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Abstract

This paper is concerned with test of the conditional independence. We first establish an
equivalence between the conditional independence and the mutual independence. Based on
the equivalence, we propose an index to measure the conditional dependence by quantifying
the mutual dependence among the transformed variables. The proposed index has several
appealing properties. (a) It is distribution free since the limiting null distribution of the
proposed index does not depend on the population distributions of the data. Hence the
critical values can be tabulated by simulations. (b) The proposed index ranges from zero
to one, and equals zero if and only if the conditional independence holds. Thus, it has
nontrivial power under the alternative hypothesis. (c) It is robust to outliers and heavy-
tailed data since it is invariant to conditional strictly monotone transformations. (d) It has
low computational cost since it incorporates a simple closed-form expression and can be
implemented in quadratic time. (e) It is insensitive to tuning parameters involved in the
calculation of the proposed index. (f) The new index is applicable for multivariate random
vectors as well as for discrete data. All these properties enable us to use the new index as
statistical inference tools for various data. The effectiveness of the method is illustrated
through extensive simulations and a real application on causal discovery.

Keywords: Conditional independence, mutual independence, distribution free.

1. Introduction

Conditional independence is fundamental in graphical models and causal inference (Jordan,
1998). Under multinormality assumption, conditional independence is equivalent to the
corresponding partial correlation being 0. Thus, partial correlation may be used to mea-
sure conditional dependence (Lawrance, 1976). However, partial correlation has low power
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in detecting conditional dependence in the presence of nonlinear dependence. In addition,
it cannot control Type I error when the multinormality assumption is violated. In gen-
eral, testing for conditional independence is much more challenging than for unconditional
independence (Zhang et al., 2011; Shah and Peters, 2020).

Recent works on test of conditional independence have focused on developing omnibus
conditional independence test without assuming specific functional forms of the dependen-
cies. Linton and Gozalo (1996) proposed a nonparametric conditional independence test
based on the generalization of empirical distribution function, and proposed using bootstrap
to obtain the null distribution of the proposed test. This diminishes the computational
efficiency. Other approaches include measuring the difference between conditional charac-
teristic functions (Su and White, 2007), the weighted Hellinger distance (Su and White,
2008), and the empirical likelihood (Su and White, 2014). Although these authors estab-
lished the asymptotical normality of the proposed test under conditional independence, the
performance of their proposed tests relies heavily on consistent estimate of the bias and
variance terms, which are quite complicated in practice. The asymptotical null distribu-
tion may perform badly with a small sample. Thus, the authors recommended obtaining
critical values of the proposed tests by a bootstrap. This results in heavy computation bur-
dens. Huang (2010) proposed a test of conditional independence based on the maximum
nonlinear conditional correlation. By discretizing the conditioning set into a set of bins,
the author transforms the original problem into an unconditional testing problem. Zhang
et al. (2011) proposed a kernel-based conditional independence test, which essentially tests
for zero Hilbert-Schmidt norm of the partial cross-covariance operator in the reproducing
kernel Hilbert spaces. The test also required a bootstrap to approximate the null distri-
bution. Wang et al. (2015) introduced the energy statistics into the conditional test and
developed the conditional distance correlation based on Székely et al. (2007), which can
also be linked to kernel-based approaches. But the test statistics requires to compute high
order U–statistics and therefore suffers heavy computation burden, which is of order O(n3)
for a sample with size n. Runge (2018) proposed a non-parametric conditional indepen-
dence testing based on the information theory framework, in which the conditional mutual
information was estimated directly via combining the k-nearest neighbor estimator with
a nearest-neighbor local permutation scheme. However, the theoretical distribution of the
proposed test is unclear.

In this paper, we develop a new methodology to test conditional independence and
propose conditional independence tests that are applicable for continuous or discrete random
variables or vectors. Let X, Y and Z be three continuous random variables. We are
interested in testing whether X and Y are statistically independent given Z:

H0 : X⊥⊥Y | Z, versus H1 : otherwise.

Here we focus on random variables for simplicity. We will consider test of conditional
independence for random vectors in Section 3. To begin with, we observe that with Rosen-
blatt transformation (Rosenblatt, 1952), i.e., U

def
= FX|Z(X | Z), V

def
= FY |Z(Y | Z) and

W
def
= FZ(Z), X⊥⊥Y | Z is equivalent to the mutual independence of U , V and W . Thus

we convert a conditional independence test into a mutual independence test, and any tech-
nique for testing mutual independence can be readily applied. For example, Chakraborty
and Zhang (2019) proposed the joint distance covariance to test mutual independence and
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Drton et al. (2020) constructed a family of tests with maxima of rank correlations in high
dimensions. However, these mutual independence tests do not consider the intrinsic proper-
ties of U , V and W . That is, U , V and W are all uniformly distributed, U⊥⊥W and V⊥⊥W .
This motivates us to develop a new index ρ to measure the mutual dependence. We show
that the index ρ has a closed form, which is much simpler than that of Chakraborty and
Zhang (2019). In addition, it is symmetric, invariant to strictly monotone transformations,
and ranges from zero to one, and is equal to zero if and only if U , V and W are mutually
independent. Based on the index ρ, we further proposed tests of conditional independence.
We would like to further note a recent work proposed by Zhou et al. (2020), who suggested
to simply test whether U and V are independent. However, this is not fully equivalent to
the conditional independence test and it is unclear what kind of power loss one might have.

The proposed tests have several appealing features. (a) The proposed test is distribution
free in the sense that its limiting null distribution does not depend on unknown parameters
and the population distributions of the data. The fact that both U and V are independent of
W makes the test statistic n-consistent under the null hypothesis without requiring under-
smoothing. In addition, even though the test statistic depends on U , V and W , which needs
to be estimated nonparametrically, we show that the test statistic has the same asymptotic
properties as the statistics where true U , V and W are directly available. This leads to
a distribution free test statistic when further considering that U, V and W are uniformly
distributed. Although some tests in the literature are also distribution free, the asymptotic
distributions are either complicated to estimate (e.g., Su and White, 2007) or rely on the
Gaussian process, which is not known how to simulate (e.g., Song, 2009) and would require
a wild bootstrap method to determine the critical values. Compared with existing ones, the
limiting null distribution of the proposed test depends on U , V and W only, and the critical
values can be easily obtained by a simulation-based procedure. (b) The proposed test has
nontrivial power against all fixed alternatives. The population version of the test statistic
ranges from zero to one and equals zero if and only if conditional independence holds.
Unlike many testing procedures that are weaker than that for conditional independence (e.g.,
Song, 2009), the equivalence between conditional independence and mutual independence
guarantees that the newly proposed test has nontrivial power against all fixed alternatives.
(c) The proposed test is robust since it is invariant to strictly monotone transformations
and thus, it is robust to outliers. Furthermore, U , V and W all have bounded support,
and therefore it is suitable for handling heavy-tailed data. (d) The proposed test has
low computational cost. It is a V –statistic, and direct calculation requires only O(n2)
computational complexity. (e) It is insensitive to tuning parameters involved in the test
statistics. The test statistics are n–consistent under the null hypothesis without under-
smoothing, and is hence much less sensitive to the bandwidth. The proposed index ρ is
extended to continuous random vectors and discrete data in Section 3. All these properties
enable us to use the new conditional independence test for various data.

The rest of this paper is organized as follows. In Section 2 we first show the equivalence
between conditional independence and mutual independence. We propose a new index to
measure the mutual dependence, and derive desirable properties of the proposed index in
Section 2.1. We propose an estimator for the new index in Section 2.2. The asymptotic
distributions of the proposed estimator under the null hypothesis, global alternative, and
local alternative hypothesis are derived in Section 2.2. We extend the new index to the
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multivariate and discrete cases in Section 3. We conduct numerical comparisons and apply
the proposed test to causal discovery in directed acyclic graphs in Section 4. Some final
remarks are given in Section 5. We provide some additional simulation results as well as all
the technical proofs in the appendix.

2. Methodology

To begin with, we establish an equivalence between conditional independence and mutual
independence. In this section, we focus on the setting in which X, Y and Z are continuous
univariate random variables, and the problem of interest is to test X⊥⊥Y | Z. Throughout
this section, denote U = FX|Z(X | Z), V = FY |Z(Y | Z) and W = FZ(Z). The proposed
methodology is built upon the following proposition.

Proposition 1 Suppose that X and Y are both univariate and have continuous conditional
distribution functions for every given value of Z, and Z is a continuous univariate random
variable. Then X⊥⊥Y | Z if and only if U, V and W are mutually independent.

We provide a detailed proof of Proposition 1 in the appendix. Essentially, it establishes
an equivalence between the conditional independence of X⊥⊥Y | Z and the mutual inde-
pendence among U , V and W under the conditions in Proposition 1. Therefore, we can
alleviate the hardness issue of conditional independence testing (Shah and Peters, 2020)
by restricting the distribution family of the data such that U , V and W can be estimated
sufficiently well using samples. As shown in our theoretical analysis, we further impose
certain smoothness conditions on the conditional distributions of X,Y | Z = z as z varies
in the support of Z. This distribution family is also considered in Neykov et al. (2021)
to develop a minimax optimal conditional independence test. We discuss the extension of
Proposition 1 to multivariate and discrete data in Section 3.

According to Proposition 1, any techniques for testing mutual independence among three
random variables can be readily applied for conditional independence testing problems. For
example, Chakraborty and Zhang (2019) proposed the joint distance covariance and Patra
et al. (2016) developed a bootstrap procedure to test mutual independence with known
marginals. However, a direct application of these metrics may not be a good choice because
it ignores the fact that the variables U , V and W are all uniformly distributed, as well as
U⊥⊥W and V⊥⊥W . Next, we discuss how to develop a new mutual independence test while
considering these intrinsic properties of (U, V,W ).

2.1 A mutual independence test

In this section, we propose to characterize the conditional dependence of X and Y given Z
through quantifying the mutual dependence among U , V and W . Although our proposed
test is based on the distance between characteristics functions, our proposed test is much
simpler and has different asymptotic distribution as well as different convergence rate from
the conditional distance correlation proposed by Wang et al. (2015). Let ω(·) be an arbi-
trary positive weight function and ϕU,V,W (·), ϕU (·), ϕV (·), and ϕW (·) be the characteristic
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functions of (U, V,W ), U , V and W , respectively. Then

U , V and W are mutually independent

⇐⇒ ϕU,V,W (t1, t2, t3) = ϕU (t1)ϕV (t2)ϕW (t3) for all t1, t2, t3 ∈ R

⇐⇒
∫∫∫ ∥∥ϕU,V,W (t1, t2, t3)− ϕU (t1)ϕV (t2)ϕW (t3)

∥∥2
ω(t1, t2, t3)dt1dt2dt3 = 0,

where ‖ψ‖2 = ψTψ for a complex-valued function ψ and ψ is the conjugate of ψ. By choosing
ω(t1, t2, t3) to be the joint probability density function of three independent and identically
distributed standard Cauchy random variables, the integration in the above equation has a
closed form,

Ee−|U1−U2|−|V1−V2|−|W1−W2| − 2Ee−|U1−U3|−|V1−V4|−|W1−W2|

+Ee−|U1−U2|Ee−|V1−V2|Ee−|W1−W2|, (1)

where (Uk, Vk,Wk), k = 1, . . . , 4, are four independent copies of (U, V,W ). Here the choice of
the weight function ω(t1, t2, t3) is mainly for the convenient analytic form of the integration.
Different from the distance correlation (Székely et al., 2007), our integration exists without
any moment conditions on the data, which is more widely applicable. Furthermore, the
integration has an exact upper bound. To see this, with the fact that U⊥⊥W and V⊥⊥W ,
(1) boils down to

E
{
SU (U1, U2)SV (V1, V2)e−|W1−W2|

}
, (2)

where SU (U1, U2) and SV (V1, V2) are defined as

SU (U1, U2) = E
{
e−|U1−U2| + e−|U3−U4| − e−|U1−U3| − e−|U2−U3| | (U1, U2)

}
,

SV (V1, V2) = E
{
e−|V1−V2| + e−|V3−V4| − e−|V1−V3| − e−|V2−V3| | (V1, V2)

}
.

Recall that U , V and W are uniformly distributed on (0, 1). With further calculations based
on (2), we obtain a normalized index and define it as ρ to measure the mutual dependence:

ρ(X,Y | Z) = c0E
{(

e−|U1−U2| + e−U1 + eU1−1 + e−U2 + eU2−1 + 2e−1 − 4
)

(
e−|V1−V2| + e−V1 + eV1−1 + e−V2 + eV2−1 + 2e−1 − 4

)
e−|W1−W2|}, (3)

where c0 = (13e−3 − 40e−2 + 13e−1)−1. Several appealing properties of the proposed index
ρ(X,Y | Z) are summarized in Theorem 2.

Theorem 2 Suppose that the conditions in Proposition 1 are fulfilled. The index ρ(X,Y |
Z) defined in (3) has the following properties:

(1) 0 ≤ ρ(X,Y | Z) ≤ 1, ρ(X,Y | Z) = 0 holds if and only if X⊥⊥Y | Z. Furthermore,
if FX|Z(X | Z) = FY |Z(Y | Z) or FX|Z(X | Z) + FY |Z(Y | Z) = 1, then ρ(X,Y | Z) = 1.

