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Abstract

Error decomposition analysis is a key problem for ensemble learning, which indicates that
proper combination of multiple models can achieve better performance than any individual
one. Existing theoretical research of ensemble learning focuses on regression or classifica-
tion tasks. There is limited theoretical research for ranking ensemble. In this paper, we
first generalize the ambiguity decomposition theory from regression ensemble to ranking
ensemble, which proves the effectiveness of ranking ensemble with consideration of list-wise
ranking information. According to the generalized theory, we propose an explicit diversity
measure for ranking ensemble, which can be used to enhance the diversity of ensemble and
improve the performance of ensemble model. Furthermore, we adopt an adaptive learn-
ing scheme to learn query-dependent ensemble weights, which can fit into the generalized
theory and help to further improve the performance of ensemble model. Extensive exper-
iments on recommendation and information retrieval tasks demonstrate the effectiveness
and theoretical advantages of the proposed method compared with several state-of-the-art
methods.

Keywords: ensemble learning, ambiguity decomposition theory, ranking ensemble, di-
versity measure, adaptive learning

1. Introduction

Ensemble learning aims at combining multiple base models to obtain better prediction per-
formance. It has been widely used for various tasks such as gene identification (Manavalan
et al., 2019), computer vision (Yu et al., 2021), natural language processing (Fang et al.,
2019), and etc.

Existing theoretical research of ensemble learning focuses on regression or classification
tasks, such as the ambiguity decomposition theory (Krogh and Vedelsby, 1995; Jiang et al.,
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2017) and the bias-variance-covariance decomposition theory (Ueda and Nakano, 1996).
Krogh and Vedelsby (1995) revealed the relationship between the error of the ensemble
model and the error of base models for regression tasks. For each instance o, we have

(1720 =) = D wil£(0) = * = S wilF(0) = /7 (0))?

where y is the truth value of instance o, and the ensemble model f¢** is a convex combination
of base models, i.e.,

f(0) = Zwifi(O)

where w; is the weight of the i-th base model f%, w; > 0 and >, w; = 1. f'(0) and
f¢"%(0) denote the predictions on instance o by the i-th base model f* and the ensemble
model ¢ respectively. Taking expectation on sample space D yields the classic ambiguity
decomposition theory for regression tasks, which is written as follows,

E=F—-A

where E = Ep|(f"*(0) — y)?] denotes the generalization error of the ensemble model f"%
E =Y, w;Ep|(fi(o) — y)?] denotes the weighted average of generalization error of base
models, and A = > w; Ep[(f'(0) — f"*(0))?] is called “ambiguity” which has been consid-
ered to be relevant to the diversity of ensemble. For classification tasks, Jiang et al. (2017)
proved an ambiguity decomposition theory with a variety of differentiable loss functions,
such as logistic loss and exponential loss.

Existing theoretical research results for regression and classification ensemble are helpful
in understanding the mechanism of ensemble learning and designing ensemble methods for
regression and classification tasks (Brown et al., 2005a; Yin et al., 2014; Liu et al., 2019).
However, it still lacks related theoretical research for ranking tasks and most of existing
ranking ensemble methods are heuristic. Although we can transform a ranking task into
a regression task (e.g., score regression) with consideration of only point-wise information
or a classification task (e.g., positive-negative/order-pair classification) with consideration
of point-wise and/or pair-wise information (Ailon and Mohri, 2010), it ignores some useful
information and limits the prediction performance. Specifically, methods based on point-
wise information ignore the order information of ranking lists (Rendle et al., 2009), and
methods based on pair-wise information focus on the relative order of each pair of items
while ignoring the ranking positions of items (Wang et al., 2016). Suppose the ground
truth of a ranking list is 7* = [01 = 02 > 03 = 04 > 05 = 0g] and we have two predicted
ranking lists m = [02 > 03 = 01 = 04 > 05 = 0g] and m = [01 = 02 > 03 = Og >
04 > 05). For pair-wise losses or metrics (e.g., Area Under the ROC Curve, AUC), we have
pair (71, ™) = lpair (m2, 7). However, for ranking tasks like recommender systems (RSs)
and information retrieval (IR), we hope that the loss lj;s¢(m1, 7*) > ljise (72, 7) because we
pay more attention on the top positions of ranking lists.

In this paper, we derive some theories for ranking ensemble learning with consideration
of list-wise information, which can be widely used in real-world applications like RSs and IR.
Compared with point-wise loss functions (e.g., squared loss, logistic loss, exponential loss,
etc.) used in regression or classification tasks, list-wise loss functions used in ranking tasks
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for exploring rich ranking information in the training data are more complex. We generalize
the ambiguity decomposition theory from regression tasks to ranking tasks, which proves
the effectiveness of ranking ensemble with consideration of list-wise ranking information.

As the classic ambiguity decomposition theory has proved that diversity is another
key factor besides accuracy for regression ensemble learning (Krogh and Vedelsby, 1995;
Kuncheva and Whitaker, 2003; Brown et al., 2005b), many different kinds of diversity mea-
sures have been proposed, such as disagreement, double-fault measure and entropy measure
(Brown et al., 2005a; Schwenker, 2013). However, these methods are designed for regression
or classification tasks, which cannot meet the requirements of ranking ensemble learning.
To solve this problem, we propose an explicit diversity measure for ranking ensemble learn-
ing based on our generalized ambiguity decomposition theory. It contributes to enhance
the diversity of ensemble and improve the performance of ensemble model.

Besides the lack of theoretical support, most of existing ranking ensemble methods
assume the ensemble weights of base models are query-independent. That is, each base
model may have a different weight w; but they are invariant with different queries. This
assumption may degrade the performance of ensemble learning. Each base model may have
different importance on different queries or users, e.g., a base model trained on a data set
of female users may be unsuitable for male users. To deal with this problem, we adopt an
attention mechanism and fit it into the proposed theory to learn query-dependent weights
for ranking ensemble tasks.

In this paper, we contribute to the field of ranking ensemble both theoretically and
practically. The main contributions of this paper are summarized as follows:

e We generalize the ambiguity decomposition theory from regression ensemble to rank-
ing ensemble, which proves the effectiveness of ranking ensemble.

e We propose an explicit diversity measure for ranking ensemble learning based on
the generalized ambiguity decomposition theory, which can be used to improve the
performance of ensemble model.

e We adopt an adaptive learning scheme and fit it into the proposed theory to learn
query-dependent weights for ranking ensemble, which can help to further improve the
performance of ensemble model.

e We conduct extensive experiments on two kinds of ranking tasks, RSs and IR, whose
results demonstrate the effectiveness and theoretical advantages of the proposed method.

The rest of this paper is organized as follows. Section 2 reviews some related work.
Section 3 formulates the problem and introduce a list-wise likelihood function suitable for
ranking ensemble learning. Section 4 presents the derived theories and the proposed method.
Extensive experiments are presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we first review some related work about ensemble learning for regression
and classification tasks, and then provide an overview of existing research about ranking
ensemble.
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2.1 Regression Ensemble and Classification Ensemble

Weighted ensemble is a kind of widely used ensemble method, which can be adopted with
flexible base models such as homogenous or heterogenous ones (Liu et al., 2019). Theoret-
ically, vote ensemble (Breiman, 1996) and selective ensemble (Rayana and Akoglu, 2016)
are special cases of weighted ensemble. The key of weighted ensemble is to determine the
weights of base models for ensemble. A common assumption of weighted ensemble is that
base models with better performance should have larger ensemble weights. A simple and
commonly used method is directly calculating the ensemble weights w; according to base
models’ performance (Kuncheva, 2014), e.g.,

bi

|
W; Ogl—pi

where p; denotes the normalized performance of the i-th base model on the training or
validation data set.

Ambiguity decomposition is an important theory for weighted ensemble (Brown et al.,
2005a). Krogh and Vedelsby (1995) and Jiang et al. (2017) revealed and generalized the
ambiguity decomposition theory for regression ensemble and classification ensemble, respec-
tively. They proved that diversity is another key factor for ensemble learning besides the
performance of base models. Specifically, the generalization error of ensemble model can be
decomposed into the weighted average generalization error of base models and an ambigu-
ity term related to the diversity of base models. Based on these theoretical results, several
ensemble learning methods have been proposed to learn the ensemble weights of base mod-
els with consideration of both the generalization error and the diversity. Yin et al. (2014)
proposed to combine the square loss and a diversity term with sparseness regularization and
took it as a convex quadratic programming problem. Liu et al. (2019) proposed to learn
personalized ensemble weights based on the generalization error and a diversity measure for
classification ensemble.

Existing theoretical research of ensemble learning focused on regression and classification
tasks. There is limited theoretical research for ranking ensemble. In this paper, we derive
a generalized ambiguity decomposition theory for ranking ensemble, based on which an
explicit diversity measure for ranking ensemble is proposed as well.

2.2 Ranking Ensemble

Ranking ensemble, also known as rank aggregation or rank fusion, is an important technique
for ranking tasks like RSs and IR. It combines the predictions generated by multiple base
rankers into one ranking list. Existing ranking ensemble methods can be roughly divided
into two categories: unsupervised ranking ensemble and supervised ranking ensemble (Lin,
2010; Volkovs and Zemel, 2014).

