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Abstract

In this paper, we provide non-asymptotic upper bounds on the error of sampling from a tar-
get density over Rp using three schemes of discretized Langevin diffusions. The first scheme
is the Langevin Monte Carlo (LMC) algorithm, the Euler discretization of the Langevin
diffusion. The second and the third schemes are, respectively, the kinetic Langevin Monte
Carlo (KLMC) for differentiable potentials and the kinetic Langevin Monte Carlo for twice-
differentiable potentials (KLMC2). The main focus is on the target densities that are
smooth and log-concave on Rp, but not necessarily strongly log-concave. Bounds on the
computational complexity are obtained under two types of smoothness assumption: the
potential has a Lipschitz-continuous gradient and the potential has a Lipschitz-continuous
Hessian matrix. The error of sampling is measured by Wasserstein-q distances. We advo-
cate for the use of a new dimension-adapted scaling in the definition of the computational
complexity, when Wasserstein-q distances are considered. The obtained results show that
the number of iterations to achieve a scaled-error smaller than a prescribed value depends
only polynomially in the dimension.
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1. Introduction

The two most popular techniques for defining estimators or predictors in statistics and ma-
chine learning are the M estimation, also known as empirical risk minimization, and the
Bayesian method (leading to posterior mean, median, etc.). In practice, it is necessary to
devise a numerical method for computing an approximation of these estimators. Optimiza-
tion algorithms are used for approximating M -estimators, while Monte Carlo algorithms
are employed for approximating Bayesian estimators. In statistical learning theory, over
past decades, a concentrated effort was made for getting non asymptotic guarantees on the
error of an optimization algorithm. For smooth optimization, sharp results were obtained
in the strongly convex and convex cases (see Bubeck, 2015), the case of non-convex smooth
optimization being much more delicate (see Jain and Kar, 2017). As for Monte Carlo algo-
rithms, past three years or so witnessed considerable progress on theory of sampling from
strongly log-concave densities. Some results for (non strongly) log-concave densities were
obtained as well. However, to the best of our knowledge, there is no paper providing a sys-
tematic account on the error bounds for sampling from (non strongly) log-concave densities
over unbounded domains. The main goal of this paper is to fill this gap.

A good starting point for accomplishing the aforementioned task is perhaps a result from
(Durmus et al., 2019) for the sampling error measured by the Kullback-Leibler divergence.
The result is established for the Langevin Monte Carlo (LMC) algorithm, which is the
“sampling analogue” of the gradient descent. Let π : Rp → [0,+∞) be a probability
density function (with respect to Lebesgue’s measure) given for a potential function f , by

π(θ) =
e−f(θ)∫

Rp e
−f(v)dv

.

The goal of sampling is to generate a random vector in Rp having a distribution close to
the target distribution defined by π. In the sequel, we make repeated use of the moments
µk(π) = Eϑ∼π[‖ϑ‖k2]1/k, where ‖v‖q = (

∑
j |vj |q)1/q is the usual `q-norm for any q ≥ 1.

When there is no risk of confusion, we write µk instead of µk(π).
To define the LMC algorithm, we need a sequence of positive parameters h = {hk}k∈N,

referred to as the step-sizes and an initial point ϑ0,h ∈ Rp that may be deterministic or
random. The successive iterations of the LMC algorithm are given by the update rule

ϑk+1,h = ϑk,h − hk+1∇f(ϑk,h) +
√

2hk+1 ξk+1; k = 0, 1, 2, . . . (1)

where ξ1, . . . , ξk, . . . is a sequence of independent, and independent of ϑ0,h, centered Gaus-
sian vectors with identity covariance matrices. Let νK denote the distribution of the K-
th iterate of the LMC algorithm, assuming that all the step-sizes are equal (hk = h for
every k ∈ N) and the initial point is ϑ0,h = 0p. We will also define the distribution

ν̄K = (1/K)
∑K

k=1 νk, obtained by choosing uniformly at random one of the elements of the
sequence {ϑ1,h, . . . ,ϑK,h}. It is proved in (Durmus et al., 2019, Cor. 7) that if the gradi-
ent ∇f is Lipschitz continuous with the Lipschitz constant M , then for every K ∈ N, the
Kullback-Leibler divergence between ν̄K and π satisfies

DKL(ν̄K‖π) ≤ µ2
2(π)

2Kh
+Mph, DKL(ν̄opt

K ‖π) ≤
√

2Mp

K
µ2(π).
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Note that the second inequality above is derived from the first one by using the step-size
hopt = µ2(π)/

√
2KMp obtained by minimizing the right hand side of the first inequality.

Therefore, if we assume that the second-order moment µ2 of π satisfies the condition Mµ2
2 ≤

κpβ, for some dimension-free positive constants β and κ, we get

DKL(ν̄opt
K ‖π) ≤

√
2κp1+β

K
.

A natural measure of complexity of the LMC with averaging is, for every ε > 0, the number
of gradient evaluations that is sufficient for getting a sampling error bounded from above
by ε. From the last display, taking into account the Pinsker inequality, dTV(ν̄K , π) ≤√
DKL(ν̄K , π)/2, and the fact that each iterate of the LMC requires one evaluation of

the gradient of f , we obtain the following result. The number of gradient evaluations
KLMCa,TV(p, ε) sufficient for the total-variation-error of the LMC with averaging (hereafter,
LMCa) to be smaller than ε is

KLMCa,TV(p, ε) =
κp1+β

2ε4
.

The main goal of the present work is to provide this type of bounds on the complexity
of various versions of the Langevin algorithm under different measures of the quality of
sampling. The most important feature that we wish to uncover is the explicit dependence of
the complexity K(ε) on the dimension p, the inverse-target-precision 1/ε and the condition
number κ. We will focus only on those measures of quality of sampling that can be directly
used for evaluating the quality of approximating expectations.

The three main contributions of this paper are:

• Bounds on the sampling error measured in the Wasserstein Wq-distance (for q ∈ [1, 2])
in two settings: (a) convex and gradient-Lipschitz potential and (b) convex, gradient-
Lipschitz and Hessian-Lipschitz potential. Tight bounds are established for the strong-
convexified versions of three algorithms: Langevin Monte Carlo, kinetic Langevin
Monte Carlo and kinetic Langevin Monte Carlo for twice-differentiable potentials.

• Bounds on the moments of log-concave distributions, especially in the settings where
the potential function f is strongly convex inside a ball and (weakly) convex every-
where else, or strongly convex outside a ball and (weakly) convex everywhere else.
These bounds are low-degree polynomials in dimension and in the other relevant pa-
rameters.

• Upper bounds on the mixing time of the aforementioned three versions of the Langevin
algorithm, obtained by combining the Wq-error bounds and moment evaluations.

The remainder of the paper is structured as follows. We begin in Section 2 by intro-
ducing the sampling methods based on the Langevin diffusion and by formulating the main
assumptions that are used throughout this work. Section 3 and Section 4 contain, respec-
tively, a discussion on the choice of the complexity measure and an overview of our main
contributions. Relation to prior work is discussed in Section 5. Section 6 and Section 7 con-
tain formal statements and proofs of the main error- and complexity-bounds for the vanilla
and the kinetic Langevin, respectively. Upper bounds for the moments of two classes of
log-concave distributions are presented in Section 8. We conclude with a discussion in
Section 9.
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2. Further Precisions on the Analyzed Methods

Since our main motivation for considering the sampling problem comes from applications
in statistics and machine learning, we will focus on the Monge-Kantorovich-Wasserstein
distances Wq defined by

Wq(ν, ν
′) = inf

{
E[‖ϑ− ϑ′‖q2]1/q : ϑ ∼ ν and ϑ′ ∼ ν ′

}
, q ≥ 1.

The infimum above is over all the couplings between ν and ν ′. In view of the Hölder
inequality, the mapping q 7→Wq(ν, ν

′) is increasing for every pair (ν, ν ′).
Our main contributions are upper bounds on quantities of the form Wq(νK , π)where π

is a log-concave target distribution and νK is the distribution of the Kth iterate of various
discretization schemes of Langevin diffusions. More precisely, we consider two types of
Langevin processes: the kinetic Langevin diffusion and the vanilla Langevin diffusion. The
latter is the highly overdamped version of the former, see (Nelson, 1967). The Langevin
diffusion, having π as invariant distribution, is defined as a solution1 to the stochastic
differential equation

dLLD
t = −∇f(LLD

t ) dt+
√

2 dW t, t ≥ 0, (2)

where W is a p-dimensional standard Brownian motion independent of the initial value L0.
An illustration of this process is given in Figure 1. The LMC algorithm presented in (1) is
merely the Euler-Maruyama discretization of the process L. The kinetic Langevin diffusion
{LKLD

t : t ≥ 0}, also known as the second-order Langevin process, is defined by

d

[
V t

LKLD
t

]
=

[
−(γV t +∇f(LKLD

t ))
V t

]
dt+

√
2γ

[
Ip

0p×p

]
dW t, t ≥ 0, (3)

where γ > 0 is the friction coefficient. The process V t is often called the velocity pro-
cess since the second row in (3) implies that V t is the time derivative of LKLD

t . The
continuous-time Markov process (LKLD

t ,V t) is positive recurrent and has a unique invari-
ant distribution, which has the following density with respect to the Lebesgue measure on
R2p:

p∗(θ,v) ∝ exp
{
− f(θ)− 1

2
‖v‖22

}
, θ ∈ Rp, v ∈ Rp.

If (L,V ) is a pair of random vectors drawn from the joint density p∗, then L and V are
independent, L is distributed according to the target π, whereas V is a standard Gaussian
vector. Therefore, at equilibrium, the random variable LKLD

t has the target distribution π.
Time-discretized versions of Langevin diffusion processes (2) and (3) are used for (ap-

proximately) sampling from π. In order to guarantee that the discretization error is not too
large, as well as that the process {Lt} converges fast enough to its invariant distribution,
we need to impose some assumptions on f . In the present work, we will assume that either
Conditions 1, 2 or Conditions 1, 2, 3 presented below are satisfied.

1. Under the conditions imposed on f , namely the convexity and the Lipschitzness of the gradient, all the
considered SDEs have unique strong solutions. Furthermore, all conditions (see e.g. (Pavliotis, 2014))
ensuring that π and p∗ are invariant densities of, respectively, processes (2) and (3) are fulfilled.

4



Langevin Algorithms for Log-concave Targets

Figure 1: Illustration of Langevin dynamics. The blue lines represent different paths of a
Langevin process. We see that the histogram of the state at time t = 30 is close
to the target density (the dark blue line).

Condition 1 The function f is continuously differentiable on Rp and its gradient ∇f is
M -Lipschitz for some M > 0: ‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2 for all θ,θ′ ∈ Rp.

From now on, we will always assume that the Langevin (vanilla or kinetic) diffusion
under consideration has the initial point L0 = 0. Some of the conditions presented below
implicitly require that this initialization is not too far away from the “center” of the target
distribution π. In many statistical problems where π is the Bayesian posterior, one can come
close to these assumptions by shifting the distribution using a simple initial estimator.

Condition 2 The function f is convex on Rp. Furthermore, for some positive constants
D and β, we have µ2

2(π) = Eϑ∼π[‖ϑ‖22] ≤ Dpβ.

