
Journal of Machine Learning Research 23 (2022) 1-46 Submitted 4/20; Revised 8/22; Published 9/22

Gaussian Process Boosting

Fabio Sigrist fabio.sigrist@hslu.ch

Lucerne University of Applied Sciences and Arts

Suurstoffi 1

6343 Rotkreuz, Switzerland

Editor: John Cunningham

Abstract

We introduce a novel way to combine boosting with Gaussian process and mixed ef-
fects models. This allows for relaxing, first, the zero or linearity assumption for the
prior mean function in Gaussian process and grouped random effects models in a flexi-
ble non-parametric way and, second, the independence assumption made in most boosting
algorithms. The former is advantageous for prediction accuracy and for avoiding model
misspecifications. The latter is important for efficient learning of the fixed effects predictor
function and for obtaining probabilistic predictions. Our proposed algorithm is also a novel
solution for handling high-cardinality categorical variables in tree-boosting. In addition,
we present an extension that scales to large data using a Vecchia approximation for the
Gaussian process model relying on novel results for covariance parameter inference. We ob-
tain increased prediction accuracy compared to existing approaches on multiple simulated
and real-world data sets.

Keywords: non-linear mixed effects models, mixed effects machine learning, grouped
random effects, longitudinal data, spatial and spatio-temporal data, tree-boosting with
high-cardinality categorical variables

1. Introduction

Boosting (Freund and Schapire, 1996; Friedman, 2001) is a machine learning technique that
often achieves superior prediction accuracy on tabular data sets (Nielsen, 2016; Shwartz-
Ziv and Armon, 2022; Grinsztajn et al., 2022). This is reflected in statements such as
“[i]n general ‘boosted decision trees’ is regarded as the most effective off-the-shelf nonlinear
learning method for a wide range of application problems” (Johnson and Zhang, 2013).
Apart from this, the wide adoption of tree-boosting in applied machine learning and data
science is due to several advantages: boosting with trees as base learners can automati-
cally account for complex non-linearities, discontinuities, and high-order interactions, it is
robust to outliers in and multicollinearity among predictor variables, it is scale-invariant
to monotone transformations of the predictor variables, it can handle missing values in
predictor variables automatically by loosing almost no information (Elith et al., 2008), and
it can perform variable selection.

In boosting and in many other state-of-the-art supervised machine learning algorithms,
a flexible and potentially complex function relates a set of predictor variables to a response
variable. However, the response variable is usually assumed to be independent across
observations conditional on the predictor variables. This means that potential residual
correlation, i.e., correlation that is not accounted for by the predictor function, is ignored.
As we show in our experiments, modeling such correlation allows for more efficient learning

c©2022 Fabio Sigrist.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/20-322.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-322.html

Sigrist

of the predictor function, and it is important for prediction accuracy, in particular for
probabilistic predictions and for predicting sums (or averages) over, e.g., space. Example
applications of the latter include the prediction of global average temperatures, the total
rainfall in a catchment area, or the total value of a portfolio of real estate objects. Apart
from the potentially unrealistic independence assumption, tree-boosting can have difficulty
with high-cardinality categorical variables and predictions are discontinuous. The latter is
often unrealistic for spatial and spatio-temporal data.

Gaussian processes (Williams and Rasmussen, 2006) are flexible non-parametric func-
tion models that achieve state-of-the-art prediction accuracy and allow for making proba-
bilistic predictions (Gneiting et al., 2007). They are used in areas such as (i) non-parametric
regression, (ii) modeling of time series, spatial, and spatio-temporal data (Shumway and
Stoffer, 2017; Banerjee et al., 2014; Cressie and Wikle, 2015), (iii) emulation of large com-
puter experiments (Kennedy and O’Hagan, 2001), (iv) optimization of expensive black-box
functions (Jones et al., 1998), (v) parameter tuning in machine learning models (Snoek
et al., 2012), and others. Further, mixed effects models (Laird et al., 1982; Pinheiro and
Bates, 2006) with grouped, or clustered, random effects are widely used in various scientific
disciplines for modeling data with a grouping structure such as panel and longitudinal data.

In Gaussian process and mixed effects models, the prior mean is traditionally assumed
to be either zero or a linear function of predictor variables. Residual structured variation is
then modeled using a zero-mean Gaussian process and/or a grouped random effects model.
However, both the zero-mean and the linearity assumption can be unrealistic, and higher
prediction accuracy can be obtained by relaxing these assumptions; see, e.g., our experi-
ments in Sections 4 and 5. Furthermore, if the prior mean function of a Gaussian process
model is misspecified, spurious second-order non-stationarity can occur as the covariance
function of a misspecified model equals the true covariance function plus the squared bias of
the mean function (Fuglstad et al., 2015; Schmidt and Guttorp, 2020). It is thus important
to first correctly model the prior mean function before accounting for potential residual
second-order non-stationarity.

In this article, we propose a novel way to combine boosting with Gaussian process and
grouped random effects models to remedy the above-mentioned drawbacks and leverage
the advantages of both approaches. In particular, the goal is to relax, first, the linearity
or zero prior mean assumption in Gaussian process and mixed effects models and, second,
the independence assumption in boosting. This is done by considering a mixed effects
model where the prior mean fixed effects function, also denoted as predictor function in
the following, is assumed to be a non-parametric function of predictor variables, and the
random effects can consist of various combinations of Gaussian processes and grouped
random effects. We propose to model the non-linear predictor function by an ensemble of
base learners, such as regression trees (Breiman et al., 1984), learned in a stage-wise manner
using boosting, and the parameters of the covariance structure of the random effects are
jointly estimated with the predictor function. As every categorical variable corresponds to
a grouping of the data, grouped random effects models can be seen as a tool for modeling
categorical variables. In light of this, we also present a novel approach for dealing with
high-cardinality categorical predictor variables in tree-boosting.

1.1 Relation to existing work

The majority of existing Gaussian process and mixed effects models assume that the prior
mean fixed effects function is linear or zero. Little research has been done on combining
modern supervised machine learning techniques, such as boosting or random forest, with
mixed effects models and Gaussian processes. In the following, we give a brief review

2

Gaussian Process Boosting

of existing literature for mixed effects models where a non-linear predictor function is
estimated in a flexible, non-parametric way.

To relax the linearity assumption in mixed effects models, Tutz and Reithinger (2007)
and Groll and Tutz (2012) propose to use generalized additive models (GAMs) (Hastie
and Tibshirani, 1986; Wood, 2017). However, the structure of the predictor function has
to be determined a priori by specifying, for instance, main and second-order interaction
effects. In general, this can thus result in model misspecification. For the special case of
grouped random effects models for clustered or longitudinal data, several non-parametric,
machine learning-based approaches have been proposed. This includes Hajjem et al. (2011),
Sela and Simonoff (2012), and Fu and Simonoff (2015) which use regression trees for the
predictor function, and Hajjem et al. (2014) which use random forest to model the predictor
function. Both the MERT and MERF algorithms of Hajjem et al. (2011, 2014) and the RE-
EM tree algorithm of Sela and Simonoff (2012) repeatedly (i) learn the predictor function
using a machine learning technique, (ii) estimate covariance parameters, and (iii) calculate
predictions for random effects. This can make such approaches computationally demanding,
in particular when the sample size is large and the predictor function is modeled using
a complex model because both covariance parameters and the fixed effects functions are
repeatedly learned in every iteration. Since it is not clearly stated in the previous literature
which optimization problems are solved by these algorithms and how they are related
to the EM algorithm for mixed effects models (Laird et al., 1982), we elaborate on this
in Appendix A. Pande et al. (2017) propose a tree-boosting approach called boostmtree
for a special type of mixed effects models for longitudinal data with single-level grouped
random effects and where predictor variables are assumed to be constant within subjects.
Focusing on modeling complex interactions between time and predictor variables, their
approach differs from ours in several directions. For instance, they do not cover Gaussian
processes or other forms of random effects models with complex clustering such as crossed
or nested random effects. Furthermore, they (re-)estimate the covariance parameters in
every boosting iteration using the nlme R package, and their boostmtree algorithm uses a
certain form of “in-sample cross-validation” to avoid overfitting. Table 1 provides a brief
overview of the above-mentioned methods for linear and non-linear mixed effects models.

Method Fixed effects F (·) Random effects Zb

LMM Linear Grouped random effects

Gaussian processes (GP) Linear or F (·) ≡ 0 GP

Grouped random effects
with GAM fixed effects

Non-linear, GAM Grouped random effects

Classical boosting Non-linear, boosting None

MERT Non-linear, regression tree Grouped random effects

RE-EM tree Non-linear, regression tree Grouped random effects

MERF Non-linear, random forest Grouped random effects

boostmtree
Non-linear, boosting,
predictor variables are
constant within groups

Special type of grouped
random effects for
longitudinal data

GPBoost Non-linear, boosting
GP and grouped
random effects

Table 1: Short overview of methods for linear and non-linear mixed effects models.

A straightforward approach to applying machine learning methods to spatial and
grouped data consists of simply including spatial locations as continuous variables and

3

Sigrist

grouping variables as categorical variables in the set of predictor variables for the predictor
function. For linear models, this is equivalent to using fixed effects instead of random effects.
However, this approach has several drawbacks. For instance, when modeling spatial data,
it is often required that the spatial effect is continuous over space, but tree-boosting and
random forest produce discontinuous functions. A way to avoid this problem in boosting is
to use base learners that are continuous in the locations. This is the approach proposed in
Hothorn et al. (2010) where splines are used to model spatial effects and ridge regression is
used to model grouped effects. As we argue in the following, this approach still has some
weaknesses. First, all boosting approaches which model spatial and grouped effects using
deterministic base learners have the drawback that they assume a deterministic relation-
ship and that the residual error term is the only source of stochastic variation. In contrast,
Gaussian process and mixed effects models are probabilistic models that explicitly account
for correlations and provide probabilistic predictions. Modeling correlation is particularly
important for probabilistic predictions of, e.g., areal sums as correlation between the dif-
ferent random effects needs to be taken into account; see our experiments in Sections 4 and
5. Besides, estimates are usually less efficient when using fixed effects instead of random
effects in linear models. It is thus likely that the predictor function is also less efficiently
estimated in such an independent “fixed-effects” boosting approach. Our simulated ex-
periments in Section 4 support this hypothesis. Moreover, splines have the disadvantage
that they suffer from the so-called curse of dimensionality in non-spatial applications when
the dimension of the “locations”, or features, is large, and the locations are thus sparse in
space; see Section 1 for examples where this occurs.

The above-mentioned efficiency problem of fixed effects models is related to the fact
that classical tree-boosting algorithms can have difficulties with high-cardinality categorical
variables. Concerning this, the approach of the LightGBM boosting library (Ke et al., 2017)
works by partitioning all groups into two subsets when finding splits in the tree-building
algorithm. Since there are 2m−1 possible partitions of m different groups, an efficient
approach based on Fisher (1958) is used in LightGBM. Further, Prokhorenkova et al. (2018)
present an approach based on ordered target statistics calculated using random partitions
of the training data for handling categorical predictor variables.

Finally, we also mention Song and Zhang (2005) who use Gaussian processes as base
learners in special types of boosting algorithms, and Sigrist (2021b) who combines repro-
ducing kernel Hilbert space (RKHS) regression functions with trees as base learners in
boosting algorithms. However, these approaches using Gaussian processes or their deter-
ministic counterparts, kernel machines, as base learners assume conditional independence
among observations and are thus different from our approach.

2. A Non-linear and Non-parametric Mixed Effects Model

2.1 Model assumptions and notation

Following the terminology used in the mixed effects models literature (Laird et al., 1982;
Pinheiro and Bates, 2006), we assume a mixed effects model of the form

y = F (X) + Zb+ ε, b ∼ N (0,Σ), ε ∼ N (0, σ2In), (1)

where y = (y1, . . . , yn)T ∈ Rn is the response variable, F (X) ∈ Rn are called fixed ef-
fects, b ∈ Rm are zero-mean random effects with covariance matrix Σ ∈ Rm×m, and
ε = (ε1, . . . , εn)T ∈ Rn is an independent error term. Specifically, F (X) is the row-
wise evaluation of a function F : Rp → R, F (X) = (F (X1), . . . , F (Xn))T , where Xi =
(Xi1 . . . , Xip)

T ∈ Rp is the i-th row of X containing predictor variables for observation i,
i = 1, . . . , n. The matrices X ∈ Rn×p and Z ∈ Rn×m are the fixed and random effects

4

Gaussian Process Boosting

predictor variable matrices. Further, n denotes the number of data points, m denotes the
dimension of the random effects b, and p denotes the number of predictor variables in X.

The random effects vector b is either a finite-dimensional version of a Gaussian process
and/or it can contain grouped random effects.1 The covariance matrix Cov(b) = Σ is
usually assumed to be parametrized by a relatively low number of parameters, and it can
depend on predictor variables S ∈ Rn×d. For instance, the predictor variables S can
consist of locations and time points for spatial and time series data, or they can be any
input features in machine learning applications. For notational simplicity, we suppress the
dependence of Σ on its parameters and also on S. The matrix Z relates the random effects
b to the response variable y and it is often an incidence matrix with entries in {0, 1}. In
the case of grouped random effects, the columns of Z correspond to dummy variables,
also called one-hot encoded variables, of the categorical variables that define the grouping
structure. For Gaussian processes, Z is usually simply an identity matrix, but it can also be
a binary incidence matrix to model multiple observations at the same locations. Further,
Z can also contain covariate data, e.g., in the case of random coefficient models (Gelfand
et al., 2003; Pinheiro and Bates, 2006) also called spatially varying coefficient models for
spatial data. The predictor variables in Z and S may or may not be a subset of the
predictor variables in X, and vice versa. In Section 2.2, we outline several examples and
special cases of models for Zb. Note that conditional on F (X) and Z, dependence among
the response variable y can arise either due to the matrix Z being non-diagonal or due to
the covariance matrix Σ of the random effects being non-diagonal.

In linear mixed effects models (LMMs) and linear Gaussian process models in spatial
statistics, it is assumed that F (X) = XTβ, where β ∈ Rp is a vector of coefficients. We
denote models with F (X) = XTβ as linear models in this article. Further, in the machine
learning literature on Gaussian processes, is usually assumed that the prior mean function
is zero, F (X) ≡ 0. As mentioned above, one of the novel contributions of our approach
is to relax this linearity or zero prior mean assumption in a flexible and non-parametric
manner.

Concerning F (·), we assume that F (·) is a function in a function space H which is the
linear span of a set S of so-called base learners fj(·) : Rp → R. Possible base learners
are linear functions (Bühlmann et al., 2006), smoothing splines (Bühlmann and Yu, 2003),
wavelets (Saberian et al., 2011), reproducing kernel Hilbert space (RKHS) regression func-
tions (Sigrist, 2021b), neural networks (Schwenk and Bengio, 2000), and regression trees
(Breiman et al., 1984), with the latter being the most popular choice, in particular, in
applied machine learning due to the advantages listed in Section 1. For defining functional
derivatives, we additionally assume that the spaceH is normed. For instance, assuming that
the Xi’s are identically distributed and that all F ∈ H are square integrable with respect to
the law of X1, a norm on H can defined by the inner product 〈F,G〉 = EX1

(F (X1)G(X1))
for F,G ∈ H.

The marginal distribution of y in (1) is

y ∼ N (F (X),Ψ) , Ψ = ZΣZT + σ2In,

and the negative log-likelihood of this model is given by

L(y, F, θ) =
1

2
(y − F)TΨ−1(y − F) +

1

2
log det (Ψ) +

n

2
log(2π), (2)

where we abbreviate F = F (X) and θ ∈ Θ ⊂ Rq denotes all variance and covariance
parameters, i.e., σ2 and the parameters of Σ. In this article, we assume that the first

1. We assume that the random effects follow a normal distribution, but moderate violations of this assump-
tion have been shown to have only a small effect on prediction accuracy in the context of generalized
linear mixed models (McCulloch and Neuhaus, 2011).

5

Sigrist

element of θ is the error variance, θ1 = σ2. Further, to distinguish a function from its
evaluation, we use the symbols “F (·)” to denote a function and “F” for the function
evaluated at X.

Factoring out the error variance σ2 by setting

Σ† = Σ/σ2 and Ψ† = Ψ/σ2

gives the equivalent form
y ∼ N

(
F (X), σ2Ψ†

)
.

