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Abstract
In rank aggregation (RA), a collection of preferences from different users are summarized into a
total order under the assumption of homogeneity of users. Model misspecification in RA arises
since the homogeneity assumption fails to be satisfied in the complex real-world situation. Existing
robust RAs usually resort to an augmentation of the ranking model to account for additional noises,
where the collected preferences can be treated as a noisy perturbation of idealized preferences. Since
the majority of robust RAs rely on certain perturbation assumptions, they cannot generalize well to
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agnostic noise-corrupted preferences in the real world. In this paper, we propose CoarsenRank, which
possesses robustness against model misspecification. Specifically, the properties of our CoarsenRank
are summarized as follows: (1) CoarsenRank is designed for mild model misspecification, which
assumes there exist the ideal preferences (consistent with model assumption) that locate in a
neighborhood of the actual preferences. (2) CoarsenRank then performs regular RAs over a
neighborhood of the preferences instead of the original data set directly. Therefore, CoarsenRank
enjoys robustness against model misspecification within a neighborhood. (3) The neighborhood
of the data set is defined via their empirical data distributions. Further, we put an exponential
prior on the unknown size of the neighborhood, and derive a much-simplified posterior formula
for CoarsenRank under particular divergence measures. (4) CoarsenRank is further instantiated to
Coarsened Thurstone, Coarsened Bradly-Terry, and Coarsened Plackett-Luce with three popular
probability ranking models. Meanwhile, tractable optimization strategies are introduced with regards
to each instantiation respectively. In the end, we apply CoarsenRank on four real-world data sets.
Experiments show that CoarsenRank is fast and robust, achieving consistent improvements over
baseline methods.
Keywords: Robust Rank Aggregation, Model Misspecification, CoarsenRank, Coarsened Bradly-
Terry, Coarsened Plackett-Luce

1. Introduction

Rank aggregation (RA) refers to the task of recovering the total order over a set of items, given a
collection of pairwise/partial/full preferences over items (Lin, 2010). Therefore, RA is a practical and
useful approach to summarize user preferences. Preferences could arise not only by explicitly querying
users but also through passive data collection, i.e., by observing user purchasing behavior (Baltrunas
et al., 2010), clicks on search engine results (Dwork et al., 2001), etc. Compared to rating items,
the preferences are more natural expressions of user opinions which can provide more consistent
results (Raman and Joachims, 2014). The flexible collection of preferences enables successful
application of rank aggregation in various fields, from image rating (Liang and Grauman, 2014)
to document recommendation (Sellamanickam et al., 2011), peer grading (Raman and Joachims,
2014), opinion analysis (Chatterjee et al., 2018), bioinformatics (Kim et al., 2014) and mental fatigue
monitoring (Pan et al., 2020, 2021).
A basic assumption underlying the vanilla RA is that all preferences are provided by homogeneous

users, sharing the same annotation accuracy and agreeing with the single ground truth ranking (Dwork
et al., 2001; Li et al., 2017; Chiang et al., 2017; Li et al., 2019). However, this homogeneity assumption
is rarely satisfied due to the flexible data construction and the complex real-world situation (Gormley
and Murphy, 2005; Kolde et al., 2012; Mollica and Tardella, 2017; Li et al., 2018). For example, the
reliability of each user may not be necessarily the same due to the diverse background of each user
regarding the candidate items. Moreover, the users are more likely coming from a heterogeneous
community and the single total order assumption is no longer suitable since different users judge
the items from different perspectives. Therefore, RA usually suffers from model misspecification,
namely the inconsistency between the collected ranking data and the homogeneity assumption of
RA (Pan et al., 2018).
To address the above inconsistency issue, existing robust RAs resort to an augmentation of the

ranking model to account for additional perturbation, where the collected preferences are viewed as a
noisy perturbation of some idealized preferences (Han et al., 2018). Particularly, Chen et al. (2013)
studied RA in a crowdsourcing environment and proposed CrowdBT for noisy pairwise preferences.
CrowdBT models the user reliability with one extra parameter, following the two-coin Dawid-Skene
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model (Raykar et al., 2010). Han et al. (2018) proposed ROPAL, which extended CrowdBT for noisy
partial preference using more parameters. Note that ROPAL requires a few ground truth preferences
from each user for initializing the parameters. It constraints their method to a crowdsourcing setting,
where multiple preferences from each user are available. Raman and Joachims (2014) introduced a
general framework, called PeerGrader, to aggregate ordinal peer gradings from peer graders while
exploring each grader’s reliability by introducing a scale factor. However, each user usually provides
one preference in real applications, which would cause overfitting since it needs to estimate the
reliability w.r.t. each preference (Sajjadi et al., 2016). The same problem also arises in Xu et al.
(2017), which formulates the robust RA as outlier detection and introduces a deviation factor for each
preference to account for the unknown noise-perturbation. Indeed, these previous attempts simply
amount to convolving the original ranking model with some pre-assumed perturbation mechanism. It
leads to a new model with a few more parameters but is just as bound to be misspecified w.r.t. other
overlooked perturbations.
The above analysis motivates us to present a novel robust RA approach, called CoarsenRank.

The main idea of CoarsenRank is to perform regular RA over a neighborhood of the collected
preferences, which enables CoarsenRank against mild model misspecification within the defined
neighborhood (Volpi et al., 2018; Chen and Paschalidis, 2018b). However, it is usually intractable to
infer directly over the neighborhood of the ranking data because of the unlimited samples involved.
Further, it also prohibits sampling-based stochastic gradient solutions in the optimization community
due to the particularity of the ranking data. Inspired by Miller and Dunson (2019), which avoids
inferring over the neighborhood of the data set by transforming the problem into a tractable fractional
likelihood formulation (Bhattacharya et al., 2019). For the sake of tractability, the neighborhood
of the data set is first defined as the neighborhood of its empirical data distribution. In particular,
the relative entropy is adopted as the divergence metric due to its simplicity (Ben-Tal et al., 2013;
Namkoong and Duchi, 2017). We further introduce a prior distribution for the unknown size of the
neighborhood to avoid parameter tuning and derive a much-simplified formula for CoarsenRank.
More precisely, we summarize our main contributions in the following:

• We introduce a novel robust rank aggregation method called CoarsenRank. CoarsenRank
performs RA over the neighborhood of the ranking data instead of original data set directly.
To our best knowledge, CoarsenRank is the first rank aggregation method against model
misspecification and enjoys distributional robustness.

• We obtain a computationally efficient formula for CoarsenRank, which introduces only one
extra hyperparameter to vanilla ranking models. Further, we instantiate CoarsenRank with
three popular probability ranking models and analyze the optimization strategies, respectively.
To avoid hyperparameter tuning, an efficient model selection method is introduced to choose
the single hyperparameter in a data-driven manner.

• We successfully applied our CoarsenRank on four real-world data sets. Empirical results
demonstrate (1) CoarsenRank shows superior reliability against agnostic noises over existing
robust RA methods, especially when the number of annotations per user is insufficient; (2)
CoarsenRank enjoys linear algorithm complexity, which has great potential for a large-scale
scenario.

The rest of this paper is organized as follows. Section 2 discusses RA under model misspecification
and introduces the main idea of our CoarsenRank. In Section 3, we pave the theoretical foundation
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Notation Explanation
𝑀 number of items
𝑁 number of preferences
𝑘 length of preferences, which could be variant with regards to each preference
O set of items, O = {𝑜1, 𝑜2, . . . , 𝑜𝑀}
𝑜𝑖 > 𝑜 𝑗 item 𝑜𝑖 is preferred over item 𝑜 𝑗

𝜌𝑛 𝑛-th real preference, 𝜌𝑛 : 𝜌1𝑛 > 𝜌2𝑛 > . . . > 𝜌𝑘𝑛 , {𝜌1𝑛, 𝜌2𝑛, . . . , 𝜌𝑘𝑛 } ⊆ O
𝜚𝑛 𝑛-th idealized preference, 𝜚𝑛 : 𝜚1𝑛 > 𝜚2𝑛 > . . . > 𝜚𝑘𝑛 , {𝜚1𝑛, 𝜚2𝑛, . . . , 𝜚𝑘𝑛} ⊆ O
R𝑁 collection of real preferences, R𝑁 = {𝜌1, 𝜌2, . . . , 𝜌𝑁 }
<𝑁 collection of idealized preferences,<𝑁 = {𝜚1, 𝜚2, . . . , 𝜚𝑁 }, satisfying the homogeneity assumption
𝐵𝑠 (R𝑁 , 𝜖) sample-level neighborhood of the ranking data set R𝑁

𝐵𝑑 (R𝑁 , 𝜖) distribution-level neighborhood of the ranking data set R𝑁

𝑃𝜃 probability ranking model, 𝜃 denotes the model parameter
𝑃𝑜 real preference generation distribution
𝐹𝑁 (𝑥 |R𝑁 ) the empirical distributions of the real ranking data set R𝑁

𝐹𝑁 (𝑥 |<𝑁 ) the empirical distributions of the idealized ranking data set<𝑁

Θ space of possible parameter values that defines a ranking model 𝑃𝜃

P set of all probability rank models with parameterization space Θ, 𝑃𝜃 ∈ P and 𝜃 ∈ Θ

𝐷 (·, ·) divergence metric between two data sets, defined via their empirical data distributions
I𝑥 (𝑦) indicator function, which is one at 𝑥 = 𝑦 or zero otherwise

Table 1: Common mathematical notations

for CoarsenRank and illustrate how CoarsenRank enables us to perform robust RA against model
misspecification. Section 4 presents an efficient EM algorithm as well as a Gibbs sampling algorithm
for CoarsenRank and discusses a data-driven strategy for hyperparameter selection. Section 5
summarizes the differences between our CoarsenRank and related (robust) RA models. Section 6
demonstrates the efficacy of CoarsenRank through empirical results on four real-world data sets.
Section 7 concludes the paper and envisions future work.

2. Problem Statement and Literature Review

In this section, we first introduce the problem setting of vanilla RA and RA under model misspecifi-
cation. Furthermore, we summarize previous robust RA for alleviating the model misspecification,
as well as their deficiencies. Then, we motivate our Coarsened RA, which perform regular RA over
a neighborhood of the collected preferences, and therefore enjoys distributional robustness against
noise-agnostic perturbation within a neighborhood.

2.1 Rank Aggregation

In Table 1, we first illustrate the common mathematical notations that are used later.
Let R𝑁 denote a collection of partial preferences {𝜌1, 𝜌2, . . . , 𝜌𝑁 } over the item set O =

{𝑜1, 𝑜2, . . . , 𝑜𝑀 }. The goal of rank aggregation is then to aggregate the collected preferences R𝑁
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Figure 1: The paradigm of rank aggregation.

into a consensus order over all 𝑀 items in O (See Figure 1). The consensus order should achieve the
maximum agreement among all preferences in R𝑁 (Dwork et al., 2001).
In this paper, we focus our work on rank aggregation using the probability ranking model.

Particularly, it assumes there exists a preference generative model 𝑃𝑜 from which the preferences R𝑁

are sampled, i.e., R𝑁 = {𝜌𝑛 |𝜌𝑛 ∼ 𝑃𝑜, 𝑛 = 1, 2, . . . , 𝑁}. However, the real data generation model 𝑃𝑜

is hardly accessible due to the complexity of the real situation. For the sake of easier modeling, a
parameterized rank model 𝑃𝜃 is usually adopted under the assumption of homogeneity of users1. Let
P be the set of all probability rank models under the homogeneity assumption. For the sake of easier
modeling, a parameterized rank model 𝑃𝜃 is usually adopted under the assumption of homogeneity
of users. Then a maximum likelihood estimation (MLE) for RA can be formulated as follows,

max
𝜃 ∈Θ

𝑃𝜃 (R𝑁 ), where 𝑃𝜃 ∈ P and R𝑁 = {𝜌𝑛 |𝜌𝑛 ∼ 𝑃𝑜, 𝑛 = 1, 2, . . . , 𝑁}. (1)

𝑃𝜃 (R𝑁 ) =
∏𝑁

𝑛=1 𝑃𝜃 (𝜌𝑛) denotes the likelihood over the collected preferences R𝑁 . 𝑃𝜃 is usually
instantiated with Thurstone model (Thurstone, 1927a,b), Bradley-Terry model (Bradley and Terry,
1952), Plackett-Luce model (Plackett, 1975; Luce, 1959), etc. Note that the model parameter 𝜃 is
usually associated with each item, where the full ranking list could be derived accordingly after 𝜃 is
inferred. For example, the full ranking list can be obtained by sorting the model parameter 𝜃 in the
case of the Thurstone/Bradley-Terry/Plackett-Luce model.

