXTei
= o/ U(ILU)(ILU)Ts 21, U) (11, u) T U e;.

Let the SVD of W be W = U\I,E\I,Vg, where Vg is a full rotation in p dimensions. Then,
T = Vg2 *VE. We denote I — Ve E5°VE by My. By Eqn. (9) of Lemma 2 in
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Drineas et al. (2012a), we have ||[My|l2 < 1. Hence,

1si— 5] = elux—2UTe; — /UL U) (1L, U) T ~2(1I1, U) (11, U) T U  ¢;
e/ U(Z?2 — (I, U) (I, U) T ~2(1, U) (I, U) 1) U e,

< |1, - (I, U) (I, U) TS ~2(IL U) (I, U) T8 |gs;
= |, - EVeZPVEE Ve Ve s

= [[EMgIZ Mg - Z ' MgXE — SMg X! |os;

= (IZ13IMe[3/11Z7 13 + 22 Mwll2/ 1= |2)s:
<

() (=) v )
()

This completes the proof of the lemma.

Proof (of Theorem B.3)
Combining Lemma B.4 and Lemma B.5, we have

lsi =& < lsi—38i+ 8 — & < |si — 8| +(8 — &
B\? € R
< o (BY (= tocf142(2 e
e € s 19 b s
- b 1—¢)"" b 1—c¢ !
<

@)

The theorem follows after rescaling €, thus completing the proof.

Let D be the smallest value of AMSE(B, 8,) and D be the value of AMSE(B, B) using
the proposed approximation method. The following theorem states that D is a relative-error
approximation of D.

Theorem B.6 Assume the conditions in Theorem B.3 hold. Then, by using the Algorithm
1, we have

1+4e€

1—ce¢

D<D< D
with probability at least 0.8.

The proof is almost identical to the proof of Theorem B.2, with only changes of notations,
and it is thus omitted.
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B.1 Approximations of other estimators and their relative-errors

The sampling probabilities of ICNLEV, RLNLEV, and PLNLEV estimators are propor-
tional to /T — I||sill, v1—1livTl; and /1 —||x;|, respectively. By replacing I; with [;
and s; with §; respectively, we can use Theorem B.1 and Theorem B.3 to prove that the
proposed method provides relative-error approximation for these numerators. Thus, sim-
ilar theoretical results for the quality-of-approximation can be proven for the rest of the
sampling estimators using the proposed approximation methods. We omit the details.
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