As this leads to a closed form expression for estimating σ2 (see Section 3.2), it can be
beneficial to use a reparametrization in which, after factoring out σ2, all other variance
parameters are replaced by the ratio of their original value and the error variance σ2, and
Ψ† does not depend on σ2. Calculations in the GPBoost library (see Section 3.6), which
implements our methodology, are based on this reparametrization.

2.2 Examples and special cases of random effects models

In this section, we outline several examples of random effects models. We distinguish
between the following broad classes of random effects models: (i) grouped random effects
models, (ii) Gaussian process models, and (iii) combinations of these two types of random
effects.

2.2.1 Grouped random effects model

Grouped, or clustered, random effects models are applied to grouped data. For instance,
a grouping of data can occur if there are several units each having multiple observations
which are potentially dependent within units. Grouped random effects then account for
correlation due to this grouping structure. Depending on the application area, such grouped
data is also denoted as longitudinal, panel, or repeated measurement data if different units
are repeatedly measured over time.

In a single-level grouped random effects model, there is a single grouping of the data
into m different groups. For every group j, j = 1, . . . ,m, there is a random effect bj ∈ R,
and the random effects bj are assumed to be independent and identically distributed with
Cov(b) = Σ = σ2

1Im. We thus have

Ψ = σ2
1ZZ

T + σ2In,

where the matrix Z ∈ {0, 1}n×m is an incidence matrix that relates group-level random
effects to observations. Such a single-level model can be easily extended to allow for multiple
random effects which are crossed and hierarchically nested and can also consist of random
coefficients (random slopes). In the latter case, Z is no longer a binary incidence matrix
but contains covariate data.

Note that every categorical variable of cardinality m corresponds to a grouping of the
data into m different groups, and the columns of Z correspond to dummy, or one-hot en-
coded, variables of the categorical variable representing the grouping structure. In general,
grouped random effects models can thus be used to model (high-cardinality) categorical
predictor variables.

2.2.2 Gaussian process model

In a Gaussian process model, the random effects b = (b(s1), . . . , b(sm))T are a finite-
dimensional version of a Gaussian process b(s) with a covariance function

Cov(b(s), b(s′)) = c(s, s′), s, s′ ∈ Rd,

6

Gaussian Process Boosting

observed at locations s1, . . . , sm. Note that we use the terminology “locations” adopted in
spatial statistics, but the locations can in general consist of non-spatial predictor variables
also called input features in machine learning. In particular, the locations can also contain
the predictor variables Xi or a subset of them.

Often, the covariance function is assumed to be second-order stationary, mean-square
continuous, and parametrized of the form

c(s, s′) = σ2
1r(‖s− s′‖/ρ),

where r is an isotropic autocorrelation function with r(0) = 0, σ2
1 = V ar(b(s)), and ρ is a so-

called range parameter that determines how fast the autocorrelation decays with distance.
Examples of autocorrelation functions include the exponential function r(‖s − s′‖/ρ) =

exp(−‖s − s′‖/ρ) and the Gaussian function r(‖s − s′‖/ρ) = exp
(
− (‖s− s′‖/ρ)

2
)

. The

extension to more general covariance functions and also to multivariate Gaussian processes
is straightforward, and our methodology presented in Section 3 does not rely on stationarity
assumptions. For a stationary Gaussian process, we obtain the following covariance matrix

Ψ = ZΣZT + σ2In,

where Σ ∈ Rm×m has entries
(Σ)jk = σ2

1r(djk/ρ)

and djk = ‖sj − sk‖, j, k = 1, . . . ,m.

2.2.3 Joint grouped random effects and Gaussian process models

Grouped random effects and Gaussian processes can also be combined. For instance, such
models are used for repeated measures and longitudinal data. One can assume that within
groups, there is temporal and/or spatial dependence modeled by a Gaussian process. In a
single-level grouped random effect model, this means that every group contains a Gaussian
process and the different Gaussian processes are independent among each other. Alterna-
tively, one can assume that there is a single global Gaussian process in combination with
grouped random effects, i.e. the same Gaussian process is related to all observations and
it accounts, for instance, for spatial or temporal correlation among all observations.

3. Combining Gaussian Process and Mixed Effects Models with Boosting

Our goal is to find the joint minimizer

(F̂ (·), θ̂) = argmin
(F (·),θ)∈(H,Θ)

R(F (·), θ), (3)

where R(F (·), θ) is a risk functional defined as

R(F (·), θ) : (F (·), θ) 7→ L(y, F, θ)
∣∣∣
F=F (X)

, (4)

and L(y, F, θ) is a loss function corresponding to the negative log-likelihood given in (2).
Note that R(F (·), θ) is determined by evaluating F (·) at X and then calculating L(y, F =
F (X), θ). We recall that F (·) is a function in a function space H and θ ∈ Θ ⊂ Rq
is a vector of all variance and covariance parameters. The risk functional R(F (·), θ) is,
in general, infinite-dimensional in its first argument and finite-dimensional in its second
argument. We propose to do the minimization in (3) using a boosting algorithm presented
in the following.

7

Sigrist

3.1 Boosting for θ fixed

We first show how boosting (Freund and Schapire, 1996; Breiman, 1998; Friedman et al.,
2000; Mason et al., 2000; Friedman, 2001; Bühlmann and Hothorn, 2007) works in our case
when the covariance parameters θ are given. For fixed θ, boosting finds a minimizer of
the empirical risk functional R(F (·), θ) in a stagewise manner by sequentially adding an
update fm(·) to the current estimate Fm−1(·):

Fm(·) = Fm−1(·) + fm(·), fm ∈ S, m = 1, . . . ,M, (5)

where fm(·) is chosen in a way such that its addition results in the minimization of the
risk. This minimization can usually not be done analytically and, consequently, an approx-
imation is used. In most boosting algorithms, such an approximation is obtained using
either a penalized functional first-order or a functional second-order Taylor expansion of
the risk functional around the current estimate Fm−1(·). This then corresponds to func-
tional gradient descent or functional Newton steps. It is also possible to combine gradient
and Newton steps by first learning part of the parameters of the base learners using a
gradient step and the remaining part using a Newton update (Friedman, 2001). See Sigrist
(2021a) for more information on the distinction between gradient, Newton, and hybrid
gradient-Newton boosting. In contrast to classical boosting algorithms, the risk functional
in (4) is not a sum of n independent terms as all observations y are dependent conditional
on X. In other words, we generally have only one independent multivariate sample instead
of n independent samples.

In gradient boosting, fm(·) is found as the least squares approximation to the vector ob-
tained when evaluating the negative functional gradient, i.e., the negative Gâteaux deriva-
tive, of R(F (·), θ) at (Fm−1(·), IXi(·)), i = 1, . . . , n, where IXi(·) are indicator functions
which equal 1 at Xi and 0 otherwise. Equivalently, one can show that fm(·) corresponds to
a minimizer of a first-order functional Taylor approximation of R(Fm−1(·)+f(·), θ) around
Fm−1(·) with an L2 penalty on f(·) evaluated at (Xi), i = 1, . . . , n; see, e.g., Sigrist (2021a)
for more information. It is easily seen that the negative Gâteaux derivative of R(F (·), θ)
evaluated at (Fm−1(·), IXi(·)), i = 1, . . . , n, is given by

− ∂

∂F
L(y, F, θ)

∣∣∣
F=Fm−1

= Ψ−1(y − Fm−1).

This means that for θ fixed, gradient boosting finds fm(·) as the least squares approximation

fm(·) = argmin
f(·)∈S

∥∥Ψ−1(y − Fm−1)− f
∥∥2
, (6)

where f = (f(X1), . . . , f(Xn))T .
In Newton boosting, fm(·) is found as the minimizer of a second-order functional Taylor

approximation to R(Fm−1(·) + f(·), θ) around Fm−1(·). In our case, this gives

fm(·) = argmin
f(·)∈S

(y − Fm−1 − f)
T

Ψ−1 (y − Fm−1 − f) . (7)

As mentioned, there also exists a hybrid gradient-Newton boosting version which learns
part of the parameters of the base learner fm(·) using a gradient step and the remaining
part using a Newton step. In the following paragraph, we assume that the base learners
can be written in the form

f(·) = h(·;α)T γ, h(·;α), γ ∈ RK , α ∈ RQ,

where α and γ denote parameters of the base learners and h(·;α) : Rp → RK . For instance,
for regression trees, α encodes split locations and variables, γ contains the terminal node

8

Gaussian Process Boosting

values, and h(·;α) is a function that maps predictor variables to terminal tree nodes. In
this case, hybrid gradient-Newton boosting first learns α̂ and γ̂ using a gradient boosting
step given in (6) and sets αm = α̂, and then updates γm = γ̂ using a Newton boosting
step defined in (7) with αm fixed. For the latter Newton step, an explicit generalized least
squares solution is obtained as

γm =
(
hTαmΨ−1hαm

)−1
hTαmΨ−1(y − Fm−1),

where hαm ∈ Rn×K is the matrix with entries (hαm)ik = h(Xi;αm)k, i = 1, . . . , n, k =
1, . . . ,K.

We note that in Newton boosting as well as hybrid gradient-Newton boosting, the
norm of fm(·), i.e., the step-length, does not depend on the scaling of the loss function, in
particular not on σ2, because

argmin
f(·)∈S

(y − Fm−1 − f)
T

Ψ−1 (y − Fm−1 − f) = argmin
f(·)∈S

(y − Fm−1 − f)
T (

Ψ†
)−1

(y − Fm−1 − f) ,

and Ψ†, which is defined in Section 2.1, does not depend on σ2. Since gradients are scale-
dependent, this does not hold true for gradient boosting.

It has been empirically observed (Friedman, 2001) that higher prediction accuracy can
be obtained by damping the update in (5):

Fm(·) = Fm−1(·) + νfm(·), ν > 0, (8)

where ν is called the shrinkage parameter or learning rate. Further, as in finite-dimensional
optimization, functional gradient descent can be accelerated using momentum. For in-
stance, Biau et al. (2019) and Lu et al. (2020) propose to use Nesterov acceleration (Nes-
terov, 2004) for gradient boosting.

3.2 Gaussian process boosting

A straightforward approach for finding a joint minimizer in (3) would consist of iteratively
first doing one approximate functional gradient or Newton descent step for F (·), and then
performing one first- or second-order optimization step for θ. Despite being attractive from
a computational point of view, this has the following drawback. For finite samples, boosting
tends to overfit, in particular for regression, and early stopping has to be applied as a form
of regularization to prevent this. However, there is no guarantee that θ has converged to a
minimum when early stopping is applied after a certain number of iterations. A possible
solution to avoid this problem consists of doing coordinate descent, also called block descent,
for both F (·) and θ, i.e., iteratively doing full optimization in both directions. But this
has the drawback that it is computationally expensive as both F (·) and the covariance
parameters θ need to be repeatedly learned.

Our proposed solution presented in Algorithm 1 is to combine functional gradient or
Newton boosting steps for F (·) with coordinate descent steps for θ. Specifically, in every
iteration, we first determine θm = argminθ∈Θ L(y, Fm−1, θ) and then update the ensemble
of base learners using either a functional gradient descent step, a functional Newton step,
or a combination of the two to obtain Fm(·) = Fm−1(·) + νfm(·). We thus avoid the
above-mentioned overfitting problem while being computationally more effective compared
to doing coordinate descent in both directions. Note that Ψm in Algorithm 1 denotes the
covariance matrix Ψ for the covariance parameters θm of iteration m.

The coordinate descent step for finding θm = argminθ∈Θ L(y, Fm−1, θ) can be done
using a first- or second-order method for convex optimization initialized with the covariance
parameters θm−1 of the previous iteration. In doing so, we avoid the full re-estimation of

9

Sigrist

Algorithm 1: GPBoost: Gaussian Process Boosting

Input : Initial value θ0 ∈ Θ, learning rate ν > 0, number of boosting iterations
M ∈ N, BoostType ∈ {"gradient", "newton", "hybrid"},
NesterovAccel ∈ {True, False}, and if NesterovAccel==True
momentum sequence µm ∈ (0, 1]

Output: Predictor function F̂ (·) = FM (·) and covariance parameters θ̂ = θM
1: Initialize F0(·) = argminc∈R L(y, c · 1, θ0)
2: for m = 1 to M do
3: Find θm = argminθ∈Θ L(y, Fm−1, θ) using a method for convex optimization

initialized with θm−1

4: if NesterovAccel==True then
5: Set Gm−1(·) = Fm−1(·)
6: if m > 1 then
7: Update Fm−1(·) = Gm−1(·) + µm(Gm−1(·)−Gm−2(·))
8: end if
9: end if

10: if BoostType=="gradient" then

11: Find fm(·) = argminf(·)∈S
∥∥Ψ−1

m (Fm−1 − y)− f
∥∥2

12: else if BoostType=="newton" then
13: Find fm(·) = argminf(·)∈S (y − Fm−1 − f)T Ψ−1

m (y − Fm−1 − f)
14: else if BoostType=="hybrid" then

15: Find αm = α̂, (α̂, γ̂) = argmin(α,γ):f(·)=h(·;α)T γ∈S
∥∥Ψ−1

m (Fm−1 − y)− f
∥∥2

16: Calculate γm =
(
hTαm

Ψ−1
m hαm

)−1
hTαm

Ψ−1
m (y − Fm−1)

17: Set fm(·) = h(·;αm)Tγm
18: end if
19: Update Fm(·) = Fm−1(·) + νfm(·)
20: end for

the covariance parameters in every boosting iteration. Examples of optimization algorithms
for determining θm include various forms of gradient descent and quasi-Newton methods
such as Fisher scoring which is often called “natural gradient descent” in machine learning
(Amari, 1998).

For first- and second-order optimization methods, the gradient of L(y, F, θ) with respect
to θ is required. This gradient is given by

∂L(y, F, θ)

∂θk
= −1

2
(y − F)TΨ−1 ∂Ψ

∂θk
Ψ−1(y − F) +

1

2
tr

(
Ψ−1 ∂Ψ

∂θk

)
, k = 1, . . . , q. (9)

In our software implementation (see Section 3.6), we reparametrize all parameters θk with
positivity constraints, such as marginal variance and range parameters, on the log-scale
log(θk) in order to constrain them to positive values during the numerical optimization.
Further, there is an explicit solution for the error variance parameter:

σ2 =
1

n
(y − Fm−1)

T (
Ψ†
)−1

(y − Fm−1) . (10)

For Gaussian processes, we have found in simulated experiments that when doing gradient
descent, profiling out the error variance using the analytic formula in (10) increases con-

10

Gaussian Process Boosting

vergence speed (results not tabulated). For Fisher scoring, on the other hand, profiling out
the error variance can reduce convergence speed considerably (results not tabulated).

The Fisher information matrix I ∈ Rq×q for Fisher scoring is given by

(I)kl =
1

2
tr

(
Ψ−1 ∂Ψ

∂θk
Ψ−1 ∂Ψ

∂θl

)
, 1 ≤ k, l ≤ q.

For the linear case, F (X) = XTβ, asymptotic theory (Stein, 1999) suggests that if the
smallest eigenvalue of the Fisher information I tends to infinity as n→∞, we can expect
that

I(θ̂)1/2(θ̂ − θ0)
d→ N (0, I),

where θ0 denotes the population parameter and I(θ̂)1/2 is a matrix square root. Based on
this, one can construct approximate confidence sets or intervals for θ.

If the risk functional R(F (·), θ) = L(y, F, θ)
∣∣∣
F=F (X)

is convex in its two arguments F (·)

and θ and Θ is a convex set, then (3) is a convex optimization problem since H = span(S)
is also convex. Such an algorithm with gradient or Newton steps in F (·) and coordinate
descent in θ thus converges to a minimizer of R(F (·), θ) as long as the learning rate ν is
not too large to avoid overshooting, i.e., that the risk increases when doing too large steps.

The computational complexity of the GPBoost algorithm depends on the specific ran-
dom effects model. For Gaussian processes, computational costs are dominated by the
learning of the covariance parameters and the calculation of derivatives with respect to
F . Specifically, the computational time and space complexity are O(m3) and O(m2),
respectively, of a single evaluation of the likelihood or its gradient using the Cholesky de-
composition when not applying an approximation for large data. Compared to this, the
learning of trees is faster in the gradient boosting version and, except for the leaf updates,
also in the hybrid gradient-Newton version.