Unsupervised ranking ensemble tries to combine the predictions of base rankers in an
unsupervised way, which attracts extensive attention due to its ease of use. Well-known
unsupervised ranking ensemble methods include the combination rank fusion family (Fox
and Shaw, 1994), Borda rank fusion (Aslam and Montague, 2001), manifold learning based
rank aggregation (Liang et al., 2018b), spectral method based ensemble (Parisi et al., 2014),
and learning to rank (LETOR) based methods (Bhowmik and Ghosh, 2017). Combination
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rank fusion is a family of heuristic rank ensemble methods, which directly take some simple
calculations like summation of base predictions as the ensemble predictions (Fox and Shaw,
1994). Borda rank fusion generates the ensemble ranking list according to the summation
of each item’s Borda counts in base ranking lists, which are determined by the positions
of items in base ranking lists (Aslam and Montague, 2001). Although simple, combina-
tion rank fusion and Borda rank fusion have achieved competitive results on some ranking
tasks (Cormack et al., 2009; Valcarce et al., 2017). Several methods tried to make use of
extra information to enhance the performance of rank aggregation. For example, Liang
et al. (2018b) assumed that similar items should have similar fusion scores, and adopted a
manifold learning framework for rank aggregation. Bhowmik and Ghosh (2017) proposed
to use item attributes to augment standard rank aggregation frameworks. However, these
methods rely on unsupervised and heuristic schemes. Therefore, the ensemble results may
be misled by some irrelevant information.

Supervised ranking ensemble tries to learn another model to combine base ranking
models according to a set of labeled data, which could be the total or partial ordering
of candidate items. Liu et al. (2007) proposed a weighted ranking ensemble framework
to minimize the disagreements between ensemble ranking lists and the labeled data. Qin
et al. (2010) proposed a ranking ensemble method to combine the list-wise Luce model
and the Mallows model, which models the generation of a permutation (i.e., a ranking
list) as a stagewise process. Vargas Munoz et al. (2015) proposed a supervised genetic
programming approach to search combinations of rank aggregation techniques for a given
set of ranking lists. In addition, several studies used supervised ranking ensemble for link
prediction (Pujari and Kanawati, 2012), influencer prediction in social networks (Subbian
and Melville, 2011), and preference fusion (Volkovs and Zemel, 2013; Volkovs et al., 2012).

Most of existing ranking ensemble methods assume that the importance of base models
for ensemble is query-independent. A few methods attempted to learn query-dependent im-
portance of base models, such as Semi-supervised ensemble ranking (Hoi and Jin, 2008) and
L2RA (Macdonald and Ounis, 2011). However, these methods rely on auxiliary informa-
tion, e.g., similarities of queries’ content (Hoi and Jin, 2008) or query-document’s features
(Macdonald and Ounis, 2011), which are not suitable for tasks without these information,
such as recommender systems with only users’ behavior information.

3. Preliminaries

In this section, we first formulate the problem of ranking ensemble learning, and then
introduce a list-wise likelihood function suitable for this kind of ensemble learning.

3.1 Problem Definition

Let F = {f', f2,---, fT} be a set of base ranking models, O = {01, 09,--- ,0x} be the
set of candidate items, and Q = {q1,q2, -+ ,qn} be the whole set of queries. Lg-Q) =

[f1(0j,9), -+, fT(0;,q)] denotes the predictions of base models F on item o; € O (e.g.,
scores or ranking positions) for query ¢ € Q. Table 1 lists the symbols and notations used
in this paper.
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Table 1: Symbols and notations

Notation Description

Q={q,92, " ,qn} The whole set of queries

O ={01,02, - ,0K} The set of candidate items

F={fL7 7 A set of base models

LE-q) = [fY05,9), -, [T (0,9)] Predictions on item o; by base models F for query ¢

7l = [0(1) > -+ > o(k)] Ground truth order of candidate items for query g

I’;q) = f(or,»q) Predicted score by model f on the j-th item o(;) of (@)
" = ZiT=1 w;x* Predicted scores by the ensemble model ¢ on all items
yéq) _ xgq) _ xﬁ»qﬁl Margin between adjacent z; and ;41

AT = (T — T, s T — TK) Difference vector of (zy,, - ,Tk)

QUi = Y, Ym + Ymt1, " s Zfz_,}b yn) Composition vector of (Y, - ,yrx—1)

Iz, 79, q) Loss function of P-L model with score vector x

I*(y, 79, q) Loss function of P-L model with margin vector y

D= {LEQ), e ,Lg‘(]), W(q)}qeg The whole set of query specific samples

Dy = {qu), e ,L%), W(q)}qegl A training set of query specific samples, where Q' C Q
Ep(Y) The expectation on the sample space D

Wiy Weight of the base model f? w.r.t. query g, for ensemble
Qiu = Wi/ (D, Wiw) Contribution of the i-th base model f? for ensemble

The goal of ranking ensemble is to construct or learn an ensemble function f¢** to fuse
the prediction results of base ranking models. In this paper, we focus on the weighted
ranking ensemble, i.e.,

T
£ (05,) = 3 wifi (05, q)
=1

where w; € R denotes the weight of the i-th base model f!. The goal of weighted ranking
ensemble learning is to learn the weights (w1, ws,- -+ ,wr) based on a training sample set

Dy = {L§Q),~-- ,Lg),w(q)}qeg, where 7(@ denotes the (partial) ground truth order of
candidate items for query g and Q" C Q denotes a subset of queries in the sample space.

3.2 List-wise Likelihood Function

To fully make use of the list-wise ranking information and pay more attention to the top
positions of ranking lists, we adopt Plackett-Luce (P-L) model to define the likelihood func-
tion of ranking predictions. P-L model (Plackett, 1975) defines a parameterized probability
distribution over the permutations of items given the prediction scores.

For a given query ¢ with the ground truth ranking list 7 on an item set O = {01,092, - , 0K},
the likelihood function for the prediction scores generated by a model f can be defined as

follows,
K

exp(f(0r(,.,+9))
P(n|O,q, f) =
(710, 4, f) yl K exp(f(on, . q))

where f (oﬂ(m) ,q) denotes the prediction score generated by model f for query ¢ on the m-th
item in the ranking list 7. Maximizing the likelihood function P(7|O,q, f) enforces that
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items at higher positions of the ground truth ranking list m should have larger prediction
scores (i.e., f(oﬂm,q) > f(o%,) ,q) if i < 7) and that the relative margins between adjacent
items o, and or, ., (i.e., [exp(f(or, 7)) — exp(f(0r .1y D))]/exp(f(0r,,,q))) are as
large as possible.

To simplify the representations, we denote

1:7(’3) = f(oﬁ(m)7Q)

We will omit the superscript (¢) without affecting the understanding given the context in
the rest of this paper. Furthermore, we take the logarithm of the likelihood function and
simplify it with a pseudo-sigmoid function as follows:

K
exp(Tm EXpP{Tm
L(7|0,q, f) = In P(x]O,q, f) = In H pexp Z an:pesz)
=1

K

K 1 1
= Z In ZK = In 7 = Z In oy, (Axp,. k)

=m exp(Tn — Tm) 1 LT Zn:m+1 exp(—(Tm — 1)) m—1

N

where A,k = (T — Tyt1, s Tm — TK) € RE=™ is named as difference vector

and o,,(+) is a multivariate function named as pseudo-sigmoid function that maps z €

RE-™ 4 R, ie.,
1

1+ En 1 exp( )
The pseudo-sigmoid function o,,(2) degrades into the standard sigmoid function when m =
K -1.
Therefore, we can denote the P-L likelihood function L(7|O,q, f) as a function of the
difference vectors, i.e.,

om(z) =

K
L(x|0,q, ) = 9(Ax) = Y gm(A.kc) (1)
m=1

where g (Axp k) = oy (Axy. k), Ax = Azi.x P Azo.x P - P Azg_1.x and @ de-
notes the concatenation operation of vectors.

4. The Proposed Theory and Method

In this section, we first generalize the ambiguity decomposition theory from regression
ensemble to ranking ensemble. Then, we propose an explicit diversity measure for ranking
ensemble based on the generalized theory. Finally, we adopt an adaptive learning scheme
to model and learn query-dependent ensemble weights to further improve the performance
of ensemble model.

4.1 Generalized Ambiguity Decomposition Theory for Ranking Ensemble

The classic ambiguity decomposition theory proves the effectiveness of regression ensemble
whose performance is measured by the squared loss, which is a point-wise loss function. In
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this section, we generalize the ambiguity decomposition theory to ranking ensemble whose
performance is measured by a list-wise loss function. This generalized theory provides
evidence for the design of better ranking ensemble methods and diversity measures.

To reveal the relationship between the losses of base ranking models and the loss of
ensemble model, we adopt P-L. model to define the ranking loss function, which is defined
as follows,

K K
l(z,7,q) = —L(7|0,q, ) = —g(Az) = Y " In(1+ D exp(—(zm —2,)) >0 (2)
m=1 n=m+1

where L(7|O,q, f) is the P-L likelihood function defined in Equation (1), z,, = f(oﬂ(m),q)
denotes the prediction score generated by model f for query g on the m-th item in the
ground truth ranking list 7, and @ = [z,,|m = 1, -+ , K] denotes the score vector.

