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Abstract

In order to describe or estimate different quantities related to a specific random variable, it
is of prime interest to numerically generate such a variate. In specific situations, the exact
generation of random variables might be either momentarily unavailable or too expensive
in terms of computation time. It therefore needs to be replaced by an approximation
procedure. As was previously the case, the ambitious exact simulation of first exit times
for diffusion processes was unreachable though it concerns many applications in different
fields like mathematical finance, neuroscience or reliability. The usual way to describe first
exit times was to use discretization schemes, that are of course approximation procedures.
Recently, Herrmann and Zucca (Herrmann and Zucca, 2020) proposed a new algorithm,
the so-called GDET-algorithm (General Diffusion Exit Time), which permits to simulate
exactly the first exit time for one-dimensional diffusions. The only drawback of exact
simulation methods using an acceptance-rejection sampling is their time consumption. In
this paper the authors highlight an acceleration procedure for the GDET-algorithm based
on a multi-armed bandit model. The efficiency of this acceleration is pointed out through
numerical examples.

Keywords: Exit time, Brownian motion, diffusion processes, rejection sampling, exact
simulation, multi-armed bandit, randomized algorithm.

Introduction

A precise description of the first time a given stochastic process exits from a domain is re-
quired in many mathematical applications: it can for instance be related to the evaluation of
risk of default in mathematical finance or to the description of spike trains in neuroscience,...
Unfortunately, in the diffusion framework (solutions of stochastic differential equations) a
simple and explicit expression of the first exit time distribution is not attainable except in
a few specific cases. It is therefore challenging to find out how to generate such variates.
One way to overcome this issue is to introduce an algorithm based on an approximation
procedure. Several studies are for instance based on a discretization scheme for the corre-
sponding stochastic differential equation. Most of them are based on improvements of the
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classical Euler scheme (see for instance (Broadie et al., 1997), (Gobet and Menozzi, 2010),
(Gobet, 2000)) which essentially consists in reducing the error stem from the approxima-
tion procedure. Another way to deal with the distribution of first exit times consists in
approximating their probability density functions and thus in approximating the solution
of an integral equation (Sacerdote et al., 2014).

Apart from all these approximation procedures, Herrmann and Zucca (Herrmann and
Zucca, 2020) proposed an exact simulation of diffusion first exit times based on an acceptance-
rejection method. The method is directly linked to the Girsanov transformation, a crucial
tool already used for the exact simulation of diffusion paths on a fixed time interval (Beskos
et al., 2006; Beskos and Roberts, 2005) or for the simulation of first passage times (Her-
rmann and Zucca, 2019). It is impossible to reasonably compare the numerical methods
listed so far since they are of very different types. On the one hand, approximation meth-
ods are fast but induce small errors to be controlled. On the other hand, exact method are
rather time-consuming.

The aim of this paper is to improve and accelerate the algorithm presented in (Herrmann
and Zucca, 2020) which permits to generate numerically the first exit time and exit location
of a diffusion process from a given interval [a, b]. Let us consider the stochastic process
(Xt, t ≥ 0), solution of the SDE:

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x ∈ (a, b) with −∞ < a < b <∞ (1)

where (Bt, t ≥ 0) stands for the standard one-dimensional Brownian motion, σ ∈ C3([a; b]) is
a positive function on the whole interval [a, b] and µ ∈ C2([a; b]). In the particular case when
the function σ is constant, we can relax the hypothesis on µ and we just take µ ∈ C1([a; b]).
These regularity conditions are required for the use of classical tools in stochastic calculus:
the algorithm is essentially based on a suitable combination of Itô’s lemma and Girsanov’s
transformation. We denote by τa,b the first time the diffusion exits from the interval [a, b]:

τa,b(X) := inf{t > 0 : Xt /∈ [a, b]}. (2)

Let T > 0 be a constant. We call BoxExit(x, [a, b], T ) the efficient algorithm which permits
to simulate exactly the random vector (τa,b(X) ∧ T,Xτa,b(X)∧T ), that is the first time the
path of the diffusion process (Xt, t ≥ 0) exits from the time-space rectangle [0, T ] × [a, b]
and its associated location. A simple and unified version of this algorithm is presented
in Section 1, Figure 2 (it corresponds to the algorithms DET and κ-DET introduced in
(Herrmann and Zucca, 2020)).