In linear mixed effects models, L(y, F, θ) is usually optimized by first profiling out the
fixed effect part and then optimizing over θ. In our case, this is not an option since there is
no explicit solution for F (·) conditional on θ. Also, note that restricted maximum likelihood
(REML) estimation is often used for linear mixed effects models since otherwise covariance
parameter estimates can be biased. This is, however, not applicable to our approach.

3.3 Out-of-sample learning for covariance parameters

It has recently been observed for both regression and classification that state-of-the-art
machine learning techniques such as neural networks, kernel machines, or boosting algo-
rithms can achieve zero training loss and interpolate the training data while at the same
time having excellent generalization properties (Zhang et al., 2017; Wyner et al., 2017;
Belkin et al., 2018, 2019; Bartlett et al., 2020). In line with this, we find in our simulated
experiments in Section 4 that estimates of the error variance σ2 are often too small also
when doing early stopping by monitoring a validation error.

A way to alleviate this potential variance parameter bias problem is to estimate the
covariance parameters using out-of-sample validation data obtained by applying cross-
validation or by partitioning the data into two disjoint training and validation sets. To
avoid that the predictor function and the covariance parameters θ are only learned on
a fraction of the full data, we propose a two-step approach presented in the GPBoost-
OOS Algorithm 2. In brief, the GPBoostOOS algorithm first runs the GPBoost algorithm
on subsamples of the data and obtains predictions for the predictor function on the left-
out validation data. The covariance parameters are then estimated on the out-of-sample
data using the predicted predictor function. Finally, the GPBoost algorithm is run a sec-
ond time on the full data without estimating the covariance parameters. When k-fold

11

Sigrist

cross-validation is used in steps 1.-3. of Algorithm 2, both the predictor function and the
covariance parameters are learned using the full data.

Algorithm 2: GPBoostOOS: Gaussian Process Boosting with Out-Of-Sample co-
variance parameter estimation

Input : Initial value θ0 ∈ Θ, learning rate ν > 0, number of boosting iterations
M ∈ N, BoostType ∈ {"gradient", "newton", "hybrid"},
NesterovAccel ∈ {True, False}, and if NesterovAccel==True
momentum sequence µm ∈ (0, 1]

Output: Predictor function F̂ (·) and covariance parameters θ̂
1: Partition the data into training and validation sets, e.g., using k-fold cross-validation

or by splitting the data into two disjoint sets
2: Run the GPBoost algorithm on the training data and generate predictions for the

predictor function on the validation data F̂val
3: Find θ̂ = argminθ∈Θ L(yval, F̂val, θ) using the validation data with response yval
4: Run the GPBoost algorithm on the full data while holding the covariance parameters
θ fixed at θ̂, i.e., by skipping line 3 in Algorithm 1, to obtain F̂ (·)

3.4 Computationally efficient learning for large data

For computationally efficient learning of trees, several approaches exist so that computa-
tions scale well to large data (Chen and Guestrin, 2016; Ke et al., 2017; Prokhorenkova
et al., 2018). In this article, we use the approach of Ke et al. (2017).

Concerning covariance parameters, we adopt the following solutions for reducing com-
putational costs. If the random effects b consist of only grouped random effects, Ψ is
usually a sparse matrix, and computations can be done efficiently using sparse matrix
algebra. Further, we can use the Sherman-Morrison-Woodbury formula(

ZΣZT + σ2In
)−1

= σ−2In − σ−2Z
(
σ2Σ−1 + ZTZ

)−1
ZT (11)

for calculating gradients with respect to F and θ and for evaluating the log-likelihood since
the dimension of the random effects m is typically smaller than the number of samples n.

If b contains a Gaussian process with a non-sparse covariance matrix, both the compu-
tational cost and the required memory do not scale well in the number of observed locations
m as standard approaches relying on the Cholesky factorization require O(m3) calculations
and O(m2) memory storage. In this case, one has to use some approximation to make cal-
culations feasible. We choose to use Vecchia’s approximation (Vecchia, 1988; Datta et al.,
2016; Katzfuss and Guinness, 2021; Finley et al., 2019), also denoted as nearest-neighbor
Gaussian process (NNGP) model (Datta et al., 2016), as it is very accurate for spatial data,
embarrassingly parallel, and it has the desirable property that maximizing it corresponds
to solving a set of unbiased estimating equations (Guinness, 2018). This has led some
authors in the spatial statistics community to declare that “[a]mong the sea of Gaussian
process approximations proposed over the past several decades, Vecchia’s approximation
has emerged as a leader” (Guinness, 2021). However, we note that this is not the only
large-data Gaussian process approximation that can be applied to the GPBoost algorithm.
Other potential Gaussian process approximations include Snelson and Ghahramani (2006);
Quinonero-Candela et al. (2007); Cunningham et al. (2008); Titsias (2009); Hensman et al.

12

Gaussian Process Boosting

(2013); Wilson and Nickisch (2015); Gardner et al. (2018); see also the review of Liu et al.
(2020).

Intuitively, the idea of Vecchia’s approximation is to approximate a Cholesky factor of
the precision matrix using a sparse matrix and thus to obtain a sparse approximate precision
matrix. In the following, we briefly review how this is obtained in our case and then show
how gradients of the negative log-likelihood given in (9) can be calculated efficiently. To
the best of our knowledge, the latter result is novel.

3.4.1 Vecchia approximation for the response variable y

Vecchia approximations can be seen as a special form of composite likelihood methods
(Varin et al., 2011). In our case, the likelihood p(y|F, θ) is approximated as

p(y|F, θ) =

n∏
i=1

p(yi|(y1, . . . , yi−1), F, θ)

≈
n∏
i=1

p(yi|yN(i), F, θ),

(12)

where yN(i) are subsets of the conditioning sets (y1, . . . , yi−1), and N(i) denotes the cor-
responding subsets of indices. As is commonly done, we choose N(i) as the indices of the
mv nearest neighbors of si among s1, . . . , si−1 if i > mv + 1, and, in the case i ≤ mv + 1,
N(i) equals (1, . . . , i− 1).

By standard arguments for conditional Gaussian distributions, we have

p(yi|yN(i), F, θ) = N
(
yi | Fi +Ai

(
yN(i) − FN(i)

)
, Di

)
,

where N (x|µ,Ξ) denotes a Gaussian density with mean vector µ and covariance matrix Ξ
evaluated at x, and the matrices Ai ∈ R1×|N(i)| and Di ∈ R, where |N(i)| denotes the size
of the set N(i), are given by

Ai =
(
ZΣZT

)
i,N(i)

((
ZΣZT + σ2In

)
N(i)

)−1

,

Di =
(
ZΣZT + σ2In

)
i,i
−Ai

(
ZΣZT

)
N(i),i

,
(13)

where Σ = (c(sl, sk))l,k, 1 ≤ l, k ≤ n is the covariance matrix of b, c(·, ·) is the covariance
function, Mi,N(i) denotes the sub-matrix of a matrix M consisting of row i and columns
N(i), and MN(i) denotes the sub-matrix of a matrix M consisting of rows N(i) and columns
N(i). Note that if Z is a diagonal matrix, we have(

ZΣZT
)
N(i)

= ZN(i)ΣN(i)ZN(i) = ΣN(i) �
(
zzT

)
N(i)

,

where z is the diagonal of Z and � denotes the Hadamard product (Dambon et al., 2021).
Using this relationship can lead to a reduction in computational cost, in particular for
random coefficient models.

We further denote by B the lower triangular matrix with 1’s on the diagonal, off-
diagonal entries

(B)i,N(i) = −Ai, (14)

and 0’s otherwise, and by D a diagonal matrix with Di on the diagonal. We then obtain
the following approximate distribution

y
approx∼ N

(
F (X), Ψ̃

)
, Ψ̃ = B−1DB−T , (15)

13

Sigrist

and the corresponding precision matrix is given by

Ψ̃−1 = BTD−1B, (16)

where B and Ψ̃−1 are sparse.

Concerning computational complexity, the main burden is the calculation of Cholesky
factors of Cov(yN(i)) =

(
ZΣZT + σ2In

)
N(i)

. Calculating a Vecchia approximation has

O(nm3
v) computational cost and requires O(nmv) memory storage. Thus, for given mv,

both the computational time and the memory storage grow linearly. Concerning the choice
of the numbers of neighbors mv, Datta et al. (2016) report that “usually a small value of
[mv] between 10 and 15 produces performance at par with a full geostatistical model”.

3.4.2 Efficient calculation of the gradient and Fisher information for the
Vecchia approximation

In the following, we show how the gradient and the Fisher information of the approximate
log-likelihood of the Vecchia approximation given in (15) can be calculated efficiently. To
the best of our knowledge, the following results are novel. Guinness (2021) also presents
a way for computing the gradient and Fisher information for the Vecchia approximation.
However, Guinness (2021) uses a different representation of the approximate likelihood by
writing conditional densities in (12) as ratios of joint and marginal densities and, in doing
so, obtains a different way for calculating the gradient and Fisher information compared
to our result. Guinness (2021) motivates his approach by claiming that for calculating the

gradient in (9), ”[n]ot only is
[
∂Ψ
∂θk

]
too large to store in memory, the covariances [Ψ] are

not easily computable, nor are their partial derivatives”. The following Proposition 1 and
its proof show that ∂Ψ

∂θk
does not need to be stored in memory, and neither Ψ nor its partial

derivatives need to be computed. In the approach of Guinness (2021) for calculating the
gradient, the computational complexity is dominated by the need to calculate two Cholesky
factorizations of matrices of sizes R|N(i)|×|N(i)| and R(|N(i)|+1)×(|N(i)|+1) for every data point
i, where we recall that |N(i)| denotes the number of neighbors of sample i. In contrast,
in our approach in Proposition 1 below, only one matrix of size R|N(i)|×|N(i)| needs to be
factorized for every sample i. This means that our approach for calculating the gradient has
approximately only half the computational cost compared to the one of Guinness (2021).

Proposition 1 The gradient of the negative log-likelihood L̃(y, F, θ) for the Vecchia approximation
given in (15) can be calculated as

∂L̃(y, F, θ)

∂θk
=

1

2σ2

(
2uTk u− uT

∂D

∂θk
u

)
+

1

2

n∑
i=1

1

Di

∂Di

∂θk
, 1 ≤ k ≤ q,

where

u = D−1B(y − F) and uk =
∂B

∂θk
(y − F), (17)

14

Gaussian Process Boosting

and ∂B
∂θk

are lower triangular and ∂D
∂θk

diagonal matrices with non-zero entries given by(
∂B

∂θk

)
i,N(i)

=− ∂Ai
∂θk

=−
(
Z
∂Σ

∂θk
ZT
)
i,N(i)

((
ZΣZT + σ2In

)
N(i)

)−1

+
(
ZΣZT

)
i,N(i)

((
ZΣZT + σ2In

)
N(i)

)−1
(
Z
∂Σ

∂θk
ZT
)
N(i)

((
ZΣZT + σ2In

)
N(i)

)−1

,

∂Di

∂θk
=

(
Z
∂Σ

∂θk
ZT
)
i,i

− ∂Ai
∂θk

(
ZTΣZ

)
N(i),i

−Ai
(
ZT

∂Σ

∂θk
Z

)
N(i),i

,

for 1 < k ≤ q, and for k = 1, the non-zero entries of ∂B
∂θk

and ∂D
∂θk

are(
∂B

∂σ2

)
i,N(i)

=
(
ZΣZT

)
i,N(i)

((
ZΣZT + σ2In

)
N(i)

)−2

,

∂Di

∂σ2
=1− ∂Ai

∂σ2

(
ZTΣZ

)
N(i),i

.

A proof can be found in Appendix B. As indicated above, the computational costs for
calculating the gradient are O(nm3

v). The Fisher information for the Vecchia approximation
in (15) can be calculated using the following result.

Proposition 2 The Fisher information for the Vecchia approximation matrix in (15) has entries

(I)kl =

n∑
i,j=1

(
D−1 ∂B

∂θk
B−1

)
ij

(
∂B

∂θl
B−1D

)
ij

+
1

2

n∑
i=1

Di
−2 ∂Di

∂θk

∂Di

∂θl
, 1 ≤ k ≤ q, (18)

where ∂B
∂θk

and ∂D
∂θk

are lower triangular and diagonal matrices defined in Proposition 1

A proof can be found in Appendix B. This Fisher information can be used for finding a
maximum of the (approximate) likelihood using Fisher scoring. Concerning an approximate

covariance matrix for θ̂ using the asymptotic result mentioned in Section 3.2, we note that
since the Vecchia approximation results in a misspecified model, the Fisher information
matrix needs to be replaced by the Godambe information matrix (Godambe, 1960) G =
HI−1H, where H is the negative expected Hessian of the log-likelihood.

3.5 Prediction

Let yp ∈ Rnp denote the random variables for which predictions should be made. We have(
y
yp

)
=

(
F (X)
F (Xp)

)
+

(
(Z, 0n×mp)

Zp

)(
b
bp

)
+

(
ε
εp

)
,

∼ N

(F (X)
F (Xp)

)
,

 ZΣZT + σ2In Z(Σ,Σop)Z
T
p

Zp(Σ,Σop)
TZT Zp

(
Σ Σop

ΣTop Σp

)
ZTp + σ2Inp

 (19)

where bp ∈ Rmp is a vector of mp random effects, for which no data has been observed
in y, (Z, 0n×mp) ∈ Rn×(m+mp), 0n×mp ∈ Rn×mp is a matrix of zeros, the matrix Zp ∈
Rnp×(m+mp) relates the vector of observed and new random effects (bT , bTp)T ∈ Rm+mp

15

Sigrist

to yp, (Σ,Σop) ∈ Rm×(m+mp), Σop = Cov(b, bp), Σp = Cov(bp), and Xp ∈ Rnp×p is the
predictor variable matrix of the predictions.

Note that yp can be related to both existing random effects b, for which data y has
been observed, and also new, unobserved random effects bp. This distinction is particularly
relevant for grouped random effects, where predictions can be made for samples of groups
for which data has already been observed in y, or also for new groups for which no data
has been observed in y. Further, this can also be useful for Gaussian process models for
distinguishing when predictions should be made for yp, or bp, at new locations, or when b
should be predicted at observed locations.

From (19), it follows that the conditional distribution yp|y is given by

yp|y ∼ N (µp,Ξp) ,

where

µp =F (Xp) + Zp(Σ,Σop)
TZT

(
ZΣZT + σ2In

)−1
(y − F (X))

Ξp =Zp

(
Σ Σop

ΣTop Σp

)
ZTp + σ2Inp − Zp(Σ,Σop)TZT

(
ZΣZT + σ2In

)−1
Z(Σ,Σop)Z

T
p .

(20)

Depending on the application, if n � m, the above quantities can be more efficiently
calculated using the Sherman-Morrison-Woodbury formula given in (11). Further, pre-

dictions for the latent b, bp, or F (Xp) + Zp

(
b
bp

)
can be done analogously with minor

modifications, e.g., dropping the error variance term σ2Inp from the covariance matrix in
(20).

3.5.1 Prediction using the Vecchia approximation

Similarly as for parameter estimation, Vecchia approximations can also be used for making
predictions. Specifically, predictions can be obtained by applying a Vecchia approximation
to the joint response vector of observed and prediction locations. When doing so, one
has to choose an ordering among the joint set of observed and predicted locations. We
assume that either the observed or the prediction locations appear first in the ordering
of the response variable. The former has the advantage that the nearest neighbors found
for estimation can be reused and that the predictive distributions have the simple form
given below in (21). On the other hand, if prediction locations appear first in the ordering,
the approximations of predictive distributions are generally more accurate. See Katzfuss
et al. (2020) for a comparison of different approaches for making predictions with Vecchia
approximations.

Proposition 3 Assume that prediction are made at np locations sp,1, . . . , sp,np with predictor vari-
able data Xp. When applying the Vecchia approximation in (15) to the response vector (y, yp)

T with
the observed response y appearing first in the ordering, the conditional distribution yp|y is given by

yp|y ∼ N (µp,Ξp) ,

where

µp =F (Xp)−B−1
p Bpo (y − F (X)) ,

Ξp =B−1
p DpB

−T
p ,

(21)

and Bpo ∈ Rnp×n, Bp ∈ Rnp×np , Dp
−1 ∈ Rnp×np are the following submatrices of the Vecchia

approximated precision matrix ˜Cov
(
(y, yp)

T
)−1

:

˜Cov
(
(y, yp)

T
)−1

=

(
B 0
Bpo Bp

)T (
D−1 0

0 Dp
−1

)(
B 0
Bpo Bp

)
, (22)

16

Gaussian Process Boosting

and B and D are defined in (13) and (14).

