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Abstract

We consider autocovariance operators of a stationary stochastic process on a Polish space that
is embedded into a reproducing kernel Hilbert space. We investigate how empirical estimates
of these operators converge along realizations of the process under various conditions. In
particular, we examine ergodic and strongly mixing processes and obtain several asymptotic
results as well as finite sample error bounds. We provide applications of our theory in
terms of consistency results for kernel PCA with dependent data and the conditional
mean embedding of transition probabilities. Finally, we use our approach to examine the
nonparametric estimation of Markov transition operators and highlight how our theory
can give a consistency analysis for a large family of spectral analysis methods including
kernel-based dynamic mode decomposition.

Keywords: stationary time series, autocovariance operator, kernel mean embedding,
mixing, ergodic process

1. Introduction

The kernel mean embedding, i.e., the embedding of a probability distribution into a repro-
ducing kernel Hilbert space (Berlinet and Thomas-Agnan, 2004; Smola et al., 2007), and
the closely related theory of kernel covariance operators have spawned a vast variety of
nonparametric models and statistical tests over the last years. For an overview of the kernel
mean embedding theory, we refer the reader to the survey by Muandet et al. (2017) and
the references therein. Kernel covariance operators serve as the theoretical foundation of
several spectral analysis and component decomposition techniques including kernel principal
component analysis, kernel independent component analysis and kernel canonical correlation
analysis. Consistency results and the statistical analysis of these methods can therefore
be directly based on the estimation of kernel covariance operators (Blanchard et al., 2007;
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Fukumizu et al., 2007; Rosasco et al., 2010). Moreover, kernel covariance operators and their
connection to LP-space integral operators and random matrices are a fundamental concept
used to formalize statistical learning (see for example Smale and Zhou, 2007; Rosasco et al.,
2010).

In this paper, we extend the statistical theory of kernel covariance operators from the
independent scenario to kernel autocovariance operators of a stationary stochastic process
(that is, kernel cross-covariance operators with respect to a time-lagged version of the
process). Recently, several nonparametric models for dependent data, sequence modeling,
and time series analysis based on kernel mean embeddings have emerged. Popular approaches
include filtering (Song et al., 2009; Fukumizu et al., 2013; Gebhardt et al., 2019), transition
models (Sun et al., 2019; Griinewélder et al., 2012b) and reinforcement learning (van Hoof
et al., 2015; Lever et al., 2016; van Hoof et al., 2017; Stafford and Shawe-Taylor, 2018;
Gebhardt et al., 2018), to only name a few. A theoretical tool to understand these concepts
is the kernel autocovariance operator, as its plays an important role in the nonparametric
approximation of transition probabilities. This concept has been introduced in an operator-
theoretic sense under the name conditional mean embedding by Song et al. (2009) under
strong technical requirements (see also Klebanov et al., 2020). These requirements have later
been relaxed by developing the theory in a vector-valued regression scenario (Griinewalder
et al., 2012a; Park and Muandet, 2020; Mollenhauer and Koltai, 2020; Li et al., 2022).
Although time series are one of the primary fields of application, consistency results for the
empirical conditional mean embedding have been limited to the case of independent data
until now. As an application of the results of this paper, we prove standard consistency
statements for dependent data.

Recent results (Klus et al., 2018a, 2020; Mollenhauer and Koltai, 2020) show that eigen-
functions of Markov transition operators can be approximated with the conditional mean
embedding. In particular, it was discovered that a large family of kernel-based spectral
analysis and model order reduction techniques for stochastic processes and dynamical systems
(see Kutz et al., 2016; Klus et al., 2018b and Wu and Noé, 2020 for an overview) implicitly
approximate the spectral decomposition of a transition operator defined on an RKHS. This
operator can be expressed in terms of kernel autocovariance operators. Different versions of
these methods are popular in fluid dynamics (Schmid, 2010; Tu et al., 2014; Williams et al.,
2015a,b), signal processing (Molgedey and Schuster, 1994), machine learning (Harmeling
et al., 2003; Kawahara, 2016; Hua et al., 2017), and molecular dynamics (Pérez-Herndndez
et al., 2013; Schwantes and Pande, 2015) under the names dynamic mode decomposition and
time-lagged independent component analysis. Until now, a full statistical convergence analysis
of these techniques has not been conducted to the best of our knowledge. A theoretical
examination of kernel autocovariance operators contributes significantly to the understanding
of kernel-based versions of the aforementioned approaches.

The theory of weakly dependent random processes taking values in infinite-dimensional
Banach spaces or Hilbert spaces has become increasingly important especially due to
applications in the field of functional data analysis (Hormann and Kokoszka, 2010; Horvéth
and Kokoszka, 2012). In infinite-dimensional statistics, the estimation of covariance and cross-
covariance operators (Baker, 1970, 1973) is a fundamental concept. Under parametric model
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assumptions about the process, the estimation of covariance and autocovariance operators
has been examined in various scenarios. For autoregressive (AR) processes in Banach spaces
and Hilbert spaces, weak convergence and asymptotic normality has been established (Bosq,
2000, 2002; Mas, 2002; Dehling and Sharipov, 2005; Mas, 2006). Soltani and Hashemi (2011)
add the assumption of periodic correlation for AR processes in Hilbert spaces. Allam and
Mourid (2014, 2019) provide rates for almost sure convergence of covariance operators in
Hilbert-Schmidt norm for an AR process with random coefficients. For processes in an L?
function space, the weak convergence of covariance operators has been examined by Kokoszka
and Reimherr (2013) under the assumption of L*-m approzimability (a concept generalizing
m~dependence, which includes certain autoregressive and nonlinear models, see Hormann
and Kokoszka, 2010) in the context of functional principal component analysis.

In this paper, we consider a stationary stochastic process (X¢):cz taking values in a Polish
space E. Let # be a reproducing kernel Hilbert space (RKHS) with the canonical feature map
p: B — 7. In contrast to the previously mentioned work, we investigate autocovariance
operators of the corresponding embedded RKHS-valued process

(¢(Xt))teZ‘

We face the challenge that properties of the E-valued process (X;)iez which quantify the
convergence speed of any empirical statistic must transfer accordingly to the embedded
version of the process in the Hilbert space 7. However, we can not require restrictive
assumptions about the feature map ¢ in order to ensure applicability of our results for
various RKHSs in practice. Hence, in contrast to the previously mentioned literature, we
consider a more general setting that does not require either (X;)¢cz or (p(X¢))iez to obey
any specific parametric time series model.

Recently, Blanchard and Zadorozhnyi (2019) derived a Bernstein-type inequality for Hilbert
space processes for a class of mixing properties called C-mixing (Maume-Deschamps, 2006).
As a special case, the authors show that under fairly restrictive Lipschitz conditions on the
feature map ¢, this mixing property is preserved under the RKHS embedding of a so-called
T-mixing process. The derived inequality is then used to obtain concentration bounds for the
context of RKHS learning theory, including kernel covariance operator estimation without
a time lag. As described for example by Hang and Steinwart (2017), the class of C-mixing
coefficients is only partly related to the classical strong mixing coefficients found in the
literature (Doukhan, 1994; Bradley, 2005), which we will consider in this paper, in particular
the concept of a-mixing.

The contributions of this paper are:

(i) A mathematical framework for kernel autocovariance operators of a stationary discrete-
time process (X)icz taking values in a Polish space. This framework allows the
investigation of ergodicity and strong mixing in the context of the embedded process
(p(X¢))tez under minimal requirements on the feature map . In particular, our
assumptions are easily justifiable for further application in practical work on RKHS-
based time series models.
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(ii) A collection of various asymptotic as well as nonasymptotic results about the estimation
error of empirical kernel autocovariance operators based on single trajectories of the
process (X¢)iez. These results are presented in a form that is directly accessible for
work on related topics.

(iii) Applications of our results to
a) the consistency of kerne with dependent data;
h i f k 1 PCA with d d d

(b) the consistency of the conditional mean embedding of transition probabilities
under the typical technical assumptions; and

(c) the estimation of Markov transition operators and their role in a family of spectral
analysis methods for dynamical systems.

This paper is structured as follows. In Section 2, we recall the required preliminaries from
spectral theory, Bochner integration, and reproducing kernel Hilbert spaces and formulate
our working assumptions. Section 3 addresses the strong law of large numbers of empirical
kernel autocovariance operators under the hypothesis of ergodicity. We introduce the concept
of strong mixing and derive standard probabilistic results including the central limit theorem
in Section 4. A general concentration bound for the estimation error can be found in
Section 5. Based on these results, we highlight applications to kernel PCA from dependent
data (Section 6), the conditional mean embedding (Section 7) and the approximation of
Markov transition operators (Section 8). We conclude our work in Section 9.