(2) The index ρ is symmetric conditioning on Z. That is, ρ(X,Y | Z) = ρ(Y,X | Z).
(3) For any strictly monotone transformations m1(·), m2(·) and m3(·), ρ(X,Y | Z) =

ρ {m1(X),m2(Y ) | m3(Z)}.
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The step-by-step derivation of ρ(X,Y | Z) and proof of Theorem 2 are presented in the
appendix. Property (1) indicates that the index ρ ranges from zero to one, equals zero
when the conditional independence holds, and is equal to one if Y is a strictly monotone
transformation of X conditional on Z. Property (2) shows that the index ρ is a symmetric
measure of conditional dependence. Property (3) illustrates that the index ρ is invariant to
any strictly monotone transformation. In fact, ρ is not only invariant to marginal strictly
monotone transformations, but also invariant to strictly monotone transformations condi-
tional on Z. For example, it can be verified that ρ(X,Y | Z) = ρ[m1{X−E(X | Z)}, Y | Z].

2.2 Asymptotic properties

In this section, we establish the asymptotic properties of the sample version of the proposed
index under the null and alternative hypothesis. Consider independent and identically
distributed samples {Xi, Yi, Zi}, i = 1, . . . , n. To estimate the proposed index ρ(X,Y | Z),
we apply the nonparametric kernel estimator for the conditional cumulative distribution
function (Li and Racine, 2007). Specifically, define

f̂Z(z) = n−1
n∑
i=1

Kh(z − Zi),

Û = F̂X|Z(x | z) = n−1
n∑
i=1

Kh(z − Zi)1(Xi ≤ x)/f̂Z(z),

V̂ = F̂Y |Z(y | z) = n−1
n∑
i=1

Kh(z − Zi)1(Yi ≤ y)/f̂Z(z),

where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is the bandwidth. Besides,
we use empirical distribution function to estimate the cumulative distribution function,
i.e., Ŵ = F̂Z(z) = n−1

∑n
i=1 1(Zi ≤ z). The sample version of the index, denoted by

ρ̂(X,Y | Z), is thus given by

ρ̂(X,Y | Z) = c0n
−2
∑
i,j

{(
e−|Ûi−Ûj | + e−Ûi + eÛi−1 + e−Ûj + eÛj−1 + 2e−1 − 4

)
(
e−|V̂i−V̂j | + e−V̂i + eV̂i−1 + e−V̂j + eV̂j−1 + 2e−1 − 4

)
e−|Ŵi−Ŵj |

}
.

One can also obtain a normalized index ρ0, which is a direct normalization based on (1)
without considering U⊥⊥W and V⊥⊥W :

ρ0(X,Y | Z) = c0

{
Ee−|U1−U2|−|V1−V2|−|W1−W2| + 8e−3

−2E
(
2− e−U1 − eU1−1

) (
2− e−V1 − eV1−1

) (
2− e−W1 − eW1−1

)}
.

The corresponding moment estimator is

ρ̂0(X,Y | Z) = c0

n−2
∑
i,j

e−|Ûi−Ûj |−|V̂i−V̂j |−|Ŵi−Ŵj | + 8e−3

−2n−1
n∑
i=1

(
2− e−Ûi − eÛi−1

)(
2− e−V̂i − eV̂i−1

)(
2− e−Ŵi − eŴi−1

)}
.
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Although ρ(X,Y | Z) = ρ0(X,Y | Z) at the population level, those two statistics ρ̂(X,Y |
Z) and ρ̂0(X,Y | Z) exhibit different properties at the sample level. This is because
ρ̂(X,Y | Z) considers the fact that U⊥⊥W and V⊥⊥W . But on the other hand, ρ̂0(X,Y | Z)

is only a regular mutual independence test statistic, where Ûi, V̂i, and Ŵi are exchangeable.
When X⊥⊥Y | Z, under Conditions 1-4 listed below, ρ̂(X,Y | Z) is of order (n−1 + h4m),
while ρ̂0(X,Y | Z) is of order (n−1 + h2m) because of the bias caused by nonparametric
estimation. Note that m is the order of kernel functions and equal to 2 when using regular
kernel functions such as Gaussian and epanechnikov kernels. This indicates that ρ̂(X,Y | Z)
is essentially n consistent without under-smoothing while ρ̂0(X,Y | Z) typically requires
under-smoothing. In addition, our statistic ρ̂(X,Y | Z) has the same asymptotic properties
as if U, V and W are observed, but ρ̂0(X,Y | Z) does not. See Figure 1 for a numerical
comparison between the empirical null distributions of the two statistics.

We next study the asymptotical behaviors of the estimated index, ρ̂(X,Y | Z), un-
der both the null and the alternative hypotheses. The following regularity conditions are
imposed to facilitate our subsequent theoretical analyses. In what follows, we derive the
limiting distribution of ρ̂(X,Y | Z) under the null hypothesis in Theorem 3.

Condition 1. The univariate kernel function K(·) is symmetric about zero and Lipschitz
continuous. In addition, it satisfies∫

K(υ)dυ = 1,

∫
υiK(υ)dυ = 0, 1 ≤ i ≤ m− 1, 0 6=

∫
υmK(υ)dυ <∞.

Condition 2. The bandwidth h satisfies nh2/ log2(n)→∞, and nh4m → 0.

Condition 3. The probability density function of Z, denoted by fZ(z) is bounded away
from 0 to infinity.

Condition 4. The (m − 1)th derivatives of FX|Z(x | z)f(z), FY |Z(y | z)f(z) and fZ(z)
with respect to z are locally Lipschitz-continuous.

Theorem 3 Suppose that Conditions 1-4 hold and the conditions in Proposition 1 are
fulfilled. Under the null hypothesis,

nρ̂(X,Y | Z)→ c0

∞∑
j=1

λjχ
2
j (1),

in distribution, where χ2
j (1), j = 1, 2, . . . are independent chi-square random variables with

one degree of freedom, and λjs, j = 1, 2, . . . are eigenvalues of

h(u, v, w;u′, v′, w′) = (e−|u−u
′| + e−u + eu−1 + e−u

′
+ eu

′−1 + 2e−1 − 4)(e−|v−v
′|

+e−v + ev−1 + e−v
′
+ ev

′−1 + 2e−1 − 4)e−|w−w
′|.

That is, there exists orthonormal eigenfunction Φj(u, v, w) such that

∫ 1

0

∫ 1

0

∫ 1

0
h(u, v, w;u′, v′, w′)Φj(u

′, v′, w′)du′dv′dw′ = λjΦj(u, v, w).
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The proof of Theorem 3 is given in the appendix. To understand the asymptotic distri-
butions intuitively, we showed in the proof that nρ̂(X,Y | Z) can be approximated by
degenerate V-statistics, i.e.,

nρ̂(X,Y | Z) = c0n
−1
∑
i,j

h(Ui, Vi,Wi;Uj , Vj ,Wj) + op(n
−1),

and E{h(Ui, Vi,Wi;Uj , Vj ,Wj) | (Ui, Vi,Wi)} = 0. By the spectral decomposition,

h(u, v, w;u′, v′, w′) =

∞∑
j=1

λjΦj(u, v, w)Φj(u
′, v′, w′).

Therefore, nρ̂(X,Y | Z) = c0
∑∞

j=1 λj{n−1/2
∑n

i=1 Φj(Ui, Vi,Wi)}2 + op(n
−1), which con-

verges in distribution to the weighted sum of independent chi squared distributions provided
in Theorem 3 because n−1/2

∑n
i=1 Φj(Ui, Vi,Wi) is asymptotically standard normal (Ko-

rolyuk and Borovskich, 2013). Moreover, the λjs, j = 1, 2, . . . are real numbers associated
with the distribution of U , V and W , all of which follow uniform distributions on [0, 1]. In
addition, U , V and W are mutually independent under the null hypothesis. This indicates
that the proposed test statistic is essentially distribution free under the null hypothesis.
However, the critical value may be difficult to calculate because of the complicated form of
limiting distribution. Therefore, we suggest a simulation procedure to approximate the null
distribution and decide the critical value, which is commonly used in the literature (e.g.,
Székely et al., 2007; Zhu et al., 2018). The simulation procedure can be independent of the
original data and hence greatly improved the computation efficiency. In what follows, we
describe the simulation-based procedure in detail to decide the critical value cα.

1. Generate {U∗i , V ∗i ,W ∗i }, i = 1, . . . , n independently from mutually independent stan-
dard uniform distributions;

2. Compute the statistic ρ̂∗ based on {U∗i , V ∗i ,W ∗i }, i = 1, . . . , n, i.e.,

ρ̂∗ = c0n
−2
∑
i,j

{(
e−|U

∗
i −U∗j | + e−U

∗
i + eU

∗
i −1 + e−U

∗
j + eU

∗
j −1 + 2e−1 − 4

)
(
e−|V

∗
i −V ∗j | + e−V

∗
i + eV

∗
i −1 + e−V

∗
j + eV

∗
j −1 + 2e−1 − 4

)
e−|W

∗
i −W ∗j |

}
. (4)

3. Repeat Steps 1-2 for B times and set cα to be the upper α quantile of the estimated
ρ̂∗ obtained from the randomly simulated samples.

Because (U∗, V ∗,W ∗) has the same distribution as that of (U, V,W ) under the null hy-
pothesis, it is straightforward that this simulation-based procedure can provide a valid
approximation of the asymptotic null distribution of ρ̂(X,Y | Z) when B is large. The
consistency of this procedure is guaranteed by Theorem 4.

Theorem 4 Under Conditions 1-4, it follows that

nρ̂∗ → c0

∞∑
j=1

λjχ
2
j (1)
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in distribution, where χ2
j (1), j = 1, 2, . . . are independent χ2(1) variables, and λj, j =

1, 2, . . . are the same as that of Theorem 3.

Theorem 4 shows that the simulation based approximation is valid. It also serves as
the practical tool we use in the numerical analysis. Different from other conditional in-
dependence tests, our test only require one round of simulation to approximate the null
distribution, which saves huge computation costs in practice.

Next, we study the power performance of the proposed test under two kinds of alternative
hypotheses, under which the conditional independence no longer holds. We first consider
the global alternative, denoted by H1g, we have

H1g : X 6⊥⊥ Y | Z.

We then consider a sequence of local alternatives, denoted by H1l,

H1l : FX|Z(x | Z = z)− FX|(Y,Z) {x | (Y = y, Z = z)} = n−1/2`(x, y, z).

The asymptotical properties of the test statistics ρ̂(X,Y | Z) under the global alternative
and local alternatives are given in Theorem 5, whose proof is in the appendix. Theorem 5
shows that the proposed test is consistent against all fixed alternatives, and can detect local
alternatives at rate O(n−1/2).

Theorem 5 Suppose that Conditions 1-4 hold and the conditions in Proposition 1 are
fulfilled. Under H1g, when nh2m → 0,

n1/2 {ρ̂(X,Y | Z)− ρ(X,Y | Z)} → N (0, σ2
0),

in distribution, where σ2
0

def
= 4c2

0var(P1,1 + P2,1 + P3,1 + P4,1), and (P1,1, P2,1, P3,1, P4,1) are
defined in (7)-(10) in the appendix, respectively.

Under H1l,

nρ̂(X,Y | Z)→
∫∫∫

‖ζ(t1, t2, t3)‖2 ω(t1, t2, t3)dt1dt2dt3,

in distribution, where ζ(t1, t2, t3) stands for a complex-valued Gaussian random process with
mean function E

[
it1`(X,Y, Z)eit1U

{
eit2V − ϕV (t2)

}
eit3W

]
and covariance function defined

in (11) in the appendix, and ω(t1, t2, t3) is the joint probability density function of three
independent and identically distributed standard Cauchy random variables.

Theorems 3 and 5 reveal that, ρ̂ is n-consistent under the null hypothesis while root-n
consistent under the fixed alternative, indicating that the proposed test is consistent to
detect the fixed alternative when ρ is bounded away from zero. Under the local alternative
hypothesis, ρ̂ is n-consistent and the limiting distribution is different from that of the
limiting null distribution, implying that the proposed test would have nontrivial power
when the distance between the alternative and the null is O(n−1/2).
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3. Extensions

3.1 Multivariate continuous data

The methodology developed in Section 2 assumes that all the variables are univariate.
In this section, we generalize the proposed index ρ to the multivariate case. Let x =
(X1, . . . , Xp)

T ∈ Rp, y = (Y1, . . . , Yq)
T ∈ Rq and z = (Z1, . . . , Zr)

T ∈ Rr be continu-
ous random vectors. More specifically, all elements of x, y and z are continuous ran-
dom variables. Define FX1|z(X1 | z) for the cumulative distribution function of X1 given
z and FXk|z,X1,...,Xk−1

(Xk | z, X1, . . . , Xk−1) for the cumulative distribution function of
Xk given z, X1, . . . , Xk−1 for k = 2, · · · , p. Similar notation apply for y and z. Denote
Ũ1 = FX1|z(X1 | z), Ṽ1 = FY1|z(Y1 | z), W̃1 = FZ1(Z1),

Ũk = FXk|z,X1,...,Xk−1
(Xk | z, X1, . . . , Xk−1), k = 2, . . . , p,

Ṽk = FYk|z,Y1,...,Yk−1
(Yk | z, Y1, . . . , Yk−1), k = 2, . . . , q,

W̃k = FZk|Z1,...,Zk−1
(Zk | Z1, . . . , Zk−1), k = 2, . . . , r.