Under Condition 2, the centered second moment of π scales polynomially with the
dimension with power β > 0, while the flatness of the distribution is controlled by the
parameter D > 0. Remarkably, Condition 2 implies that all the moments {µq(π)}q≥1 scale
polynomially with p, provided that Eϑ∼π[‖ϑ‖22] also does. This fact is a consequence of
Borell’s lemma (Giannopoulos et al., 2014, Theorem 2.4.6 ), stating that for any q ≥ 1,
there is a numerical constant Bq that depends only on q such that µq(π) ≤ Bqµ2(π). An
attempt to provide optimized constants in this inequality is stated in Lemma 5.

In the sequel, we show that the smoothness and the flatness of π have a combined impact
on the sampling error considered. It turns out that the important parameter with respect
to the hardness of the sampling problem is the product

κ := MD.

For m-strongly convex functions f , Condition 2 is satisfied with D = 1/m and β = 1,
according to Brascamp-Lieb inequality (Brascamp and Lieb, 1976). In this case, the pa-
rameter κ = M/m is referred to as the condition number. We will show that Condition 2 is
also satisfied for functions f that are convex everywhere and strongly convex inside a ball,

5



Dalalyan, Karagulyan and Riou-Durand

as well as for functions f that are convex everywhere and strongly convex only outside a
ball.

In the next assumption, we use notation ‖M‖ for the spectral norm (the largest singular
value) of a matrix M.

Condition 3 The function f is twice differentiable in Rp with a M2-Lipschitz Hessian ∇2f
for some M2 > 0: ‖∇2f(θ)−∇2f(θ′)‖ ≤M2‖θ − θ′‖2 for all θ,θ′ ∈ Rp.

Condition 3 ensures further smoothness of the potential f . When it holds, the Lipschitz
continuity of the Hessian and the flatness of π also have a combined impact on the sampling
error. A second important parameter with respect to the hardness of the sampling problem
in such a case is the product

κ2 := M
2/3
2 D.

The case of an m-strongly convex function f has been studied in several recent papers.
As a matter of fact, global strong convexity implies exponentially fast mixing of processes
(2) and (3), with dimension-free rates e−mt and e−mt/(M+m)1/2 , respectively. When only
(weak) convexity is assumed, such results do not hold in general.

The strategy we adopt here relies on a convexification trick, which consists in sampling
from a distribution that is provably close to the target, but has the advantage of being
strongly log-concave. More precisely, for some small positive α, the surrogate potential is
defined by fα(θ) := f(θ) + α‖θ‖22/2. Therefore, the corresponding surrogate distribution
has the density

πα(θ) :=
e−fα(θ)∫

Rp e
−fα(v)dv

.

We stress the fact that the quadratic penalty α‖θ‖22/2 added to the potential f is centered
at the origin. This is closely related to the fact that the diffusion is assumed to have the
origin as initial point, and also to the fact that the origin is assumed here to be a good
guess of the “center” of π. The parameter α, together with the step-size h, is considered
as a tuning parameter of the algorithms to be calibrated. Large values of α will result in
fast convergence to πα but a poor approximation of π by πα. On the other hand, smaller
values of α will lead to a small approximation error but also slow convergence. The next
result quantifies the approximation of π by πα, for different distances.

Proposition 1 For any α ≥ 0 and q ∈ [1,+∞), there is a numerical constant Cq depending
only on q such that

dTV(π, πα) ≤ αµ2
2(π), W q

q (π, πα) ≤ Cqαµ2(π)q+2.

Here the constant Cq can be bounded for every q. In particular, C1 ≤ 11 and C2 ≤ 111.

This result allows us to control the bias induced by replacing the target distribution by
the surrogate one and paves the way for choosing the “optimal” α by minimizing an upper
bound on the sampling error. We draw the attention of the reader to the fact that, for
Wq distance, the dependence on α of the upper bound is α1/q, which slows down when q
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increases (recall that α is a small parameter). This explains the deterioration with increasing
q of the complexity bounds presented in forthcoming sections. Let us define the constant

Cq = inf{C : W q
q (π, πα) ≤ Cαµ2(π)q+2, ∀π log-concave}, (4)

which will repeatedly appear in the statements of the theorems.

3. How to Measure the Complexity of a Sampling Scheme?

We have already introduced the notation KAlg,Crit(p, ε), the number of iterations that guar-
antee that algorithm Alg has an error—measured by criterion Crit—smaller than ε. If
we choose a criterion, this quantity can be used to compare two methods, the iterates
of which have comparable computational complexity. For example, LMC and KLMC
being discretized versions of the Langevin process (2) and the kinetic Langevin process
(3), respectively, are such that one iteration requires one evaluation of ∇f and genera-
tion of one realization of a Gaussian vector of dimension p or 2p. Thus, the iterations
are of comparable computational complexity and, therefore, it is natural to prefer LMC if
2KLMC,Crit(p, ε) ≤ KKLMC,Crit(p, ε) and to prefer KLMC if the opposite inequality is true.

A delicate question that has not really been discussed in literature is a notion of com-
plexity that allows to compare the quality of a given sampling method for two different
criteria. To be more precise, assume that we are interested in the LMC algorithm and
wish to figure out whether it is “more difficult” to perform approximate sampling for the
TV-distance or for the Wasserstein distance. It is a well-known fact that the TV-distance
induces the uniform strong convergence of measures whereas the Wasserstein distances in-
duce the weak convergence. Therefore, at least intuitively, approximate sampling for the
TV-distance should be harder than approximate sampling for the Wasserstein distance2.
However, under Condition 1 and m-strong convexity of f , the available results for the LMC
provide the same order of magnitude, p/ε2, both for KLMC,TV (Dalalyan, 2017b; Durmus
and Moulines, 2019) and KLMC,W2 (Durmus and Moulines, 2019; Dalalyan and Tsybakov,
2009). The point we want to put forward is that the origin of this discrepancy between the
intuitions and mathematical results is the inappropriate scaling of the target accuracy in
the definition of KLMC,W2 .

To further justify the importance of choosing the right scaling of the target accuracy, let
us make the following observation. The total-variation distance, on the one hand, serves to
approximate probabilities, which are adimensional and scale-free quantities belonging to the
interval [0, 1]. The Wasserstein distances, on the other hand, are useful for approximating
moments3, the latter depending both on the dimension and on the scale. For this reason, we
suggest the following definition of the analogue of K in the case of Wasserstein distances:

KAlg,Wq(p, ε) = min{k ∈ N : Wq(ν
Alg
k , π) ≤ εµ2(π), ∀π ∈P}, (5)

where Alg is a Markov Chain Monte Carlo or another method of sampling, k is generally the
number of calls to the oracle and P is a class of target distributions. Examples of oracle

2. We underline here that the aforementioned hardness argument is based only on the topological consid-
eration, since it is not possible, in general, to upper bound the Wasserstein distance Wq, for q ≥ 1 by
the TV-distance or a function of it.

3. Recall that by the triangle inequality, one has |µq(ν)− µq(π)| ≤Wq(ν, π).
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call are the evaluation of the gradient of the potential at a given point or the computation
of the product of the Hessian of f at a given point and a given vector. Note also that µ2(π)
is the W2 distance between the Dirac mass at the origin and the target distribution.

Definition (5), as opposed to those used in prior work, has the advantage of being
scale invariant and reflecting the fact that we deal with objects that might be large if the
dimension is large. Note that the idea of scaling the error in order to make the complexity
measure scale-invariant has been recently used in (Tat Lee et al., 2018; Baker et al., 2019)
as well. Indeed, in the context of m-strongly log-concave distributions, Tat Lee et al. (2018)

propose to find the smallest k such that W2(νAlgk , π) ≤ ε/
√
m. This is close to our proposal,

since in the case of m-strongly log-concave distributions, it follows from the Brascamp-Lieb
inequality that supπ µ2(π) =

√
p/m (the sup is attained for Gaussian distributions).

4. Overview of Main Contributions

In this work, we analyze three methods, LMC, KLMC (Cheng et al., 2018b) and KLMC2
(Dalalyan and Riou-Durand, 2020), applied to the strong-convexified potential fα(θ) =
f(θ) + (α/2)‖θ‖22 in order to cope with the lack of strong convexity. We briefly recall these
algorithms and present a summary of the main contributions of this work.

4.1 Considered Markov Chain Monte-Carlo Methods

We first recall the definition of the Langevin Monte Carlo algorithms. For the LMC algo-
rithm introduced in (1), we will only use the constant step-size form, the update rule of
which is given by

ϑk+1 = (1− αh)ϑk − h∇f(ϑk) +
√

2h ξk+1; k = 0, 1, 2, . . . (α-LMC)

where ξ1, . . . , ξk, . . . is a sequence of mutually independent, independent of ϑ0, centered
Gaussian vectors with covariance matrices equal to identity. We will refer to this version of
the LMC algorithm as α-LMC.

We now recall the definition of the first and second-order Kinetic Langevin Monte Carlo
algorithms. We suppose that, for some initial distribution ν0 chosen by the user, both
KLMC and KLMC2 algorithms start from (v0,ϑ0) ∼ N (0p, Ip) ⊗ ν0. Before stating the
update rules, we specify the structure of the random perturbation generated at each step. In

what follows, {(ξ(1)
k , ξ

(2)
k , ξ

(3)
k , ξ

(4)
k ) : k ∈ N} will stand for a sequence of iid 4p-dimensional

centered Gaussian vectors, independent of the initial condition (v0,ϑ0).
To specify the covariance structure of these Gaussian variables, we define two sequences

of functions (ψk) and (ϕk) as follows. For every t > 0, let ψ0(t) = e−γt, then for every
k ∈ N, define ψk+1(t) =

∫ t
0 ψk(s) ds and ϕk+1(t) =

∫ t
0 e
−γ(t−s)ψk(s) ds. Now, let us denote

by ξk,j for the j-th component of the vector ξk (a scalar), and assume that for any fixed

k, the 4-dimensional random vectors {(ξ(1)
k,j , ξ

(2)
k,j , ξ

(3)
k,j , ξ

(4)
k,j ) : 1 ≤ j ≤ p} are iid with the

covariance matrix

Ch,γ =

∫ h

0
[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)]>[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)] dt.

The KLMC algorithm, introduced by Cheng et al. (2018b), is a sampler derived from a
suitable time-discretization of the kinetic diffusion. When applied to the strong-convexified
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potential fα, for a step-size h > 0, its update rule reads as follows[
vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)(∇f(ϑk) + αϑk)

ϑk + ψ1(h)vk − ψ2(h)(∇f(ϑk) + αϑk)

]
+
√

2γ

[
ξ

(1)
k+1

ξ
(2)
k+1

]
. (α-KLMC)

Roughly speaking, this formula is obtained from (3) by replacing the function t 7→ ∇f(Lt)
by a piecewise constant approximation. Such an approximation is made possible by the fact
that f is gradient-Lipschitz.

