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Abstract

Instrumental variables (IV) are widely used in the social and health sciences in situations
where a researcher would like to measure a causal effect but cannot perform an experiment.
For valid causal inference in an IV model, there must be external (exogenous) variation
that (i) has a sufficiently large impact on the variable of interest (called the relevance as-
sumption) and where (ii) the only pathway through which the external variation impacts
the outcome is via the variable of interest (called the exclusion restriction). For statistical
inference, researchers must also make assumptions about the functional form of the rela-
tionship between the three variables. Current practice assumes (i) and (ii) are met, then
postulates a functional form with limited input from the data. In this paper, we describe a
framework that leverages machine learning to validate these typically unchecked but con-
sequential assumptions in the IV framework, providing the researcher empirical evidence
about the quality of the instrument given the data at hand. Central to the proposed ap-
proach is the idea of prediction validity. Prediction validity checks that error terms – which
should be independent from the instrument – cannot be modeled with machine learning
any better than a model that is identically zero. We use prediction validity to develop
both one-stage and two-stage approaches for IV, and demonstrate their performance on an
example relevant to climate change policy.

Keywords: instrumental variables, causal inference, machine learning

1. Introduction

In many settings, particularly in the social and behavioral sciences, experiments are infea-
sible, impractical, or immoral. Without the artificial variation of an experiment, variables
may interact in a way that makes it difficult to assess causal effects. Instrumental variable
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(IV) analysis is one approach to estimating causal effects when experiments are not possible
(for an introduction see, for example, Didelez et al. 2010, Rosenbaum et al. 2010, Stock and
Watson 2011, Glass et al. 2013, or Imbens 2014). In this paper, we describe a framework
for estimating IV regression models that leverages machine learning to validate typically
unchecked but consequential assumptions in the IV framework. Our work provides a nec-
essary, though not sufficient, set of conditions of the IV model to be valid. Extending our
method to also be a sufficient set of conditions would require information about unobserved
variables, which we, of course, do not have.

To begin, consider the standard instrumental variables set up. First, we have the out-
come of interest Y , which we believe could be causally explained by another variable, which
we refer to as the treatment T . In an observational study, the causal impact of the treat-
ment on the outcome of interest cannot be measured directly due to possible confounding
or mediation. In the IV framework, we introduce an additional variable Z, (the instrument)
that influences the outcome only through its effect on the treatment. The core intuition
is that any variation in outcome Y that comes from variation in the treatment T due to
variation in the instrument Z represents the causal impact of the treatment on the outcome.
This causal impact is what the researcher aims to estimate.

Two critical assumptions underlie IV models. First, we assume that the association be-
tween the instrument and the treatment variable is nontrivial. That is, that the (exogenous)
variation in the instrument leads to meaningful variation in the treatment variable, which
means the variation is sufficiently strong so as to not be caused by noise. This is known
as the relevance assumption (see Bound et al. 1995 for further discussion). The relevance
assumption can be assessed using the observed instrument and treatment directly. Sec-
ond, we must assume that the only source of variation in the outcome from the instrument
is through changes in the treatment variable. This is known as the exclusion restriction
(see Rosenzweig and Wolpin 2000, Angrist and Krueger 2001, or Angrist and Pischke 2010
for further discussion and contextual examples). In practice, the exclusion restriction can-
not be verified with the data that a researcher has at hand. It is inherently a statement
about unobserved variables (and if a researcher has access to a known confounder or medi-
ator, after all, she could simply include it). However, this does not mean we must simply
surrender and assume the exclusion restriction holds: we might be able to determine, for
instance, whether it seems to be violated.

In the traditional IV setting, underlying both of these two core assumptions is the
implicit notion of a correct functional form for these dependence pathways. For instance,
in the traditional two stage least squares estimator, the first stage uses a linear model for
treatment T based on observed covariates X and instrument Z, and the second stage uses
a linear model for the outcome Y using X and the predicted values of treatment T̂ from
the first stage. Thus, in the traditional setting, both of the two critical assumptions use
correlation as the key measurement. The relevance assumption in this context means that
there exists a strong correlation between the instrument and the treatment. The exclusion
restriction states that the instrument is not directly correlated to the outcomes, in other
words, the instrument is not correlated to the error term in the second stage. That is,
the only relevant measure of dependence we would use for checking the exclusion restriction
in the two stage least squares approach is linear (correlation). While previous work has
used empirical data to evaluate the necessary conditions for the IV model assumptions
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(Rosenzweig and Wolpin, 2000), such work still focuses on a linear framework. These
linearity assumptions are problematic when the dependencies are actually nonlinear.