Further denote u = (Ũ1, . . . , Ũp)
T, v = (Ṽ1, . . . , Ṽq)

T, w = (W̃1, . . . , W̃r)
T. Similar to test

of conditional independence for random variables, we first establish an equivalence between
the conditional independence x⊥⊥y | z and the mutual independence of u,v and w, which
is stated in Theorem 6.

Theorem 6 Assume that all the conditional cumulative distribution functions used in con-
structing u,v and w are continuous for every given values, then x⊥⊥y | z if and only if u,v
and w are mutually independent.

The proof of Theorem 6 is illustrated in the appendix. Theorem 6 established an equiv-
alence between the conditional independence x⊥⊥y | z and the mutual independence among
u, v and w. It is notable that when p, q, r are relatively large, (u,v,w) may be difficult
to estimate because of the curse of dimensionality. In this paper, we mainly focus on the
low dimensional case. Next, we develop the mutual independence test among u,v and w.
Similar as the univariate case, we set the weight function to be the joint density of (p+q+r)
independent and identically distributed standard Cauchy random variables. We may further
derive the closed form expression of ρ(x,y | z)

ρ(x,y | z) = E
{
Su(u1,u2)Sv(v1,v2)e−‖w1−w2‖1

}
,

where (u1,v1,w1) and (u2,v2,w2) are two independent copies of (u,v,w). Moreover,

Su(u1,u2) = E
{
e−‖u1−u2‖1 + e−‖u3−u4‖1 − e−‖u1−u3‖1 − e−‖u2−u3‖1 | (u1,u2)

}
,

Sv(v1,v2) = E
{
e−‖v1−v2‖1 + e−‖v3−v4‖1 − e−‖v1−v3‖1 − e−‖v2−v3‖1 | (v1,v2)

}
.

and ‖·‖1 is the `1 norm. Then ρ(x,y | z) is nonnegative and equals zero if and only if x⊥⊥y |
z. By estimating ρ(x,y | z) consistently at the sample level, the resulting test is clearly
consistent. To implement the test, it is still required to study the asymptotic distributions
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under the conditional independence using independent and identically distributed samples
{xi,yi, zi}, i = 1, . . . , n. We also apply kernel estimator for the conditional cumulative
distribution functions when estimating ui,vi and wi. Specifically, we estimate FA|B1,...,B`

(a |
b1, . . . , b`) with

F̂A|B1,...,B`
(a | b1, . . . , b`) =

∑n
i=1 1(Ai ≤ a)

∏`
k=1Kh(Bik − bk)∑n

i=1

∏`
k=1Kh(Bik − bk)

.

where (A,B1, . . . , B`)
T are (Zk, Z1, . . . , Zk−1)T, k = 2, . . . , r, (X`, X1, . . . , X`−1, z

T)T, ` =
1, . . . , p, or (Yj , Y1, . . . , Yj−1, z

T)T, j = 1, . . . , q when estimating w, u and v, respectively.
The sample version of ρ(x,y | z) is given by

ρ̂(x,y | z) = n−2
∑
i,j

E
[{

e−‖ûi−ûj‖1 + e−‖u−u
′‖1 − e−‖ûi−u‖1 − e−‖u−ûj‖1 | (ûi, ûj)

}
E
{
e−‖v̂i−v̂j‖1 + e−‖v−v

′‖1 − e−‖v̂i−v‖1 − e−‖v−v̂j‖1 | (v̂i, v̂j)
}
e−‖ŵi−ŵj‖1

]
,

where (u′,v′) is an independent copy of (u,v), and further calculations yield that ρ̂(x,y | z)
is equal to

n−2
∑
i,j

[{
e−‖ûi−ûj‖1 + (

2

e
)p −

p∏
k=1

(2− e−
̂̃
U ik−1 − e−

̂̃
U ik)−

p∏
k=1

(2− e−
̂̃
Ujk−1 − e−

̂̃
Ujk)

}
{
e−‖v̂i−v̂j‖1 + (

2

e
)q −

q∏
k=1

(2− e−
̂̃
V ik−1 − e−

̂̃
V ik)−

q∏
k=1

(2− e−
̂̃
V jk−1 − e−

̂̃
V jk)

}
e−‖ŵi−ŵj‖1

]
.

We next study the asymptotical behaviors of ρ̂(x,y | z) under the null hypothesis in The-
orem 7, whose proof is given in the appendix. We begin by providing some regularity
conditions for the multivariate data.

Condition 2′. The bandwidth h satisfies nh2(r+p−1)/ log2(n)→∞, nh2(r+q−1)/ log2(n)→
∞, and nh4m → 0.

Condition 3′. The probability density function of the random vector (Z1, . . . , Zk)
T,

k = 1, . . . , r, (zT, X1, . . . , X`)
T, ` = 1, . . . , p− 1, and (zT, Y1, . . . , Yj)

T, j = 1, . . . , q − 1, are
all bounded away from 0 to infinity.

Condition 4′. The (m−1)th derivatives of FA|B(a | b)fB(b), and fB(b) with respect to
b are locally Lipschitz-continuous, where (A,BT)T can be any one of (Zk, Z1, . . . , Zk−1)T,
k = 2, . . . , r, (X`, X1, . . . , X`−1, z

T)T, ` = 1, . . . , p, or (Yj , Y1, . . . , Yj−1, z
T)T, j = 1, . . . , q.

Theorem 7 Suppose that Conditions 1 and 2′-4′ hold and the conditions in Theorem 6 are
fulfilled. Under the null hypothesis,

nρ̂(x,y | z)→
∞∑
j=1

λjχ
2
j (1),

in distribution, where χ2
j (1), j = 1, 2, . . . are independent chi-square random variables with

one degree of freedom, and λjs, j = 1, 2, . . . are eigenvalues of

h̃(u,v,w;u′,v′,w′) = Su(u,u′)Sv(v,v′)e−‖w−w
′‖1 .

11
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That is, there exists orthonormal eigenfunction Φj(u,v,w) such that∫∫∫
[0,1]p+q+r

h̃(u,v,w;u′,v′,w′)Φj(u
′,v′,w′)du′dv′dw′ = λjΦj(u,v,w).

3.2 Discrete data

In this section, we discuss the setting in which X, Y and Z are univariate discrete random
variables. Specifically, we apply transformations in Brockwell (2007) to obtain U and V .
Define FX|Z(x | z) = Pr(X ≤ x | Z = z), FX|Z(x− | z) = Pr(X < x | Z = z), FY |Z(y |
z) = Pr(Y ≤ y | Z = z), and FY |Z(y− | z) = Pr(Y < y | Z = z). We further let UX and
UY be two independent and identically distributed U(0, 1) random variables, and apply the
transformations

U = (1− UX)FX|Z(X− | Z) + UXFX|Z(X | Z),

V = (1− UY )FY |Z(Y− | Z) + UY FY |Z(Y | Z).

According to Brockwell (2007), both U and V are uniformly distributed on (0, 1). In
addition, U⊥⊥Z and V⊥⊥Z. In the following proposition, we establish the equivalence
between the conditional independence and the mutual independence.

Theorem 8 For discrete random variables X, Y and Z, X⊥⊥Y | Z if and only if U, V and
Z are mutually independent.

The proof of Theorem 8 is presented in the appendix. With Theorem 8, we turn a discrete
conditional independence problem into a mutual independence one. Hence similar tech-
niques can be readily applied for the mutual independence test and we omit them to avoid
verbosity.

4. Numerical Validations

4.1 Conditional independence test

In this section, we investigate the finite sample performance of the proposed methods. To
begin with, we illustrate that the null distribution of ρ̂(X,Y | Z) is indeed distribution free
as if U , V and W can be observed, and is insensitive to the bandwidth of the nonparametric
kernel. In comparison, the null distribution of ρ̂0(X,Y | Z) does not enjoy such properties.
To facilitate the analysis, let X = Z + ε1 and Y = Z + ε2, where Z, ε1 and ε2 are
independent and identically distributed. We consider three scenarios where Z, ε1, ε2 are
independently drawn from normal distribution N(0, 1), uniform distribution U(0, 1), and
exponential distribution Exp(1), respectively. It is clear that X and Y are conditionally
independent given Z. The sample size n is set to be 100.

The simulated null distributions based on nρ̂(X,Y | Z) and nρ̂0(X,Y | Z) are depicted
in Figure 1. The estimated kernel density curves of nρ̂(X,Y | Z) based on 1000 repetitions
are shown in Figure 1(a), where the reference curve is generated by the simulation-based
statistic nρ̂∗(X,Y | Z) defined in (4). Clearly all the estimated density curves are close
to the reference, indicating that limiting null distribution of the estimated index is indeed
distribution free as if no kernel estimation is involved. In comparison, we apply the same
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Table 1: Empirical power of tests of conditional independence for Models M2 - M6 for
different bandwidth ch0, where c increase from 0.5 to 1.5. The significance level α = 0.05,
n = 100.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

M2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
M3 0.957 0.962 0.98 0.977 0.975 0.971 0.972 0.968 0.955 0.960 0.956
M4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
M5 0.999 1.000 0.997 0.998 0.999 0.997 0.995 0.997 0.999 0.997 0.997
M6 0.999 0.999 0.999 1.000 0.999 0.999 0.996 1.000 0.999 1.000 1.000

simulation settings for ρ̂0(X,Y | Z) and plot the null distributions in Figure 1(b), from
which it can be seen that the involved estimation of U and V significantly influences the null
distribution of ρ̂0(X,Y | Z). To show the insensitivity of the choice of the bandwidth, we
set the bandwidths to be ch0, where c = 0.5, 1, and 2, respectively, and h0 is the bandwidth
obtained by the rule of thumb. The estimated kernel density curves of nρ̂(X,Y | Z) and
nρ̂0(X,Y | Z) based normal distributions with 1000 repetitions, together with the reference
curve, are shown in Figure 1(c) and (d), from which we can see that the null distributions
of nρ̂(X,Y | Z) almost remain the same for all choices of the bandwidths, implying that
our test is insensitive to the bandwidth of the nonparametric kernel. However, the null
distributions of nρ̂0(X,Y | Z) can be dramatically influenced when the bandwidth changes.

Next, we perform the sensitivity analysis under the alternative hypothesis using Models
M2 - M6, which will be listed shortly. We fix the sample size n = 100 and set the significance
level α = 0.05. To inspect how the power performance is varied with the choice of the
bandwidth, we set the bandwidths to be ch0, where h0 is the bandwidth obtained by the
rule of thumb and increase c from 0.5 to 1.5 step by 0.1. The respective empirical powers
are charted in Table 1, from which we can see that the test is the most powerful when c
is around 1. Therefore, we advocate using the rule of thumb (i.e., c = 1) to decide the
bandwidth in practice.

We compare our proposed conditional independence test (denoted by “CIT”) with some
popular nonlinear conditional dependence measure. They are, respectively, the conditional
distance correlation (Wang et al., 2015, denoted by “CDC”), conditional mutual informa-
tion (Scutari, 2010, denoted by “CMI”), and the KCI.test (Zhang et al., 2011, denoted
by “KCI”). We conduct 500 replications for each scenario. The critical values of the CIT
are obtained by conducting 1000 simulations. We first consider the following models with
random variable Z. In (M1), X⊥⊥Y | Z. This model is designed for examining the em-
pirical Type I error rate. While (M2)−(M6) are designed for examining the power of the
proposed test of conditional independence. Moreover, for M1 - M3, we generate X̃1, X̃2 and
Z independently from N(0, 1). For M4 - M6, we let Z ∼ N(0, 1), and generate X̃1, X̃2 ∼ t1
independently to investigate the power of the methods under heavy tailed distributions.

M1: X = X̃1 + Z, Y = X̃2 + Z.

M2: X = X̃1 + Z, Y = X̃2
1 + Z.

M3: X = X̃1 + Z, Y = 0.5 sin(πX̃1) + Z.

13



Cai, Li and Zhang

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normal
Uniform
Exponential
Reference

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Normal
Uniform
Exponential
Reference

(a) (b)

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c=0.5
c=1
c=2
Reference

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

c=0.5
c=1
c=2
Reference

(c) (d)

Figure 1: (a) and (b) are the simulated null distributions for nρ̂(X,Y | Z) and nρ̂0(X,Y | Z)
when data were generated from different distributions, while (c) and (d) are the simulated
null distributions for nρ̂(X,Y | Z) and nρ̂0(X,Y | Z) using different bandwidths, respec-
tively.