It is natural to expect that further smoothness of f may allow one to improve upon the
aforementioned piecewise constant approximation. This is done by the KLMC2 algorithm,
introduced by Dalalyan and Riou-Durand (2020), which takes advantage of the existence
and smoothness of the Hessian of f in order to use a local-linear approximation. At any
iteration k ∈ N with a current value ϑk, define the gradient gk,α = ∇f(ϑk) + αϑk and the
Hessian Hk,α = ∇2f(ϑk) + αIp. When applied to the modified strongly convex potential
fα, for h > 0, the update rule of the KLMC2 algorithm is[

vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)gk,α − ϕ2(h)Hk,αvk

ϑk + ψ1(h)vk − ψ2(h)gk,α − ϕ3(h)Hk,αvk

]
+
√

2γ

[
ξ

(1)
k+1 −Hk,αξ

(3)
k+1

ξ
(2)
k+1 −Hk,αξ

(4)
k+1

]
.

(α-KLMC2)

Notice that if we apply KLMC2 with Hk,α = 0, we recover the KLMC algorithm. These
two algorithms, derived from the kinetic Langevin diffusion, will be referred to as α-KLMC
and α-KLMC2.

4.2 Summary of the Obtained Complexity Bounds

Without going into details here, we mention in the tables below the order of magnitude of
the number of iterations required by different algorithms for getting an error bounded by ε
for various metrics. For improved legibility, we do not include logarithmic factors and report
the order of magnitude of K�,�(p, ε) in the case when the parameter β in Condition 2 is
fixed to a particular value. We present hereafter the case where β = 1, which is of particular
interest as discussed in Section 8.

β = 1 LMCa α-LMC α-KLMC α-KLMC2

Cond. 1-2 1-2 1-3 1-2 1-3

W2 − κp2/ε6 (κ1.5
2 p0.5 + κ1.5)p2/ε5 κ1.5p2/ε5 κ0.5κ2

1.5p2/ε4

W1 − κp2/ε4 (κ1.5
2 p0.5 + κ1.5)p2/ε3 κ1.5p2/ε3 κ0.5κ2

1.5p2/ε2

dTV κp2/ε4 4 κ2p3/ε4 � − − −

The results indicated by 4 describe the behavior of the Langevin Monte Carlo with averag-
ing established in (Durmus et al., 2019, Cor. 7). To date, these results have the best known
dependence (under conditions 1 and 2 only) on p. The results indicated by � summarize the
behavior of the Langevin Monte Carlo established in (Dalalyan, 2017b). All the remaining
cells of the table are filled in by the results obtained in the present work. One can observe

9
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that the results for W1 are strictly better than those for W2. Similar hierarchy was already
reported in (Majka et al., 2020, Remark 1.9). It is also worth mentioning here, that using
Metropolis-Hastings adjustment of the LMC (termed MALA), Dwivedi et al. (2018); Chen
et al. (2020) obtained4 the complexity

KMALA,TV(p, ε) = O

(
p2κ3/2

ε3/2
log
(
pκ/ε

))
.

It is still an open question whether this type of result can be proved for Wasserstein dis-
tances.

We would also like to comment on the relation between the third and the fourth columns
of the table, corresponding to the α-LMC algorithm under different sets of assumptions. The
result for the more constrained Hessian-Lipschitz case is not always better than the result
when only gradient Lipschitzness is assumed. For instance, for W2, the latter is better than
the former when κ . (κ1.5

2 p0.5+κ1.5)ε, which is equivalent toM . (M2p
1/2+M3/2)D1/2ε. At

a very high level, this reflects the fact that when the condition number is large, the Hessian-
Lipschitzness does not help to get an improved result. Note that the same phenomenon
occurs in the strongly log-concave case.

4.3 The General Approach Based on a Log-Strongly-Concave Surrogate

We have already mentioned that the strategy we adopt here is the one described in (Dalalyan,
2017b), consisting of replacing the potential of the target density by a strongly convex sur-
rogate. Prior to instantiating this approach to various sampling algorithms under various
conditions and error measuring distances, we provide here a more formal description of it.
In the remaining dist is a general distance on the set of all probability measures.

We will denote by νAlgk,α the distribution of the random vector obtained after performing

k iterations of the algorithm Alg with the surrogate potential fα(θ) = f(θ) +α‖θ‖22/2. Our
first goal is to establish an upper bound on the distance between the sampling distribution
νAlgk,α and the target π. The methods we analyze here depend on the step-size h, as they
are discretizations of continuous-time diffusion processes. Thus, the obtained bound will
depend on h. This bound should be so that one can make it arbitrarily small by choosing
small α and h and a large value of k. In a second stage, the goal is to exploit the obtained
error-bounds in order to assess the order of magnitude of the computational complexity K,
defined in Section 3, as a function of p, ε and the condition number κ.

To achieve this goal, we first use the triangle inequality

dist(νAlgk,α, π) ≤ dist(νAlgk,α, πα) + dist(πα, π).

Then, the second term of the right hand side of the last displayed equation is bounded using
Proposition 1. Finally, the distance between the sampling density νAlgk,α and the surrogate
πα is bounded using the prior work on sampling for log-strongly-concave distributions.
Optimizing over α leads to the best bounds on precision and complexity.

4. This rate is not explicitly present in the cited papers, but it can be derived from (Chen et al., 2020,
Theorem 5) using the approach outlined in (Dwivedi et al., 2018, Section 3.3).

10
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5. Prior Work

Mathematical analysis of MCMC methods defined as discretizations of diffusion processes
is an active area of research since several decades. Important early references are (Roberts
and Tweedie, 1996; Roberts and Rosenthal, 1998; Roberts and Stramer, 2002; Douc et al.,
2004) and the references therein. Although those papers do cover the multidimensional case,
the guarantees they provide do not make explicit the dependence on the dimension. In a
series of work analyzing ball walk and hit-and-run MCMCs, Lovasz and Vempala (2006);
Lovász and Vempala (2006) put forward the importance of characterizing the dependence
of the number of iterations on the dimension of the state space.

More recently, Dalalyan (2017b) advocated for analyzing MCMCs obtained from contin-
uous time diffusion processes by decomposing the error into two terms: a non-stationarity
error of the continuous-time process and a discretization error. A large number of works ap-
plied this kind of approach in various settings. (Bubeck et al., 2018; Durmus and Moulines,
2017, 2019; Durmus et al., 2018) improved the results obtained by Dalalyan and extended
them in many directions including non-smooth potentials and variable step-sizes. While
previous work studied the sampling error measured by the total variation and Waserstein
distances, (Cheng and Bartlett, 2018) proved that similar results hold for the Kulback-
Leibler divergence. (Cheng et al., 2018b,a; Dalalyan and Riou-Durand, 2020) investigated
the case of a kinetic Langevin diffusion, showing that it leads to improved dependence on
the dimension. A promising line of related research, initiated by (Wibisono, 2018; Bernton,
2018), is to consider the sampling distributions as a gradient flow in a space of measures.
The benefits of this approach were demonstrated in (Durmus et al., 2019; Ma et al., 2019).

Motivated by applications in Statistics and Machine Learning, many recent papers devel-
oped theoretical guarantees for stochastic versions of algorithms, based on noisy gradients,
see (Baker et al., 2019; Chatterji et al., 2018; Dalalyan and Karagulyan, 2019; Dalalyan,
2017a; Zou et al., 2019; Raginsky et al., 2017) and the references therein. A related topic
is non-asymptotic guarantees for the Hamiltonian Monte Carlo (HMC). There is a growing
literature on this in recent years, see (Mangoubi and Smith, 2017; Tat Lee et al., 2018; Chen
and Vempala, 2019; Mangoubi and Smith, 2019) and the references therein.

In all these results, the dependence of the number of iterations on the inverse precision
is polynomial. (Dwivedi et al., 2018; Chen et al., 2020; Mangoubi and Vishnoi, 2019) proved
that one can reduce this dependence to logarithmic by using Metropolis adjusted versions
of the algorithms.

6. Precision and Computational Complexity of the LMC

In this section, we present non-asymptotic upper bounds in the (non-strongly) convex case
for the suitably adapted LMC algorithm for Wasserstein and bounded-Lipschitz error mea-
sures under two sets of assumptions: Conditions 1-2 and Conditions 1-3. To refer to these
settings, we will call them “Gradient-Lipschitz” and “Hessian-Lipschitz”, respectively. The
main goal is to provide a formal justification of the rates included in columns 2 and 3 of
the table presented in Section 4.2. To ease notation, and since there is no risk of confusion,
we write µ2 instead µ2(π).

11



Dalalyan, Karagulyan and Riou-Durand

6.1 The Gradient-Lipschitz Setting

First we consider the Gradient-Lipschitz setting and give explicit conditions on the param-
eters α, h and K to have a theoretical guarantee on the sampling error, measured in the
Wasserstein distance, of the LMC algorithm.

Theorem 1 Suppose that the potential function f is convex and satisfies Condition 1. Let
q ∈ [1, 2]. Then, for every α ≤M/20 and h ≤ 1/(M + α), we have

Wq(ν
α-LMC
K , π) ≤ µ2(1− αh)K/2︸ ︷︷ ︸

error due to the
time finiteness

+ (2.1hMp/α)1/2︸ ︷︷ ︸
discretization error

+
(
Cqαµ

q+2
2

)1/q

︸ ︷︷ ︸
error due to the lack
of strong-convexity

,

where Cq is a dimension free constant given by (4).

The proof of this result is postponed to the end of this section. Let us consider its
consequences in the cases q = 1 and q = 2 presented in the table of Section 4.2. The general
strategy is to choose the value of α by minimizing the sum of the discretization error and
the error caused by the lack of strong convexity. Then, the parameter h is chosen so that
the sum of the two aforementioned errors is smaller than 99% of the target precision εµ2.
Finally, the number of iterations K is selected in such a way that the error due to the time
finiteness is also smaller than 1% of the target precision.

Implementing this strategy for q = 1 and q = 2, we get the optimized value of α and
the corresponding value of h,

q = 1 q = 2

α =
(2.1hMp)1/3

442/3µ2
2

h =
ε3

322Mp
α =

(2.1hMp)1/2

1111/2µ2
2

h =
ε4

3900Mp

These values of α and h satisfy the conditions imposed in Theorem 1. They imply that
the computational complexity of the method, for ν0 = δ0 (the Dirac mass at the origin), is
given by

Kα-LMC,W1(p, ε) ≤ 2

αh
log
(100W2(ν0, πα)

εµ2

)
≤ 4.3× 104M

µ2
2p

ε4
log(100/ε)

Kα-LMC,W2(p, ε) ≤ 2

αh
log
(100W2(ν0, πα)

εµ2

)
≤ 3.6× 106M

µ2
2p

ε6
log(100/ε).

In both inequalities, the second passage is due to the monotone behaviour of the function
α 7→ µ2(πα). This property, formulated in Lemma 1, implies that

W2(δ0, πα) = µ2(πα) ≤ µ2(π). (6)

Combining Condition 2, Mµ2
2(π) ≤ κpβ, with the last display, we check thatKα-LMC,W1(p, ε) ≤

Cκ(p1+β/ε4) log(100/ε) and Kα-LMC,W2(p, ε) ≤ Cκ(p1+β/ε6) log(100/ε). For β = 1, this
matches well with the rates reported in the table of Section 4.2. Unfortunately, the numer-
ical constant C, just like the factors 4.3× 104 and 3.6× 106 in the last display, is too large
to be useful for practical purposes. Getting similar bounds with better numerical constants
is an open question. The same remark applies to all the results presented in the subsequent
sections.
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Proof of Theorem 1 To ease notation, we write νK instead of να-LMC
K . The triangle

inequality and the monotonicity of Wq with respect to q imply that

Wq(νK , π) ≤W2(νK , πα) +Wq(πα, π).