A proof can be found in Appendix B. Note that Dp is a diagonal matrix, Bp is a lower
triangular matrix with 1’s on the diagonal and non-zero off-diagonal entries corresponding
to the nearest neighbors of the prediction locations among the prediction locations them-
selves sp,1, . . . , sp,np , and Bpo has non-zero entries corresponding to the nearest neighbors
of the prediction locations among the observed locations s1, . . . , sn.

If only univariate predictive distributions are of interest, computational costs can be
additionally reduced by restricting that one conditions on observed locations only in (12).
The latter means that for every prediction location sp,i, one conditions only on observed
data yN(i) where N(i) denotes the set of nearest neighbors for location sp,i. In this case,
Bp is an identity matrix and the predictive covariance matrix Ξp is a diagonal matrix. The
latter can be a drawback if multivariate predictive distributions are required.

When prediction locations appear first in the ordering of the response variable, predic-
tions can be obtained as follows.

Proposition 4 Assume that prediction are made at np locations sp,1, . . . , sp,np with predictor vari-
able data Xp. When applying the Vecchia approximation in (15) to the response vector (yp, y)T with
the predicted response yp appearing first in the ordering, the conditional distribution yp|y is given by

yp|y ∼ N (µp,Ξp) ,

with

µp =F (Xp)−
(
BTp Dp

−1Bp +BTopDo
−1Bop

)−1
BTopDo

−1Bo (y − F (X)) ,

Ξp =
(
BTp Dp

−1Bp +BTopDo
−1Bop

)−1
,

(23)

where Bo, Do ∈ Rn×n, Bop ∈ Rn×np , Bp, Dp ∈ Rnp×np , Dp
−1 ∈ Rnp×np are the following submatri-

ces of the Vecchia approximated precision matrix ˜Cov
(
(yp, y)T

)−1
:

˜Cov
(
(yp, y)T

)−1
=

(
Bp 0
Bop Bo

)T (
Dp
−1 0

0 Do
−1

)(
Bp 0
Bop Bo

)
.

A proof can be found in Appendix B.

3.6 Software implementation

The GPBoost algorithm is implemented in the GPBoost library written in C++ with a C
application programming interface (API) and corresponding Python and R packages. See
https://github.com/fabsig/GPBoost for more information. For linear algebra calcula-
tions, we rely on the Eigen library (Guennebaud et al., 2010). Sparse matrix algebra is
used, in particular for calculating Cholesky decompositions, whenever covariance matrices
are sparse, e.g., in the case of grouped random effects. In addition, to speed up compu-
tations for solving sparse linear triangular equation systems where the right-hand side is
also sparse, we use the function cs spsolve from the CSparse library (Davis, 2005) where
the non-zero entries of the solutions are determined using a depth-first search algorithm.
Further, multi-processor parallelization is done using OpenMP. For the tree-boosting part, in
particular the tree growing algorithm, we use the LightGBM library (Ke et al., 2017). Note
that the GPBoost library allows for modeling Gaussian processes, grouped random effects
including hierarchically nested and crossed ones, random coefficients, and combinations of
the former.

17

https://github.com/fabsig/GPBoost

Sigrist

4. Simulated Experiments

In the following, we use simulation to investigate the prediction accuracy as well as the
properties of the covariances parameter and predictor function estimates of the GPBoost
algorithm.

4.1 Simulation setting

We simulate data from the model given in (1). For the random effects part Zb, we use both
a grouped random effects model and a spatial Gaussian process model. The sample size is
n = 5000 for the grouped data and n = 500 for the spatial data. The reason for using a
smaller sample size for the spatial data is that this allows us to do all calculations exactly
without relying on an approximation for large data. In Section 3, we show how learning
can be done for large data, and we use this in the application in Section 5.

For simulating grouped data, we use a single-level grouped random effects model with
10 samples per group, i.e., m = 500 different groups. In other words, there is a single
high-cardinality categorical variable with 500 different categories. For simulating spatial
data, we use a spatial Gaussian process model with an exponential covariance function

c(s, s′) = σ2
1 exp(−‖s− s′‖/ρ),

where the locations s are in [0, 1]2 and ρ = 0.1. The marginal variance in both models
is set to σ2

1 = 1, and the error variance equals σ2 = 1 such that the signal-to-noise ratio
between the random effects Zb and the error term ε is 1.

Concerning the fixed effects predictor function F (·) and the predictor variables X, we
use the following different specifications:

F (x) = C · (2x1 + x2
2 + 4 · 1{x3>0} + 2 log(|x1|)x3), x = (x1, . . . , x9)T , x ∼ N (0, I9), (‘hajjem’)

F (x) = C · tan−1

(
x2x3 − 1− 1

x2x4

x1

)
, x = (x1, x2, x3, x4)T , (‘friedman3’)

x1 ∼ Unif(0, 100), x2 ∼ Unif(40π, 560π), x3 ∼ Unif(0, 1), x4 ∼ Unif(1, 11),

F (x) = C · (1 + x1 + x2), x = (x1, x2)T , x1, x2
iid∼ Unif(0, 1). (‘linear’)

The function ‘hajjem’ has been used in Hajjem et al. (2014) to compare non-parametric
mixed effects models, and the function ‘friedman3’ was first used in Friedman (1991) and has
since then often been used to compare non-parametric regression models. We also include
a linear function to investigate how our approach compares to a linear mixed effects model
when the data generating process is linear. The constant C is chosen such that the variance
of F (x) equals approximately 1, i.e., that F (x) has the same signal strength as the random
effects part. Predictor variable data is simulated independently from the random effects.

We simulate 100 times both a training data set of size n and two different test data
sets each also of size n. Learning and selection of tuning parameters are done on the
training data, and evaluation is done on the test data for all models considered. The
two test data sets, denoted briefly as “interpolation” and “extrapolation” test sets, are
generated as follows in every simulation run. For the grouped data, the “interpolation”
test data set consists of random effects for the same groups as in the training data, and
the “extrapolation” test data contains m independent random effects for new groups that
have not been observed in the training data. For the spatial data, the training data
locations are sampled uniformly from [0, 1]2 excluding [0.5, 1]2, the “interpolation” test
data set is obtained by also simulating locations uniformly in the same area, and the
“extrapolation” test data contains locations sampled uniformly from [0.5, 1]2. Predictions

18

Gaussian Process Boosting

for the “extrapolation” test data are thus to some degree extrapolations. Figure 1 illustrates
this.

Figure 1: Example of locations for training and test data for the spatial data. “Test” and “Test ext”
refers to locations of the “interpolation” and “extrapolation” test data sets, respectively. The black
crosses show examples of locations for which predictions of sums are made.

4.2 Methods considered

We compare the GPBoost algorithm to the following alternative approaches: linear grouped
mixed effects models (‘LinearME’) and linear Gaussian process models (‘LinearGP’) with
F (X) = XTβ and an exponential covariance function, mixed-effects random forest (‘MERF’)
(Hajjem et al., 2014), RE-EM trees (‘REEMtree’) (Sela and Simonoff, 2012), model-based
boosting (‘mboost’) (Hothorn et al., 2010), independent gradient boosting with a square loss
(‘LSBoost’), and the boosting approach for categorical predictor variables of Prokhorenkova
et al. (2018) (‘CatBoost’). Besides the GPBoost algorithm, we apply the GPBoostOOS
algorithm where covariance parameters are estimated using 4-fold cross-validation. For
the latter cross-validation, sampling of data indices is done independently of the group-
ing variable and the spatial coordinates. For the spatial data, we additionally consider
a two-step approach (‘TwoStep’) where F (·) and θ in (1) are estimated separately in an
iterative manner instead of jointly as in the GPBoost algorithm. Specifically, we first apply
independent gradient boosting using the predictor variables X and then fit a zero-mean
spatial Gaussian process to the residuals of the first step. For all boosting algorithms, we
use gradient boosting without Nesterov acceleration and trees as base learners, except for
the grouped and spatial random effects in mboost where Ridge regression and splines are
used. In independent gradient boosting with a square loss, the spatial locations and the
categorical grouping variable are included as additional predictor variables in the predictor
function F (·). In doing so, we consider the grouping variable as a categorical variable and
use the approach of LightGBM to handle categorical variables. Considering the grouping
variable as a continuous variable or using dummy variables leads to worse results (results

19

Sigrist

not tabulated). The MERF, REEMtree, and CatBoost algorithms are only used for the
grouped data and not for the spatial data.

Learning and prediction with the GPBoost and GPBoostOOS algorithms, the linear
grouped random effects and Gaussian process models, and independent boosting with a
square loss (LSBoost) is done using the GPBoost library version 0.7.8 compiled with the
MSVC compiler version 19.24.28315.0 and OpenMP version 2.0.2 For the linear mixed
effects and Gaussian process models, the GPBoost algorithm, and the GPBoostOOS al-
gorithm, optima for covariance parameters θ are found using Nesterov accelerated gradi-
ent descent (Nesterov, 2004). For the mboost algorithm, we use the mboost R package
(Hofner et al., 2014) version 2.9-2 and model spatial effects using bivariate P-spline base
learner (bspatial with df=6) and grouped random effects using random effects base learn-
ers (brandom with df=4). All other predictor variables are modeled using trees as base
learners. For the MERF algorithm, we use the merf Python package version 0.33. The
number of iterations of the MERF algorithm is set to 100. Increasing this value does not
change our findings (results not tabulated). However, we note that we often do not observe
convergence of the MERF algorithm, no matter how long we let it run.4 For the REEMtree
algorithm, we use the REEMtree R package version 0.90.3. For the CatBoost algorithm, we
use the CatBoost library version 1.0.6. All calculations are done on a laptop with a 2.9
GHz quad-core processor and 16 GB of random-access memory (RAM).

4.3 Evaluation criteria

We measure prediction accuracy using the the root mean square error (RMSE)√√√√ 1

np

np∑
i=1

(yp,i − µp,i)2,

where yp,i are test response variables, are µp,i predictive means, and np is the number of test
samples. In addition, we analyze the accuracy of probabilistic predictions for the spatial
data. As is commonly done in spatial statistics, probabilistic predictions are evaluated
using the continuous ranked probability score (CRPS) (Gneiting and Raftery, 2007) given
by ∫ (

Fp,i(y)− 1{yp,i≤y}
)2
dy

for one sample i, where Fp,i is the predictive cumulative distribution function (CDF).
Intuitively, the CRPS corresponds to the mean square error between the predictive CDF
Fp,i and the empirical CDF 1{yp,i≤y}. The CRPS is a proper scoring rule (Gneiting and
Raftery, 2007) that measures both calibration and sharpness of predictive distributions;
see Gneiting et al. (2007) for more information. In our case, the predictive distributions

2. When using another compiler such as a GNU compiler which supports a higher version of OpenMP,
computations for the random effects part can become considerably faster (e.g., approximately twice
as fast for the Gaussian process model when using OpenMP 4.5). However, the tree-boosting part of
LightGBM is slower when using a GNU compiler.

3. We have also tried the merf Python package version 1.0. While the results are overall very similar, the
estimates of the error variance σ2 are highly biased when using version 1.0. For this reason, we use
version 0.3.

4. This is an observation that has also been made by the creator of the MERF package in a blog post;
see https://towardsdatascience.com/mixed-effects-random-forests-6ecbb85cb177 (retrieved on August
22, 2022).

20

Gaussian Process Boosting

are Gaussian distributions, and the average CRPS can be calculated explicitly as

1

np

np∑
i=1

σp,i

(
1√
π
− 2φ

(
yp,i − µp,i

σp,i

)
− yp,i − µp,i

σp,i

(
2Φ

(
yp,i − µp,i

σp,i

)
− 1

))
,

where µp,i and σ2
p,i are predictive means and variances, and φ and Φ denote the probability

density function and CDF of a standard Gaussian variable. Predictive variances σ2
p,i are

obtained as described in Section 3.5 for the Gaussian process-based models. For the deter-
ministic independent boosting approaches (mboost and LSBoost), we use sample variances
of the residuals on the training data as predictive variances.

For the spatial data, we additionally evaluate the accuracy when predicting sums of
n′ = 20 observations yp = (yp,1, . . . , yp,n′)

T . For instance, such predictions are required in
meteorology for predicting the total precipitation over a catchment area or in real estate
for predicting the total value of a portfolio of objects. Note that if a multivariate predictive
distribution for yp is given by yp|y ∼ N (µp,Ξp), the predictive distribution of the sum is
obtained as

1T yp
∣∣y ∼ N (1Tµp,1TΞp1

)
,

where 1 is a vector of ones 1 = (1, . . . , 1)T . In total, we predict 50 times sums of different
samples yp ∈ R20 in every simulation run. Half of these 50 samples for predicting sums
are from the “interpolation” and the “extrapolation” test data each. Specifically, for both
the “interpolation” and the “extrapolation” test data, we randomly select 25 times disjoint
sets of 20 observations that are close together in space. We obtain these sets of 20 close-by
observations by randomly selecting a location and determining its 19 nearest neighbors and
then iteratively continuing in the same manner with the remaining locations until there
are 25 disjoints set for both the “interpolation” and the “extrapolation” test data. This is
illustrated in Figure 1.

Further, we also measure the accuracy to learn the predictor function F (·) and pre-
dict the random effects b. This is done by evaluating predictions for F (·) and b on the
“interpolation” test data sets. In addition, we evaluate the accuracy of estimates for the
variance and covariance parameters θ. For the independent deterministic boosting ap-
proaches which model spatial or grouped random effects using deterministic base learners
(LSBoost, mboost, and CatBoost), no estimates for covariance parameters, the predictor
function F (·), and the random effects b can be obtained. The exception are grouped ran-
dom effects where mboost reports estimated random effects b. This then also allows for
obtaining an estimate for F (·) by assigning the test data a certain group from the training
data and subtracting the value of the estimated random effect for this group from the ob-
tained predictions. In the same way, we also obtain response variable predictions for data
with new groups for mboost.

4.4 Choice of tuning parameters

Tuning parameters are chosen using 4-fold cross-validation on the training data in every
simulation run by selecting the combination of tuning parameters from a full grid that min-
imizes the average mean square error on the validation data. For every boosting algorithm
(LSBoost, mboost, CatBoost, GPBoost, and GPBoostOOS), we consider the following
candidate tuning parameters: the number of boosting iterations M ∈ {1, . . . , 1000}, the
learning rate ν ∈ {0.1, 0.05, 0.01}, the maximal tree depth ∈ {1, 5, 10}, and the minimal
number of samples per leaf ∈ {1, 10, 100}. For the MERF algorithm, we choose the propor-
tion of variables considered for making splits ∈ {0.5, 0.75, 1}. As in Hajjem et al. (2014),
we do not impose a maximal tree depth limit and set the number of trees to 300. Note
that the MERF algorithm implemented in the MERF package is very slow (see the results

21

Sigrist

below) and choosing tuning parameters is thus computationally demanding. Generally, for
random forests, the choice of tuning parameters is less important compared to boosting.
For the REEMtree package, which relies on the rpart R package, trees are cost-complexity
pruned and the amount of pruning is chosen using 10-fold cross-validation on the training
data.

4.5 Results

The results for the ‘hajjem’ predictor function are reported in Table 2 for the grouped data
and in Table 3 for the spatial data. The results for the other two predictor functions are
reported in Appendix C. In the tables, we report average values of the prediction accuracy
measures over the simulation runs as well as corresponding standard errors. Further, we
calculate p-values of paired two-sided t-tests comparing the GPBoost algorithm to the other
approaches. Note that sometimes differences in accuracy measures are relatively small
compared to standard errors, but p-values are highly significant nonetheless. The reason
for this is that standard errors do not reflect correlation among methods over different
simulation runs but paired t-tests do.5 For the covariance parameters, we report the RMSE
and bias over the simulation runs. We also report the wall-clock time in seconds for training
the different models. Note that the wall-clock times reported depend on the chosen tuning
parameters. In particular, lower learning rates ν usually imply higher computational times
for all boosting algorithms including the GPBoost algorithm.