M4: X = X1 + Z, Y = X1 +X2 + Z.

M5: X =
√
|X1Z|+ Z, Y = 0.25X2

1X
2
2 +X2 + Z.

M6: X = log(|X1Z|+ 1) + Z, Y = 0.5(X2
1Z) +X2 + Z.

The empirical sizes for M1 and powers for the other five models at the significance levels
α = 0.05 and 0.1 are depicted in Table 2. In our simulation, we consider two sample sizes
n = 50 and 100. Table 2 indicates that the empirical sizes of all the tests are all very close
to the level α, which means that the Type I error can be controlled very well. As for the
empirical power performance of models M2−M6, the proposed test outperforms other tests
for both normal data and heavy tailed data, especially when n = 50.
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Table 2: Empirical size and power of tests of conditional independence when Z is random
variable at significance levels with α = 0.05 and 0.1 and n = 50 and 100.

n α Test M1 M2 M3 M4 M5 M6

50

0.05

CIT 0.056 1.000 0.572 1.000 0.954 0.888
CDC 0.050 0.886 0.338 0.837 0.881 0.473
CMI 0.048 0.380 0.070 0.829 0.898 0.448
KCI 0.038 0.884 0.250 0.191 0.048 0.010

0.1

CIT 0.098 1.000 0.712 1.000 0.974 0.938
CDC 0.134 0.970 0.562 0.934 0.930 0.642
CMI 0.088 0.484 0.132 0.854 0.912 0.485
KCI 0.088 0.968 0.344 0.323 0.145 0.042

100

0.05

CIT 0.048 1.000 0.960 1.000 1.000 0.997
CDC 0.066 0.998 0.694 0.918 0.971 0.624
CMI 0.054 0.402 0.070 0.877 0.904 0.424
KCI 0.040 1.000 0.444 0.371 0.095 0.020

0.1

CIT 0.112 1.000 0.998 1.000 1.000 0.999
CDC 0.158 1.000 0.834 0.974 0.985 0.745
CMI 0.098 0.496 0.124 0.902 0.926 0.455
KCI 0.088 1.000 0.598 0.513 0.199 0.057

We next examine the finite sample performance of the tests when Z is two-dimensional
random vector, i.e., z = (Z1, Z2). M7 is designed for examining the size since X⊥⊥Y | z.
Five conditional dependent model M8–M12 are designed to examine the power of the tests.
Similar as M1-M6, we generate X̃1, X̃2, Z1 and Z2 independently from N(0, 1) in each of
the following model.

M7: X = X̃1 + Z1 + Z2, Y = X̃2 + Z1 + Z2.

M8: X = X̃2
1 + Z1 + Z2, Y = log(X̃1 + 10) + Z1 + Z2.

M9: X = tanh(X̃1) + Z1 + Z2, Y = log(X̃2
1 + 10) + Z1 + Z2.

M10: X = X̃2
1 + Z1 + Z2, Y = log(X̃1Z1 + 10) + Z1 + Z2.

M11: X = X̃1 + Z1 + Z2, Y = sin(X̃1Z1) + Z1 + Z2.

M12: X = log(X̃1Z1 + 10) + Z1 + Z2, Y = exp(X̃1Z2) + Z1 + Z2.

Lastly, we study the finite sample performance of the tests when X, Y and Z are all
multivariate. Specifically, x = (X1, X2), y = (Y1, Y2), z = (Z1, Z2). M13 is designed to
examine the size of the tests, while M14 -M18 are designed to study the powers. We generate
X̃1, X2, Y2, Z1 and Z2 independently from N(0, 1) for each model in M13-M18.

M13: X1 = X̃1 + Z1, Y1 = Z1 + Z2.

M14: X1 = log(X̃1Z1 + 100) + Z1 + Z2, Y1 = exp(X̃1Z1) + Z1 + Z2.

M15: X = log(X̃2
1 + 100) + Z1 + Z2, Y1 = 0.1X̃3

1 + Z1 + Z2.

M16: X = log(X̃1 ∗ Z1 + 100) + Z1 + Z2, Y1 = 0.5X̃3
1Z

3
1 + Z1 + Z2.

M17: X = 0.1 exp(X̃1) + Z1 + Z2, Y1 = sin(X̃1) + |X̃1|+ Z1 + Z2.

M18: X = tanh(X̃1) + Z1 + Z2, Y1 = 0.5 log(X̃2
1 + 100) + 0.5X2 + Z1 + Z2.
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Table 3: Empirical size and power of conditional independence tests with z being random
vector, level α = 0.05 and 0.1, and sample size n = 50 and 100.

n α Test M7 M8 M9 M10 M11 M12

50

0.05

CIT 0.046 0.672 0.906 0.686 0.440 0.788
CDC 0.052 0.408 0.850 0.054 0.128 0.134
CMI 0.072 0.426 0.192 0.392 0.118 0.300
KCI 0.046 0.030 0.088 0.026 0.662 0.248

0.1

CIT 0.092 0.792 0.948 0.798 0.582 0.874
CDC 0.126 0.670 0.976 0.194 0.298 0.264
CMI 0.120 0.506 0.292 0.500 0.210 0.386
KCI 0.098 0.092 0.190 0.074 0.820 0.492

100

0.05

CIT 0.048 0.936 0.998 0.936 0.664 0.988
CDC 0.084 0.890 1.000 0.920 0.972 0.306
CMI 0.044 0.412 0.164 0.392 0.126 0.300
KCI 0.044 0.038 0.172 0.028 0.990 0.358

0.1

CIT 0.104 0.958 1.000 0.966 0.766 0.996
CDC 0.168 0.978 1.000 0.986 0.992 0.456
CMI 0.128 0.486 0.240 0.460 0.194 0.390
KCI 0.090 0.092 0.358 0.108 0.998 0.608

Simulation results of models M7−M12 and models M13−M18 are summarized in Tables
3 and 4, respectively, from which it can be seen that the proposed method outperforms all
other tests in terms of type I error and power. Furthermore, the numerical results seem to
indicates that when the conditional set is large, the conditional mutual information and the
kernel based conditional test tend to have relatively low power. The conditional distance
correlation has high power but suffers huge computational burden.

4.2 Application to causal discovery

In this section, we consider a real application of conditional independence test in causal
discovery of directed acyclic graphs. For a directed acyclic graph G = (V,E), the nodes
V = {1, 2, . . . , p} corresponds to a random vector x = (X1, . . . , Xp) ∈ Rp, and the set of
edges E ⊂ V ×V do not form any directed cycles. Two vertices X1 and X2 are d-separated
by a subset of vertices S if every path between them is blocked by S. One may refer to
Wasserman (2013) for a formal definition. Denote the joint distribution of x by P (x). The
joint distribution is said to be faithful with respect to a graph G if and only if for any
i, j ∈ V , and any subset S ⊂ V ,

Xi⊥⊥Xj | {Xr : r ∈ S} ⇔ node i and node j are d-separated by the set S.

One of the most famous algorithms for recovering the graphs satisfying the faithfulness
assumption is the PC–algorithm (Spirtes et al., 2000; Kalisch and Bühlmann, 2007). The
algorithm could recover the graph up to its Markov equivalence class, which are sets of
graphs that entail the same set of (conditional) independencies. The performance of the PC–
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Table 4: Empirical size and power of conditional independence tests when x, y and z are
random vectors. Level α = 0.05 and 0.1, and sample size n = 50 and 100.

n α Test M13 M14 M15 M16 M17 M18

50

0.05

CIT 0.05 1.000 1.000 1.000 0.363 0.986
CDC 0.019 0.022 0.984 0.304 0.120 0.833
CMI 0.01 0.582 0.812 0.205 0.082 0.020
KCI 0.036 0.036 0.047 0.042 0.052 0.688

0.1

CIT 0.100 1.000 1.000 1.000 0.564 0.997
CDC 0.092 0.064 1.000 0.733 0.262 0.939
CMI 0.028 0.6 0.915 0.294 0.170 0.054
KCI 0.086 0.081 0.099 0.083 0.118 0.886

100

0.05

CIT 0.026 1.000 1.000 1.000 0.873 1
CDC 0.048 0.032 1.000 0.965 0.38 0.999
CMI 0.004 0.498 1.000 0.211 0.218 0.036
KCI 0.044 0.042 0.052 0.05 0.068 0.999

0.1

CIT 0.077 1.000 1.000 1.000 0.965 1.000
CDC 0.127 0.13 1.000 1.000 0.567 1.000
CMI 0.013 0.523 1.000 0.338 0.378 0.077
KCI 0.087 0.077 0.102 0.091 0.119 1.000

algorithm relies heavily on the (conditional) independence tests because small mistakes at
the beginning of the algorithm may lead to a totally different directed acyclic graph (Zhang
et al., 2011). One of the most popular approach for testing conditional independence is the
partial correlation, under the assumption that the joint distribution P (x) follows Gaussian
distribution and the nodes relationship is linear (Kalisch and Bühlmann, 2007). Conditional
mutual information (Scutari, 2010) is another possible option. Zhang et al. (2011) proposed
a kernel-based conditional independence test for causal discovery in directed acyclic graphs.
In this section, we demonstrate how the proposed conditional independence index can be
applied for causal discovery in real data. Additional simulation results are relegated into
the appendix.

We analyze a real data set originally from the National Institute of Diabetes and Di-
gestive and Kidney Diseases (Smith et al., 1988). The dataset consists of serval medical
predictor variables for the outcome of diabetes. We are interested in the causal structural
of five variables: age, body mass index, 2-hour serum insulin, plasma glucose concentration
and diastolic blood pressure. After removing the missing data, we obtain n = 392 samples.
The PC–algorithm is applied to examine the causal structure of the five variables based on
the four different conditional independence measures. We implement the causal algorithms
by the R package pcalg (Kalisch et al., 2012). The estimated causal structure are shown in
Figure 2. The proposed test gives the same estimated graph as the partial correlation, since
the data is approximately normally distributed. To interpret the graph, note that age is
likely to affect the diastolic blood pressure. The plasma glucose concentration level is also
likely to be related to age. This is confirmed by the causal findings of (a), (b) and (c) in
Figure 2. Besides, serum insulin has plausible causal effects on body mass index, and is also
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related to plasma glucose concentration. The causal relationship between age and blood
pressure is not confirmed in part (c), the test of conditional mutual information. This is
not a surprise given the high false positive rate reported in Table 5 in the appendix. The
kernel based conditional independence is a little conservative and is not able to detect some
of the possible edges. To further illustrate the robustness of the proposed test, we make a
logarithm transformation on the data, and apply the same procedure again. The estimated
causal structures are reported in Figure 3. We observe that the proposed test results in
the same estimated structure as the original data, which echos property (4) in Theorem
2, i.e., the proposed test is invariant with respect to monotone transformations. However,
the partial correlation test yields more false positives, since the normality assumption is
violated.

age

body mass indexinsulin

glucose blood pressure

(a)

age

body mass indexinsulin

glucose blood pressure

(b)

(a) (b)

age

body mass indexinsulin

glucose blood pressure

(c)
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glucose blood pressure

(d)

(c) (d)

Figure 2: The estimated causal structure of the five variables by using the proposed test
in (a), partial correlation in (b), conditional mutual information in (c) and kernel based
conditional independence test in (d).
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age

body mass indexinsulin

glucose blood pressure

(c)

age

body mass indexinsulin

glucose blood pressure

(d)

(a) (b)

age

body mass indexinsulin

glucose blood pressure

age

body mass indexinsulin

glucose blood pressure

(c) (d)

Figure 3: The estimated causal structure of the log-transformed five variables by using the
four tests. Refer to the caption of Figure 2 for the four tests.

5. Discussions

In this paper we developed a new index to measure conditional dependence of random
variables and vectors. The calculation of the estimated index requires low computational
cost. The test of conditional independence based on the newly proposed index has nontrivial
power against all fixed and local alternatives. The proposed test is distribution free under
the null hypothesis, and is robust to outliers and heavy-tailed data. Numerical simulations
indicate that the proposed test is more powerful than some existing ones. The proposed
test is further applied to directed acyclic graphs for causal discovery and shows superior
performance.
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Appendix A. Technical Proofs

A.1 Proof of Proposition 1

For 0 < u < 1, define quantile function for X | Z as

F−1
X|Z(u | Z = z) = inf{x : FX|Z(x | Z = z) ≥ u}.

Similarly, we can define F−1
Y |Z(v | Z = z), the quantile function for Y | Z, for 0 < v < 1.

Since X and Y have continuous conditional distribution functions for every given value of
Z, it follows that when 0 < u < 1 and 0 < v < 1,

Pr{FX|Z(X | Z) ≤ u, FY |Z(Y | Z) ≤ v | Z = z}
= Pr{X ≤ F−1

X|Z(u | Z), Y ≤ F−1
Y |Z(v | Z) | Z = z}.