2. Preliminaries

2.1 General Notation

We give an overview of our notation and collect well-known facts from operator theory and
probability theory. For details, we refer the reader to Reed and Simon (1980) and Kallenberg
(2002). In what follows, we write B for a separable real Banach space with norm ||| 5,
and H for a separable real Hilbert space with inner product (-, -) ;. L(B) stands for the
Banach space of bounded linear operators on B equipped with the operator norm ||-||. The
expression H ® H denotes the tensor product space: H ® H is the Hilbert space completion
of the algebraic tensor product with respect to the inner product (zg ® 1, 24 ® z) HeoH =
(w1, ) g (@2, 24) . For z1,x9 € H, we interpret the element zo ® 21 € H ® H as the
linear rank-one operator zo ® x1: H — H defined by x — (z, 1) ; x2. Whenever (e;);cr is
a complete orthonormal system (CONS) in H, (e; ® e;); jer is a CONS in H ® H. Thus,
when H is separable, H ® H is separable.

Every compact operator A on H admits a singular value decomposition, that is, there exist
orthonormal systems {u;}ics and {v;};c; in H such that

A=Y "oi(A)u; @, (1)
ieJ

where (0;(A));es are the strictly positive and nonincreasingly ordered (including multiplic-
ities) singular values of A with an (either countably infinite or finite) index set J. The
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convergence in (1) is meant with respect to the operator norm. The rank of A is defined as
the cardinality of J.

For 1 < p < oo, the p-Schatten class S,(H) consists of all compact operators A on H
such that the norm [[Al|g gy = [[(0i(A))ics|l,, is finite. Here ||(0i(A))ic,, denotes the £,
sequence space norm of the sequence of singular values. The spaces S,(H) are two-sided
ideals in L(H). Moreover [|Al < [[Al|g, gy < [[Allg, gy holds for p < g, ie., Sp(H) € Sy(H).
For p = 2, we obtain the Hilbert space of Hilbert—Schmidt operators on H equipped with
the inner product (A, A2)g, ) = Tr(AjAz). For p = 1, we obtain the Banach algebra
of trace class operators. For p = oo, we obtain the Banach algebra of compact operators
equipped with the operator norm ||A|| = [[A|g_ ). The Schatten classes are the completion
of finite-rank operators (i.e., operators in span{z ® «’' | z,2’ € H}) with respect to the
corresponding norm.

We will make frequent use of the fact that the tensor product space H ® H can be isometri-
cally identified with the space of Hilbert—Schmidt operators on H, i.e., we have So(H) ~
H ® H. For elements x1,z7, 72,75 € H, we have the relation (ro ® 1, ¥% ® 1) yoy =
(xo ® 21, b @ x)) So(H)» where the tensors are interpreted as rank-one operators as described
above. This property extends to span{z ® =’ | z,2’ € H} by linearity and defines a lin-
ear isometric isomorphism between H ® H and S3(H ), which can be seen by considering
Hilbert—Schmidt operators in terms of their singular value decompositions.

For any topological space E, we will write Fg = B(E) for its associated Borel field. For any
collection of sets M, o(M) denotes the intersection of all o-fields containing M. For any
o-field F and countable index set I, we write F®! as the product o-field (i.e., the smallest
o-field with respect to which all coordinate projections on E! are measurable). Note that
when E is Polish (i.e., separable and completely metrizable), we have B(ET) = B(E)®!, i.e.
the Borel field on the product space generated by the product topology and the product of
the individual Borel fields are equal. Put differently, the Borel field operator and the product
field operator are compatible with respect to product spaces (Dudley, 2002, Proposition
4.1.17). Moreover, E! equipped with the product topology is Polish.

In this paper, we will consider a stochastic process (X;)icz on a probability space (2, F,P)
with values in the observation space (E,Fg), where we assume E to be Polish. For a
finite number of random variables &1, ..., &, defined on (2, F,P) with values in E, we write
L(&1, ..., &) for the finite-dimensional law, i.e., the pushforward measure on (E™,B(E™))
induced by &1, ...,&,.

Assumption 1 (Stationarity) We assume that the process (Xi)icz is stationary in the
sense that all finite-dimensional laws are identical, that is

ﬁ(th, c. 7Xt7-) = L(Xt1+77’ e ,Xt7,+77)
forallty,... t. € Z, r € N, and time lags n € N.

For any separable Banach space B, let LP(Q, F,P; B) denote the space of strongly F — Fp
measurable and Bochner p-integrable functions f: Q2 — B for 1 < p < oo (see for example
Diestel and Uhl, 1977). In the case of B = R, we simply write LP(Q2, F,P;R) = LP(P) for
the standard space of real-valued Lebesgue p-integrable functions.
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2.2 Reproducing Kernel Hilbert Spaces

We will briefly introduce the concept of reproducing kernel Hilbert spaces. For a detailed
discussion of this topic, we refer the reader to Berlinet and Thomas-Agnan (2004), Steinwart
and Christmann (2008) and Saitoh and Sawano (2016). To distinguish standard Hilbert
spaces from reproducing kernel Hilbert spaces, we will use the script letter 57 for the
latter.

Definition 2 (Reproducing kernel Hilbert space) Let E be a set and J a space of
functions from E to R. Then S is called a reproducing kernel Hilbert space (RKHS) with
corresponding inner product (-, -) ,, if there exists function k: E x E — R such that

(i) (f, k(x,-)) = f(x) for all f € S (reproducing property), and
(i1) A = span{k(z,-) | x € E}, where the completion is with respect to the RKHS norm.

We call k the reproducing kernel of 7.

It follows in particular that k(z,z’) = (k(z,-), k(2',-)),,. The canonical feature map
p: E — A is given by p(x) := k(x,-). Thus, we obtain k(z,2") = (p(x), ¢(2')) . Every
RKHS has a unique symmetric and positive semi-definite kernel k with the reproducing
property. Conversely, every symmetric positive semi-definite kernel k£ induces a unique RKHS
with k as its reproducing kernel. In what follows, we will use the term kernel synonymously
for reproducing kernel/symmetric positive semi-definite kernel for brevity.

We now impose a few restrictions on the considered RKHS, which we assume to be fulfilled
for the remainder of this paper.

Assumption 3 (Separability) The RKHS 5 is separable. Note that for a Polish space
E, the RKHS induced by a continuous kernel k: Ex E — R is always separable (see Steinwart
and Christmann, 2008, Lemma 4.33). For a more general treatment of conditions implying
separability, see Owhadi and Scovel (2017).

Assumption 4 (Measurability) The canonical feature map ¢: E — H is Fg — Fup
measurable. This is the case when k(x,-): E — R is Fg — Fr measurable for all v € E. If
this condition holds, then additionally all functions f € J are Fg — Fr measurable and
k:ExE—Ris .7:%2 — Fr measurable (see Steinwart and Christmann, 2008, Lemmas 4.2/
and 4.25).

Assumption 5 (Existence of second moments) We have ¢(Xo) € L?(Q, F,P, 7). Note
that this is trivially the case whenever sup,cp k(z,x) < 00.

2.3 Kernel Mean Embeddings and Kernel Covariance Operators

We now introduce kernel mean embeddings and kernel covariance operators, which are
simply the Bochner expectations and covariance operators of RKHS-embedded random
variables.

For a random variable X on E satisfying o(X) € L'(Q, F,P; ), we call

px = pe(x) = Elp(X)] € A
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the kernel mean embedding or simply mean embedding (Berlinet and Thomas-Agnan, 2004;
Smola et al., 2007; Muandet et al., 2017) of X. For every f € J#, the mean embedding

satisfies E[f(X)] = (f, pux) -
Definition 6 (Kernel (cross-)covariance operator) For two random variables X,Y on

E satisfying o(X), p(Y) € L3(Q, F,P; 52), we call the trace class operator Cy x : S — A
defined by

Cyx = E[(p(Y) — py) @ (p(X) — px)]

the kernel cross-covariance operator of X and Y. We call Cx x the kernel covariance operator
of X.

For all f,g € S, we have Cov[f(X),g(Y)] = (9, Cyx[f),, as well as Cyx = C%y. As
a consequence, C'x x is self-adjoint, positive semi-definite and trace class. For additional
information about (cross-)covariance operators of Hilbertian random variables, see for
example Parthasarathy (1967), Baker (1970) and Baker (1973).

In the literature, the covariance operator is sometimes used as a generalization of the
uncentered second moment and therefore defined without centering of the random variables
©(X) and ¢(Y) (Prokhorov, 1956; Parthasarathy, 1967; Bharucha-Reid, 1972; Fukumizu
et al., 2013).