GPBoost LinearME LSBoost CatBoost mboost MERF REEMtree GPBOOS

RMSE 1.100 1.342 1.156 1.183 1.335 1.104 1.171 1.102
(SE) (0.00144) (0.00181) (0.00205) (0.00184) (0.00215) (0.00137) (0.00163) (0.00151)

[p-val] [4.66e-129] [2.85e-59] [3.45e-88] [1.4e-112] [1.31e-09] [2.02e-83] [8.06e-06]

RMSE new 1.458 1.635 1.493 1.464 1.520 1.460 1.506 1.459
(SE) (0.00292) (0.00282) (0.00294) (0.00313) (0.00285) (0.00292) (0.00298) (0.00293)

[p-val] [6.43e-122] [1.5e-51] [2.09e-05] [8.47e-86] [6.08e-06] [2.45e-78] [6.45e-05]

RMSE F 0.3370 0.8141 0.5495 0.3494 0.5111 0.3411
(SE) (0.00243) (0.00197) (0.0024) (0.00211) (0.00227) (0.00253)

[p-val] [2.37e-139] [1.79e-102] [4.13e-14] [1.05e-91] [2.59e-06]
RMSE b 0.3193 0.3793 0.6934 0.3244 0.3363 0.3197

(SE) (0.00109) (0.00136) (0.00221) (0.00137) (0.0012) (0.00114)
[p-val] [8.1e-82] [4.01e-121] [1.55e-08] [5.04e-46] [0.0611]

RMSE σ2
1 0.07466 0.07812 0.07484 0.07402 0.07531

Bias σ2
1 0.005512 0.005330 0.009059 0.003182 0.005787

RMSE σ2 0.1703 0.6583 0.1361 0.07989 0.6286 0.1183 0.1477 0.1375
Bias σ2 -0.1672 0.6565 -0.1172 0.07059 0.6266 0.1151 0.1436 0.1348

Time (s) 0.9356 0.05323 0.3289 3.325 14.00 416.7 1.349 3.077

Table 2: Results of the simulated experiments for the grouped data and the predictor function
F = ‘hajjem’. For the prediction accuracy metrics for y, F , and b, averages over the simulation
runs are reported. Corresponding standard errors are in parentheses. P-values are calculated using
paired t-tests comparing the GPBoost algorithm to the other approaches. ‘GBPOOS’ refers to the
GPBoostOOS algorithm. Results for the test data with new groups are denoted by ‘ new’. The
smallest values are in boldface (excluding ‘GPBOOS’). An empty value indicates that the required
predictions or estimates cannot be calculated. Time refers to the average wall-clock time in seconds.

5. An example of this is the ‘RMSE new’ in Table 2 when comparing GPBoost and CatBoost. The difference
in the average ‘RMSE new’ is relatively small compared to the corresponding standard errors, but the
p-value is very small. In this case, GPBoost has a lower ‘RMSE new’ than CatBoost in approximately
80 of 100 simulation runs, and the correlation between ‘RMSE new’ of the two methods is approximately
0.9 (results not tabulated).

22

Gaussian Process Boosting

Considering the results for the grouped data reported in Table 2, we find that the
GPBoost algorithm significantly outperforms all other methods in all prediction accuracy
measures including the ones concerning the learning, or prediction, of both the predictor
function F (·) and the random effects b. Apart from the GPBoostOOS algorithm, the MERF
algorithm has the second highest prediction accuracy. Gradient boosting with a square loss
including the grouping variable as a categorical variable using the approach of LightGBM

(LSBoost), CatBoost, and mboost all have significantly lower prediction accuracy compared
to the GPBoost algorithm for data with both existing groups (‘RMSE’) and new groups
(‘RMSE new’). LSBoost, i.e., LightGBM, performs better than CatBoost for predicting data
with existing groups and the opposite holds for new groups. Apparently, LSBoost can learn
group effects, i.e., the effect of a high-cardinality categorical variable, better than CatBoost,
but CatBoost learns the predictor function F (·) for the non-categorical predictor variables
X better than LSBoost. The reason for the former is unclear to us. The likely reason for the
latter finding is that LSBoost has higher variance and does some overfitting due to the high-
cardinality categorical variable, and CatBoost mitigates this due to its ordered boosting
mode. Not surprisingly, a linear mixed effects model (LinearME) performs considerably
worse than the GPBoost algorithm in all prediction accuracy measures and the estimation
of the predictor function F (·).

Concerning variance parameter estimates, we observe no major differences among the
methods in the RMSE of the variance of the random effects σ2

1 . For the error variance
σ2, we observe large differences, though. In particular, all methods have biased estimates
for the error variance parameter. As expected, the linear model has an upward bias which
compensates for the misspecification of F (·), and the GPBoost algorithm has a downward
bias. The latter finding is in line with the recent observation that state-of-the-art machine
learning methods can interpolate the training data while at the same time having a low
generalization error as discussed in Section 3.3. When estimating the covariance parameters
on out-of-sample data using the GPBoostOOS algorithm, the RMSE of σ2 is smaller and
there is no downward bias anymore. Concerning computational time, not surprisingly, the
linear model has the lowest computational time. LSBoost is approximately three times
faster than GPBoost, and CatBoost is approximately three times slower than GPBoost.
Further, the GPBoost algorithm runs approximately one order of magnitude faster than
mboost and several orders of magnitude faster than the MERF algorithm.

For the ‘friedman3’ predictor function for the grouped data, we find qualitatively similar
results as for the ‘hajjem’ predictor function; see Table 8 in the appendix. Further, as
expected, a linear mixed effects model performs best in the case where the true predictor
function is linear; see Table 9 in the appendix. The differences between the linear model and
the GPBoost algorithm are of small, albeit significant, magnitude. Except for the linear
model, the GPBoost algorithm significantly outperforms all other approaches when F (·) is a
linear function. The MERF algorithm has a relatively high RMSE for the predictor function
F (·) which also translates to low prediction accuracy for the response variable for data with
both existing groups (‘RMSE’) and new groups (‘RMSE new’). For the ‘friedman3’ and
‘linear’ predictor functions, we again observe that the GPBoostOOS algorithm has a lower
RMSE for the error variance σ2 compared to the GPBoost algorithm and no downward
bias.

We next discuss the results for the spatial data reported in Table 3. We find that the
GPBoost algorithm has higher prediction accuracy compared to all alternative approaches
in all measures with most of the differences being highly significant. In particular, the
GPBoost algorithm has higher prediction accuracy in terms of the RMSE and CRPS com-
pared to both a linear Gaussian process model with F (X) = XTβ and independent boost-
ing including the coordinates in the predictor function F (·). A two-step approach performs
better than a linear model and independent boosting in the majority of prediction accuracy

23

Sigrist

GPBoost LinearGP LSBoost mboost TwoStep GPBOOS

RMSE 1.374 1.466 1.474 1.479 1.406 1.372
(SE) (0.00574) (0.00567) (0.0067) (0.00633) (0.00625) (0.00556)

[p-val] [1.83e-45] [2.33e-35] [8.74e-42] [1.87e-12] [0.329]
CRPS 0.8011 0.8183 0.8807 0.8280 0.8043 0.7683

(SE) (0.00564) (0.00295) (0.00673) (0.00354) (0.00448) (0.00305)
[p-val] [0.000359] [1.09e-22] [5.02e-07] [0.484] [1.23e-10]

RMSE ext 1.519 1.599 1.611 1.899 1.536 1.517
(SE) (0.00978) (0.00896) (0.0164) (0.0377) (0.00963) (0.00928)

[p-val] [2.8e-33] [3.91e-11] [3.08e-16] [5.15e-05] [0.551]
CRPS ext 0.8689 0.8960 0.9807 1.101 0.8808 0.8526

(SE) (0.00686) (0.00519) (0.0131) (0.0261) (0.00626) (0.00535)
[p-val] [7.15e-11] [1.92e-17] [1.32e-13] [0.000694] [9.99e-06]

RMSE sum 11.70 11.90 13.80 18.44 11.90 11.62
(SE) (0.211) (0.204) (0.328) (0.697) (0.206) (0.206)

[p-val] [0.00573] [1.14e-12] [4.05e-15] [0.00416] [0.151]
CRPS sum 6.468 6.509 8.508 10.45 6.710 6.331

(SE) (0.115) (0.103) (0.22) (0.408) (0.117) (0.102)
[p-val] [0.403] [5.92e-19] [1.69e-15] [2.69e-06] [0.000978]

RMSE F 0.7125 0.8741 0.7538 0.7538 0.7102
(SE) (0.00869) (0.00692) (0.00854) (0.00854) (0.00817)

[p-val] [1.17e-49] [4.4e-13] [4.4e-13] [0.577]
RMSE b 0.7080 0.7091 0.7285 0.7285 0.7034

(SE) (0.00729) (0.0065) (0.00714) (0.00714) (0.00696)
[p-val] [0.717] [6.17e-07] [6.17e-07] [0.0609]

RMSE σ2
1 0.2810 0.2690 0.4950 0.2597

Bias σ2
1 -0.004313 -0.006602 -0.4160 0.005215

RMSE ρ 0.08537 0.03392 0.03529 0.03221
Bias ρ 0.008375 -0.004949 -0.002940 -0.004969

RMSE σ2 0.5672 0.6185 0.4955 0.9024 0.3251 0.4975
Bias σ2 -0.4539 0.5778 -0.2283 0.8832 -0.1561 0.4559

Time (s) 27.30 0.5509 0.09183 3.204 0.5057 36.12

Table 3: Results of the simulated experiments for the spatial data and the predictor function F
= ‘hajjem’. For the prediction accuracy metrics for y, F , and b, averages over the simulation
runs are reported. Corresponding standard errors are in parentheses. P-values are calculated using
paired t-tests comparing the GPBoost algorithm to the other approaches. ‘GBPOOS’ refers to
the GPBoostOOS algorithm. Results for the “extrapolation” test data are denoted by ‘ ext’, and
results for the predictions of sums are denoted by ‘ sum’. The smallest values are in boldface
(excluding ‘GPBOOS’). An empty value indicates that the required predictions or estimates cannot
be calculated. Time refers to the average wall-clock time in seconds.

measures, but it has lower prediction accuracy compared to the GPBoost algorithm. The
results for the ‘friedman3’ predictor function reported in Table 10 in the appendix are simi-
lar. The GPBoost algorithm significantly outperforms all other approaches in all prediction
accuracy measures. Not surprisingly, a linear model has the highest prediction accuracy
when the data generating process is linear; see Table 11 in the appendix. However, despite
the relatively small sample size of n = 500, the differences in prediction accuracy between
the linear Gaussian process model and the GPBoost algorithm are relatively small. As ex-
pected due to the arguments laid out in Section 1.1, the differences between the GPBoost
algorithm and independent boosting including the coordinates in the predictor variables
(LSBoost) are the largest for probabilistic predictions of sums (‘CRPS sum’) for all three
predictor functions.

24

Gaussian Process Boosting

5. Real-world Applications

In the following, we apply the GPBoost algorithm to several real-world data sets and
compare its prediction accuracy to alternative methods. We consider grouped data, spatial
data, and several UCI benchmark data sets.

5.1 Grouped random effects for categorical data: wages data

We first apply the GPBoost algorithm to a grouped data set, i.e., a data set with a high-
cardinality categorical predictor variable. We use panel data from the National Longitu-
dinal Survey of Young Working Women consisting of 28′534 observations for 4′711 young
working women. This data was collected within the “National Longitudinal Survey” over
the years 1968-1988, and it can be downloaded from https://www.stata-press.com/

data/r10/nlswork.dta. The response variable is the logarithmic real wage, the persons
ID number constitutes the high-cardinality categorical grouping variable, and the data in-
cludes the following predictor variables: age, ttl exp (total work experience), tenure (job
tenure in years), not smsa (1 if not SMSA), south (1 if south), year (interview year), msp (1
if married, spouse present), nev mar (1 if never married), collgrad (1 if college graduate),
c city (1 if central city), hours (usual hours worked), grade (current grade completed),
ind code (industry of employment), occ code (occupation), and race (1=white, 2=black,
3=other). The low-cardinality categorical variables ind code, occ code, race, and year

are dummy coded. Further, we also include the square of age, ttl exp, and tenure in the
linear model.

We compare the prediction accuracy of different approaches using nested 4-fold cross-
validation. Specifically, all observations are partitioned into four disjoint sets, and, in
every fold, one of the sets is used as test data and the remaining data is used for training.
Note that the test data sets contain both groups that are observed and unobserved in
the training data. We compare the GPBoost algorithm to the same alternative methods
as in the simulation study; see Section 4.2. Concerning independent gradient boosting,
we also report the results when including the high-cardinality categorical variable as a
continuous variable (‘LSBoostCont’) in addition to including it as a categorical variable
using the approach of LightGBM (‘LSBoostCat’). Tuning parameters are chosen by doing
an additional inner 4-fold cross-validation in the same manner as the outer cross-validation
on every of the four training data sets using the mean square error as selection criterion.6

We consider the same set of tuning parameters as in the simulated experiments; see Section
4.4.

The results are summarized in Table 4 and Figure 2. Table 4 reports the average
test RMSE over all folds, and Figure 2 graphically displays the test RMSE per fold. We
find that the GPBoost algorithm has higher prediction accuracy compared to all other
methods on average over all folds and also for every fold separately. The second-best
method is the MERF algorithm, and CatBoost has the third-lowest test RMSE. In contrast
to the simulated experiments but as suggested by the authors of LightGBM7, considering
the grouping variable as a continuous variable (‘LSBoostCont’) results in higher prediction
accuracy compared to the approach of LightGBM for categorical variables (‘LSBoostCat’).

6. Note that one has to be careful when doing cross-validation for dependent data to avoid biased estimates
of the generalization error as pointed out by, e.g., Rabinowicz and Rosset (2020). However, apart from
the fact that the validation and test data sets are of slightly different sizes, our cross-validation setting
preserves the distributional relation between the inner fold training and validation data sets and the
training and test data sets and, consequently, no bias is introduced.

7. https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html#

categorical-feature-support (retrieved on August 22, 2022)

25

https://www.stata-press.com/data/r10/nlswork.dta
https://www.stata-press.com/data/r10/nlswork.dta
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html#categorical-feature-support
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html#categorical-feature-support

Sigrist

GPBoost LinearME LSBoostCat LSBoostCont CatBoost mboost MERF REEMtree

0.296 0.305 0.321 0.313 0.303 0.331 0.299 0.322

Table 4: Average test RMSE for the wages data.

Figure 2: Test RMSE for the wages data for every fold separately.

5.2 Gaussian processes for spatial data: house price data

We next apply the GPBoost algorithm to a spatial data set. We use house price data for
25′357 single-family homes sold in Lucas County, Ohio. This data is available in the spData
R package (Bivand et al., 2008), and it has been previously studied by LeSage and Pace
(2004); Bivand (2011); Dubé and Legros (2013). The response variable is the logarithmic
selling price, and the data includes the following predictor variables: age, stories (factor
with levels {one, bilevel, multilvl, one+half, two, two+half, three}), TLA (total living area),
wall (factor with levels {stucdrvt, ccbtile, metlvnyl, brick, stone, wood partbrk}), beds
(number of bedrooms), baths (number of full baths), halfbaths (number of halfhbaths),
frontage (lot frontage), depth, garage (factor with levels {no garage, basement, attached,
detached, carport}), garagesqft, rooms (number of rooms), lotsize, sdate (year in which
the house was sold, 1993 ≤ sdate ≤ 1998), as well as longitude-latitude coordinates for
the location. For the Gaussian process model with a linear predictor function, we follow
Bivand (2011) and also include the square and cube of age as predictor variables, and as
in Dubé and Legros (2013), we logarithmize the total living area and the lot size. The left
plot of Figure 3 shows the observation locations and observed logarithmic prices. Further,
the right plot of Figure 3 shows smoothed differences of log-prices from the global mean.
The latter are obtained by estimating a zero-mean Gaussian process to the differences of
the log-prices from the global mean and calculating the posterior mean.