This implies that X⊥⊥Y | Z is equivalent to U⊥⊥V | Z. In addition, conditional on Z = z,
FX|Z(X | Z = z) is uniformly distributed on (0, 1), which does not depend on the particular
value of z, indicating FX|Z(X | Z)⊥⊥Z. That is, U⊥⊥Z. Similarly, V⊥⊥Z. Thus, the
conditional independence fU,V |Z(u, v | z) = fU |Z(u | z)fV |Z(v | z) together with fU |Z(u |
z) = fU (u) and fV |Z(v | z) = fV (v) implies that

fU,V |Z(u, v | z) = fU (u)fV (v).

Thus, U , V and Z are mutually independent.
On the other hand, the mutual independence immediately leads to the conditional in-

dependence U⊥⊥V | Z. Therefore, the conditional independence X⊥⊥Y | Z is equivalent to
the mutual independence of U , V and Z. We next show that the mutual independence of
U , V and Z is equivalent to mutual independence of U , V and W .

Define F−1
Z (w) = inf{z : F (z) ≥ w} for 0 < w < 1. If U , V and Z are mutually

independent, then

Pr(U ≤ u, V ≤ v,W ≤ w) = Pr{U ≤ u, V ≤ v, Z ≤ F−1
Z (w)}

= Pr(U ≤ u)Pr(V ≤ v)Pr{Z ≤ F−1
Z (w)} = Pr(U ≤ u)Pr(V ≤ v)Pr(W ≤ w)

holds for all u, v and w. On the other hand, if U , V and W are mutually independent, it
follows that

Pr(U ≤ u, V ≤ v, Z ≤ z) = Pr{U ≤ u, V ≤ v,W ≤ FZ(z)}
= Pr(U ≤ u)Pr(V ≤ v)Pr{W ≤ FZ(z)} = Pr(U ≤ u)Pr(V ≤ v)Pr(Z ≤ z),

holds for all u, v and z. Thus, the mutual independence of U , V and Z is equivalent to the
mutual independence of U , V and W . This completes the proof.

A.2 Proof of Theorem 2

We start with the derivation of the index ρ. U , V and W are mutually independent if and
only if∫∫∫

‖ϕU,V,W (t1, t2, t3)− ϕU (t1)ϕV (t2)ϕW (t3)‖2 ω(t1, t2, t3)dt1dt2dt3 = 0, (5)
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for arbitrary positive weight function ω(·). We now show that the proposed index ρ is
proportional to the integration in (5) by choosing ω(t1, t2, t3) to be the joint probability
density function of three independent and identically distributed standard Cauchy random
variables.

With some calculation and Fubini’s theorem, we have

∫∫∫
‖ϕU,V,W (t1, t2, t3)− ϕU (t1)ϕV (t2)ϕW (t3)‖2 ω(t1, t2, t3)dt1dt2dt3

= E

∫∫∫
eit1(U1−U2)+it2(V1−V2)+it3(W1−W2)ω(t1, t2, t3)dt1dt2dt3

−E
∫∫∫

eit1(U1−U3)+it2(V1−V4)+it3(W1−W2)ω(t1, t2, t3)dt1dt2dt3

−E
∫∫∫

eit1(U3−U1)+it2(V4−V1)+it3(W2−W1)ω(t1, t2, t3)dt1dt2dt3

+E

∫∫∫
eit1(U1−U2)+it2(V3−V4)+it3(W5−W6)ω(t1, t2, t3)dt1dt2dt3.

According to the property of characteristic function for standard Cauchy distribution, we
have

∫
eit(U1−U2)π−1(1 + t2)−1dt = e−|U1−U2|.

Then by choosing ω(t1, t2, t3) = π−3(1 + t21)−1(1 + t22)−1(1 + t23)−1, i.e., the joint density
function of three i.i.d. standard Cauchy distributions, we have

∫∫∫
‖ϕU,V,W (t1, t2, t3)− ϕU (t1)ϕV (t2)ϕW (t3)‖2 ω(t1, t2, t3)dt1dt2dt3

= Ee−|U1−U2|−|V1−V2|−|W1−W2| − 2Ee−|U1−U3|−|V1−V4|−|W1−W2|

+ Ee−|U1−U2|Ee−|V1−V2|Ee−|W1−W2|.

(6)

Furthermore, with the fact that U⊥⊥W and V⊥⊥W , (6) is equal to

E
{
SU (U1, U2)SV (V1, V2)e−|W1−W2|

}
,

where SU (U1, U2) and SV (V1, V2) are defined as

SU (U1, U2) = E
{
e−|U1−U2| + e−|U3−U4| − e−|U1−U3| − e−|U2−U3| | (U1, U2)

}
,

SV (V1, V2) = E
{
e−|V1−V2| + e−|V3−V4| − e−|V1−V3| − e−|V2−V3| | (V1, V2)

}
.

22



Conditional Independence Test

Now we calculate the normalization constant c0. It follows by the Cauchy-Schwarz inequality
that

E
{
SU (U1, U2)SV (V1, V2)e−|W1−W2|

}
= E

[
e−|W1−W2|E {SU (U1, U2)SV (V1, V2) | (W1,W2)}

]
≤ E

[
e−|W1−W2|E1/2

{
S2
U (U1, U2) | (W1,W2)

}
E1/2

{
S2
V (V1, V2) | (W1,W2)

}]
= E

[
e−|W1−W2|E1/2

{
S2
U (U1, U2)

}
E1/2

{
S2
V (V1, V2)

}]
= 2e−1(6.5e−2 − 20e−1 + 6.5)
def
= c−1

0 ,

where the equality holds if and only if SU (U1, U2) = λ {SV (V1, V2)} holds with probability
1, where λ ≥ 0 (because E {SU (U1, U2)SV (V1, V2)} is nonnegative). Recall that U , V and
W are all uniformly distributed on (0, 1), further calculations give us

SU (U1, U2) = e−|U1−U2| + e−U1 + eU1−1 + e−U2 + eU2−1 + 2e−1 − 4,

SV (V1, V2) = e−|V1−V2| + e−V1 + eV1−1 + e−V2 + eV2−1 + 2e−1 − 4.

This, together with the normalization constant c0, yield the expression of the index ρ(X,Y |
Z). Subsequently, the properties of the index ρ(X,Y | Z) can be established.

(1) ρ(X,Y | Z) ≥ 0 holds obviously. It equals 0 only when U , V , W are mutual
independent, which is equivalent to the conditional independence X⊥⊥Y | Z. ρ(X,Y |
Z) ≤ 1 holds obviously according to the derivation of the index ρ. The equality holds if
and only if SU (U1, U2) = λ {SV (V1, V2)}. Because ES2

U (U1, U2) = ES2
V (V1, V2), we have

λ = 1. If U = V or U + V = 1, it is easy to check SU (U1, U2) = SV (V1, V2). That is, if
FX|Z(X | Z) = FY |Z(Y | Z) or FX|Z(X | Z) + FY |Z(Y | Z) = 1, then ρ(X,Y | Z) = 1.
To understand this condition better, we suppose Y = m(X,Z). It is clear that FX|Z(X |
Z) = FY |Z(Y | Z) when m(·, ·) is monotonically increasing on the first argument, whereas
FX|Z(X | Z) + FY |Z(Y | Z) = 1 when m(·, ·) is monotonically decreasing on the first
argument. Therefore, the index ρ is equal to one if Y is a strictly monotone transformation
of X conditional on Z.

(2) This property is trivial according to the definition of ρ.

(3) For strictly monotone transformations m3(·), we have when m1(·) is strictly in-
creasing, Um = Fm1(X)|m3(Z){m1(X) | m3(Z)} equals U = FX|Z(X | Z), while when
m1(·) is strictly decreasing, it equals 1 − U . It can be easily verified that SU (U1, U2) =
SU (1 − U1, 1 − U2), then we have SUm(Um1, Um2) = SU (U1, U2) no matter whether m1(·)
is strictly increasing or decreasing. Similarly, let Vm = Fm2(Y )|m3(Z){m2(Y ) | m3(Z)}, we
obtain that SVm(Vm1, Vm2) = SV (V1, V2). It is clear that Wm = Fm3(Z){m3(Z)} equals

either W or 1−W , implying e−|Wm1−Wm2| = e−|W1−W2|. Therefore, we have

E
{
SUm(Um1, Um2)SVm(Vm1, Vm2)e−|Wm1−Wm2|

}
= E

{
SU (U1, U2)SV (V1, V2)e−|W1−W2|

}
,

and it is true that ρ {m1(X),m2(Y ) | m3(Z)} = ρ(X,Y | Z).
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A.3 Proof of Theorem 3

For simplicity, we denote by g(x) = e−|x| and S0(x, y) = g (x− y) + e−x + ex−1 + e−y +
ey−1 + 2e−1 − 4. We write c−1

0 ρ̂(X,Y | Z) as

n−2
∑
i,j

{
S0(Ûi, Ûj)S0(V̂i, V̂j)g(Ŵi − Ŵj)

}
.

With Taylor’s expansion, when nh4m → 0 and nh2/ log2(n)→∞, we have

S0(Ûi, Ûj)

=
{
g′ (Ui − Uj) + eUi−1 − e−Ui

}
∆Ui −

{
g′ (Ui − Uj)− eUj−1 + e−Uj

}
∆Uj

+ 2−1
{
g′′ (Ui − Uj) (∆Ui −∆Uj)

2 +
(
e−Ui + eUi−1

)
(∆Ui)

2 +
(
e−Uj + eUj−1

)
(∆Uj)

2
}

+ 6−1
{
g′′′ (Ui − Uj) (∆Ui −∆Uj)

3 +
(
eUi−1 − e−Ui

)
(∆Ui)

3 +
(
eUj−1 − e−Uj

)
(∆Uj)

3
}

+ S0 (Ui, Uj) + op(n
−1)

def
= S1(Ui, Uj) + S2(Ui, Uj) + S3(Ui, Uj) + S0(Ui, Uj) + op(n

−1),

where ∆Ui = Ûi − Ui, and Sk(Ui, Uj), k = 1, 2, 3 are defined to be each row in an obvious

way. Similarly, we expand S0(V̂i, V̂j) as

S0(V̂i, V̂j) = S0(Vi, Vj) + S1(Vi, Vj) + S2(Vi, Vj) + S3(Vi, Vj) + op(n
−1).

As for g(Ŵi − Ŵj), we have

g(Ŵi − Ŵj) = g(Wi −Wj) + g′(Wi −Wj)(∆Wi −∆Wj)

+2−1g′′(Wi −Wj)(∆Wi −∆Wj)
2 + op(n

−1).

Therefore, it follows that

c−1
0 ρ̂(X,Y | Z) = 2−1n−2

∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)(∆Wi −∆Wj)

2

+n−2
∑
i,j

∑
0≤k+l≤1

Sk (Ui, Uj)Sl (Vi, Vj) g
′(Wi −Wj)(∆Wi −∆Wj)

+n−2
∑
i,j

∑
0≤k+l≤3

Sk (Ui, Uj)Sl (Vi, Vj) g (Wi −Wj) + op(n
−1)

def
= 2−1Q1 +Q2 +Q3 + op(n

−1).

We first show that Q1 is of order op(n
−1). In fact,

Q1 = n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)(∆Wi −∆Wj)

2

= n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)

{
(∆Wi)

2 + (∆Wj)
2
}

+2n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)(Wi∆Wj +Wj∆Wi)

−2n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)(ŴiŴj −WiWj)

def
= Q1,1 +Q1,2 +Q1,3.
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Under the null hypothesis, U , V and W are mutually independent, it is easy to verify that
E {S0 (Ui, Uj) | (Ui, Vi,Wi, Vj ,Wj)} = 0, and hence

E
{
S0 (Ui, Uj)S0 (Vi, Vj) g

′′(Wi −Wj) | (Ui, Vi,Wi)
}

= 0.

Then for each fixed i, we have

n−1
∑
j

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj) = Op(n

−1/2).

Thus, Q1,1 is clearly of order op(n
−1) because (∆Wi)

2 = op(n
−1/2). Now we deal with Q1,2.

n−2
∑

i,j S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)Wi∆Wj

= n−3
∑

i,j,k S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj)Wi {1(Wk ≤Wj)−Wj} .

Under the null hypothesis, because E {S0 (Ui, Uj) | (Ui, Vi,Wi, Vj ,Wj)} = 0, W is uniformly
distributed, we have E{1(Wk ≤ Wj) | Wj} = Wj . Thus, the corresponding U-statistic of
the equation above is second order degenerate. In addition, when any two of i, j, k are
identical, we have

E
[
S0 (Ui, Uj)S0 (Vi, Vj) g

′′(Wi −Wj)Wi {1(Wk ≤Wj)−Wj}
]

= 0.

Then the summations associated with any two of the i, j, k are identical is of order op(1).
Therefore, Q1,2 = op(n

−1). It remains to deal with Q1,3. Similarly, the corresponding
U-statistic of

n−4
∑
i,j,k,l

S0 (Ui, Uj)S0 (Vi, Vj) g
′′(Wi −Wj) {1(Wk ≤Wi)1(Wl ≤Wj)−WiWj}

is second order degenerate and hence we obtain that Q1,3 = op(n
−1).