To simplify the proof of the generalized ambiguity decomposition theory, we first give
two lemmas about the properties of the difference vectors Ax,,.x and the Hessian matrix
of the logarithm pseudo-sigmoid function

|2l

gm(2) =In(1/(1+ ) exp(—zn)))
n=1

The proof of these lemmas are given in the Appendix.

Lemma 1 Property of Difference Vectors Ax,,.i. With a set of base ranking models
{f1,---, fT} and a weighted ensemble model f"*(o(;),q) = ST wi f*(0¢;),q), we have
Axiny = ZZT:1 wiA:L'me, where Amf;l"f} and Amfn:K denote the difference wvectors of
ensemble model f° and base model f*, respectively.

Lemma 2 Property of Hessian Matriz. The Hessian matric Hy,(z) of the logarithm
pseudo-sigmoid function gp,(z) =1In(1/(1 + Zlil exp(—zy))) is a negative definite matriz,
where z € R".

Based on these two lemmas, we can prove a generalized ambiguity decomposition theory
for ranking ensemble.

Theorem 1 Generalized Ambiguity Decomposition Theory for Ranking Ensem-

ble. Given a set of base ranking models {f',---, fT} and a weighted ensemble model
fes = Zszl w; f* with Zszl w; # 0, the expected P-L loss of the ensemble model f*
on a sample space D = {L§Q), ‘e ,Lg), W(q)}qeg can be decomposed into two components as
follows,
T . T K
Ep(I(a°"*,7,q)) = > aiEp(l(a*,7,q) = > a:Bp() | Aim)
4 i=1 i=1 m=1
E A

where a; = wi/(ziTzl w;) and

1 . » ‘
Aim = =5 [AT e — AR Hin (AT, ) [Azy, ¢ — Azpig] 2 0 (3)

m:
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A:I:fn:K and AzE™s. denote the difference vectors of base model f* and the ensemble model
fens, respectively H (1) denotes the Hessian matriz of the logarithm pseudo-sigmoid func-
tion gm(+) and AZE . is an interpolation point between Awens and Azt ... Ep(-) denotes
the expectation on the sample space D = {qu - L(q }qeg where @ = {q1,q2, -+ ,qN}
denotes the whole set of queries. A = Z 1 alEp(Zgzl Aim) s called the ambiguity of en-
semble.

Proof For each base model f?, we expand the logarithm pseudo-sigmoid function gm(Awfn: i)
around point Azf"7 by Taylor expansion with Lagrange type reminder as follows,

m(AL], ) =g (ATHR) + [Vom(Azfif)|T[AT,  — Azpi ]+
1
2!

where vector Vg,,(z) and Hessian matrix H,,(z) denote the first-order and the second-

S AT — Az o (AT ) [Ay, e — Az

order partial derivatives of the multivariate function g,,(z) = In(1/(1 + Z'; | 1exp(—2z))),
respectively. Ax? . is an interpolation point between Az and Awm K-
According to Equation (1), we can get g(Ax*) by summarizing {gm(Axz! ;)lm =

VK1 e,
K K K
(AT = 3 gu(Aai ) = g(Az=) + 3 (Vg (Axeng)T[Awh, — Azeris] = S A,
m=1 m=1 m=1
where
Ay, = [A:cm K — Az E]T Hm(Aﬁf )[Amm K — Az

Based on Lemma 1, i.e., Az = Zle wiAmfn:K, we can get the weighted summarization
of g(Ax") as follows,

T T
Z wig(Axt) = Z w;g(Axe™?) +
i=1 ‘
— Z ,wlg ens +

M’ﬂ

K K
w; Z [Vgm(Aziri)]T (Ame Axine) — Zwl Z Aim

s
I
—

]~

K
[Vgm(AzErs)] szAfEm K — AzinE) — Zwl Z Aim
m=1

1 =1 i=1

3
Il

0

ie., . . p
;wi Q(A?i) :;wi g(Az"?) 2 Wi > Aim

=—l(x*m,q) =—[(zems m,q) t m

Due to I(z,7,q) = —g(Axz) and 3. w; # 0, we have

T
(x®™® 1, q) = L a: T, q) Aim
; ZzT:lw ;mz:l 1“)Z
T T K
:Zail(a:i,ﬂ q) ZZ@
=1 i=1 m=1
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where a; = w;/ (E?Zl w;). Taking expectation of I(x®™%, 7, ¢q) on the sample space D,
Equation (1) is proved. Lemma 2 proves that H,,(-) is negative definite, thus A;, > 0 is
established. |

This theory proves that the prediction loss of ranking ensemble model can be decom-
posed into the weighted average loss of base models and an ambiguity term related to the
diversity of ensemble, which shows an important relation among the ensemble model, base
models, and the ambiguity for ranking ensemble. Furthermore, the ambiguity decomposi-
tion theories for regression and classification ensemble can be seen as special cases of our
theory. For example, our theory can degenerate into the classic ambiguity decomposition
theory for regression ensemble by setting 7 as the regression value and using the squared
loss function. And our theory can also degenerate into an ambiguity decomposition theory
for classification ensemble by setting 7 as the classification label and using a convex loss
function as in Jiang et al. (2017).

Similar as the ambiguity decomposition theory for regression/classification tasks, the
generalized ambiguity decomposition theory proves the effectiveness of ensemble learning
for ranking tasks. Suppose we have ™ = S°T w/a? where w} > 0 and .7 | w} =1, we
have a; = w} /(31 w}) = w). According to Theorem 1, we have Aj;, > 0 and can further
get the following inequality,

T
Ep(i(@* 7,q)) < 3 wiBp((;,7,q)) (4)
=1

Therefore, the prediction loss of the ranking ensemble model is no greater than the average
loss of base models with non-negative weights w;. In other words, the weighted ensemble of
several base ranking models is better than randomly selecting the predictions of one base
model according to the sampling weights w]. As base ranking models’ results may contain
“wrong” partial orders, we consider both “positive” and “negative” results with w; € R as
in classification tasks (Jiang et al., 2017). Therefore, we can get a better ensemble model,

because
min  Ep(l(z®™%,7,¢q)) < min  Ep(l(z*™ 7, q))

wy,- wpER w’l,---,w’TZO (5)

T
Xioq wi#0 =T wli=1

where x®™® = Zz'T:1 w;x®. This inequality can be easily established because the set of real
numbers R contains the set of non-negative real numbers and w; € R can take the value of
w;, > 0 if the less-than relation is not satisfied. According to Equation (4) and Equation
(5), we can get the following inequality,

T
min _ Ep(l(x®™®,7,¢)) < min wiEp(l(x, 7, q))
wy, - wpeR w] ol >0 4 ¢
Eszl w; 70 ET w!=1 =1

which proves the effectiveness of ensemble learning for ranking tasks.
_ The expected loss of weighted ranking ensemble model depends on an ambiguity term
A= Zle aiEp(ZK Aim), which is related to the diversity of ensemble. When there

m=1 .
is no diversity, i.e., all base ranking models are the same, we get Az} . = AzS": and

10
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A =0. A, in Equation (3) can be seen as a measure of the disagreement between the i-th
base ranking model f? and the ensemble model f¢* for the prediction of the m-th position
in a given ranking list. The larger of the ambiguity A means the greater of the ensemble
diversity. However, it is difficult to calculate the ambiguity A directly.

4.2 Diversity Measure for Ranking Ensemble

Based on the generalized ambiguity decomposition theory proved in the previous section,
we can derive an estimation of the ambiguity term A as an explicit diversity measure for
ranking ensemble, which can be used to improve the performance of ensemble model.
Inspired by the margin theory (Gao and Zhou, 2013), we reformulate the loss function de-
fined in Equation (2) with margins. Specifically, we denote the margins y = (y1,-- - ,yx—1)
as the distances between the prediction scores of adjacent items in the given ranking list
w, i.e., y; = ©; — x;41. Therefore, p, — Tp = Ym + - -+ + Yn—1 and we can replace the loss
function I(x,m, q) of difference vector & with the loss function [*(y, 7, ¢q) of margin vector

y, l.e.,

K K
Fly,mg) =Y 1+ Y exp(—Ym+-+yn1))
m=1 n=m-+1
é_gm(fzym:K)
where QUi = (Ym, Ym + Ymt1, * sYm + -+ + yx—1) denotes the composition vector of
margins (Ym, Ym+1, -+ »Yk—1). In addition, we denote y* and y®™* as the special cases of

margin vector y when f = f* and f = f% respectively. Qy™s and Qy}n i follow the

same idea with the definition of composition vector Qy.,.x .

To simplify the proof of the proposed diversity measure for ranking ensemble, we first
give a lemma about the property of Hessian matrix of the loss function [*(y, 7, q). The
proof of this lemma is given in the Appendix.