Definition 7 (Kernel autocovariance operator) Let (X;)icz be a stationary stochastic
process with values on E such that ¢(Xo) € L*(Q, F,P; ). Let n € N. We call

C(n) = Cx,xo = Cx, ., x,

the kernel autocovariance operator of the process (Xi)iez with respect to the time lag 1.

2.4 Product Kernels and Hilbert—Schmidt Operators
The tensor product space S & H# ~ So(H) is itself an RKHS with the corresponding
canonical feature map ¢ ® p: E x E — 5 ® J given by

¢ @ (x1,22) = p(x1) ® p(32).

For more details, we refer the reader to Steinwart and Christmann (2008, Lemma 4.6). The
corresponding kernel of % ® J# is the product kernel k - k: E? x E? — R.

The estimation of the uncentered kernel autocovariance operator can therefore be interpreted
as the estimation of a kernel mean on the product RKHS 7 ®.77. In particular, we can write
C(n) as the kernel mean embedding of the joint distribution £(X,, Xo) on the measurable
space (F x FE,Fg ® Fg) using the product feature map ¢ ® ¢. That is, we have

Be(x,,x0) = Elp(Xy) @ ©(Xo)l,
which is exactly the uncentered kernel autocovariance operator of X.

Thus, the analysis of the estimation of the uncentered autocovariance operator covers the
problem of estimating the kernel mean fiz(x,) of the marginal L(Xp). In fact, by considering
kernels on the product space E x F instead of E, we need to account for the challenge
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that appropriate statistical properties of the process (X;)iez (such as ergodicity, mixing,
or decay of correlations) have to transfer to the product process (Xyiy, Xi)iez on E x E
in order to provide results. We may therefore concentrate directly on the estimation of
uncentered autocovariance operators based on E x E instead on the estimation of kernel
mean embeddings on E. We emphasize that all of our results directly transfer to the much
simpler case of estimating the kernel mean p.(x,) from dependent data by simply replacing
the product space F x E with F and the product feature map ¢ ® ¢ with ¢.

Assumption 8 (Centered process) Without loss of generality, we assume that the em-
bedded process is centered, i.e., jir(x,) = E[p(Xo)] = 0. In this case, the centered and the
uncentered autocovariance operator coincide:

C(n) = E[p(Xy) ® o(Xo)]-

Whenever Assumption 8 is not satisfied, the centered autocovariance operator can be
computed by replacing the random variables ¢(X¢) and ¢(X,) by their centered counterparts
©(Xo) — prixy) and o(Xy) — pig(x,), respectively. It is important to note that unlike ¢(-),
the expression () — pz(x,) is technically not the canonical feature map of 7 and should
be treated with caution. In particular, it does not satisfy the reproducing property. It
does however satisfy all conditions required to formally define its mean embedding and
the corresponding covariance operators. Furthermore, in practical applications, the mean
embedding piz(x,) is typically not known and replaced by an empirical estimate. This
centering and its consequences regarding the empirical estimation of kernel covariance
operators are investigated in detail by Blanchard et al. (2007).

In what follows, we will repeatedly use the shorthand
1 n
Cn(n) == - Z P(Xttn) ® p(Xt)
t=1

for the empirical estimate of C'(n) based on n + 1 consecutive time steps of the process
(Xt)tez-

3. Strong Law of Large Numbers

We now address the strong law of large numbers for the estimator Cy,(n). To this end, we
briefly introduce the concept of measure-preserving dynamical systems and ergodicity. For
details, the reader may refer for example to Petersen (1983). It is well-known that every
stationary process can be expressed in terms of a measure-preserving dynamical system
when the underlying probability space is chosen accordingly (see for example Doob, 1953,
Chapter X). This allows to study stationary processes with tools from ergodic theory. We
will briefly describe this viewpoint below.

It is possible to assume without loss of generality that the underlying probability space
(2, F,P) describing (X;)scz is the canonical probability space, i.e., Q := EZ and F := fgz.
In this case, we can simply express the process (X¢)ez as the family of coordinate projections
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on Q: for w = (wy)ez € 2, we can write
X (w) :=w; = Xo(T'w) forallt e Z,

where T is the left-shift operator on  defined by (Tw); = w;4+1 for all i € Z. Note that by
stationarity of (X¢):ez, the shift T' is measure preserving in the sense that P[T—'M] = P[M]
for all M € ]_—gz. We call (X;)ez ergodic whenever T is ergodic in the measure theoretical
sense, i.e., for all sets M € ]:?Z, we have that the condition T7'M = M implies either
P[M] =0 or P[M] = 1.

We show that for any fixed time lag n € N, the kernel autocovariance operator C(n) can be
estimated almost surely from realizations of (X};);cz whenever the process is ergodic. This
comes as a natural consequence of the following generalized version of Birkhoff’s ergodic
theorem.

Theorem 9 (Beck and Schwartz, 1957, Theorem 6) Let B be a reflexive Banach space
and T an ergodic measure-preserving transformation on (0, F,P). Then for each f €

LI(Q’ f’ ]P); B)?
N
Jim_ ~ ;f@ w) =E[f],
1=
where the convergence holds P-a.e. with respect to ||-|| 5.

We can directly apply this result to obtain almost sure convergence of the empirical estimate
of C(n) in the case that (X;);ez is ergodic.

Corollary 10 (Strong consistency) Let (X;)icz be a stationary and ergodic process de-
fined on (Q, F,P) with values in a Polish space E. Then

lim G (n) = C(n),
n—oo
where the convergence is P-a.e. with respect to |||, -

Proof The time-lagged product process (X, X¢4y)tcz on E X E can be expressed via the
projection tuple (X, X¢4yy)(w) = (Xo, X;))(T?w). By construction, (Xo, X,) is P — Fp ® Fg
measurable. Note that because of Assumption 4 and Assumption 5 the product feature map
©®¢ given by (z,y) — ¢(y) @ p(x) is an element of L' (E x E, Fg & Fg, L(Xo, X,); S2()),
where Sy(J7) is clearly reflexive. Therefore, it holds that the composition

P ®po(Xo,Xy): Q— So(H)
given by w — (Xo, X;)(w) — ©(X;;) ® ¢(Xo)(w) is an element of LY(Q, F,P; So(H#)).

The statement follows immediately from the fact that we choose ¢ ® ¢ o (X, X)) as the
observable f in Theorem 9 and obtain

n—oo N

1l .1
lim — Z; ¢ ®po(Xg,Xy)oT" = Jim - Z; ©(Xt4n) @ p(Xy) = C(n),
t= t=

where the convergence is P-a.e. in Sy (.5). [ |
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Remark 11 (Convergence in Schatten norms) Corollary 10 also yields P-a.e. conver-
gence Cn(n) = C(n) in Sp(H) for all p > 2, as it holds that ||-||lg, e < [Ills,()- Note
that S1(A€) is reflexive if and only if F is finite-dimensional (see for example Simon, 2005,
Theorem 3.2). However, in the finite-dimensional case, all Schatten classes coincide and
the question for convergence in Schatten norms becomes trivial. In the general case, it is
not clear whether the reflexivity assumption in Theorem 9 is not only sufficient but also
necessary for a convergence to hold. To the best of our knowledge, no stronger generalization
results of Birkhoff’s ergodic theorem for Banach-valued random variables exist.

4. Asymptotic Error Behavior

In this section, we apply limit theorems for weakly dependent Hilbertian random variables
to the estimation error Cy(n) — C(n) and investigate its asymptotic behaviour.

4.1 o-Mixing
We first recall the basic notions of a-mixing in statistics (see for example Bradley, 2005).
Definition 12 (a-mixing coefficient) For o-fields Fi, Fo C F, we define

a(Fi, Fo) = sup |P[AN B] —P[A]P[B]|.
AeF1,BEF,

For a process (X¢)tez, we furthermore define

sup a(FL o, F55,), n>1,
a(n) = a((Xt)iez,n) == { J€L
1/4, n<l1,

where F|" := o(Xy,l <t < m) denotes the o-field generated by the process (Xi)iez for time
horizons —oo <[ < m < 0.

The process is called a-mizing or strongly mizing, when a(n) — 0 as n — oo. In this case,
the convergence rate of a(n) is called the mizing rate of the associated process. In this paper,
we will not focus on the various alternative strong mixing coefficients which are frequently
used in statistics (Doukhan, 1994; Bradley, 2005; Rio, 2017), since a-mixing is the weakest
concept among the strong mixing coefficients and covers a wide range of processes in practice.
The coefficient a(n) is typically defined only for n > 1 in the literature. However, since it
always holds that 0 < «(F1, F2) < 1/4, our definition above extends a(n) trivially to n € Z.
This allows us to formulate several results in a more convenient way in what follows.