Next, we show Q2 = op(n
−1). Recall that

Q2 = n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′(Wi −Wj)(∆Wi −∆Wj)

+2n−2
∑
i,j

S1 (Ui, Uj)S0 (Vi, Vj) g
′(Wi −Wj)∆Wi

+2n−2
∑
i,j

S0 (Ui, Uj)S1 (Vi, Vj) g
′(Wi −Wj)∆Wi

def
= Q2,1 + 2Q2,2 + 2Q2,3.

Similar to dealing with Q1,2, we have Q2,1 = op(n
−1). We now evaluate Q2,2.

Q2,2 = n−2
∑
i,j

{
g′ (Ui − Uj) + eUi−1 − e−Ui

}
∆UiS0 (Vi, Vj) g

′(Wi −Wj)∆Wi

−n−2
∑
i,j

{
g′ (Ui − Uj)− eUj−1 + e−Uj

}
∆UjS0 (Vi, Vj) g

′(Wi −Wj)∆Wi.
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Because under the null hypothesis, E {S0 (Vi, Vj) | (Ui, Vi,Wi, Uj ,Wj)} = 0, it follows that
for each i,

n−1
∑
j

{
g′ (Ui − Uj) + eUi−1 − e−Ui

}
S0 (Vi, Vj) g

′(Wi −Wj) = Op(n
−1/2),

and the first term of Q2,2 is of order op(n
−1) because ∆Wi = Op(n

−1/2) and ∆Ui = op(1).
In addition, for each j,

n−2
∑
i,k

{
g′ (Ui − Uj)− eUj−1 + e−Uj

}
S0 (Vi, Vj) g

′(Wi −Wj) {1(Wk ≤Wi)−Wi}

is degenerate and hence the second term of Q2,2 is also of order op(n
−1) because ∆Uj =

op(1), indicating Q2,2 = op(n
−1). Similarly, we have Q2,3 = op(n

−1). Thus it follows that
Q2 = op(n

−1).

Finally, we show that Q3 = n−2
∑

i,j S0 (Ui, Uj)S0 (Vi, Vj) g (Wi −Wj) + op(n
−1). Or

equivalently, we show that Q3,1, Q3,2 and Q3,3 are all of order op(n
−1), where

Q3,1
def
= n−2

∑
i,j

∑
k+l=1

Sk (Ui, Uj)Sl (Vi, Vj) g (Wi −Wj) ,

Q3,2
def
= n−2

∑
i,j

∑
k+l=2

Sk (Ui, Uj)Sl (Vi, Vj) g (Wi −Wj) ,

Q3,3
def
= n−2

∑
i,j

∑
k+l=3

Sk (Ui, Uj)Sl (Vi, Vj) g (Wi −Wj) .

We first show that Q3,1
def
= Q3,1,1 +Q3,1,2 = op(n

−1), where

Q3,1,1 = n−2
∑
i,j

S1 (Ui, Uj)S0 (Vi, Vj) g (Wi −Wj) ,

Q3,1,2 = n−2
∑
i,j

S0 (Ui, Uj)S1 (Vi, Vj) g (Wi −Wj) .

Without loss of generality, we only show that Q3,1,1 = op(n
−1). Calculate

S1 (Ui, Uj) =
{
g′ (Ui − Uj) + eUi−1 − e−Ui

}
∆Ui −

{
g′ (Ui − Uj)− eUj−1 + e−Uj

}
∆Uj ,

∆Ui = n−1
n∑
k=1

[
Kh(Zk − Zi)1(Xk ≤ Xi)

f(Zi)
− Ui −

Ui {Kh(Zk − Zi)− f(Zi)}
f(Zi)

]
+Op(h

2m + n−1h−1 log2 n).
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Thus, when nh4m → 0 and nh2/ log2(n)→∞,

Q3,1,1 = 2n−2
∑
i,j

{
g′ (Ui − Uj) + eUi−1 − e−Ui

}
S0 (Vi, Vj) g (Wi −Wj) ∆Ui

= 2n−3
∑
i,j,k

({
g′ (Ui − Uj) + eUi−1 − e−Ui

}
S0 (Vi, Vj) g (Wi −Wj)

·
[
Kh(Zk − Zi)1(Xk ≤ Xi)

f(Zi)
− Ui −

Ui {Kh(Zk − Zi)− f(Zi)}
f(Zi)

])
+ op(n

−1)

=
2

n(n− 1)

∑
i 6=j

({
g′ (Ui − Uj) + eUi−1 − e−Ui

}
S0 (Vi, Vj) g (Wi −Wj)

·
[
E {Kh(Zk − Zi)1(Xk ≤ Xi)− UiKh(Zk − Zi) | (Xi, Zi)}

f(Zi)

])
+ op(n

−1),

where the last equality holds due to equations (2)-(3) of section 5.3.4 in Serfling (2009) and
the fact that var{Kh(Zi − Zj)} = O(h−1). Therefore, since

sup
Xi,Zi

∣∣E {Kh(Zk − Zi)1(Xk ≤ Xi)− UiKh(Zk − Zi) | (Xi, Zi)}
∣∣ = O(hm),

when the (m− 1)th derivatives of FX|Z(x | z)fZ(z) and fZ(z) with respect to z are locally
Lipschitz-continuous, Q3,1,1 is clearly of order op(n

−1) by noting that the summation in the
last display is degenerate.

Next, we consider Q3,2, where

Q3,2 = n−2
∑
i,j

S1 (Ui, Uj)S1 (Vi, Vj) g (Wi −Wj)

+ n−2
∑
i,j

S2 (Ui, Uj)S0 (Vi, Vj) g (Wi −Wj)

+ n−2
∑
i,j

S0 (Ui, Uj)S2 (Vi, Vj) g (Wi −Wj)

def
= Q3,2,1 +Q3,2,2 +Q3,2,3.

We first show that Q3,2,1 = op(n
−1). It follows that

Q3,2,1 = 2n−2
∑
i,j

[{
g′ (Ui − Uj) + eUi−1 − e−Ui

}{
g′ (Vi − Vj) + eVi−1 − e−Vi

}
·g (Wi −Wj) ∆Ui∆Vi

]
+ 2n−2

∑
i,j

[{
g′ (Ui − Uj) + eUi−1 − e−Ui

}
·
{
g′ (Vi − Vj)− eVj−1 + e−Vj

}
g (Wi −Wj) ∆Ui∆Vj

]
def
= Q3,2,1,1 +Q3,2,1,2.

Because E{g′ (Ui − Uj) + eUi−1 − e−Ui | (Ui, Vi,Wi, Vj ,Wj)} = 0. For each i,

n−1
n∑
j=1

[ {
g′ (Ui − Uj) + eUi−1 − e−Ui

}{
g′ (Vi − Vj) + eVi−1 − e−Vi

}
g (Wi −Wj)

]
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is of order Op(n
−1/2). Then Q3,2,1,1 = op(n

−1) because ∆Ui∆Vi = op(n
−1/2). For Q3,2,1,2,

−∆Ui∆Vj = (Ui∆Vj+Uj∆Vi)+(ÛiV̂j−UiVj). By expanding the Ûi, Ûj , V̂i, V̂j in Q3,2,1,2 as
U statistics and apply the same technique as showing Q3,1,1 = op(n

−1) and Q1,3 = op(n
−1),

it follows immediately that Q3,2,1,2 is of order op(n
−1). Thus Q3,2,1 is of order op(n

−1).

For Q3,2,2 and Q3,2,3, we only show that Q3,2,2 is of order op(n
−1), for simplicity. Recall

that S2 (Ui, Uj) is defined as

S2 (Ui, Uj) = 2−1

[
g′′ (Ui − Uj) (∆Ui)

2 + g′′ (Ui − Uj) (∆Uj)
2 +

(
e−Ui + eUi−1

)
(∆Ui)

2

+
(
e−Uj + eUj−1

)
(∆Uj)

2 − 2g′′ (Ui − Uj) ∆Ui∆Uj

]
.

The summations associated with either (∆Ui)
2 or (∆Uj)

2 are of order op(n
−1) following

similar reasons as showing Q3,2,1,1 = op(n
−1), and that associated with ∆Ui∆Uj are of

order op(n
−1) similar to dealing with Q3,2,1,2. As a result, Q3,2 is of order op(n

−1).

For Q3,3, we have

Q3,3 = n−2
∑
i,j

4∑
k=1

S4−k (Ui, Uj)Sk−1 (Vi, Vj) g (Wi −Wj)
def
=

4∑
k=1

Q3,3,k.

We only show that Q3,3,1 = op(n
−1) because the other terms are similar. Calculate

6S3 (Ui, Uj)

= g′′′ (Ui − Uj)
{

(∆Ui)
3 − 3(∆Ui)

2∆Uj + 3∆Ui(∆Uj)
2 − (∆Uj)

3
}

+
(
eUi−1 − e−Ui

)
(∆Ui)

3 +
(
eUj−1 − e−Uj

)
(∆Uj)

3.

Then the summations associated with either (∆Ui)
3 or (∆Uj)

3 are of order op(n
−1) similar

to dealing with Q3,2,1,1, and that associated with ∆Ui(∆Uj)
2 or (∆Ui)

2∆Uj are of order
op(n

−1) similar to the second term of Q2,2.

To sum up, we have shown that

c−1
0 ρ̂(X,Y | Z) = n−2

∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g (Wi −Wj) + op(n
−1),

where the right hand side is essentially a first order degenerate V-statistics. Thus by
applying Theorem 6.4.1.B of Serfling (2009),

nρ̂(X,Y | Z)
d−→ c0

∞∑
j=1

λjχ
2
j (1)

where χ2
j (1), j = 1, 2, . . . are independent χ2(1) random variables, and λj , j = 1, 2, . . . are

the corresponding eigenvalues of h(u, v, w;u′, v′, w′). It is worth mentioning that the kernel
is positive definite and hence all the λjs are positive. Therefore, the proof is completed.
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A.4 Proof of Theorem 4

Since we generate {U∗i , V ∗i ,W ∗i }, i = 1, . . . , n independently from uniform distribution, it is
quite straightforward that U∗, V ∗ and W ∗ are mutually independent. In addition, we can
write ρ̂∗ as

ρ̂∗ = n−2
∑
i,j

c0S0

(
U∗i , U

∗
j

)
S0

(
V ∗i , V

∗
j

)
g
(
W ∗i −W ∗j

)
,

which clearly converges in distribution to c0
∑∞

j=1 λ̃jχ
2
j (1), where χ2

j (1), j = 1, 2, . . . are in-

dependent χ2(1) random variables, and λ̃j , j = 1, 2, . . . are the eigenvalues of h(u, v, w;u′, v′, w′),

implying λ̃j = λj , for j = 1, 2, . . . , and hence the proof is completed.

A.5 Proof of Theorem 5

We use the same notation as the proof in Theorem 3. With Taylor’s expansion, when
nh4m → 0 and nh2/ log2(n)→∞, we have

S0(Ûi, Ûj) = S0(Ui, Uj) + S1(Ui, Uj) + op(n
−1/2),

S0(V̂i, V̂j) = S0(Vi, Vj) + S1(Vi, Vj) + op(n
−1/2),

g(Ŵi − Ŵj) = g(Wi −Wj) + g′(Wi −Wj)(∆Wi −∆Wj) + op(n
−1/2).

Therefore, we have

c−1
0 ρ̂(X,Y | Z) = n−2

∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g (Wi −Wj)

+n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′(Wi −Wj)(∆Wi −∆Wj)

+n−2
∑
i,j

S1 (Ui, Uj)S0 (Vi, Vj) g(Wi −Wj)

+n−2
∑
i,j

S0 (Ui, Uj)S1 (Vi, Vj) g(Wi −Wj) + op(n
−1/2)

def
= P1 + P2 + P3 + P4 + op(n

−1/2).

We deal with the four terms, respectively. For P1, by applying Lemma 5.7.3 and equation
(2) in section 5.3.1 of Serfling (2009), we have

P1 − c−1
0 ρ(X,Y | Z) = 2n−1

n∑
i=1

E [{S0 (Ui, U)S0 (Vi, V ) g (Wi −W )} | (Ui, Vi,Wi)]

−2c−1
0 ρ(X,Y | Z) + op(n

−1/2)

def
= 2n−1

n∑
i=1

{
P1,i − c−1

0 ρ(X,Y | Z)
}

+ op(n
−1/2). (7)
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Next, we deal with P2. Recall that

P2 = n−2
∑
i,j

S0 (Ui, Uj)S0 (Vi, Vj) g
′(Wi −Wj)(∆Wi −∆Wj)

= 2n−3
∑
i,j,k

S0 (Ui, Uj)S0 (Vi, Vj) g
′(Wi −Wj) {I(Wk ≤Wi)−Wi} .