Lemma 3 The Hessian matrix H*(y) of function *(y,7,q) is a positive definite ma-
triz, which is the sum of positive (m = 1) and semi-positive (m > 1) definite matrices
{H} (y)lm =1,--- K} that are the Hessian matrices of {1}, (y,7,q) = —gm(QY,,.50)|m =
1, K}, ie.,

K
H*(y) =Y Hy(y)

O(m—1)x (m-1) 0(7%;1>(§2;K—rr)b)
'm m: K
B 8ym:K8y;LL:K

Hy(y) = [

O(K—m)x(m—1)

Based on Lemma 3 and Theorem 1, we can derive an estimation for the ambiguity term
A, which can be used as a diversity measure for ranking ensemble.

Theorem 2 Diversity Measure for Ranking Ensemble. The ambiguity term A in
Theorem 1 has an estimation Div as follows,

T
A i = Bp( a4 (= 0T O 9™ = Sy ey ™)

(6)

1
Do Wi

11
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where Y™ = (y{"*,- -,y ,) denotes the margin vector of the predictions of the weighted
ensemble model f* = S wif', ai = wi/(C 1wl) VI*(0,7,q) denotes the partial
derivative of loss function I*(y,m,q) at point 0, C! = [y |TH*(c; - y*)[y%] is a constant
term, c1,--- ,cp,cq € [0,1] are interpolation constants, cmd H*(-) is the Hessian matriz of
loss function I*(y,,q), which is a positive definite matriz and can be calculated as follows,

mln(ld . ..
.. 0l (y,m,q) h(m,max(i, j), K)[1 + h(m,m, min(i, j))]

* E 7
H (y)[%]] aylayj —~ [1+h(m,m, K)]2 ( )

where

t n—1
h(m787t) = Z exp(— Z yk)
k=m

n=s+1

Proof For each base model f? and the weighted ensemble model f¢*, their loss functions
can be expanded near zero according to the Taylor’s Theorem as follows,

* 3 * * 3 1 3 * [ ~1
Iy, m,q) =17(0,m,q) + [VI*(0,7,9)]Ty" + g[yz]TH ¥y

1 -
Py, mq) = (0., q) + [VI(0,m,q)[ Ty + 5 [y TH" (y*)y ™"

where H*(-) is a positive definite matrix according to Lemma 3.
Furthermore, we can get the ambiguity term A as follows according to Theorem 1:

T T
A = ED Zai wi ™ Q) - l(men8>7‘—7Q) = E’D Zazl* yiv,/T q) - l*(yensvﬂvq))

:ED< Zal—l (0,7,q) + [VI*(0,7,q)]T Zaly ¥’
h,_/
=0 :yens/(zi wi),yens
T Qo 1
Z ? TH* "’Z)[y’l,] _ 5 [yenS]TH* (genS) [yen3]>

1 * ens ens * (~ens ens
— (5= = 1 [V0(0.m,0) Zazq— ST G )
Zi Wi
where C; = £[y*|TH*(g")[y"] denotes a constant which is independent with the weight vector

w. Due to the interpolation g is a point between 0 to y*, we can estimate it by §° ~ ¢; - y*,
where ¢; € [0, 1] is an interpolation constant. Similarly, we can get g™ ~ ¢, - y©™*, where
¢q € 10,1] is an interpolation constant. Therefore, we can get an estimation of the ambiguity
term A as follows,

T
_ - 1 1
A~Div2 E o4 — 1) [VI* Ty _ [T H* () . €7 [y€7
02 o 3 0iClt (sl =) m ™ = ST ey ™)

12
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where C/ = 3[y*]TH*(c; - y*)[y®]. The calculation formula (Equation 7) of Hessian matrix
H*(-) and partial derivative VI*(0, 7, q) are derived in Appendix.
|

This theorem provides an explicit diversity measure for ranking ensemble, which is
related to the margin vector y¢™® and the weight vector w according to Equation (6).
Taking weight vector w as the parameter, the diversity term can be directly adopted into a
diversity-based ensemble learning scheme to improve the performance of ensemble model.

4.3 Adaptive Weight Learning

Base models may have different predictive abilities on different queries. To explore the
specificity of different queries for ranking ensemble, we propose to learn query-dependent
weights w; ,, of base models, i.e.,

fens(oj’ QU) = Z wi,ufi(ajv Qu)

where w;,, represents the weight of the i-th base model f* with respect to query g,. It
is difficult or even impossible to learn the query-dependent weights wj;, directly because
of the large number and the uncertainty of queries in real applications. To deal with this
problem, we adopt an attention mechanism to adaptively learn the query-dependent weights.
The attention mechanism aims at learning the relevance between base models and queries
according to their embedding representations in the same latent space, which describes the
importance of base models with respect to queries. Specifically, we embed each base model
f* and query g, into the same latent space, denoted as p; € R? and h,(0) € R? respectively,
where 0 denotes the parameters for query embedding.

The attentional weight w;, can be calculated based on the similarity between the latent
representations of base model f? and query gy, e.g.,

Wi =< Pi, hu(0) > (8)

where < -,- > denotes the inner product of two vectors. When the queries appear in both
the training data set and the test data set, such as users in RS tasks, we can directly learn
their embeddings h(0) = h, € R? as the LFM model (Koren et al., 2009) without knowing
or using their content features. When the test queries are not in the training set, such as
for IR tasks, we can make use of queries’ content features such as topic words to construct
queries’ embeddings h,(0) € R? as the AEM model (Liu et al., 2019). The base models’
embedding p; and the queries’ embeddings h, (or parameters 8) are parameters of our
ensemble model.

To make sure that the query-dependent weights can fit into the proposed theories and
methods, we derive a corollary as follows:

Corollary 4 The query-dependent weights w;,, can fit into the generalized ambiguity de-
composition theory (Theorem 1) and the explicit diversity measure (Theorem 2) by replacing

w; with Wiy -
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Proof Due to the elements of sample space D are query g¢,-specific, we can replace w; with
wj ,, in the proof of Theorem 1 and Theorem 2. Therefore, this corollary is established. W

We have two goals to learn the query-dependent weights. One goal is to minimize
the prediction loss > p {I*(y*"*, 7, q)} on the training data set Dr, i.e., maximizing the
fitting degree of the ensemble model on the training data. However, simply minimizing the
prediction loss on the training data set Dr C D may cause the overfitting problem. To
alleviate this problem, we add another goal to maximize the diversity of ensemble Div as
defined in Theorem 2, which can help to reduce the generalization error on the whole sample
space D and get a better ensemble model. Detailed analysis of how the diversity mechanism
works is shown in Section 5.8. As a result, the whole objective function for ensemble model
learning is defined as follows,

min aWELv-OPT = > "(I*(y*™*, 7, q) — ADiv) (9)
Dr
where Dy = {L(Q) x Lg?), T }qeg denotes a training sample set, and A is a coefficient

to trade off the two goals

Algorithm 1 Parameter Learning Algorithm
L%),ﬂ'(

Input: A training set Dp = {qu), cee q)}qeg, partial-sampling number k, embed-
ding dimension d, initial learning rate 7, trade-off coefficient A, interpolation constants
c1,"++ ,Cr,Cq, maximum iteration threshold &.

Output: Base models’ embeddings {p;|f® € F}, parameters 6 for query embedding
{hu(8)lu € Q}. |

1: Randomly initialize base models’ embeddings {p;|f* € F} and parameters 6 for query
embedding {h.(0)|q, € Q};
: repeat
Randomly select a sample {qu“) : L(q“ () } € Dr;

2

3

4 # Adding disturbance to avoid Zi:l Wiy = 0:

5. if 1, < pi, hu(8) >=0 then

6: repeat

7 0 < 0+ 6; # & € Rl denotes small random disturbance;
8 until Eszl < pi,hy(0) >#0

9 end if

10: # Partial-sampling strategy:

11: Sample  integers T' = [y, -+, yx] s.t. 7@ (37) = - = 7(@)(,.);

12: Select the partial ranking lists: s = {qu“)[l“], e ,L(Ig“)[l“], m(@) (I}

13: # Update parameters:

14: 0+ 06— Taavg%{j@c))PT O (0), # Update the parameters for query embedding;
15: Pi < Di — W for f; € F; # Update the embedding of base models;

16: Adjust the learning rate 7 by AdaGrad;
17: until convergence or iteration number reaches the maximum iteration threshold &
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For model training, i.e., learning base models’ embeddings p; and queries’ embeddings
h.,, we optimize the objective function Equation (9) by stochastic gradient descent (SGD)
and adaptively adjust the learning rate by AdaGrad (Duchi et al., 2011). In real-world sce-
narios, the ground truth ranking lists usually contain lots of items which leads to tremendous
computational complexity for model training, and the full ranking list for each query may
be not available (Liu et al., 2007). To deal with this problem, we adopt a partial-sampling
strategy to sample the items in the ranking lists for model training as Xia et al. (2008). To
avoid ZiT:1 wj, = 0 which is intractable for the proposed diversity measure, we add small
random disturbance to the parameters when ZiT:1 wj,, = 0. Specifically, the pseudocode of
the algorithm for parameter learning is shown in Algorithm 1.