To make IV analyses more powerful, recent work has extended IV to more complex
machine learning models, including neural networks (Hartford et al., 2017; Adhikari et al.,
2019; Singh et al., 2019; Guo and Small, 2016; Puli and Ranganath, 2020), however, it is
unclear what the underlying assumptions are in these nonlinear models, and whether they
hold for any given real problem.

In this work, we aim to precisely clarify assumptions underpinning the IV approach,
and how they should change for nonlinear models. We address two questions. First, is
it possible to propose a general validity check for IV models that can be used no matter
what the form of the model is? Second, is it possible to use this validity condition to guide
the development of better models for IV ? We answer these two questions by proposing a
unifying machine-learning-based perspective on IV models called prediction validity. The
approach differs fundamentally from classical two stage least squares, whose results hold
conditionally on the assumptions being satisfied and the functional form being known. In
contrast, we present the entire problem in an optimization framework, where assumptions
can be checked and empirically verified. In our framework, if a proposed instrument can
predict the error terms, it does not appear to be a valid instrument. In particular, if the
instrument can predict the error terms approximately as well as the function 0 (that is
identically zero), then the proposed instrument passes the validity check; it cannot predict
the error terms any better than the function 0 can. Because we use prediction error, rather
than linear correlation, to check validity of the instrument, we are not restricted to linear
models.

It is natural to assume is that if an instrument is actually valid, it should also appear to
be. That is, a validity check on a valid instrument should always hold. As we will show, the
new validity check always holds for linear models, whether the instrument is valid or not;
this means that we could never have checked for the validity of instruments in the traditional
two-stage-least-squares linear case. When we generalize to nonlinear models, the validity
check does not always hold. Here, a traditional two stage approach would depend on some
level of serendipity: it is entirely possible for an instrument to be (externally) known to be
valid, but to violate an empirical validity check due to randomness in the data or fitting
procedure. In that case, we show that changing the fitting procedure can fix such errors, so
that instruments that are truly valid will also appear to be valid. We will show how to do
this in our new two-stage and one-stage approach.

Thus, the methods in this paper provide necessary, but not sufficient conditions for
evaluating the exclusion restriction. While our statistical framework is not able to com-
pletely verify the exclusion restriction, it provides the researcher empirical evidence about
the quality of the instrument given the data at hand.

While our framework applies broadly, in this paper we focus on a powerful and flexible
class of models, namely general additive models. These models are linear combinations
of features, each of which is an arbitrarily nonlinear function of the input variables. For
instance, this encompasses the types of generalized additive models that are powerful enough
to yield results as accurate as neural networks for tabular data problems, even when dealing
with complex data sets such as raw medical records (Caruana et al., 2015).
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In the remainder of this section, we give some background on IV in practice, intro-
duce the two stage least squares method, and define the two critical assumptions that use
correlations as their key measurements. The organization of the rest of the paper is as
follows:

• In Section 2, we generalize the original assumptions of standard IV to the non-linear
framework and propose a new empirical validity check. The new versions of the two
critical assumptions use loss functions to measure predictability, which provides a
more general measurement of the relationship between two variables than (linear)
correlation. The empirical validity check is defined to test the modified exclusion
restriction and is applicable to the machine learning model framework.

• In Section 3, we propose a new two-stage method for the general non-linear IV frame-
work, using prediction validity to check for valid instruments. This new two-stage
method incorporates a constraint into the optimization problem to ensure that the
instrument appears to be valid. If we have external knowledge that the instrument
really is valid, the constraint should help to ensure valid inference. Alternatively,
if the selected variable is not actually an instrument, the constraint can help us to
determine that it is not an instrument.

• Also in Section 3, we present a new one-stage procedure for IV analysis. We incor-
porate both IV assumptions (relevance and exclusion) within a single mathematical
framework by using one constraint to ensure that the instrument is strongly predic-
tive of the treatment, satisfying the relevance assumption, and another to ensure the
exclusion restriction, which is that the remainder is not able to be predicted by known
variables. The one-stage approach has a possible advantage over the proposed two-
stage approach in that it allows more flexibility for both constraints to be satisfied
simultaneously.