Recall that πα is α-strongly log-concave and has fα as its potential function. By definition,
fα has also a Lipschitz continuous gradient with the Lipschitz constant at most M +α. As
we assume that h ≤ 1/(M + α), we can apply (Durmus et al., 2019, Theorem 9). It implies
that

W2(νK , πα) ≤ (1− αh)K/2W2(ν0, πα) + (2h(M + α)p/α)1/2

≤ (1− αh)K/2W2(ν0, πα) + (2.1hMp/α)1/2 .

The last inequality is true due to the fact that α ≤M/20. Combining this inequality with
Proposition 1, we obtain

Wq(νK , π) ≤ (1− αh)K/2W2(ν0, πα) + (2.1hMp/α)1/2 +Wq(πα, π)

≤ µ2(πα)(1− αh)K/2 + (2.1hMp/α)1/2 +
(
Cqαµ

q+2
2

)1/q
.

Thus, applying (6), we get the claim of the theorem. �

6.2 The Hessian-Lipschitz Setting

It has been noticed by Durmus and Moulines (2019), see also (Dalalyan and Karagulyan,
2019, Theorem 5), that if the potential f has a Lipschitz-continuous Hessian matrix, then the
LMC algorithm, without any modification, is more accurate than in the Gradient-Lipschitz
setting. These improvements were obtained under the condition of strong convexity of the
potential, showing that the computational complexity drops down from p/ε2 to p/ε. The
goal of this section is to understand how this additional smoothness assumption impacts
the computational complexity of the α-LMC algorithm.

Theorem 2 Suppose that the potential function f satisfies conditions 1 and 3. Let q ∈
[1, 2]. For every α ≤M/20 and h ≤ 1/(M + α), we have

Wq(ν
α-LMC
K , π) ≤ µ2(1− αh)K︸ ︷︷ ︸

error due to the
time finiteness

+
M2hp

2α
+

2.8M3/2hp1/2

α︸ ︷︷ ︸
discretization error

+
(
Cqαµ

q+2
2

)
︸ ︷︷ ︸

error due to the lack
of strong-convexity

1/q,

where Cq is a dimension free constant given by (4).

In order to provide more insight on the complexity bounds implied by the latter result,
let us instantiate it for q = 1 and q = 2. Optimizing the sum of the two last error terms
with respect to α, then choosing this sum to be equal to 0.99εµ2, we arrive at the following
values

q = 1 q = 2

α =

(
hQp

44µ3
2

)1/2

h =
ε2

45µ2Qp
α =

(hQp)2/3

(111µ4
2)1/3

h =
ε3

387µ2Qp
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Here Q is defined as (M2 + 5.6M3/2p−1/2). These values of α and h satisfy the conditions
imposed in Theorem 2. They imply that the computational complexity of the method, for
ν0 = δ0 (the Dirac mass at the origin), is given by

Kα-LMC,W1(p, ε) ≤ 2

αh
log
(100W2(ν0, πα)

εµ2

)
≤ 2× 103µ3

2Q(p/ε3) log(100/ε)

Kα-LMC,W2(p, ε) ≤ 2

αh
log
(100W2(ν0, πα)

εµ2

)
≤ 9.9× 104µ3

2Q(p/ε5) log(100/ε).

Combining Condition 2 and the last display, we check that

Kα-LMC,W1(p, ε) ≤ Cε−3(κ
3/2
2 p(2+3β)/2 + κ3/2p(1+3β)/2) log(100/ε),

Kα-LMC,W2(p, ε) ≤ Cε−5(κ
3/2
2 p(2+3β)/2 + κ3/2p(1+3β)/2) log(100/ε).

The latter is true, since by definition κ2 is equal to M
2/3
2 D. For β = 1, this matches well

with the rates reported in the table of Section 4.2.

Proof of Theorem 2 We repeat the same steps as in the proof of Theorem 1, except
that instead of (Durmus et al., 2019, Theorem 9) we use (Dalalyan and Karagulyan, 2019,
Theorem 5). To ease notation, we write νK instead of να-LMC

K . One easily checks that πα
is α-strongly log-concave with potential function fα. Furthermore, the latter is (M + α)-
gradient-Lipschitz and M2-Hessian-Lipschitz. Therefore, for h ≤ 2/(M + α), Theorem 5
from (Dalalyan and Karagulyan, 2019) implies that

W2(νK , πα) ≤ (1− αh)KW2(ν0, πα) +
M2hp

2α
+

13(M + α)3/2hp1/2

5α

≤ (1− αh)KW2(ν0, πα) +
M2hp

2α
+

2.8M3/2hp1/2

α
,

where the second inequality follows from the fact that α ≤ M/20. The triangle inequality
and the monotonicity of Wq with respect to q yield Wq(νK , π) ≤ W2(νK , πα) + Wq(πα, π),
which leads to

Wq(νK , π) ≤ µ2(πα)(1− αh)K +
M2hp

2α
+

2.8M3/2hp1/2

α
+Wq(π, πα).

Replacing the last term above by its upper bound provided by Proposition 1 and applying
(6), we get the claimed result. �

7. Precision and Computational Complexity of KLMC and KLMC2

Several recent studies showed that for some classes of targets, including the strongly log-
concave densities, the sampling error of discretizations of the kinetic Langevin diffusion
scales better with the large dimension than discretizations of the Langevin diffusion. How-
ever, the dependence of the available bounds on the condition number is better for the
Langevin diffusion. In this section we show a similar behavior in the case of (non-strongly)
log-concave densities. This is done by providing quantitative upper bounds on the error of
sampling using the kinetic Langevin process.
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Theorem 3 Suppose that the potential function f satisfies Condition 1. Let q ∈ [1, 2].
Then for every α ≤M/20, γ ≥

√
M + 2α and h ≤ α/(4γ(M + α)), we have

Wq(ν
α-KLMC
K , π) ≤

√
2µ2

(
1− 3αh

4γ

)K
︸ ︷︷ ︸

error due to the time finiteness

+ 1.5Mp1/2(h/α)︸ ︷︷ ︸
discretization error

+
(
Cqαµ

q+2
2

)1/q

︸ ︷︷ ︸
error due to the lack
of strong-convexity

.

where Cq is a dimension free constant given by (4).

The proof of this result is postponed to the end of this section. Since the contraction rate is
an increasing function of γ, we choose its lowest possible value achieved for γ =

√
M + 2α.

Then the strategy is the same as for the previous section, that is to choose the value of α
by minimizing the sum of the discretization error and the error caused by the lack of strong
convexity. Then, the parameter h is chosen so that the sum of the two aforementioned errors
is smaller than 99% of the target precision εµ2. The number of iterations K is selected in
such a way that the error due to the time finiteness is also smaller than 1% of the target
precision. Implementing this strategy for q = 1 and q = 2, we get the optimized value of α
and the corresponding value of h,

q = 1 q = 2

α =
(1.5hMp1/2)1/2

(21µ3
2)1/2

h =
ε2

143Mµ2p1/2
α =

(3hMp1/2)2/3

(111µ4
2)1/3

h =
ε4

1200Mµ2p1/2

These values of α and h satisfy the conditions imposed in Theorem 3. They imply that the
computational complexity of the method, for ν0 = δ0 (the Dirac mass), is given by

Kα-KLMC,W1(p, ε) ≤ 4γ

3αh
log
(150

ε

)
≤ 9.2× 103(Mµ2

2)3/2(p1/2/ε3) log(150/ε)

Kα-KLMC,W2(p, ε) ≤ 4γ

3αh
log
(150

ε

)
≤ 4.4× 105(Mµ2

2)3/2(p1/2/ε5) log(150/ε).

Recall that Condition 2 implies Mµ2
2 ≤ κpβ. Combining this inequality with the last display,

we check that

Kα-KLMC,Wq(p, ε) ≤ Cκ3/2(p(1+3β)/2/ε2q+1) log(150/ε), q = 1, 2.

For β = 1, this matches well with the rates reported in the table of Section 4.2.

Proof of Theorem 3 To ease notation, we write νK instead of να-KLMC
K . The tri-

angle inequality and the monotonicity of Wq with respect to q imply that Wq(νK , π) ≤
W2(νK , πα) + Wq(πα, π). Recall that πα is a α-strongly log-concave distribution with po-
tential function fα. By definition, fα has also a Lipschitz continuous gradient with the
Lipschitz constant at most M + α. As we assumed that α ≤ M/20, γ ≥

√
M + 2α and

h ≤ α/(4γ(M + α)), we can apply (Dalalyan and Riou-Durand, 2020, Theorem 2). The
latter implies that

W2(νK , πα) ≤
√

2(1− 3αh/(4γ))KW2(ν0, πα) +
√

2(M + α)p1/2(h/α)

≤
√

2µ2(πα)(1− 3αh/(4γ))K + 1.5Mp1/2(h/α).
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The last inequality is true thanks to the fact that α ≤M/20. Thus, (6) yields

Wq(νK , π) ≤
√

2µ2(π)(1− 3αh/(4γ))K + 1.5Mp1/2(h/α) +Wq(πα, π).

Owing to Proposition 1, the last term of the last display can be bounded by (Cqαµ
q+2
2 )1/q.

This completes the proof. �
The rest of this section is devoted to the sampling guarantees for the KLMC2 algorithm.

Recall that this algorithm requires accurate evaluations of the Hessian of the potential
function f to be available at each given point.

Theorem 4 Suppose that the potential function f satisfies conditions 1 and 3. Let q ∈ [1, 2]
and Q = M2 +M3/2p−1/2. Then, for every α, h, γ > 0 such that

α ≤ M

20
, γ ≥

√
M + 2α, h ≤ α

5γ(M + α)

∨ α

4M2
√

5p
,

we have

Wq(ν
α-KLMC2
K , π) ≤

√
2µ2

(
1− αh

4γ

)K
︸ ︷︷ ︸

error due to the
time finiteness

+
2h2Qp

α
+

1.6√
M

exp

{
− (α/h)2

160M2
2

}
︸ ︷︷ ︸

discretization error

+
(
Cqαµ

q+2
2

)1/q

︸ ︷︷ ︸
error due to the lack
of strong-convexity

,

where Cq is a dimension free constant given by (4).

The proof of this result is postponed to the end of this section. The contraction rate
is an increasing function of γ, therefore we choose its lowest possible value achieved for
γ =

√
M + 2α. In this case the strategy for finding h and α is slightly different from

the previous ones. Here, we first choose the parameter h so that the two terms of the
discretization error are respectively bounded by 1% and 2% of the target precision εµ2.
This yields the following choice for the time step h:

h = α

(
160M2

2 log

(
160

εµ2

√
M

)∨ 100αQp

εµ2

)−1/2

.