We compare the GPBoost algorithm to the same approaches as in the simulation study:
a linear Gaussian process model with F (X) = XTβ, independent gradient boosting, mboost
with spatial spline base learners, and a two-step approach; see Section 4.2 for more infor-
mation. For independent boosting and the GPBoost algorithm, we include the coordinates
as predictor variables in the predictor function F (·). For comparison, we also report results

26

Gaussian Process Boosting

Figure 3: Illustration of house price data: map with observation locations and log-prices (left plot)
and smoothed differences of log-prices from the global mean (right plot).

when excluding the coordinates from the predictor function. For the Gaussian process
model and the GPBoost algorithm, we use an exponential covariance function. Due to the
relatively large sample size, we use a Vecchia approximation as outlined in Sections 3.4 and
3.5.1 for the Gaussian process-based models. Specifically, for training, we use a Vecchia
approximation for the response variable with 50 nearest neighbors and a random ordering
of the observations; see Section 3.4.1. For prediction, we use the result in Proposition 3
with the observed data ordered first, conditioning on observed data only when calculating
the Vecchia approximation, and using 500 nearest neighbors.8

Prediction accuracy is evaluated by partitioning the data into expanding window train-
ing data sets and temporal out-of-sample test data sets. Specifically, learning is done on an
expanding window containing all data up to the year t− 1, and predictions are calculated
for the next year t. We use the three years t ∈ {1996, 1997, 1998} as test data. For every
t, we additionally split the training data into two subsets: inner training data containing
all data up to year t− 2 and validation data for the year t− 1. Tuning parameters of the
boosting methods are chosen separately for t ∈ {1996, 1997, 1998} by learning on the inner
training data and minimizing the mean square error on the validation data. We consider
the same grid of tuning parameters as in the simulated experiments; see Section 4.4.

In addition to univariate predictions, we also generate predictions for the total value of
multiple houses as explained in the following. For every test set, we randomly select 100
times disjoint sets of 20 observations that are close-by in space. Such sets of spatially close
samples are determined by first randomly selecting a sample, finding its 19 nearest neigh-
bors, and then iteratively continuing in the same manner with the remaining locations. For
these sets of 20 objects, we calculate predictive distributions for their sums as described in
Section 4.3.9 For generating multivariate predictive distributions of dimension 20 required
for the latter, we also use the Vecchia approximation as outlined in Proposition 3 with the

8. We set the number of nearest neighbors for prediction to the largest value that our computational budget
supports. Using a smaller number of nearest neighbors decreases the prediction accuracy. Whether a
higher prediction accuracy can be achieved with an even larger number of nearest neighbors is unclear.

9. For simplicity, we predict the sum on the logarithmic scale. If the sum should be predicted on the original
scale, simulation is required as the sum of dependent log-normal variables does not follow a standard
distribution.

27

Sigrist

observed data ordered first, but we condition on all data and not just the observed data.
The latter is computationally more expensive, but it allows for obtaining non-diagonal and
more accurate predictive covariance matrices; see Section 3.5.1 for more information.

Further, to disentangle the effect of the Vecchia approximation and the standard GP-
Boost algorithm without an approximation for large data, we also run the experiments on
smaller subsets of the full data. This allows to do all Gaussian process-related calculations
exactly. Such smaller-sized subsets are obtained as follows. For every year, we randomly
partition the data into ten disjoint equal-sized subsets. Every such subset is used as a
training data set, and for every training data set, we use another one of the ten subsets
as test set such that each subset is a test set once. In doing so, we obtain 60 training and
test data sets with an average sample size of approximately 400. For these small subsets,
tuning parameters are chosen using 4-fold cross-validation on every training data set.

As in the simulated experiments in Section 4, we measure the accuracy of both point
predictions and probabilistic predictions using the RMSE and the CRPS. Further, we
also evaluate the accuracy of α−quantile predictions for α = 0.05. We do this since, in
practice, predictions for lower quantiles are required for risk management purposes such
as calculating a value-at-risk. Quantile predictions are obtained by assuming Gaussian
predictive distributions with means and variances determined by the fixed and random
effects. If a method does not contain random effects, we use the residual variance as in the
simulated experiments. Quantile predictions are evaluated using the quantile loss (Gneiting
et al., 2007)

S(ys, ŷα) = (ys − ŷα)(α− 1{ys≤ŷα}), (24)

where ŷα denotes the predicted quantile and ys the observed data.
Table 5 reports the prediction accuracy results averaged over the different test sets, Fig-

ure 4 graphically displays the results per test set for the full data, and Figure 5 illustrates
the results of the small subsets over different folds. Overall, the GPBoost algorithm has the
highest prediction accuracy. Specifically, we find that the GPBoost algorithm has higher
prediction accuracy compared to a linear Gaussian process model, the mboost algorithm,
and a two-step approach in all prediction accuracy measures. This holds true for both the
full data set and the small random subsets for which exact Gaussian process inference is car-
ried out. For univariate predictions (‘RMSE’, ‘CRPS’, and ‘QL’), the GPBoost algorithm
also has almost the same prediction accuracy as independent boosting (‘LSBoost’). For
the prediction of sums of several objects and the small subsets, the GPBoost algorithm has
considerably higher prediction accuracy compared to independent boosting in all measures
(‘RMSE sum’, ‘CRPS sum’, ‘QL sum’, ‘RMSE small’, ‘CRPS small’, and ‘QL small’).

GPBoost LinearGP LSBoost mboost TwoStep GPBoost ex LSBoost ex

RMSE 0.266 0.353 0.266 0.332 0.306 0.290 0.338
CRPS 0.144 0.176 0.143 0.174 0.162 0.155 0.180

QL 0.0358 0.0516 0.0360 0.0468 0.0384 0.0370 0.0461

RMSE sum 1.72 2.50 1.94 3.14 2.31 2.17 3.73
CRPS sum 1.07 1.34 1.23 1.85 1.38 1.29 2.30

QL sum 0.185 0.446 0.234 0.517 0.320 0.263 0.705

RMSE small 0.307 0.331 0.341 0.358 0.334 0.307 0.368
CRPS small 0.162 0.171 0.189 0.189 0.179 0.162 0.196

QL small 0.0402 0.0431 0.0611 0.0489 0.0470 0.0400 0.0554

Table 5: Average prediction accuracy measures for the housing data. Results for the predictions of
sums are denoted by ‘ sum’. Results for the small subsampled data sets are denoted by ‘ small’. ‘QL’
denotes the quantile loss. ‘ ex’ denotes results when not including the coordinates in the variables
for the predictor function.

28

Gaussian Process Boosting

The comparison between the GPBoost algorithm when not including the locations in
the predictor function F (·) (‘GPBoost ex’) and the corresponding independent boosting
version (‘LSBoost ex’) shows that there is important residual spatial variation also condi-
tional on the effect of the predictor variables. Considering the results for the full data, the
GPBoost algorithm with the coordinates included in the predictor function (‘GPBoost’)
performs better compared to the GPBoost algorithm when the coordinates are not included
in the predictor function (‘GPBoost ex’). This is an indication that there are interaction
effects between the predictor variables and the spatial locations. For the small data, the
results of ‘GPBoost’ and ‘GPBoost ex’ are almost equivalent. A possible explanation for
this is that the sample size is too small to allow for modeling such interaction effects.

Figure 4: Prediction accuracy for the housing data for every fold separately. Results for the predic-
tions of sums are denoted by ‘ sum’. ‘QL’ denotes the quantile loss.

For illustration, we plot in Figure 6 predictive posterior means and variances of the
Gaussian process part of the GPBoost model applied to the entire data set when not
including the locations in the fixed effects function. We use the tuning parameters obtained
on the last validation data set. Comparing the predicted mean field to the one of Figure
3, we see that in some areas the spatial effect is different when factoring out the effect of
the other predictor variables. As expected, predictive variances are high in areas with few
observations.

5.3 Gaussian processes for non-spatial data: UCI benchmark data sets

In spatial statistics, one usually distinguishes between locations S and other predictor
variables X. The locations S are used as input features for a spatial Gaussian process
and the effect of X is modeled using a predictor function F (·). This is the way we have
used Gaussian processes so far in this paper. In machine learning, Gaussian processes are

29

Sigrist

Figure 5: Violin plots illustrating the prediction accuracy for the small subsets of the housing data.
The red rhombi represent means over the sample splits.

Figure 6: Predicted random effects means and variances obtained using the GPBoost algorithm
when not including the locations in the fixed effects function.

often used to model non-spatial data by including non-spatial predictor variables as input
features for Gaussian process models.

In the following, we compare the GPBoost algorithm to independent boosting and
Gaussian process regression using several UCI data set repository10 benchmark data sets.
In doing so, all predictor variables are used as features X in F (·) for boosting and as input
features S in the Gaussian process models. In particular, for the GPBoost algorithm, the
predictor variables are used both as features X for the function F (·) and as input features
for the Gaussian process part, and X and S are equal. Table 6 shows the data sets. All data
sets have a relatively small sample size such that the Gaussian process-related calculations
can be done exactly without using an approximation for large data. The analysis of the
GPBoost algorithm for larger benchmark data sets with different approximations for large
(non-spatial) data is left for future research.

10. http://archive.ics.uci.edu/ml/index.php

30

http://archive.ics.uci.edu/ml/index.php

Gaussian Process Boosting

fertility servo machine yacht autompg boston pendulum energy concrete

n: 100 167 209 308 392 506 630 768 1030
p = d: 9 4 7 6 7 13 9 8 8

Table 6: Overview of data sets.

We use 10-fold cross-validation to analyze the prediction accuracy. All input features S
for the Gaussian process models are standardized to have mean zero and standard deviation
one, where the parameters for the standardization are calculated on the training data only.
Tuning parameters for independent tree-boosting and the GPBoost algorithm are chosen
by doing an additional inner 4-fold cross-validation on every training data set. We use the
same set of candidate tuning parameters as in all experiments above and an exponential
covariance function.

In the machine learning Gaussian process literature, probabilistic predictions are often
evaluated using the average (univariate Gaussian) test negative log-likelihood (NLL). We
also include the average test NLL given by

1

np

np∑
i=1

0.5(yp,i − µp,i)2/σ2
p,i + 0.5 log(σ2

p,i2π)

as prediction accuracy measure. The results shown in the following for the test NLL are
obtained by also using the test NLL as criterion for choosing tuning parameters in the inner
4-fold cross-validation.

Table 7 shows average prediction accuracy measures for the different methods. In
parentheses are standard errors. Note that such standard errors have to be taken with a
grain of salt.11 We observe that the GPBoost algorithm has higher prediction accuracy
compared to independent boosting and Gaussian process regression for the majority of the
data sets and prediction accuracy measures. Specifically, the GPBoost algorithm has an
average rank of approximately 1.33 for the test RMSE and 1.22 for the CRPS and the
test NLL. Further, in the few cases where either independent boosting or Gaussian process
regression has the highest prediction accuracy, the GPBoost algorithm always ranks second.

6. Conclusion

We have introduced a novel way of combining boosting with Gaussian process and mixed
effects models. This allows for relaxing, first, the zero or linearity assumption for the prior
mean function in Gaussian process and mixed effects models in a flexible non-parametric
way and, second, the independence assumption made in most boosting algorithms. Further,
it can be used as an approach for handling high-cardinality categorical variables in tree-
boosting. In simulation experiments and real-world applications, we have shown that this
leads to improved prediction accuracy compared to existing state-of-the-art methods. We
are currently investigating how our approach can be extended to non-Gaussian data using,
e.g., a Laplace approximation (Sigrist, 2022). Further, future research can investigate and
compare properties of different Gaussian process approximations for large data applied
to the GPBoost algorithm. Future research is also required for computationally efficient

11. First, the standard errors are calculated assuming independence of the sample splits which likely does
not hold true given that the training data sets for the different sample splits have substantial overlap.
Further, similarly as mentioned for the simulated experiments in Section 4.5, such univariate standard
errors do not reflect correlation among methods across different sample splits. The main reason we report
such standard errors is that this is common practice in the machine learning literature.

31

Sigrist

GPBoost GP LSBoost

RMSE
fertility 0.171 (0.011) 0.182 (0.0092) 0.166 (0.011)

servo 0.270 (0.020) 0.281 (0.020) 0.288 (0.026)
machine 0.342 (0.013) 0.368 (0.014) 0.347 (0.012)

yacht 0.492 (0.077) 2.47 (0.35) 0.686 (0.090)
autompg 2.53 (0.18) 2.52 (0.19) 2.79 (0.24)

boston 2.81 (0.22) 2.96 (0.22) 3.26 (0.19)
pendulum 1.62 (0.14) 1.64 (0.14) 2.23 (0.18)

energy 0.393 (0.018) 1.32 (0.061) 0.330 (0.015)
concrete 3.96 (0.24) 5.21 (0.22) 4.03 (0.20)

Avg. rank 1.33 2.44 2.22

CRPS
fertility 0.0986 (0.0065) 0.103 (0.0046) 0.0946 (0.0064)

servo 0.136 (0.011) 0.152 (0.0076) 0.146 (0.013)
machine 0.195 (0.0081) 0.208 (0.0072) 0.224 (0.0072)

yacht 0.259 (0.027) 1.28 (0.100) 0.286 (0.031)
autompg 1.36 (0.075) 1.36 (0.076) 1.59 (0.12)

boston 1.45 (0.085) 1.48 (0.060) 1.87 (0.095)
pendulum 0.692 (0.041) 0.701 (0.041) 1.13 (0.071)

energy 0.205 (0.0076) 0.749 (0.026) 0.172 (0.0051)
concrete 1.99 (0.084) 2.75 (0.079) 2.12 (0.059)

Avg. rank 1.22 2.56 2.22

NLL
fertility -0.294 (0.087) -0.269 (0.051) -0.339 (0.097)

servo 0.142 (0.088) 0.199 (0.052) 0.416 (0.21)
machine 0.436 (0.040) 0.460 (0.036) 0.587 (0.063)

yacht 0.738 (0.11) 2.30 (0.042) 1.62 (0.30)
autompg 2.36 (0.079) 2.37 (0.073) 2.52 (0.084)

boston 2.46 (0.074) 2.45 (0.070) 2.86 (0.11)
pendulum 1.55 (0.063) 1.56 (0.060) 2.44 (0.090)

energy 0.439 (0.052) 1.77 (0.025) 0.694 (0.073)
concrete 2.87 (0.075) 3.08 (0.043) 3.14 (0.041)

Avg. rank 1.22 2.22 2.56

Table 7: Average prediction accuracy measures when doing 10-fold cross-validation for the UCI
benchmark data sets. In parenthesis are standard errors.

uncertainty quantification for the estimated predictor function F (·) and for generating
probabilistic predictions that also take into account uncertainty due to F (·). Another
direction for future work are convergence results concerning the generalization error as well
as finite-sample and asymptotic properties of the estimators obtained from the GPBoost
algorithm.

Acknowledgments

We thank Hansruedi Künsch and three anonymous reviewers for their helpful comments
which have helped to improve this article. This research was partially supported by the
Swiss Innovation Agency - Innosuisse (grant numbers ‘25746.1 PFES-ES’ and ‘28408.1
PFES-ES’).

32

Gaussian Process Boosting

Appendices

A. Which optimization problems are solved by the MERT/MERF and
RE-EM tree algorithms and how are they related to the EM
algorithm?

The MERT and MERF algorithms (Hajjem et al., 2011, 2014) and the RE-EM tree (Sela
and Simonoff, 2012; Fu and Simonoff, 2015) algorithm allow for combining trees and ran-
dom forests with grouped random effects models. Hajjem et al. (2011) and Hajjem et al.
(2014) claim that the MERT and MERF algorithm are versions of the EM algorithm.12

Sela and Simonoff (2012) call their algorithm RE-EM tree algorithm because it is “remi-
niscent” of the EM algorithm, but they acknowledge that it is not a true EM algorithm.
Unfortunately, it is not clearly explained in the prior literature which optimization prob-
lems these algorithms aim to solve and how they are related to the EM algorithm. In this
section, we shed some light on this.

The EM algorithm for linear mixed effects models

We first briefly describe the EM algorithm (Dempster et al., 1977) for linear mixed effects
models. Using the notation of Section 2, the E-step in iteration t of an EM algorithm for
mixed effect models works by, first, finding a maximizer for the predictor function F of the
multivariate normal likelihood given the current estimate for the covariance matrix Ψt:

F̂t+1 = argmin
F

(y − F)TΨt
−1(y − F), (25)

second, conditional on this obtaining predictions for the random effects

b̂t+1 = ZΣtZ
TΨt

−1(y − F̂t+1),

and then using these two quantities to calculate the expectation of the full data log-
likelihood; see, e.g., Laird et al. (1982) and Wu and Zhang (2006). The EM algorithm
then proceeds with the M-step by maximizing this expected full data log-likelihood to
obtain an estimate for Ψt+1 or its parameters θt+1.