2.2 Rank Aggregation under Model Misspecification

In this section, we discuss RA under model misspecification. The term “model misspecification”
here refers to the mismatch between the ranking model 𝑃𝜃 and the ranking data set R𝑁 , namely the
collected user preferences do not strictly satisfy the user homogeneity assumption of the ranking
model.
The model misspecification would arise when preferences were not strictly collected from a

homogeneous user community due to the flexible data construction and the complex real situation
(See Figure 2). For example, the reliability of each user would not be the same and the single total
order assumption would be no longer satisfied. Mathematically, we adopt the parameterized ranking
model 𝑃𝜃 ∈ P under the homogeneity assumption, while the real preference generation distribution
𝑃𝑜 violates this assumption, i.e., 𝑃𝑜 ∉ P. Therefore, an MLE for RA under model misspecification
can be formulated as follows,

max
𝜃 ∈Θ

𝑃𝜃 (R𝑁 ) where 𝑃𝜃 ∈ P, 𝑃𝑜 ∉ P and R𝑁 = {𝜌𝑛 |𝜌𝑛 ∼ 𝑃𝑜, 𝑛 = 1, 2, . . . , 𝑁}. (2)

1. Sampling the partial preferences from a specific probability ranking model is not our focus in this paper. Please refer
to Liu et al. (2019); Zhao and Xia (2019) for related literature.
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Figure 2: The logic stream of our CoarsenRank. Stage 1: performing rank aggregation over a
neighborhood of the collected preferences (See Equation (7) and Equation (8)). Stage 2:
adopting relative entropy as the divergence measure and assign an exponential prior for the
size of the neighborhood (See Theorem 2 and Theorem 3).

For the sake of explanation, let<𝑁 represent a virtual data set {𝜚𝑛 |𝜚𝑛 ∼ 𝑃𝜃 , 𝑛 = 1, 2, . . . , 𝑁}, which
consists of idealized preferences and satisfies the homogeneity assumption. Then, RA under model
misspecification can be formulated as noisy RA, where the collected preferences are viewed as a
noisy perturbation of some idealized preferences.
Then, we come to robust rank aggregation against model misspecification, namely how to achieve

a reliable total order from the collected preferences R𝑁 using a misspecified ranking model 𝑃𝜃 .

2.3 Previous Attempts: Convolving Ranking Model with Certain Perturbation Mechanisms

When encountering model misspecification, a remedy solution for accessing a correct rank model
could be

𝑃𝜃 (𝜌𝑛) =
∑︁
𝜚𝑛

𝑃𝜃 (𝜚𝑛)𝑃(𝜌𝑛 |𝜚𝑛) =
∑︁
𝜚𝑛

𝑃(𝜌𝑛, 𝜚𝑛), where 𝜌𝑛 ∼ 𝑃𝑜, 𝜚𝑛 ∼ 𝑃𝜃 . (3)

Considering the discrete characteristics of ranking space, the ranking distribution i.e., 𝑃𝑜 and 𝑃𝜃

as well as the conditional distribution 𝑃(𝜌𝑛 |𝜚𝑛) and joint distribution 𝑃(𝜌𝑛, 𝜚𝑛) should all be the
discrete distribution.
Previous approaches usually resort to an augmentation of the ranking model to account for

additional error/noise/uncertainty causedmisspecification. For the sake of tractability, the perturbation
mechanism is usually defined at the sample level. According to Equation (3), there are essentially
two ways of implementing this:

• One intuitive approach is to correct each preference by pre-assuming some perturbation
distribution, i.e., 𝑃(𝜌𝑛 |𝜚𝑛). However, this simply amounts to convolving the original model
distribution 𝑃𝜃 with the predefined perturbation, leading to a new model that has a few more
parameters but is just as bound to be misspecified w.r.t. other overlooked perturbations.

• The second approach would be to model the joint distribution 𝑃(𝜌𝑛, 𝜚𝑛) directly, which needs
to take into consideration all potential perturbations. Essentially, it needs to be a nonparametric
model for 𝑃(𝜌𝑛, 𝜚𝑛), but would easily be computationally intractable.

Meanwhile, the perturbation patterns leading to model misspecification vary from setting to
setting. It is impossible to design a universal practice that can be generalized to most settings.
Therefore, in this paper, we perform rank aggregation against model misspecification from another
perspective.

6



Fast and Robust Rank Aggregation against Model Misspecification

2.4 Our CoarsenRank: Rank Aggregation over The Neighborhood of Ranking Data

In many situations, it is impractical to correct the model, and these are the situations our method is
intended to address. We are concerned with robust rank aggregation against model misspecification
(Equation (2)) in general, not just one particular kind of perturbation considered in previous work.
Recent advances of robust Bayesian inference (Miller and Dunson, 2019; Volpi et al., 2018) raised
the Coarsening mechanism, namely inferring over the neighborhood of the original data set would
equip the learning model with distributional robustness. Motivated by the proposed Coarsening
mechanism, we consider performing rank aggregation over the neighborhood of the ranking data.
To deliver our model, we first give the definition of the neighborhood in the sense of ranking data

as follows,

Definition 1 (sample-level neighborhood) Let R𝑁 denote the ranking data set and 𝜌 represent one
preference belonging to R𝑁 . We define the neighborhood 𝐵𝑠 (R𝑁 , 𝜖) of the R𝑁 with size 𝜖 > 0 as
follows:

𝐵𝑠 (R𝑁 , 𝜖) = {𝜌′ |𝐷 (𝜌′, 𝜌) < 𝜖, ∃𝜌 ∈ R𝑁 }, (4)
where 𝐷 (·, ·) denotes some distance measure between two preferences 𝜌′ and 𝜌, e.g., Kendall tau
distance (Kendall, 1938), Spearman’s rank correlation (Ramsey, 1989).

Definition 2 (distribution-level neighborhood) Let R𝑁 denote the ranking data set and 𝐵𝑑 (R𝑁 , 𝜖)
denote the neighborhood of the ranking data set R𝑁 with size 𝜖 > 0. Then, we define

𝐵𝑑 (R𝑁 , 𝜖) = {R ′
𝑁 |𝐷 (R ′

𝑁 ,R𝑁 ) < 𝜖}, (5)

where 𝐷 (·, ·) denotes some distance measures between two ranking data sets. The distance measure
between two data sets is usually defined as the divergence of their corresponding empirical distributions.
Popular divergence measures between distributions are Kullback-Leibler (KL) divergence (Kullback
and Leibler, 1951), 𝑓 -divergence (Ali and Silvey, 1966) and Wasserstein metric (Villani, 2008).

Proposition 1 Given any ranking data set R𝑁 , R𝑁 must be (1) a subset of its sample-level
neighborhood 𝐵𝑠 (R𝑁 , 𝜖) if 𝐷 (·, ·) is defined between two preferences, or (2) an element of its
distribution-level neighborhood 𝐵𝑑 (R𝑁 , 𝜖) if 𝐷 (·, ·) is defined between two ranking data sets.
Namely

R𝑁 ⊆ 𝐵𝑠 (R𝑁 , 𝜖), sample-level neighborhood,
R𝑁 ∈ 𝐵𝑑 (R𝑁 , 𝜖), distribution-level neighborhood.

Proof: In terms of sample-level neighborhood, we have

∀𝜌 ∈ R𝑁 , ∃𝜌∗ = 𝜌, s.t. 𝐷 (𝜌∗, 𝜌) = 0 < 𝜖.

Then 𝜌 ∈ 𝐵𝑠 (R𝑁 , 𝜖) holds. Accordingly, R𝑁 ⊆ 𝐵𝑠 (R𝑁 , 𝜖) holds according to the definition of
sample-level neighborhood in Equation (4).
In terms of distribution-level neighborhood, we have

𝐷 (R𝑁 ,R𝑁 ) = 0 < 𝜖.

Therefore, we have R𝑁 ∈ 𝐵𝑑 (R𝑁 , 𝜖) hold according to the definition of distribution-level neighbor-
hood in Equation (5).
Note that the proof is valid for any particular choice of the distance metric, either sample level or

distribution level.
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Definition 3 (empirical data distribution) Let 𝐹𝑁 (𝑥 |R𝑁 ) and 𝐹𝑁 (𝑥 |<𝑁 ) denote the empirical
distributions of the ranking data sets R𝑁 and <𝑁 , respectively.

𝐹𝑁 (𝑥 |R𝑁 ) =
1
𝑁

𝑁∑︁
𝑛=1
I𝜌𝑛 (𝑥), where I𝜌𝑛 (𝑥) =

{
1, 𝑥 = 𝜌𝑛
0, 𝑥 ≠ 𝜌𝑛

,

𝐹𝑁 (𝑥 |<𝑁 ) =
1
𝑁

𝑁∑︁
𝑛=1
I𝜚𝑛 (𝑥), where I𝜚𝑛 (𝑥) =

{
1, 𝑥 = 𝜚𝑛
0, 𝑥 ≠ 𝜚𝑛

.

(6)

In this paper, we assume that the empirical distribution converges to the corresponding preference
generation distribution, namely 𝐹𝑁 (𝑥 |R𝑁 ) → 𝑃𝑜 and 𝐹𝑁 (𝑥 |<𝑁 ) → 𝑃𝜃 when 𝑁 → +∞.

For the sake of brevity, we introduce our work following the definition of distribution-level
neighborhood. Let<𝑁 ∼ 𝑃𝜃 denote every preference of the ranking data set<𝑁 is sampled from
the ranking distribution 𝑃𝜃 , namely ∀𝜚𝑛 ∈ <𝑁 , 𝜚𝑛 ∼ 𝑃𝜃 . We assume that the idealized ranking data
set <𝑁 locates in the small neighborhood of the actually collected preferences R𝑁 , i.e.,

∃ a small 𝜖, ∀<𝑁 ∼ 𝑃𝜃 , we have<𝑁 ∈ 𝐵𝑑 (R𝑁 , 𝜖)

This is a basic assumption in distributional robustness literature (Chen and Paschalidis, 2018b).
Otherwise, if the size of neighborhood 𝜖 which satisfies our assumption is very large, it means a
completely wrong model is adopted and it is impossible to learn a meaningful result. This is why
we call our setting “mild model misspecification”. Meanwhile, the sense of “neighborhood” in the
distribution level covers most types of noise perturbations (Chen and Paschalidis, 2018a). Therefore,
the MLE of our Coarsened rank aggregation (CoarsenRank) can be formulated as follows,

max
𝜃 ∈Θ

𝑃𝜃 (<𝑁 ), where<𝑁 ∼ 𝑃𝜃 and<𝑁 ∈ 𝐵𝑑 (R𝑁 , 𝜖). (7)

Note that we use the word “Coarsen” to emphasize the learning paradigm which pursues the
distributional robustness by inferring over the neighborhood of the data set (Miller and Dunson,
2019).
An equivalent (but compact) formulation of our CoarsenRank (Equation (7)) can be derived as

follows

Equation (7)
1

⇐⇒max
𝜃 ∈Θ
E<𝑁∼𝑃𝜃

P(<𝑁 |𝜃, 𝐷 (R𝑁 ,<𝑁 ) < 𝜖)

2
=⇒max

𝜃 ∈Θ
E<𝑁∼𝑃𝜃

P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖),

(8)

where 1 is an equivalent MLE formulation rearranged according to the definition of distribution-level
neighborhood (Equation (5)). By assigning a suitable prior for model parameter 𝜃, i.e., 𝜃 ∼ 𝜋(𝜃), 2
deduces the maximum a posteriori probability (MAP) estimate of our CoarsenRank model.
Equation (8) reveals that: (1) our CoarsenRank degenerates to vanilla rank aggregation method

(Equation (1)) when the collected preferences satisfy the homogeneity assumption; (2) our Coarsen-
Rank would be robust to noise-agnostic perturbations as long as the idealized preferences locates
in the neighborhood of the collected preferences when model misspecification arises; and (3)
our CoarsenRank would fail to output a reliable total ranking list when the collected preferences
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significantly violate the homogeneity assumption. The same is true for other vanilla rank aggregation
methods and most of robust RAs which fail to capture this perturbation. Therefore, compared with the
previous methods, our CoarsenRank is robust to most potential perturbations within a neighborhood,
not only to some pre-assumed perturbations.