• In Section 4, we provide a set of feasibility proofs for the types of solutions available
for our new two stage model under different model forms. An interesting connection
to the standard two-stage IV procedure appears in the case where both stages are
linear models; here, the validity constraint is always satisfied, so that the traditional
two stage model is the solution to the new two stage model. This shows a limitation
of the standard approach: all proposed instruments appear to be valid instruments
based on observed data, even if they are not. If we then allow the first stage to be
more flexible, by using a general additive model (GAM), we show that the validity
constraint is still satisfied. However, when the second stage is changed to a GAM, as
we show, things change. If the second stage is a GAM and the first stage is a linear
model, we might be able to identify that a variable is a non-instrument, but we would
not be able to fix a situation where a variable appears to be a non-instrument when it
is actually a valid instrument. If both stages are GAMs, we have the flexibility to fix
an instrument that is valid but does not appear to be valid due to lack of serendipity
in data or model fitting.

• In Section 5, we apply our two-stage and one-stage methods to simulated datasets.
The simulation results that accord with theorems in Section 4 verify the theoretical re-
sults of our two stage method. We also show that our two stage method can efficiently
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identify non-instruments. We demonstrate that our two stage method achieves lower
variance results than the traditional two-stage least squares method, and we show how
one might fix a misspecified model in the presence of a valid instrument that appears
to be invalid.

• In Section 6, we apply our two stage method to a real-world dataset on climate policy
perspectives of voters who live near a wind-energy project. We show that our two stage
method with more flexible model constructions does often outperform the traditional
two-stage method in terms of more accurate estimation on the true causal effect.

In Section 8, we provide a summary of main ideas in this paper and point out directions
for future work.

Instrumental Variables in Practice. Instrumental variables are widely used in natu-
ral experiments across multiple disciplines. In economics and the social sciences, IVs were
originally used to estimate demand and supply curves (see Goldberger 1972 for further
discussion), but have since been used far more widely. Common examples of IV designs
include a policy change (e.g., a tax) that creates a change in a behavior that is the treat-
ment of interest. Rainfall is commonly used as an instrument for changes in agriculture
income. Rosenzweig and Wolpin (2000) provides an overview as well as a discussion of the
critical role that models of human behavior play in evaluating IV models in such contexts.
IV models are also frequently combined with experiments, as in the case of the encourage-
ment design, which is common in public health. Let us say a researcher is interested in the
impact of a treatment (say taking a flu vaccine) on the likelihood of getting the flu (see,
e.g., Hirano et al. 2000). A regression that predicts likelihood of the flu based on whether
or not a person got the vaccine will suffer from confounding. In the encouragement design,
a randomly selected set of individuals receive a reminder or other prompting to get a flu
shot. The encouragement produces variation in the probability that some people will get
the flu shot, but since the encouragement is assigned randomly, it cannot be correlated with
any other confounding variables. The variation in probability to get the flu shot that comes
from being assigned the encouragement can then be used to identify the causal effect of
getting a flu shot on getting the flu.

Genetic variation is also an increasingly common source of variation for IV models.
Such models rely on Mendelian randomization, or the (random) assignment of genotypes at
conception (Davey Smith and Ebrahim, 2003; Smith, 2007). Under a set of biological and
statistical assumptions (see von Hinke et al. 2016; Didelez and Sheehan 2007; Didelez et al.
2010), associations between genotypes and the outcome of interest are unlikely to be due
to any other biological or behavioral factors. Since the variation in genotypes is exogenous,
this strategy yields an approach for understanding the causal influence of non-genetic risk
factors on outcomes.

Let us commence with our review of the traditional approach to IV analysis.

1.1 Traditional Two Stage Method and Data Generation Processes

In this section, we discuss the typical two stage least squares setup for the IV model. We
begin with some notation:
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• Notation of Unknown Confounders and Mediators: XUN is the unknown confounder
that influences both the treatment and the outcome of interest. It is the confounding
effect we want to control for using the IV method. XUN,DEP is the unknown mediator
that influences both the instrument and the outcome of interest. It is what disqualifies
a variable to be a valid instrument. ~XUN and ~XUN,DEP are the sample version of
XUN and XUN,DEP respectively.