The parameter α is then chosen so that the error due to the lack of strong convexity is
lower than 96% of the target precision. Implementing this strategy for q = 1 and q = 2, we
get the following value for α

q = 1 q = 2

α =
ε

23µ2
2

α =
ε2

116µ2
2

Finally, the number of iterations K is selected in such a way that the error due to the time
finiteness is also smaller than 1% of the target precision. This yields, that

K =
4γ

αh
log
(142

ε

)
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is sufficient to reach the target precision. The values of γ, α and h imply that the compu-
tational complexity of the method is given by

Kα-KLMC2,W1(p, ε) = 2.2× 104 M
1/2M2µ

4
2

ε2

{
1.6 log

( 160

εµ2

√
M

)∨ Qp

23M2
2µ

3
2

}1/2

log
(142

ε

)
Kα-KLMC2,W2(p, ε) = 5.4× 106 M

1/2M2µ
4
2

ε4

{
1.6 log

( 160

εµ2

√
M

)∨ εQp

116M2
2µ

3
2

}1/2

log
(142

ε

)
.

Since according to Condition 2, µ2 ≤ Dpβ, the last display implies that up to log-

arithmic factors Kα-KLMC2,W1(p, ε) scales as κ1/2κ
3/2
2 p2β/ε2 and Kα-KLMC2,W2(p, ε) scales

as κ1/2κ
3/2
2 p2β/ε4. For β = 1, this matches well with the rates reported in the table of

Section 4.2.

Proof of Theorem 4 To ease notation, we write νK instead of να-KLMC2
K . As already

checked in the proof of Theorem 2, the distribution πα is α-strongly log-concave with po-
tential function fα. Furthermore, the latter is (M +α)-gradient-Lipschitz and M2-Hessian-
Lipschitz. In view of (Dalalyan and Riou-Durand, 2020, Theorem 3), since the parameters
α, γ, h > 0 are such that

α ≤ M

20
, γ ≥

√
M + 2α, h ≤ α

5γ(M + α)

∧ α

4M2
√

5p
,

the distribution of the KLMC2 sampler after k iterates satisfies

W2(νk, πα) ≤
√

2µ2(πα)

(
1− αh

4γ

)k
+

2h2M2p

α
+
h2(M + α)3/2

√
2p

α

+
8h(M + α)

α
exp

{
− α2

160M2
2h

2

}
≤
√

2µ2(πα)

(
1− αh

4γ

)K
+

2h2(M2p+M3/2p1/2)

α
+

1.6√
M

exp

{
− (α/h)2

160M2
2

}
,

where the second inequality follows from the fact that α ≤M/20 and h ≤ α/(5γ(M + α)).
The triangle inequality and the monotonicity of Wq with respect to q yields Wq(νK , π) ≤
W2(νK , πα) +Wq(πα, π), which leads to

Wq(νK , π) ≤
√

2µ2(πα)

(
1− αh

4γ

)K
+

2h2Qp

α
+

1.6√
M

exp

{
− (α/h)2

160M2
2

}
+Wq(π, πα).

Replacing the last term above by its upper bound provided by Proposition 1 and applying
(6), we obtain the claim of the theorem. �

8. Bounding the Moments

From the user’s perspective, the choice of α and h requires the computation of the second
moment of the distribution π. In most cases, this moment is an intractable integral. How-
ever, when some additional information on π is available, this moment can be replaced by
a tractable upper bound. In this section, we provide upper bounds on the moments

µ∗a :=
(
Eϑ∼π[‖ϑ− θ∗‖a2]

)1/a
, a ≥ 1,
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centered at the minimizer of the potential θ∗ ∈ argminθ∈Rpf(θ). The knowledge of the
second moment is enough to compute the mixing times presented in Section 6 and Section 7.
However, providing bounds on general moments is of interest in order to highlight the
dependence on the dimension, but also to obtain sharp numerical constants when the second
moment is unknown. For instance, the proof of Proposition 1 shows that results for the W1

and W2 metrics essentially rely on some bounds over the third and fourth moments of π,
which could be better understood in some specific contexts.

In this section, we investigate two particular classes of convex functions: (a) those which
are m-strongly convex inside a ball of radius R around the mode θ∗, and (b) those which are
m-strongly convex outside a ball of radius R around the mode θ∗. We provide user-friendly
bounds on µ∗a with fairly small constants. In the aforementioned two cases, if m and R are
dimension free, we show that µ∗a scales respectively as p log p and (p log p)1/2. This scaling
with the dimension is sharp, up to logarithmic factors, and matches Condition 2 with β = 2
for the class (a) and Condition 2 with β = 1 for the class (b).

Proposition 2 Assume that for some positive numbers m and R, we have ∇2f(θ) � mIp
for every θ ∈ Rp such that ‖θ − θ∗‖2 ≤ R. Then, for every a ≥ 2, we have

µ∗a ≤ A ∨B +
3

mRΓ(p/2)1/a

where5

A =
3p

mR

(
(1 + a/p) log(1 + a/p) + log+

( 2M

m2R2

))
and B =

( p
m

)1/2 {
2 +

a

2p

}1a>2

.

In the case of fixed a and p tending to infinity, Proposition 2 implies that

µ∗a = Õ

(
p

mR

∨( p
m

)1/2
)
,

where Õ hides constants and polylogarithmic factors. In the bound of Proposition 2, the
term A is the dominating one when p/m is large as compared to R2, while B is the dom-
inating term when R2 is of a higher order of magnitude than p/m. The residual term
3/(mRΓ(p/2)1/a) goes to zero whenever p or R tend to infinity. If m and R are assumed to
be dimension free constants, then µ∗a scales as p log p. This rate is optimal within a poly-log
factor, which is proven in Lemma 4. Note also that when R goes to infinity we exactly
recover the bound of the strongly convex case proven in Lemma 2.

We now switch to bounding the moments of π under the condition that f is convex
everywhere and strongly convex outside the ball of radius R around θ∗.

Proposition 3 Assume that for some positive m and R, we have ∇2f(θ) � mIp for every
θ ∈ Rp such that ‖θ − θ∗‖2 > R. If p ≥ 3, then, for every a > 0, we have

µ∗a ≤
(

1 +
2

Γ(p/2)

)1/a{
(4R)

∨(
4(p+ a)

m
log
(pM
m

))1/2}
.

5. We denote by log+ x the positive part of log x, log+ x = max(0, log x).
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Under the assumptions of Proposition 3, we obtain µ∗a = Õ
(
R∨(p/m)1/2

)
. In the bound

of Proposition 3, if m and R are assumed to be dimension free constants, then µ∗a scales
as (p log p)1/2. When R is not large, this rate is improved in Proposition 4 below to p1/2,
which is optimal. However, the bound of Proposition 3 is sharper when R is large.

Proposition 4 Assume that for some positive m and R, we have ∇2f(θ) � mIp for every
θ ∈ Rp such that ‖θ − θ∗‖2 > R. Then for every a > 0 we have

µ∗a ≤ emR
2/2a

( p
m

)1/2
{

2 +
a

2p

}1a>2

.

Note that when R approaches zero, this bound matches the one of the strongly convex
case; see, for instance, Lemma 2. To close this section, let us note that in the setting
considered in Proposition 3 and 4, one can also apply the bounds obtained by reflection
coupling (Majka et al., 2020; Cheng et al., 2018a). Quite surprisingly, they do not lead to
better bounds than those obtained in the present work by the simple convexification trick.

9. Discussion

In this section we highlight some consequences of the bounds on the sampling error measured
in Wasserstein distance and provide a discussion on how our results compare to those
obtained by other relevant approaches.

9.1 Moment Approximation Bounds Berived from Bounds on Wq-Distances

A glance at the table of Section 4.2 is enough to notice that the reported sampling guarantees
for the W1-distance are much better than those for W2. Are there situations where using
sampling guarantees in W1 distance is more suitable than W2 so that we can take advantage
of improved rates? The answer to this question is positive; it is formalized in the next
proposition. In a nutshell, one can rely on guarantees in W1-distance in the problem of
approximating the expectation of a Lipschitz function of ϑ ∼ π, while guarantees in W2-
distance are used for approximating the standard-deviation of Lipschitz functions.

Proposition 5 Let π and ν be two probability distribution on Rp; π is the target distribution
while ν is the sampling distribution. Let ϕ : Rp 7→ R be a 1-Lipschitz function. For
ϑ1, . . . ,ϑN independently drawn from ν, define

m̂N (ϕq) =
1

N

N∑
i=1

ϕq(ϑi), mπ(ϕq) = Eϑ∼π[ϕq(ϑ)], mν(ϕq) = Eϑ∼ν [ϕq(ϑ)]

for any q ∈ N. It holds that

E
[(
m̂N (ϕ)−mπ(ϕ)

)2]1/2 ≤W1(ν, π) +

√
mν(ϕ2)

N
,

E
[(
m̂

1/2
N (ϕ2)−m1/2

π (ϕ2)
)2]1/2 ≤W2(ν, π) +

√
mν(ϕ4)

Nmν(ϕ2)
.
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Proof Using the bias-variance decomposition and the fact that E
[
m̂N (ϕ)] = mν(ϕ), one

can check that

E
[(
m̂N (ϕ)−mπ(ϕ)

)2]
=
(
mν(ϕ)−mπ(ϕ)

)2
+ Var

[
m̂N (ϕ)

]
≤W 2

1 (ν, π) +
Var[ϕ(ϑ1)]

N
,

where the last inequality follows from the dual formulation of the Wasserstein distance. To
complete the proof of the first claim, it suffices to note that Var[ϕ(ϑ1)] ≤ mν(ϕ2).

For the second claim, we start by applying the triangle inequality

E
[(
m̂

1/2
N (ϕ2)−m1/2

π (ϕ2)
)2]1/2 ≤ E

[(
m̂

1/2
N (ϕ2)−m1/2

ν (ϕ2)
)2]1/2

+
∣∣m1/2

ν (ϕ2)−m1/2
π (ϕ2)

∣∣.
On the one hand, for any ϑ ∼ ν and ϑ′ ∼ π, we have∣∣m1/2

ν (ϕ2)−m1/2
π (ϕ2)

∣∣ =
∣∣E1/2[ϕ2(ϑ)]−E1/2[ϕ2(ϑ′)]

∣∣
≤ E1/2

[(
ϕ(ϑ)− ϕ(ϑ′)

)2]
≤ E1/2

[∥∥ϑ− ϑ′∥∥2

2

]
.

Since this is true for any coupling (ϑ,ϑ′) of ν and π, and the infimum of the right hand
side of the last display over all the couplings is the W2 distance, we get∣∣m1/2

ν (ϕ2)−m1/2
π (ϕ2)

∣∣ ≤W2(ν, π).

On the other hand,

E
[(
m̂

1/2
N (ϕ2)−m1/2

ν (ϕ2)
)2] ≤ E

[(
m̂N (ϕ2)−mν(ϕ2)

)2]
mν(ϕ2)

=
Var

[
ϕ2(ϑ1)

]
Nmν(ϕ2)

.

To complete the proof of the second claim, it suffices to note that Var[ϕ2(ϑ1)] ≤ mν(ϕ4).

The simplest application of the last result is when ϕ(θ) = θ>v with a unit vector v.
From the last proposition, we infer that the error of approximating the mean of the target
distribution by the sample mean of an N -sample drawn from the sampling distribution is
controlled by the W1 distance plus a small term of order N−1/2. If, in addition to estimating
the mean, we also want to estimate the second-order moment, then the approximation error
is bounded by the W2 distance plus a small term of order N−1/2. Thus, the fact that the
guarantees for W1 are better than those for W2 illustrates that it is computationally less
expensive to approximate the first-order moment rather than the second-order moment.
Furthermore, the rates reported in the table of Section 4.2 provide a quantitiave assessment
of the computational gain.