Remark 1 (Coarsening Mechanism VS. Minimax Distributional Robustness) The Coarsening
mechanismmax𝜃 ∈Θ E<𝑁 ∈𝐵𝑑 (R𝑁 , 𝜖 )𝑃𝜃 (<𝑁 ) shares a similar formula with the minimax distributional
robustness min𝜃 ∈Θmax<𝑁 ∈𝐵𝑑 (R𝑁 , 𝜖 ) ℓ(<𝑁 |𝜃) (Sinha et al., 2017). ℓ(𝜃) denotes the loss function,
which is usually replaced with the negative log-likelihood. The Coarsening mechanism aims to
maximize the likelihood over the neighborhood of original data set R𝑁 . The minimax distributional
robustness aims to minimize the loss using the worst data samples in the neighborhood of original
data set R𝑁 . The neighborhood in the Coarsening mechanism is usually defined at the distribution-
level (Equation (5)) where a Bayesian criterion can be adopted to estimate the proper size of the
neighborhood for each data set; while the neighborhood in the minimax distributional robustness is
usually defined at the sample-level (Equation (5)) and a fixed size neighborhood is adopted once for
all. The choice of distance measures 𝐷 (·, ·) influences robustness guarantee and tractability in the
both two paradigms.

Remark 2 (Coarsening Mechanism VS. Rank-dependent Coarsening) The word Coarsening also
rises in Fahandar et al. (2017), which, however, has a totally different meaning there. The term

“rank-dependent coarsening” refers to the process of turning a full ranking into an incomplete
one (Fahandar et al., 2017). It is different from our “Coarsening mechanism”, which refers to the
paradigm that performing the Bayesian inference over the neighborhood of the original data set.

3. Coarsened Rank Aggregation

In this section, we first illustrate how CoarsenRank enables us to perform robust rank aggregation
against model misspecification. Meanwhile, a simplified formula is derived for CoarsenRank,
which introduces only one extra hyperparameter to vanilla ranking models. Then, we instantiate our
CoarsenRank framework with three popular probability ranking models and analyze their optimization
strategies, respectively.

3.1 Distributional Robustness of Coarsening Mechanism

Assuming that the empirical distribution defined in Equation (6) converges to the corresponding data
generating distribution, namely 𝐹𝑁 (𝑥 |R𝑁 ) → 𝑃𝑜 and 𝐹𝑁 (𝑥 |<𝑁 ) → 𝑃𝜃 when 𝑁 → +∞, we come
to Theorem 1. Note that this result is essentially S3.1 in the Supplement of Miller and Dunson (2019).
We also provide a proof in the Appendix for the sake of completeness.

Theorem 1 Suppose 𝐷 (R𝑁 ,<𝑁 ) is an almost surely-consistent estimator2 of 𝐷 (𝑃𝑜, 𝑃𝜃 ), namely
𝐷 (R𝑁 ,<𝑁 )

a.s.−−−−−−→
𝑁→+∞

𝐷 (𝑃𝑜, 𝑃𝜃 ), where 𝐹𝑁 (𝑥 |R𝑁 ) → 𝑃𝑜 and 𝐹𝑁 (𝑥 |<𝑁 ) → 𝑃𝜃 when 𝑁 → +∞.
Assume P(𝐷 (𝑃𝑜, 𝑃𝜃 ) = 𝜖) = 0 and P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖) > 0, then we have

P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖) a.s.−−−−−−→
𝑁→+∞

P(𝜃 |𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖), (9)

for any 𝜃 ∈ Θ such that
∫
|𝜃 |P(𝑑𝜃) < ∞.

2. In probability theory, an event happens almost surely if it happens with probability one.
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Theorem 1 is a general conclusion in robust Bayesian inference (Miller and Dunson, 2019). It
justifies our motivation to pursue robustness in a distributional sense. In what follows, we extend
Theorem 1 to some variants which possess nice properties for robust rank aggregation.

3.1.1 Level of Distributional Robustness

The value of the parameter 𝜖 denotes the level of deviation about the actually collected preferences
from the idealized preferences, which varies from data set to data set. Simply fixing the 𝜖 to a small
value, the Coarsening mechanism degenerates to a minimum-expectation problem as we discussed
in Remark 1. It would be heuristic without sufficient prior knowledge about idealized preferences,
since a small 𝜖 may fail to account for the unknown distribution deviation while a large 𝜖 means an
exponential level of ranking space to search. To ease the burden of pre-defining 𝜖 , we treat it as a
random variable and introduce a prior on it, where an efficient model selection method is introduced.
In particular, we have the following conclusion.

Theorem 2 Assume 𝜃 ∼ 𝜋(𝜃), the approximate posterior can be further simplified.

P(𝜃 |𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖) = 𝜋(𝜃)P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖 |𝜃)∫
𝜃
𝜋(𝜃)P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖 |𝜃)𝑑𝜃

∝ exp(−𝛼𝐷 (𝑃𝑜, 𝑃𝜃 ))𝜋(𝜃), (10)

when random variable 𝜖 subjects to an exponential prior, i.e., 𝜖 ∼ Exp(𝛼).

Proof: Note that since 𝜖 ∼ Exp(𝛼), we have

P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖 |𝜃) = 1 − P(𝜖 ≤ 𝐷 (𝑃𝑜, 𝑃𝜃 ) |𝜃)
= 1 − (1 − exp(−𝛼𝐷 (𝑃𝑜, 𝑃𝜃 )))
= exp(−𝛼𝐷 (𝑃𝑜, 𝑃𝜃 )),

where the second equation holds because the cumulative distribution function P(𝐷 (𝑃𝑜, 𝑃𝜃 ) > 𝜖 |𝜃)
is independent of 𝜃 (Bishop, 2006). Then, we can substitute P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖 |𝜃) in Equation (10)
with exp(−𝛼𝐷 (𝑃𝑜, 𝑃𝜃 )) and complete the proof while omitting the normalization constant.
Indeed, a very large class of distributions can be adopted as the prior for 𝜖 . A case of

particular interest arises when 𝜖 ∼ Exp(𝛼), since it leads to a computationally simple formula via
maintaining an exponential formulation. The efficacy of the exponential prior is verified in our
experiment (See Section 6).
Inspired by the exponential formulation of the posterior derived in Equation (10), we give the

following derivations (Equation (11)) to explain why the vanilla rank aggregation is lack of robustness.

E<𝑁 ∈𝐵𝑑 (R𝑁 ,0)P(𝜃 |<𝑁 ) = P(𝜃 |R𝑁 ) =
𝜋(𝜃)𝑃𝜃 (R𝑁 )∫
𝜋(𝜃)𝑃𝜃 (R𝑁 )𝑑𝜃

∝ 𝜋(𝜃)𝑃𝜃 (R𝑁 ) (11)

1
= 𝜋(𝜃)exp(

𝑁∑︁
𝑛=1
log𝑃𝜃 (𝜌𝑛))

2
= 𝜋(𝜃)exp(𝑁

𝑁∑︁
𝑛=1

𝐹𝑁 (𝜌𝑛 |R𝑁 )log𝑃𝜃 (𝜌𝑛))

3
≈ 𝜋(𝜃)exp(𝑁

∑︁
𝑃𝑜log𝑃𝜃 )

4
∝ 𝜋(𝜃)exp(−𝑁DKL(𝑃𝑜‖𝑃𝜃 )),

where 1 holds because 𝑃𝜃 (R𝑁 ) =
∏𝑁

𝑛=1 𝑃𝜃 (𝜌𝑛) is the likelihood. 2 holds following the
definition of the empirical data distribution 𝐹𝑁 (𝑥 |R𝑁 ) = 1

𝑁

∑𝑁
𝑛=1 I𝜌𝑛 (𝑥). 3 indicates Monte Carlo

10
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approximation. 4 holds due to the added entropy term
∑

𝑃𝑜 log 𝑃𝑜, which is a constant w.r.t. the
model parameter 𝜃. The standard posterior (Equation (11)) tends to zero under model misspecification
(𝑃𝑜 ≠ 𝑃𝜃 ) as 𝑁 → +∞, while the approximate posterior (Equation (10)) remains stable. This verifies
our motivation for pursuing robust RA since vanilla RA, as well as data-augmentation based RAs,
would inevitably output unreliably results even when infinity samples are available.

3.1.2 Types of Distributional Robustness and Tractability

The choice of 𝐷 (·, ·) in P(𝜃 |𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖) (Equation (9)) affects both the richness of the robustness
types as well as the tractability of the resultant optimization problem. The Wasserstein metric is a
popular option in previous approaches on distributional robustness (Blanchet et al., 2016; Gao et al.,
2017; Volpi et al., 2018), which exhibits superior tolerance to adversarially corrupted outliers (Chen
and Paschalidis, 2018a,b) and also allows robustness to unseen data (Abadeh et al., 2015; Sinha et al.,
2017). Meanwhile, Ben-Tal et al. (2013); Namkoong and Duchi (2017) adopted 𝑓 -divergences in
pursuit of tractable optimization approaches. It is worthy noting that the rank aggregation task has
its particularities. First, no generalization test is required for the RA task since we only need to
aggregate the whole ranking data set into one consensus full rank. Second, the probability ranking
model itself has high complexity. Therefore, we consider relative entropy for 𝐷 (·, ·), since it allows
standard inference with no additional computational burden and helps to exhibit robustness to most
types of perturbations.
Before introducing Theorem 3, we first introduce Lemma 1 which contains some preliminary

results from Miller and Dunson (2019).

Lemma 1 (Miller and Dunson (2019)) Let Δ𝑑 = {𝑝 ∈ R𝑑 : ∑𝑑
𝑖 𝑝𝑖 = 1, 𝑝𝑖 > 0 ∀𝑖}, and 𝑞 ∈ Δ𝑑 .

We argue that if 𝑥1, 𝑥2, . . . , 𝑥𝑁 i.i.d. ∼ 𝑞 and 𝐹𝑁 (𝑡 |𝑥1:𝑁 ) = 1
𝑁

∑𝑁
𝑛=1 I𝑥𝑛 (𝑡), then for 𝑝 ∈ Δ𝑘 near 𝑞

in KL divergence,

E𝑥1:𝑁∼𝑞 [exp(−𝛼DKL(𝑝‖𝐹𝑁 (𝑡 |𝑥1:𝑁 )))] ≈
(
𝑁𝜏𝑁

𝛼

) 𝑘−1
2

exp(−𝑁𝜏𝑁DKL(𝑝‖𝑞)),

where 𝜏𝑁 =
1/𝑁

1/𝑁+1/𝛼 .

Lemma 1 is defined for discrete distribution, which can be applied to our probability ranking
model. To be specific, in terms of the item set O = {𝑜1, 𝑜2, . . . , 𝑜𝑀 }, there are totally ∑𝑀

𝑖=2
(𝑀
𝑖

)
𝑖!

possible ranking lists. Therefore, the probability ranking model 𝑃𝜃 is actually a discrete distribution
with

∑𝑀
𝑖=2

(𝑀
𝑖

)
𝑖! supports.

Theorem 3 Suppose relative entropy is adopted as the distance measure, namely 𝐷 (R𝑁 ,<𝑁 ) =
DKL(𝐹𝑁 (𝑥 |R𝑁 )‖𝐹𝑁 (𝑥 |<𝑁 )) =

∫
𝐹𝑁 (𝑥 |R𝑁 )log 𝐹𝑁 (𝑥 |R𝑁 )

𝐹𝑁 (𝑥 |<𝑁 ) , and the empirical distribution con-
verges to the corresponding data generating distribution, namely𝐹𝑁 (𝑥 |R𝑁 ) → 𝑃𝑜 and𝐹𝑁 (𝑥 |<𝑁 ) →
𝑃𝜃 when 𝑁 → +∞. If 𝜖 is subject to an exponential prior, i.e., 𝜖 ∼ Exp(𝛼), we can obtain the
following simple approximation to our CoarsenRank in Equation (8):

max
𝜃 ∈Θ
E<𝑁∼𝑃𝜃

[P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖)] ∝∼ max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

𝑃
𝜏𝑁
𝜃

(𝜌𝑛), (12)

where ∝∼ denotes that the term on the left is approximately equal to a term, which is proportional to
the expression on the right, and 𝜏𝑁 =

1/𝑁
1/𝑁+1/𝛼 .