Of course BoxExit is only a basic component for the exit problem from the interval
[a, b]: the authors suggested in (Herrmann and Zucca, 2020) to use the Markov property
of the time-homogeneous diffusion (1) in order to simulate τa,b(X). More precisely, the
iteration procedure is initialized by Z0 = x, the starting position of the diffusion. Then the
sequence defined by

(Tn+1, Zn+1)← BoxExit(Zn, [a, b], T )

and stopped as soon as Zn reaches either the value a or b permits to generate the couple
(τa,b(X), Xτa,b(X)). The efficiency (time consumption) is just related to the unique pa-
rameter T since the size of the time-space rectangle associated to the basic component is
[0, T ]× [a, b].
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Exact simulation of diffusion first exit times

The main idea of the acceleration procedure is to choose in an optimal way the box
size related to the basic components. Instead of fixing the elementary box size equal to
[0, T ]× [a, b] ([a, b] being the interval of the initial problem), we propose to cover the interval
]a, b[ by a fixed number (denoted N − 1 in Section 2) of slices of identical width: ]a, b[=
∪N−1i=1 Ii and to successively use the basic components BoxExit(·, Ii, T ) associated to the
family of box sizes ([0, T ] × Ii)1≤i≤N−1 until the exit of the interval ]a, b[ occurs. In other
words, we introduce a random walk on small rectangles and stop it as soon as it reaches
either a or b, see Figure 1. At first glance, such a procedure seems to slow down the exact
simulation of the exit time since we introduce a new random walk and increase the number of
appeals to basic components. But the observation reveals something surprising: for suitable
choices of parametersN and T , the introduction of the random walk effectively speeds up the
algorithm. It is less time-consuming for a diffusion process to exit from boxes of intermediate
size compared to boxes of small or large size due to the acceptance-rejection method. This
simple argument partly explains the over-performance of the modified algorithm. It is
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Figure 1: Diffusion path and associated random walk on rectangles

therefore challenging to find the optimal parameters T and N in order to obtain the most
efficient algorithm. Instead of considering in detail all families of diffusion processes and
determining the best choice of parameters on a case-by-case basis, we prefer to propose a
randomized algorithmic approach. We find a reasonable value of T and choose N with a
multi-armed bandit method (ε-greedy algorithm). Such general method can be applied to
any diffusion process.

The material is organized as follows: in Section 1, we present a unified and simple
version for the exact simulation of exit times, denoted by BoxExit. Section 2 concerns
the introduction of the random walk on small rectangles of area 2T × [a, b]/N . A multi-
armed bandit method is introduced in Section 3 for the optimal choice of the parameter
N . Finally, in the last section we illustrate the efficiency of this new algorithm considering
classical diffusion processes like the Ornstein-Uhlenbeck process or the Cox-Ingersoll-Ross
model.
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1. Exit problem from a rectangle

Let us first recall the algorithm introduced in (Herrmann and Zucca, 2020) (see Theorem
4.3) which permits to exactly simulate the first exit time from the rectangle [0, T ] × [l, u]
for the diffusion path (Xt, t ≥ 0). The algorithm essentially needs two basic elements:

1. the exact simulation of the exit time and location (T , Bx
T ) from the interval [l, u] for

the Brownian motion starting in x, denoted by (Bx
t , t ≥ 0). Here T corresponds to

a simplified notation for the first exit time τl,u(Bx) defined in (2). The generation of
such a random vector is available (see Section 3 in (Herrmann and Zucca, 2020)) and
will be denoted by ExitBm(x, [l, u]) in the sequel.

2. the generation of the Brownian position Bx
t given the specific event T > t which is

denoted by CondBm(x, [l, u], t) (see Section 2 in (Herrmann and Zucca, 2020)).

Both elements allow the construction of a general algorithm for the simulation of exit times.
Before introducing the general procedure, we shall focus our attention onto a particular dif-
fusion process which corresponds to the unique solution of a stochastic differential equation
with unit diffusion coefficient:

dXt = µ0(Xt)dt+ dBt, X0 = x ∈ (a, b). (3)

Here the drift term is assumed to satisfy µ0 ∈ C2([a; b]). We define particular functions
associated to equation (3) as:

β(x) := exp

∫ x

0
µ0(y) dy and γ(x) :=

µ20(x) + µ′0(x)

2
.

These functions play an important role in the simulation and do not depend on the consid-
ered interval [l, u]. Let us now complete these functions with different parameters depending
on the interval [l, u]:

β+ := sup
x∈[l,u]

β(x), γ− := inf
x∈[l,u]

γ(x) ∧ 0, γ+ := sup
x∈[l,u]

γ(x), γ0 := γ+ − γ−.

A unified statement of the exact simulation algorithms presented in (Herrmann and
Zucca, 2020) is defined as follows:

Proposition 1 The couple (τl,u(X) ∧ T,Xτl,u(X)∧T ) which corresponds to the exit problem
of the diffusion path (3) from the rectangle [0, T ]× [l, u], has the same distribution than the
outcome (T , Z) of the algorithm BoxExit(x, [l, u], T ) for any T > 0 (see the flowchart in
Figure 2).