9.2 Suboptimality of Wasserstein Bounds Derived from Total-Variation
Bounds

In Section 4.2, we presented a summary of rates for the LMC with a quadratic penalty
in Wasserstein distance obtained in this manuscript, and compared them to existing TV
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mixing times Dalalyan (2017b); Durmus et al. (2019). Since the topology induced by the
total-variation distance is stronger than the topology of weak convergence induced by the
Wasserstein distance, one can wonder whether existing results for TV-distance may directly
lead to mixing times for Wasserstein distances. If the answer to this question is positive,
the next question is how do they compare to the results obtained in this manuscript. The
following proposition and the subsequent discussion aim to clarify this point.

Proposition 6 Let ν and ν ′ be arbitrary probability distributions on Rp. For every q, r, s ≥
1 such that 1/r + 1/s = 1, we have

Wq(ν, ν
′) ≤

(
µqr(ν) + µqr(ν

′)
)
dTV(ν, ν ′)1/(qs).

Proof The proof follows from the definition of the Wasserstein and the total variation
distances in terms of optimal couplings. Let Γ(ν, ν ′) be the set of joint distributions on Rp×
Rp with marginals ν and ν ′ and let q, r, s ≥ 1 such that 1/r+ 1/s = 1. Choose an arbitrary
coupling γ ∈ Γ(ν, ν ′). Applying successively Hölder’s and Minkowski’s inequalities, we
arrive at

W q
q (ν, ν ′) ≤ E(X,Y )∼γ

[
‖ϑ− ϑ′‖q21ϑ6=ϑ′

]
≤ Eγ [‖ϑ− ϑ′‖qr2 ]1/rPγ(ϑ 6= ϑ′)1/s

≤
(
µqr(ν) + µqr(ν

′)
)q

Pγ(ϑ 6= ϑ′)1/s.

Choosing as γ the coupling that minimizes Pγ

(
ϑ 6= ϑ′

)
, we get the claim of the proposition.

Proposition 6, combined with the available bounds on the total variation distance, can
be used to derive bounds on the Wasserstein error of LMCa or α-LMC. In particular, for
ν = π and ν ′ = νLMCa

k , one can infer from Proposition 6 that

dTV(π, νLMCa
k ) ≤

(
εµ2(π)

µqr(π) + µqr(νLMCa
k )

)qs
=⇒ Wq(π, ν

LMCa
k ) ≤ εµ2(π),

for any q, r, s ≥ 1 such that 1/r+1/s = 1. As mentioned in Section 2, just after Condition 2,
there is a constant Bqr such that µqr(π) ≤ Bqrµ2(π) for every log-concave distribution π.
Even though the constant Bqr does not depend on the target distribution, it blows up
whenever r → ∞ (known upper bounds on this constant are at least linear in r; see,
for instance, Lemma 5). Therefore, assuming that there is a constant C > 0 such that
µqr(ν

LMCa
k ) ≤ Cµqr(π), we get

dTV(π, νLMCa
k ) ≤ sup

r>1

(
ε

(1 + C)Bqr

)qr/(r−1)

=⇒ Wq(π, ν
LMCa
k ) ≤ εµ2(π)

for any q ≥ 1. If we neglect that the constant Bqr blows up, the method sketched above
leads to the best scalings with respect to ε when r → +∞. In concrete examples, however,
deriving from the last display the sharpest bound on theWq-mixing-time for a fixed precision
level ε > 0 would require a non-trivial optimization with respect to r.
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Even if we disregard the fact that Bqr is not bounded and if we admit that µqr(ν
LMCa
k ) ≤

Cµqr(π), it turns out that the outlined method will lead to looser Wq-mixing rate than
the one obtained by the direct approach developed in this paper. Indeed, choosing r =
(1 + η)/η for some η > 0 and taking into account that the TV-mixing-time for the LMCa
obtained in (Durmus et al., 2019) is of the order O(p2/ε4), we get a Wq-mixing-time of
order O(p2/ε4q(1+η)). For q = 1, 2, these rates are worse than the rates p2/ε2q+2 reported
in the table of Section 4.2 for the α-LMC algorithm.

The take away message is that the direct method of proof used in Theorem 1-4 allows for
a better control of Wq distances than the combination of existing results for the TV-distance
with Proposition 6.

9.3 Convexification Versus Reflection Coupling

When the potential f is strongly convex outside a ball of radius R, as in Proposition 3, an
alternative to the approach developed in the present paper is to apply the results obtained by
reflection coupling (Majka et al., 2020; Cheng et al., 2018a) under more general dissipativity
assumption. We can thus compare our results with those of these papers. It turns out that
in the natural setting of large R our results provide much tighter bounds than those by
reflection coupling.

Indeed, let us compare Theorem 1 for q = 1, 2 with equations (2.28) and (2.29), Theorem
2.9, from (Majka et al., 2020). In our results the geometric contraction takes place at the
rate e−αhK/2, this rate is e−chK with a parameter c exponentially small in R, c = O(e−aMR2

)
for some a > 0. The choice of the parameter h also involves a term which is exponentially
small in MR2. The same factor eaMR2

appears in (Cheng et al., 2018a). This implies that
the number of gradient evaluations to achieve ε-accuracy, derived from (Majka et al., 2020;
Cheng et al., 2018a), is exponential in MR2. In our results, derived from Theorem 1 and
Proposition 3, this dependence is polynomial. In a high-dimensional setting, the parameter
MR2 will most likely be polynomial in p, leading thus to a substantial improvement obtained
by our results as compared to those inferred from the reflection coupling.

9.4 Centering the Target Distribution

Although the theorems stated in the previous section apply to general loc-concave distribu-
tions π having nonzero density on the whole Rp, they are meaningful when the “center of
the distribution” is close to the origin. This has been quickly mentioned in Section 2, just
before Condition 2; we provide below more details on the meaning and the potential cost
of centering.

Clearly, if the density π(·) is log-concave with gradient-Lipschitz potential f , then the
same is true for πθ0(·) = π(· + θ0), whatever the value θ0 ∈ Rp is. The only quantity
appearing in our upper bounds that is impacted by such a transformation of π is the
second-order moment µ2

2(πθ0) = Eϑ∼π[‖ϑ − θ0‖22]. Ideally, we would like to choose θ0 as
the minimizer of µ2(πθ0), which corresponds to θ0 = Eϑ∼π[ϑ]. This value, unfortunately, is
rarely available. Instead, one can choose as θ0 any minimizer of f . In view of Proposition 2
and Proposition 3, the second-order moment of the resulting centered distribution has
suitably bounded moments. It should be noted, however, that computing a minimizer
of the convex function f requires O(1/ε2) gradient calls. Another approach that can be
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adopted in a statistical setting—where π is a posterior distribution—consists in choosing
θ0 as an initial estimator of the true parameter. It can be, for instance, based on the method
of moments.
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Appendix A. Postponed Proofs

This section contains proofs of the propositions stated in previous sections as well as those
of some technical lemmas used in the proofs of the propositions.

A.1 Proof of Proposition 1

Without loss of generality we may assume that
∫
Rp exp(−f(θ)) dθ = 1. We first derive

upper and lower bounds for the normalizing constant of πα, that is

cα :=

∫
Rp
π(θ) e−α‖θ‖

2
2/2 dθ.

To do so, we introduce the notation

rα :=
2

α
log

1

cα

so that log(πα/π)(θ) = (α/2)(rα − ‖θ‖22). One can check that cα ≤ 1. To get a lower
bound, we note that cα is an expectation with respect to the density π, hence it can be
lower bounded using Jensen’s inequality, applied to the convex map x 7→ e−x. These two
facts yield exp{−αµ2

2/2} ≤ cα ≤ 1. Therefore, by definition of rα, we have

0 ≤ rα ≤ µ2
2. (7)

For any fixed θ ∈ Rp, we now split the Euclidean distance between π(θ) and πα(θ) between
its positive and negative parts:

|π(θ)−πα(θ)| = π(θ)
[
1− e−(α/2)(‖θ‖22−rα)

]
1‖θ‖22>rα︸ ︷︷ ︸

:=(π−πα)+(θ)

+π(θ)
[
e−(α/2)(rα−‖θ‖22) − 1

]
1‖θ‖22<rα︸ ︷︷ ︸

:=(π−πα)−(θ)

.

In order to bound the positive part, we make use of the inequality 1 − e−x ≤ x for x > 0.
Therefore:

(π − πα)+(θ) ≤ α

2
π(θ)(‖θ‖22 − rα)1‖θ‖22>rα . (8)

The total variation distance between densities π and πα is twice the integral of the positive
part, dTV(πα, π) = 2

∫
Rp(π − πα)+(θ) dθ. Therefore,

dTV(πα, π) ≤ α
∫
Rp
π(θ)(‖θ‖22 − rα)1‖θ‖22>rαdθ ≤ α

∫
Rp
‖θ‖22π(θ) dθ.

23



Dalalyan, Karagulyan and Riou-Durand

This yields the first claim of the proposition.

The proof of the bound for Wasserstein distances is inspired by the arguments from
(Villani, 2008, Theorem 6.15, page 115). We consider a suitable coupling between π and
πα, defined by keeping fixed the mass shared by π and πα while distributing the rest of the
mass with a product measure. Letting C := (π− πα)+(Rp) = (π− πα)−(Rp), we define the
joint distribution

γ(dθ, dθ′) := (π ∧ πα)(dθ)δθ′=θ +
1

C
(π − πα)+(dθ)(π − πα)−(dθ′).

The joint distribution γ defines a coupling of π and πα. Therefore for any q ≥ 1, by
definition of the Wasserstein distance we get

W q
q (µ, ν) ≤

∫
Rp×Rp

‖θ − θ′‖q2γ(dθ, dθ′)

=
1

C

∫
Rp×Rp

‖θ − θ′‖q2(π − πα)+(dθ)(π − πα)−(dθ′)

≤ 1

C

∫
Rp×Rp

(‖θ‖2 +
√
rα)q (π − πα)+(dθ)(π − πα)−(dθ′)

=

∫
Rp

(‖θ‖2 +
√
rα)q (π − πα)+(dθ)

where the third line follows from the fact that (π− πα)−(dθ′) has positive mass only inside
the ball {‖θ′‖2 ≤

√
rα}. We now define the quantity

Jq,α(π) :=
1

2

∫
‖θ‖22>rα

(‖θ‖2 +
√
rα)q

(
‖θ‖22 − rα

)
π(dθ)

and remark that inequality (8) yields

W q
q (µ, ν) ≤ αJq,α(π).

The claim of the proposition follows from the fact that there is a numerical constant Cq
that only depends on q such that

Jq,α(π) ≤ Cqµq+2
2 (π).

This is a combined consequence of (7) and Lemma 5. Indeed, we have

Jq,α(π) ≤ 1

2

∫
‖θ‖22>rα

(2‖θ‖2)q‖θ‖22π(dθ) ≤ 2q−1µq+2
q+2(π) ≤ 2q−1(Bq+2µ2(π))q+2.