11
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Proof: According to Theorem 2, we have

E<𝑁∼𝑃𝜃
[P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖)] ∝ 𝜋(𝜃)E<𝑁∼𝑃𝜃

[P(𝐷 (R𝑁 ,<𝑁 ) < 𝜖) |𝜃)]
= 𝜋(𝜃)E<𝑁∼𝑃𝜃

[exp(−𝛼𝐷 (R𝑁 ,<𝑁 ))] ,

where we omit the normalization constant with respect to 𝜃.
Further, we have

E<𝑁∼𝑃𝜃
[exp(−𝛼𝐷 (R𝑁 ,<𝑁 ))]

1
= E<𝑁∼𝑃𝜃

[exp(−𝛼DKL(𝐹𝑁 (𝑥 |R𝑁 )‖𝐹𝑁 (𝑥 |<𝑁 )))]

2
∝∼ exp(−𝑁𝜏𝑁DKL(𝐹𝑁 (𝑥 |R𝑁 )‖𝑃𝜃 ))

3
∝ exp

(
𝑁𝜏𝑁

𝑁∑︁
𝑛=1

𝐹𝑁 (𝜌𝑛 |R𝑁 )log𝑃𝜃 (𝜌𝑛)
)
4
=

𝑁∏
𝑛=1

𝑃
𝜏𝑁
𝜃

(𝜌𝑛),

where 𝜏𝑁 =
1/𝑁

1/𝑁+1/𝛼 . 1 is valid by instantiating the distance measure with relative entropy. 2
follows Lemma 1 while omitting the constant-coefficient. 3 holds due to the removal of the constant
entropy term

∑𝑁
𝑛=1 𝐹𝑁 (𝜌𝑛 |R𝑁 ) log 𝐹𝑁 (𝜌𝑛 |R𝑁 ), which is a constant w.r.t. the model parameter 𝜃.

4 holds according to the definition of the empirical data distribution 𝐹𝑁 (𝑥 |R𝑁 ) = 1
𝑁

∑𝑁
𝑛=1 I𝜌𝑛 (𝑥).

Remark 3 (Connection between CoarsenRank and the standard posterior) Since 𝜖 ∼ Exp(𝛼),
we have E(𝜖) = 1

𝛼
denoting the expected discrepancy of the collected preferences R𝑁 w.r.t. <𝑁 .

Further, E(𝜖) tends to zero as 𝛼 → +∞, which means the misspecification does not exist in the
limit. Accordingly, the robust posterior Equation (12) degenerates to the standard posterior as
𝜏𝑁 =

1/𝑁
1/𝑁+1/𝛼 approximates to 1 when 𝛼 → +∞.

3.2 Instantiating CoarsenRank with Various Probability Ranking Model

Based on the CoarsenRank framework (Equation (12)), we instantiate 𝑃𝜃 with various probability
ranking models.
Please note an actual probability ranking model is usually defined over a subset of items and

satisfies the summing up to 1 condition only on this subset. However, it does not necessarily satisfy the
definition of the probability distribution over the whole item set O, namely the probability integration
of a probability ranking model over O is not 1 (Zhao and Xia, 2019)3. Without loss of generality,
we assume each subset of items is uniformly sampled from the whole set. Then, the normalization
constant can be safely omitted during optimization without affecting our final estimation.

3.2.1 Coarsened Thurstone Model (CoarsenTH)

We first review the basic Thurstone model (Thurstone, 1927b), which is a popular ranking model
to model pairwise comparisons. Particularly, it assumes that the score 𝜃𝑚 ∈ R for each item 𝑜𝑚
follows a Gaussian distribution 𝑁 (𝜇𝑚, 𝜎2𝑚), ∀𝑚 = 1, 2, . . . , 𝑀 . For simplicity, we only consider the

3. In terms of pairwise comparisons, there are totally
(𝑀
2
)
distinct pairs with the corresponding probability integration

being
(𝑀
2
)
. In terms of listwise preferences, there are

∑𝑀
𝑖=2

(𝑀
𝑖

)
distinct subsets in total with the corresponding

probability integration being
∑𝑀
𝑖=2

(𝑀
𝑖

)
.
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Thurstone model with 𝜎𝑚 = 1 for all items. In particular, the comparison between any two items 𝑜𝑖
and 𝑜 𝑗 also follows a Gaussian distribution 𝑁 (𝜇𝑖 − 𝜇 𝑗 , 2).
For a pairwise comparison 𝜌𝑛 : 𝜌1𝑛 > 𝜌2𝑛, Thurstone model assumes

𝑃𝜃 (𝜌𝑛) = Φ

(4𝜃𝜌𝑛√
2

)
=
1

√
2𝜋

∫ 4𝜃𝜌𝑛√
2

−∞
exp

(
− 𝑡
2

2

)
𝑑𝑡, (13)

where 4𝜃𝜌𝑛 = 𝜃𝜌1𝑛 − 𝜃𝜌2𝑛 denotes the difference between the score of the two items in 𝜌𝑛. Φ is the
cumulative distribution function (CDF) of the standard normal distribution.
According to Theorem 3, an example of our CoarsenRank (Equation (12)) using Thurstone model

can be represented as follows:

max
𝜃 ∈Θ
E<𝑁∼𝑃𝜃

[P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖)] ∝∼ max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

𝑃
𝜏𝑁
𝜃

(𝜌𝑛)

= max
𝜃 ∈Θ

𝜋(𝜃)
(
√
2𝜋)𝑁 𝜏𝑁

[
𝑁∏
𝑛=1

∫ 4𝜃𝜌𝑛√
2

−∞
exp

(
− 𝑡
2

2

)
𝑑𝑡

] 𝜏𝑁
,(14)

where 𝜏𝑁 =
1/𝑁

1/𝑁+1/𝛼 . Equation (14) can be only applied to pairwise comparisons. When encountering
listwise preferences, we need to split each listwise preferences into pairwise comparisons and then
alternatively perform our CoarsenRank on the new data set (Khetan and Oh, 2016).

Remark 4 (Optimization Intractability and Our Strategy) The cumulative distribution function
Φ is a special function, which cannot be expressed in terms of elementary functions. Therefore, it is
inefficient or intractable to optimize Equation (14) directly.

Inspired by the work which explores the connection between the sigmoid function and the
cumulative Gaussian distribution (Weng and Lin, 2011), we consider approximating the cumulative
distribution function Φ with the sigmoid function. In particular,

Φ

(4𝜃𝜌𝑛√
2

)
≈ 1
1 + exp(−𝜆4𝜃𝜌𝑛)

, (15)

where 𝜆 is set as 2/
√
𝜋 so that the two probability curves have the same slope at 4𝜃𝜌𝑛 = 0. A more

accurate approximation with the second order moments guarantee can be found in Daunizeau (2017).
Then, Equation (14) can be further approximated as

Equation (14) ≈ max
𝜃 ∈Θ

𝜋(𝜃)
(
√
2𝜋)𝑁 𝜏𝑁

𝑁∏
𝑛=1

1[
1 + exp(−𝜆4𝜃𝜌𝑛)

] 𝜏𝑁 , (16)

where regular gradient-based optimization approaches could be carried out. In particular, the score
is simply initialized to zero for all items, namely 𝜃𝑚 = 0,∀𝑚 = 1, 2, . . . , 𝑀 .

3.2.2 Coarsened Bradley-Terry Model (CoarsenBT)

A closely related model to the Thurstone model is the Bradley-Terry (BT) model (Bradley and Terry,
1952). For any pairwise comparison 𝜌𝑛 : 𝜌1𝑛 > 𝜌2𝑛, the BT model assumes

𝑃𝜃 (𝜌𝑛) =
𝜃𝜌1𝑛

𝜃𝜌1𝑛 + 𝜃𝜌2𝑛

, (17)
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where 𝜃𝑚 ∈ 𝑅𝑀
+ is a positive support parameter for item 𝑜𝑚, ∀𝑚 = 1, 2, . . . , 𝑀 .

According to Theorem 3,an example of our CoarsenRank (Equation (12)) using BT model can be
represented as follows:

Equation (12) ∝∼ max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

𝑃
𝜏𝑁
𝜃

(𝜌𝑛) = max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

[
𝜃𝜌1𝑛

𝜃𝜌1𝑛 + 𝜃𝜌2𝑛

] 𝜏𝑁
, (18)

where 𝜏𝑁 =
1/𝑁

1/𝑁+1/𝛼 . Similar to Thurstone model, Equation (18) can only model pairwise
comparisons. We still adopt the rank breaking strategy to split each listwise preferences into pairwise
comparisons and perform our CoarsenRank on the new data set (Khetan and Oh, 2016).

Remark 5 (Optimization Intractability and The Data Augmentation Method) The main infer-
ential issue related to Equation (18) concerns the presence of the annoying normalization terms
𝜃𝜌1𝑛 + 𝜃𝜌2𝑛 , ∀𝑛 = 1, 2, . . . , 𝑁 , that do not permit the direct maximization of the posterior. Further, the
nonnegative constraint over the model parameters 𝜃 rules out the direct applications of gradient-based
optimization approaches.

Motivated by Caron and Doucet (2012), we introduce the data augmentation method to address
the above-mentioned difficulty. Considering the fact that the Gumbel distribution is employed as a
distribution of the support parameters and the conjugacy of the Gamma density with the Gumbel
distribution, we follow Caron and Doucet (2012) and introduce an auxiliary Gamma random variable
for each normalization term, which leads to a joint distribution without suffering from the annoying
normalization terms.

3.2.3 Coarsened Plackett-Luce Model (CoarsenPL)

Here we instantiate 𝑃𝜃 with the popular Plackett-Luce (PL) model (Plackett, 1975; Luce, 1959).
Different from the previous Thurstone mode and the BTmodel, PL model is a more general probability
ranking model, which could model listwise rankings of a finite set of items directly. Note that PL
model incorporates BT model as a special case.
For a ranking list 𝜌𝑛 : 𝜌1𝑛 > 𝜌2𝑛 > . . . > 𝜌𝑘𝑛 , the PL model assumes

𝑃𝜃 (𝜌𝑛) =
𝑘−1∏
𝑖=1

𝜃𝜌𝑖𝑛

𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛
+ . . . + 𝜃𝜌𝑘

𝑛

, (19)

where 𝜃𝑚 ∈ 𝑅𝑀
+ is a positive support parameter associated with item 𝑜𝑚, ∀𝑚 = 1, 2, . . . , 𝑀.

Comparing Equation (19) to Equation (17), PL model degenerates to BT model when modeling
pairwise comparisons, i.e., 𝑘 ≡ 2.
According to Theorem 3, an example of our CoarsenRank (Equation (12)) instantiated using PL

model can be represented as follows:

Equation (12) ∝∼ max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

𝑃
𝜏𝑁
𝜃

(𝜌𝑛) = max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

[
𝑘−1∏
𝑖=1

𝜃𝜌𝑖𝑛

𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛
+ . . . + 𝜃𝜌𝑘

𝑛

] 𝜏𝑁
. (20)

where 𝜏𝑁 =
1/𝑁

1/𝑁+1/𝛼 . 𝑘 denotes the length of each preference, which could be variant for different
preferences.
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Remark 6 (Optimization Intractability and The Data Augmentation Method) The main infer-
ential issue related to Equation (20) concerns the presence of the annoying normalization terms
𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛

+ . . .+ 𝜃𝜌𝑘
𝑛
, ∀𝑛 = 1, 2, . . . , 𝑁, 𝑖 = 1, 2, . . . , 𝑘 −1, that do not permit the direct maximization

of the posterior. Further, the nonnegative constraint over the model parameters 𝜃 rules out the direct
applications of gradient-based optimization approaches.

Following our analysis in Remark 5, we avoid this issue using the data augmentation method.
In particular, we introduce an auxiliary Gamma random variable for each normalization term
𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛

+ . . . + 𝜃𝜌𝑘
𝑛
, ∀𝑛 = 1, 2, . . . , 𝑁, 𝑖 = 1, 2, . . . , 𝑘 − 1. Then, the resultant joint distribution

would no longer suffers from the annoying normalization terms.