It is worth noting that the random variables generated in the algorithm BoxExit (i.e. E,
U , V , W ) are independent (In Figure 2, U , V and W are represented by the same character
U• which corresponds to independent uniformly distributed variates).
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Exact simulation of diffusion first exit times

initialization
T = 0, Z = x, K = T

generate

(S, Y ) = ExitBm(Z, [l, u])

generate E ∼ E(γ0)

test S = min(K,E, S)

test β+U• ≤ β(Y ) and

log(U•) ≤ γ− (K − S)

T ← T + S
Z = Y

outcome: T and Z

test K = min(K,E, S)

generate

Yc = CondBm(Z, [l, u],K)

test β+U• ≤ β(Yc)

T ← T +K
Z = Yc

generate

Yc = CondBm(Z, [l, u], E)

test γ0U• > γ(Yc)− γ−

T ← T + E
Z = Yc, K ← K − E

No

Yes

No

Yes

Yes

Yes

No

No

Yes

No

Figure 2: Flowchart of the algorithm BoxExit(x, [l, u], T )

Data: x (starting position), T , l and u (box size), γ(·) and β(·) (input functions).
Result: the random time T and the random location Z.

Initialization: K = T , Z = x, T = 0, test = 0;
Computation of γ−, γ0, β+ depending on the interval [l, u];

while test = 0 do
generate E ∼ E(γ0) and U ∼ V ∼W ∼ U([0, 1]);
generate (S, Y ) = ExitBm(Z, [l, u]);
if S = min(K,E, S) then

if β+U ≤ β(Y ) and log(W ) ≤ γ− (K − S) then
set test = 1, Z ← Y and T ← T + S;

else
go to initialization;

end

else if K = min(K,E, S) then
generate Yc = CondBm(Z, [l, u],K);
if β+U ≤ β(Yc) then

set test = 1, Z ← Y and T ← T +K;
else

go to initialization;
end

else
generate Yc = CondBm(Z, [l, u], E);
if γ0V > γ(Yc)− γ− then

Z ← Yc, T ← T + E and K ← K − E;
else

go to initialization;
end

end

end

Algorithm 1: BoxExit(x, [l, u], T )

5



Herrmann and Zucca

Remark 2 Under the assumption γ− = 0 that is infx∈[l,u] γ(x) ≥ 0, it is allowed to choose
T =∞ in the algorithm BoxExit(x, [l, u], T ). It sould be noted that BoxExit with T <∞
corresponds to the so-called κ-DET algorithm in (Herrmann and Zucca, 2020) whereas
BoxExit with T = ∞ corresponds to the DET algorithm. Here we decided to unify the
presentation for pedagogical reasons.

Remark 3 The Lamperti transform permits to generalize the study to equations with non-
unitary diffusion coefficients as (1). We simply present this well-known transformation. Let
(Xt, t ≥ 0) be the unique solution to the SDE (1) and let us introduce

S(x) =

∫ x

0

du

σ(u)
, ∀x ∈ R, (4)

then Itô’s lemma implies that X̂t := S(Xt) satisfies (3) with initial condition X̂0 = S(X0)
and drift term

µ0(x) :=
µ(S−1(x))

σ(S−1(x))
− 1

2
σ′(S−1(x)), x ∈ R.

The procedure to simulate the first exit time and location of a diffusion path (Xt, t ≥ 0)
defined by (1) from the rectangle [0, T ]× [l, u] is therefore the following:

1. Simulate (T , Z) the first exit time and location of the diffusion (X̂t, t ≥ 0) using the
algorithm BoxExit(S(x), [S(l),S(u)], T )

2. Compute S−1(Z). Then (T ,S−1(Z)) corresponds to the first exit time and location of
the diffusion (Xt, t ≥ 0) from the interval [l, u].

2. A random walk on rectangles

Using the exit problem of rectangles as the basic component, we can build a general algo-
rithm that enables us to simulate exactly the first exit time of the diffusion process (1) from
the interval [a, b]. Applying the Lamperti transformation already described in Remark 3,
there is a one-to-one correspondence between the process (Xt, t ≥ 0) solution of (1) starting
in X0 = x and (X̂t, t ≥ 0) the solution of (3) starting in X̂0 = S(x) = x̂ where S is defined
by (4). Moreover, the interval [a, b] is transformed into [â, b̂] = [S(a),S(b)].

Let us now describe how to deal with the exit problem for (X̂t, t ≥ 0) associated to the
interval [â, b̂]. Let us first fix a parameter T > 0 and a number N ≥ 2 (we shall comment
on these choices later on). These parameters define the size of the typical boxes used in the
algorithm illustrated by Figure 1: rectangles of area 2(b̂ − â)T/N . The main idea is quite
simple: the interval [â, b̂] is split into N intervals of identical length δ, associated to the
following space grid: a0 = â and aj+1 = aj + δ for 0 ≤ j ≤ N − 1. Here δ = (b̂− â)/N . We
define the index function:

ı(x) = j if (x− â) ∈
[
δ

2
+ (j − 1)δ,

δ

2
+ j δ

[
, (5)

otherwise either ı(x) = 1 for x ≤ â+ δ/2 or ı(x) = N − 1 for x ≥ b̂− δ/2.
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Exact simulation of diffusion first exit times

â â+ δ â+ 2δ â+ 3δ . . . . . .
b̂− δ b̂

ı = 1 ı = 2 ı = 3 ı = N − 2 ı = N − 1

Each index value ı ∈ {1, 2, . . . , N − 1} is associate to an interval of length 2δ:

Iı =]â+ (ı− 1)δ, â+ (ı+ 1)δ[. (6)

We notice that the family of intervals (Iı)1≤ı≤N−1 is a covering of the initial interval ]â, b̂[.
Moreover, for any x ∈]â, b̂[, x ∈ Iı(x).