• Notation of Sample Spaces: X is the observed feature space, Z is the space of possible
values for the instrument, T is the space of possible values for the treatment, and Y
are possible outcomes.

• Notation of Populations: Random variables are capitalized, whereas realizations are
lower cases. For example, the observed covariates X is a random variable whose
domain is X , whereas x is a realization of the observed covariates X. {x, z, t, y} are
realizations of random variables {X,Z, T, Y } respectively.

• Notation of Samples: Samples are represented by matrices or vectors, whereas the
i-th observation in a sample is a lower case with subscript i. For example, ~X is a
sample of the observed covariates X, whereas xi is the i-th observation in the sample.
{xi, zi, ti, yi} are the i-th observation of samples { ~X, ~Z,~t, ~y} respectively. We generally
use capital letters for matrices or random variables.

• Notation of Distributions: DX,Z is a joint distribution over which X and Z are drawn.
DXUN

is a distribution over which XUN is drawn. W1 and W2 are distributions of
white noise that have zero mean, zero covariance and finite variance.

• Notation of Models: The data generation process for T and Y is defined using
fωtrue(X,Z) and gβtrue(X,T ). Models developed using the data sample for predict-

ing ~t and ~y are represented by fω( ~X, ~Z) and gβ( ~X,~t).

We use a running example of taxation rates (e.g., tax rates on cigarettes) as an instru-
mental variable ~Z, smoking as a treatment ~t, and health conditions as outcomes ~y. Tax laws
affect smoking (or cigarette consumption) through the price of cigarettes. Smoking has an
influence on health conditions. Tax laws do not affect health conditions directly, they influ-
ence only the amount of smoking, which influences health conditions, given known covariates
~X and unknown confounders ~XUN . The data available are {xi, zi, ti, yi}ni=1 containing the
known covariates, values of the instrument, the treatment, and outcomes, respectively, for
each individual (see Glass et al., 2013). Here, the unknown confounders ~XUN that would
impact both the amount of smoking and health outcomes provide the confounding effect
that we need to control for and they are unobserved. For now, we assume there are no
unknown mediators ~XUN,DEP that would impact both the instrument and health outcomes
directly.

In the context of instrumental variables, a popular form of estimation is known as two-
stage-least-squares regression. In typical two-stage least squares regression, we would build
linear models in Stage One and Stage Two respectively, and solve them using the method
of least squares. In Stage One, we would build a linear model to predict the amount of
smoking from tax law information and covariate information, t̂ = fω̂( ~X, ~Z) = 〈ω̂, [ ~X, ~Z]〉,
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where ~Z is the value of the instrument (the presence of higher taxes), ~X contains known
covariates (gender, age, etc.), and ω̂ is the estimated coefficient vector for the linear model.
In Stage Two, we would estimate health conditions as a linear function of predicted amount
of smoking and covariate information, ŷ = gβ̂( ~X, t̂) = 〈β̂, [ ~X, t̂]〉, where β̂ is the estimated
coefficient of the linear model. This would provide an estimate for the effect of smoking
on health conditions through the lens of the instrument. Since ~XUN is not observed, it is
not included in the estimation process. Thus, the fitted models of the traditional two-stage
method are:

t̂( ~X, ~Z) = fω̂( ~X, ~Z)

ŷ( ~X, t̂) = gβ̂( ~X, t̂).

In what follows, we introduce two generative processes for data, one that contains an
unobserved mediator and the other that does not. Let us consider the data as having been
generated from one of these two processes.

Valid Instrument Data Generation Process. First, in a setting where the IV assump-
tions are satisfied, we have

(X,Z) ∼ DX,Z
XUN ∼ DXUN

, X ⊥⊥ XUN and Z ⊥⊥ XUN

e1 ∼ W1, e2 ∼ W2

T = fωtrue(X,Z) + p(XUN ) + e1

Y = gβtrue(X,T ) + q(XUN ) + e2

where fωtrue and gβtrue are functions of the known covariates X and the instrument Z in
Stage One and Stage Two respectively, p and q are functions of the unknown confounder
XUN , and e1 and e2 are random error terms. This is illustrated in Figure 1. Here, when a
variable satisfies the IV assumptions, we call it a valid instrument.

Figure 1: Causal graph without unobserved mediators (left) and concrete example (right).
Data generation process for valid instruments.