3.3 Connection Between CoarsenRank and Mallows Model

Permutation-based models are based on the definition of distances 𝐷 (·, ·), which express the distance
of a permutation to the ground truth permutation. The most prominent example of these models is
the Mallows model (MM) (Mallows, 1957), an exponential model that expresses the probability of a
permutation in terms of its distance to a reference permutation. Let 𝜌 be a full/partial ranking list,
then MM specifies:

𝑃(𝜌 |𝑟) = 1
𝜓(𝛼) exp(−𝛼𝐷 (𝜌, 𝑟)), where 𝜓(𝛼) =

∑︁
𝜌

exp(−𝛼𝐷 (𝜌, 𝑟)). (21)

Here 𝛼 ∈ R+ is a spread parameter and 𝑟 is the reference permutation, or called the unknown ground
truth. 𝐷 (𝜌, 𝑟) represents a sample-level distance between 𝜌 and 𝑟. Note that 𝑟 is the mode, and the
closer a ranking list 𝜌 is to 𝑟, the larger 𝑝(𝜌) is. The alternative distance measures considered are
Kendall tau distance, Spearman’s rank distance, etc (Diaconis, 1988).
According to Equation (21), the probability of MM for R𝑁 could be represented as

𝑃(R𝑁 |𝑟) = 1
𝜓𝑁 (𝛼)

𝑁∏
𝑛=1
exp(−𝛼𝐷 (𝜌𝑛, 𝑟)) =

1
𝜓𝑁 (𝛼) exp(−𝛼

𝑁∑︁
𝑛=1

𝐷 (𝜌𝑛, 𝑟))

1
=

1
𝜓𝑁 (𝛼) exp(−𝛼𝐷 (R𝑁 , 𝑟))

2
∝ exp(−𝛼𝐷 (R𝑁 , 𝑟)),

(22)

where R𝑁 = {𝜌1, 𝜌2, . . . , 𝜌𝑁 } denotes the collected preferences. 1 is valid since we define
𝐷 (R𝑁 , 𝑟) =

∑𝑁
𝑛=1 𝐷 (𝜌𝑛, 𝑟). 2 holds due to the omission of the data non-relevant normalization

term.
However, permutation-based models are often impractical for the large-scale problem, because:

(1) the normalization term 𝜓(𝛼) usually requires high computational cost due to discrete distance
computation; and (2) a maximum likelihood estimation involves an impossible discrete search for
ranking over a large volume of items.

Remark 7 ( Comparison Between CoarsenRank and MM) Comparing Equation (22) to our Coarsen-
Rank formulation (Equation (10)), we can find that the difference between CoarsenRank and MM
mainly lies in the definition of distance 𝐷 (·, ·). Namely, distribution-level distance, i.e., DKL(·, ·) is
adopted for CoarsenRank, while sample-level distance, e.g., Kendall tau distance, is adopted for MM.
The superiority of CoarsenRank over MM lies in three aspects: (1) In terms of inference, an efficient
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inference strategy is discussed in the Remark after each variant of CoarsenRank, respectively; (2) In
terms of explanation, our CoarsenRank formulation is derived from the Coarsening mechanism while
assigning an exponential prior for the size of the neighborhood; (3) In terms of optimization w.r.t.
the hyperparameter 𝛼, we avoid parameter turning by adopting data-driving strategy for choosing 𝛼,
while Mallow’s mode does not enjoy this convenience.

4. Efficient Bayesian Inference

Following the discussion in the previous section, we propose two equivalent algorithms to solve
the proposed CoarsenRank framework efficiently, namely a closed-form Expectation-Maximization
algorithm in Section 4.2 and a Gibbs Sampling algorithm in Section 4.3. Further, we discuss their
algorithm complexity in Section 4.4. To avoid hyperparameter tuning, an efficient model selection
method based on Algorithm 2 is introduced in Section 4.5 to choose the single hyperparameter in a
data-driven manner.
In particular, we focus on Coarsened PL model (Equation (20)) only and refer it as CoarsenRank

for two reasons: (1) PL model can be applied to preferences with various length and incorporates BT
model as a special case; (2) Thurstone model and BT model are constrained to pairwise preferences,
while the rank breaking strategy would lead to computational inefficient.

4.1 Data Augmentation Method for Eliminating The Normalization Terms

First, we reformulate Equation (20) as follows:

Equation (20) = max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

[
𝑘−1∏
𝑖=1

𝜃𝜌𝑖𝑛

𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛
+ . . . + 𝜃𝜌𝑘

𝑛

] 𝜏𝑁
(23)

= max
𝜃 ∈Θ

𝜋(𝜃)
𝑁∏
𝑛=1

𝑘−1∏
𝑖=1

[
𝜃𝜌𝑖𝑛

𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛
+ . . . + 𝜃𝜌𝑘

𝑛

] 𝜏𝑁
= max

𝜃 ∈Θ
𝜋(𝜃)

𝑁∏
𝑛=1

𝑘−1∏
𝑖=1

(
𝜃𝜌𝑖𝑛

𝜂𝑖𝑛

) 𝜏𝑁
,

where 𝜂𝑖𝑛 = 𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛
+ . . . + 𝜃𝜌𝑘

𝑛
, ∀𝑛 = 1, 2, . . . , 𝑁, 𝑖 = 1, 2, . . . , 𝑘 − 1. Due to the presence of

the normalization terms 𝜂𝑖𝑛 in Equation (23), the direct maximization of the posterior w.r.t. to the
nonnegative parameter 𝜃 would encounter significant inefficiency.
For example, if we want to eliminate the term 𝜂𝑖𝑛 appearing in the denominator, we could introduce

an auxiliary random variable, whose conditional distribution contains 𝜂𝑖𝑛 in the numerator. Then, the
resultant joint distribution would no longer contain this annoying 𝜂𝑖𝑛 in the denominator. In particular,
one particular Gamma distribution is a promising candidate that satisfies the above requirements, i.e.,
Gam(𝜉 |1, 𝑞) = 𝑞𝑒−𝑞𝜉 could be used to eliminate a 𝑞 containing in the denominator.
Therefore, we introduce an auxiliary variable 𝜉𝑖𝑛 with regarding to each 𝜂𝑖𝑛, ∀𝑛 = 1, 2, . . . , 𝑁 and

∀𝑖 = 1, 2, . . . , 𝑘 − 1. Further, we define the posterior distribution of 𝜉𝑖𝑛 as follows,

𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃) = Gam(𝜉𝑖𝑛 |1, 𝜂𝑖𝑛) = 𝜂𝑖𝑛𝑒
−𝜉 𝑖

𝑛𝜂
𝑖
𝑛 . (24)

Then, we can deal with the joint distribution directly, i.e.,

𝑃(𝜌𝑛,Ξ|𝜃) = 𝑃𝜃 (𝜌𝑛)
𝑘−1∏
𝑖=1

𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃) =
𝑘−1∏
𝑖=1

(
𝜃𝜌𝑖𝑛

𝜂𝑖𝑛
· 𝜂𝑖𝑛𝑒−𝜉 𝑖

𝑛𝜂
𝑖
𝑛

)
=

𝑘−1∏
𝑖=1

(
𝜃𝜌𝑖𝑛𝑒

−𝜉 𝑖
𝑛𝜂

𝑖
𝑛

)
, (25)
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Algorithm 1 Closed Form EM for Coarsened Rank Aggregation (CoarsenRank)
1: Input: the collection of preferences R𝑁 , the number of iteration 𝑇 .
2: Initialization: hyperparameters{𝑎𝑚, 𝑏𝑚}𝑀𝑚=1 for 𝜃.
3: for 𝑡 = 1, 2, . . . , 𝑇 do
4: E-step: calculate the posterior expectation of auxiliary variable 𝜉𝑖𝑛 according to Equation (27).
5: M-step: update 𝜃𝑚 according to Equation (29) ∀𝑚 = 1, 2, . . . 𝑀 .
6: end for
7: Rank: the item score 𝜃 to derive the final ranking.
8: Output: the final ranking.

where Ξ = {𝜉𝑖𝑛}𝑘−1𝑖=1 denotes the introduced auxiliary variables.
Further, we adopt a Gamma prior to instantiate the prior distribution 𝜋(𝜃), which naturally satisfies

the nonnegative constraint of 𝜃, i.e., 𝜃 ∼ Gam(𝜃 |𝑎, 𝑏) = ∏𝑀
𝑚=1Gam(𝜃𝑚 |𝑎𝑚, 𝑏𝑚)). Therefore, the

full likelihood of our CoarsenRank model (Equation (23)) can be formulated as follows,

𝑃(R𝑁 ,Ξ, 𝜃, 𝜖 |{𝑎𝑚, 𝑏𝑚}𝑀𝑚=1, 𝛼) = 𝜋(𝜃)
𝑁∏
𝑛=1

(
𝑃(𝜌𝑛,Ξ|𝜃)

) 𝜏𝑁
(26)

=

𝑀∏
𝑚=1
Gam(𝜃𝑚 |𝑎𝑚, 𝑏𝑚)

𝑁∏
𝑛=1

𝑘−1∏
𝑖=1

(
𝜃𝜌𝑖𝑛𝑒

−𝜉 𝑖
𝑛𝜂

𝑖
𝑛

) 𝜏𝑁
,

where 𝜏𝑁 =
1/𝑁

1/𝑁+1/𝛼 . R𝑁 = {𝜌1, 𝜌2, . . . , 𝜌𝑛} denotes the observed preferences. 𝜖 ∼ Exp(𝛼) is the
discrepancy between the collected preferences R𝑁 and its idealized counterpart<𝑁 , measured in
relative entropy. (𝑎𝑚, 𝑏𝑚) is initialized to (1, 2), ∀𝑚 = 1, 2, ..., 𝑀. We fixed {𝑎𝑚, 𝑏𝑚}𝑀𝑚=1 in this
paper to eliminate their coupling effects with other factors in CoarsenRank (Equation (26)).

4.2 EM Algorithm with Closed-formed Updating Rules

Concerning the presence of the introduced auxiliary variables Ξ, we resort to the Expectation-
Maximization (EM) framework, which is a silver bullet to compute the maximum-likelihood solution
or maximum a posterior estimation in the presence of latent variables.

Expectation step (E-step) In the expectation step, we calculate the expectation of each auxiliary
variable 𝜉𝑖𝑛 w.r.t. its posterior distribution 𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃):

E𝑃 ( 𝜉 𝑖
𝑛 |𝜌𝑛 , 𝜃) [𝜉

𝑖
𝑛] =

1
𝜃𝜌𝑖𝑛 + 𝜃𝜌𝑖+1𝑛

+ . . . + 𝜃𝜌𝑘
𝑛

=
1
𝜂𝑖𝑛

, (27)

where 𝑛 = 1, 2, . . . , 𝑁 and 𝑖 = 1, 2, . . . , 𝑘 − 1. Then, the expectation of the complete-data log-
likelihood function w.r.t. the posterior of the introduced auxiliary variables Ξ can be represented as
follows:

E𝑃 (Ξ |R𝑁 , 𝜃)
[
log𝑃(R𝑁 ,Ξ, 𝜃, 𝜖 |{𝑎𝑚, 𝑏𝑚}𝑀𝑚=1, 𝛼)

]
(28)

=

𝑀∑︁
𝑚=1

[
(𝑎𝑚 − 1) log 𝜃𝑚 − 𝑏𝑚𝜃𝑚

]
+

𝑁∑︁
𝑛=1

𝑘−1∑︁
𝑖=1

[
𝜏𝑁 log 𝜃𝜌𝑖𝑛 − 𝜏𝑁E[𝜉𝑖𝑛]𝜂𝑖𝑛

]
+ constant,

where 𝑃(Ξ|R𝑁 , 𝜃) =
∏𝑁

𝑛=1
∏𝑘−1

𝑖=1 𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃) following Equation (27).
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Algorithm 2 Gibbs Sampling for Coarsened Rank Aggregation (CoarsenRank)
1: Input: the collection of preferences R𝑁 , the number of iteration 𝑇 .
2: Initialization: hyperparameters {𝑎𝑚, 𝑏𝑚}𝑀𝑚=1 for 𝜃, burn-in iterations Δ = 100.
3: for 𝑡 = 1, 2, . . . , 𝑇 + Δ do
4: sample 𝜉𝑖𝑛 from 𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃𝑡−1) according to Equation (30), ∀𝑛 = 1, 2, . . . , 𝑁 , ∀𝑖 = 1, 2, . . . , 𝑘 .

5: sample 𝜃𝑡𝑚 from 𝑃(𝜃𝑚 |R𝑁 ,Ξ) according to Equation (31), ∀𝑚 = 1, 2, . . . , 𝑀 .
6: end for
7: Average: the resulting 𝜃Δ+1:Δ+𝑇 to 𝜃.
8: Rank: the item score 𝜃 to derive the final ranking.
9: Output: the final ranking.