As shown below, we can get better values for Cq when q = 1 and q = 2. We have

J1,α(π) ≤ 1

2

∫
Rp

(‖θ‖2 + µ2)‖θ‖22 π(dθ) = (µ3
3 + µ3

2)/2 ≤ 21µ3
2
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and

J2,α(π) =
1

2

∫
‖θ‖22>rα

(‖θ‖2 +
√
rα)2(‖θ‖22 − rα)π(dθ)

≤ 1

2

∫
‖θ‖22>rα

(‖θ‖42 + 2‖θ‖32
√
rα)π(dθ)

≤ 1

2

∫
Rp

(‖θ‖42 + 2‖θ‖32µ2)π(dθ) = (µ4
4 + 2µ3

3µ2)/2 ≤ 262µ4
2.

In both calculations, inequality (7) is used to bound rα, while the last inequality follows
from Lemma 5. It turns out that in the particular cases q = 1 and q = 2, the constant Cq
can be further improved using, respectively, (Bolley and Villani, 2005, Corollary 4) and the
transportation cost inequality; see for instance (Gozlan and Léonard, 2010, Corollary 7.2).
Since πα is α-strongly log-concave, we have

W 2
1 (π, πα) ≤ 2µ2

2(π)DKL(π||πα), W 2
2 (π, πα) ≤ (2/α)DKL(π||πα).

The computation of the Kullback-Leibler divergence yields

DKL(π||πα) =

∫
Rp
π(θ)(α/2)(‖θ‖22 − rα) dθ = αµ2

2/2 + log cα.

Using the inequality e−x ≤ 1− x+ x2/2 for x > 0 yields

cα =

∫
Rp
π(θ)e−(α/2)‖θ‖22dθ ≤ 1− αµ2

2/2 + α2µ4
4/8.

Since log(1 + x) ≤ x for x > −1 we get DKL(π||πα) ≤ α2µ4
4/8. Combining this inequality

with the bound on µ4 from Lemma 5, we get

W1(π, πα) ≤ αµ2µ
2
4/2 ≤ 11αµ3

2, W 2
2 (π, πα) ≤ αµ4

4/4 ≤ 111αµ4
2.

This shows that for q = 1 and q = 2 the constants can be improved to C1 = 11 and
C2 = 111. Therefore we get the claim of the proposition.

A.2 Proof of Proposition 2

We assume without loss of generality that θ∗ = 0p. Let A ≥ R and a > 0. Define
BA = {θ ∈ Rp : ‖θ‖2 ≤ A}. We split the integral into two parts∫

Rp
‖θ‖a2 π(θ) dθ =

∫
BA

‖θ‖a2 π(θ) dθ +

∫
BcA

‖θ‖a2 π(θ) dθ.

Let us bound the integral over Bc
A. It follows from the assumptions of the proposition that

for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip, for the map m(r) := m1(0,R)(r). One can show that
(see Lemma 3 for the precise statement and the proof)∫

BcA

‖θ‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)

∫ +∞

A
rp+a−1e−m̃(r)r2/2dr, (9)
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where m̃(r) := 2
∫ 1

0 (1− t)m(rt) dt. Using the fact that m(r) := m1(0,R)(r), for all r > R,
we get

m̃(r) = 2m

∫ 1∧R/r

0
(1− t)dt = m

(
2R

r
− R2

r2

)
.

Since in (9) the integration is with respect to r ≥ A ≥ R, we have∫
BcA

‖θ‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)
emR

2/2

∫ +∞

A
rp+a−1e−mRrdr

=
2(M/2)p/2

Γ(p/2)

emR
2/2

(mR)a+p

∫ +∞

mRA
yp+a−1 e−y dy.

We now use the following inequality on the incomplete Gamma function from (Natalini and
Palumbo, 2000), see also Borwein et al. (2009): For all q ≥ 1 and all x ≥ 2(q − 1),∫ +∞

x
yq−1e−ydy ≤ 2xq−1e−x. (10)

We apply this inequality for q = p+ a. For A ≥ 2(p+ a− 1)/(mR), we have∫ +∞

mRA
yp+a−1 e−y dy ≤ 2(mRA)p+a−1e−mRA.

Now, we make use of the fact that mRA ≥ mRA/2. The latter yields∫
BcA

‖θ‖a2 π(θ) dθ ≤ 2a+1

(mR)aΓ(p/2)

(
2M

m2R2

)p/2(mRA
2

)p+a−1

e−mRA/2.

The last bound ensures that the inequality∫
BcA

‖θ‖a2 π(θ) dθ ≤ 2a+1

(mR)aΓ(p/2)
(11)

is fulfilled whenever ϕ(x) := x− c log(x)− b ≥ 0, where

x =
mRA

2
, c = p+ a− 1, b =

p

2
log

(
2M

m2R2

)
.

We now establish for which values of x (or equivalently, A) we have ϕ(x) ≥ 0. Taylor’s
expansion around yc := 1.5(c+ 1) log(c+ 1) yields

ϕ
(
yc + 3b+

)
= ϕ(yc) + ϕ′(y)× 3b+

for some y ≥ yc. The latter implies that

ϕ′(y) = 1− c

y
≥ 1− c

yc
≥ 1/3.
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Hence, ϕ
(
yc + 3b+

)
≥ ϕ(yc) + b+ ≥ yc− c log yc + b+− b ≥ 0. Since the map ϕ is increasing

on [c,+∞) and yc + 3b+ ≥ c, we conclude that (11) is fulfilled for any

A ≥ A0 :=
3

mR

(
(p+ a) log(p+ a) + p log+

(
2M

m2R2

))
.

We choose A = A0 ∨R. If R < A0, we have A = A0 and we use the obvious inequality∫
BA0

‖θ‖a2 π(θ) dθ ≤ Aa0.

The second case to consider is R ≥ A0. The map f(θ) = − log π(θ) being m-strongly
convex on the ball BA = BR, Lemma 2 yields(∫

BA

‖θ‖a2 π(θ) dθ

)1/a

≤
( p
m

)1/2
{

2 +
a

2p

}1a>2

.

Since inequality (11) is valid in both cases, the claim of Proposition 2 follows.

A.3 Proof of Proposition 3

Note that for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip, where m(·) is defined as below:

m(r) = m1(R,+∞)(r).

We begin by computing the map m̃(r) := 2
∫ 1

0 m(ry)(1 − y)dy. Using the definition of m̃,
we have:

m̃(r) = 2

∫ 1

0
m1(R,+∞)(ry)(1− y)dy

= 2m1r>R

∫ 1

R/r
(1− y)dy

= m (1−R/r)2
1r>R.

Let A ≥ 4R and a > 0. We assume without loss of generality that θ∗ = 0p. Define
BA = {θ ∈ Rp : ‖θ‖2 ≤ A}. We will use the following bound:∫

Rp
‖θ‖a2 π(θ) dθ ≤ Aa +

∫
BcA

‖θ‖a2 π(θ) dθ.

For the second term, Lemma 3 yields∫
BcA

‖θ‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)

∫ +∞

A
rp+a−1e−mr

2/8dr.
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This is true due to the fact that, for every r ≥ A ≥ 4R, we have m̃(r) ≥ m/2. We now use
inequality (10) with B = 2, q = (p+ a)/2 and mA2/4 ≥ (p+ a)− 1/2:∫ +∞

A
rp+a−1e−mr

2/8dr = 2−1

(
4

m

)(p+a)/2 ∫ +∞

mA2/4
y(p+a)/2−1e−ydy

≤
(

4

m

)(p+a)/2(mA2

4

)(p+a)/2−1

e−mA
2/4

= Aa
(

4

m

)p/2(mA2

4

)p/2−1

e−mA
2/4.

This yields ∫
BcA

‖θ‖a2 π(θ) dθ ≤ 2Aa

Γ(p/2)

(
2M

m

)p/2(mA2

4

)p/2−1

e−mA
2/4.

The last bound ensures that the inequality∫
BcA

‖θ‖a2 π(θ) dθ ≤ 2Aa

Γ(p/2)
(12)

is fulfilled whenever ϕ(x) := x− c log(x)− b ≥ 0, where

x =
mA2

4
, c =

p

2
− 1, b =

p

2
log

(
2M

m

)
> 0.

Taylor’s expansion around yc := 2(c+ 1) log(c+ 1) yields

ϕ(yc + 2b) = ϕ(yc) + ϕ
′
(y)× 2b

for some y ≥ yc. The latter implies that

ϕ
′
(y) = 1− c

y
≥ 1− c

yc
≥ 1/3.

We get ϕ(yc + 2b) ≥ yc − c log(yc) + b − b ≥ 0. Since the map ϕ is increasing on [c,+∞)
and yc + 2b ≥ c, we conclude that (12) is fulfilled for any

A2 ≥ 4

m
(p log(p/2) + p log(2M/m)) =

4p

m
log

(
pM

m

)
.

Finally, we choose A such that this inequality and the two additional assumptions: A ≥ 2R
and mA2/4 ≥ (p+ a)− 1/2 hold. If p ≥ 3 we can choose

A = (4R)
∨(

4(p+ a)

m
log
(pM
m

))1/2

.

This yields the claim of Proposition 3.
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A.4 Proof of Proposition 4

Define f = − log π and for any θ ∈ Rp:

f̄(θ) := f(θ) +
m

2
(‖θ‖2 −R)2

1‖θ‖2≤R.

For any θ ∈ Rp, we have f̄(θ) ≤ f(θ) +mR2/2 , this yields∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ emR2/2

∫
Rp
‖θ − θ∗‖a2e−f̄(θ)dθ.

Now we define the normalising constant

C̄ :=

∫
Rp
e−f̄(θ)dθ

and the corresponding probability density π̄(θ) := e−f̄(θ)/C̄. The constant C̄ ≤ 1 since
f(θ) ≤ f̄(θ) for every θ ∈ Rp. Therefore we have∫

Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ emR2/2

∫
Rp
‖θ − θ∗‖a2 π̄(θ) dθ.

By construction the density π̄ is m-strongly log-concave. We apply Lemma 2 on this last
term and get the claim of Proposition 4.

A.5 Technical Lemmas

Lemma 1 Suppose that π has a finite fourth-order moment. Then α 7→ µ2(πα) is contin-
uously differentiable and non-increasing, when α ∈ [0,+∞).

Proof For k ∈ N ∪ {0}, define

hk(α) =

∫
Rp
‖θ‖k2 exp

(
−f(θ)− α‖θ‖22/2

)
dθ.

If π ∈ Pk(Rp) then the function hk is continuous on [0; +∞). Indeed, if the sequence {αn}n
converges α0, when n → +∞, then the function ‖θ‖k2 exp

(
−f(θ)− (1/2)αn‖θ‖22

)
is upper-

bounded by ‖θ‖k2 exp (−f(θ)). Thus in view of the dominated convergence theorem, we can
interchange the limit and the integral. Since, by definition,

µkk(πα) =
hk(α)

h0(α)
,

we get the continuity of µ2(πα) and µ4(πα). Let us now prove that hk(t) is continuously
differentiable, when π ∈ Pk+2(Rp). The integrand function in the definition of hk is a con-
tinuously differentiable function with respect to t. In addition, its derivative is continuous
and is as well integrable on Rp, as we supposed that π has the (k+2)-th moment. Therefore,
the Leibniz integral rule yields the following

h′k(α) = −1

2

∫
Rp
‖θ‖k+2

2 exp
(
−f(θ)− α‖θ‖22/2

)
dθ = −1

2
hk+2(t).
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The latter yields the smoothness of hk. Finally, in order to prove the monotonicity of
µ2

2(πα), we will simply compute its derivative(
µ2

2(πα)
)′

= − 1

2h0(α)
h4(α)− h′0(α)

h0(α)2
h2(α)

= −1

2
µ4

4(πα) +
h2

2(α)

2h0(α)2

=
1

2

(
µ4

2(πα)− µ4
4(πα)

)
.

