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Abstract

A supervised learning algorithm has access to a distribution of labeled examples,
and needs to return a function (hypothesis) that correctly labels the examples. The hy-
pothesis of the learner is taken from some fixed class of functions (e.g., linear classifiers,
neural networks etc.). A failure of the learning algorithm can occur due to two possible
reasons: wrong choice of hypothesis class (hardness of approximation), or failure to find
the best function within the hypothesis class (hardness of learning). Although both
approximation and learnability are important for the success of the algorithm, they
are typically studied separately. In this work, we show a single hardness property that
implies both hardness of approximation using linear classes and shallow networks, and
hardness of learning using correlation queries and gradient-descent. This allows us to
obtain new results on hardness of approximation and learnability of parity functions,
DNF formulas and AC0 circuits.

Keywords: Hardness of learning, approximation, statistical-queries, gradient-descent,
neural networks

1. Introduction

Given a distribution D over an instance space X and a target classification function f :
X → {±1}, let f(D) be the distribution over X × {±1} obtained by sampling x ∼ D and
labeling it by f(x). A learning algorithm, ALG, has access to the distribution f(D) via an
oracle, ORACLE(f,D), and should output a hypothesis h : X → R. The quality of h is
assessed by the expected loss function:

Lf(D)(h) := E
(x,y)∼f(D)

[`(h(x), y)] ,

where ` : R× {±1} → R+ is some loss function. We say that the learning is ε-successful if
ALG returns a function ALG(f,D) such that:

E[Lf(D)(ALG(f,D))] ≤ ε ,
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where the expectation is with respect to the randomness of the learning process. Of course,
due to the well known no-free-lunch theorem, we cannot expect any single algorithm to
succeed in this objective for all choices of (f,D). So, we must make some assumptions on
the nature of the labeled distributions observed by the algorithm. We denote by A the
distribution family (or assumption class, as in Kearns et al. (1994)), which is some set of
pairs (f,D), where f is some function from X to {±1} and D is some distribution over
X . We say that ALG is ε-successful on a distribution family A, if it ε-succeeds on every
(f,D) ∈ A, namely:

max
(f,D)∈A

E
[
Lf(D)(ALG(f,D))

]
≤ ε

The standard approach for understanding whether some algorithm is successful is using a
decomposition of error. Let H be the class of functions that ALG can return (the hypothesis
class), and note that:

max
(f,D)∈A

E
[
Lf(D) (ALG(f,D))

]
≤ max

(f,D)∈A
min
h∈H

Lf(D)(h)︸ ︷︷ ︸
approximation error

+ max
(f,D)∈A

E
[
Lf(D)(ALG(f,D))

]
−min

h∈H
Lf(D)(h)︸ ︷︷ ︸

learning error

Similarly, it is easy to verify that

max {approximation error , learning error} ≤ max
(f,D)∈A

E
[
Lf(D) (ALG(f,D))

]
Therefore, a sufficient condition for ALG to be ε-successful is that both the approximation
error and learning error are at most ε/2, and a necessary condition for ALG to be ε-successful
is that both the approximation error and learning error are at most ε.

In general, we say that ALG ε-learns A if it achieves a learning error of at most ε
(i.e., returns a hypothesis that is ε-competitive with the best hypothesis in H), and we say
that H ε-approximates A if H has an approximation error of at most ε on A. The above
inequalities show that in order for ALG to be successful, it must ε-learns A and at the same
time, its hypothesis class must ε-approximate A. However, the problems of learnability and
approximation were typically studied separately in the literature of learning theory.

On the problem of learnability, there is rich literature covering possibility and impos-
sibility results in various settings of learning. These settings can be recovered by different
choices of A = F × P, where F is some class of Boolean1 functions and P is some class of
distributions over X . The realizable setting is given by assuming F ⊆ H, and the agnostic
setting is when F is the class of all Boolean functions. In distribution-free learning P is
the class of all distributions, while distribution-specific learning assumes P = {D}, for some
fixed distribution D. The literature of learning theory also considers various choices for
the oracle ORACLE(f,D). The most common choice is the examples oracle, which gives
the learner access to random examples sampled i.i.d. from f(D). Other oracles calculate
statistical queries (estimating E(x,y)∼f(D) ψ(x, y)), membership queries (querying for labels
of specific examples x ∈ X ) or return gradient estimations.

1. In the paper, we consider Boolean expressions over {±1} instead of {0, 1}, where −1 is interpreted as 0.

2



When Hardness of Approximation Meets Hardness of Learning

The question of approximation has recently received a lot of attention in the machine
learning community, with a growing number of works studying the limitations of linear
classes, kernel methods and shallow neural networks, in terms of approximation capacity (see
Section 2.1). These results often offer a separation property, showing that one hypothesis
class (e.g., deep neural networks) is superior over another (e.g., shallow neural networks or
linear classes). However, these questions are typically studied separately from the question
of learnability.

In this work, we study the questions of learnability and approximation of general distri-
bution families in a unified framework. We show that a single property, which we call the
variance of the distribution family, can be used for showing both hardness of approximation
and hardnes of learning results. Specifically, we show: 1) hardness of approximating A
using any linear class with respect to a convex loss, 2) hardness of approximating some
induced function using a shallow (depth-two) neural network with respect to a convex Lip-
schitz loss, 3) hardness of learning A using correlation queries and 4) hardness of learning
A using gradient-descent.

Applying our general results to some specific choices of A, we establish various novel
results, in different settings of PAC learning:

1. Parities are hard to approximate using linear classes, under the uniform distribution.

2. The function F (x, z) =
∏
i(xi ∨ zi) is hard to approximate using depth-two neural

networks, under the uniform distribution.

3. DNFs are hard to approximate using linear classes (distribution-free).

4. The function F (x, z) =
∧m
i=1

∨dm2

j=1 (xij ∧ zij) is hard to approximate using depth-two
networks, for some fixed distribution.

5. Learning DNFs with correlation queries requires 2Ω(n1/3) queries (distribution-free).

6. Learning DNFs with noisy gradient-descent (GD) requires 2Ω(n1/3) gradient steps
(distribution-free).

We note that the approximation in 1-4 is with respect to a wide range of convex loss
functions, and 6 is shown with respect to the hinge-loss.

These results expand our understanding of learnability and approximation of various
classes and algorithms. Note that despite the fact that our setting is somewhat different
than traditional PAC learning, our results apply in the standard settings of PAC learning
(either distribution-specific or distribution-free PAC learning). Importantly, they all follow
from a single “hardness” property of the family A. We believe this framework can be used
to better understand the power and limitations of various learning algorithms.

2. Related Work

In this section, we overview different studies covering results on the approximation capacity
and learnability of various classes and algorithms used in machine learning. We focus on
works that are directly related to the results shown in this paper.
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2.1 Hardness of Approximation

Linear Classes The problem of understanding the expressive power of a given class of
functions has attracted great interest in the learning theory and theoretical computer science
community over the years. A primary class of functions that has been extensively studied in
the context of machine learning is the class of linear functions over a fixed embedding (for
example, in Ben-David et al. (2002); Forster and Simon (2006); Sherstov (2008); Razborov
and Sherstov (2010)). Notions such as margin complexity, dimension complexity and sign-
rank were introduced in order to bound the minimal dimension and norm required to exactly
express a class of functions using linear separators.

However, since the goal of the learner is to approximate a target function (e.g., PAC
learning), and not to compute it exactly, showing hardness of exact expressivity often seems
irrelevant from a machine learning perspective. Several recent studies show hardness of
approximation results on linear classes (Allen-Zhu and Li, 2019, 2020; Yehudai and Shamir,
2019; Daniely and Malach, 2020). These works demonstrate a separation between linear
methods and neural networks: namely, they show families of functions that are hard to
approximate using linear classes, but are learnable using neural networks. A recent work by
Kamath et al. (2020) gives probabilistic variants of the dimension and margin complexity
in order to show hardness results on approximation using linear classes and kernel methods.
We show new results on hardness of approximation using linear classes, extending prior
results and techniques.

