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Abstract

Electronic Health Record (EHR) data, a rich source for biomedical research, have been
successfully used to gain novel insight into a wide range of diseases. Despite its potential,
EHR is currently underutilized for discovery research due to its major limitation in the
lack of precise phenotype information. To overcome such difficulties, recent efforts have
been devoted to developing supervised algorithms to accurately predict phenotypes based
on relatively small training datasets with gold standard labels extracted via chart review.
However, supervised methods typically require a sizable training set to yield generalizable
algorithms, especially when the number of candidate features, p, is large. In this paper, we
propose a semi-supervised (SS) EHR phenotyping method that borrows information from
both a small, labeled dataset (where both the label Y and the feature set X are observed)
and a much larger, weakly-labeled dataset in which the feature set X is accompanied only
by a surrogate label S that is available to all patients. Under a working prior assumption
that S is related to X only through Y and allowing it to hold approximately, we propose a
prior adaptive semi-supervised (PASS) estimator that incorporates the prior knowledge by
shrinking the estimator towards a direction derived under the prior. We derive asymptotic
theory for the proposed estimator and justify its efficiency and robustness to prior infor-
mation of poor quality. We also demonstrate its superiority over existing estimators under
various scenarios via simulation studies and on three real-world EHR phenotyping studies
at a large tertiary hospital.

1. Zhang and Liu contributed equally to this work.

c©2022 Yichi Zhang∗, Molei Liu∗, Matey Neykov, and Tianxi Cai.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/20-290.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-290.html


Zhang∗, Liu∗, Neykov, and Cai

Keywords: High dimensional sparse regression, regularization, single index model, semi-
supervised learning, electronic health records.

1. Introduction

Electronic Health Records (EHRs) provide a large and rich data source for biomedical re-
search aiming to further our understanding of disease progression and treatment response.
EHR data has been successfully used to gain novel insights into a wide range of diseases,
with examples including diabetes (Brownstein et al., 2010), rheumatoid arthritis (Liao et al.,
2014), inflammatory bowl disease (Ananthakrishnan et al., 2014), and autism (Doshi-Velez
et al., 2014). EHR is also a powerful discovery tool for identifying novel associations be-
tween genomic markers and multiple phenotypes through analyses such as phenome-wide
association studies (Denny et al., 2010; Kohane, 2011; Wilke et al., 2011; Cai et al., 2018).

Despite its potential, ensuring unbiased and powerful biomedical studies using EHR
is challenging because EHR was primarily designed for patient care, billing, and record
keeping. Extracting precise phenotype information for an individual patient requires manual
medical chart reviews, an expensive process that is not scalable for research studies. To
overcome such difficulties, recent efforts including those from Informatics for Integrating
Biology and the Bedside (i2b2) (Liao et al., 2015; Yu et al., 2015, e.g.) and the Electronic
Medical Records and Genomics (eMERGE) network (Newton et al., 2013; Gottesman et al.,
2013) have been devoted to developing phenotyping algorithms to predict disease status
using relatively small training datasets with gold standard labels extracted via chart review.

Various approaches to EHR phenotyping have been proposed. Supervised machine learn-
ing methods have been shown to achieve robust performance across disease phenotypes and
EHR systems (Carroll et al., 2012; Liao et al., 2015). However, supervised methods typically
require a sizable training set to yield generalizable algorithms especially when the candidate
features, denoted by X, is of high dimensionality p. One approach to overcome the high
dimensionality is to consider unsupervised methods. Unfortunately, standard unsupervised
methods such as clustering are likely to fail when the dimension of X is large, but a major-
ity of the features are unrelated to the phenotype of interest and predictive of some other
underlying subgroups. Recently, unsupervised methods based on “silver standard labels”
have been proposed. These methods leverage a surrogate outcome S that is highly pre-
dictive of the true phenotype status Y , such as the count of International Classification
of Diseases (ICD) billing codes of the disease, to train the phenotyping algorithm against
the features X. Specifically, Halpern et al. (2016) and Zhang et al. (2020) utilized anchor
variables with high positive predictive value as the surrogate S to estimate Y |X under the
conditional independence assumption S ⊥⊥ X | Y . Agarwal et al. (2016) trained penalized
logistic regression on S ∼ X for phenotyping of Y against X. Chakrabortty et al. (2017)
provided theoretical justification for this strategy. They showed that a regularized estimator
constructed from an unlabeled subset consisting of those with extreme values of S can be
used to infer the direction of β under single index models S ∼ f(α

ᵀ
X, ε) and Y ∼ g(β

ᵀ
X).

Their method relies on the similarity between the directions of α and β to make efficient
estimation. However, it is not robust to poor surrogacy resulted from violation of such
assumptions. Furthermore, their method cannot be directly used to predict Y using both
S and X or accurately recover the scale of Pr(Y = 1 | S,X).
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A number of semi-supervised or weakly supervised deep learning procedures have also
been proposed recently and shown to attain better performance than the supervised coun-
terparts. For example, Ratner et al. (2017) proposed a weakly supervised approach that
trains a deep model with imperfect labels generated from user–specified label functions
from sources such as patterns, heuristics, and external knowledge bases. Wang and Poon
(2018) developed a framework for weak supervision from multiple sources by composing
probabilistic logic with deep learning. McDermott et al. (2018) designed a semi-supervised
cycle Wasserstein regression generative adversarial networks (CWR-GAN) approach using
adversarial signals to learn from unlabelled samples and improve prediction performance in
scarcity of gold-standard labels. However, it remains unclear when and how the surrogate
features, along with the unlabeled dataset can improve the prediction performance of these
deep models, due to their complex architectures.

In this paper, we propose an semi-supervised (SS) method for estimating Y | W =
(S,X

ᵀ
)
ᵀ

that borrows information from both a small labeled dataset with n realizations of
(Y,W

ᵀ
)
ᵀ

and a much larger unlabeled dataset with N observations on W, under a high
dimensional setting with N � p� n. We consider a logistic phenotype model for Y | S,X,
a single index model (SIM) for S | X, as well as a working prior assumption that S is
independent of X given Y . We obtain the estimator through regularization with penalty
functions reflecting the prior knowledge. When the prior assumption holds exactly, we
show that the unlabeled dataset can naturally be used to assist in the estimation of the
phenotype model. Allowing the prior assumption to hold approximately or to be highly
violated, our prior adaptive semi-supervised (PASS) estimator adaptively incorporate the
prior knowledge by shrinking the estimator towards a direction derived under the prior.

The proposed PASS estimator is similar to the prior LASSO (pLASSO) procedure of
Jiang et al. (2016) in that both approaches aim to incorporate prior information into the
`1 penalized estimator in a high-dimensional setting. Nevertheless, the differences are sub-
stantial and clear. Jiang et al. (2016) assumed that the prior information was summarized
into prediction values and contributed to the likelihood term. In contrast, we use prior in-
formation to guide the shrinkage and put them into the penalty term. In this sense, PASS
and pLASSO complement each other to some extent. However, as shown in both theory and
simulations, putting prior information into the likelihood term tends to lead to the “take
it or leave it” phenomenon: the usefulness of the prior information is determined based on
the overall effect of all predictors. On the other hand, by putting prior information into the
penalty term, the PASS approach provides more flexible control: it is able to scrutinize the
individual effect of each predictor. This gained flexibility can result in improved theoretical
and numerical performances.