The RE-EM tree algorithm

The RE-EM tree algorithm of Sela and Simonoff (2012) and Fu and Simonoff (2015) iterates
between, first, estimating the structure of a tree using an independent normal likelihood
obtained after subtracting predicted values of the random effects from the response variable
and, second, jointly estimating the leaf values and covariance parameters using a classical
linear mixed effects model. This is not an EM algorithm as it does not involve an E-step
that calculates an expectation of a full data log-likelihood. It can, however, be interpreted
as a component-wise, or coordinate descent, minimization algorithm that iterates between
finding an optimizer for (parts of) F , the covariance parameters θ, and the random effects
b. This can be seen by first noting that, regarding F and θ, the minimization problem

(F̂ , θ̂) = argmin
(F,θ)

1

2
(y − F)TΨ−1(y − F) +

1

2
log det (Ψ) (26)

12. For instance, Hajjem et al. (2011, 2014) state that “The MERT algorithm is the ML-based EM-algorithm
in which we replace the linear structure used to estimate the fixed part of the model by a standard tree
structure.” and that “It [the MERT algorithm] is basically an iterative call to a standard RT [regression
tree] algorithm within the framework of the expectation–maximization (EM) algorithm”.

33

Sigrist

is equivalent to

(F̂ , θ̂, b̂) = argmin
(F,θ,b)

1

2σ2
(y − F − Zb)T (y − F − Zb) +

1

2
bTΣ−1b+

1

2
log det (Ψ) . (27)

Further, the componentwise minimizer for b given F and θ corresponds to the best linear
unbiased estimator for b:

b̂ =(ZTZ + σ2Σ−1)−1ZT (y − F)

=ΣZT (ZΣZT + σ2In)−1(y − F).

Using the notation of Section 3.1, F (·) = h(·;α)T γ, where α denotes the splits of a tree
and γ the leaf values, one iteration of the RE-EM tree algorithm can thus be written as

α̂t+1 = argmin
α

L
(
F = h(·;α)T γ̂t, θ̂t, b̂t

)
,

(γ̂t+1, θ̂t+1) = argmin
γ,θ

L
(
F = h(·; α̂t+1)T γ, θ, b̂t

)
,

b̂t+1 = argmin
b

L
(
F = h(·; α̂t+1)T γ̂t+1, θ̂t+1, b

)
,

where

L (F, θ, b) =
1

2σ2
(y − F − Zb)T (y − F − Zb) +

1

2
bTΣ−1b+

1

2
log det (Ψ) .

This corresponds to one iteration of a coordinate descent algorithm applied to the mini-
mization problem in (27) which is equivalent to (26).

The MERT and MERF algorithms

In contrast to a proper E-step of an EM algorithm for mixed effects model, in the “E-step”
of the MERT and MERF algorithms of Hajjem et al. (2011) and Hajjem et al. (2014), the
predictor function F̂t+1 is not obtained as maximizer of the multivariate normal likelihood
as in (25). Instead, the following is done. First, an independent normal likelihood obtained

after subtracting predicted values for the random effects b̂t of the previous iteration from
the response variable y is used to learn the predictor function F̂t+1 using a regression tree
or a random forest:

F̂t+1 = argmin
F

1

2
(y − F − b̂t)T (y − F − b̂t).

Second, predictions are calculated for the random effects:

b̂t+1 = ZΣtZ
TΨt

−1(y − F̂t+1).

The M-step is then analogous to a correctly specified EM algorithm. It is unclear to us
whether and to which quantities the MERT and MERF algorithms converge as it is nowhere
shown that they correspond to correctly specified EM algorithms.

B. Proofs for the results involving the Vecchia approximation

Proof [Proof of Proposition 1] The negative log-likelihood of the Vecchia approximation
in (15) is given by

L̃(y, F, θ) =
1

2
(y − F)T Ψ̃−1(y − F) +

1

2

n∑
i=1

logDi +
n

2
log(2π). (28)

34

Gaussian Process Boosting

It follows that

∂L̃(y, F, θ)

∂θk
=

1

2σ2
(y − F)T

∂

∂θk
Ψ̃−1(y − F) +

1

2

n∑
i=1

1

Di

∂Di

∂θk
. (29)

Further, we have

∂

∂θk
Ψ̃−1 =

∂BT

∂θk
D−1B +BTD−1 ∂B

∂θk
−BTD−1 ∂D

∂θk
D−1B.

We thus obtain the result in the proposition by noting that

(y − F)T
∂

∂θk
Ψ̃−1(y − F) = 2uTk u− uT

∂D

∂θk
u,

where u and uk are given in (17).

Proof [Proof of Proposition 2] We have

∂Ψ̃

∂θk
= −B−1 ∂B

∂θk
B−1DB−T −B−1DB−T

∂BT

∂θk
B−T +B−1 ∂D

∂θk
B−T .

It follows that

Ψ̃−1 ∂Ψ̃

∂θk
= −BTD−1 ∂B

∂θk
B−1DB−T − ∂BT

∂θk
B−T +BTD−1 ∂D

∂θk
B−T .

We thus have

Ψ̃−1 ∂Ψ̃

∂θk
Ψ̃−1 ∂Ψ̃

∂θl
=BTD−1 ∂B

∂θk
B−1 ∂B

∂θl
B−1DB−T +

∂BT

∂θk
D−1 ∂B

∂θl
B−1DB−T

−BTD−1 ∂D

∂θk
D−1 ∂B

∂θl
B−1DB−T

+BTD−1 ∂B

∂θk
B−1DB−T

∂BT

∂θl
B−T +

∂BT

∂θk
B−T

∂BT

∂θl
B−T

−BTD−1 ∂D

∂θk
B−T

∂BT

∂θl
B−T

−BTD−1 ∂B

∂θk
B−1 ∂D

∂θl
B−T − ∂BT

∂θk
D−1 ∂D

∂θl
B−T

+BTD−1 ∂D

∂θk
D−1 ∂D

∂θl
B−T .

35

Sigrist

Due to the cyclicality of the trace, it follows that

tr

(
Ψ̃−1 ∂Ψ̃

∂θk
Ψ̃−1 ∂Ψ̃

∂θl

)
=tr

(
∂B

∂θk
B−1 ∂B

∂θl
B−1

)
+ tr

(
∂BT

∂θk
D−1 ∂B

∂θl
B−1DB−T

)
− tr

(
∂D

∂θk
D−1 ∂B

∂θl
B−1

)
+ tr

(
D−1 ∂B

∂θk
B−1DB−T

∂BT

∂θl

)
+ tr

(
∂BT

∂θk
B−T

∂BT

∂θl
B−T

)
− tr

(
D−1 ∂D

∂θk
B−T

∂BT

∂θl

)
− tr

(
D−1 ∂B

∂θk
B−1 ∂D

∂θl

)
− tr

(
∂BT

∂θk
D−1 ∂D

∂θl
B−T

)
+ tr

(
D−1 ∂D

∂θk
D−1 ∂D

∂θl

)
.

Since ∂B
∂θk

is lower triangular with zeros on the diagonal, we obtain

tr

(
Ψ̃−1 ∂Ψ̃

∂θk
Ψ̃−1 ∂Ψ̃

∂θl

)
=tr

(
∂BT

∂θk
D−1 ∂B

∂θl
B−1DB−T

)
+ tr

(
D−1 ∂B

∂θk
B−1DB−T

∂BT

∂θl

)
+ tr

(
D−1 ∂D

∂θk
D−1 ∂D

∂θl

)
=2tr

(
B−T

∂BT

∂θk
D−1 ∂B

∂θl
B−1D

)
+ tr

(
D−1 ∂D

∂θk
D−1 ∂D

∂θl

)
,

and the statement in (18) follows.

Proof [Proof of Proposition 3] We have(
B 0
Bpo Bp

)T (
D−1 0

0 Dp
−1

)(
B 0
Bpo Bp

)
=

(
BTo Do

−1Bo +BTpoDp
−1Bpo BTpoDp

−1Bp
BTp Dp

−1Bpo BTp Dp
−1Bp

)
.

Since (
BTp Dp

−1Bp
)−1

BTp Dp
−1Bpo = B−1

p Bpo,

the result follows from Theorem 12.2 in Rue and Held (2010).

Proof [Proof of Proposition 4] We have(
Bp 0
Bop Bo

)T (
Dp
−1 0

0 Do
−1

)(
Bp 0
Bop Bo

)
=

(
BTp Dp

−1Bp +BTopDo
−1Bop BTopDo

−1Bo
BTo Do

−1Bop BTo Do
−1Bo

)
,

and the result follows from Theorem 12.2 in Rue and Held (2010).

36

Gaussian Process Boosting

C. Additional results for the simulated experiments

In the following, we present the results for the simulated experiments in Section 4 for the
two predictor functions which are not reported in the body of the article.

GPBoost LinearME LSBoost CatBoost mboost MERF REEMtree GPBOOS

RMSE 1.065 1.237 1.112 1.141 1.239 1.088 1.119 1.065
(SE) (0.00118) (0.00123) (0.00154) (0.00134) (0.00167) (0.00118) (0.00131) (0.00117)

[p-val] [1.3e-120] [9.65e-61] [1.01e-90] [2.88e-106] [3.33e-82] [3.75e-86] [0.0624]

RMSE new 1.426 1.549 1.446 1.425 1.429 1.442 1.466 1.426
(SE) (0.00267) (0.00273) (0.00286) (0.0027) (0.00266) (0.00262) (0.00266) (0.00265)

[p-val] [3.51e-112] [5e-44] [0.00398] [4.22e-13] [9.94e-62] [1.25e-78] [0.905]

RMSE F 0.2073 0.6435 0.2280 0.2962 0.3916 0.2082
(SE) (0.00129) (0.00125) (0.00161) (0.000934) (0.00184) (0.00128)

[p-val] [1.64e-144] [1.7e-32] [6.05e-98] [1.12e-103] [0.0199]
RMSE b 0.3111 0.3542 0.6986 0.3179 0.3242 0.3112

(SE) (0.00113) (0.00125) (0.00229) (0.00108) (0.00113) (0.00111)
[p-val] [9.74e-76] [9.43e-122] [2.67e-23] [1.01e-54] [0.238]

RMSE σ2
1 0.07503 0.08060 0.07495 0.07532 0.07527

Bias σ2
1 0.003267 0.005301 0.004099 0.0008061 0.004154

RMSE σ2 0.1177 0.4077 0.08416 0.09373 0.3652 0.08100 0.06141 0.05531
Bias σ2 -0.1144 0.4067 -0.07411 0.09006 0.3628 0.07779 0.05595 0.05079

Time (s) 0.5760 0.02151 0.2079 5.754 9.129 367.4 0.8807 2.539

Table 8: Results of the simulated experiments for the grouped data and the predictor function F
= ‘friedman3’. For the prediction accuracy metrics for y, F , and b, averages over the simulation
runs are reported. Corresponding standard errors are in parentheses. P-values are calculated using
paired t-tests comparing the GPBoost algorithm to the other approaches. ‘GBPOOS’ refers to the
GPBoostOOS algorithm. Results for the test data with new groups are denoted by ‘ new’. The
smallest values are in boldface (excluding ‘GPBOOS’). An empty value indicates that the required
predictions or estimates cannot be calculated. Time refers to the average wall-clock time in seconds.

37

Sigrist

GPBoost LinearME LSBoost CatBoost mboost MERF REEMtree GPBOOS

RMSE 1.049 1.044 1.074 1.139 1.225 1.124 1.087 1.049
(SE) (0.00107) (0.00105) (0.00159) (0.00145) (0.00177) (0.00127) (0.00122) (0.00108)

[p-val] [4.2e-48] [1.88e-43] [7.1e-96] [4.56e-112] [2.06e-111] [1.43e-82] [5.26e-08]

RMSE new 1.418 1.415 1.425 1.421 1.424 1.471 1.445 1.419
(SE) (0.00256) (0.00256) (0.00257) (0.00255) (0.0026) (0.00254) (0.00262) (0.00256)

[p-val] [8.24e-40] [2.49e-30] [1.66e-08] [1.41e-42] [1.68e-99] [2.68e-76] [3.06e-05]

RMSE F 0.1077 0.04600 0.1654 0.4015 0.2954 0.1111
(SE) (0.0014) (0.00253) (0.00125) (0.000874) (0.00151) (0.00145)

[p-val] [7.6e-63] [4.52e-76] [2.11e-137] [7.61e-106] [9.73e-08]
RMSE b 0.3068 0.3055 0.6920 0.3283 0.3173 0.3069

(SE) (0.000974) (0.000972) (0.00215) (0.000933) (0.00103) (0.000975)
[p-val] [1.36e-18] [5.84e-122] [1.43e-60] [5.33e-49] [7.62e-05]

RMSE σ2
1 0.06990 0.06986 0.07142 0.07124 0.06998

Bias σ2
1 -0.01381 -0.01199 -0.01348 -0.01570 -0.01279

RMSE σ2 0.03107 0.02032 0.04995 0.1274 0.3616 0.1322 0.03238 0.02252
Bias σ2 -0.02395 -0.004143 -0.03722 0.1242 0.3595 0.1289 0.02331 0.009169

Time (s) 0.6096 0.01585 0.1182 3.278 8.070 323.7 0.5651 2.656

Table 9: Results of the simulated experiments for the grouped data and the predictor function
F = ‘linear’. For the prediction accuracy metrics for y, F , and b, averages over the simulation
runs are reported. Corresponding standard errors are in parentheses. P-values are calculated using
paired t-tests comparing the GPBoost algorithm to the other approaches. ‘GBPOOS’ refers to the
GPBoostOOS algorithm. Results for the test data with new groups are denoted by ‘ new’. The
smallest values are in boldface (excluding ‘GPBOOS’). An empty value indicates that the required
predictions or estimates cannot be calculated. Time refers to the average wall-clock time in seconds.

38

Gaussian Process Boosting

GPBoost LinearGP LSBoost mboost TwoStep GPBOOS

RMSE 1.271 1.361 1.379 1.331 1.287 1.273
(SE) (0.00456) (0.00511) (0.00515) (0.00519) (0.00475) (0.00468)

[p-val] [2.14e-45] [2.6e-46] [1.38e-24] [1.21e-07] [0.188]
CRPS 0.7225 0.7644 0.8092 0.7530 0.7300 0.7174

(SE) (0.00291) (0.0028) (0.00415) (0.00299) (0.00304) (0.0026)
[p-val] [7.5e-35] [8.07e-46] [4.01e-20] [7.2e-05] [2.96e-05]

RMSE ext 1.437 1.511 1.556 1.743 1.450 1.440
(SE) (0.0107) (0.0101) (0.0169) (0.0412) (0.0109) (0.0107)

[p-val] [7.57e-35] [3.05e-16] [1.31e-11] [2.06e-06] [0.0808]
CRPS ext 0.8158 0.8522 0.9358 1.032 0.8259 0.8138

(SE) (0.00652) (0.00581) (0.013) (0.0299) (0.00703) (0.00619)
[p-val] [4.31e-27] [5.49e-21] [3.83e-11] [9.96e-07] [0.0648]

RMSE sum 11.60 11.87 14.16 17.50 11.76 11.63
(SE) (0.208) (0.195) (0.319) (0.726) (0.21) (0.208)

[p-val] [1.35e-05] [2.06e-18] [1.27e-12] [0.00157] [0.227]
CRPS sum 6.342 6.480 8.604 10.21 6.495 6.330

(SE) (0.105) (0.098) (0.219) (0.444) (0.116) (0.103)
[p-val] [9.77e-05] [3.63e-24] [4.58e-14] [0.00011] [0.438]

RMSE F 0.5061 0.6870 0.5360 0.5360 0.5096
(SE) (0.007) (0.00571) (0.00732) (0.00732) (0.00719)

[p-val] [1.98e-54] [7.62e-10] [7.62e-10] [0.279]
RMSE b 0.6690 0.6790 0.6775 0.6775 0.6676

(SE) (0.00458) (0.00531) (0.00504) (0.00504) (0.00462)
[p-val] [0.000699] [4.82e-05] [4.82e-05] [0.212]

RMSE σ2
1 0.2480 0.2763 0.3507 0.2473

Bias σ2
1 -0.006707 -0.001842 -0.2370 0.0006891

RMSE ρ 0.02832 0.02810 0.02905 0.02805
Bias ρ -0.005450 -0.004948 -0.004900 -0.006572

RMSE σ2 0.3187 0.3951 0.4018 0.4257 0.1943 0.2367
Bias σ2 -0.2290 0.3643 -0.1137 0.3940 -0.08988 0.1921

Time (s) 21.60 0.6269 0.09670 2.857 0.5620 32.14

Table 10: Results of the simulated experiments for the spatial data and the predictor function F
= ‘friedman3’. For the prediction accuracy metrics for y, F , and b, averages over the simulation
runs are reported. Corresponding standard errors are in parentheses. P-values are calculated using
paired t-tests comparing the GPBoost algorithm to the other approaches. ‘GBPOOS’ refers to
the GPBoostOOS algorithm. Results for the “extrapolation” test data are denoted by ‘ ext’, and
results for the predictions of sums are denoted by ‘ sum’. The smallest values are in boldface
(excluding ‘GPBOOS’). An empty value indicates that the required predictions or estimates cannot
be calculated. Time refers to the average wall-clock time in seconds.