Neural Networks Another line of research that has gained a lot of attention in recent
years focuses on the limitation of shallow neural networks, in terms of approximation power.
The empirical success of deep neural networks sparked many questions regarding the ad-
vantage of using deep networks over shallow ones. The works of Eldan and Shamir (2016)
and Daniely (2017) show examples of real valued functions that are hard to efficiently ap-
proximate using depth two (one hidden-layer) networks, but can be expressed using three
layer networks, establishing a separation between these two classes of functions. The work
of Martens et al. (2013) shows an example of a binary function (namely, the inner-product
mod-2 function), that is hard to express using depth two networks. Other works study
cases where the input dimension is fixed, and show an exponential gap in the expressive
power between networks of growing depth (Delalleau and Bengio, 2011; Pascanu et al.,
2013; Telgarsky, 2015, 2016; Cohen et al., 2016; Raghu et al., 2017; Montúfar, 2017; Serra
et al., 2018; Hanin and Rolnick, 2019; Malach and Shalev-Shwartz, 2019). A recent work by
Vardi and Shamir (2020) explores the relation between depth-separation results for neural
networks, and hardness results in circuit complexity. We derive new results on hardness
of approximation using shallow networks, which follow from the general hardness property
introduced in the paper.

2.2 Computational Hardness

Computational Complexity Since the early works in learning theory, understanding
which problems can be learned efficiently (i.e., in polynomial time) has been a key question in
the field. Various classes of interest, such as DNFs, boolean formulas, decision trees, boolean
circuits and neural networks are known to be computationally hard to learn, in different

4



When Hardness of Approximation Meets Hardness of Learning

settings of learning (see e.g., Kearns (1998)). In the case of DNF formulas, the best known

algorithm for learning DNFs, due to Klivans and Servedio (2004), runs in time 2Õ(n1/3). A
work by Daniely and Shalev-Shwartz (2016) shows that DNFs are computationally hard to
learn, by reduction from the random variant of the K-SAT problem. However, this work does
not yet establish a computational lower bound that matches the upper bound in Klivans
and Servedio (2004), and assumes some non-standard hardness assumption. Using our

framework we establish a lower bound of 2Ω(n1/3), for some restricted family of algorithms,
on the complexity of learning DNF formulas.

Statistical Queries In the general setting of PAC learning, the learner gets a sample
of examples from the distribution, which is used in order to find a good hypothesis. Sta-
tistical Query (SQ) learning is a restriction of PAC learning, where instead of using a
set of examples, the learner has access to estimates of statistical computations over the
distribution, that are accurate up to some tolerance. This framework can be used to an-
alyze a rich family of algorithms, showing hardness results on learning various problems
from statistical-queries. Specifically, it was shown that parities, DNF formulas and decision
trees cannot be learned efficiently using statistical-queries, under the uniform distribution
(Kearns, 1998; Blum et al., 1994, 2003; Goel et al., 2020). In the case of DNF formulas,
the number of queries required to learn this concept class under the uniform distribution
is quasi-polynomial in the dimension (i.e., nO(logn), and see Blum et al. (1994)). However,
we are unaware of any work showing SQ lower-bounds on learning DNFs under general
distributions, as we do in this work.

An interesting variant of statistical-query algorithms is algorithms that use only corre-
lation statistical-queries (CSQ), namely — queries of the form E(x,y)∼D [φ(x)y] (Feldman,
2008). While in the distribution-specific setting, the CSQ and the SQ models are equivalent
(Bshouty and Feldman, 2002), in the distribution-independent setting this is not the case. It
has been shown that conjunctions are hard to strongly learn using CSQ in the distribution-
independent setting (Feldman, 2011, 2012). We show hardness of weak learning using CSQ,
for a general choice of distribution families.

We note that our results on CSQ learning are tightly related to previous results on
learning with statistical-queries. We use a complexity measure of a distribution family
(namely, the variance of the family) which captures the “orthogonality” between function-
distribution pairs, similarly to the SQ-dimension introduced by (Blum et al., 1994). Our
analysis of CSQ learning is very similar to the analysis in Yang (2005), applied to the
more general setting of learning distribution families (rather than learning function classes
over a fixed distribution). Our complexity measure is similar to the statistical dimension
introduced in Feldman et al. (2017), and to the cross-predictability measure of (Abbe and
Sandon, 2018).

Gradient-based Learning Another line of works shows hardness results for learning
with gradient-based algorithms. The work of Shalev-Shwartz et al. (2017) and the work of
Abbe and Sandon (2018) show that parities are hard to learn using gradient-based algo-
rithms. The work of Shamir (2018) shows distribution-specific hardness results on learn-
ing with gradient-based algorithms. These works essentially show that gradient-descent is
“stuck” at a sub-optimal point. The work of Safran and Shamir (2018) shows a natural
instance of learning neural network which suffers from spurious local minima. We show
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that DNF formulas are hard to learn using gradient-descent, using a generalization of the
techniques used in previous works.

3. Problem Setting

We now describe in more detail the general setting for the problem of learning families of
labeled distributions. Let X be our input space, where we typically assume that X = {±1}n.
We define the following:

• A (labeled) distributions family A is a set of pairs (f,D), where f is a function from
X to {±1}, and D is some distribution over X . We denote by f(D) the distribution
over X × {±1} of labeled examples (x, y), where x ∼ D and y = f(x) (equivalently,
f(D)(x, y) = 1y=f(x)D(x)).

• A hypothesis class H is some class of functions from X to R.

Throughout the paper, we analyze the approximation of the distribution family A with
respect to some loss function ` : R × {±1} → R+. Some popular loss functions that we
consider explicitly:

• Hinge-loss: `hinge(ŷ, y) := max{1− ŷy, 0}.

• Square-loss: `sq(ŷ, y) := 1
2(y − ŷ)2.

• Zero-one loss: `0−1(ŷ, y) = 1{sign(ŷ) = y}.

All of our results hold for the hinge-loss, which is commonly used for learning classification
problems. Most of our results apply for other loss functions as well. The exact assumptions
on the loss functions for each result are detailed in the sequel.

For some hypothesis h ∈ H, some pair (f,D) ∈ A, and some loss function `, we define
the loss of h with respect to (f,D) to be:

Lf(D)(h) = E
(x,y)∼f(D)

`(h(x), y) = E
x∼D

`(h(x), f(x))

Our primary goal is to ε-succeed on the family A using the hypothesis class H. Namely, for
any choice of (f,D) ∈ A, given access to the distribution f(D) (via sampling, statistical-
queries or gradient computations), return some hypothesis h ∈ H with E

[
Lf(D)(h)

]
≤ ε.

To understand whether or not it is possible to succeed on A using H, there are two basic
questions that we need to account for:

• Approximation: for every (f,D) ∈ A, show that there exists h ∈ H with Lf(D)(h) ≤
ε. In other words, we want to bound:

max
(f,D)∈A

min
h∈H

Lf(D)(h)

• Efficient Learnability: show an algorithm s.t. for every (f,D) ∈ A, given access to
f(D), returns in time polynomial in n, 1/ε a hypothesis h ∈ H with:

E
[
Lf(D)(h)

]
−min

ĥ∈H
Lf(D)(ĥ) ≤ ε
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Clearly, if H cannot approximate A, then no algorithm, efficient or inefficient, can succeed
on A using H. However, even if H can approximate A, it might not be efficiently learnable.

Before we move on, we give a few comments relating this setting to standard settings in
learning theory:

Remark 1 A very common assumption in learning is realizability, namely — assuming
that for every (f,D) ∈ A, we have f ∈ H. When assuming realizability, the question
of approximation becomes trivial, and we are left with the question of learnability. In our
setting, we do not assume realizability using H, but we do assume that the family is realizable
using some concept class (not necessarily the one that our algorithm uses).