The rest of this paper is organized as follows. We discuss the motivation, an important
special scenario and the general methodology in Section 2. We analyze the theoretical
properties of the proposed approach in Section 3, and access its finite sample performance
via simulation studies in Section 4. Furthermore, we illustrate the practical value of the
proposed approach on three real EHR datasets in Section 5. Finally, we conclude this paper
with some discussions and extensions in Section 6. All technical proofs and additional
numerical results are given in the Supplementary Materials.
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2. Methodology

2.1 Setup

We assume that the underlying data consists of N independent and identically distributed
(i.i.d.) observations {(Yi, Si,Xᵀ

i )
ᵀ

= (Yi,W
ᵀ
i )

ᵀ
, i = 1, . . . , N}, where Yi is a binary indicator

of the disease status of the ith patient, Si is a scalar surrogate variable that is reasonably
predictive of Yi chosen via domain knowledge, and Xi is a p-dimensional feature vector.
Examples of Si includes the total count of ICD codes or mentions for the disease of interest
in clinical notes extracted via natural language processing (NLP). Candidate features X
may include the ICD9 code counts for competing diagnosis, lab results, as well as NLP
mentions of relevant signs/symptoms, medications and procedures. We may also include
various transformations of original features in X to account for non-linear effects. While
{Wi, i = 1, ..., N} is fully observed, Yi is only observed for a random subset of n patients.
Hence the observed data are L ∪U , where without loss of generality, the first n observations
are assumed fully observed as L = {(Yi,Wᵀ

i )
ᵀ
, i = 1, . . . , n}, and the rest constitute the

unlabeled dataset as U = {Wi, i = n+ 1, . . . , N}.
Throughout, for a d-dimensional vector u, the `q-norm of v is ‖v‖q = (

∑d
j=1|vj |q)1/q.

The `∞-norm of v is ‖v‖∞ = max1≤j≤d|vj |. The support of v is supp(v) = {j : vj 6= 0}.
If J is a subset of {1, . . . , p}, then vJ denotes a d-dimensional vector whose jth element
is vj1j∈J , and 1B is the indicator function for set B. The independence between random
variables/vectors U and V is written as U ⊥⊥ V . We also denote the negative log-likelihood
function associated with the logistic model with `(y, η) = −yη + log(1 + eη).

2.2 Model Assumptions

To predict Y using W = (S,X
ᵀ
)
ᵀ
, we assume

Pr(Y = 1 |W) = σ(ζ0 + Sγ0 +X
ᵀ
β0) = σ(ϑ

ᵀ
0
~W) with ϑ0 = (ζ0, γ0,β

ᵀ
0)

ᵀ
, (MY )

where for any vector w, ~w = (1,w
ᵀ
)
ᵀ
, and σ(t) = et/(1 + et). To leverage the data in U ,

we further assume a single index model (SIM) for S |X, i.e. there exists α0 ∈ Rp such that

S = f(X
ᵀ
α0, ε), with some ε ⊥⊥X and f satisfying E{f2(X

ᵀ
α0, ε)} <∞, (MS)

where X
ᵀ
α0 is a single linear combination of the features X and f is an unknown link

function. Here ζ0, γ0, β0 and α0 are parameters to be estimated where only the direction of
α0 is identifiable and its norm does not affect our construction introduced below. If α0 and
β0 are similar in certain ways, one would expect that the unlabeled dataset U may be used
to improve upon the standard supervised estimator for β0 using L alone. For example, if
S is a noisy representation of Y with random measurement error, then it is reasonable and
common in the EHR literature (Hong et al., 2019; Zhang et al., 2020, e.g.) to assume

X ⊥⊥ S | Y. (Cprior)

Note that a similar conditional independence assumption to (Cprior) was imposed between
the input and the pretext target given the label, in the context of self-supervised learning
to demonstrate its advantage (Lee et al., 2020). Under (Cprior), we have Proposition 1 with
proof given in Supplementary Materials.
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Proposition 1. Under (MY ), (MS), (Cprior), and assuming E(XX
ᵀ
) is positive–definite,

and it holds that: (C1) for any two vectors a1,a2, E(X
ᵀ
a2 | Xᵀ

a1) is linear in X
ᵀ
a1,

there exist scalars k1, k2 ∈ R such that α0 = k1β0 and α∗ = k2β0 where

(τ∗,α∗) = arg min
τ,α

E(S − τ −Xᵀ
α)2.

Remark 1. Condition (C1) holds for elliptical distributions including multivariate normal.
By Diaconis and Freedman (1984) and Hall and Li (1993), this assumption tends to hold
for non-elliptical design when the dimensionality is high. Specifically, one can show that
under mild regularity conditions, for two projection vectors a1 and a2 uniformly randomly
drawn from Sp−1 = {v ∈ Rp−1 : ‖v‖2 = 1}, the pair (X

ᵀ
a2,X

ᵀ
a1) weakly converges

to a bivariate normal distribution with high probability, and thus E(X
ᵀ
a2 | Xᵀ

a1) is at
least approximately linear in X

ᵀ
a1; see Theorem 1.1 of Diaconis and Freedman (1984) and

equation (1.9) of Hall and Li (1993).

Proposition 1 hinges on the main result of Li and Duan (1989) that when the features
X satisfy (C1), the direction of the coefficients of a SIM could be estimated using least
squares regression for the response against X. It suggests that U can greatly improve the
estimation of β0 under (Cprior) because the phenotype model (MY ) may be rewritten as
logit Pr(Y = 1|W) = ζ + Sγ + ρX

ᵀ
α for some ρ. Under this model, a simple SS estimator

for ζ, γ and β in (MY ) can be obtained as ζ̂, γ̂ and ρ̂α̂, where

(ζ̂, γ̂, ρ̂)
ᵀ

= arg min
ζ,γ,ρ

n∑
i=1

`(Yi, ζ + γSi + ρX
ᵀ
i α̂), (τ̂ , α̂

ᵀ
)
ᵀ

= arg min
τ,α

N∑
i=1

(Si − τ −Xα)2.

By doing so, the direction of the high dimensional vector β is estimated based on the entire
L ∪ U , and only the parameters (ζ, γ, ρ)

ᵀ
are estimated using the small labeled dataset

L . Hereafter we shall refer to this SS estimator derived under (Cprior) as SSprior.
Nevertheless, SSprior is only valid when (Cprior) and (C1) holds exactly. Our goal is

to develop a more robust SS estimator under (MY ) and (MS) that can efficiently exploit
U when (Cprior) and (C1) may only hold approximately. In this more general setting, a
desirable SS estimator should improve upon the standard supervised estimator when the
directions of α0 and β0 are similar in their magnitude and/or support. In addition, it
should perform similarly to the supervised estimator when the two directions are not close.
We shall now detail our PASS estimation procedure which automatically adapts to different
cases as reflected in the observed data.