5. Experiments

In this section, we conduct several experiments to study the following research questions:

e RQ1: Whether the proposed ranking ensemble method outperforms state-of-the-art
ensemble methods on different ranking tasks, such as RSs and IR?

e RQ2: Whether ranking ensemble with consideration of list-wise information outper-
forms those with consideration of only pair-wise information?

e RQ3: Whether the proposed ranking ensemble method benefits from diversity-based
learning?

e RQ4: Whether the proposed ranking ensemble method benefits from the adaptive
weight learning?

e RQ5: To what extent the proposed ranking ensemble method outperforms the base
models?

e RQ6: Whether the proposed ranking ensemble method with several simple base mod-
els can outperform state-of-the-art ranking models?

5.1 Baselines and Evaluation Metrics

To evaluate the performance of the proposed ensemble method, we compare it with several
competitive baseline methods, including Combination Fusion Family (Fox and Shaw, 1994),
Borda Count Fusion (Aslam and Montague, 2001), aMANx (Liang et al., 2018b), Baggin-
gReg (Louppe and Geurts, 2012), AdaBoostReg (Drucker, 1997), SER (Hoi and Jin, 2008),
ConvexDS (Yin et al., 2014), and AEM (Liu et al., 2019).

- Combination Fusion Family (Fox and Shaw, 1994): It is a family of unsuper-
vised ranking ensemble methods, including CombSum, CombANZ and CombMNZ.
Previous work (Cormack et al., 2009; Valcarce et al., 2017) showed that Combination
Fusion Family achieved the best performance in their work for RS and IR tasks.

- Borda Count (Aslam and Montague, 2001): It is an unsupervised ranking en-
semble method, which directly calculates the ensemble score of each item according
to its positions in the predicted ranking lists by base models.
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- aMANx (Liang et al., 2018b): It is a manifold-based unsupervised ranking en-
semble method. In RSs, we calculate items’ relevance matrix based on their cosine
similarities as in Deshpande and Karypis (2004).

- BaggingReg (Louppe and Geurts, 2012): It is a bagging based ensemble method
for regression tasks.

- AdaBoostReg (Drucker, 1997): It is a boosting based weighted ensemble method
for regression tasks.

- SER (Hoi and Jin, 2008): It is a supervised weighted ensemble method for ranking
tasks, which tries to minimize the disagreements between the ground truth ranking
lists and the ranking lists generated by the ensemble model.

- ConvexDS (Yin et al., 2014): It is a weighted ensemble learning method for
classification tasks, which learns the weights of base models with consideration of
both sparsity and diversity. As ConvexDS is designed for classification tasks, we
transform the ranking tasks into classification tasks as in Pan et al. (2008).

- AEM (Liu et al., 2019): It is a weighted ensemble learning method for classification
tasks, which learns personalized classifier weights based on instances’ features. We
also transform the ranking tasks into classification tasks as for ConvexDS.

Among these methods, ConvexDS and AEM are ensemble methods for classification
tasks while BaggingReg and AdaBoostReg are ensemble methods for regression tasks. These
methods have been adopted into ranking tasks for comprehensive comparisons. The other
baselines are ranking ensemble methods with a supervised or unsupervised learning scheme.

We adopt two commonly used ranking evaluation metrics, Recall and NDCG (Normal-
ized Discounted Cumulative Gain) to measure the performance of different methods. The
former is used to measure methods’ ability of distinguishing related items, while the latter
focuses on the positions of related items in the ranking list. Specifically, we adopt the same
formulations as in Shenbin et al. (2020), i.e., Recall is formulated as follows:

1 #HZt@TL(Qu)
Recall@n = —
ecall@Qn 0| quze:Q min(#GT(qy),n)

where #Hit@n(q,) denotes the number of ground truth items in the top-n ranking list for
query ¢, and #GT'(q,) denotes the number of all ground truth items for query ¢,. NDCG
is formulated as follows:

1 DCG@n(qy)
NDCGan = — Yy )
STe] q;QIDCG@n(qu)

where
DCGQn(q,) = i &
“ — log, (i + 1)

#GT(Qu) 1
IDCG@n(q,) = —
(42) ; log, (i + 1)
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where rel; € {0,1} denotes whether the item at the i-th position of the predicted ranking
list is a ground truth item for query q,, and IDCG@n(q,) denotes the ideal DCGQn(q,,)
which is used to normalize DCG into [0, 1].

5.2 Application to Recommender Systems

The goal of this experiment is to evaluate the performance and effectiveness of the proposed
ranking ensemble method for top-n recommendation tasks. We assume the sample space
D includes partial orderings of items e.g., o) = o0x1) = 0y, where o) € Rating(5),
o1y € Rating(1 ~ 4) and o(g) € Rating(NULL). The goal of top-n recommendation is to
recommend n items for each user that the user may prefer but have not seen, i.e., those
items o € Rating(5) in the test set.

Each user u is regarded as a “query” that triggers the recommender systems, which
can be embedded into a latent space i.e., h,(0) = h, € R% For each base ranking model
f*, we can embed it into the same latent space as users, i.e., p; € R?. The embedding
representations of users and base ranking models are model parameters to be learned.

5.2.1 EXPERIMENTAL DESIGN

We conduct experiments on four real world data sets, including Amazon'-Movies, Amazon-
Kindle, Epinion?, and ML-20m?. The Amazon-Movies and Amazon-Kindle data sets were
collected from Amazon.com, which contain users’ ratings on videos (e.g., movies, TV
shows) and e-book respectively. The Epinion data set was collected from a rating website,
which contains users’ ratings on many different types of items (software, music, television
shows, and etc.). The ML-20m data set was collected from the MovieLens website (movie-
lens.umn.edu), which contains users’ ratings on movies. Therefore, the task of RS on these
data sets is to predict users’ behaviors and recommend items to users that users may prefer
and interact with. We only keep users who have engaged at least 25 items in these data
sets except for 5 items in ML-20m data set as in Liang et al. (2018a). The characteristics
of the four data sets are summarized in Table 2.

Table 2: Statistics of the experimental data sets for RS tasks

Data set #Users #Items #Interactions
Amazon_Movies 11,396 7,074 473,878
Amazon_Kindle 9,371 2,932 119,509
Epinion 8,577 3,769 203,275
ML-20m 136,677 20,720 9,990,682

Each data set is randomly divided into two subsets: 80% for training and 20% for
testing. The training set is used for training the base models and learning the parameters
of ensemble models. The test set is used for evaluating the performance of ensemble models.

1. http://jmcauley.ucsd.edu/data/amazon/links.html
2. http://www.trustlet.org/wiki/Epinions_datasets
3. https://grouplens.org/datasets/movielens/
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In addition, we split 20% data from the training set as the validation set, which is used for
hyper-parameter selection.

We adopt seven existing methods as base recommendation methods, including one pop-
ularity based method (Tang and Wang, 2018), two memory-based methods and four model-
based methods. The two memory-based methods are User-KNN and Item-KNN (Deshpande
and Karypis, 2004). The four model-based methods consist of two point-wise collaborative
filtering methods MF (Koren et al., 2009) and CDAE (Wu et al., 2016), a pair-wise learn-
ing to rank method BPR (Rendle et al., 2009), and a list-wise learning to rank method
ListRank-MF (Shi et al., 2010). To enhance the diversity of base models, we generate five
base models with different random initializations of model parameters for each model-based
method. To unify the predictions generated by different base models, we transform each
ranking list generated by a base model into a relative score list by s(p) = 1/(p + p) as in
Cormack et al. (2009), where p denotes the position in ranking list and p denotes a constant
which is set as 10.

For all baseline models, we tune the parameters to their best. For the proposed model,
we set embedding dimension d = 16, initial learning rating 7 = 0.01, maximum iteration
threshold £ = 100 - |Dp| for all data sets except & = 300 - |Dp| for ML-20m, trade-off
coefficient A = 0.1 and interpolation constants* ¢; = --- = ¢ = ¢4 = 0.25 and 1.0 for
Amazon (Movie and Kindle) and ML-20m data sets, A =1.0 and ¢y =--- =¢p = ¢4 = 0.5
for Epinion data set. Experimental results are recorded as the average of five runs with
different random initializations of model parameters.

5.2.2 EXPERIMENTAL RESULTS

Table 3 shows the performance of different ensemble methods for RS tasks. To make the
table more notable, we bold the best results and underline the best baseline results for
each data set with one specific evaluation metric. Experimental results show that the pro-
posed method aWELv performs significantly better than all baselines in all cases, which
demonstrates the effectiveness of the proposed ensemble method (RQ1). In addition, we
find that most of supervised ensemble methods, including ConvexDS, AEM, SER and our
method, perform better than the unsupervised ensemble methods, including combination
fusion family, Borda count and aMANx, in most cases. It confirms the necessity of making
use of the supervised information for model ensemble. Methods with consideration of en-
semble diversity (ConvexDS and AEM) perform the best among baselines, which confirms
the importance of diversity for ensemble learning.

5.3 Application to Information Retrieval

The goal of this experiment is to evaluate the performance and effectiveness of the proposed
ensemble method for IR tasks. We assume the sample space D includes partial orderings
of documents o(z) = o(1) = 0y, where o3y € Label(2), o(1) € Label(1) and oy € Label(0).
The goal of IR systems is to find the n most relevant documents o € Label(2) for each
query.