A random walk corresponding to a skeleton of the diffusion path can be thus constructed
(see Figure 1): (T0, Y0) = (0, x̂) is the starting time and position of the diffusion process
(X̂t, t ≥ 0), solution of (3). The random sequence (Tn+1, Yn+1) is defined recursively as
follows: Tn+1 − Tn stands for the first exit time of the diffusion starting in Yn from the
rectangle [0, T ]× Iı(Yn) and Yn+1 corresponds to the associated exit location. Let us define

N := inf{n ≥ 0 : Yn /∈]â, b̂[}

then the combination of the Markov property and the Lamperti transform implies the
following statement.

Proposition 4 The diffusion first exit time and location (τa,b(X), Xτa,b(X)) has the same

distribution as the stopped random walk (TN ,S−1(YN )) and consequently the same distri-
bution as (T , Z) the outcome of the algorithm DiffExit given below in Algorithm 2.

The algorithm DiffExit induced by this random walk is the following.

Data: x (starting position of the diffusion), T , N (box size), γ(·) and β(·)
(input functions), S(·) (Lamperti transform).

Result: the random time T and the random location Z.

initialization: T = 0, Z = S(x), â = S(a), b̂ = S(b);

while Z ∈]â, b̂[ do
(S,Z)← BoxExit(Z, Iı(Z), T );

T ← T + S;

end
Z ← S−1(Z);

Algorithm 2: Diffusion Exit Problem DiffExit(T,N)

Of course, the efficiency of this exact simulation algorithm heavily depends on the pa-
rameters T and N which characterize the size of the typical boxes. If the box is large, then
the algorithm BoxExit becomes time consuming since it is based on a rejection sampling.
On the contrary, small boxes imply that the random walk on rectangles requires a lot of
iterations in order to hit the boundaries of the interval [a, b]. There is therefore an inter-
mediate box size which permits to observe simulations that take a reasonable computation
time.
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In order to illustrate this feature, let us introduce two particular examples:
Example 1: The diffusion process with unitary diffusion coefficient and with the following
drift term: µ0(x) = 2+sin(x). We consider the exit problem from the interval [a, b] = [0, 7],
the diffusion starting in x = 3. Figure 3 represents on the one hand the average number
of boxes needed in order to observe the exit depending on the box size (we let N vary).
On the other hand we also point out the computation time (in sec) needed to generate a
sample of 10 000 diffusion exit times.
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Figure 3: Average number of boxes used in the exit algorithm and total computation time
(for the simulation of the whole sample) versus the box size parameter N for the
diffusion process of Example 1. Exit problem from the interval [a, b] = [0, 7] with
the starting position x = 3. Each value is obtained with a sample of size 10 000
and T = 1.

Example 2: The Ornstein-Uhlenbeck process with unitary diffusion coefficient and drift
term : µ0(x) = −λx with λ > 0. First we focus our attention to the exit problem from the
interval [a, b] = [0, 7] with the initial condition x = 3 and the parameter λ = 1, see Figure
4 (left).

We notice that the optimal box size corresponds to N = 14 when T = 1 is fixed. Such an
optimal choice strongly depends on the interval [a, b]. Since the diffusion is mean-reverting,
let us observe what happens when the interval [a, b] contains 0. Figure 4 (right) illustrates
that N = 5 is optimal for [a, b] = [−2, 2] and x = 0.5. We also notice that the number
of boxes used in such a particular situation is much larger than in the previous situation.
It is therefore difficult to obtain a theoretical optimal value for the parameter N . That is
why we aim to find an acceleration method for the simulation of exit times (Algorithm 2:
DiffExit) using an algorithmic approach based on a multi-armed bandit.
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Figure 4: Average number of boxes and total computation time versus the box size param-
eter N for the Ornstein-Uhlenbeck process with parameter λ = 1. Exit prob-
lem from the interval [a, b] = [0, 7] with the starting position x = 3 (l) and
[a, b] = [−2, 2] and x = 0.5 (right). Each value is obtained with a sample of size
10 000 and T = 1.