2.3 Prior Adaptive Semi-Supervised (PASS) Estimator

With L only, a supervised estimator for β can be obtained via the standard `1-penalized
regression:

ϑ̆ = (ζ̆, γ̆, β̆
ᵀ
)
ᵀ

= arg min
ϑ

1

n

n∑
i=1

`(Yi,ϑ
ᵀ ~Wi) + λ‖β‖1. (1)

With properly chosen λ, the consistency and rate of convergence for ϑ̆ has been established
(van de Geer, 2008). To improve the estimation of β through leveraging U , we note that
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when (Cprior) holds approximately, the magnitude of β0 − ρα0 is small for some ρ, and the
support of β0 − ρα0 is of small size as well.

To incorporate such prior belief on the relationship between α0 and β0, we construct
the penalty term

min
ρ
{λ1‖(β − ρα0)A0‖1 + λ2‖(β − ρα0)Ac

0
‖1},

where A0 = supp(α0), and λ1, λ2 > 0 are tuning parameters. Since (α0)Ac
0

= 0, the penalty
term is equivalent to

λ1{min
ρ
‖(β − ρα0)A0‖1}+ λ2‖βAc

0
‖1. (2)

The first term in the penalty measures how far β is from the closest vector along the α0

direction, and hence encourages smaller magnitude of β − ρα0. The second term shrinks
βAc

0
towards 0, which reflects our prior that predictors irrelevant to S are likely to be

irrelevant to Y as well. The tuning parameters λ1, λ2 control the strength of the belief
imposed. When they are sufficiently large, β will be forced to be a multiple of α0 and thus
it ends up with the same estimator as in the case where (Cprior) holds.

Since we have N � p samples to estimate α0, we use the adaptive LASSO (ALASSO)
penalized least square estimator α̂ (Zou, 2006; Zou and Zhang, 2009), where

τ̂ , α̂ = arg min
τ,α

1

N

N∑
i=1

(
Si − τ −X

ᵀ
i α
)2

+ µ

p∑
j=1

ω̂j |αj |,

where ω̂j = |α̂init,j |−ν for some constant ν > 0, α̂init = (α̂init,1, ..., α̂init,p)
ᵀ
,

τ̂init, α̂init = arg min
τ,α

1

N

N∑
i=1

(Si − τ −X
ᵀ
i α)2 + µinit‖α‖1,

µinit and µ are tuning parameters that can be chosen via the cross-validation or Bayesian
information criterion (BIC). Here, α̂ is actually an estimator of α∗, which has the same
direction as α0 under the conditions in Proposition 1.

Appending the penalty term (2) to the likelihood and replacing α0 with its estimate α̂,
we propose to estimate ϑ0 = (ζ0, γ0,β

ᵀ
0)

ᵀ
by

ϑ̂ = (ζ̂, γ̂, β̂
ᵀ
)
ᵀ

= arg min
ϑ

1

n

n∑
i=1

`(Yi,ϑ ~Wi) + λ1{min
ρ
‖(β − ρα̂)Â‖1}+ λ2‖βÂc‖1,

where Â = supp(α̂). The estimators can be equivalently obtained as

ρ̂, ϑ̂ = arg min
ρ,ϑ

1

n

n∑
i=1

`(Yi,ϑ ~Wi) + λ1‖(β − ρα̂)Â‖1 + λ2‖βÂc‖1 (3)

The impact of the tuning parameters λ1, λ2 can be understood from a bias-variance tradeoff
viewpoint. When λj ’s are large, β̂ tends to be a multiple of α̂ and thus is an estimator
with high bias and low variance. In contrast, when λj ’s are small, the likelihood term based

on the labeled dataset L is the dominant part, and hence β̂ will have low bias and high
variance. By varying the values of λj ’s, we are able to obtain a continuum connecting these
two extremes. In practice, λ1 and λ2 can be chosen via standard data-driven approaches
such as cross-validation.
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2.4 Computation Details

The minimization in (3) can be solved with standard software for LASSO estimation. Let
δ = β − ρα̂. We can re-parametrize the expression above in terms of ρ, ζ, γ, and δ as

ζ̂, γ̂, ρ̂, δ̂ = arg min
ζ,γ,ρ,δ

1

n

n∑
i=1

`(Yi, ζ + Siγ + ρX
ᵀ
i α̂+X

ᵀ
i δ) + λ1(‖δÂ‖1 + κ‖δP\Â‖1),

where P = {1, . . . , p} and κ = λ2/λ1. This is a typical LASSO problem with covariates
(1, Si,X

ᵀ
i α̂,X

ᵀ
i )

ᵀ
, parameters (ζ, γ, ρ, δ)

ᵀ
, and a weighted `1 penalty on the parameters.

Hence it can be solved by essentially any algorithm for ALASSO fitting. In this paper, we
use the R package glmnet (Friedman et al., 2010) to compute ζ̂, γ̂, ρ̂, and δ̂, and construct
the final estimator for ϑ0 as ϑ̂ = (ζ̂, γ̂, β̂

ᵀ
)
ᵀ

with β̂ = δ̂ + ρ̂α̂.

3. Theoretical Properties

In this section, we present non-asymptotic risk bounds for the PASS estimator. We also
make theoretical comparisons with the supervised LASSO estimator to shed light on when
PASS outperforms the LASSO and where such improvement comes from.

3.1 Notations

A random variable V is sub-Gaussian(τ2) if E{exp(λ|V |)} ≤ 2 exp(λ2τ2/2) holds for all
λ > 0. Throughout, we define

U = (X
ᵀ
, 1)

ᵀ
, K = E

(
UU

ᵀ
), ξ = (α

ᵀ
, τ)

ᵀ
,Zα = (X

ᵀ
,X

ᵀ
α, S, 1)

ᵀ
,G = E

(
Zα∗Z

ᵀ
α∗
)
,

θ = (δ
ᵀ
, ρ, γ, ζ)

ᵀ
, H = E

[
σ(Z

ᵀ
α∗θ0){1− σ(Z

ᵀ
α∗θ0)}Zα∗Z

ᵀ
α∗
]
,

where α∗ is given by (α∗
ᵀ
, τ∗)

ᵀ
= ξ∗ = arg minξ E(S − Uᵀ

ξ)2, and Θ0 = {θ : δ + ρα∗ =
β0, ζ = ζ0, γ = γ0}. Denote by B0 = supp(β0), A∗ = supp(α∗) and q∗ = |A∗|. We
assume ‖α∗‖2 = 1 without loss of generality since α∗ is used to recover only the direction
of β0 in SIM and one can change ρ correspondingly to make any β = δ + ρα∗ invariant to
‖α∗‖2. Note that under (MY ), any θ0 ∈ Θ0 minimizes E{`(Y,Zᵀ

α∗θ)}, and due to perfect
multicollinearity in Zα∗ , θ0 is not unique. However, any θ0 ∈ Θ0 corresponds to the unique
β0 = δ0 + ρ0α

∗ and thus Z
ᵀ
α∗θ0 = ζ0 + Sγ0 + X

ᵀ
β0 = ϑ

ᵀ
0
~W is well-defined. Moreover,

any quantity depending on θ0 through Z
ᵀ
α∗θ0 is well-defined. Since the main results in this

section depend on θ0 solely through Z
ᵀ
α∗θ0, we will use θ0 to represent any θ ∈ Θ0 for

simplicity.