Remark 13 (Terminology) The concept of strong mixing coefficients is typically much
stronger than the strong mixing considered in ergodic theory (Petersen, 1983). Also note
that we define the a-mizing coefficient for stationary processes. It can also be defined for
nonstationary processes, while mixing in the ergodic theoretical sense typically arises from
dynamical systems induced by measure-preserving transformations and is therefore primarily
used in the context of stationary stochastic processes.

Example 1 (Mixing processes) A wide range of mizing processes are given by Doukhan
(1994) and Bradley (2005). We list some important examples here.

10
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1. Irreducible and aperiodic stationary Markov processes on E C R are a-mizing (in
fact, a stronger mixing property called S-mixing or absolute regularity holds, see for
example Bradley, 2005, Corollary 3.6).

2. Stationary Markov processes satisfying geometric ergodicity (for details see Meyn and
Tweedie, 2009, Chapter 15) are a-mizing with a(n) = O(exp(—cn)) for some ¢ > 0
(Bradley, 2005, Theorem 3.7).

3. We consider a stochastic dynamical system (X¢)ien, also known as the nonlinear state
space model (Meyn and Tweedie, 2009, Chapter 7) given by the recursion

X =m(Xe1,2y), t>1,

where hy: E — E are measurable functions and Z; are i.i.d. random variables on
E which are independent of Xo. The process (Xt)ien, is a Markov process (see for
example Kallenberg, 2002, Proposition 8.6). Therefore 1. and 2. apply in this case.
General conditions under which this system is geometrically ergodic (i.e., geometrically
a-mizing in the sense of 2.) are presented by Doukhan (1994, Section 2.4). As a very
basic example, the so-called simple linear model on E C R given by

Xi=aXy 1+ 2, aeR, t>1,

is geometrically ergodic if |a] < 1 and the random variables Zy are integrable and admit
an everywhere positive density on E (Meyn and Tweedie, 2009, Section 15.5.2).

4. Under some requirements, commonly used linear and nonlinear process models on
finite-dimensional vector spaces including AR, ARMA, ARCH, and GARCH are a-
mizing with a(n) = O(exp(—cn)) for some ¢ > 0, see Doukhan (1994, Section 2.4)
and Fan and Yao (2003, Section 2.6.1).

We make use of the following classical lemma which we prove for completeness. It ensures
that the mixing rates of measurable transformations of a stationary process process are at
least as fast as the mixing rates of the original process.

Lemma 14 (Mixing coefficients of transformed processes) Let (X;)icz defined on
(Q, F,P) be a process with values in the Polish space (E,Fg) equipped with its Borel field.
Let (F, Fr) be another Polish space equipped with its Borel field. Letn € N and h: E"T! — F
be a fg"ﬂ — Fr measurable transformation. Then for the F-valued process (Hy)iez given
by

H; = h(Xt,...,Xt+,7), t e,

we have
a((Hi)ez,n) < a((Xi)tez,n — 1) (2)

for alln € Z. In particular, if (X¢)iez is a-mizing, then (Hy)iez is a-mizing with the same
mixing rate as (Xi)icz or faster.

Proof It is sufficient to consider the case n > 7, as (2) is trivial whenever n < n by our
definition of the a-mixing coefficients. Let H]" := o(H;,l <t < m) C F be the o-field

11
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generated by (Hy)¢cz for time horizons I and m. By construction, for all j € Z we have
H o C F Jgg as well as H;’O - .7:;»’0 for all j € Z. Therefore, we have

a((Ht)tézvn) = SuIZ)a(ijooijoj-n) < SUIZ)CX(./—"?;?, ]o—?—n) = a((Xt)tezv n-— 77)7
J€ Jje

proving the claim. [ |

4.2 Limit Theorems

We now investigate the asymptotic statistical behavior of the estimator C),(n) under the
assumption that (X;);ez is strongly mixing. For brevity, we introduce the shorthand notation

& = (e(Xin) ® ©(X1)) — C(n) (3)

for t € Z and n € N. The process (& )iz is stationary and centered with values in S (.57).
The estimation error can now be expressed as Cp(n) — C(n) = 2371 | &.

Lemma 15 (Mixing process in product RKHS) Let n € N be the time lag used to
define the So(H)-valued process (&t)iez given in by (3). Then the a-mizing coefficients of

of (&)iez satisfy
a((&)iez,n) < a((Xt)iez,n —n) for all n € Z. (4)

In particular, if the process (X¢)iez is a-mizing, then (&)icz is a-mizing with the same rate
as (Xy)ez or faster.

Proof It is sufficient to note that (§)ez is obtained from (X4, ..., Xiyy)iez via a measur-
able transformation. The assertion follows from Lemma 14. [ |

We will make use of the fact that whenever the kernel k is bounded, the process (& )iez
is almost surely bounded. In particular, if sup,cp k(z,2) = ¢ < oo, then for all ¢t € Z, we
have

16l o 2.7 2152 00)) < €58 5UP [l p(Xtn) © P(Xe) g, ) + 1€ )1

< sup [lo(@)]5y + B |[lo(Xern) © 0(X0) 5, (5)

< 2sup [|p(z)]|% = 2sup k(z, z) = 2¢.
z€E ' z€E

Several properties of the estimation error C,,(n) — C(n) can be proven by applying results
from the asymptotic theory of weakly dependent Hilbertian processes to (&:)iez. We begin
with one of the strongest results of this type which is an approximation of the rescaled
estimation error n(Cy(n) — C(n)) by a Gaussian process.

To this end, we briefly recall the definition of a Gaussian measure on a Hilbert space
(see for example Bogachev, 1998), which generalizes the concept of the finite-dimensional

12
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normal distribution. A probability measure v on a Hilbert space H equipped with its
Borel field is called a Gaussian measure if its characteristic function 7 : H — C defined by
v(x) = [yexp(i(z, y) ) dr(y) is of the form

oa) = exp (a3 o Ty 6)

for some p € H (the mean of v) and positive-semidefinite self-adjoint operator T € S1(H)
(the covariance operator of v, see Bogachev, 1998, Theorem 2.3.1). If v satisfies (6), we also
write v = M (u, T). We note that the covariance operator 7" should not be confused with the
kernel autocovariance operator C(n), as T' describes a limiting covariance structure of the
sequence of laws associated with the empirical estimates of C'(n) in what follows.

We now introduce the shorthand notation L(n) := max(logn,1) for n € N.

Theorem 16 (Almost sure invariance principle) Let (X;)iez be stationary and a-mizing
with coefficients (au(t))iez such that > ;2 at) < co. Furthermore, let sup,ep k(x, z) < 0o.
Let n € N be the time lag used to define the Sa(F)-valued process (&;)iez given in by (3).
Then the linear operator T,: So(H) — Sa2(H) defined by

T, =El&®&]+ ) Elfo®& + > El& &) (7)
t=1 t=1

is trace class. Furthermore, there exists a Gaussian measure N(0,T;) on So(H) and a
sequence of i.i.d. Sa(J€)-valued Gaussian random variables (Z;)icz ~ N(0,T),) defined on
(Q, F,P) such that we have P-a.e.

- o( nL(L(n))) .

Sa ()

n(Culn) — C) = Y 2
t=1

Proof The assumptions ensure that (&;):cz is P-a.e. bounded by (5) and has summable
mixing coefficients by (4). We can directly apply the almost sure invariance principle
from Dedecker and Merlevede (2010, Corollary 1) to (&)tez, which yields the assertion.
We emphasize that the P-a.e. boundedness of (& )iz and the summability of the mixing
coefficients ensure that this result can be applied, as explicitly mentioned by the authors
(see also Merlevede, 2008, Remark 3). [ |

A strongly related statement is a standard central limit theorem for weakly dependent
sequences which ensures asymptotic normality in the space S (7).

Theorem 17 (Central limit theorem) Let n € N be a fized time lag. Under the as-
sumptions of Theorem 16, the laws of the sequence \/n(Cy(n) — C(n)) converge weakly to a
Gaussian measure N'(0,T),) on So(H°) with covariance operator T, defined by (7).

Proof By our previous analysis and the argumentation in the proof of Theorem 16, the
process (& )iz satisfies all assumptions of the central limit theorem by Merlevede et al.
(1997, Corollary 1). The above assertions follow directly. |
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The next result is a compact law of the iterated logarithm. It ensures that an appropriately
rescaled version of the estimation error approximates a compact limiting set almost surely.
Additionally, it characterizes this set as the accumulation points of the estimation error
sequence and gives a norm bound in S(##) depending on the mixing rate. We obtain our
result by applying an infinite-dimensional generalization of the classical law of the iterated
logarithm for real-valued random variables. The original law of the iterated logarithm
plays an important role in sequential hypothesis testing (Robbins, 1970; Siegmund, 1985),
leading to potential applications in reinforcement learning as noted by Kaufmann et al. (2016).