Since the latter is always negative, this completes the proof of the lemma.

Lemma 2 Let a > 0 and m > 0. Assume f = − log π is m-strongly convex. Then∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤

( p
m

)1/2
(2 + a/2p)1a>2 .

Proof In view of Durmus and Moulines (2019),∫
Rp
‖θ − θ∗‖22 π(θ) dθ ≤ p

m
.

The monotonicity of the La-norm directly yields the claim of the lemma for a ≤ 2.
In the case a > 2, we use Theorem 1 from Hargé (2004). The result is formulated as

follows. Assume that X ∼ Np(µ,Σ) with density ϕ and Y with density ϕ · ψ where ψ is a
log-concave function. Then for any convex map g : Rp 7→ R we have

E[g(Y −E[Y ])] ≤ E[g(X −E[X])].

Since f = − log π is m-strongly convex, the particular choice µ = 0p and Σ = mIp yields
the log-concavity of π/ϕ. Applied to the convex map g : θ 7→ ‖θ‖a2, the inequality of Hargé
(2004) yields

Eπ[‖ϑ−Eπ[ϑ]‖a2] ≤ E[‖X‖a2] =
( p
m

)a/2 Γ((p+ a)/2)

Γ(p/2)(p/2)a/2

using known moments of the chi-square distribution.
For any y > 0 the map x 7→ x−yΓ(x + y)/Γ(x) goes to 1 when x goes to infinity. For

convenience, we use an explicit bound from (Qi et al., 2012, Theorem 4.3), that is

∀y ≥ 1, x−yΓ(x+ y)/Γ(x) ≤ (1 + y/x)y−1 .

When applied to x = p/2 and y = a/2 > 1, this yields

Eπ[‖ϑ−Eπ[ϑ]‖a2] ≤
( p
m

)a/2
(1 + a/p)a/2−1 . (13)

We now bound the distance between the mean and the mode

‖Eπ[ϑ]− θ∗‖2 ≤ Eπ[‖ϑ− θ∗‖2] ≤ (p/m)1/2. (14)
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Using the triangle inequality, followed by (13) and (14), this yields

(∫
Rp
‖θ − θ∗‖a2 π(θ) dθ

)1/a

≤
(
E[‖θ −Eπ[θ]‖a2]

)1/a
+ ‖Eπ[θ]− θ∗‖2

≤ (p/m)1/2 (1 + a/p)1/2 + (p/m)1/2.

Using the inequality (1 + a/p)1/2 ≤ 1 + a/(2p), we get the claim of the lemma for a > 2.

Lemma 3 Let f : Rp → R be a twice differentiable convex function such that ∇2f(θ) �
MIp for every θ ∈ R, and let θ∗ ∈ Rp be a minimizer of f . Assume that there exist a
measurable map m : [0,+∞) 7→ [0,M ] such that ∇2f(θ) � m(‖θ‖2)Ip for any θ ∈ Rp. Let
a > 0 and A > 0. Define the ball BA = {θ ∈ Rp : ‖θ − θ∗‖2 ≤ A}. We have

∫
BcA

‖θ − θ∗‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)

∫ +∞

A
rp+a−1e−m̃(r) r2/2dr,

where

m̃(r) = 2

∫ 1

0
(1− t)m(tr) dt.

Proof Without loss of generality, we assume that θ∗ = 0p and f(0p) = 0. Therefore, the
density π is such that π(θ) = e−f(θ)/C where

C =

∫
Rp
e−f(θ)dθ ≥

∫
Rp

exp
{
−M‖θ‖22/2

}
dθ

by the fact that ∇2f(θ) �MIp for every θ ∈ Rp.
Now, for any r > 0 and any θ ∈ Rp such that ‖θ‖2 = r, Taylor’s expansion around the

minimum 0p yields

f(θ)− f(0p) = θ>
(∫ 1

0

∫ s

0
∇2f(tθ) dt ds

)
θ

≥ ‖θ‖22
∫ 1

0

∫ s

0
m(t‖θ‖2) dt ds

= r2

∫ 1

0

∫ s

0
m(tr) dt ds

=
r2

2
× 2

∫ 1

0
(1− t)m(tr) dt︸ ︷︷ ︸

=m̃(r)

.
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We combine this fact with the lower bound on C to get∫
BcA

‖θ‖a2 π(θ) dθ ≤ C−1

∫
‖θ‖2≥A

‖θ‖a2e−f(θ)dθ

≤
(∫

Rp
e−M‖θ‖

2
2/2dθ

)−1 ∫
‖θ‖2≥A

‖θ‖a2e−m̃(‖θ‖2)‖θ‖22/2dθ

=

(∫ +∞

0
rp−1e−Mr2/2dr

)−1 ∫ +∞

A
ra+p−1e−m̃(r)r2/2dr

=
2(M/2)p/2

Γ(p/2)

∫ +∞

A
ra+p−1e−m̃(r)r2/2dr

where the first equality follows from a change of variables in polar coordinates, where the
volume of the sphere cancels out in the ratio.

Lemma 4 Assume that π(θ) ∝ e−f(θ), where

f(θ) = 0.5‖θ‖221‖θ‖2≤1 + ‖θ‖21‖θ‖2>1.

For any a > 0 and for any p ≥ 2 ∨ (a− 1),

µaa(π) ≥ 0.1Γ(p+ a)/Γ(p) ≥ 0.1(p− 1)a.

Consequently, under assumptions of Proposition 2 (here with m = R = 1), the upper bound
O(p) on µa is not improvable.

Proof Remark first that f(θ) = ϕ(‖θ‖2) where ϕ(r) := 0.5r21r≤1 + r1r>1. We compute
explicitly the moment by a change of variable in polar coordinates∫

Rp
‖θ‖a2 π(θ) dθ =

(∫ +∞

0
rp−1e−ϕ(r)dr

)−1 ∫ +∞

0
rp+a−1e−ϕ(r)dr

=
Γ(p+ a) +

∫ 1
0 r

p+a−1(e−r
2/2 − e−r)dr

Γ(p) +
∫ 1

0 r
p−1(e−r2/2 − e−r)dr

.

Using the fact that (0.2)r ≤ e−r2/2 − e−r ≤ r for 0 < r < 1 yields∫
Rp
‖θ‖a2 π(θ) dθ ≥ Γ(p+ a) + 0.2/(p+ a+ 1)

Γ(p) + 1/(p+ 1)

≥ Γ(p+ a) + 0.1/(p+ 1)

Γ(p) + 1/(p+ 1)

≥ (0.1)Γ(p+ a)/Γ(p)

where the second inequality follows from the fact that a ≤ p+ 1 by assumption, while the
last inequality follows from the fact that Γ(·) is an increasing function on [2,+∞). This
proves the claim of the lemma.
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Lemma 5 Let Γ(k, x) be the upper incomplete Gamma function. Let k > 2 be a real

number, then µk ≤ A
1/k
k µ2 where Ak = minλ>2,γ>1Ak(λ, γ) with

Ak(λ, γ) =

√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
kΓ
(
k,
γ1/2 log(λ− 1)

2

)
+
k(γλ)k/2−1 − 2

k − 2
. (15)

Proof Let λ > 1 be fixed throughout the proof and define A = {θ ∈ Rp : ‖θ‖22 ≤ λµ2
2}.

From Markov’s inequality we have

π(A) ≥ 1− Eπ[‖ϑ‖22]

λµ2
2

= 1− 1

λ
.

The set A being symmetric, Proposition 2.14 from (Ledoux, 2001) implies that

1− π(sA) ≤ π(A)

(
1− π(A)

π(A)

)(s+1)/2

,

for every real number s larger than 1. Since the right-hand side is a decreasing function of
π(A), we obtain the following bound on π(sA{):

π(sA{) ≤ 1

λ(λ− 1)(s−1)/2
, ∀s ≥ 1. (16)

Let us introduce the random variable η as ‖ϑ‖2/µ2, where ϑ ∼ π. It is clear that (15) is
equivalent to

E[ηk] ≤
√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
kΓ
(
k,
γ1/2 log(λ− 1)

2

)
+
k(γλ)k/2−1 − 2

k − 2
.

Since η > 0 almost surely,

E[ηk] =

∫ ∞
0

P(ηk > u) du = k

∫ ∞
0

tk−1P(η > t) dt.

Thus, the proof of the lemma reduces to bound the tail of η. The definition of η and
inequality (16) yield

P(η > t) = P(‖ϑ‖2 > tµ2) = π

(
t√
λ
· A{

)
≤ 1

λ(λ− 1)(t−
√
λ)/2
√
λ
,

for every t >
√
λ. We choose γ > 1 and apply this inequality to t >

√
γλ. For the other

values of t, that is when t ≤
√
γλ, we apply Markov’s inequality to get P(η > t) ≤ 1 ∧ t−2.

Combining these two bounds, we arrive at

E[ηk] ≤ k
∫ ∞
√
γλ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt+

∫ √γλ
0

ktk−1(1 ∧ t−2)dt

= k

∫ ∞
√
γλ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt+

k(γλ)k/2−1 − 2

k − 2
.
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Figure 2: Shapes of the surfaces defined by the functions A3(·, ·) and A4(·, ·), see Lemma 5.

The first integral of the last sum can be calculated using the upper incomplete gamma
function Γ(k, z). Indeed, the change of variable z = t log(λ− 1)/(2

√
λ) yields∫ ∞

√
γλ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt =

√
λ− 1

λ

∫ ∞
√
γλ
tk−1 exp

(
− log(λ− 1)

t

2
√
λ

)
dt

=

√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k ∫ ∞
γ1/2 log(λ−1)

2

zk−1e−z dz

=

√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
Γ
(
k,
γ1/2 log(λ− 1)

2

)
.

Finally, we obtain

E[ηk] ≤ k ·
√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
Γ
(
k,
γ1/2 log(λ− 1)

2

)
+
k(γλ)k/2−1 − 2

k − 2
.

This concludes the proof.

Remark 1 We displayed6 in Figure 2 the plots of the function Ak(·, ·) for k = 3 and
k = 4. Numerically, we find that the optimal choice for (λ, γ) is approximately λ = 15.89
and γ = 4.4 for k = 3 and λ = 14.97 and γ = 4.8 for k = 4. This leads to the numerical
bounds

Ak ≤

{
40.40, k = 3,

441.43, k = 4.

These constants are by no means optimal, but we are not aware of any better bound available
in the literature. Inequalities of type E[‖ϑ‖k2] ≤ AkE[‖ϑ‖22]k/2 are often referred to as

6. The R notebook for generating this figure can be found here https://rpubs.com/adalalyan/

Khintchine_constant
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the Kintchine inequality (Khintchine, 1923). According to (Cattiaux and Guillin, 2018),
Corollary 4.3 from (Bobkov, 1999) implies that A4 ≤ 49 for one-dimensional ϑ with log-
concave density. Getting such a small constant in the multidimensional case would be of
interest for applications to MCMC sampling.
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