For θ = (δ
ᵀ
, ρ, γ, ζ)

ᵀ
, define Ω(θ) = λ0(|ρ|+ |γ|+ |ζ|) + λ1‖δA∗‖1 + λ2‖δP\A∗‖1, ∆α =

2µinitq
∗/ϕ2 and Π(θ) = |ρ|, where ϕ is a constant defined by Assumption (A4) in Section

S2.1 of the Supplement Material, and λ0 = 36B{log(6/ε)/n}1/2. To introduce the oracle
θ∗, we define the oracle risk function as:

E (θ,S+,S-) =E `(Y,Zᵀ
α∗θ)− E `(Y,Zᵀ

α∗θ0)

+ 256
κ(S+)2|S+|
$ψ(S+)

+ 8λ1‖θS-∩A∗‖1 + 8λ2‖θS-∩(P\A∗)‖1 + 8λ1∆αΠ(θ),
(4)
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where

ψ(S+) = inf
v:Ω(vS- )≤3Ω(vS+ )

v
ᵀ
Gv

vᵀS+vS+
,

κ(S+) =


λ0, if S+ ∩ A∗ = ∅ and S+ ∩ (P \ A∗) = ∅
λ2, if S+ ∩ A∗ = ∅ and S+ ∩ (P \ A∗) 6= ∅
+∞, if S+ ∩ A∗ 6= ∅

Define θ∗ = (δ∗
ᵀ
, ρ∗, γ∗, ζ∗)

ᵀ
, S∗+ and S∗- as the solution to

arg min
{θ,S+,S-}:S+∩S-=∅, S+∪S-=supp(θ)∪P, S+⊇P, and ‖G1/2(θ−θ0)‖2≤η,

E (θ,S+,S-)

where P = {p + 1, p + 2, p + 3}, and η is a constant as defined by Assumption (A3) in
Section S2.1 of the Supplement. Let S∗ = S∗+ ∪ S∗- = supp(θ∗) ∪ P, κ∗ = κ(S∗+ ), and
β∗ = δ∗ + ρ∗α∗. Intuitively, one may view S+ as the union set of unpenalized predictors
and the predictors with large coefficients but not recovered by A∗. While S- can be viewed
as the union set of predictors with small nonzero coefficients and the predictors recovered
by A∗. Partitioning the support of θ into S+ and S- is inspired by Bühlmann and Van
De Geer (2011, Section 6.2.4), which leads to a refined bound.

3.2 Main result

We first establish the risk bounds for the PASS estimator in the following theorem. Its
proof can be found in Section S2 of the Supplementary Materials.

Theorem 1. For any ε > 0, if the assumptions (A1)–(A8) (introduced in Section S2.1
of the Supplementary Materials) hold, the following inequalities hold simultaneously with
probability at least 1− 10ε:

Excess risk: E `(Y,Zᵀ
α̂θ̂)− E `(Y,Zᵀ

α∗θ0) ≤ Ξ,

Linear prediction error: E(Z
ᵀ
α̂θ̂ −Z

ᵀ
α∗θ0)2 ≤ Ξ/$,

Probability prediction error: E{σ(Z
ᵀ
α̂θ̂)− σ(Z

ᵀ
α∗θ0)}2 ≤ Ξ/$,

where $ is a positive constant defined in (A2), Ξ = 64E (θ∗,S∗+ ,S∗- ), and E is an oracle
risk function as defined in equation (4).

Remark 2. As detailed in Section S2.1 of the Supplement Material, Assumptions (A1)–
(A8) are imposed on tail behaviour of the regression residuals, regularity of the design matrix,
minimum signal strength of α∗, sample sizes and rates of the tuning parameters. These
assumptions are commonly used conditions in the theoretical literature of LASSO, such as
the sub-Gaussian variable condition and the restricted eigenvalue condition; see e.g. van de
Geer and Bühlmann (2009); Bickel et al. (2009); Bühlmann and Van De Geer (2011).

Remark 3. The last term of the risk bound E (θ∗,S∗+ ,S∗- ) is of order O(λ1∆α|ρ∗|), which
reflects the estimation error in α̂. Following Lemma S8 in the Supplement, one can
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show that ∆α = Op(N
−1/2|A∗|). All the other terms in Ξ describe the estimation er-

ror in θ̂ as if α̂ is replaced with α∗. When N is sufficiently large, O(λ1∆α|ρ∗|) is typi-
cally negligible relative to other terms. Specifically, if N � n|A∗|2 log(p), O(λ1∆α|ρ∗|) =
O({Nn}−1/2 log(p)1/2|A∗|) = o(n−1). In general, as long as N � max(n, p) and α∗ is not
much denser than β0 as in the typical EHR application cases, O(λ1∆α|ρ∗|) is dominated
by the risk of the supervised LASSO estimator and even the supervised oracle estimator
obtained under the knowledge of supp(β0).

To gain a better understanding of how the key quantity Ξ in Theorem 1 changes with
respect to the similarity between the prior information α∗ and the target β0, we shall discuss
several specific cases in Section 3.3, based on the risk bound derived in Theorem 1.

3.3 Specific Cases

Following Remark 3, we focus our discussions on the settings where N is sufficiently large
such that the last term of the risk bound is negligible. We consider three different scenarios
as illustrated in Figure 1: (Case 1) α∗ recovers both the support and direction of β0; (Case
2) α∗ almost recovers the support of β0 but has a substantially different direction from
β0; (Case 3) α∗ fails to recover the support of β0 (let alone its direction) and provides
poor information. These three cases depict perfect, good, and poor qualities of the prior
information α∗ in recovering the support and direction of β0. Next, we rigorously charac-
terize the three cases by properly specifying the parameters ρ, δ, S+, and S-, and derive the
convergence rate of Ξ, the risk bound of the PASS estimator, based on Theorem 1.

Case 1. Let ρ = minρ‖β0 − ρα∗‖1, δ = β0 − ρα∗, θ = (δ
ᵀ
, ρ, γ0, ζ0)

ᵀ
, S+ = P and

S- = supp(δ0). If α∗ successfully recovers the support and direction of β0 (see the left panel
in Figure 1), S- ≈ ∅ and ‖δ0‖1 ≈ 0. Since ‖G1/2(θ − θ0)‖2 = 0 and S+ ∩ A∗ = ∅, we have
Ξ = O{E (θ,S+,S-)} by the definition of θ∗. Hence by Theorem 1, the excess risk of θ̂

Ξ = Op(λ
2
0 + λ1‖δS-∩A∗‖1 + λ2‖δS-∩A∗c‖1) ≈ Op(λ2

0) = Op(n
−1),

recalling that λ0 = O(n−1/2).