Maximization step (M-step) In the maximization step, we maximize the objective function
Equation (28) by setting its gradient w.r.t. 𝜃𝑚 to zero and obtain the following estimates for 𝜃𝑚
∀𝑚 = 1, 2, . . . , 𝑀:

𝜃𝑚 =
𝜏𝑁

∑𝑁
𝑛=1

∑𝑘−1
𝑖=1 (𝜑𝑚

𝑛,𝑖
) + 𝑎𝑚 − 1

𝜏𝑁
∑𝑁

𝑛=1
∑𝑘−1

𝑖=1 (𝜓𝑚
𝑛,𝑖

· E[𝜉𝑖𝑛]) + 𝑏𝑚
, (29)

where 𝜑𝑚
𝑛,𝑖

=

{
1 𝜌𝑖𝑛 = 𝑚

0 otherwise
and 𝜓𝑚

𝑛,𝑖
=

{
1 𝑚 ∈ {𝜌𝑖𝑛, . . . , 𝜌𝑘𝑛}
0 otherwise

.

Overall, the EM algorithm for Coarsened rank aggregation (CoarsenRank) is summarized in
Algorithm 1.

4.3 Gibbs Sampling for Coarsened Rank Aggregation

In our CoarsenRank (Equation (26)), there are two types of latent variables, i.e., Ξ and 𝜃. According
to our definition, the posterior distribution of 𝜉𝑖𝑛 can be represented as

𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃) = Gam(𝜉𝑖𝑛 |1, 𝜂𝑖𝑛) = 𝜂𝑖𝑛𝑒
−𝜉 𝑖

𝑛𝜂
𝑖
𝑛 , (30)

where 𝑛 = 1, 2, . . . , 𝑁 and 𝑖 = 1, 2, . . . , 𝑘 . Similarly, the full conditional distributions of 𝜃𝑚
∀𝑚 = 1, 2, . . . , 𝑀 are still members of the Gamma family. According to Equation (29), the posterior
distribution 𝑃(𝜃𝑚 |R𝑁 ,Ξ) can be represented as

𝑃(𝜃𝑚 |R𝑁 ,Ξ) = Gam
(
𝜃𝑚 | 𝜏𝑁

𝑁∑︁
𝑛=1

𝑘−1∑︁
𝑖=1

(𝜑𝑚
𝑛,𝑖) + 𝑎𝑚 − 1, 𝜏𝑁

𝑁∑︁
𝑛=1

𝑘−1∑︁
𝑖=1

(𝜓𝑚
𝑛,𝑖 · E[𝜉𝑖𝑛]) + 𝑏𝑚

)
, (31)

where 𝜑𝑚
𝑛,𝑖

=

{
1 𝜌𝑖𝑛 = 𝑚

0 otherwise
and 𝜓𝑚

𝑛,𝑖
=

{
1 𝑚 ∈ {𝜌𝑖𝑛, . . . , 𝜌𝑘𝑛}
0 otherwise

.

Therefore, the Gibbs sampling procedure for Coarsened rank aggregation (CoarsenRank) can be
summarized in Algorithm 2.

4.4 Time and Space Complexity Analysis

We analyze the algorithm complexity for our CoarsenRank as well as vanilla RA methods to further
demonstrate the superiority of our CoarsenRank. Note that CoarsenBT and CoarsenPL denote the
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Complexity Optimization Time Space

Vanilla

TH Gradient descent O(𝑁𝑀𝑇1𝑘
2) O(𝑁𝑀𝑘2)

BT Expectation maximization O(𝑁𝑀𝑇2𝑘
2) O(𝑁𝑀𝑘2)

PL-EM Expectation maximization O(𝑁𝑀𝑇2𝑘
2) O(𝑁𝑀𝑘)

PL Gradient descent O(𝑁𝑀𝑇1𝑘
2) O(𝑁𝑀𝑘)

Robust
CrowdBT Bayesian moment matching O(𝑁𝑇1𝑘2) O(max(𝑀,𝐺))
PeerGrader Gradient descent O(𝑁𝑀𝑇1𝑘

2) O(𝑁𝑀𝑘)

Coarsen

CoarsenTH Gradient descent O(𝑁𝑀𝑇1𝑘
2) O(𝑁𝑀𝑘2)

CoarsenBT Expectation maximization O(𝑁𝑀𝑇2𝑘
2) O(𝑁𝑀𝑘2)

CoarsenPL Expectation maximization O(𝑁𝑀𝑇2𝑘
2) O(𝑁𝑀𝑘)

CoarsenPL(GS) Gibbs sampling O(𝑁𝑀 (𝑇3 + Δ)𝑘2) O(𝑁𝑀𝑘 + 𝑀𝑇3)

Table 2: Complexity analysis of CoarsenRank

optimization strategy in Algorithm 1, while CoarsenPL(GS) denotes the optimization strategy in
Algorithm 2.
Let 𝑁 , 𝑀 , 𝑇1, 𝑇2, and 𝑇3 denote the number of preferences, the number of items, the number of

gradient descent steps, the number of EM iterations, and the number of Gibbs sampling iterations,
respectively. For ease of analysis, we assume the length of all preferences equals 𝑘 . The time and
space complexities of CoarsenRank are listed in Table 2.
Let’s give more discussions about Algorithm 1 and Algorithm 2 in terms of time complexity:

1. Our CoarsenRank consists of 𝑇 iterations between Equation (27) and Equation (29). The main
computational routine is the denominator

∑𝑁
𝑛=1

∑𝑘−1
𝑖=1 (𝜓𝑚

𝑛,𝑖
·E[𝜉𝑖𝑛]) for 𝑚 = 1, 2, . . . , 𝑀 , whose

computational cost is O(𝑁𝑀𝑘2) per iteration. The same computations also apply to PL-EM
since the only difference between PL-EM and CoarsenPL is the value of the scalar 𝜏𝑁 , which
refers to PL-EM if 𝜏𝑁 = 1, and CoarsenPL if 0 < 𝜏𝑁 < 1.

2. Pairwise RA methods, e.g., CoarsenTH and CoarsenBT, need to split each 𝑘-ary preference into
𝑘 (𝑘−1)
2 pairwise preferences, thus increasing the number of preferences from 𝑁 to 𝑁 𝑘 (𝑘−1)

2 , but
shorten the computation cost per preference from O( 𝑘 (𝑘−1)2 ) to O(1). The analysis also apply
to TH and BT since the only difference between CoarsenRank (CoarsenTH and CoarsenBT)
and vanilla RA (TH and BT) is the value of the scalar 𝜏𝑁 .

3. As for each iteration, gradient descent-based optimization (TH, CoarsenTH and PL) has the
same computational cost, i.e., O(𝑁𝑀𝑘2) as that of EM-based ones (BT, CoarsenBT, PL-EM
and CoarsenPL), since it needs to calculate the gradient of 𝑀 items over 𝑁 𝑘 (𝑘−1)

2 pairwise
preferences for BT-based models or 𝑁 𝑘-ary preferences for PL-based models.

4. CrowdBT adopts Bayesian moment matching for online updates. Although with complex
updating rules, it only updates the emerging item in the current preference without traversing
all items. Namely, its computation cost is not relevant to 𝑀 .
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5. PeerGrader introduces an extra variable to model the grader reliability. Since it adopts gradient
descent for optimization, PeerGrader has the same time complexity as PL. However, an iterative
alternating-minimization is required for optimizing the item score and the grader reliability,
which incurs more computations than vanilla PL.

6. The analysis for CoarsenPL in Algorithm 1 also applies to CoarsenPL(GS) of Algorithm
2 by comparing Eq.31 and Eq.29, which, however, requires more iterations (i.e., 𝑇3 � 𝑇2).
Furthermore, CoarsenPL(GS) also includes an extra computation cost O(𝑁𝑀Δ𝑘2) for the
burn-in process.

In terms of space complexity:

1. The primary storage elements are the index 𝜑𝑚
𝑛,𝑖
and 𝜓𝑚

𝑛,𝑖
, where 𝑛 = 1, 2, . . . , 𝑁 , 𝑖 = 1, 2, . . . , 𝑘

and 𝑚 = 1, 2, . . . , 𝑀 . Therefore, the overall space complexity for PL-based methods, e.g., PL,
PL-EM and CoarsenPL, is O(𝑁𝑀𝑘).

2. Apart from the same storage as other PL-based methods, PeerGarder needs to store the
reliability (a scalar) for each grader as well, which however can be omitted compared to the
storage of indies. Therefor, the space complexity for PeerGarder is also O(𝑁𝑀𝑘).

3. Pairwise RA methods, e.g., TH, CoarsenTH and BT, need to split each 𝑘-ary preference into
𝑘 (𝑘−1)
2 pairwise preferences, thus increasing the number of preferences from 𝑁 to 𝑁 𝑘 (𝑘−1)

2 , so
the overall space complexity is O(𝑁𝑀𝑘2).

4. Since CrowdBT adopts an online updating paradigm, it only needs to store a two-dimensional
hyperparameter for each score, a two-dimensional hyperparameter for each grader. Let 𝐺
denote the number of graders, the over space complexity for CrowdBT is O(max(𝑀,𝐺)).

5. Similarly, apart from the storage of the two index matrices 𝜑 and 𝜓, CoarsenPL(GS) requires
extra storage about 𝑀𝑇3 for storing 𝑇3 intermediate variables (𝜃 × 𝑇3) so as to calculate the
final item score.

Note that each item only appears in a small number of preferences, which means there is no need to
store all 𝑁 preferences for each item, especially when the length of preference (𝑘) is small. Therefore,
we can choose a more efficient strategy for storing the preferences, namely, regarding each item, we
only store the relevant preferences that contain the target item. Assume the maximum number of
relevant preferences is �̃� � 𝑁 , which can reduce both the time complexity and space complexity of
CoarsenPL from O(𝑁𝑀𝑇2𝑘

2) and O(𝑁𝑀𝑘) to O(�̃�𝑀𝑇2𝑘
2) and O(�̃�𝑀𝑘), respectively. The same

is true when applying to other RA methods. We adopt the proposed strategy for all RA methods in
the experiment.

4.5 A Data-driven Strategy for Choosing 𝛼

Regarding the hyperparameter optimization, we focus on exploring the effects of the hyperparameter
𝛼 in this paper. Other hyperparameters were not further explored in our experiment since these are
not our focus in this paper.
Regarding the hyperparameter 𝛼, we have no prior basis for choosing parameter 𝛼 in Equation (10).

Therefore, the following diagnostic curve can help to make a data-driven choice. Let 𝑓 (𝛼) be a
measure of fit to the data and 𝑔(𝛼) be a measure of model complexity. Following (Spiegelhalter
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Baselines Distance measure Perturbation assumption Ranking model assumption
distribution or
sample level

perturbation
𝑃(𝜌𝑛 |𝜚𝑛)

neighborhood
size 𝜖

model
𝑃𝜃

prior
𝜋(𝜃)

posterior
𝑃(𝜉𝑖𝑛 |𝜌𝑛, 𝜃)

Vanilla
TH distribution — — TH Gaussian Gaussian
BT distribution — — BT Gaussian/Gamma same as prior
PL distribution — — PL Gaussian/Gamma same as prior

Robust

MM sample fractional likelihood — MM — —
CrowdBT distribution Dawid-Skene model — BT Gaussian Gaussian
ROPAL distribution Dawid-Skene model — PL Gaussian Gaussian
PeerGrader distribution fractional likelihood — BT/PL/TH Gaussian —

Coarsen
CoarsenTH distribution — exponential prior TH Gaussian —
CoarsenBT distribution — exponential prior BT Gamma Gamma
CoarsenPL distribution — exponential prior PL Gamma Gamma

Table 3: Comparison between various rankingmodels in terms of their distance measure, perturbation
assumption andmodel assumption. “—”denotes the assumption does not apply to a particular
ranking model.

et al., 1998), we use the posterior expected log-likelihood for 𝑓 (𝛼), and the difference between
the log-likelihood evaluated at the posterior mean of the parameters and the posterior expected
log-likelihood for 𝑔(𝛼). Specifically, we define

𝑓 (𝛼) = E𝑞𝛼 (𝜃 |R𝑁 ) [log𝑃𝜃 (R𝑁 )] and 𝑔(𝛼) = log𝑃E(𝜃) (R𝑁 ) − 𝑓 (𝛼), (32)

where 𝑞𝛼 (𝜃 |R𝑁 ) is an approximate posterior distribution for 𝜃, i.e., Equation (31), and E(𝜃) =

E𝑞𝛼 (𝜃 |R𝑁 ) [𝜃] is the posterior expectation of 𝜃.
Therefore, the adopted Deviance Information Criterion (DIC) (Spiegelhalter et al., 1998) can be

represented as
DIC = 𝑔(𝛼) − 𝑓 (𝛼). (33)

As 𝛼 ranges from 0 to +∞, DIC traces out a curve in R, and the technique is to choose 𝛼 with the
lowest DIC or where DIC levels off.