By applying Lemma 5.7.3 and equation (2) in section 5.3.1 of Serfling (2009) again, we can
obtain that

P2 = 2n−1
n∑
i=1

E
[
S0(U,U ′)S0(V, V ′)g′(W −W ′) {I(Wi ≤W )−W} |Wi

]
+ op(n

−1/2)

def
= 2n−1

n∑
i=1

P2,i + op(n
−1/2), (8)

where (U ′, V ′,W ′) is an independent copy of (U, V,W ).
It remains to deal with P3 and P4. P3 equals

P3 = 2n−3
∑
i,j,k

[ {
g′ (Ui − Uj) + eUi−1 − e−Ui

}
S0 (Vi, Vj) g(Wi −Wj)

·
{
Kh(Zk − Zi)1(Xk ≤ Xi)− UiKh(Zk − Zi)

f(Zi)

}]
+ op(n

−1/2).

By definition, we have V⊥⊥W and hence it can be verified that

E {S0 (Vi, Vj) g(Wi −Wj) | Vi,Wi} = 0.

Denote P k,i3 = {Kh(Zk − Zi)1(Xk ≤ Xi)− UiKh(Zk − Zi)}/fZ(Zi). Thus,

E
{(
eUi−1 − e−Ui

)
S0 (Vi, Vj) g(Wi −Wj)P

k,i
3 | Xk, Zk

}
= E

{(
eUi−1 − e−Ui

)
S0 (Vi, Vj) g(Wi −Wj)P

k,i
3 | Xk, Zk, Ui

}
= 0.

Thus when nh2m → 0 and nh→∞, we have

P3 = 2n−1
n∑
k=1

E
[
{I(X ≥ Xk)− U} g′(U − U ′)S0(V, V ′)

·g(W −W ′) | Xk, Zk
]

+ op(n
−1/2)

def
= 2n−1

n∑
i=1

P3,i + op(n
−1/2). (9)

Following similar arguments, we can show that

P4 = 2n−1
n∑
i=1

E
[
{I(Y ≥ Yi)− V } g′(V − V ′)S0(U,U ′)

·g(W −W ′) | Z = Zi
]

+ op(n
−1/2)

def
= 2n−1

n∑
i=1

P4,i + op(n
−1/2). (10)
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To sum up, it is shown that c−1
0 ρ̂(X,Y | Z) could be written as

c−1
0 ρ̂(X,Y | Z)− c−1

0 ρ(X,Y | Z)

= 2n−1
n∑
i=1

{
P1,i + P2,i + P3,i + P4,i − c−1

0 ρ(X,Y | Z)
}

+ op(n
−1/2),

where P1,i, P2,i, P3,i and P4,i are defined in (7)-(10), respectively. Thus the asymptotic
normality follows.

Under the local alternative, we have U = F (X | Y,Z)+n−1/2`(X,Y, Z), and it is easy to

verify that Ŭ
def
= F (X | Y, Z), V and W are mutually independent. With Taylor’s expansion,

we have

S0(Ûi, Ûj)

=
{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
∆Ŭi −

{
g′(Ŭi − Ŭj)− eŬj−1 + e−Ŭj

}
∆Ŭj

+ 2−1
{
g′′(Ŭi − Ŭj)(∆Ŭi −∆Ŭj)

2 +
(
e−Ŭi + eŬi−1

)
(∆Ŭi)

2 +
(
e−Ŭj + eŬj−1

)
(∆Ŭj)

2
}

+ 6−1
{
g′′′(Ŭi − Ŭj)(∆Ŭi −∆Ŭj)

3 +
(
eŬi−1 − e−Ŭi

)
(∆Ŭi)

3 +
(
eŬj−1 − e−Ŭj

)
(∆Ŭj)

3
}

+ S0(Ŭi, Ŭj) + op(n
−1)

def
= S1(Ŭi, Ŭj) + S2(Ŭi, Ŭj) + S3(Ŭi, Ŭj) + S0(Ŭi, Ŭj) + op(n

−1),

where ∆Ŭi = Ûi − Ŭi. Then we can write c−1
0 ρ̂(X,Y | Z) as

c−1
0 ρ̂(X,Y | Z)

= 2−1n−2
∑
i,j

S0(Ŭi, Ŭj)S0 (Vi, Vj) g
′′(Wi −Wj)(∆Wi −∆Wj)

2

+n−2
∑
i,j

∑
0≤k+l≤1

Sk(Ŭi, Ŭj)Sl (Vi, Vj) g
′(Wi −Wj)(∆Wi −∆Wj)

+n−2
∑
i,j

∑
0≤k+l≤3

Sk(Ŭi, Ŭj)Sl (Vi, Vj) g (Wi −Wj) + op(n
−1)

def
= 2−1Q̃1 + Q̃2 + Q̃3 + op(n

−1).

With the same arguments as that in deriving Q1 = op(n
−1) in the proof of Theorem 3, we

have Q̃1 = op(n
−1).

Now we deal with Q̃2. For ease of notation, we write `(Xi, Yi, Zi) as `i in the remaining
proof. By decomposing ∆Ŭi as ∆Ŭi = ∆Ui + n−1/2`i, we have

Q̃2 = n−2
∑
i,j

S1(Ŭi, Ŭj)S0 (Vi, Vj) g
′(Wi −Wj)(∆Wi −∆Wj) + op(n

−1)

= 2n−2
∑
i,j

{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
∆ŬiS0 (Vi, Vj) g

′(Wi −Wj)∆Wi

−2n−2
∑
i,j

{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
∆Ŭi

·S0 (Vi, Vj) g
′(Wi −Wj)∆Wj + op(n

−1)
def
= 2Q̃2,1 − 2Q̃2,2 + op(n

−1).
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Q̃2,1 is clearly of order op(n
−1) because for each fixed i,

E
[{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
S0 (Vi, Vj) g

′(Wi −Wj)
∣∣∣ (Ŭi, Vi,Wi)

]
= 0.

Q̃2,2 is also of order op(n
−1) because for each i,

n−2
∑
j,k

[{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
S0 (Vi, Vj) g

′(Wi −Wj) {1(Wk ≤Wj)−Wj}
]

is degenerate.

Then we deal with the last quantity, Q̃3, where

Q̃3 = n−2
∑
i,j

S0(Ŭi, Ŭj)S0 (Vi, Vj) g (Wi −Wj)

+n−2
∑
i,j

∑
k+l=1

Sk(Ŭi, Ŭj)Sl (Vi, Vj) g (Wi −Wj)

+n−2
∑
i,j

∑
k+l=2

Sk(Ŭi, Ŭj)Sl (Vi, Vj) g (Wi −Wj)

+n−2
∑
i,j

∑
k+l=3

Sk(Ŭi, Ŭj)Sl (Vi, Vj) g (Wi −Wj) + op(n
−1)

def
= Q̃3,0 + Q̃3,1 + Q̃3,2 + Q̃3,3 + op(n

−1).

We simplify Q̃3,1 first. According to the proof of Theorem 3, we have

Q̃3,1 = n−2
∑
i,j

S1(Ŭi, Ŭj)S0 (Vi, Vj) g (Wi −Wj) + op(n
−1)

= 2n−5/2
∑
i,j

{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
`iS0 (Vi, Vj) g (Wi −Wj)

+2n−3
∑
i,j,k

[{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
S0 (Vi, Vj) g (Wi −Wj)

·
{
Kh(Zk − Zi)1(Xk ≤ Xi)

f(Zi)
− UiKh(Zk − Zi)

f(Zi)

}]
+ op(n

−1)

def
= Q̃3,1,1 + 2Q̃3,1,2 + op(n

−1).

As we can see, Kh(Zk−Zi)1(Xk≤Xi)
f(Zi)

− UiKh(Zk−Zi)
f(Zi)

is of order hm. Then we can derive that

Q̃3,1,2 = n−1
n∑
j=1

E

[{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
S0 (Vi, Vj) g (Wi −Wj)

·
{
Kh(Zk − Zi)1(Xk ≤ Xi)

f(Zi)
− UiKh(Zk − Zi)

f(Zi)

} ∣∣∣∣ (Xj , Yj , Zj)

]
+Op(n

−1hm).
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It can be verified that

E

{
Kh(Zk − Zi)1(Xk ≤ Xi)

f(Zi)
− UiKh(Zk − Zi)

f(Zi)

∣∣∣∣ (Xi, Zi)

}
= E

{
Kh(Zk − Zi)F (Xi | Zk)

f(Zi)
− UiKh(Zk − Zi)

f(Zi)

∣∣∣∣ (Xi, Zi)

}
= f−1(Zi)

∫
K(u)

{
F (Xi | Yi, Zi + uh) + n−1/2`(Xi, Yi, Zi + uh)

}
f(uh+ Zi)du

−f−1(Zi)ŬiE {Kh(Zk − Zi) | Zi} − n−1/2f−1(Zi)`iE {Kh(Zk − Zi) | Zi} .

And

f−1(Zi)

∫
K(u)F (Xi | Yi, Zi + uh)f(uh+ Zi)du− f−1(Zi)ŬiE {Kh(Zk − Zi) | Zi}

is of order hm and is only a function of (Ŭi, Zi), which is independent of Vi. Substituting
this into Q̃3,1,2, we have

Q̃3,1,2 = n−3/2
n∑
j=1

E

({
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
S0 (Vi, Vj) g (Wi −Wj)

·
[∫

K(u) {`(Xi, Yi, Zi + uh)− `i} f(Zi + uh)du

f(Zi)

] ∣∣∣∣ (Xj , Yj , Zj)

)
+Op(n

−1hm).

Then Q̃3,1,2 is clearly of order op(n
−1) by noting that the conditional expectation of the

above display is of order hm while the unconditional expectation is zero.

Next, we deal with Q̃3,2. It is straightforward that

Q̃3,2 = n−2
∑
i,j

S1(Ŭi, Ŭj)S1 (Vi, Vj) g (Wi −Wj)

+n−2
∑
i,j

S2(Ŭi, Ŭj)S0 (Vi, Vj) g (Wi −Wj) + op(n
−1)

def
= Q̃3,2,1 + Q̃3,2,2 + op(n

−1).

Similar to dealing with Q̃3,1,2, we can show that

Q̃3,2,1 = 2n−5/2
∑
i,j

{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
`iS1 (Vi, Vj) g (Wi −Wj) + op(n

−1).

Then Q̃3,2,1 is of order op(n
−1) because S1 (Vi, Vj) = op(1) and{

g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
`iS1 (Vi, Vj) g (Wi −Wj)
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is also op(1) with the expectation being zero. Similar as before, we can show that

Q̃3,2,2 = 2−1n−3
∑
i,j

[{
g′′(Ŭi − Ŭj)(`i − `j)2 +

(
e−Ŭi + eŬi−1

)
`2i

+
(
e−Ŭj + eŬj−1

)
`2j

}
S0 (Vi, Vj) g (Wi −Wj)

]
+ op(n

−1)

= 2−1n−1E

[{
g′′(Ŭ1 − Ŭ2)(`1 − `2)2 +

(
e−Ŭ1 + eŬ1−1

)
`21 +

(
e−Ŭ2 + eŬ2−1

)
`22

}
·S0 (V1, V2) g (W1 −W2)

]
+ op(n

−1)

= −n−1E
{
g′′(Ŭ1 − Ŭ2)`1`2S0 (V1, V2) g (W1 −W2)

}
.

Now we show that Q̃3,3 = op(n
−1). Because (∆Ui)

2 = op(n
−1/2), we have

Q̃3,3 = 2n−2
∑
i,j

{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
∆UiS2 (Vi, Vj) g (Wi −Wj)

+2−1n−2
∑
i,j

{
g′′(Ŭi − Ŭj)(∆Ui −∆Uj)

2 +
(
e−Ŭi + eŬi−1

)
(∆Ui)

2

+
(
e−Ŭj + eŬj−1

)
(∆Uj)

2

}
S1 (Vi, Vj) g (Wi −Wj)

+6−1n−2
∑
i,j

{
g′′′(Ŭi − Ŭj)(∆Ui −∆Uj)

3 +
(
eŬi−1 − e−Ŭi

)
(∆Ui)

3

+
(
eŬj−1 − e−Ŭj

)
(∆Uj)

3

}
S0 (Vi, Vj) g (Wi −Wj) + op(n

−1/2).

Similar to dealing with Q̃3,1,2, we can obtain that Q̃3,3 = op(n
−1).

Combining these results together, we have

c−1
0 ρ̂(X,Y | Z)

= n−2
∑
i,j

S0(Ŭi, Ŭj)S0 (Vi, Vj) g (Wi −Wj)

+2n−5/2
∑
i,j

{
g′(Ŭi − Ŭj) + eŬi−1 − e−Ŭi

}
`iS0 (Vi, Vj) g (Wi −Wj)

−n−1E
{
g′′(Ŭ1 − Ŭ2)`1`2S0 (V1, V2) g (W1 −W2)

}
+ op(n

−1).