As a standard result (Negahban et al., 2009), the rate of the excess risk of the supervised
LASSO estimator is either Op{n−1 log(p)|B0|} or O{n−1/2 log(p)1/2‖β0‖1}. These two rate
bounds are established under different sparsity norms of β0, and generally comparable,
e.g. when order of average magnitude of the non-zero entries in β0 is n−1/2 log(p)1/2. In
comparison with them, Op(n

−1), the risk rate of PASS in Case 1, is much more refined.
Further, Op(n

−1) is actually the rate of the estimator of a low (fixed) dimensional logistic
regression. Thus, if β0 is very close to a multiple of α∗, PASS could outperform the vanilla
LASSO and be comparable with a low dimensional regression in terms of the convergence
rate. This big gain is owing to the use of N unlabeled dataset to obtain the direction of β0,
and thus reduce the high dimensional regression to a low dimensional one where only the
intercept and the scalar of β0 need to be estimated.

Case 2. Consider the same choice of θ, S+ and S- as in Case 1. If α∗ recovers the support
but not the direction of β0 (see the middle of Figure 1), we will only have ‖δS-∩A∗c‖1 ≈ 0

9
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but not ‖δ0‖1 ≈ 0. Then by Theorem 1, the excess risk of PASS is

Ξ = Op(λ
2
0 + λ1‖δS-∩A∗‖1 + λ2‖δS-∩A∗c‖1) ≈ Op{n−1/2 log(q∗)1/2‖δS-∩A∗‖1},

recalling that λ1 = O{n−1/2 log(q∗)1/2}.

In Case 2, the convergence rate of the excess risk of PASS is still better than that of the
supervised LASSO estimator when q∗ � p:

O{n−1/2 log(q∗)1/2‖δS-∩A∗‖1} � O{n−1/2 log(p)1/2‖β0‖1},

by ‖δS-∩A∗‖1 ≤ minρ‖β0 − ρα∗‖1 ≤ ‖β0‖1. Namely, if α∗ might not recover the direction
of β0 very well but the prior information A∗ = supp(α∗) is sparse and covers supp(β0)
successfully, which is reflected as S+ = P, the PASS estimator still benefits from the prior
information. This is because recovering the support of β0 reduces the dimensionality of the
empirical errors needed to be controlled from p to q∗ = |A∗|. In this case, it is also interesting
to compare the proposed PASS estimator with the prior LASSO (pLASSO) procedure of
Jiang et al. (2016). When supp(α∗) and supp(β0) are close but the directions of α∗ and
β0 are quite different, the pLASSO procedure is unable to utilize this information and will
only result in the same convergence rate as supervised LASSO, as shown to be essentially
slower than that of PASS.

Case 3. Let ρ = 0, δ = β0, θ = (δ
ᵀ
, ρ, γ0, ζ0)

ᵀ
, S+ = P ∪ (B0 \ A∗) and S- = B0 \ S+.

If α∗ fails to recover the support of β0, i.e. A∗ ∩ B0 ≈ ∅ and ‖β0,A∗∩B0‖1 ≈ 0, we have
‖δS-‖1 ≤ ‖δA∗‖1 ≈ ‖β0,A∗∩B0‖1 ≈ 0. Then again using Theorem 1,

Ξ = O(λ2
2|S+|+ λ1‖δS-∩A∗‖1 + λ2‖δS-∩A∗c‖1) ≈ Op{n−1 log(p)|B0|},

recalling that λ2 = O{n−1/2 log(p)1/2}.

In Case 3, the excess risk of the PASS is of the same order as that of supervised LASSO.
Therefore the PASS approach is robust against low-quality prior information that recovers
neither the direction nor the support of β0. This benefit is a result of using a data-adaptive
parameter ρ to control the influence of the prior information on the estimator.

4. Simulation Studies

4.1 Main setups

We conducted extensive simulation studies to examine the finite-sample performance of the
PASS estimator and to compare it with existing approaches. We first considered the case
where the logistic model for Y | S,X is correctly specified, S |X follows an SIM, and X is
near elliptical, but the similarity between α0 and β0 varies. Since EHR features are often
zero inflated and skewed count variables, we generated X500×1 from

Xi = h(Zi), Zi ∼ N(0,ΣZ), h(t) = log(1 + [et]),

10
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Figure 1: Examples of the coefficients β0 and α∗ in the three cases of Section 3.3. Labels
S+, S−, and A∗ in the diagrams represent S+ \ P, S-, and A∗ as chosen and de-
fined in Cases 1–3. β0 and α∗ are aligned for comparison of their directions and
supports. Presented below are scatter plots for σ−1{Pr(Y = 1 | S,X)} against S
of the simulated samples generated under Cases 1–3.
Case 1 (presented in the left panel): α∗ recovers both the support and direction
of β0. σ−1{Pr(Y = 1 | S,X)} shows strong collinearity with S. PASS largely
outperforms supervised LASSO and has the same convergence rate as the low
dimensional regression.
Case 2 (middle): α∗ (nearly) recovers the support but not the direction β0.
σ−1{Pr(Y = 1 | S,X)} shows moderate collinearity with S. PASS still outper-
forms both supervised LASSO and pLASSO in terms of convergence rate.
Case 3 (right): α∗ fails to recover the support of β0. σ−1{Pr(Y = 1 | S,X)}
shows weak collinearity with S. PASS is of the same convergence rate as super-
vised LASSO.
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where [u] denotes the integer nearest to u, ΣZ = (σi,j)
p
i,j=1 and σi,j = 4(0.5)|i−j|. Here

[eZij ] mimics the skewed raw EHR feature, which is typically transformed via t→ log(1+ t)
prior to model fitting. We then generated the surrogate S from a SIM of X:

Si = h(1 +X
ᵀ
i α0 + εi), with εi ∼ N(0, 22).

Following the model assumption (MY ), the disease status Yi was generated from

σ−1{Pr(Yi = 1 |Wi)} = −4 + 0.5Si +X
ᵀ
i β0.