3. Algorithm acceleration: a multi-armed bandit approach

Let us now suggest an acceleration method for the algorithm DiffExit presented in the
previous section and depending on both parameters N and T (size of the typical boxes).
The procedure is the following: we first fix T > 0 and N0 ≥ 2. Then we introduce an
algorithm used for the multi-armed bandit problem in order to choose an interesting value
of N satisfying N ≤ N0 and reducing the time consumption of the algorithm DiffExit.
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The multi-armed bandit corresponds to a famous problem where reinforcement learning
plays a crucial role, theoretical and practical studies aim to find trade-offs between explo-
ration and exploitation. The historical problem is quite simple and related to a slot machine
with a finite number of levers. One is faced repeatedly to a choice between these actions
and after each choice one receive a random numerical reward depending on the selected
lever. The objective is to maximize the average cumulative reward of a series of actions (for
instance, 10 000 successive selections) using a strategy based on an exploration-exploitation
algorithm. The exploration consists in selecting several times any arm of the bandit in order
to estimate the different mean rewards while the exploitation focuses on the choice of the
arm whose estimated reward is maximal. We refer to the interesting textbooks (Slivkins,
2019) and (Sutton and Barto, 2018) for practical and theoretical results associated with
this reinforcement learning framework. Several bandit algorithms permit to obtain theoret-
ical bounds of the total expected regret which represents a simple performance measure in
such a framework: ε-greedy, Boltzmann exploration, UCB (Upper Confidence Bounds), etc.
Here we focus our attention on the ε-greedy algorithm which is rather intuitive, simple to
implement and outperforms theoretically sound algorithms on most settings (Vermorel and
Mohri, 2005). Note that we chose a frequentist approach and not a Bayesian one because
we have no a priori information on the conditional probability distribution of the rewards.
Moreover, we look for an algorithm that can easily be used in a general framework and
does not depend on the characteristics of the diffusion process under review (Lattimore and
Szepesvári, 2020)

In our particular situation, the multi-armed bandit corresponds to the already intro-
duced algorithm DiffExit(T,N): each arm represents a value of N ∈ {2, 3, . . . , N0} which
characterizes the space splitting used in the algorithm. The reward associated with each
arm is the numerical time consumption of each exit time generation. It is of course random
since the basic components of the algorithm use rejection sampling. Let us mention that
the objective is here opposite: the aim is to minimize the cumulative reward. That means
that each use of the algorithm DiffExit leads to an evaluation of the time spent. We shall
therefore use a clock for determining the current time denoted by CurrentTime.

Let us present the application of ε-greedy algorithm in such a context. After the n-th use
of the algorithm DiffExit(T,N), the empirical mean of the time consumption is denoted
by µ̄n(N), for 2 ≤ N ≤ N0, and the number of times we already used the arm N until n
is mn(N). In the ε-greedy algorithm, the choice of the parameter N evolves randomly as
the number of simulations increases and depends on a fixed parameter ε. The probability
to choose the arm N for the n-th simulation is defined by:

πn+1(N) = (1− ε)1{N = arg min
2≤j≤N0

µ̄n(j)} +
ε

N0 − 1
, (7)

with the starting values π1(N) = ε/(N0 − 1) for all N ∈ {2, 3, . . . , N0}. Such strategy
for the random choice of the parameters permits to globally reduce the consumption time
for a sequential use of the algorithm DiffExit. Of course the parameter ε characterizing
the competition between exploration and exploitation has an influence on the acceleration
strength and should depend on the sample size. Different studies even suggest to let ε depend
on the number of actions ε := ε(n) of the order ε(n) = n−1/3((N0 − 1) log(n))1/3 (see, for
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Exact simulation of diffusion first exit times

instance, Theorem 1.4 in (Slivkins, 2019)). Nevertheless experimental results emphasize
that making the ε decrease does not significantly improve the performance of the multi-
armed bandit strategy (Vermorel and Mohri, 2005). In the following we shall therefore only
use the ε-greedy algorithm with fixed value ε ∈ (0, 1].

The modification of the DiffExit leads to the following algorithm.

Data: x (starting position), T , N0, γ(·) and β(·) (input functions), M (size of
the sample: number of simulations), ε (parameter in the ε-greedy
algorithm).

Result: Sample of M simulations for the couple random time T and random
location Z.

initialization:
π(N)← 1/(N0 − 1), µ̄(N)← 0 and m(N) = 0 for all 2 ≤ N ≤ N0;
for j ← 1 to M do

choose randomly N w.r.t. the distribution π(·);
t← CurrentTime;
(Tj , Zj)← DiffExit(T,N);
t← CurrentTime− t;
µ̄(N)← (m(N)µ̄(N) + t)/(m(N) + 1);
m(N)← m(N) + 1;
for i← 2 to N0 do

π(i)← ε/(N0 − 1);
end
π(arg min µ̄)← π(arg min µ̄) + (1− ε);

end
Algorithm 3: BanditDiffExit(T,N0)

This new algorithm called BanditDiffExit outperforms the exact algorithms intro-
duced for the simulation of diffusion exit times in (Herrmann and Zucca, 2020) as it appears
obvious in the numerical illustrations presented in Section 4.