Remark 2 There are two common settings in learning theory: distribution-free and
distribution-specific learning. In the distribution-free setting, we assume that A = F×P,
where P is the class of all distributions over X , and F is some class of boolean functions
over X . In the distribution-specific setting, we assume that A = F ×{D}, where D is some
fixed distribution over X (say, the uniform distribution). In a sense, we consider a setting
that generalizes both distribution-free and distribution-specific learning.

4. Approximation and Learnability of Orthogonal Classes

First, we introduce the basic property of the family A that will allow us to derive the various
results shown in this section. Fix some function φ : X → [−1, 1], and observe the variance2

of 〈f, φ〉D, over all the pairs (f,D) ∈ A:

Var(A, φ) := E
(f,D)∼A

[
〈f, φ〉2D

]
We can define the “variance” of A by taking a supremum over all choices of φ, namely:

Var(A) := sup
‖φ‖∞≤1

Var(A, φ)

Now, consider the simple case of a distribution-specific family of orthogonal functions.
Fix some distribution D over X . We define 〈f, g〉D = Ex∼D [f(x)g(x)], and let F be some set
of functions from X to {±1} that are orthonormal with respect to 〈·, ·〉D. Namely, for every
f, g ∈ F we have 〈f, g〉D = 1{f = g}. For example, take D to be the uniform distribution
over X = {±1}n, and F to be a set of parities, i.e. functions of the form fI(x) =

∏
i∈I xi,

for I ⊆ [n]. Then, we observe the orthonormal family A = F × {D}. So, for the specific
choice of orthonormal family A, we get that, using Parseval’s identity:

Var(A, φ) = E
(f,D)∼A

[
〈f, φ〉2D

]
=

1

|F|
∑
f∈F
〈f, φ〉2D ≤

‖φ‖2D
|F|

.

Since ‖φ‖2D ≤ ‖φ‖2∞, it follows that

Var(A) ≤ 1

|F|
.

2. This is the variance per se only in the case where E 〈f, φ〉 = 0, but we will refer to this quantity as
variance in other cases as well.
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So, as |F| grows, Var(A) decreases. In fact, if we take F to be all the parities over X ,
then Var(A) becomes exponentially small (namely, 2−n). We will next show how we can
use Var(A) to bound the approximation and learnability of A using various classes and
algorithms.

4.1 Approximation using Linear Classes

Fix some embedding Ψ : X → [−1, 1]N and consider the family of linear predictors over this
embedding:

HΨ = {x 7→ 〈Ψ(x),w〉 : ‖w‖2 ≤ B}
This is often a popular choice of a hypothesis class. We start by analyzing its approximation
capacity, with respect to some family A:

Theorem 3 Let ` be some convex loss function, satisfying `(0, y) = `0 and `′(0, y) = −y.
Then, for every family A and every class HΨ as defined above, the following holds:

max
(f,D)∈A

min
h∈HΨ

Lf(D)(h) ≥ E
(f,D)∼A

min
h∈HΨ

Lf(D)(h) ≥ `0 −B
√
NVar(A) (1)

Proof We rely on a very simple observation, that will be the key of the analysis in this
section. Fix some (f,D) ∈ A, and for every w ∈ RN , define Lf(D)(w) = Lf(D)(hw), where
hw(x) = 〈Ψ(x),w〉. Since ` is convex, we get that Lf(D) is convex as well. Therefore, for

every w ∈ RN with ‖w‖2 ≤ B we have:

Lf(D)(w) ≥ Lf(D)(0) +
〈
∇Lf(D)(0),w

〉
≥C.S Lf(D)(0)−

∥∥∇Lf(D)(0)
∥∥ ‖w‖ ≥ `0 −B ∥∥∇Lf(D)(0)

∥∥
This immediately gives a lower bound on the approximation of A using HΨ:

E
(f,D)∼A

min
h∈HΨ

Lf(D)(h) = E
(f,D)∼A

min
‖w‖≤B

Lf(D)(w) ≥ `0 −B E
(f,D)∼A

∥∥∇Lf(D)(0)
∥∥

(2)

So, upper bounding the average gradient norm, w.r.t. a random choice of (f,D) ∈ A, gives
a lower bound on approximating A with HΨ. Now, using our definition of Var(A) we get:

E
(f,D)∼A

[∥∥∇Lf(D)(0)
∥∥2
]

= E
(f,D)∼A

∑
i∈[N ]

(
E

x∼D
`′(0, f(x))Ψ(x)i

)2


=
∑
i∈[N ]

E
(f,D)∼A

[
〈Ψi, f〉2D

]
≤ N ·Var(A)

Using Jensen’s inequality gives E(f,D)∼A
∥∥∇Lf(D)(0)

∥∥ ≤ √NVar(A), and plugging in to
Eq. (2) gives the required.

The above result is in fact quite strong: it shows a bound on approximating the class A
using any choice of linear class (i.e., linear function over fixed embedding), and any convex
loss functions (satisfying our mild assumptions). For example, it shows that any linear class
HΨ of polynomial size (with B,N polynomial in n) cannot even weakly approximate the
family of parities over X . The loss of any linear class in this case will be effectively `0, that
is — the loss of a constant-zero function. This extends the result of Kamath et al. (2020),
showing a similar result for the square-loss only.
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4.2 Approximation using Shallow Neural Networks

The previous result shows a hardness of approximation, and hence a hardness of learning, of
any family of orthogonal functions, using a linear hypothesis class. Specifically, we showed
that approximating parities over X is hard using any linear class. We now move to a more
complex family of functions: depth-two (one hidden layer) neural networks. Given some
activation σ, we define the class of depth-two networks by:

H2NN =

{
x 7→

k∑
i=1

uiσ
(〈

w(i),x
〉

+ bi

)
:
∥∥∥w(i)

∥∥∥
2
, ‖u‖2 , ‖b‖2 ≤ R

}

It has been shown (e.g., Shalev-Shwartz et al. (2017)) that H2NN can implement parities
over X . Therefore, together with Theorem 3 shown previously, this gives a strong sepa-
ration between the class of depth-two networks and any linear class: while parities can
be implemented exactly by depth-two networks, using a linear class they cannot even be
approximated beyond a trivial hypothesis.

We can leverage the previous results to construct a function that cannot be approx-
imated using a depth-two network. In the following results, we assume that A is finite,
namely |A| < ∞, and denote M = |A|. For simplicity, we choose some arbitrary indexing
of A, and denote A = {(f1,D1), . . . , (fM ,DM )}. Furthermore, we assume X = {±1}n. 3

Our construction takes some (finite) distribution family A, and builds a single function-
distribution pair (FA,DA), induced by the family A, which cannot be approximated by any
depth-two network with bounded weights. In other words, we can show a lower bound on
learning a “singleton” distribution family, containing only one function-distribution pair,
i.e., A′ = {(FA,DA)}. Note that this is essentially different from the previous result, where
we proved a lower bound against a family of labeled distributions.

We now describe our construction. Denote m = dlogMe, let Z ⊆ {±1}m be some
subset such that |Z| = M , and define some bijection ϕ : Z → [M ]. Observe the function
F : X ×Z → {±1} defined as F (x, z) = fϕ(z)(x), and the distribution D′ over X ×Z where
(x, z) ∼ D′ is given by sampling i ∼ [M ] uniformly, sampling x ∼ Di and setting z = ϕ−1(i).
Now, we can identify the space {±1}n × {±1}m with the space {±1}n+m, e.g. by mapping
v ∈ {±1}n+m to (x,w) ∈ {±1}n × {±1}m where x := v1,...,n and w := vn+1,...,n+m. So,
D′ naturally induces a distribution over {±1}n+m, and we denote this distribution by DϕA.
Similarly, we can use F to build a function FϕA : {±1}n+m → {±1}, where FϕA(x, z) =
F (x, z) if z ∈ Z, and otherwise FϕA(x, z) = 1 (since DϕA gives zero probability outside of
X × Z, we can define FϕA arbitrarily outside of this set).