To mimic different qualities of the prior information one could encounter in practice, we
design six scenarios with different similarities between the true β0 and α0:

I : α0 = (a
ᵀ
1,a

ᵀ
2,0

ᵀ
p−10)

ᵀ
, β0 = 1.5(a

ᵀ
1,a

ᵀ
2,0

ᵀ
p−10)

ᵀ
;

II : α0 = (a
ᵀ
1,a

ᵀ
2,0

ᵀ
p−10)

ᵀ
, β0 = 1.5(a

ᵀ
1 + d

ᵀ
1,a

ᵀ
2 + d

ᵀ
2,0

ᵀ
p−10)

ᵀ
;

III : α0 = (a
ᵀ
1,a

ᵀ
2,a

ᵀ
2,a

ᵀ
2,0

ᵀ
p−20)

ᵀ
, β0 = 1.5(a

ᵀ
1 + d

ᵀ
1,a

ᵀ
2 + d

ᵀ
2,0

ᵀ
p−10)

ᵀ
;

IV : α0 = (a
ᵀ
1,0

ᵀ
p−5)

ᵀ
, β0 = 1.5(a

ᵀ
1 + d

ᵀ
1,a

ᵀ
2 + d

ᵀ
2,0

ᵀ
p−10)

ᵀ
;

V : α0 = (a
ᵀ
1,a

ᵀ
2,0

ᵀ
p−10)

ᵀ
, β0 = 1.5(a

ᵀ
2,a

ᵀ
1,0

ᵀ
p−10)

ᵀ
;

VI : α0 = (a
ᵀ
1,a

ᵀ
2,0

ᵀ
p−10)

ᵀ
, β0 = 1.5(a

ᵀ
2,05,a

ᵀ
1,0

ᵀ
p−15)

ᵀ
.

where

a1 = (0.5, 1,−0.8, 0.6, 0.2)
ᵀ
, d1 = (−0.05,−0.5, 1.4, 0.5,−0.6)

ᵀ
,

a2 = (0.1,−0.2,−0.2, 0.2, 0.7)
ᵀ
, d2 = (0.02, 0.05, 0.02,−0.02,−0.05)

ᵀ
.

Our specifications of β0 and α0 are motivated by the three key specific cases introduced in
Section 3.3 and illustrated in Figure 1. Scenario I is the ideal case where β0 and α0 have
identical direction. In Scenario II, most of the components of β0 differ slightly from a scalar
multiple of α0, while a few components differ substantially. Scenarios I and II are designed
to examine the performance of PASS estimator when the prior information is highly or
somewhat reliable. In Scenario III, α0 is denser than β0 and contains quite a few weak
signals. On the contrary, in Scenario IV β0 is denser than α0. In Scenario V, the magnitude
of α0 and β0 are quite different, whereas they still share the same support. Scenarios III, IV
and V are designed to examine the performance of PASS estimator with respect to different
degrees of accuracy of the support information. In Scenario VI, both the magnitude and
the support of α0 and β0 differs substantially, which means the unlabeled dataset provides
little information. This scenario allows us to see whether the PASS estimator is robust
against unreliable prior information. See Figure 2 for a visualization of β0 and ρα0 across
different scenarios.

We compare PASS to following existing methods: (1) supervised LASSO penalized
logistic regression with n training samples (LASSOn); (2) supervised ALASSO penalized
logistic regression with n training samples, denoted by ALASSOn; (3) the SSprior estimator
as described in section 2.2; and (4) two variants of pLASSO estimators as proposed in
Jiang et al. (2016). For pLASSO, we fit a penalized logistic model with an LASSO penalty
imposed on predictors outside supp(α̂), as in equation (8) of Jiang et al. (2016), and then
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Figure 2: Supports and values of the coefficients β0 and 1.5α0 under Scenarios I–VI intro-
duced in Section 4.1. Only those indices j satisfying β0,j 6= 0 or α0,j 6= 0 are
shown in the plots.

use the predicted probability from that model as Y p
i in equation (7) of Jiang et al. (2016),

denoted by pLASSO1; (2) use the predicted probability given by the SSprior approach as
Y p
i in equation (7) of their paper, denoted by pLASSO2.

Throughout, we let N = 10000 and let ν = 1 in the ALASSO weights. We use Bayesian
information criterion (BIC) to select µinit and µ in the estimation of α due to large N ,
and use 10-fold cross-validation to select λ1, λ2 for the estimation of β, so that the pheno-
type model is tuned towards prediction performance. We quantify the average prediction
performance of the estimated linear score, ϑ̃

ᵀ ~W, with ϑ̃ obtained via different methods
in an independent test dataset with size 10000. For each choice of ϑ̃

ᵀ ~W, we consider the
area under the receiver operating characteristic curve (AUC) for classifying Y , the excess
risk (ER) as defined in Section 3, and the mean squared error of the predicted proba-
bilities (MSE-P) which is the mean squared differences between the predicted probability
and the true probability. We summarize results based on 1000 simulated datasets for each
configuration.
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Figure 3: AUC (left), ER (middle) and MSE-P (right) evaluated on the test set for simu-
lation studies under Scenarios I–VI. Outliers are not drawn. Mean performance
of the PASS approach are marked using dashed lines for ease of comparison. The
size of the labeled dataset is fixed at n = 100.
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In Figures 3, we compare prediction measures for estimators obtained with n = 100. In
Scenario I where the directions of β0 and α0 coincide, the SSprior approach performs the
best as expected, yet the proposed PASS method attained very similar accuracy followed
by pLASSO2 which performed only slightly worse. When the directions of β0 and α0 are
somewhat different as in Scenario II, the SSprior and the pLASSO estimators deteriorated
quickly. In contrast, the PASS estimator maintains high accuracy and outperforms all com-
peting estimators substantially. We observe qualitatively similar patterns for Scenarios III
and IV under which α0 and β0 have somewhat different support. No matter whether α0

is denser than β0 as in Scenario IV, or β0 is denser than α0 as in Scenario V, the PASS
method consistently outperforms the supervised estimators. Additionally, the performances
of the SSprior and pLASSO approaches are not quite satisfactory. In Scenario V, β0 and α0

have the same support but are quite different in terms of magnitude. The proposed method
managed to utilize the same-support information, whereas the pLASSO approaches failed
to do so. Finally, the goal of Scenario VI is to examine the robustness of the methods when
β0 and α0 differs a lot, possibly due to the use of an inappropriate surrogate. The PASS
estimator performs similarly to the supervised estimators, indicating that our procedure is
indeed adaptive to how well the data supports the prior assumption. Across all scenarios,
the ALASSO approach performs slightly worse than LASSO, possibly due to the presence
of some small nonzero coefficients in β0.

In Figure 4, we present the AUC, ER and MSE-P of the PASS estimator trained with
n = 100 and the supervised LASSO estimator with varying label size. In Scenario I where
the prior assumption holds exactly, PASS100, the PASS approach with 100 labeled samples,
even outperforms LASSO400, the LASSO approach with 400 labeled samples. When the
prior assumption holds approximately as in Scenarios II through V, PASS100 consistently
outperforms LASSO150, and achieves similar performance as LASSO200, which requires
twice as many labels. Finally, in Scenario VI where the prior information is highly inaccu-
rate, the PASS method maintains comparable performance against LASSO100.