Let acc(zy,) € X denote the set of all accumulation points of a sequence (x,,)nen in a metric
space (X,d) and dist(z, A) := inf{d(z,y) |y € A} be the distance between a point z € X
and a set A C X.

Theorem 18 (Compact law of the iterated logarithm) Let the process (X¢)iez be sta-
tionary and a-mizing with coefficients (a(t))iez such that Y 52, a(t) < co. Furthermore, let
sup,ep k(z, x)=c < 0o. Then for every time lag n € N there exists a compact, conver and
symmetric set K, C Sa(J), such that P-a.e.

C -C
@mam m»m>ﬂ) -

lim dist
n—oo

2L(L(n))

as well as P-a.e.

o[ VAUCaln) = C)) | _ K,. 9)
2L(L(n))

Moreover, whenever y 7>, a(t —n) = M < oo, we have

sup || Allg, ) = (4% + 322 M)/2. (10)
A€k,

For the proof of Theorem 18, see Appendix A. We note that from (9), we can deduce

L VRIC) — COnlsy
Hsno 3L(L(n))

= sup ||4 ,
s 14l

which gives us the rate of P-a.e. convergence of the estimation error.

Corollary 19 (Rate of convergence) Under the assumptions of Theorem 18, we have

2L(L(n)
|Crn(n) — 0(77)”32(4%0) =0 (éﬁ)> P-a.e.

for every time lag n € N.

In particular, Corollary 19 shows that boundedness of the kernel and summability of the
mixing coefficients are sufficient to obtain the rate of convergence which is known to hold in
the strong law of large numbers for independent random variables as given by the classical
law of the iterated logarithm (see for example de Acosta, 1983).
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Remark 20 (Optimality of mixing rate assumptions) The results in this section re-
quire that the a-mizing coefficients of (Xi)icz are summable. We now briefly address the
question whether similar asymptotic statements can be derived under less strict assumptions.
Merlevéde et al. (1997), Merlévede (2008) and Dedecker and Merlévede (2010) use more
general and much more technical quantile conditions than the summability of the mizing
coefficients in order to prove the asymptotic results which we apply here. These quantile con-
ditions are known to be necessary for a central limit theorem to hold for real-valued processes.
We refer the reader to Doukhan et al. (1994, Section 4) for additional information. For
bounded random variables however, the summability of the mizing coefficients is equivalent
to the mentioned quantile conditions. This is investigated by Rio (1995, Application 1). A
similar argument can be used for the law of the iterated logarithm (see also Rio, 1995).

5. Concentration Bounds

In addition to the previous asymptotic results, concentration properties for the estimation
error can be derived by using concentration properties of mixing Hilbertian processes. We
now introduce the covariance operator of the Ss(.7”)-valued random variable & defined
in (3), which we will denote by I';, € S1(S2(#)). The eigendecomposition of I';, allows to
quantify the second moment of the empirical kernel autocovariance operators C,(n), which
is needed to derive concentration bounds. We emphasize that the operator I';, should not be
confused with the operator 7}, introduced in (7), which describes the asymptotic covariance
of /n(Cpn(n) —C(n)), while I;, describes the variance of the marginal £(§y) of the stationary

process (&t)iez-

Theorem 21 (Error bound) Let (X;)icz be stationary with a-mizing coefficients (a(t))iez,
Let furthermore sup,cp k(z,z) = ¢ < co. Then for every time lagn € N, e > 0, v € N,
n>2as well as g € {1,...,|n/2]} and § € (0,1), we have

(1- 5)6%)

P[HC’n(n) = Cll s, ) > f} < dvexp (_ 3202

oS 1/2
+ 22vq (1—1—6(18_\5[)1/2> a(|n/2q| —17)—1—%2%,

j>v

where the nonnegative real numbers (\;);>1 are the nonincreasingly ordered eigenvalues of
the covariance operator

F77: SQ(%) — 52(%)
defined by

Iy = E [ ((e(X) © ¢(X0) =€) @ ((e(Xy) © p(X0) —Cm)] . ()

Proof As previously noted, the process (& )z defined by (3) with the time lag n € N is
stationary, centered and almost surely bounded by 2c¢ in the norm of S(#°). Moreover, its
a-mixing coefficients satisfy the bound (4). We can therefore apply the concentration bound
given by Bosq (2000, Theorem 2.12) to the process (&;)iez, which yields the assertion. MW
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The above bound requires an optimal trade-off between v, ¢, and §. In particular, knowledge
about the decay of the eigenvalues (\;);>1 of I, allows to choose v, ¢ and § such a way that
the bound can be simplified as demonstrated by Bosq (2000, Corollary 2.4). We also note
that ij Aj < oo for every v € N, since Iy, is trace class.

6. Consistency of Weakly Dependent Kernel PCA

By considering the kernel covariance operator C' := C(0), we can easily obtain consistency
results for kernel PCA (Scholkopf et al., 1998) for the case that the data is dependent. It is
well known that kernel PCA approximates the spectral decomposition of C' (see for example
Blanchard et al., 2007), as we will briefly explain in Section 6.2. Consistency results for kernel
PCA from independent data have been obtained by considering the spectral perturbation of
covariance operators of Hilbertian random variables (Mas and Menneteau, 2003; Blanchard
et al., 2007; Mas and Ruymgaart, 2015; Koltchinskii and Lounici, 2016, 2017; Reif3 and
Wahl, 2020). Various approaches exist in this context and we do not aim to provide a full
overview here. Instead, we will show how our previous results lead to some elementary
consistency statements for dependent data. By applying techniques from the previously
mentioned literature, these results may be refined and extended accordingly.

We note that convergence in measure and weak convergence of standard linear Hilbertian
PCA for L?([0, 1])-valued stochastic processes was previously investigated by Kokoszka and
Reimherr (2013) under the assumption of L*-m approximability.

6.1 Notation

For a compact self-adjoint positive-semidefinite operator C' on S, let (\;(C));c; denote the
nonzero eigenvalues of C' ordered nonincreasingly repeated with their multiplicities for the
index set I = {1,2,...}. Then C admits the spectral decomposition

C=> XNC)vi v (12)
iel
where the v; are the orthonormal eigenfunctions of C. In addition, let (1;(C));ecs denote

the distinct eigenvalues of C for J = {1,2,...} with A;(C) :=={i € I | \j(C) = p;} as well
as the multiplicity m;(C) := |A;(C)|. Note that C can also be written as

=Y 1(OP(0),
JjeJ
were P;(C') is the orthogonal spectral projector onto the eigenspace corresponding to 1;(C')

and the convergence is with respect to the operator norm. We will additionally consider the
spectral gap

9/(C) = {’”(C) e j=1
T minfuj-1(C) = 15 (C), 1(©) — (€Y}, =2

Note that g;(C') # 0 by construction.
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6.2 Operator Interpretation of Kernel PCA

Kernel PCA approximates a finite-rank truncation of the Karhunen—Loéve transformation
of the embedded random variable p(X() by approximating the spectral decomposition of
the kernel covariance operator C' = E[p(Xo) ® ¢(Xo)] (see for example Blanchard et al.,
2007).

Consider the spectral decomposition (12) of C. Let {0;};>1 be an extension of the eigen-
functions {v; }ier of C to a complete orthonormal system in .7 (that is, the addition of an
appropriate ONS spanning the null space of C') By expanding the random variable ¢(Xp) in
terms of {0;}i>1, we get the Karhunen-Loeve transformation

P(Xo) = > (p(Xo), T) B = 3 Ziy, (13)

il i€l

where Z; := (p(Xo), i) 4 = 0;(Xo) are real-valued random variables and convergence in (13)
is with respect to the norm of J#. Note that we have

COV[Zi, Zj] = COV[(fJi(Xo),’LN)j(Xo)] = <1~1¢, Cﬁj>% = )\2(0)5”,

where we extend the set of eigenvalues to the null space, i.e., we set \;(C) :=0 for i # I. In
practice, the data is usually projected onto the first 7 dominant eigenfunctions in order to
obtain an optimal low-dimensional approximation of ¢(Xj). In particular, for all » € I, the
projector P<, := Y., v; ® v; minimizes the reconstruction error

R(T) i=E [ ¢(Xo) — Tp(Xo) %] (14)

over all operators T in the set of r-dimensional orthogonal projectors on J#. By performing
a spectral decomposition of the empirical kernel covariance operator

1 n
Cn = ﬁ Z @(Xt) ® @(Xt)7
t=1

kernel PCA aims to approximate (13) (or P<, respectively). We are therefore interested in
how well the spectral decomposition of the empirical operator C),, approximates the spectral
decomposition of C.