39

Sigrist

GPBoost LinearGP LSBoost mboost TwoStep GPBOOS

RMSE 1.205 1.183 1.328 1.276 1.214 1.208
(SE) (0.00422) (0.0039) (0.00594) (0.00505) (0.00464) (0.00441)

[p-val] [4.69e-30] [1.79e-52] [3.41e-47] [1.95e-06] [0.00153]
CRPS 0.6807 0.6677 0.7632 0.7222 0.6861 0.6819

(SE) (0.00246) (0.00219) (0.00431) (0.00296) (0.00277) (0.00248)
[p-val] [2.5e-29] [2.73e-44] [1.75e-46] [4.65e-05] [0.0474]

RMSE ext 1.392 1.373 1.518 1.700 1.400 1.395
(SE) (0.00979) (0.00965) (0.0155) (0.0403) (0.00981) (0.01)

[p-val] [8.13e-20] [2.03e-13] [4.93e-12] [3.78e-05] [0.00458]
CRPS ext 0.7879 0.7764 0.8871 1.004 0.7924 0.7890

(SE) (0.0058) (0.00562) (0.0112) (0.0289) (0.00584) (0.00578)
[p-val] [1.82e-19] [3.68e-15] [1.26e-11] [6.05e-05] [0.0728]

RMSE sum 11.44 11.32 14.15 17.29 11.51 11.49
(SE) (0.198) (0.196) (0.287) (0.702) (0.198) (0.201)

[p-val] [4.8e-05] [1.78e-16] [1.11e-13] [0.0177] [0.00526]
CRPS sum 6.152 6.070 8.339 9.928 6.200 6.177

(SE) (0.0969) (0.0952) (0.183) (0.42) (0.0986) (0.0979)
[p-val] [2.88e-07] [9.54e-23] [3.69e-15] [0.00553] [0.00862]

RMSE F 0.3265 0.2099 0.3568 0.3568 0.3382
(SE) (0.0102) (0.013) (0.0111) (0.0111) (0.0106)

[p-val] [1.32e-32] [6.59e-11] [6.59e-11] [4.45e-05]
RMSE b 0.6662 0.6600 0.6721 0.6721 0.6673

(SE) (0.0059) (0.00554) (0.0064) (0.0064) (0.00607)
[p-val] [0.0135] [4e-05] [4e-05] [0.0592]

RMSE σ2
1 0.2279 0.2265 0.2483 0.2275

Bias σ2
1 -0.03959 -0.03913 -0.1413 -0.03173

RMSE ρ 0.03602 0.03598 0.03643 0.03506
Bias ρ -0.007792 -0.007953 -0.008058 -0.009017

RMSE σ2 0.1644 0.1123 0.4185 0.3645 0.1201 0.1347
Bias σ2 -0.1222 -0.02047 0.1885 0.3444 -0.05652 0.06216

Time (s) 26.46 0.6568 0.06625 1.989 0.5880 43.50

Table 11: Results of the simulated experiments for the spatial data and the predictor function
F = ‘linear’. For the prediction accuracy metrics for y, F , and b, averages over the simulation
runs are reported. Corresponding standard errors are in parentheses. P-values are calculated using
paired t-tests comparing the GPBoost algorithm to the other approaches. ‘GBPOOS’ refers to
the GPBoostOOS algorithm. Results for the “extrapolation” test data are denoted by ‘ ext’, and
results for the predictions of sums are denoted by ‘ sum’. The smallest values are in boldface
(excluding ‘GPBOOS’). An empty value indicates that the required predictions or estimates cannot
be calculated. Time refers to the average wall-clock time in seconds.

40

Gaussian Process Boosting

References

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. Hierarchical modeling and analysis for
spatial data. Chapman and Hall/CRC, 2014.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. In International Conference on Machine Learning, volume 80, pages 541–549,
2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Gérard Biau, Benôıt Cadre, and Laurent Rouv̀ıère. Accelerated gradient boosting. Machine Learn-
ing, 108(6):971–992, 2019.

Roger Bivand. After “raising the bar”: applied maximum likelihood estimation of families of mod-
els in spatial econometrics. Technical report, Norwegian School of Economics, Department of
Economics, 2011.

Roger S Bivand, Edzer J Pebesma, Virgilio Gomez-Rubio, and Edzer Jan Pebesma. Applied spatial
data analysis with R, volume 747248717. Springer, 2008.

Leo Breiman. Arcing classifiers. Annals of Statistics, pages 801–824, 1998.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regres-
sion trees. CRC press, 1984.

Peter Bühlmann and Torsten Hothorn. Boosting algorithms: Regularization, prediction and model
fitting. Statistical Science, pages 477–505, 2007.

Peter Bühlmann and Bin Yu. Boosting with the L2 loss: regression and classification. Journal of
the American Statistical Association, 98(462):324–339, 2003.

Peter Bühlmann et al. Boosting for high-dimensional linear models. The Annals of Statistics, 34(2):
559–583, 2006.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
ACM, 2016.

Noel Cressie and Christopher K Wikle. Statistics for spatio-temporal data. John Wiley & Sons,
2015.

John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian process methods
for point process intensity estimation. In International Conference on Machine Learning, pages
192–199, 2008.

41

Sigrist

Jakob A Dambon, Fabio Sigrist, and Reinhard Furrer. Maximum likelihood estimation of spatially
varying coefficient models for large data with an application to real estate price prediction. Spatial
Statistics, 41:100470, 2021.

Abhirup Datta, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. Hierarchical nearest-
neighbor gaussian process models for large geostatistical datasets. Journal of the American Sta-
tistical Association, 111(514):800–812, 2016.

Tim Davis. Csparse: a concise sparse matrix package, 2005. URL http://www.cise.ufl.edu/

research/sparse/CSparse.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Jean Dubé and Diègo Legros. Dealing with spatial data pooled over time in statistical models.
Letters in Spatial and Resource Sciences, 6(1):1–18, 2013.

Jane Elith, John R Leathwick, and Trevor Hastie. A working guide to boosted regression trees.
Journal of Animal Ecology, 77(4):802–813, 2008.

Andrew O Finley, Abhirup Datta, Bruce D Cook, Douglas C Morton, Hans E Andersen, and Sudipto
Banerjee. Efficient algorithms for bayesian nearest neighbor gaussian processes. Journal of Com-
putational and Graphical Statistics, 28(2):401–414, 2019.

Walter D Fisher. On grouping for maximum homogeneity. Journal of the American statistical
Association, 53(284):789–798, 1958.

Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm. In International
Conference on Machine Learning, volume 96, pages 148–156, 1996.

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28
(2):337–407, 2000.

Jerome H Friedman. Multivariate adaptive regression splines. The Annals of Statistics, pages 1–67,
1991.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, pages 1189–1232, 2001.

Wei Fu and Jeffrey S Simonoff. Unbiased regression trees for longitudinal and clustered data.
Computational Statistics & Data Analysis, 88:53–74, 2015.

Geir-Arne Fuglstad, Daniel Simpson, Finn Lindgren, and H̊avard Rue. Does non-stationary spatial
data always require non-stationary random fields? Spatial Statistics, 14:505–531, 2015.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch:
Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. Advances in Neural
Information Processing Systems, 31:7576–7586, 2018.

Alan E Gelfand, Hyon-Jung Kim, CF Sirmans, and Sudipto Banerjee. Spatial modeling with spatially
varying coefficient processes. Journal of the American Statistical Association, 98(462):387–396,
2003.

42

http://www.cise.ufl.edu/research/sparse/CSparse
http://www.cise.ufl.edu/research/sparse/CSparse

Gaussian Process Boosting

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration
and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):
243–268, 2007.

Vidyadhar P Godambe. An optimum property of regular maximum likelihood estimation. The
Annals of Mathematical Statistics, 31(4):1208–1211, 1960.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outper-
form deep learning on tabular data? In Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

Andreas Groll and Gerhard Tutz. Regularization for generalized additive mixed models by likelihood-
based boosting. Methods of Information in Medicine, 51(02):168–177, 2012.

Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

Joseph Guinness. Permutation and grouping methods for sharpening gaussian process approxima-
tions. Technometrics, 60(4):415–429, 2018.

Joseph Guinness. Gaussian process learning via Fisher scoring of Vecchia’s approximation. Statistics
and Computing, 31(3):1–8, 2021.

Ahlem Hajjem, François Bellavance, and Denis Larocque. Mixed effects regression trees for clustered
data. Statistics & probability letters, 81(4):451–459, 2011.

Ahlem Hajjem, François Bellavance, and Denis Larocque. Mixed-effects random forest for clustered
data. Journal of Statistical Computation and Simulation, 84(6):1313–1328, 2014.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science, 1(3):297–310,
1986.

James Hensman, Nicolò Fusi, and Neil D Lawrence. Gaussian processes for big data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 282–290, 2013.

Benjamin Hofner, Andreas Mayr, Nikolay Robinzonov, and Matthias Schmid. Model-based boosting
in R: A hands-on tutorial using the R package mboost. Computational Statistics, 29:3–35, 2014.

Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, and Benjamin Hofner. Model-
based boosting 2.0. Journal of Machine Learning Research, 11(Aug):2109–2113, 2010.

Rie Johnson and Tong Zhang. Learning nonlinear functions using regularized greedy forest. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 36(5):942–954, 2013.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Matthias Katzfuss and Joseph Guinness. A general framework for vecchia approximations of gaussian
processes. Statistical Science, 36(1):124–141, 2021.

Matthias Katzfuss, Joseph Guinness, Wenlong Gong, and Daniel Zilber. Vecchia approximations of
gaussian-process predictions. Journal of Agricultural, Biological and Environmental Statistics, 25
(3):383–414, 2020.

43

Sigrist

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pages 3149–3157, 2017.

Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

Nan M Laird, James H Ware, et al. Random-effects models for longitudinal data. Biometrics, 38
(4):963–974, 1982.

James P LeSage and R Kelley Pace. Models for spatially dependent missing data. The Journal of
Real Estate Finance and Economics, 29(2):233–254, 2004.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When Gaussian process meets big data:
A review of scalable GPs. IEEE transactions on neural networks and learning systems, 31(11):
4405–4423, 2020.

Haihao Lu, Sai Praneeth Karimireddy, Natalia Ponomareva, and Vahab Mirrokni. Accelerating
gradient boosting machines. In International Conference on Artificial Intelligence and Statistics,
volume 108, pages 516–526, 2020.

Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting algorithms as
gradient descent. In Advances in Neural Information Processing Systems, pages 512–518, 2000.

Charles E McCulloch and John M Neuhaus. Misspecifying the shape of a random effects distribution:
why getting it wrong may not matter. Statistical science, pages 388–402, 2011.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2004.

Didrik Nielsen. Tree boosting with xgboost-why does xgboost win” every” machine learning com-
petition? Master’s thesis, NTNU, 2016.

Amol Pande, Liang Li, Jeevanantham Rajeswaran, John Ehrlinger, Udaya B Kogalur, Eugene H
Blackstone, and Hemant Ishwaran. Boosted multivariate trees for longitudinal data. Machine
learning, 106(2):277–305, 2017.

José Pinheiro and Douglas Bates. Mixed-effects models in S and S-PLUS. Springer Science &
Business Media, 2006.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems 31, pages 6638–6648. 2018.

Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Christopher KI Williams. Approximation
methods for gaussian process regression. In Large-scale kernel machines, pages 203–223. MIT
Press, 2007.

Assaf Rabinowicz and Saharon Rosset. Cross-validation for correlated data. Journal of the American
Statistical Association, pages 1–14, 2020.

Härvard Rue and Leonhard Held. Discrete spatial variation. Handbook of spatial statistics, pages
171–200, 2010.

44

Gaussian Process Boosting

Mohammad J Saberian, Hamed Masnadi-Shirazi, and Nuno Vasconcelos. Taylorboost: First and
second-order boosting algorithms with explicit margin control. In Computer Vision and Pattern
Recognition, pages 2929–2934, 2011.

Alexandra M Schmidt and Peter Guttorp. Flexible spatial covariance functions. Spatial Statistics,
page 100416, 2020.

Holger Schwenk and Yoshua Bengio. Boosting neural networks. Neural computation, 12(8):1869–
1887, 2000.

Rebecca J Sela and Jeffrey S Simonoff. RE-EM trees: a data mining approach for longitudinal and
clustered data. Machine learning, 86(2):169–207, 2012.

Robert H Shumway and David S Stoffer. Time series analysis and its applications: with R examples.
Springer, 2017.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Fabio Sigrist. Gradient and Newton boosting for classification and regression. Expert Systems With
Applications, 167:114080, 2021a.

Fabio Sigrist. KTBoost: Combined kernel and tree boosting. Neural Processing Letters, 53(2):
1147–1160, 2021b.

Fabio Sigrist. Latent Gaussian Model Boosting. IEEE Transactions on Pattern Analysis & Machine
Intelligence (accepted), 2022.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. Advances
in Neural Information Processing Systems, 18:1257, 2006.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pages 2951–2959,
2012.

Yangqiu Song and Changshui Zhang. New boosting methods of Gaussian processes for regression.
In International Joint Conference on Neural Networks, volume 2, pages 1142–1147, 2005.

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business
Media, 1999.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
Intelligence and Statistics, pages 567–574, 2009.

Gerhard Tutz and Florian Reithinger. A boosting approach to flexible semiparametric mixed models.
Statistics in medicine, 26(14):2872–2900, 2007.

Cristiano Varin, Nancy Reid, and David Firth. An overview of composite likelihood methods.
Statistica Sinica, pages 5–42, 2011.

Aldo V Vecchia. Estimation and model identification for continuous spatial processes. Journal of
the Royal Statistical Society: Series B (Methodological), 50(2):297–312, 1988.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT Press Cambridge, MA, 2006.

45

Sigrist

Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured Gaussian processes
(KISS-GP). In International Conference on Machine Learning, pages 1775–1784, 2015.

Simon N Wood. Generalized additive models: an introduction with R. Chapman and Hall/CRC,
2017.

Hulin Wu and Jin-Ting Zhang. Nonparametric regression methods for longitudinal data analysis:
mixed-effects modeling approaches, volume 515. John Wiley & Sons, 2006.

Abraham J Wyner, Matthew Olson, Justin Bleich, and David Mease. Explaining the Success of Ad-
aBoost and Random Forests as Interpolating Classifiers. Journal of Machine Learning Research,
18(48):1–33, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

46

	Introduction
	Relation to existing work

	A Non-linear and Non-parametric Mixed Effects Model
	Model assumptions and notation
	Examples and special cases of random effects models
	Grouped random effects model
	Gaussian process model
	Joint grouped random effects and Gaussian process models

	Combining Gaussian Process and Mixed Effects Models with Boosting
	Boosting for fixed
	Gaussian process boosting
	Out-of-sample learning for covariance parameters
	Computationally efficient learning for large data
	Vecchia approximation for the response variable y
	Efficient calculation of the gradient and Fisher information for the Vecchia approximation

	Prediction
	Prediction using the Vecchia approximation

	Software implementation

	Simulated Experiments
	Simulation setting
	Methods considered
	Evaluation criteria
	Choice of tuning parameters
	Results

	Real-world Applications
	Grouped random effects for categorical data: wages data
	Gaussian processes for spatial data: house price data
	Gaussian processes for non-spatial data: UCI benchmark data sets

	Conclusion
	Appendices
	Which optimization problems are solved by the MERT/MERF and RE-EM tree algorithms and how are they related to the EM algorithm?
	Proofs for the results involving the Vecchia approximation
	Additional results for the simulated experiments