Then we can verify that c−1
0 ρ̂(X,Y | Z) can be written as

c−1
0 ρ̂(X,Y | Z) =

∫∫∫ ∥∥∥∥n−1
n∑
j=1

[{
eit1Ŭj − ϕŬ (t1)

}{
eit2Vj − ϕV (t2)

}
eit3Wj

+it1n
−1/2`je

it1Ŭj
{
eit2Vj − ϕV (s)

}
eit3Wj

]∥∥∥∥2

ω(t1, t2, t3)dt1dt2dt3 + op(n
−1).
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It is clear that the empirical process

n−1/2
n∑
j=1

[{
eit1Ŭj − ϕŬ (t1)

}{
eit2Vj − ϕV (t2)

}
eit3Wj + it1`je

it1Ŭj
{
eit2Vj − ϕV (t2)

}
eit3Wj

]

converges in distribution to a complex valued gaussian process ζ(t1, t2, t3) with mean func-
tion

E
[
it1`(X,Y, Z)eit1Ŭ

{
eit2V − ϕV (t2)

}
eit3W

]
,

and covariance function cov{ζ(t1, t2, t3), ζ(t10, t20, t30)} given by

{ϕU (t1 − t10)− ϕU (t1)ϕU (−t10)} {ϕV (t2 − t20)− ϕV (t2)ϕV (−t20)}ϕW (t3 − t30). (11)

Therefore, by employing empirical process technology, we can derive that

c−1
0 nρ̂(X,Y | Z)

d−→
∫∫∫

‖ζ(t1, t2, t3)‖2 ω(t1, t2, t3)dt1dt2dt3.

Hence we conclude the proof for local alternatives.

A.6 Proof of Theorem 6

Firstly, x⊥⊥y | z is equivalent to (X1, . . . , Xp)⊥⊥y | z. According to Proposition 4.6 of Cook
(2009), it is also equivalent to

X1⊥⊥y | z, X2⊥⊥y | (z, X1), . . . , Xp⊥⊥y | (z, X1, . . . , Xp−1).

Following similar arguments for proving the equivalence between X⊥⊥Y | Z and U⊥⊥V | Z
in the proof of Proposition 1, the above conditional independence series are equivalent to

Ũ1⊥⊥y | z, Ũ2⊥⊥y | (z, X1), . . . , Ũp⊥⊥y | (z, X1, . . . , Xp−1).

According to the proof of Proposition 1, we know that Ũk⊥⊥y | (z, X1, . . . , Xk−1) is equiva-
lent to Ũk⊥⊥y | (z, Ũ1, . . . , Ũk−1) for k = 1, . . . , p − 1. Hence the conditional independence
series hold if and only if

Ũ1⊥⊥y | z, Ũ2⊥⊥y | (z, Ũ1), . . . , Ũp⊥⊥y | (z, Ũ1, . . . , Ũp−1).

Then by applying Proposition 4.6 of Cook (2009) again, we know that (X1, . . . , Xp)⊥⊥y | z
is equivalent to u⊥⊥y | z. Furthermore, with the same arguments for dealing with y,
we can obtain that it is additionally equivalent to u⊥⊥v | z. Besides, with the fact that
u⊥⊥z and v⊥⊥z, we can get the conditional independence x⊥⊥y | z is equivalent to the
mutual independence of u, v and z. Therefore, the proof is completed by following similar
arguments with the proof of Proposition 1.
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A.7 Proof of Theorem 7

Following the proof of Theorem 3, we denote by g̃(u1,u2) = e−‖u1−u2‖1 , g̃(v1,v2) =
e−‖v1−v2‖1 and g̃(w1,w2) = e−‖w1−w2‖1 . Then we have

Su(u1,u2) = E {g̃(u1,u2) + g̃(u3,u4)− g̃(u1,u3)− g̃(u2,u3) | (u1,u2)} ,
Sv(v1,v2) = E {g̃(v1,v2) + g̃(v3,v4)− g̃(v1,v3)− g̃(v2,v3) | (v1,v2)} .

Therefore, ρ̂(x,y | z) can be written as

ρ̂(x,y | z) = n−2
∑
i,j

{Su(ûi, ûj)Sv(v̂i, v̂j)g̃(ŵi, ŵj)} .

With Taylor’s expansion, when nh4m → 0, nh2(r+p−1)/ log2(n) → ∞, under conditions 2′

and 3′, we have

g̃(û1, û2) = g̃(u1,u2) +
3∑

k=1

(∆uT
1 ,∆uT

2 )⊗kD⊗kg̃(u1,u2) + op(n
−1),

where A⊗k denotes the k-th Kronecker power of the matrix A, ∆ui = ûi − ui and

D⊗kg̃(u1,u2) =
∂kg̃(u1,u2)

{∂(uT
1 ,u

T
2 )T}⊗k

.

In addition, we can expand g̃(û1,u2) as

g̃(û1,u2) = g̃(u1,u2) +
3∑

k=1

(k!)−1(∆uT
1 ,0

T)⊗kD⊗kg̃(u1,u2) + op(n
−1).

Therefore, by the definition of Su(u1,u2), we have

Su(ûi, ûj)

= E
{
g̃(ui,uj) + g̃(u,u′)− g̃(ui,u)− g̃(u,uj) | (ui,uj)

}
+

3∑
k=1

(k!)−1E
{

(∆uT
i ,∆uT

j )⊗kD⊗kg̃(ui,uj)− (∆uT
i ,0

T)⊗kD⊗kg̃(ui,u)

−(0T,∆uT
j )⊗kD⊗kg̃(u,uj) | ui,uj

}
+ op(n

−1),

def
=

3∑
k=0

S̃k(ui,uj) + op(n
−1),

where S̃0(ui,uj) = Su(ui,uj) and S̃k(ui,uj), k = 1, 2, 3 are defined obviously. Similarly,
when nh2(r+q−1)/ log2(n)→∞, and nh4m → 0, we can expand Sv(v̂i, v̂j) as

Sv(v̂i, v̂j)
def
=

3∑
k=0

S̃k(vi,vj) + op(n
−1),
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and it follows that

ρ̂(x,y | z) = n−2
∑
i,j

∑
0≤k+l≤3

S̃k(ui,uj)S̃l(vi,vj)g̃(wi,wj)

+n−2
∑
i,j

∑
0≤k+l≤2

S̃k(ui,uj)S̃l(vi,vj)(∆wT
i ,∆wT

j )Dg̃(wi,wj)

+2−1n−2
∑
i,j

∑
0≤k+l≤1

S̃k(ui,uj)S̃l(vi,vj)(∆wT
i ,∆wT

j )⊗2D⊗2g̃(wi,wj)

+6−1n−2
∑
i,j

S̃0(ui,uj)S̃0(vi,vj)(∆wT
i ,∆wT

j )⊗3D⊗3g̃(wi,wj) + op(n
−1)

def
= Q′1 +Q′2 +Q′3 +Q′4 + op(n

−1).

Then following similar arguments in the proof of Theorem 3, we have Q′2, Q′3 and Q′4 are all
of order op(n

−1) and Q′1 equals n−2
∑

i,j Su(ui,uj)Sv(vi,vj)g̃(wi,wj) + op(n
−1). Combing

these results, we have

ρ̂(x,y | z) = n−2
∑
i,j

Su(ui,uj)Sv(vi,vj)g̃(wi,wj) + op(n
−1),

where the right hand side is a first order degenerate V statistics. Thus by applying Theorem
6.4.1.B of Serfling (2009),

nρ̂(x,y | z)
d−→
∞∑
j=1

λjχ
2
j (1)

where χ2
j (1), j = 1, 2, . . . are independent χ2(1) random variables, and λj , j = 1, 2, . . . are

the corresponding eigenvalues of h̃(u,v,w;u′,v′,w′). Therefore, the proof is completed.

A.8 Proof of Theorem 8

It suffices to show that X⊥⊥Y | Z if and only if U⊥⊥V | Z because U⊥⊥V | Z is equivalent
to U, V and Z are mutually independent under U⊥⊥Z and V⊥⊥Z.

We only show that X⊥⊥Y | Z if and only if U⊥⊥Y | Z, because similar arguments will
yield that it is also equivalent to U⊥⊥V | Z. It is quite straightforward that X⊥⊥Y | Z
implies U⊥⊥Y | Z. While when U⊥⊥Y | Z, we have for each Z = z, u and y in the
corresponding support,

Pr(U ≤ u, Y ≤ y | Z = z) = uFY |Z(y | z).

Substituting U = (1− UX)FX|Z(X− | Z) + UXFX|Z(X | Z) into the above equation, with
some straight calculation, the left hand side is

Pr
{

Pr(X̃ < X | X, Z̃ = z) + Pr(X̃ = X | X, Z̃ = z)UX ≤ u, Y ≤ y | Z = z
}

= Pr
{

Pr(X̃ < X | X, Z̃ = z) + Pr(X̃ = X | X, Z̃ = z)UX ≤ u, FY |X,Z(y | X, z) | Z = z
}
.
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Because UX is standard uniformly distributed, we obtain

E

[
g

{
u− Pr(X̃ < X | X, Z̃ = Z = z)

Pr(X̃ = X | X, Z̃ = Z = z)

}
FY |X,Z(y | X, z)

]
= uFY |Z(y | z),

where g(·) is the cumulative distribution function of a standard uniformly distributed ran-
dom variable. Now assume that conditional on Z = z, the support of X is {x1, . . . , xN},
where x1 < . . . < xN . Therefore, when 0 < u < FX|Z(x1 | z), the expectation in the above
equation is

N∑
i=1

g

{
u− Pr (X < xi | Z = z)

Pr (X = xi | Z = z)

}
FY |X,Z(y | xi, z)Pr (X = xi | Z = z)

=
u− Pr (X < x1 | Z = z)

Pr (X = x1 | Z = z)
Pr (X = x1 | Z = z)FY |X,Z(y | x1, z)

= uFY |X,Z(y | x1, z).

The expectation equals uFY |Z(y | z). That is, FY |X,Z(y | x1, z) = FY |Z(y | z).
When FX|Z(x1 | z) < u < FX|Z(x2 | z), we can calculate the expectation as

N∑
i=1

g

{
u− Pr (X < xi | Z = z)

Pr (X = xi | Z = z)

}
FY |X,Z(y | xi, z)Pr (X = xi | Z = z)

= FY |X,Z(y | x1, z)Pr (X = x1 | Z = z) + {u− Pr (X < x2 | Z = z)}FY |X,Z(y | x2, z).

Since we have shown that FY |X,Z(y | x1, z) = FY |Z(y | z), with the fact that the expectation
equals uFY |Z(y | z), we can get FY |X,Z(y | x2, z) = FY |Z(y | z).

Similarly, we can obtain that FY |X,Z(y | xk, z) = FY |Z(y | z), k = 3, . . . , N . Conse-
quently, we have FY |X,Z(y | x, z) = FY |Z(y | z) for all x, y and z in their support. That is,
X⊥⊥Y | Z. Therefore, the proof is completed.

Appendix B. Additional Simulations Results

We consider the directed acyclic graph with 5 nodes, i.e., X = (X1, . . . , X5), and only
allow directed edge from Xi and Xj for i < j. Denote the adjacency matrix A. The
existence of the edge follows a Bernoulli distribution, and we set Pr(Ai,j = 1) = 0.4, for
i < j. When Ai,j = 1, we replace Ai,j with independent realizations of a uniform U(0.1, 1)
random variable. The value of the first random variable X1 is randomly sampled from some
distribution P̃ . Specifically,

ε1 ∼ P̃ , and X1 = ε1.

The value of the next nodes is

εj ∼ P̃ , and Xj =

j−1∑
k=1

Aj,kXk + εj
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for j = 1, · · · , p. All random errors ε1, . . . , εp are independently sampled from the distri-

bution P̃ . We consider two scenarios, where P̃ follows either normal distribution N(0, 1)
or uniform distribution U(0, 1). We compare our proposed conditional independence test
(denoted by “CIT”) with other popular conditional dependence measure. They are, respec-
tively, the partial correlation (, denoted by “PCR”) conditional mutual information (Scutari,
2010, denoted by “CMI”), and the KCI.test (Zhang et al., 2011, denoted by “KCI”). We
set the sample size n = 50, 100, 200 and 300. The true positive rate and false positive
rate for the four different tests are reported in Tables 5, from which we can see that as the
sample size increases, the true positive rate of the proposed method steadily grows, and the
proposed method outperforms the other tests, while the false positive rate remains under
control with slightly decrease.

Table 5: The true positive rate and false positive rate for the causal discovery of the directed
acyclic graph with different tests

Samples 50 100 200 300 50 100 200 300

Tests P̃ ∼ N(0, 1)

true positive rate false positive rate
CIT 0.555 0.658 0.734 0.789 0.117 0.112 0.107 0.103
PCR 0.479 0.489 0.546 0.589 0.101 0.110 0.130 0.135
CMI 0.472 0.530 0.604 0.590 0.097 0.127 0.143 0.150
KCI 0.360 0.516 0.592 0.634 0.072 0.135 0.144 0.168

Tests P̃ ∼ U(0, 1)

true positive rate false positive rate
CIT 0.468 0.587 0.734 0.736 0.070 0.099 0.095 0.113
PCR 0.469 0.526 0.588 0.545 0.111 0.129 0.140 0.140
CMI 0.497 0.568 0.566 0.633 0.103 0.127 0.138 0.149
KCI 0.386 0.458 0.523 0.564 0.082 0.099 0.123 0.122
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