6.3 Consistency Results

We can now combine typical results from spectral perturbation theory with our previous
error analysis for C, to obtain consistency statements. Note that we do not aim to provide
a full analysis but rather illustrate how our results can be used to assess the error of kernel
PCA with weakly dependent data. In the independent case, stronger results have been
obtained for example by Koltchinskii and Lounici (2016, 2017), Milbradt and Wahl (2020)
and Reifl and Wahl (2020) by directly considering (14).

Remark 22 (Measurability of spectral properties) As for ezample shown by Dauxois
et al. (1982), the eigenvalues and corresponding eigenprojection operators of C' and C,, are
measurable and therefore random variables on (0, F,P).
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Theorem 23 (Spectral perturbation bounds) With the notation of Section 6.1, it
holds that

sup |Ai(C) = Ni(Cp)| < ||IC = Cy||  P-ae.
i>1

as well as
41|C = Gl

P-a.e.
9;(C)

155(C) = Pi(Ca)l| <

forall j € J.

See Gohberg and Krein (1969, Corollary 2.3) and Koltchinskii and Lounici (2016, Lemma 1)
for proofs of these statements.

The above bounds combined with the strong law of large numbers from Corollary 10 for
||C' — Cy|| yield consistency results of kernel PCA with weakly dependent data.

Corollary 24 (Spectral consistency & convergence rate) Let (X;)icz be stationary
and ergodic. Then kernel PCA is strongly consistent in the sense that we have spectral
convergence sup;>q |Ai(C) — Ai(Cy)| = 0 P-a.e. as well as ||Pj(Cy) — P;(C)|| = 0 P-a.e. for
all > 1. In both cases, convergence takes place with at least the same rate as the convergence
C,, — C in operator norm.

Remark 25 The preservation of convergence rates in Corollary 24 is particularly relevant
whenever the assumptions of Corollary 19 hold. In this situation, the spectral convergence
rate is given by Corollary 24. We note that these results are by no means optimal, as they
do not consider the full reconstruction error of a finite-rank truncation of (13), like for
example Reifs and Wahl (2020) in the independent case. Stronger results can be obtained by
accessing deeper perturbation results (see for example Yu et al., 2015; Jirak and Wahl, 2020)
and are not in the scope of this work.

Whenever the estimation error ||C' — Cy,|| can be bounded in probability (for example by
applying Theorem 21) corresponding statements hold for the eigenvalues and spectral
projectors as a result of Theorem 23.

Corollary 26 (Spectral concentration) Let P[||C,,(0) — C(0)]| > €] < f(e,n) for some
function f:Rso x N — R>g. Then we have

1. P [sup;>1 [Ai(C) — Mi(Crn)| > €] < fle,n) and
2. P[|P;(C) — P(Cy)ll = €] < f(24%e,n) for all j.

Remark 27 We note that in the case of weakly dependent data, the representation (13)
might not always be a desirable model since time-related information in the realization
of the process (p(Xi)ez) is discarded. As such, kernel PCA decomposes the RKHS only
with respect to the covariance of L(p(Xo)) instead of using autocovariance information
from L(o(Xy,), p(Xt,), 0(Xis), ... ). If one is interested in performing a decomposition that
captures the dynamic behavior instead of only the asymptotic spatial behavior, different
approaches are needed. In the context of functional data analysis, the concept of harmonic
PCA or dynamic PCA (Panaretos and Tavakoli, 2013; Hormann et al., 2015) yields optimal
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filter functions to reduce the dimensionality of a stationary stochastic process. We will
address alternative time-based decomposition approaches in Section §.

7. Conditional Mean Embedding of Stationary Time Series

We will now show how the previous theoretical results can be used to obtain consistency
results for a large family of nonparametric time series models. A wide variety of kernel
techniques for sequential data rely on the RKHS embedding of the conditional n-time step
transition probability

P[Xt+’l7 € A | Xt]a A S FEa n € I\I>07 (15)

which is modeled in terms of the conditional mean embedding (Song et al., 2009). In
what follows, we will briefly outline the different derivations of the conditional mean
embedding.

Applications of the conditional mean embedding in the context of sequential data include,
among others, state-space models and filtering (Song et al., 2009; Fukumizu et al., 2013;
Gebhardt et al., 2019), the embedding of transition probability models (Song et al., 2010;
Griinewilder et al., 2012b; Nishiyama et al., 2012; Sun et al., 2019), predictive state
representations (Boots et al., 2013), and reinforcement learning models (van Hoof et al.,
2015, 2017; Stafford and Shawe-Taylor, 2018; Gebhardt et al., 2018).

7.1 Operator-theoretic Conditional Mean Embedding

In order to express the transition probability (15) in terms of the RKHS 7, one is interested
in a conditional mean operator U,: s O dom(U,) — ¢ which satisfies

(f, Unp(@)) o = Elf (Xeg) | Xe = 2], [ €A (16)

Note that the action of U, on p(x) € S is interpreted as conditioning on the event {X; = x},
while evaluations of functions f € . with U, (z) under the inner product can be interpreted
as a conditional expectation operator in a weak sense. It is important to note that such an
operator U,, does not exist in general. By using properties of the kernel covariance operators,
it can be shown that U, := C(n)C(0)! satisfies (16) under strong technical assumptions
(see Klebanov et al., 2020 for details). We call U, the conditional mean operator and
Upg(z) the conditional mean embedding of the transition probability P[X;,, € A | X; = z].
Here, C(0)": range(C(0)) @ range(C(0))t — S is the Moore-Penrose pseudoinverse of the
operator C'(0) (see for example Engl et al., 1996). Note that U, is in general not globally
defined and bounded, i.e., range(C(0)) @ range(C(0))* # S, since range(C(0)) is generally
not closed. Song et al. (2009) propose the regularized conditional mean operator

U = C(n) (C(0) +7Ly) ™", (17)

with the empirical estimate U,(]%n) i= Cn (1) (Cn(0) + vI ). Here, I denotes the identity
operator on  and « > 0 is a regularization parameter. Note that U,gﬂ as well as Uqgv,n)

are always well-defined Hilbert—Schmidt operators on J#. Song et al. (2009), Fukumizu
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et al. (2013), and Fukumizu (2017) examine convergence of this estimate for the case of
independent data pairs from the joint distribution of X; and X;,, and show weak consistency
with different rates under various technical assumptions. We extend these results to the case
of dependent data.

Since the assumptions for this operator-theoretic framework and especially the analytical
existence of U, are hard to verify, different interpretations have emerged. In settings
where (16) does not have an analytical solution, the regularized estimate U7(7%n) minimizes
an empirical risk functional, which we will briefly outline below.

7.2 Least-squares Conditional Mean Embedding.

In cases when U, is not globally defined and bounded, it is natural to approximate a smooth

solution to (16) by minimizing the regularized risk functional E,S'Y): So(#) — R given by

EN(A) = sup E [(Blf(Xein) | X = (fs Ap(X)) )?] + 7 1Al Gy (18)
11l =1
where v > 0 is a regularization parameter. As first shown by Griinewalder et al. (2012a)

and recently investigated by Park and Muandet (2020) and Mollenhauer and Koltai (2020),
the risk &(]v)(A) can be bounded from above by the surrogate risk

R{V(A) = E[llo(Xern) — Ap(X) %]+ 7 [ Al5, ) (19)

which admits the minimizer U7(,7) (Mollenhauer and Koltai, 2020). The corresponding
empirical surrogate risk

n 1 -
R(A) 1= = 3 [0(Xe) — Ap(Xo) 3 + 7 1413, r (20)
t=1

(v,n)

attains its minimum at U,”". We do not aim to cover all the mathematical intricacies of
the CME and its connection to least squares regression here and refer the reader to Park
and Muandet (2020) and Li et al. (2022) for more details.