4. Numerical illustration

4.1 First example

First we consider the first exit time from the interval [a, b] for the diffusion:

dXt = (2 + sin(Xt)) dt+ dBt, t ≥ 0, X0 = x. (8)

In (Herrmann and Zucca, 2020), the DET-algorithm permits to generate the first exit
time due to an acceptance rejection procedure (this algorithm corresponds to the already
presented BoxExit(x, [a, b], T ) for the particular value T = ∞, we can observe that the
condition described in Remark 2 is satisfied). Using a sample of first exit time generations
we can estimate the average computation time. Here the data correspond to the first exit
time from the interval [0, 7] when starting in x = 3.
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sample size average time (ms) confidence interval (95%)

10 000 7.832 7.676 7.989

It is of prime interest to compare the computation time using BoxExit-algorithm with
the computation time using the bandit algorithm presented in Section 3. Here we deal with
a sample of 1 000 actions in the bandit algorithm, each run corresponds to the simulation
of an exit time from the interval [a, b] = [0, 7]. Let us note that inbetween two consecutive
runs, the bandit algorithm proceed to an optimisation computation corresponding to the
choice of the box size. Therefore the sequence of the consumption times τ (1), . . . , τ (n) do
not represent i.i.d random variables (the confidence interval is therefore not available). We
provide the performance of such an algorithm in Figure 5: the averaged computation time
is strongly reduced. The figure represents the sequence : ( 1

n

∑n
i=1 τ

(i))n for 10 ≤ n ≤ 1 000.
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Figure 5: Empirical mean of the computation times (in ms) versus the number of simula-
tions (10 to 1 000). Each computation time corresponds to the simulation of an
exit from the interval [a, b] = [0, 7] with starting value x = 3. We use the ε-greedy
bandit algorithm with different values ε (ε = 1 corresponds to a uniform choice
of the parameter N in {2, . . . , 21}). The elementary box size is 2(b−a)T/N with
T = 1.
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Figure 6: Choice of the box size (parameter N) versus the number of iterations (left) when the box
size is chosen uniformly inbetween 2 and 21 accordingly to the ε-greedy algorithm with
ε = 1 (top), ε = 0.5 (middle) or ε = 0.1 (bottom) and histogram of the box size N for
a sample of size 10 000. Here we consider the exit time of the interval [a, b] = [0, 7] and
starting point x = 3 and T = 1.
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The multi-armed bandit approach permits to possibly change the box size used for the
first exit time simulation by selecting the parameter N inbetween a set of given values
(here {2, . . . , 21}, the arms of the bandit). The sequence of successive choices is randomized
since the parameter ε which represents in some sense the level of noise (the proportion of
exploration in the whole sequence of successive runs), belongs to ]0, 1]. In other words,
the particular choice ε = 1 corresponds to a sequence of independent uniformly distributed
choices whereas ε close to 0 corresponds to a sequence of mainly deterministic choices linked
to the argmin of the previous rewards (here the rewards are the consumption times).

In Figure 6, we illustrate the behavior of the algorithm for three different values of ε.
In each case, the selections of the parameter N throughout the sequence of iterations are
represented by crosses in the figures (left). Once all first exit times have been simulated,
the assessment is represented by both the frequencies of each value of N (histogram - right)
and the corresponding average consumption time (with possibly its confidence interval).
We can immediately observe the following.

• In the case ε = 1, the choice of the parameter N at each step of the algorithm does not
depend on the previously observed consumption times, N = 14 corresponding to its
argmin is not privileged. In a sample of size 10 000, only 5.1% of the actions consist
of the use of the optimal parameter N = 14. However, an acceleration is observed:
the consumption time of the numerical generation using this bandit method equals
9.7% of the classical consumption time.

• In the second case studied (ε = 0.5, middle), the particular choice N = 14 is rapidly
privileged even if the relatively important level of noise implies a frequent visit of each
proposed choice: 2, 3, . . . , 21. The exploration is quite important in that case. As in
the first case, for a generation of 10 000 exit times, 52% of the actions use the optimal
parameter and the global consumption times equals 5.2% of the classical consumption
time.

• Finally in the third case (ε = 0.1), the experiment leads to the following observation:
the bandit algorithm makes N = 16 its first choice but after a while (about 4 000
iterations) the noise permits to leave this local minimum and to choose the global
one. For a sample of 10 000 exit times, 59.7% of the generations deal with the optimal
choice N = 14 and the global time consumption equals 2.1% of the consumption time
without acceleration.