We consider depth-two neural-networks over Rn+m. Similarly to above, we identify
Rn+m with Rn×Rm, and it will be easier to present our results on neural-networks operating
over the latter space. That is, following our definition of H2NN, we define a depth-two
neural-network over Rn × Rm by:

g(x, z) =

k∑
i=1

uiσ
(〈

w(i),x
〉

+
〈
v(i), z

〉
+ bi

)
,
∥∥∥w(i)

∥∥∥
2
,
∥∥∥v(i)

∥∥∥
2
, ‖u‖2 , ‖b‖2 ≤ R

In this case, we show the following result:

3. The results can be easily extended to the case where X ⊆ Rn for some set X of bounded norm.
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Theorem 4 Fix some finite distribution family A, over the input space X = {±1}n, and
let ϕ be some bijection as defined above. Denote m = dlog |A|e. Let ` be a 1-Lipschitz
convex loss satisfying `(0, y) = `0, `′(0, y) = −y. Then, every depth-two neural-network
g : Rn × Rm → R with any 1-Lipschitz activation satisfies:

LFϕ
A(Dϕ

A)(g) ≥ `0 − p(m,n,R, k) ·Var(A)1/3

for some universal polynomial p.

We will start by showing this result in the case where v(i) takes discrete values:

Lemma 5 Assume that there exists ∆ > 0 such that v
(i)
j ∈ ∆Z := {∆ · z : z ∈ Z} for

every i, j and
∥∥u(i)

∥∥ , ∥∥w(i)
∥∥ ,∥∥v(i)

∥∥ , ‖b‖ < R. Then, for every neural-network g, we have:

LFϕ
A(Dϕ

A)(g) := E
(x,z)∼Dϕ

A

[
`(g(x, z), FϕA(x, z))

]
≥ `0 − C(m,n,R, k)

√
Var(A)

∆

for C(m,n,R, k) =
√

2kR3/2m1/4 (R(
√
n+
√
m+ 1) + |σ(0)|).

Proof Fix some neural-network g(x, z) =
∑k

i=1 uiσ
(〈

w(i),x
〉

+
〈
v(i), z

〉
+ bi

)
. Our goal is

to lower bound LFϕ
A(Dϕ

A)(g). To do so, we reduce the problem of approximating (FϕA,D
ϕ
A)

using a shallow network to the problem of approximating A using some linear class. That
is, we find some mappings Ψg : X → [−1, 1]N and ug : {±1}m → RN (mappings which
depend on g) such that for every x ∈ X and z ∈ {±1}n′ we have g(x, z) = 〈Ψg(x),ug(z)〉.

To get this reduction, we observe that since v(i) is discrete,
〈
z,v(i)

〉
can take only a

finite number of values. In fact, we have
〈
z,v(i)

〉
∈ [−
√
mR,

√
mR]∩∆Z. Indeed, fix some

i and we have 1
∆v(i) ∈ Zn, and since z ∈ Zn we have 1

∆

〈
v(i), z

〉
=
〈

1
∆v(i), z

〉
∈ Z. So, we

can map x to σ(
〈
w(i),x

〉
+ j + bi), for all choices of j ∈ [−

√
mR,

√
mR] ∩∆Z, and get an

embedding that satisfies our requirement. That is, we use the fact that
〈
w(i), z

〉
“collapses”

to a small number of values to remove the dependence of g(x, z) on the exact value of z.
To show this formally, for every z ∈ Z denote j(z) =

〈
v(i), z

〉
, and so from what we

showed j(z) ∈ [−R
√
m,R

√
m] ∩∆Z. Define Ψi,j(x) =

σ(〈w(i),x〉+j+bi)
R(
√
n+
√
m+1)+|σ(0)| for every i ∈ [k]

and j ∈ [−R
√
n,R
√
n] ∩∆Z, and note that:

|Ψi,j(x)| ≤
∣∣〈w(i),x

〉
+ j + bi

∣∣+ |σ(0)|
R(
√
n+
√
m+ 1) + |σ(0)|

≤
∥∥w(i)

∥∥ ‖x‖+ |j|+ |bi|+ |σ(0)|
R(
√
n+
√
m+ 1) + |σ(0)|

≤ 1

where we use: |σ(a)| ≤ |σ(0)|+ |σ(a)− σ(0)| ≤ |σ(0)|+ |a|.
Notice that |[−R

√
m,R

√
m] ∩∆Z| ≤ 2

⌊
R
√
m

∆

⌋
, so there are at most 2

⌊
R
√
m

∆

⌋
choices

for j. Denote N := 2kbR
√
m

∆ c and let Ψg : X → [−1, 1]N defined as Ψg(x) = [Ψi,j(x)]i,j (in
vector form). Denote B = R2(

√
n+
√
m+ 1) +R |σ(0)|, and from Theorem 3:

E
i∼[M ]

[
min
‖û‖≤B

E
(x,y)∼fi(Di)

`(〈û,Ψ(x)〉 , y)

]
= E

(f,D)∼A

[
min
h∈HB

Ψ

Lf(D)(h)

]
≥ `0 −B

√
NVar(A)

10
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Notice that g(x, z) =
∑k

i=1
B
RuiΨi,j(z)(x) = 〈ug(z),Ψ(x)〉 where:

ug(z)i,j =

{
B
Rui j = j(z)

0 j 6= j(z)

Since ‖ug(z)‖ ≤ B
R ‖u‖ ≤ B we get that:

E
(x,z)∼Dϕ

A

[
`(g(x, z), FϕA(x, z))

]
= E

i∼[M ]
E

x∼Di

[
`(g(x, ϕ−1(i)), FϕA(x, ϕ−1(i)))

]
= E

i∼[M ]
E

x∼Di

[
`(
〈
ug(ϕ

−1(i)),Ψg(x)
〉
, fi(x))

]
= E

i∼[M ]
E

(x,y)∼fi(Di)

[
`(
〈
ug(ϕ

−1(i)),Ψg(x)
〉
, y)
]

≥ E
i∼[M ]

[
min
‖û‖≤B

E
(x,y)∼fi(Di)

`(〈û,Ψg(x)〉 , y)

]
≥ `0 −B

√
NVar(A)

Now, to prove Theorem 4, we use the fact that a network with arbitrary (bounded)
weights can be approximated by a network with discrete weights.
Proof of Theorem 4. Fix some ∆ ∈ (0, 1), and let v̂(i) = ∆

⌊
1
∆v(i)

⌋
∈ ∆Zm, where b·c is

taken element-wise. Notice that for every j we have:∣∣∣v(i)
j − v̂

(i)
j

∣∣∣ =

∣∣∣∣v(i)
j −∆

⌊
1

∆
v

(i)
j

⌋∣∣∣∣ = ∆

∣∣∣∣ 1

∆
v

(i)
j −

⌊
1

∆
v

(i)
j

⌋∣∣∣∣ ≤ ∆

Observe the following neural network:

ĝ(x, z) =
k∑
i=1

uiσ
(〈

w(i),x
〉

+
〈
v̂(i), z

〉
+ bi

)
For every x ∈ {±1}n, z ∈ {±1}m, using Cauchy-Schwartz inequality, and the fact that σ is
1-Lipchitz:

|g(x, z)− ĝ(x, z)| ≤ ‖u‖

√√√√ k∑
i=1

∣∣σ (〈w(i),x
〉

+
〈
v(i), z

〉
+ bi

)
− σ

(〈
w(i),x

〉
+
〈
v̂(i), z

〉
+ bi

)∣∣2
≤ ‖u‖

√√√√ k∑
i=1

∣∣〈v(i), z
〉
−
〈
v̂(i), z

〉∣∣2
≤ ‖u‖

√√√√ k∑
i=1

∥∥v(i) − v̂(i)
∥∥2 ‖z‖2 ≤ R

√
k∆m

Now, by Lemma 5 we have:

LF (D′)(ĝ) ≥ `0 − C
√

Var(A)

∆

11
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for C =
√

2kR3/2m1/4 (R(
√
n+
√
m+ 1) + |σ(0)|). Using the fact that ` is 1-Lipschitz we

get:

LFϕ
A(Dϕ

A)(g) = E
[
`(g(x, z), FϕA(x, z))

]
≥ E

[
`(ĝ(x, z), FϕA(x, z))

]
− E

[∣∣`(g(x, z), FϕA(x, z))− `(ĝ(x, z), FϕA(x, z))
∣∣]

≥ LFϕ
A(Dϕ

A)(ĝ)− E [|g(x, z)− ĝ(x, z)|] ≥ `0 − C
√

Var(A)

∆
−R
√
k∆m

This is true for any ∆ > 0, so we choose ∆ = C2/3

R2/3k1/3m2/3 Var(A)1/3 and we get:

LFϕ
A(Dϕ

A)(g) ≥ `0 − 2C2/3Var(A)1/3R1/3k1/6m1/3

= 24/3k1/2R2m1/2

(√
n+
√
m+ 1 +

|σ(0)|
R

)2/3

Var(A)1/3

4.2.1 Hardness of approximation of inner-product mod 2

We now interpret the result of Theorem 4 for the case where A is the family of parities over
X with respect to the uniform distribution. For presenting this result, it is easier to define
the bijection ϕ directly into A (and not by an indexing of A, as is done in the above proof).
Namely, we define Z = X = {±1}n and define ϕ : Z → A such that ϕ(z) = (fz,D), where
fz is the parity such that fz(x) =

∏
i∈[n],zi=−1 xi. We can write the induced function as

FϕA(x, z) =
∏
i∈[n],zi=−1 xi =

∏
i∈[n](xi ∨ zi), and the induced distribution DϕA is simply the

uniform distribution over X ×X . Using Theorem 4 and the fact that Var(A) = 2−n we get
the following:

Corollary 6 Let F (x, z) =
∏
i∈[n](xi ∨ zi), and let D be the uniform distribution over

{±1}n × {±1}n. Let ` be a 1-Lipschitz convex loss satisfying `(0, y) = `0 and `′(0, y) =
−y. Then, any polynomial-size network with polynomial weights and 1-Lipschitz activation,
cannot (weakly) approximate F with respect to D and the loss `.

We note that F is similar to the inner-product mod-2 function, that has been shown
to be hard to implement efficiently using depth-two networks (Martens et al., 2013). Our
result shows that this function is hard to even approximate, using a polynomial-size depth-
two network, under any convex loss satisfying our assumptions. Notice that F can be
implemented using a depth-three network, and so this result gives a strong separation
between the classes of depth-two and depth-three networks (of polynomial size).

4.3 Hardness of Learning with Correlation Queries

So far, we showed hardness of approximation results for linear classes and shallow (depth-
two) networks. This motivates the use of algorithms that learn more complex hypothesis
classes (for example, depth-three networks). We now give hardness results that are in-
dependent of the hypothesis class, but rather focus on the learning algorithm. We show

12
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restrictions on specific classes of algorithms, for learning families A with small Var(A).
While such results are well-known in the case of orthogonal classes, we introduce them here
in a fashion that allows us to generalize such results to more general families of distributions.

We consider learnability using statistical-query algorithms. A statistical-query algorithm
has access to an oracle STAT(f,D) which, given a query ψ : X × {±1} → [−1, 1], returns
a response v such that |Ex∼D ψ(x, f(x))− v| ≤ τ , for some tolerance parameter τ > 0.
Specifically, we focus on algorithms that use only correlation queries, i.e. queries of the
form ψ(x, y) = yφ(x) for some φ : X → [−1, 1]. We say that a statistical-query algorithm
learns a distribution family A to loss ε using m queries, if it achieves a loss < ε after
performing m queries, with respect to worst-case (adversarial) choice of (f,D) ∈ A. This is
similar to the notion of learnability with statistical-queries studied in previous works (e.g.,
Kearns (1998); Blum et al. (1994); Yang (2005)).

We show the following result on learning with correlation queries:

Theorem 7 Let ` ∈ {`hinge, `sq, `0−1}. Fix some family A. Then, for any τ > 0, any

statistical-query algorithm that makes only correlation queries needs to make at least τ2

Var(A)−
1 queries of tolerance τ to learn A with loss < a`−b`τ , for some universal constants a`, b` > 0
that depend on the loss function.

We note that this result is essentially an adaptation of Theorem 2 from Yang (2005)
to the setting presented in this paper. The main difference between our result and the
results in Yang (2005) is the analysis of learning distribution families (i.e., sets of function-
distribution pairs), rather than function classes with a fixed distribution, as is analyzed in
Yang (2005). Another difference is the choice of loss functions, where our results apply for
a larger family of losses (beyond the zero-one loss). We start with the following lemma:

Lemma 8 Fix some loss ` ∈ {`hinge, `sq, `0−1}, and let h : X → R be some hypothesis.
Let h̃ = clamp ◦ h, where clamp(ŷ) = max{min{ŷ, 1},−1}. Then, for every function f :

X → {±1} and distribution D over X , if
∣∣∣〈h̃, f〉

D

∣∣∣ ≤ τ then Lf(D)(h) ≥ a`− b`τ , for some

universal constants a`, b` > 0 which depend on the loss function.

Proof We claim that the following holds for every ` ∈ {`hinge, `sq, `0−1}:

Lf(D)(h) = E
(x,y)∼f(D)

[`(h(x), y)] ≥ E
(x,y)∼f(D)

[
`(h̃(x), y)

]
≥ a` − b`

〈
f, h̃
〉
D
≥ a` − b`τ

The first inequality holds for all choices of `, by definition of h̃. We show the second
inequality separately for the different loss functions:

• If ` = `hinge then since h̃(x) ∈ [−1, 1] we have `(h̃(x), y) = 1− yh̃(x).

• If ` = `sq then we have: `(h̃(x), y) = 1
2 h̃(x)2 − h̃(x)y + 1

2y
2 ≥ 1

2 − h̃(x)y.

• If ` = `0−1 then we have: `(h̃(x), y) = 1{h̃(x) 6= y} = 1
2 −

1
2 h̃(x)y.

13
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The proof of Theorem 7 is very similar to the proof presented in Yang (2005).
Proof Assume the family A can be learned to loss < a` − b`τ using q queries, where a`, b`
are the constants from Lemma 8. Consider an adversarial oracle that, for every query φ,
returns 0 if there exists (f,D) ∈ A such that |〈f, φ〉D| ≤ τ . Let φ1, . . . , φq : X → [−1, 1]
be the queries of the algorithm, and let h : X → R be the hypothesis returned by the
algorithm. Denote φq+1 = clamp ◦ h.

Claim: For every (f,D) ∈ A, there exists some i ∈ [q + 1] such that |〈f, φi〉D| > τ .
Proof: Assume otherwise, and so the adversary can choose the target to be (f,D) ∈ A

such that |〈f, φi〉D| ≤ τ for every i ∈ [q + 1]. In this case, it holds that
∣∣〈f, φq+1〉D

∣∣ ≤ τ ,
and so from Lemma 8 we get that Lf(D)(h) ≥ a` − b`τ , contradicting the assumption.

Using the above claim, we get the following:

(q + 1)Var(A) ≥
q+1∑
i=1

Var(A, φi) =

q+1∑
i=1

E
(f,D)∼A

[
〈f, φi〉2D

]
= E

(f,D)∼A

[
q+1∑
i=1

〈f, φi〉2D

]
≥ τ2

and therefore the required follows.