7.3 Kernel Sum Rule

In the well-specified operator-theoretic setting of (16), Fukumizu et al. (2013, Theorem 2)
show that the conditional mean operator U, satisfies the more general so-called kernel sum
rule, which is widely used in nonparametric Bayesian models, especially time series filtering.
That is, for a prior measure z on (E, Fg) satisfying the integrability [ [|¢(Z)]] ,» d2(Z) < oo
with a kernel mean embedding y, = [ ¢(Z)dz(Z) such that p, € dom(C(0)"), we have

<ﬂ%mw=4ﬁW&mﬂ&=ﬂ®@,f€%- (21)

Note that the conditional mean property (16) is in fact a special case of the kernel sum rule
when z is the Dirac measure at z, i.e., uy = ¢(x). In applications, the embedded prior p,
is usually estimated empirically by sampling from z. When [, is any kind of consistent
estimate of u,, we obtain the plug-in estimator Uépy’n)ﬁz for Uy p..
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7.4 Consistency Results

We now outline how our previous results allow to formulate consistency results for the
kernel sum rule for dependent data. Prior consistency results for the operator-based setting
of the conditional mean embedding and the kernel sum rule are limited to independent
data pairs. Note again that a drawback of our approach is the typical assumption that the
analytic expression Upu, (and in particular Uy,p(x)) exists in 2 (see Klebanov et al., 2020),
while a focus on the minimization properties allows to relax this assumption and consider
convergence to a best approximation under the corresponding risk. We start by giving a
generic error decomposition for the kernel sum rule in a form that admits the immediate
application of our previous results.

Theorem 28 (Kernel sum rule error) Let z be a prior finite measure on (E, Fg) and
a kernel k: E x E — R with sup,cp k(z,2) = ¢ < 0o such that the kernel sum rule (21)
applies for a fized time lagn € Nsg (in particular, p, € dom(C(0)1)). Then the empirical

estimate U}ﬂ’n)ﬁz admits the total error bound

HUr(]%n)ﬁz - Un/sz

w S €s (HZ) ﬁZ7 n, ’Y) + Er (:U’Zﬂ fY) P_a"e' (22)

with the stochastic estimation error

R ¢ 3/2 /2
es(bz, Uz, My Y) 1= § 722 — ezl 5 + 7 1Cn(0) = C(O)]| + T [Cn(n) —C(n)

and the deterministic regularization error

er(iz7) i= | (CO) +9Z0) s = C(0) s

The proof for Theorem 28 can be found in Appendix A. In the context of inverse problems,
the estimation error e is sometimes also called the sample error, while the regularization
error is sometimes also called the approximation error.

Remark 29 (Kernel sum rule error) The error decomposition (22) leads to the follow-
ing insights:

(i) The deterministic regularization error e,(uz,7y) captures the analytic nature of the
inverse problem described by C(0)u = u, for u € S€. As such, it is not affected by any
estimation. Note that as vy — 0, it holds that e, (u.,7) — 0 for every u, € dom(C(0)1).
For details, we refer the reader to Engl et al. (1996). In practice, reqularization is
needed since for estimated right-hand sides [i,, the condition fi, € dom(C(0)") is in
general not true—even if pu, € dom(C(0)1). The convergence rate of e,(pi-,7y) depends
on the eigendecomposition of C(0) and can be assessed under additional assumptions
about the decay rate of the eigenvalues. However, in general the convergence of the
reqularization error can be arbitrarily slow without additional assumptions, see Schock
(1984).

(i) For convergence of the total error (22), we need the two simultaneous conditions
es(fzy iz, n,7y) — 0 and e, (puy,y) = 0 as n — oo, v — 0 and [, — p,. The typical

21



MOLLENHAUER, KLUS, SCHUTTE AND KOLTAI

trade-off between regularization error and estimation error is reflected in this fact.
Our previous convergence results for the individual estimation errors of Cp(0) and
Crn(n) allow to bound es(pz, fir,n,7y) and derive regularization schemes vy = y(n, iz, i)
depending on the trajectory length n and the quality of the prior estimate [i,. Informally
speaking, the individual estimation errors must tend to 0 faster than the regularization
term, so v should not be allowed to converge “too fast” with respect to the rate of
increasing sample size n — this is the typical setting in the theory of inverse problems
and regqularization.

By incorporating additional knowledge about the convergence behavior of C,,(0) and C,,(n)
from our previous results, Theorem 28 yields convergence rates of the estimation error eg as
well as admissible regularization schemes. We give an example below. For simplicity, we
assume that C),(0) and Cy(n) are estimated independently, which would of course require
two realizations of length n of (X;):cz. To illustrate the idea, we require ji, to converge with
a P-a.e. rate of 1/y/n, which we tie to the number of samples available for the estimation of
Cy(0) and C,(n) in order to avoid additional symbols for different samples. Our general
approach presented here still applies when the convergence rate of fi, is slower.

Example 2 (Kernel sum rule consistency) Let C,,(0) and Cy,(n) be estimated indepen-
dently from samples X1, ..., X,,. Assume that we have the prior convergence rate

I — Bzl = O(/v/n) Prace.

Then under the conditions of Theorem 18, we have

es(fhzy iz, nyy)= O (2L(L(n))> P-a.e.

In particular, for every reqularization scheme v = ~vy(n) such that

2L(L(n))
vy (n)?

for n — oo, we have the overall convergence

v(n) = 0 as well as —0 P-ae.

U,(]'Y(”)’”)ﬁz — Uyp, P-ae.

in the norm of 7. Note that this follows since we have already covered the convergence of
the regularization error e,(uz,y(n)) — 0 in Remark 25(i).

Remark 30 (Counterfactual mean embedding) The results highlighted in this section
require the fairly restrictive assumptions of the kernel sum rule as originally formulated by
Fukumizu et al. (2013). As Muandet et al. (2021) have recently shown, the kernel sum rule
estimator can be interpreted in the context of the so-called counterfactual mean embedding,
where a convergence analysis can be based on the convergence of empirical kernel covariance
operators under significantly weaker assumptions. Our results from the previous sections can
be readily applied to the convergence analysis presented by Muandet et al. (2021, Section 4),
leading to non-i.i.d. results in the framework of causal inference.
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8. Nonparametric Estimation of Markov Transition Operators

As the last application of our theory, we will briefly show how the risk functional (18) yields
a nonparametric model for the estimation of Markov transition operators. Moreover, we
elaborate on the recent discovery that this model is actually the theoretical foundation of a
well-known family of several data-driven methods for the analysis of dynamical systems (Klus
et al., 2020; Mollenhauer and Koltai, 2020). We only highlight immediate consequences of this
approach and emphasize that several theoretical questions need to be answered separately
in a vector-valued statistical learning context (Park and Muandet, 2020; Mollenhauer and
Koltai, 2020). The aim of this section is to draw attention to the fact that statistical tools like
strong mixing coefficients can be used to show consistency for a range of numerical methods
used in other scientific disciplines. For the mathematical background of discrete-time Markov
processes and Markov transition operators, we refer the reader to Douc et al. (2018).

In what follows, we assume that (X;);cz is a stationary Markov process, i.e., it holds
E[f(Xs) | Flo] = E[f(X) [ o(X0)]

for all bounded measurable functions f: E — R and times s > t. For a fixed time lag
n € Ny, the transition operator, (backward) transfer operator™ or (stochastic) Koopman
operator K, is defined by the relation

(Ko f)(@) = E[f (Xt4q) | Xi = 2] (23)

for all functions f : £ — R in some appropriately chosen subspace F' of measurable functions.
It describes the propagation of observable functions in F' by the time step 1 under the
dynamics given by (X¢)iez.

The Markov transition operator is a fundamentally important tool for the analysis of various
properties of Markov processes, Markov chain Monte Carlo methods, and dynamical systems.
For instance, it is known that the spectrum of KC;, and the associated eigenfunctions determine
a crucial set of related properties of the underlying dynamics such as ergodicity, speed of
convergence, the decomposition of the state space into almost invariant components (so-called
metastable states), several contraction and concentration results and many more (see Meyn
and Tweedie 2009; Rudolf 2012; Bovier and Den Hollander 2016; Douc et al. 2018 and the
literature reviews therein).

By simply switching to the adjoint of A in the expression for &gﬂ (A) defined in (18) and
using the reproducing property of 7, we have

ET(A) = sup E [(BIf(Xean) | Xe] = (A*F)(X0)?] + 7 A8, r) -
171 =1

As a result, we can immediately interpret the adjoint of the conditional mean operator

U* = (C0) +v1r) ™' Cn)*

*The name backward transfer operator is classically used in the context of continuous-time processes,
where it is used to describe the solution to the backwards Kolmogorov equation. In the theory of dynamical
systems, the term Koopman operator is commonly used.
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as a smooth approximation of the transition operator K,, on the class of RKHS functions
F = 5 with empirical estimate
-1
U§™* = (Cal0) + L) ™ Calm)”
Note that all of our consistency results for kernel autocovariance operators and the conditional
mean embedding transfer directly to this setting, as operator norm error bounds for the

estimate of Uéw are also valid for its adjoint. The approximation-theoretic details of this
approach are investigated by Mollenhauer and Koltai (2020).