4. To reduce the number of hyper-parameters for efficient tuning, we set ¢c1 = --- = ¢r = ¢4 inspired by
(Jiang et al., 2017).
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Table 3: Performance of different ensemble methods for RS tasks. * indicates statistically

significant improvement by an independent-samples t-test (p < 0.01) compared
with all baseline methods.

Method Amazon_movie Amazon_Kindle Epinion ML-20m
Recall@b NDCG@5 Recall@j ‘ NDCG@5 Recall@js NDCGa@5 Recall@b ‘ NDCGa@5
CombSum 0.0354 0.0245 0.1088 0.0489 0.0480 0.0241 0.2716 0.2803
CombANZ 0.0351 0.0246 0.0830 0.0411 0.0454 0.0235 0.1910 0.1987
CombMNZ 0.0362 0.0243 0.1191 0.0520 0.0461 0.0231 0.2853 0.2953
Borda Count 0.0329 0.0255 0.1049 0.0587 0.0567 0.0315 0.2900 0.3041
BaggingReg 0.0294 0.0207 0.1400 0.0674 0.0474 0.0241 0.1825 0.1793
AdaBoostReg 0.0413 0.0279 0.1579 0.0810 0.0533 0.0275 0.3130 0.3209
aMANx 0.0382 0.0267 0.1767 0.0901 0.0586 0.0323 0.2713 0.2802
SER 0.0441 0.0317 0.1760 0.0897 0.0631 0.0349 0.3379 0.3474
ConvexDS 0.0537 0.0379 0.1855 0.0948 0.0674 0.0371 0.2845 0.2951
AEM 0.0589 0.0419 0.1799 0.0930 0.0710 0.0402 0.3621 0.3717
aWELv(ours) 0.0629* 0.0440™ 0.1912* 0.0989™ 0.0794* 0.0430™ 0.3695* 0.3813"
Improve. 6.69% 5.00% 3.05% 4.26% 11.82% 7.13% 2.04% 2.56%

Due to the uncertainty of input queries to IR systems, we cannot directly learn the
query-level embedding representations during the training phase, e.g., some test queries
may never appear in the training set. Therefore, we appeal to the topics of queries. Let
the topics of each query ¢, denote as a set of words V,, = {vy,-- ,’U|Vu|}. The embedding
representations of topic words v; € R!% are 100-dimension vectors pre-trained by GloVe
(Pennington et al., 2014). We calculate the embedding representation h,, of query ¢, as a
linear aggregation of its topic words’ embedding representations as Su et al. (2021) and Li
et al. (2020) with a neural network, i.e.,

1
h(0) = J - > vi+b
‘ u|’Ui€Vu

where J € R199%4 and b € R? are model parameters 6 to be learned.

5.3.1 EXPERIMENTAL DESIGN

We conduct experiments on two benchmark data sets, MQ2007-agg and MQ2008-agg, which
are provided by LETORA4.0 (Qin and Liu, 2013). These data sets contain queries associated
with ranking lists generated by different base models. The characteristics of the two data
sets are summarized in Table 4 .

For each data set, we divide it into two equal subsets as in Shen et al. (2014), one for
learning the parameters of ensemble models (including 10% for hyper-parameter selection)
and the other for evaluating the performance of ensemble models. Experimental results show
that the proposed method performs well when embedding dimension d = 5, initial learning
rating 7 = 0.01, interpolation constants ¢; = --- = ¢ = ¢q4 = 0.5, trade-off coefficient
A = 0.1 and A = 0.01, maximum iteration threshold £ = 200 - |Dr| and £ = 500 - |Dr| for
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Table 4: Statistics of the experimental data sets for IR tasks

Data set #Queries #Documents #Interactions

MQ2007 1,692 65,323 69,623
MQ2008 784 14,384 15,211

Table 5: Performance of different ensemble methods for IR tasks. * indicates statistically
significant improvement by an independent-samples t-test (p < 0.01) compared
with all baseline methods.

Method MQ2007 MQ2008
Recall@5 NDCG@5 Recall@5 NDCG@Q5
CombSum 0.2925 0.2466 0.6880 0.5399
CombANZ 0.2972 0.2496 0.4417 0.2601
CombMNZ 0.3435 0.2806 0.6934 0.5367
Borda Count 0.2961 0.2508 0.6947 0.5430
BaggingReg 0.3171 0.2638 0.7172 0.5482
AdaBoostReg 0.3268 0.2756 0.6833 0.5303
SER 0.3220 0.2719 0.6876 0.5389
ConvexDS 0.3020 0.2555 0.6983 0.5454
AEM 0.3373 0.2822 0.7289 0.5763
aWELv (ours) 0.3497* 0.2919* 0.7518%* 0.5939*
Improve. 1.82% 3.44% 3.14% 3.05%

MQ2007 and MQ2008, respectively. Experimental results are recorded as the average of
five runs with different random initializations of model parameters.

5.3.2 EXPERIMENTAL RESULTS

Table 5 shows the performance of different ensemble methods for IR tasks. The same as
for RS tasks, the proposed method aWELv performs significantly better than all baseline
methods in all cases, which confirms the research assumption RQ1. In addition, the su-
pervised ensemble method AEM performs the best among baselines in most cases, which
also confirms the necessity of making use of supervised information for model ensemble.
Compared with AEM which makes use of only point-wise loss information, the proposed
method aWELv performs significantly better, which confirms the necessity of making use
of the list-wise information for ranking ensemble.

5.4 Ablation Experiment

The goal of this experiment is to evaluate the effectiveness of module design of the proposed
method aWELv.
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5.4.1 EXPERIMENTAL DESIGN

There are several key modules in aWELv, including list-wise loss function, diversity-based
learning and adaptive weight learning. To evaluate the effectiveness of these modules, we
degrade or remove them from aWELv and compare the performance of these variants.

- WEP: Weighted Ensemble with Pair-wise loss is a special case of the proposed
method. The P-LL model degrades into the pair-wise Bradley-Terry model when
K = 2, and then the proposed method aggregates ranking lists using only pair-wise
information. In addition, it ignores the diversity and the adaptive weight learning
components.

- WEL: Weighted Ensemble with consideration of List-wise loss is a special case of
the proposed method. It aggregates ranking lists with consideration of list-wise infor-
mation. It ignores the diversity and the adaptive weight learning components.

- WELv: WEL with diversity-based learning is a special case of the proposed method.
It takes into consideration of the diversity of ensemble while still ignoring the adaptive
weight learning component, i.e., all the queries share an ensemble weight set {w;|i =
1,---, T} and fo¢ = 320 f.

- aWEL: Adaptive WEL is a special case of the proposed method. It takes into con-
sideration of the adaptive weight learning component while ignoring the diversity
component, i.e., A = 0.

- aWELv: It is the proposed method, which takes into consideration of both the
diversity and the adaptive weight learning components. Instead of directly learning
a shared weight set {w;|i = 1,---,T} as in WELv, aWELv tries to learn query-
specific weights w; ,, with the embeddings of queries g, and base models f* according
to Equation (8).

5.4.2 EXPERIMENTAL RESULTS

Table 6 shows the performance of different special cases of the proposed method. From
the experimental results, we can get the following conclusions. First, WEL with considera-
tion of list-wise information performs better than WEP with consideration of only pair-wise
information in most cases, which confirms that making use of list-wise information is impor-
tant for ranking ensemble (RQ2). Second, WELv and aWELv with diversity-based learning
perform better than WEL and aWEL in most cases, respectively. It not only confirms the
generalized ambiguity decomposition theory, but also shows the effectiveness of the proposed
diversity-based learning scheme (RQ3). Third, aWELv and aWEL with adaptive weight
learning consistently outperform WELv and WEL, respectively. It not only confirms that
each base model may have different predictive abilities on different queries, but also shows
that the proposed ranking ensemble method benefits from adaptive weight learning (RQ4).

5.5 Effects of Different Parameter Settings

The goal of this experiment is to evaluate the effects of different parameter settings on the
performance of our proposed ensemble method aWELv.
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Table 6: Results of ablation experiments for RS and IR tasks. * indicates statistically
significant improvement by an independent-samples t-test (p < 0.01) compared
with the special cases of the proposed method.

Method Amazon_movie Amazon_Kindle Epinion
Recall@5 | NDCG@5 | Recallas | NDCG@5 | Recallos | NDOG@5
WEP 0.0418 0.0297 0.1826 0.0935 0.0613 0.0337
WEL 0.0555 0.0389 0.1869 0.0968 0.0725 0.0396
WELv 0.0574 0.0399 0.1883 0.0973 0.0731 0.0402
aWEL 0.0609 0.0427 0.1900 0.0982 0.0767 0.0420
aWELv 0.0629* 0.0440%* 0.1912%* 0.0989* 0.0794* 0.0430%*
Method ML-20m MQ2007 MQ2008
Recall@5 | NDCG@Q5 | Recall@5 | NDCG@5 | Recall@5 | NDCGQ5
WEP 0.2830 0.2933 0.3081 0.2601 0.6997 0.5519
WEL 0.3650 0.3761 0.3097 0.2572 0.7022 0.5537
WELv 0.3679 0.3800 0.3162 0.2631 0.7007 0.5529
aWEL 0.3675 0.3784 0.3455 0.2826 0.7471 0.5924
aWELv 0.3695%* 0.3813* 0.3497* 0.2919%* 0.7518 0.5939

5.5.1 EXPERIMENTAL DESIGN

We evaluate the effects of different settings of the key parameters on the performance of
aWELv, including the trade-off coefficient A and the interpolation constant ¢; = --- =
cr = ¢g = c¢. The trade-off coefficient is chosen from A € {0,0.001,0.01,0.1,1,5}. The
interpolation constant is chosen from ¢ € {0,0.25,0.5,0.75,1}.