So in order to reach a global minimum, it seems to be important not to choose the noise level
ε too small. However we notice that the consumption times observed for both N = 14 and
N = 16 are very close together, so the investigation of the argmin is not a crucial challenge.
The acceleration algorithm using the multiarmed bandit approach is accurate: whatever the
choice of the parameter ε is, the global time consumption is strongly reduced with respect
to the initial method of generation. If the optimal choice of the parameter N is known in
advance, it is possible to reach a strong acceleration just by using this optimal value: 0.15%
of the classical time consumption. If the objective is to handle with huge samples and to
describe the asymptotic behaviour of the expected regret, then more sophisticated bandit
algorithms like UCB are preferred (Lattimore and Szepesvári, 2020).
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Figure 7: Optimal choice of the parameter N and average time consumption versus T . We
recall that the box size is T × (b− a)/N . Here N is chosen in the set {2, . . . , 21}
accordingly to the ε-greedy algorithm with ε = 0.1, and the average is computed
using a sample of size 10 000. We consider the first exit time from the interval
[a, b] = [0, 7] and with starting value x = 3.

Of course the box size of the basic components is the essential lever for the efficiency
of the first exit time simulation but it does not only depend on N . The area of the box is
2T×(b−a)/N so that both T and N have to be correctly chosen. In Figure 6, the parameter
T is fixed (T = 1) whereas N varies. Once the optimal choice of N is emphasized, it is
possible to observe how it depends on T . Figure 7 illustrates that the consumption time
of the algorithm does actually not precisely depend on T , provided that T is not too small
(T = 1 is a reasonable choice).

4.2 Ornstein-Uhlenbeck processes

Let us now consider a diffusion process which does not verify the particular condition
presented in Remark 2. We aim to illustrate the efficiency of the bandit algorithm with the
Ornstein-Uhlenbeck processes. So we consider the stochastic process with unitary diffusion
coefficient and drift term µ(x) = −λx. The aim is to simulate in some efficient way the
first exit time of the interval [a, b]. Since the process is mean reverting, its behavior will
depend on the location of 0, either in the interval ]a, b[ either on the boundary or outside
that interval. In order to present a complete illustration, we focus our attention on two
different examples:

• Ex.1: interval [a, b] = [0, 7], drift λ = 1 and starting position x = 3.

• Ex.2: interval [a, b] = [−2, 2], drift λ = 2 and starting position x = 0.5.
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In oder to simulate the first exit time from [a, b] we aim to compare DiffExit with the multi-
armed bandit approach BanditDiffExit. Let us just recall that DiffExit(x, [a, b], T ) is
based on a sequential observation of the paths on the intervals [nT, (n + 1)T ], n ≥ 0, till
the exit happens. Here T is a parameter which influences the efficiency of the numerical
procedure. For both cases under consideration, we observe that T = 0.5 is a reasonable
choice as suggested by the following table. It presents the estimated computation times in
ms for one exit time generation (estimation with a sample of 10 000 exit times).

computation time in ms (Ex.1) computation time in ms (Ex.2)

T average confidence (95%) average confidence (95%)

0.1 4.720 4.602 4.837 68.636 67.304 69.969

0.2 4.292 4.194 4.389 52.355 51.346 53.363

0.5 4.195 4.123 4.267 46.471 45.542 47.401

1 5.022 4.929 5.115 55.076 53.973 56.178

2 8.001 7.852 8.151 98.056 96.121 99.990

3 13.135 12.876 13.394 186.576 182.906 190.246

The consumption times associated with T = 0.5 become therefore our reference values
which need to be compared to the times issued from the multi-armed bandit. Figure 8
illustrates the efficiency of our approach for both examples (Ex.1 and Ex.2) since these
consumption times have been reduced especially for small noise intensity ε (we suggest to
choose ε smaller than 0.5). This acceleration is less impressive when the origin 0 belongs
to the interval [a, b] (Figure 8, right). Let us also note that the curves of the average
computation time associated with the parameters ε = 0.1 and ε = 0.2 intersect each other:
if one needs a huge number of simulations, then one prefer ε = 0.1 which permits to find
the global minimum and to avoid to often visit the other values of N . If one needs rather
an intermediate value of simulations (for instance, 1 000 exit times), then it is better to
increase a little the noise in the multi-armed bandit (ε = 0.2) in order to find quickly the
optimal value N even if the algorithm frequently visits all the other values of N .

The parameter T was fixed so far in the study of the Ornstein-Uhlenbeck process and
the attention was focused on the best choice of N . As already explained in Section 4.1, the
BoxExit algorithm depend both on N and T . Figure 9 represents the dependence of the
optimal choice of N and the average time consumption with respect to the parameter T .
This illustration emphasizes that the efficiency is not strongly dependent with respect to T
provided that T is neither too small nor too large. Even if the box size depends on both
parameters T and N , it is therefore more clever to look after the best choice for N rather
than the best choice for T . Moreover we prefer to avoid an application of the ε-greedy
algorithm to the couple (T,N) (T would be discretized) trying to keep things simple.