5. Perturbation Assumption and Rank Model Assumption

In this section, we summarize the differences between our CoarsenRank and related RA models
in terms of distance measure, perturbation assumption and ranking model assumption. A detailed
comparison is listed in Table 3.
Specifically, we classify the rank aggregation methods into three categories: Vanilla RA, Robust

RA, and Coarsen RA. Vanilla RA, such as Thurstone (TH) model (Thurstone, 1927b) Bradley-Terry
(BT) model (Bradley and Terry, 1952) Plackett-Luce (PL) model (Plackett, 1975; Luce, 1959),
assumes all ranking lists are generated from the same distribution, under some parameterized ranking
model, e.g., TH, BT, and PL. Further, a prior is usually introduced for the parameter to avoid
overfitting.
The formulation of MM is similar to the fractional likelihood (Bhattacharya et al., 2019) where

the tunable spread parameter in MM has the same function as the exponential variable in a fractional
likelihood. This is why we classify MM as a robust RA. See section 3.3 for more detailed discussion.

21



Pan, Tsang, Chen, Niu and Sugiyama

Robust RA extends vanilla RA by considering extra noisy perturbations incurred during the
data collection. Representative robust RAs are CrowdBT (Chen et al., 2013) and ROPAL (Han
et al., 2018), which recovers the idealized ranking lists by some predefined perturbation mechanisms,
following the Dawid-Skene model. Meanwhile, PeerGrader (Raman and Joachims, 2014) also
enhances the robustness of vanilla RA following the principle of fractional likelihood. In particular,
PeerGrader introduces an extra parameter for each user, which would decrease the effects of noisy
preferences from an unreliable user. Above Robust RAs aim at capturing a perturbation pattern w.r.t.
to each user, which requires sufficient available preferences from each user. This constraint is too
strong while only one preference from each user is usually available in real application.
Our CoarsenRank is motivated by the Coarsening mechanism, where we perform regular RA over

the neighborhood of original ranking data. We only introduce one extra parameter, representing the
size of the neighborhood. A simple formulation of CoarsenRank is further derived if we adopt relative
entropy as the distance measure and assign an exponential prior for the unknown neighborhood size.
Three variants of CoarsenRank are introduced by instantiating with the vanilla TH, BT, and PL model,
and an efficient EM algorithm could be derived under the same assumption as the vanilla RAs.

6. Experimental Evaluation

In this section, we verify the efficacy of the proposed CoarsenRank algorithm on noisy rank
aggregation with the state-of-the-art approaches. The results are carried on four real-world noisy
ranking data sets.

6.1 Experimental Setting

Performance metric: Regarding the performance metric, we consider the Kendall tau similarity
(Kendall, 1938), which is one of the most common measures of similarity between rankings, namely

𝜏(𝜎1, 𝜎2) =
1
𝑀

∑︁
𝑖< 𝑗

(1[(𝜎𝑖
1 > 𝜎

𝑗

1 ) ∧ (𝜎𝑖
2 > 𝜎

𝑗

2 )] + 1[(𝜎
𝑖
1 < 𝜎

𝑗

1 ) ∧ (𝜎𝑖
2 < 𝜎

𝑗

2 )]). (34)

𝜏(𝜎1, 𝜎2) counts the pairwise agreements between items from two rankings 𝜎1 and 𝜎2. 𝑀 =
1
2𝑀 (𝑀 − 1) denotes total number of pairs. 𝜏 ranges from 0 (worst) to 1 (best).

Baselines: As for vanilla baselines, we first consider the vanilla Plackett-Luce model (Plackett,
1975; Luce, 1959). For the sake of fair comparison, we optimize with two optimization approaches,
i.e., gradient descent (PL) (Boyd and Vandenberghe, 2004) and EM using data augmentation
(PL-EM) (Caron and Doucet, 2012).
In terms of robust RA,we compare the results with PeerGrader (Raman and Joachims, 2014), which

is a variation of the Plackett-Luce model for partial preferences while incorporating the user reliability
estimation module. We also compare with the popular noisy ranking model CrowdBT (Chen et al.,
2013). Since CrowdBT was originally designed for pairwise preferences, we generalize CrowdBT
to partial preferences following rank-breaking (Weng and Lin, 2011). Namely, we first break each
partial preference into a set of pairwise comparisons and then apply CrowdBT to each pairwise
comparison independently. Note that we do not consider the robust RA proposed by Han et al. (2018),
since it is tailor-design for the crowdsourcing setting. In particular, their method requires multiple
preferences from each user for initializing the parameters, while it is not true for a more general
setting considered in this work where only one preference from each user is usually available.
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In terms of our CoarsenRank, we consider all its three instantiations: CoarsenTH (Equation (16)),
CoarsenBT (Equation (18)) and CoarsenPL (Equation (20)). Similar to CrowdBT, we adopt the
rank-breaking to generalize the CoarsenTH and CoarsenBT to partial preferences.

Calibration for real application In real applications, the number of items involved in partial
comparisons usually varies significantly. Some items (e.g., user-friendly cameras, or popular sushi)
may appear frequently in the ranking list due to their popularity, while other items (e.g., professional
cameras, or sushi with special taste) appear only in few preferences due to their professionality. In
such cases, the final ranking will not be unique or even not converge. To ensure a unique solution
and to avoid overfitting, regularization may be used. Specifically, we perform normalization over
𝜃, i.e., 𝜃 = 𝐶 · 𝜃/∑𝑚 𝜃𝑚. We fixed 𝐶 = 𝑀/2 in our experiment for simplicity. The calibration
method is applied to all EM-based approaches, i.e., CoarsenBT, CoarsenPL, and PL-EM. In terms
of other baselines, e.g., PL, CrowdBT and CoarsenTH, their formulation is a little different and the
nonnegative constraint is no longer required. Therefore, the calibration method cannot be applied.
Following CrowdBT, we use virtual node regularization (Chen et al., 2013). Specifically, it augments
the original data set R𝑁 with R𝑜, which consists of the pairwise comparisons between all items and
a virtual item 𝜃0, namely R𝑜 = {𝜃𝑚 > 𝜃0, 𝜃𝑚 < 𝜃0, 𝑚 = 1, 2, . . . , 𝑀}.

6.2 Detailed Descriptions of Data sets

We conducted our experiment on four real-world data sets introduced in previous research. The
detailed descriptions of the data sets are introduced in the following.
The Readlevel data set (Chen et al., 2013) contains English text excerpts whose reading difficulty

level is annotated by workers from a crowdsourcing platform. This data set consists of 490 excerpts
from 624 workers, resulting in a total of 12, 728 pairwise comparisons. A total order for 490 excerpts
provided by the domain expert is regarded as ground truth. The number of annotations varies
significantly for different workers, ranging from 1 to 42.
The SUSHI data set is introduced in (Kamishima, 2003), which consists of partial preferences

over 100 types of sushi from 𝑛 = 5, 000 customers. Following (Khetan and Oh, 2016), we generated
the total order as ground truth using the vanilla PL over the entire 5, 000 preferences. To create
training data, we randomly replaced 2, 000 preferences in the original SUSHI data set with another
2, 000 random generated preferences. The number of preference provided by each customer is fixed
to one.
The BabyFace data set (Han et al., 2018) consists of the evaluations of workers from Amazon

Mechanical Turk on images of children’s facial microexpressions from happy to angry, which
yields a collection of 3, 074 trinary preferences from 41 workers. A total order over all microex-
pressions is provided as ground truth by the agreement of most workers after the experiment.
Each worker provides at least 60 annotations.
The PeerGrading data set (Sajjadi et al., 2016) consists of assessments, i.e., Self grading and

Peer grading, from 219 students over 79 group submissions. We then created the ordinal gradings
by merging the Self grading and Peer grading regarding the same assignment provided by each
student, which results in a total of 3, 619 preferences with each containing 2 or 3 items. Further, the
TA gradings (following a linear order) provided by six teaching assistants over all submissions are
considered as ground truth. The number of annotations from different students ranges from 2 to 26.
The statistics of four data sets are summarized in Table 4.
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Data set #items (𝑀) #users #preferences (𝑁) length of preferences (𝑘) #annotations per user
Readlevel 490 624 12, 728 2 1 − 42
SUSHI 100 5, 000 5, 000 10 1
BabyFace 18 41 3, 074 3 ≥ 60
PeerGrading 219 79 3, 619 2 or 3 2 − 26

Table 4: The statistics of four real ranking data sets

6.3 Exploring The Efficacy of The Calibration Method

In section 6.1, we introduce a calibration method to the vanilla EM algorithm to deal with data
sparsity. We claim that the calibration method is necessary when the collected preferences do not
evenly cover the items. In particular, the calibration method serves as regularization, which is helpful
to avoid overfitting and leads to a unique solution.
To verify the efficacy of the calibration method, we conducted rank aggregation using CoarsenPL

and PL-EM on the Readlevel data set. Then we collected the Kendall tau similarity of these two
methods in Figure 3, under the case of with or without calibration method, respectively.
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Figure 3: The performance comparison of CoarsenRank and PL-EM algorithm under the case of
with or without calibration method. “W/” denotes “with” while “W/O” denotes “without”.

Figure 3 shows that: (1) without the calibration method, CoarsenPL and PL-EM are all prone to
overfitting. In particular, the Kendall tau similarity of CoarsenPL and PL-EM can reach their optima
at the first few iterations but start to decrease in the later iterations. Since the Kendall tau similarity is
different from our objective, this phenomenon is considered as a sign of overfitting. (2) With the
help of the calibration method, the overfitting problem is avoided. The Kendall tau similarity of two
methods remains stable after reaching their optima, respectively. (3) With or without the calibration,
the optimum Kendall tau similarities of CoarsenPL are very close. The same is true for PL-EM. It
implies that the calibration method does not change the result of rank aggregation methods but just
avoids overfitting.
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(c) BabyFace
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(d) PeerGrading

Figure 4: (a)-(d) The diagnostic plot of DIC VS. 𝛼 on four data sets, respectively. The 𝛼 used in our
experiment are marked as “ ∗ ” in each figure.

6.4 Deviance Information Criterion (DIC) for Choosing The Hyperparameter 𝛼

Following Section 4.5, we adopted the DIC to choose the hyperparameter 𝛼 for different data sets.
Since it is intractable to analytically calculate the posterior expectation in DIC, we implemented a
Gibbs Sampling procedure in Algorithm 2. Then, we collected the samplings from 𝑃(𝜃𝑚 |R𝑁 ,Ξ)
(Equation (31)) and calculated the Monte Carlo estimation of DIC (Equation (33)) for different 𝛼.
The number of samplings is set to 50 in our experiment. The diagnostic curves of 𝛼 on four data sets
are plotted in Figure 4, respectively.
The results show that the DIC decreases dramatically at first when 𝛼 is small, then the curve

reaches a cusp and levels off, with more modest increases/decreases when 𝛼 becomes larger. 𝛼 is
chosen at the point with the lowest DIC or where DIC levels off in our experiment, marked as “ ∗ ” in
each figure.

6.5 The Accuracy of CoarsenRank in Four Real Applications

We conducted the experiments on four real data sets and collected the empirical results of various
rank aggregation methods in Table 5. For better comparison, we further showed the performance
improvement of all methods over PL-EM on four data sets in Figure 5.
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Baselines Readlevel SUSHI BabyFace PeerGrading Ave. Rank (↓)

Vanilla
PL 0.6853 0.8554 0.8824 0.8023 6.75

PL-EM 0.6879 0.8578 0.8824 0.8014 6.25

Robust
CrowdBT 0.6944 0.8765 0.9085 0.8060 3
PeerGrader 0.6965 0.8588 0.9150 0.8040 3.5

Coarsen
CoarsenTH 0.6897 0.8731 0.9085 0.8095 3.5
CoarsenBT 0.7436 0.8740 0.8889 0.8117 2.75
CoarsenPL 0.7436 0.8970 0.9020 0.8130 1.75

Table 5: Kendall tau similarity (Eq.(34)) of various rank aggregation methods on four real data sets.
Best results are marked in bold.