Remark 9 Observe that in the case where A is a distribution-specific family, any statistical-
query algorithm can be modified to use only correlation queries, as shown in a work by
Bshouty and Feldman (2002). However, this is not true for general families of distributions.

When A is a family of parities with respect to the uniform distribution, Theorem 7 along
with the fact that Var(A) = 2−n recovers the well-known result on hardness of learning
parities using statistical-queries (Kearns, 1998).

4.4 Hardness of Learning with Gradient-Descent

We showed that families A with small Var(A) are hard to learn using correlation queries.
We now turn to analyze a specific popular algorithm: the gradient-descent algorithm. In
this part we take the loss function to be the hinge-loss, so ` = `hinge.

Observe the following formulation of gradient-descent: let H be a parametric hypothesis
class, such that H = {hw : w ∈ RN}. In the gradient-descent algorithm, we initialize w0

(possibly randomly), and perform the following updates:

wt = wt−1 − η∇wLf(D)(hwt−1) (GD Update)

However, assuming we have access to the exact value of ∇wLf(D) is often unrealistic.
For example, when running gradient-descent on a machine with bounded precision, we can
expect the value of the gradient to be accurate only up to some fixed precision. So, we
consider instead a variant of the gradient-descent algorithm which has access to gradients
that are accurate up to a fixed precision ∆ > 0. The ∆-approximate gradient-descent
algorithm performs the following updates:

wt = wt−1 − ηvt (Approx. GD Update)

with vt ∈ ∆ZN (where ∆Z := {∆z : z ∈ Z}) satisfying
∥∥vt −∇wLf(D)(hwt−1)

∥∥
∞ ≤

∆
2

(i.e., vt is the result of rounding ∇wLf(D)(hwt−1) to ∆ZN ).

14
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Notice that if the gradients are smaller than the machine precision, they will be rounded
to zero, and so the gradient-descent algorithm will be “stuck”. We show that if Var(A) is
small, then for most choices of (f,D) ∈ A the initial gradient will indeed be extremely
small. The key for showing this is the following lemma:

Lemma 10 Fix some w ∈ RN satisfying |hw(x)| ≤ 1 and ‖∇whw(x)‖ ≤ B, for every
x ∈ X . Then:

E
(f,D)∼A

∥∥∇wLf(D)(hw)
∥∥2

2
≤ B2NVar(A)

Proof Denote φi(x) = 1
B

∂
∂wi

hw(x) and note that φi(x) ∈ [−1, 1]. Note that since hw(x) ∈
[−1, 1] for every x, we have, for every (f,D) ∈ A:

Lf(D)(hw) = E
x∼D

`(hw(x), f(x)) = 1− E
x∼D

hw(x)f(x)

where we use the fact that the hinge-loss satisfies `(ŷ, y) = 1 − ŷy for every ŷ ∈ [−1, 1].
Therefore, we get:

E
(f,D)∼A

∥∥∇wLf(D)(hw)
∥∥2

2
= E

(f,D)∼A

N∑
i=1

(
∂

∂wi
Lf(D)(hw)

)2

=
N∑
i=1

E
(f,D)∼A

(
E

x∼D
f(x)

∂

∂wi
hw(x)

)2

=
N∑
i=1

E
(f,D)∼A

B2 〈f, φi〉2D ≤ NB
2Var(A)

Using the above, we can show that running gradient-descent with ∆-approximate gradients
has high loss on average, unless ∆ is very small:

Theorem 11 Assume we initialize w0 from some distribution W such that almost surely,
for every x ∈ X we have |hw0(x)| ≤ 1 and ‖∇whw0(x)‖ ≤ B for some B > 0. Then, if
∆ ≥ 6

√
2B2NVar(A), there exists some (f,D) ∈ A such that for every T > 0, running

∆-approximate gradient-descent for T steps returns a hypothesis hwT which satisfies:

E
w0∼W

Lf(D)(hwT ) ≥ 3

4

(
1−

√
8Var(A)

)
In the proof of the Theorem, we rely on the following Lemma:

Lemma 12 Fix some family A, some δ > 0, and let φ : X → [−1, 1]. Then:

P
(f,D)∼A

[|〈f, φ〉|D ≥ δ] ≤
Var(A)

δ2

Proof By definition of Var(A) we have that:

E
(f,D)∼A

[
〈f, φ〉2D

]
≤ Var(A)

15



Malach, Shalev-Shwartz

So, using Markov’s inequality we get:

P
(f,D)∼A

[|〈f, φ〉D| ≥ δ] = P
(f,D)∼A

[
〈f, φ〉D

2 ≥ δ2
]
≤

E(f,D)∼A

[
〈f, φ〉2D

]
δ2

≤ Var(A)

δ2

Proof of Theorem 11. Fix some w0 satisfying |hw0(x)| ≤ 1 and ‖∇whw0(x)‖ ≤ B for every
x ∈ X . So, from Lemma 10 we have:

E
(f,D)∼A

∥∥∇wLf(D)(hw0)
∥∥2

2
≤ NB2Var(A)

From Markov’s inequality, we get that with probability at least 1 − 9B2NVar(A)
∆2 over the

choice of (f,D) ∼ A we have
∥∥∇wLf(D)(hw0)

∥∥
2
≤ ∆

3 , and in this case vt = 0. So, for

every (f,D) ∈ A with
∥∥∇wLf(D)(hw0)

∥∥
2
≤ ∆

3 , gradient-descent will return hw0 . Since

hw0(x) ∈ [−1, 1], by application of Lemma 12 with δ =
√

8Var(A), with probability at
least 7/8 over the choice of (f,D) ∼ A we have |〈f, hw0〉| ≤

√
8Var(A) and so:

Lf(D)(hw0) = 1− 〈f, hw̃0
〉D ≥ 1−

√
8Var(A)

Using the union bound, with probability at least 7
8 −

9B2NVar(A)
∆2 ≥ 3

4 over the choice of
(f,D) ∼ A, gradient-descent algorithm will return a hypothesis with loss at least 1 −√

8Var(A), and so:

E
(f,D)∼A

Lf(D)(hwT ) ≥ 3

4

(
1−

√
8Var(A)

)
Applying the above for a random choice of w0 ∼ W we get:

E
(f,D)∼A

E
w0∼W

Lf(D)(hwT ) = E
w0∼W

E
(f,D)∼A

Lf(D)(hwT ) ≥ 3

4

(
1−

√
8Var(A)

)
And so the required follows

So far, we analyzed the gradient-descent algorithm with respect to an approximation of
the population gradient. The above result shows that if the initial gradient is very small,
then gradient-descent is “stuck” on the first iteration. In practice, however, gradient-descent
uses stochastic estimation of the population gradient. In this case, the stochastic noise due
to the gradient estimation will cause non-zero update steps, even if the population gradient
is zero. To account for this setting, we consider a noisy version of gradient-descent. The
σ-noisy gradient-descent performs the same update as in (Approx. GD Update), with
vt ∈ ∆ZN which satisfies: ∥∥vt − (∇wLf(D)(hwt−1) + ξt

)∥∥
∞ ≤

∆

2

where ξ1, . . . , ξT are i.i.d. random noise variables with ξt ∈ ∆ZN and ‖ξt‖2 ≤ σ. For the
noisy gradient-descent algorithm, we get the following hardness result:
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Theorem 13 Assume we initialize w0 from some distribution W such that almost surely,
for every x ∈ X we have |hw0(x)| ≤ 1

2 . Assume that for every w, hw ∈ H is differentiable
and satisfies ‖∇whw(x)‖ ≤ B for all x ∈ X . Then, there exists some (f,D) ∈ A such

that running the noisy gradient-descent algorithm for at most T ≤ ∆2

72B2NVar(A)
steps with

η ≤ 1
2σBT , returns a hypothesis hwT satisfying:

E
w0,ξ1,...,ξT

Lf(D)(hwT ) ≥ 3

4

(
1−

√
8Var(A)

)
Proof Fix some ξ1, . . . , ξT ∈ ∆ZN such that ‖ξt‖2 ≤ σ for every t ∈ [T ]. Fix some
w0 ∈ ∆ZN with ‖hw0‖∞ ≤

1
2 . We define w̃t := w0 + η

∑t
i=1 ξi, and observe that for every

t, by application of the mean value theorem we have for every x:

|hw̃t(x)− hw0(x)| ≤ sup
w
‖∇whw(x)‖2 ‖w̃t −w0‖2 ≤ Bη

∥∥∥∥∥
t∑
i=1

ξi

∥∥∥∥∥ ≤ BησT ≤ 1

2

where in the last inequality we use the fact that η ≤ 1
2σBT . So, we have:

|hw̃t
(x)| ≤ |hw0(x)|+ |hw̃t

(x)− hw0(x)| ≤ 1

Therefore, using Lemma 10 we get:

E
(f,D)∼A

1

T

T−1∑
t=0

∥∥∇wLf(D)(hw̃t
)
∥∥2

2
= E

t∼[T−1]
E

(f,D)∼A

∥∥∇wLf(D)(hw̃t
)
∥∥2

2
≤ B2NVar(A)

From Markov’s inequality, with probability at least 7/8 over the choice of (f,D) ∼ A,

we have
∑T−1

t=0

∥∥∇wLf(D)(hw̃t
)
∥∥2

2
≤ 8TB2NVar(A) ≤ ∆2

9 . For every such (f,D), we have∥∥∇wLf(D)(hw̃t
)
∥∥

2
≤ ∆

3 for every t ∈ [T − 1], and so vt = ξt for every t, in which case
we have the updates wt = w̃t, and the noisy gradient-descent algorithm will output hw̃T

.

Since hw̃T
(x) ∈ [−1, 1], by application of Lemma 12 with δ =

√
8Var(A), with probability

at least 7/8 over the choice of (f,D) ∼ A we have:

Lf(D)(hw̃T
) = 1−

〈
f, hw̃T

〉
D ≥ 1−

√
8Var(A)

All in all, using the union bound, w.p. at least 3/4 over the choice of (f,D) ∼ A the
gradient-decent algorithm returns a hypothesis hwT with loss ≥ 1−

√
8Var(A), and so:

E
(f,D)∼A

Lf(D)(hwT ) ≥ 3

4

(
1−

√
8Var(A)

)
Now, for a random choice of w0, ξ1, . . . , ξT we have:

E
(f,D)∼A

E
w0,ξ1,...,ξT

Lf(D)(hwT ) = E
w0,ξ1,...,ξT

E
(f,D)∼A

Lf(D)(hwT ) ≥ 3

4

(
1−

√
8Var(A)

)
and therefore the required follows.

Applying the previous theorem for the family of uniform parities, we get that gradient-
descent fails to reach non-trivial loss on the class of parities, unless the approximation
tolerance is exponentially small or the number of steps is exponentially large. This result
is similar to the results of Shalev-Shwartz et al. (2017) and Abbe and Sandon (2018).
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5. General Distribution Families

In the previous section, we showed various hardness of learning and approximation results,
all derived from the measure Var(A). We showed the application of such hardness results
to the case of parities, or more generally — families of orthogonal functions. However,
note that the measure Var(A) can be applied to any family of distributions, and therefore
all of our results can be derived for the very general setting of learning arbitrary families
of labeled distributions. In this section, we interpret these results for general distribution
families, and show how to derive bounds on Var(A) in the general case. Using this, we show
novel results on hardness of approximation and learnability of DNFs and AC0 circuits.

We start by showing a general method for bounding Var(A). Let M(A) be the linear
operator from RX to RA, such that for every φ : X → R, M(A)(φ)(f,D) = 〈f, φ〉D. The
linearity of M(A) follows from the bi-linearity of the inner product 〈·, ·〉D. Note that when
X and A are finite (as we assume in this work), M(A) can be written in a matrix form,
where M(A) ∈ RA×X and M(A)(f,D),x = f(x)D(x). In this case, we identify φ : X → R
with a vector v(φ) ∈ RX with v(φ)x = φ(x), and we get:

M(A)v(φ) = [
∑
x∈X

f(x)φ(x)D(x)](f,D) = [〈f, φ〉D](f,D)

Now, observe that for every φ : X → [−1, 1] we have:

Var(A, φ) = E
(f,D)∼A

[
〈f, φ〉2D

]
=

1

|A|
‖M(A)φ‖22 ≤

1

|A|
‖M(A)‖22 ‖φ‖

2
2 ≤
|X |
|A|
‖M(A)‖22 (3)

Where ‖M(A)‖2 is the L2 operator norm of M(A). Hence, Eq. (3) gives a general bound
for Var(A), in terms of the operator norm of the matrix M(A).

5.1 Operator Norm of the AND-OR-AND Function

In this part, we give a concrete family of distributions, generated by an AND-OR-AND
type function, and analyze its variance. Specifically, we show that its variance decays like
2−O(n1/3). The key for showing this result is bounding the operator norm of the relevant
matrix, along with the analysis introduced in Razborov and Sherstov (2010), which bounds
the norm of a similar matrix. The main result is the following:

Theorem 14 For large enough m, there exist subsets X ,Z ⊆ {±1}dm3
, for some universal

constant d > 0, and a family A over X such that:

• For each (f,D) ∈ A, it holds that f(x) =
∧m
i=1

∨dm2

j=1 (xij ∧ zij), for some z ∈ Z.

• Var(A) ≤ 17−2m.

For the proof of the theorem, we need the following simple result:

Definition 15 Let A be some distribution family over an input space X , and let A′ be some
distribution family over another input space X ′. A and A′ are isomorphic if there exists
a bijection Ψ : X → X ′ such that A = {(f ◦Ψ,D ◦Ψ) : (f,D) ∈ A′}.

18
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Lemma 16 If A and A′ are isomorphic distribution families, then Var(A) = Var(A′).

Proof Fix φ : X → [−1, 1], and observe that:

Var(A, φ) = E
(f,D)∼A

〈f, φ〉2D = E
(f,D)∼A′n

〈f ◦Ψ, φ〉2D◦Ψ = E
(f,D)∼A′n

(
E

x∼D◦Ψ
[f(Ψ(x))φ(x)]

)2

= E
(f,D)∼A′n

(
E

x∼D

[
f(x)φ(Ψ−1(x))

])2

= Var(A′, φ ◦Ψ−1) ≤ Var(A′)

Therefore Var(A) ≤ Var(A′), and the required follows from symmetry.

Now, the key for bounding the operator norm related to the family A, is using the
pattern-matrix technique, as used in Razborov and Sherstov (2010).

Pattern Matrix Let n,N be two integers, and let V(N,n) be the family of subsets
V ⊂ [N ] of size |V | = n, with one element from each block of size N/n from [N ]. Define
the projection onto V by x|V = (xi1 , . . . , xin) where i1 < · · · < in are the elements of V .

Definition 17 For φ : {±1}n → R, the (N,n, φ)-pattern matrix is the matrix:

A = [φ(x|V ⊕w)]x∈{±1}N ,(V,w)∈V(N,n)×{±1}n

Theorem 18 (Razborov and Sherstov (2010)) Let n = 4m3 and N = 176n. Let MPm(x) =∧m
i=1

∨4m2

j=1 xij, and let M be the (N,n,MPm)-pattern matrix. There exists a distribu-
tion µ : {±1}n → R+, such that the (N,n, µ)-pattern matrix P satisfies ‖M � P‖2 ≤
17−m2−n

√
2N+n(Nn )n (where � denotes the Hadamard product).