The idea of approximating the operator K, via U,(ﬂ)* can be connected to data-driven
spectral analysis techniques which are commonly used in fluid dynamics, molecular dynamics,
and atmospheric sciences. One of the most widely used spectral analysis and methods
is the so-called extended dynamic mode decomposition (EDMD,Williams et al., 2015a).
EDMD computes Galerkin approximation of the eigendecomposition of K, based on a
finite set of basis functions in F. When F' is chosen to be the RKHS 47, one obtains
kernel EDMD (Williams et al., 2015b) as a special nonparametric version of EDMD. It
was shown by Klus et al. (2020) that regularized kernel EDMD actually computes the
eigendecomposition of Uy’n)*. In contrast to previous results that rely on ergodicity of
the underlying system (Klus et al., 2016; Korda and Mezié¢, 2018), our results may lead
to a refined convergence analysis by using mixing properties of the underlying system. To
the best of our knowledge, prior consistency results for EDMD only cover convergence in
strong operator topology (i.e., pointwise convergence) for parametric models, i.e. on fixed
finite-dimensional subspaces spanned by a dictionary of basis functions. Furthermore, they
mostly aim towards deterministic dynamical systems (Korda and Mezié¢, 2018). However,
we note that the operator U,(ﬂ) * is in general not self-adjoint and a dedicated analysis of
spectral properties and convergence is subject to future work.

Additionally, it is known that the operator K, and its adjoint, the so-called Perron—Frobenius
operator, can be connected to the solution of the so-called blind source separation prob-
lem (Klus et al., 2018b, 2020). In fact, eigenfunctions of compositions of empirical auto-
covariance operators (and their pseudoinverses) are used as projection coordinates in a
kernel-based variant of independent component analysis (Harmeling et al., 2003; Schwantes
and Pande, 2015). As such, consistency results formulated by us may be used to prove
convergence for these approaches.

9. Conclusion

In this paper, we provided a mathematically rigorous analysis of kernel autocovariance
operators and established classical limit theorems as well as nonasymptotic error bounds
under classical ergodic and mixing assumptions. The results were mostly derived from
theoretical work on discrete-time processes in Hilbert spaces and are presented in a form
such that they can be easily applied in the context of RKHS-based time series models
and frequency domain analysis. We highlighted high-level applications for kernel PCA,
the conditional mean embedding, and the nonparametric estimation of Markov transition
operators. The theory of vector-valued statistical learning from dependent data may be
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connected to our considerations in future work. In the context of learning Markov transition
operators, the kernel autocovariance operator may lead to an inverse problem that describes
the analytical minimizer of an autoregression risk in an operator space.
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Appendix A. Proofs

We report the proofs which were omitted in the main text.

A.1 Proof of Theorem 18

We apply Theorem 2 of Merlevede (2008) to the process (§);cz defined by (3) for the fixed
time lag n € N.  This results verifies the existence of a compact set K, with the desired
properties such that both (8) and (9) hold. We note that Merlevede (2008, Remark 3)
ensures that our assumptions allow the application of this result. It now remains to show
the norm bound (10) for K. The set K, is the unit ball of the Hilbert space H,, C So(5),

which is given by the completion of the range of Tnl /2 (where T, is given by (7) and T,} /2
denotes its operator square root) with respect to the inner product defined by

(AT, W B ABeSOn.

Hy,

The space H,, is also called Cameron-Martin space or abstract Wiener space in the context
of Gaussian measures (for details, we refer the reader to Bogachev, 1998, Chapter 2). It is
noteworthy that H,, itself is sometimes also called reproducing kernel Hilbert space (associated
with the so-called covariance kernel defined by T;,, see Merlevede, 2008, Theorem 2), which
may seem misleading in our context at first glance. In particular, note that the space So()
consists of Hilbert—Schmidt operators and not of real-valued functions as in our definition
of an RKHS in this paper. The interpretation of Hj, as a reproducing kernel Hilbert space
requires an identification of Hj, with its dual space as real-valued functions contained in the
space L?(N(0,7)) as described by Bogachev (1998, Remark 2.2.3). The final connection
between this setting and our definition of an RKHS is made clear by Mercer’s theorem and
the related theory of integral operators (Steinwart and Christmann, 2008, Chapter 4.5). We
will not cover all the mathematical details here and refer the reader to more comprehensive
treatments below.

For a technical construction of H,, and the limit set K, in the law of the iterated logarithm
in Banach spaces, we refer the reader to Kuelbs (1976, Section 2) as well as Goodman et al.
(1981, Section 2). Note that these references elaborate on the i.i.d. case. However, for the
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construction of H,, and K, only an abstract limiting probability measure is needed, which is
given by the Gaussian measure obtained from Theorem 17 and its covariance operator T},
defined by (7), just as shown in the proof of Merlevede (2008, Theorem 2). We can therefore
analyze properties of K, by considering the Cameron—Martin space of the centered Gaussian
measure induced by T}, which is examined in the previously mentioned literature. The
identity (24) can be verified by translating the abstract Banach space definition of (Kuelbs,
1976, Equation 2.3) to our scenario of the separable Hilbert space Sa(#) as, for example,
described by Bogachev (1998, Remark 2.3.3).

From (24), we obtain
|,y < T2 14l . A € B (25)

Since K, = {A € H,, | HAHH < 1}, a bound for HT1/2
rate of (&)¢ez is sufficient in order to provide a bound for elements of K in the norm of
So(H).

We now give a norm bound for T;; = E[§y ® &o] + D721 E[§o ® &] + 322 E[& @ &]. We
clearly have

= ||T,]H1/2 depending on the mixing

IE[éo @ &l < 4¢?,
since & is almost surely bounded by 2¢ by (5).

Let a(n) be the mixing coefficients of (X;)iez. We now note that by (4), we have
a((&)iez,n) < a(n —n) for all n € N. This allows to give a bound for the two remaining
summands of T":

ZE[& ® &ol|| < Z IE[&: @ &
t=1 t=1
{ ) B § ) A
; Bl B) (6, A)
1Bl gy =1
Z HAII ) 4a(o (&), (€)1 Bl ooy 10 Al oo ()
t=1 52(%)_
”BHS2(%)—1

16 C*a(t —n) = 16 ¢* M,

i

~~
Il

1

where we use Ibragimov’s covariance inequality for strongly mixing and bounded random
variables (Ibragimov, 1962, Lemma 1.2) in the third step (note that (£;, B) and (£y, A) are
centered real-valued random variables which are P-a.e. bounded by 2¢ because of Equation 5).
By symmetry, we obtain the same bound for ||} 77, E[{y ® &]|| and we end up with the total
norm bound

1T, < 4c +32° M,

which proves the claim in combination with (25). |
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A.2 Proof of Theorem 28

Note that since sup,c k(z,2) = ¢ < 0o, we have the P-a.e. bounds |||, < c'/? as well
as [|[C(n)] < ¢ for all n € N. Additionally, the regularized inverse can be bounded as
H (C(0) + L)t H < 7, which is easy to see from the corresponding spectral decomposition.

These bounds hold analogously for the empirical versions of all above objects! All following
bounds below will be understood in the P-a.e. sense for the remainder of this proof.

We now successively insert appropriate zero-sum terms into the total error and apply the
triangle inequality multiple times to obtain the worst-case estimation error. We have the
overall decomposition

i

HUWnM__Uhn)Z

jﬁ”_'_ HUTSV’n),U/z — Upllz #

(26)

(1) (1

For these two error components, we get the individual bounds

(1) < [Cam)]| [|(Cn(0) + vL) (e — 12)]| . < ; 17z = pally
as well as
1) < || Ca(m)(Cn(0) + YL ) 11z = Cr(m)(C(0) + vLe) " 12|,
(%)
+ | Culm (€ (0) + L) e = C)C(O)

(x%)
For (x), we give a bound by

%) < NCa)[(Ca(0) + vLe) ™ = (C(0) + vLoe) M| 12zl e

3/2
< % |Cr(0) = C(O)],

where we use the identity A=! — B~! = A=}(B — A)B~! for invertible operators A and B.
To obtain a bound for (%), we again insert a zero-sum term:

36) < [|Ca(m)(C(0) +9Zoe) 1z = C(C(0) +7Zo) 1z,
+ HC 0(0) + L) e — C()C(0) s !yf

< 1ICalm) = COI[(C0) +7Toe) ™| =1l e
+llcG H H +fyz%>-1uz —cO't
o1/2

< G = COI +¢ [ (C10) +Toe) s = CO) |,

The sum of the bounds (I), (%), and (xx) yields the total bound as given in (22) after
rearranging. |

"For fi., estimators of the form fi. := Y, Bip(x:) with coefficients 3, |8;| = 1 naturally satisfy the
bound.
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