Readlevel SUSHI BabyFace PeerGrading
-2%

0%

2%

4%

6%

8%

10%

PL-EM

PL 
CrowdBT
PeerGrader 
CoarsenTH 
CoarsenBT 
CoaesenPL

Performance

Figure 5: Performance improvement of various methods over PL-EM on four data sets in terms
of Kendall tau similarity (Eq.(34)), following 𝜏∗−𝜏0

𝜏0
. 𝜏0 is the Kendall tau similarity of

PL-EM.
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6.5.1 Comparison Between Three CoarsenRank Variants and Other Baselines

From Table 5 and Figure 5, it can be observed that: (1) Three CoarsenRank variants achieve
consistent improvement over other rank aggregation baselines. It demonstrates the great potential of
CoarsenRank in real applications, where model misspecification widely exists. (2) The accuracy of
PL is comparable with PL-EM on all data sets, which rules out the possibility that the EM algorithm
would lead to performance improvement. (3) CrowdBT and PeerGrader get superior performance
on BabyFace because of sufficient annotations (over 60) from each user and the trinary preferences
setting in BabyFace. (4) The improvement of CrowdBT and PeerGrader vary significantly on different
data sets. The reason is that their pre-assumed perturbation patterns may not be consistent with noise
agnostic perturbations in different data sets. (5) Marginal improvement is achieved by CrowdBT and
PeerGrader on Readlevel, SUSHI and PeerGrading where each user provides almost one preference.
Points (4) & (5) are model misspecification cases which our CoarsenRank is intended to address.

6.5.2 Comparison Among Three CoarsenRank Variants

From the fourth collum of Table 5, we can find that: (1) CoarsenPL achieves the highest Kendall
tau similarity on most data sets, compared to other CoarsenRank variants. (2) CoarsenBT gets
the inferior performance to CoarsenPL. It is because CoarsenBT are tailored designed for pairwise
preferences, and it needs to break each partial preference into independent pairwise preferences
before aggregation, which has been recently shown to introduce inconsistency (Khetan and Oh, 2016).
(3) CoarsenTH achieves the lowest Kendall tau similarity among all CoarsenRank variants. Apart
from the above-mentioned inconsistency issue, CoarsenTH may suffer from accuracy reduction due
to the introduced approximation or the lack of closed-form updating solutions.

Ratio 1% 2% 4% 8% 16% 32% 64% 100%
Average annotations 1.19 3 6 11.95 23.43 46.76 93.67 146.38

Vanilla
PL 0.7778 0.7582 0.8497 0.8693 0.8824 0.8824 0.8824 0.8824

PL-EM 0.6928 0.6863 0.8235 0.8497 0.8497 0.8562 0.8824 0.8824

Robust
CrowdBT 0.7843 0.7908 0.8627 0.8824 0.8824 0.9085 0.9020 0.9085
PeerGrader 0.8497 0.8562 0.8562 0.8824 0.9085 0.9085 0.9150 0.9150

Coarsen
CoarsenTH 0.8824 0.8824 0.8824 0.8824 0.8824 0.8824 0.8889 0.9085
CoarsenBT 0.8824 0.8824 0.8824 0.8824 0.8824 0.8824 0.8889 0.8889
CoarsenPL 0.8301 0.8431 0.8627 0.8693 0.8758 0.9085 0.9085 0.9020

Table 6: Ablation study on the number of annotations per user using the BabyFace data set by
gradually reducing the number of annotations per user. The Kendall tau similarity is
calculated for various rank aggregation methods. Best results are marked in bold.
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6.5.3 Ablation Study on The Number of Annotations Per User

To justify our claim, we conducted an ablation study on the BabyFace data set by gradually reducing
the number of annotations per user and collected the results in the following.
Table 6 shows that: (1) the performance of three CoarsenRank variants is less sensitive to

the number of annotations compared to other vanilla and robust rank aggregation methods; (2)
when the number of annotation per user is insufficient (i.e., ≤ 12) to learn the ability of annotator,
three CoarsenRank variants can achieve the best aggregation performance; (3) the performance
of CoarsenPL is significantly better than its vanilla version, i.e., PL-EM, which demonstrates the
superiority of CoarsenRank for noisy rank aggregation.

6.6 Comparisons of All Methods w.r.t. The Learning Time

We independently ran each baseline 50 times and reported the learning time (s) in Table 7 and
Figure 6. The learning time is represented by the mean with the standard deviation. For the sake of
fair comparison, the inner iteration is fixed to 15 for all methods. Empirical analyses were performed
on an Intel i5 processor(2.30 GHz) and 8 GB random-access memory (RAM).
Table 7 and Figure 6 shows that: (1) Three CoarsenRank variants achieve much smaller learning

time compared to other robust ranking aggregation baselines. It shows that our CoarsenRank is
promising for deploying in a large-scale environment, where reliability and efficiency are both required.
(2) The learning time of CoarsenPL and PL-EM are comparable because of the only difference between
CoarsenPL and PL-EM lying at the choosing of parameter 𝜏 (See Equation (29)). (3) PeerGrader
suffers from significant inefficiencies since it needs to optimize parameters alternatively. (4) CrowdBT
replaces the inefficient alternative optimization with the online Bayesian moment matching and
achieves smaller learning time compared to PeerGrader. However, it is still time-consuming on
SUSHI data set because of the inefficient rank-break method for long preferences.

6.6.1 Ablation Study on The Size of Samples

To demonstrate the time complexity analysis in Section 4.4, we took the Readlevel data set as an
example for the experiment since it has the largest number of samples (13𝑘). We first magnified the

Baselines Readlevel SUSHI BabyFace PeerGrading Ave. Rank(↓)

Vanilla
PL 0.793 ± 0.050 10.416 ± 1.605 1.522 ± 0.087 1.250 ± 0.075 4.75

PL-EM 1.352 ± 0.124 2.305 ± 0.338 0.475 ± 0.038 0.408 ± 0.037 2.5

Robust
CrowdBT 3.831 ± 0.232 15.169 ± 1.598 1.193 ± 0.0554 0.819 ± 0.072 5.5
PeerGrader 36.580 ± 0.967 57.289 ± 1.347 27.217 ± 0.973 23.966 ± 0.128 7

Coarsen
CoarsenTH 0.253 ± 0.014 0.706 ± 0.029 0.050 ± 0.011 0.117 ± 0.018 1
CoarsenBT 1.355 ± 0.102 9.155 ± 0.308 0.748 ± 0.059 0.488 ± 0.016 4
CoarsenPL 1.364 ± 0.098 2.350 ± 0.671 0.459 ± 0.012 0.389 ± 0.024 3.25

Table 7: The learning time (s) of all baselines and the proposed ones on four data sets, respectively.
Best results are marked in bold.
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Figure 6: The learning time of all baselines and the proposed ones on four data sets, respectively.

Magnification ratio 1 10 50 100

Vanilla
PL 0.793 ± 0.050 7.445±0.113 37.445± 0.298 72.915±0.960

PL-EM 1.352 ± 0.124 12.909 ± 0.286 64.081 ± 0.690 124.838 ± 2.222

Robust
CrowdBT 3.831 ± 0.232 38.703 ± 0.573 193.832 ± 1.105 378.552 ± 8.037
PeerGrader 36.580±0.967 520.240±9.908 3557.707±21.783 7113.333±69.421

Coarsen
CoarsenTH 0.253 ± 0.014 2.367±0.028 12.258±0.213 23.650±0.383
CoarsenBT 1.355 ± 0.102 12.793 ± 0.212 64.111 ± 0.663 124.851 ± 1.887
CoarsenPL 1.364 ± 0.098 12.858 ± 0.222 64.176 ± 0.691 125.343 ± 2.704

Table 8: Ablation study on the size of the data using the Readlevel data set by gradually magnifying
the size of data. The learning time (s) is represented by the mean with the standard deviation.
Best results are marked in bold.

Readlevel data set by duplicating it with the specified ratios and then collected the learning time (s) of
various methods on each magnified data set, respectively. For the sake of fair comparison, the inner
iteration is fixed to 15 for all methods. The learning times are summarized in Table 8 and Figure 7,
From Table 8 and Figure 7, we can find that: (1) the learning time of all the methods exhibit

obvious linear correlation with the size of the data set. This is consistent with our analysis in
Section 4.4 that the learning time is linearly correlated with the number of samples. (2) The
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Figure 7: Visualization of the learning time (s) for various rank aggregation methods on the magnified
Readlevel data set.

superiority of our CoarsenRank variants over PeerGrader is significant. In particular, for a large-scale
data set with 100 ∗ 13𝑘 samples, CoarsenTH can output the result in less than one minute, while
PeerGarder needs almost 2 hours to get the result. (3) CoarsenRank (i.e., CoarsenBT and CoarsenPL)
brings almost no extra computation cost over its vanilla counterpart (i.e., PL-EM) regardless of the
number of samples.

7. Conclusion

Our CoarsenRank performs imprecise inference conditioning on a neighborhood of the ranking
data set, which opens a new door to the robust rank aggregation against model misspecification.
Particularly, a computationally efficient formula for CoarsenRank is derived, which introduces
only one extra hyperparameter to vanilla ranking models. Experiments on four real applications
demonstrate imprecise inference on the neighborhood of the preferences, instead of the original
data set, can improve the model reliability. It shows that our CoarsenRank has great potential in
real applications, e.g., social choice, information retrieval, recommender system, etc, where model
misspecification widely exists. We consider the rank aggregation problemwhere only one ground truth
consensus full ranking exists. In terms of other applications for mixture rank aggregation (Zhao et al.,
2016), the homogeneity assumption on users is no longer valid and we will extend our distributionally
robust CoarsenRank to the scenario of heterogeneity users. Another promising direction for future
research is to explore other divergence metrics for other statistical properties of rank aggregation.
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Appendix A. Proof for Theorem 1

Theorem 1 Suppose 𝐷 (R𝑁 ,<𝑁 ) is an almost surely (a.s.)-consistent estimator4 of 𝐷 (𝑃𝑜, 𝑃𝜃 ),
namely 𝐷 (R𝑁 ,<𝑁 )

a.s.−−−−−−→
𝑁→+∞

𝐷 (𝑃𝑜, 𝑃𝜃 ), where 𝐹𝑁 (𝑥 |R𝑁 ) → 𝑃𝑜 and 𝐹𝑁 (𝑥 |<𝑁 ) → 𝑃𝜃 when
𝑁 → +∞. Assume P(𝐷 (𝑃𝑜, 𝑃𝜃 ) = 𝜖) = 0 and P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖) > 0, then we have

P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖) a.s.−−−−−−→
𝑁→+∞

P(𝜃 |𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖),

for any 𝜃 ∈ Θ such that
∫
|𝜃 |P(𝑑𝜃) < ∞.

Proof: Since P(𝐷 (𝑃𝑜, 𝑃𝜃 ) = 𝜖) = 0, we have5 1(𝐷 (R𝑁 ,<𝑁 ) < 𝜖) a.s.−−−−−−→
𝑁→+∞

1(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖).
Then we have |1(𝐷 (R𝑁 ,<𝑁 ) < 𝜖) | ≤ 1 hold ∀𝑁 > 0 since 0 ≤ 1(·) ≤ 1. According to
the dominated convergence theorem (Billingsley, 1999), we have P(𝐷 (R𝑁 ,<𝑁 ) < 𝜖) a.s.−−−−−−→

𝑁→+∞
P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖).
Similarly, we have 𝜃1(𝐷 (R𝑁 ,<𝑁 ) < 𝜖)) a.s.−−−−−−→

𝑁→+∞
𝜃1(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖)). Since 0 ≤ 1(·) ≤ 1,

|𝜃1(𝐷 (R𝑁 ,<𝑁 ) < 𝜖)) | ≤ |𝜃 |, ∀𝑁 > 0. Therefore, we have P(𝜃1(𝐷 (R𝑁 ,<𝑁 ) < 𝜖)) a.s.−−−−−−→
𝑁→+∞

P(𝜃1(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖)), according to the dominated convergence theorem and
∫
|𝜃 |P(𝑑𝜃) < ∞.

Above all, we have

P(𝜃 |𝐷 (R𝑁 ,<𝑁 ) < 𝜖) = P(𝜃1(𝐷 (R𝑁 ,<𝑁 ) < 𝜖))
P(𝐷 (R𝑁 ,<𝑁 ) < 𝜖)

a.s.−−−−−−→
𝑁→+∞

P(𝜃1(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖))
P(𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖) = P(𝜃 |𝐷 (𝑃𝑜, 𝑃𝜃 ) < 𝜖).
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