4.2 Efficiency and Robustness Evaluations under Mis-specifications

We conducted simulation studies under three additional scenarios to further investigate
the efficiency and robustness of PASS when the model assumptions and elliptical design
assumptions are violated. We again set p = 500 and generate Xi = 2Φ(Zi) − 1, where
Φ(·) is the cumulative distribution function of the standard normal, Zi = (Zi1, . . . , Zip)

ᵀ ∼
N(0,Σ′Z), Σ′Z = (σ′i,j)

p
i,j=1, σ′i,j = (0.5)|i−j| if i = j or both i and j are ≤ 20 or both i

and j are > 20 and σ′i,j = 0 otherwise. We make Σ′Z block-diagonal for the convenience
of obtaining the population solution of β and α through the best logistic or least square
approximation under model mis-specifications. In real EHR studies, a paradigm of data
generation is that the features X, e.g. some genetic variants, precedes the disease status
Y , and Y precedes some clinical surrogate S, e.g. the count of ICD codes associated with
the disease. To mimic this scenario, we generated Yi and Si from the following models:

Yi = I{(0.8, 1,−1, 0.8, 0.4,0
ᵀ
p−5)Xi + εyi ≥ 0}, εyi ∼ N(0, 1),

Si = µYi + η
ᵀ
1Xi + Yiη

ᵀ
2Xi + εsi, εsi ∼ N(0, 1).
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Figure 4: AUC (left), ER (middle) and MSE-P (right) evaluated on the test set for simu-
lation studies under Scenarios I–VI. Outliers are not drawn. Mean performance
of the PASS approach are marked using red dash lines for ease of comparison.
The size of the labeled dataset is n = 100 for PASS, while it varies for LASSO,
as indicated in the subscripts.
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Assumptions (Cprior) and (MS) hold when η1 = η2 = 0, and would be severely violated
when η1 and η2 are large. We design three scenarios with η1 and η2 representing different
degrees of violation on the surrogate assumptions:

i: µ = 1, and η1 = η2 = 0;

ii: µ = 1.5, η1 = (a
ᵀ
3,0

ᵀ
p−5)

ᵀ
, and η2 = (d

ᵀ
3,0

ᵀ
p−5)

ᵀ
;

iii: µ = 2, η1 = (a
ᵀ
3,a

ᵀ
3,a

ᵀ
3,0

ᵀ
p−15)

ᵀ
, and η2 = (d

ᵀ
3,d

ᵀ
3,d

ᵀ
3,0

ᵀ
p−15)

ᵀ
,

where a3 = (0.6,−0.4, 0.4, 0.5,−0.5)
ᵀ

and d3 = (0.3, 0.4, 0.6,−0.5,−0.5)
ᵀ
. Here µ depict the

marginal effect of Yi on Si, and are set to make the AUC of target models at a similar level
across the three scenarios. Across all scenarios, Pr(Yi = 1 | Si,Xi) is no longer a parametric
logistic model, i.e. (MY ) is misspecified. Our goal is to estimate the limiting coefficients
ζ0, γ0,β0 defined as the minimizor of E `(Yi, ζ+γSi+X

ᵀ
i β). Benchmark methods, and their

implementation, tuning, and evaluation procedures are the same as in Section 4.1, except
that we implement supervised LASSO with n ranging from 100 to 700.

In Figure 5, we present AUC, ER and MSE-P of the methods under Scenarios i–iii. In
Scenario i, PASS has similar performances as the semi-supervised benchmarks SSpriorand
pLASSO, and all the semi-supervised estimators significantly outperform the two supervised
estimators since (Cprior) holds and α∗ basically recovers the direction of β0 well. Among
the semi-supervised estimators, the SSpriorand pLASSO2 estimators have a slight advantage
with a smaller variation than expected since both heavily rely on the prior information which
is of high quality in this setting. In Scenario ii, the key assumption (Cprior) is violated, which
drastically impacts the performance of SSpriorand pLASSO2. On the other hand, PASS and
pLASSO1 still effectively leverage the imperfect information from α∗ to approximately
recover the support of β0, and thus outperform SSprior, pLASSO2, and the supervised
methods. In Scenario iii, η1 and η2 become denser than those in Scenario ii. This can make
the recovery of supp(β0) using supp(α∗) less accurate, and interestingly, PASS outperforms
all methods including pLASSO1 that also leverages supp(α∗). In all the three scenarios,
PASS significantly outperforms supervised LASSO using the same number or even 2-3 more
times the number of samples, which displays a large gain of using the unlabelled dataset to
assist the regression. Finally, the results demonstrate that our method can still efficiently
leverage the prior information from S in estimating the target parameters when S | Y,X
highly depends on X so Cprior is violated, (MY ) is misspecified, and the design is non-
elliptical.

5. Application to EHR Phenotying

We examine the performance of PASS along with other approaches in three real world EHR
phenotyping studies with the goal of developing classification models for the diseases of
interest. All studies are performed at a large tertiary hospital system with EHR spanning
over multiple decades. Each study has n0 labeled observations for algorithm training and
validation. We consider three choices of training size n no more than n0/2 in all examples.
First, we randomly split the labelled samples into four folds of equal sizes. Then we pick
each fold as the validation set, sample n training labels from the other three folds for 20
times, train and validate the algorithms, and finally average the evaluation metrics and their
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Figure 5: Evaluation metrics on the test set for simulation studies under Scenarios i–iii
introduced in Section 4.2. Outliers are not drawn. Mean performance of the
PASS approach are marked using red dash lines for ease of comparison. On the
left panel, we present the evaluation metrics of all methods for comparison when
n = 100. On the right panel, we compare the performance of PASS when n = 100
with supervised LASSO obtained using labelled samples with various n (from 100
to 700).
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standard errors over the validation results on the four folds. We replicate this procedure 10
times and report the average performance.

Data Example 1 (CAD Phenotyping). The goal of this study is to identify patients with
coronary artery disease (CAD) based on their EHR features. The study cohort consists
of N = 4164 patients, out of which a random subset of n0 = 181 patients have their true
CAD status annotated via chart review by domain experts. We use the sum of the counts
for the CAD ICD code and NLP mention of CAD as the surrogate. There are p = 585
additional EHR features consisting of the total count of all ICD codes as a healthcare
utilization measure, 10 ICD codes related to CAD, and 574 NLP variables. For the size
of training labels, we consider n = 50, 70, 90. This de-identified dataset has been analyzed
in previous studies (Zhang et al., 2019, e.g.) and is publicly available online: https:

//celehs.github.io/PheCAP/articles/example2.html.

Data Example 2 (RA Phenotyping). Similar to the CAD phenotyping study, the goal is
to identify patients with rheumatoid arthritis (RA) based on their EHR features. There
are N = 46114 patients in total and out of which, n0 = 435 patients have their RA status
annotated. Again, we choose the sum of the ICD code and NLP mention of RA as the
surrogate. The p = 924 additional EHR features consist of the healthcare utilization and
923 NLP variables potentially predictive of RA. For the size of training labels, we consider
n = 50, 125, 200.