4.3 Cox-Ingersoll-Ross Processes

In all the previous examples, the diffusions under observation have a unitary diffusion co-
efficient. In such situations, both DiffExit and BanditDiffExit can be applied directly
without using Lamperti’s transform (see Remark 3). In order to complete the numerical
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Figure 8: Empirical mean of the computation time (in ms) versus the number of simulations
of exit times from the interval [a, b] for both examples (Ex.1 left and Ex.2 right).
We use different ε-greedy algorithms with T = 0.5 and N is chosen in the set
{2, . . . , 21}.
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Figure 9: Optimal choice of the parameter N and average time consumption versus T for
Ex.1 (left) and Ex.2 (right) . Here N is chosen in the set {2, . . . , 21} accordingly
to the ε-greedy algorithm with ε = 0.1, and the average is computed using a
sample of size 10 000.

illustration, we introduce a third example linked to the so-called CIR model (Cox-Ingersoll-
Ross) which is of prime importance in the mathematical finance framework, in particular
for the modelization of interest rates. The CIR model is characterized by the following
stochastic differential equation:

dXt = k(θ −Xt) dt+ σ
√
Xt dBt, t ≥ 0, X0 = x > 0. (9)
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Here k and θ are two parameters. Since the diffusion coefficient is not constant, we have
to use the Lamperti transformation introduced in (4). So we define S(x) = 2

σ

√
x. Then

X̂t := S(Xt) is a diffusion process with unitary diffusion coefficient and drift term:

µ0(x) =
ρ

x
− kx

2
where ρ :=

(4kθ − σ2)
2σ2

.

Let us assume that the parameters appearing in (9) satisfy the condition: ρ > 0. Conse-
quently the CIR process starting from a positive initial point stays strictly positive (see,
for instance, (Jeanblanc et al., 2009) in Section 6.3.1) and the function γ and β used in the
algorithms have an explicit expression easy to handle with:

γ(x) =
1

2

((
ρ

x
− kx

2

)2

− ρ

x2
− k

2

)
, β(x) = xρe−kx

2/4. (10)

For numerical illustration, we deal with the exit problem from [a, b] = [1, 6] for the CIR
model starting in x = 3 with coefficients k = 3, θ = 7 and σ = 1. As in the Ornstein-
Uhlenbeck context, we can here use the BoxExit(x,[S(a),S(b)],T) algorithm in order to
simulate both the first exit time and the exit location. This algorithm depends on a parame-
ter T . We obtain the following average computation times for one first exit time generation:

T average in ms confidence (95%)

0.1 12.206 11.981 12.431

0.2 11.939 11.718 12.161

0.5 11.901 11.671 12.130

1 12.272 12.036 12.509

We can observe that the parameter T has only a weak influence on the BoxExit effi-
ciency provided T belongs to an interval of reasonable values (here inbetween 0.1 and 1).
Let us now compare these computation times of the order of 12 ms per simulation to the
BanditDiffExit algorithm one. In Figure 10 (left), we observe a significant time reduc-
tion as soon as ε (the parameter of the ε-greedy procedure) is sufficiently small, we reach a
computation time near to 0.2 ms per simulation (for a sample size 10 000). Since the box
size used in BanditDiffExit depends on both parameters N and T , we wonder if the
optimal value of N strongly depends on T . As we can see in Figure 10 (right), it is not the
case: there is neither large swings in the optimal choice of the value of N nor in the average
consumption time associated with this optimal N .

Conclusion

The exact simulation procedure BoxExit(x, [a, b], T ) proposed in (Herrmann and Zucca,
2020) permits to generate the first exit time and exit location from an interval [a, b] in
the diffusion context. In this study, we emphasize a reinforcement learning method based
on a multi-armed bandit which permits to accelerate the BoxExit algorithm in any case.
As presented in Section 4, sometimes the consumption time reduction is very strong and
sometimes sensible. The outstanding advantage of the algorithm BanditDiffExit is its
universality: it does not depend on the the particular family of diffusion under consideration.
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Figure 10: Empirical mean of the computation time (in ms) versus the number of simula-
tions of exit times from the interval [1, 6] with different ε-greedy algorithms and
T = 0.5 (left). Optimal choice of the parameter N and average time consump-
tion versus T for the CIR model (right). Here N is chosen in the set {2, . . . , 21}
accordingly to the ε-greedy algorithm with ε = 0.1, and the average is computed
using a sample of size 10 000.

Let us also note that the authors have chosen the ε-greedy algorithm for the acceleration
procedure since it is simple to explain and particularly efficient. Of course any other algo-
rithm used in the classical multi-armed bandit problem can be tested for the acceleration
of BoxExit.

All the numerical tests have been done on the same computer:
Intel Core i5, 1.6 GHz
The open-source code corresponding to the C++ programs used in Section 4 is available
at https://github.com/SamHerr/Diff-FirstExitTime-Acceleration
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