5.5.2 EXPERIMENTAL RESULTS

Figure 1 shows the performance of aWELv measured by Recall with different settings of the
trade-off coefficient A\ and the interpolation constant c. The trade-off coefficient A controls
the relative importance of the diversity term Div. The results show that it can improve the
performance of aWELv with proper consideration of the proposed diversity measure. Too
large or too small A may degrade the performance of the proposed ranking ensemble method
in most cases. For the interpolation constant ¢, the performance of aWELv is relatively
stable with different settings of ¢, which shows the stability of the proposed interpolation
method for ranking ensemble.

5.6 Comparison with Base Models

The goal of this experiment is to explore the gain of ranking ensemble with respect to base
ranking models (RQ5).
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Figure 1: Effects of different settings of trade-off coefficient A and interpolation constant ¢

5.6.1 EXPERIMENTAL DESIGN

We compare the performance of our proposed ranking ensemble model with that of base
models. For RS tasks, the base models include one popularity based method Heat, two
memory-based methods User-KNN and Item-KNN, and four model-based methods MF,
CDAE, BPR and ListRank-MF. For IR tasks, there are 21 and 25 base models in the
MQ2007 and MQ2008 benchmark, respectively. Each base model can be seen as an indi-
vidual predictor for RS or IR tasks.

5.6.2 EXPERIMENTAL RESULTS

Table 7 and Table 8 show the performance of base models and our ensemble model for RS
tasks and IR tasks, respectively. To make the tables more notable, we bold the best results
and underline the best base model results for each data set with one specific evaluation met-
ric. Experimental results show that the proposed ensemble method performs significantly
better than all base models for different tasks on different data sets. This confirms that
proper combination of multiple models can achieve better performance than any individual
one, and also demonstrates the effectiveness of the proposed ensemble method.

5.7 Comparison with State-of-the-art Methods

The goal of this experiment is to evaluate whether the proposed ranking ensemble method
with several simple base models can outperform state-of-the-art ranking models (RQ6).
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Table 7: Performance of base models and our ensemble model for RS tasks.
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* indicates

statistically significant improvement by an independent-samples t-test (p < 0.01)
compared with base models.

Method Amazon_movie Amazon_Kindle Epinion ML-20m
Recall@5 ‘ NDCG@5 | Recall@5 ‘ NDCG@5 | Recall@5 | NDCG@Q5 | Recall@5 | NDCG@Q5
Heat 0.0110 0.0082 0.0096 0.0056 0.0258 0.0153 0.1570 0.1625
UserKNN 0.0272 0.0189 0.1371 0.0717 0.0443 0.0243 0.3574 0.3704
ItemKNN 0.0421 0.0289 0.1421 0.0696 0.0581 0.0311 0.1435 0.1447
MF 0.0341 0.0246 0.1361 0.0670 0.0379 0.0206 0.2695 0.2695
CDAE 0.0109 0.0082 0.1273 0.0727 0.0354 0.0191 0.3383 0.3505
BPR 0.0375 0.0276 0.1323 0.0682 0.0504 0.0283 0.3138 0.3217
ListRank-MF 0.0425 0.0298 0.1420 0.0671 0.0509 0.0273 0.2035 0.2079
aWELv 0.0629* 0.0440%* 0.1912%* 0.0989* 0.0794%* 0.0430%* 0.3695%* 0.3813*
Improve. 47.81% 47.42% 34.57% 36.02% 36.77% 38.52% 3.39% 2.93%

Table 8: Performance of base models and our ensemble model for IR tasks.

* indicates

statistically significant improvement by an one-sample t-test (p < 0.01) compared

with base models.

Method MQ2007 MQ2008 Method MQ2007 MQ2008
Recall@b ‘ NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@b NDCG@5
BM1 0.1534 0.1178 0.4839 0.3295 BM14 0.1785 0.1393 0.5973 0.4380
BM2 0.1508 0.1158 0.5692 0.4042 BM15 0.2197 0.1722 0.6654 0.5320
BM3 0.1803 0.1451 0.5730 0.4100 BM16 0.1507 0.1195 0.5558 0.4181
BM4 0.2216 0.1806 0.5088 0.3682 BM17 0.1806 0.1399 0.5383 0.3658
BM5 0.2603 0.2079 0.4969 0.3509 BM18 0.2323 0.1751 0.6230 0.4704
BM6 0.2541 0.2107 0.6536 0.4864 BM19 0.2233 0.1786 0.6264 0.4899
BM7 0.2541 0.2107 0.4216 0.2902 BM20 0.2462 0.2037 0.3200 0.1870
BMS8 0.2553 0.2102 0.6664 0.5074 BM21 0.2263 0.1849 0.5927 0.4421
BM9 0.2317 0.1868 0.6715 0.5175 BM22 NULL NULL 0.6474 0.4948
BM10 0.1684 0.1376 0.6173 0.4433 BM23 NULL NULL 0.4398 0.2853
BM11 0.1631 0.1248 0.6514 0.4940 BM24 NULL NULL 0.3152 0.1805
BM12 0.2357 0.1882 0.4021 0.2496 BM25 NULL NULL 0.3131 0.1762
BM13 0.1919 0.1510 0.3032 0.1787 aWELv 0.3497* 0.2919* 0.7518%* 0.5939*
- - - - - Improve. 34.37% 38.53% 11.95% 11.63%
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5.7.1 EXPERIMENTAL DESIGN

To compare our proposed model with state-of-the-art ranking methods, we test it on a
well-studied benchmark for RS tasks as in (Liang et al., 2018a; Kim and Suh, 2019; Steck,
2019; Shenbin et al., 2020) with the ML-20m data set. The benchmark contains multiple
state-of-the-art models for RS tasks, including Mult-VAE (Liang et al., 2018a), H+Vamp
(Kim and Suh, 2019), ESAE (Steck, 2019), and RecVAE (Shenbin et al., 2020).

5.7.2 EXPERIMENTAL RESULTS

Table 9 shows the performance of different methods. The proposed method aWELv, which
aggregates several simple base models, can get comparable or even better performance than
state-of-the-art deep models (RQ6). In addition, the experimental results show that the
proposed method aWELv achieves better performance for top positions, e.g., measured
by Recall@20 and NDCG, which is consistent with the characteristics of list-wise ranking
ensemble that pays more attention to the top positions of ranking lists.

Table 9: Comparison with state-of-the-art methods for RS tasks
Method  Recall@20 Recall@50 NDCG@Q50

Heat 0.183 0.254 0.181

UserKNN 0.403 0.519 0.397

base models ItemKNN 0.164 0.223 0.156
MF 0.366 0.501 0.347

CDAE 0.377 0.481 0.372

BPR 0.376 0.499 0.366

Mult-VAE 0.395 0.537 0.426

benchmark H4-Vamp 0.413 0.551 0.445
ESAE 0.391 0.521 0.420

RecVAE 0.414 0.553 0.442

Ours aWELv 0.424 0.543 0.450

5.8 Understanding Diversity Mechanism

The goal of this experiment is to explore how the proposed diversity measure can help to
improve the performance of the proposed ranking ensemble method.

5.8.1 EXPERIMENTAL DESIGN

We explore how the proposed diversity measure works for ranking ensemble by a case
study on the ML-20m data set. Specifically, we explicitly compare the learned ensemble
weights by WELv with different settings of trade-off coefficient A, and further analyze their
relations with another ranking diversity measure, named Jaccard ranking distance. Given
two ranking models A and B, their Jaccard ranking distance on a data set Dr for top-n
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Figure 2: Effects of the proposed diversity measure for ranking ensemble learning.

recommendation is defined as follows,

!
|Dr|

N B(g, 1)
U B(g, 1)

dj(A, B)

2

q€DT

IR |A(g, )
oS-G ) (10)
where A(q,1) and B(q,1) denote the item sets in the top-/ ranking lists generated by ranking
model A and ranking model B for query g, respectively. In addition, we explore and compare
the performance of WEL (without considering the diversity term Div) and WELv (with
consideration of the diversity term Div) on training and test sets with increasing training
iterations.

5.8.2 EXPERIMENTAL RESULTS

Figure 2(a) and Figure 2 (b) show the contribution of base models to the ensemble model
learned by WEL and WELv, respectively. Figure 2(c) shows the distribution of base models
generated by Multidimensional scaling (MDS) (O’Connell, 1999) according to their pairwise
distances d j(A, B). Figure 2(d) shows the performance of WEL and WELv on training and
test sets with increasing training iterations.
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From Figure 2(a) and Figure 2(c), we can see that base models’ contribution are roughly
proportional to their performance when A = 0.0, i.e., without considering the diversity term
Div. Compared with Figure 2(a), Figure 2(b) shows that the contributions of base ranking
models MF, BPR and ItemKNN, which are far to others (i.e., different from other base
models), increase with consideration of the diversity term Div. On the other hand, the con-
tributions of base ranking models CDAE, UserKNN, ListRank and HEAT, which are close
to others (i.e., similar to other base models), decrease with consideration of the diversity
term Div. Finally, Figure 2(d) shows that the proposed method WELv can alleviate the
overfitting problem with the help of the diversity term Div.