Data Example 3 (Depression Phenotyping). The goal is to identify patients with de-
pression based on their codified EHR features. There are N = 9474 patients in total and
n0 = 236 labeled observations. The surrogate is chosen as the counts of depression ICD
code. There are p = 231 additional EHR features, including the healthcare utilization and
230 codified EHR features on depression related medication prescriptions, laboratory tests
and ICD codes. For the size of training labels, we consider 50, 85, 120.

In the three data examples, N is significantly larger than p with N/max(p, n) being
approximately 7 for CAD, 50 for RA, and 41 for Depression. In all the three studies, we
apply x → log(1 + x) transformation for all count variables. Also, since patients with
higher healthcare utilization tend to have higher counts of most features, we orthogonalize
all features against the healthcare utilization before regression fitting. Since ϑ0 is unknown
in applications, we quantify the performance of an estimator ϑ̃ based on the AUC and Brier
skill score (BSS) of σ(ϑ̃

ᵀ
W) for predicting Y , where the BSS is defined as 1 − Êv[{Y −

σ(ϑ̃
ᵀ
W)}2]/Êv[{Y − Êv(Y )}2], and Êv denotes the empirical expectation on the validation

sample. The BSS is essentially a binary version of the R-square.
For comparison, we included PASS, SSprior, pLASSO2, supervised LASSO and ALASSO

on the three data examples to estimate the phenotyping model (MY ). We exclude pLASSO1

since it requires fitting of an unpenalized regression on supp(α̂), which is infeasible when
| supp(α̂)| > n. In addition, we compare to the unsupervised LASSO (ULASSO) approach
of Chakrabortty et al. (2017), which estimates direction of the logistic coefficients for Y ∼
σ(β

ᵀ
X) by regressing I(S > cu) against X on the subset whose S is either greater than cu

or smaller than cl, for some pre-specified cu and cl typically chosen such that Pr(S > cu) and
Pr(S < cl) are small. Since the ULASSO approach only provides an estimate β̃ to optimize
the prediction of β

ᵀ
X for Y | X without using S explicitly as an additional predictor, we
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also derive a semi-supervised variant of ULASSO, denoted by SSULASSO, by regressing the
labeled Y against β̃

ᵀ
X and S as for SSprior.

Figure 6: Out of sample AUC and BSS on the data examples 1–3, with various sizes of
labelled training samples denoted as n. Median performance of PASS are marked
using red dash line for ease of comparison.
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(b) RA
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(c) Depression
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As shown in Figure 6, PASS significantly outperforms the supervised LASSO and
ALASSO when n = 50 in all three examples. As the label size n increases, their per-
formances get closer. Compared with the semi-supervised benchmarks, PASS has slightly
or moderately better performance on the CAD and RA studies. For Depression, PASS
substantially outperforms them, especially SSpriorand SSULASSO. For example, when n =
50, PASS attained average AUC in classifying depression about 0.1 higher than that of
SSpriorand SSULASSOand 0.05 higher than pLASSO. The gap becomes smaller when n in-
creases as expected. Interestingly, the supervised estimators outperform pLASSO, SSprior,
and SSULASSOon the Depression dataset as well but has similar or worse performance than
these semi-supervised approaches on the other two examples. This could in part be at-
tributed to the relatively poor quality of the surrogate information, which makes existing
semi-supervised approaches fail. In contrast, PASS could utilize such prior information
more effectively and robustly, and still preserves better performance than the supervised
estimators. Thus, we can conclude that incorporating prior information from the unlabeled
dataset could improve and stabilize the prediction performance of phenotyping models in
EHR applications, and PASS is more robust and efficient in leveraging the prior information
compared with existing semi-supervised methods. In addition, ULASSO shows much worse
performance than the other supervised and semi-supervised methods in all examples. This
illustrates the importance of collecting labels and including the surrogate in the regression
models for EHR phenotyping.

6. Discussion

In this paper, we propose PASS, a high dimensional sparse estimator adaptively incor-
porating the prior knowledge from surrogate under a semi-supervised scenario commonly
found in application fields like EHR analysis. Compared to the supervised approaches, the
proposed PASS approach can substantially reduce the required number of labeled samples
when the model assumptions (MS) and (Cprior) and the elliptical design assumption (C1)
hold exactly or approximately, and thus the prior information α∗ is trustworthy. Compared
to existing pLASSO and SSprior approaches that also incorporates prior information, the
PASS approach is robust against unreliable prior information α∗, which might be the case
when the surrogate model assumptions are violated or the designX is highly non-elliptically
distributed.

One of the main challenges in our theoretical analysis comes from the colinearity of
covariates (1, Si,X

ᵀ
i α̂,X

ᵀ
i )

ᵀ
due to the enrollment of ρ to leverage the prior information in

α̂. We overcome this by properly constructing the oracle coefficients θ∗ and the restricted
eigenvalue assumption (A6). The formulation of our problem falls into the missing data
framework with missing completely at random. However, the missing probability approaches
1 as N → ∞. This together with the high dimensionality of X makes the theoretical
justifications more challenging than those used in the standard missing data literature.
Without prior assumptions of β0−ρα0 being sparse in certain sense, the unlabeled dataset
cannot directly contribute to the estimation of β0. Our proposed PASS procedure hinges
on the sparsity of β0 − ρα0 to leverage the unlabeled dataset.

We have restricted the discussion to a single surrogate variable for simplicity. However,
the proposed method can be easily extended to multiple surrogates. Specifically, consider
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K surrogates, denoted by S[1], . . . , S[K]. Let α̂[k] be the ALASSO estimator regressing S[k]

i

against Xi, Â = ∪Kk=1 supp(α̂k), Si = (S[1]

i , . . . , S
[K]

i )
ᵀ

and ρ = (ρ[1], . . . , ρ[K])
ᵀ
. We can

obtain an estimator for the model parameters as

ζ̂, γ̂, ρ̂, β̂ = arg min
ζ,γ,ρ,β

n−1
n∑
i=1

`(Yi, ζ + S
ᵀ
i γ +X

ᵀ
i β) + λ1‖(β −

∑
k
ρkα̂k)Â‖1 + λ2‖βÂc‖1.

Theoretical justification and finite sample performance of β̂ under this setting warrant fur-
ther research. In our numerical studies, we only focus on fully simulated datasets and
real examples. We are further interested in investigating the performance of our approach
through semi-synthetic experiments with various setups for the surrogate variables. In ad-
dition, it may be interesting to extend the semi-supervised PASS estimator under a high
dimensional sparse parametric regression to semi-parametric settings such as the sparse
additive model (Ravikumar et al., 2009) and the sparse varying coefficient model (Noh
and Park, 2010). Under semi-parametric models, one could still leverage prior information
through shrinking the coefficients to “ρα̂” with some sparse penalty function, to gain sta-
tistical efficiency. Studying the specific forms and theoretical properties of such approaches
via a semi-supervised framework warrants future research.

R codes for implementing PASS and the benchmark methods, and replicating the sim-
ulation results can be found at https://github.com/moleibobliu/PASS.
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