Proof of Theorem 14.
Let µ : {±1}n → R be the distribution from Theorem 18, and let N,n as defined

in the Theorem. Denote X ′ = {±1}N , Z ′ = V(N,n) × {±1}n. Fix some (V,w) ∈ Z ′
denote fV,w(x) = MPm(x|V ⊕ w), and define the distribution DV,w over X ′ such that
DV,w(x) = 1

2N−nµ(x|V ⊕w). DV,w indeed defines a distribution over X ′, since:∑
x∈X ′

DV,w(x) =
∑

z∈{±1}n

∑
x∈X ′,x|V =z

1

2N−n
µ(z⊕w) =

∑
z∈{±1}n

µ(z⊕w) = 1

Define the family A′ = {(fV,w,DV,w) : (V,w) ∈ Z ′} and recall that we defined M(A′) =
[fV,w(x)DV,w(x)]x∈X ′,(V,w)∈Z . Let M be the (N,n,MPm)-pattern matrix and let P be the

(N,n, µ)-pattern matrix, and so M(A′) = 1
2N−nM � P , and from Thm 18 we have:

∥∥M(A′)
∥∥

2
= 2n−N ‖M � P‖2 ≤ 2n−N17−m2−n

√
2N+n

(
N

n

)n
= 17−m

√
2n−N

(
N

n

)n
And from Eq. 3 we get:

Var(A′) ≤ |X
′|

|A′|
∥∥M(A′)

∥∥2

2
≤ 2N

(N/n)n2n
17−2m2n−N (N/n)n = 17−2m
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Observe that A′ is a class of distributions labeled by CNF formulas, with Var(A′) ≤
17−2m as required. However, to get the first condition of Theorem 14 we need to present
each CNF as a three-level AND-OR-AND formula. To do so, we rewrite each function fV,w
as a function over a slightly larger space, which can then be used to achieve the above form.

So, we identify X ′ and Z ′ with subsets of {±1}n′ , for n′ = m · 4m2 ·N/n · 2 = 8m3N
n .

Denote Ψ : X ′ → {±1}n′ such that Ψ(x)ijkε = 1{xijk = ε} = (x,¬x), where ¬ denotes
negation. Denote Φ : Z ′ → {±1}n′ such that Φ(V,w)ijkε = 1{wij 6= ε} ∧ 1{Vij = k}, where
Vij ∈ [N/n] indicates which elements from the ij block was selected by V . Now, note that:

fV,w(x) =
m∧
i=1

4m2∨
j=1

(x|V ⊕w)i,j =
m∧
i=1

4m2∨
j=1

N/n∨
k=1

∨
ε∈{±1}

((xijk = ε) ∧ (wij 6= ε) ∧ (Vij = k))

=
m∧
i=1

4m2∨
j=1

N/n∨
k=1

∨
ε∈{±1}

(Ψ(x)ijkε ∧ Φ(V,w)ijkε)

Finally, we define X = Ψ(X ′) and Z = Φ(Z ′), and define

A = {(DΦ−1(z), fΦ−1(z)) : z ∈ Z} = {
(
fV,w ◦Ψ−1,DV,w ◦Ψ−1

)
: (fV,w,DV,w) ∈ A′}

Observe that A and A′ are isomorphic, and therefore from Lemma 16 we get Var(A) =
Var(A′) ≤ 17−2m.

In the rest of this section, we show how Theorem 14 can be used to derive hardness
results on approximation and learnability of DNFs and AC0.

5.2 Hardness of Approximating DNFs using Linear Classes

Observe the family A as defined in Theorem 14. Note that for every (f,D) ∈ A, the function
¬f is in fact a DNF. Using the fact that Var(A) ≤ 17−2m, along with Theorem 3, we get
that for every mapping Ψ : X → [−1, 1]N we have:

max
(f,D)∈A

min
h∈HΨ

Lf(D)(h) ≥ `0 −B
√
N17−m

Therefore, the following result is immediate:

Corollary 19 Let ` be some convex loss function, satisfying `(0, y) = `0 and `′(0, y) = −y.
For every mapping Ψ : {±1}n → [−1, 1]N , there exists some DNF f and a distribution D
over {±1}n s.t. for all w ∈ RN , the function hw(x) = 〈w,Ψ(x)〉 has loss lower-bounded by:

Lf(D)(hw) ≥ `0 −
‖w‖

√
N

2Ω(n1/3)

Note that DNFs are known to be learnable using polynomial threshold functions of
degree Õ(n1/3), which can be implemented using a linear classifier over a mapping Ψ :

{±1}n → [−1, 1]N , for N = 2Õ(n1/3) (Klivans and Servedio, 2004). Our result shows that

no linear class can approximate DNFs unless N = 2Ω(n1/3), regardless of the choice of Ψ.
This extends the result in Razborov and Sherstov (2010), which shows a similar bound on
the dimension of a linear class that is required to exactly express DNFs.
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5.3 Hardness of Approximating AC0 using Shallow Networks

In Theorem 14 we showed a family A over X ⊆ {±1}n, where every (f,D) ∈ A is identified

with z ∈ Z, with Z ⊆ {±1}n, such that f(x) =
∧m
i=1

∨dm2

j=1 (xij ∧ zij). So, we can define the

function F : X×Z → {±1}, induced from the familyA, such that F (x, z) =
∧m
i=1

∨dm2

j=1 (xij∧
zij). Observe that F ∈ AC0, where AC0 is the class of polynomial-size constant-depth
AND/OR circuits. Then, Theorem 4 implies the following:

Corollary 20 Let X = {±1}n, and let ` be a 1-Lipschitz convex loss satisfying `(0, y) = `0
and `′(0, y) = −y. There exists a function F : X → {±1} such that F ∈ AC0, and a
distribution D′ over X , such that for every neural-network g, with 1-Lipschitz activation,
using k neurons with weights of L2-norm at most R, has loss lower-bounded by:

LF (D′)(g) ≥ `0 −
√
kR2n5/6

2Ω(n1/3)

This extends the result in Razborov and Sherstov (2010), which shows that such function

cannot be exactly implemented using a threshold circuit, unless its size is 2Ω(n1/3).

5.4 Hardness of Learning DNFs

As noted, the family A from Theorem 14 defines a family of distributions labeled by DNF
formulas. In Theorem 7, we showed that families with small variance are hard to learn from
correlation queries. Therefore, we get an exponential lower bound on the number of queries
required for learning DNF formulas from correlation queries, with respect to the hinge-loss:

Corollary 21 For any τ > 0, any statistical-query algorithm that makes only correlation
queries needs at least τ22Ω(n1/3) queries to achieve hinge-loss < 1− τ , square loss < 1− 2τ
or zero-one loss < 1

2 −
1
2τ , on DNF formulas of dimension n.

Following these results, using Theorem 13 shows that any hypothesis class (with bounded
gradients), optimized with gradient-descent on the hinge-loss, will need at least Ω(n1/3)
gradient-iterations to approximate the family of DNF formulas:

Corollary 22 Assume we initialize w0 from some distribution W such that almost surely,
for every x ∈ X we have |hw0(x)| ≤ 1

2 . Assume that every hw ∈ H is differentiable and
satisfies ‖∇whw(x)‖ ≤ B for all x ∈ X . Then, there exists some DNF f and distribu-
tion D such that the noisy gradient-descent algorithm with the hinge-loss requires at least
2Ω(n1/3) ∆2

B2N
steps to approximate f with respect to D.

Note that these hardness results match the currently known upper bound of learning
DNFs in time 2Õ(n1/3), due to Klivans and Servedio (2004). While these results apply only
to a restricted family of algorithms (namely, correlation query algorithms and gradient-
descent), we hope similar techniques can be used to show such hardness results for a broader
family of algorithms.
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