6. Conclusion

This paper contributes to the field of ranking ensemble learning both theoretically and prac-
tically. First, we generalize the ambiguity decomposition theory from regression ensemble
to ranking ensemble, which proves the effectiveness of ranking ensemble with consideration
of list-wise ranking information. Second, to make use of the ambiguity term A of the gener-
alized ambiguity decomposition theory to improve the performance of ensemble model, we
derive an explicit diversity measure Div for ranking ensemble, which is an estimation of the
ambiguity term A. Ablation experiments (methods with/without diversity-based learning)
in Section 5.4 and a case study in Section 5.8 show the effectiveness of the proposed diversity
measure. Third, we adopt an adaptive weight learning scheme to learn query-dependent
ensemble weights in a latent space. Extensive experiments on RS and IR tasks show the
effectiveness of the proposed method compared with state-of-the-art methods.

In the future, we will evaluate the performance of the proposed method on other ranking
tasks such as answer selection (Feng et al., 2015). In addition, we will further study the
pruning of base models for ranking ensemble.
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Appendix A. The Proof of Lemmas and Theorems

In this appendix, we prove some lemmas and theorems used in the paper.

Lemma 1 Property of Difference Vectors. With a set of base ranking models {f!,---, T}

ens

and a weighted ensemble model f“**(o(;),q) = 2?21 wifi(o(j),q), we have Azt =

T A
Doim) WiAZ) pe.
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Proof Due to x®" = [fens(ow(m,q)]m =1,---,K] and x* = [fi(oﬁ(m),q)]m =1,---,K],
we have

ens __ [..ens ens ens ens
As':"m:K - [wm - wm+17 Ty T TR ]
E Wi E W; L m+1,' . E W; L E szBK
T

= [Zwi(mfn—mfnﬂ)a'“ 7Zwi( - k)] szAiB
i=1

i=1

Property 1 Judgement of Negative Definite Matrices. A symmetric matrix A €
R™*" is negative definite if and only if its k-th leading principle minor A} satisfies (—1)*A% >
0 for all k =1,--- ,n. The k-th leading principle minor of matrix A is the determinant of
its k-th leading principal submatrix which is defined as the k x k submatrix taken from the
upper-left-hand corner of matrix A.
Proof Theories about the judgment of positive definite matrix in linear algebra show that
symmetric matrix B € R"*™ is positive definite if and only if its k-th leading principle
minor Bj satisfy B, >0 forallk=1,---,n

Sufficiency. Suppose matrix A € R™*" is negative definite. B = —A € R™*" is positive
definite due to 2TBz = —2TAz > 0 for any z. Due to A} = (—=B); = (—1)*B;, we have
(-1)FAr = (-1)*B; >0forall k=1,---,n

Necessity. Suppose (—1)’“AZ >0forallk=1,---,nand B= -4 € R"™™. Due to
By = (=A); = (—1)* A} > 0, we have matrix B is positive definite. Therefore, A is negative
definite due to 2TAx = —2TBx < 0 for any =z. |

Lemma 2 Property of Hessian Matrix. Hessian matrix H,,(z) of function g,,(z) =
In(1/(1+ 3, _; exp(—2,))) is a negative definite Matrix, where r = |z] = K —m.
Proof The Hessian matrix of function g,,(z) shows as follows:

Ogm(z) . Ogm(2)
0221 0210z
H,(z) = : . :
Ogm(2) . Ogm(2)
aZr621 azzr
where
Igm ()
822p = U?ﬂ(z) eXp(—2Zp) — Um(z) eXp(_ZP)
g (2)
0207 = om{e) xpl—5p = 24

=1/(14 ) exp(—z))
n=1
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Let s, = 0m(2) exp(—2p), we have:

S% — 81 - S1Spr
Hy,(z) =

SrS1 s%—sr

To prove H,,(z) is negative definite, we calculate its k-th leading principle minor, which
is denoted as A} (z):

S% — 81 - S1Sk
Al (z) = det(Hp(2)[: k,: k]) = det( : : )

SkS1 s%—sk

Furthermore, we make some determinant transformations as follows:

s?—s1 - S18k
K(2) = :
SKS1  cc S — Sk
Sl —_— 1 DY Sp DY Sk
@ :
= s1 sp—1 Sk Hsi
i=1
Sl DY Sp DY Sk —_ 1
1 Sp Sk
" : k k
=11 sp—1 Sk (Zsi—l)Hsl
. i=1 i=1
1 Sp Sk — 1
1 Sp Sk
© : k k
=210 -1 0 (Zsi_l)HS’
. . . . Z:1 i:1
0O -~ 0 - -1
k k
= ('O s -]
i=1 i=1

Step(a) extracts common factors s; for each row. Step(b) adds each column to the first
column and then extracts the first column. Step(c) subtracts each row from the first row.
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Due to s; = o (2) exp(—z;) > 0 and k < r, we have

k k
Zsi —-1= Zam(z)exp(—zi) -1
i=1 i=1

Tt ew(-x)
14> exp(—2)
<0

-1

Furthermore, we have (—1)*A%(2) > 0 for 0 < k < r. According to Property 1, H,,(z) is a
negative definite matrix. [ |

Lemma 3 The Hessian matrix H*(y) of function [*(y,7,q) is a positive definite matrix,
which is the sum of positive (m = 1) and semi-positive (m > 1) definite matrices H, (y)
that are the Hessian matrices of I} (y, 7, q) = —gm(QY,,.x ), i-€.,

K
H*(y)= > Hy(y)
m=1

00 (0]
O(Kfm)x(mfl) Bym:Kay:n;K

O¢rm— m— O¢m— -m
Hi‘n(y)zl (m-1)x(m-1)  Om—1)x (K )]

Proof Due to z,, — , = Y + -+ - + Yn—1, we have Ax,,.x = QUm.x = P - Y.k, Where
Ym:k = Ym, - yx—1) and P,, € RE=mX(K=m) i 5 Jower triangular matrix with all
non-zero elements equaling to 1. Therefore, the Hessian matrices H; (y) of I} (y, 7, q) =
—gm(Qy,,,.5c) can be calculated as follows,

_ 9gm (Qym:K)

O(K—m)x(m—l) 8ymK8y;rnK

O(m— m— O¢m— —-m
an(y)=[ (m-1)x(m-1)  Ofm-1)x(K )]

where
6gm(ﬂymK) _ a(lym:K . 6gm<9ymK) ) aﬂy;[n;[(
8’ym:KayIn;K OYm: K aﬂymiKaQy;n:K ay:-n:K
aﬂym:Ké)quTn:K m

=P,

Lemma 2 shows that the Hessian Matrix of function ¢, (A®m:x) = gm(QYm:x) is neg-
ative definite with Ax,,.x = Qym.x. Due to P, is a full rank square matrix, H} (y) is a
positive definite matrix when m = 1, otherwise it is a semi-positive definite matrix. This
Lemma is clearly proved due to I*(y,m,q) = Zfri:l —Im (QYm:k)- [ |

The augment proof of Theorem 2. The partial derivative VI*(y, 7, q)[i] and Hessian
matrix H*(-) of loss function I*(y, 7, q) can be calculated as follows,
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* . ol* Yy, m,q i h m’i7K
VI*(y,m, q)[d] :(8y~):_z 1+§L(m m)K)

m=1

. o ol (y, , min(4,5) h(m, max(i, §), K)[1 + h(m, m, min(i, j

m=1

where
t

h(m,s,t) = > exp(—(ym + -+ + yn-1))
n=s+1

Proof For convenience, we define h(m,s,t) = Z;ZSH exp(—(Ym + -+ + Yn—1)), where
m < s < t. Its partial derivatives show as follows:

0 t<mori>t

Oh(m, s,t) " 0 cic

——F—= =1 —h(m,s, m<i<s
0y;

—h(m,i,t) s<i<t

Therefore, the loss function can be formulated as follows:

*(y,mq) = In(1 + h(m,m, K))

M) =

m=1

The first-order partial derivatives of I*(y,m, q) are

o (y,mq) _ Z h(m, i, K)

m=1

Furthermore, the second-order partial derivatives of I*(y, 7, q) are

o (y,7,q) “‘i“f) h(m, max(i, j), K) ‘““‘f) h(m, i, K)h(m, j, K)
0Yy;0y; - 1+ h(m,m, K) 14 h(m,m, K)]?

m=1 m=1

min(z,j

) h(m,max(i, j), K)[1 + h(m, m,min(4, j)) + h(m, min(s, j), K)] — h(m, i, K)h(m, j, K)
[1+ h(m,m, K)|?

—_

m=

g
£
<
&

) h(m, max(i, §), K)[1 + h(m,m, min(s, ))]
[1+ h(m,m, K)|?
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