Now consider the potential interference or influence of outside unknown mediators
XUN,DEP that would render the instrument invalid. In the tax laws example, if the same tax
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laws not only affect the price of the tobacco but also affect the price of some other unknown
products, which affects other health-related consumption habits (this can be the consump-
tion of alcohol, but we do not know) and further has an influence on health conditions,
then the tax laws can also affect health conditions through other unknown approaches. As
a result, if tax laws did affect health conditions, we cannot determine whether the effect
followed from reducing cigarette consumption or other consumption habits. The causal
graph containing the unknown mediators XUN,DEP is as follows:

Non-Instrument Data Generation Process.

(X,Z) ∼ DX,Z
XUN ∼ DXUN

, X ⊥⊥ XUN and Z ⊥⊥ XUN

e1 ∼ W1, e2 ∼ W2

XUN,DEP := XUN,DEP (Z)

T = fωtrue(X,Z) + p(XUN ) + e1

Y = gβtrue(X,T ) + q(XUN ) + s(XUN,DEP ) + e2

where s(XUN,DEP ) is a function of unknown mediators XUN,DEP , and XUN,DEP is a func-
tion of the instrument Z. Thus s(XUN,DEP ) can also be written as a function of the
instrument Z, s(XUN,DEP (Z)). Here the unknown mediators do not influence treatment,
but they could. This data generation process is shown in Figure 2.

Figure 2: Graph with unobserved mediators (left) and concrete example (right).

With these formal characterizations of valid instrument and non-instrument data gener-
ating processes, we can now formalize the two core assumptions. In an attempt to gesture
towards an empirical test of these assumptions, we distinguish between the population and
the sample instantiations of these two assumptions, using the notation of the generative
models above and introducing new notations of true error terms in the first and second
stage respectively.

V represents the true error term in the first stage, which is the remainder of T after
removing the total causal effect of X, Z or their combination. That is,

V = T − fωtrue(X,Z),
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where fωtrue is the true model in the first stage. Also,

~v = ~t− fωtrue( ~X, ~Z)

is the sample version of V . Note that we cannot calculate it because we do not know
fωtrue . We will discuss that issue shortly. U represents the true error term in the second
stage, which is the remainder of Y after removing the total causal effect of X, T or their
combination. That is,

U = Y − gβtrue(X,T ),

where gβtrue is the true model in the second stage.

~u = ~y − gβtrue( ~X,~t)

is the sample version of U . Again, we cannot calculate it because we do not know gβtrue ,
and we will discuss that issue shortly.

Population Version of Relevance Assumption. The instrument Z must be corre-
lated with the treatment T in the first stage, Cov(Z, T ) = E[(Z − E(Z))(T − E(T ))] 6= 0.
Thus, the instrument is relevant.

Population Version of Exclusion Restriction. The instrument Z must not be
correlated with the true error term U in the second stage, Cov(Z,U) = E[(Z −E(Z))(U −
E(U))] = 0.

Sample Version of Relevance Assumption. The instrument ~Z cannot have all
zero coefficients in the first stage. That is, for the model ~t = ω1

~X + ω2
~Z + ~v in the first

stage, at least one element in the vector ω2 is not zero. The sample version of the relevance
assumption is assessed by the F-test with null hypothesis H0 : ω2 = ~0.

Sample Version of Exclusion Restriction. The instrument ~Z must not be cor-
related with the true error term ~u in the second stage, i.e., Cov(~Z, ~u) = 1

n−1
∑n

i=1(zi −
z̄)(ui − ū) = 0. Note that since ~u is the true error term and is not observed, we would use
an estimated error term û in practice to check this assumption, where û = ~y − gβ( ~X, t̂), in
which t̂ is the estimated amount of treatment, and gβ is constructed from data. û will not
be the same as ~u because XUN and XUN,DEP are not known. For the same reason, gβ is
not the same as gβtrue .

The exclusion restriction above implies that the only way the instrument Z affects
outcomes Y is through the treatment T but not any other unknown mediators XUN,DEP .
If there exist other unknown mediators XUN,DEP through which the instrument Z also has
an influence on outcomes Y , then the exclusion restriction does not hold. In the example
above, substitution between unhealthy behaviors would violate the exclusion restriction.
For example, higher cigarette prices may drive consumers away from cigarettes, but if
they instead buy other products that have negative health effects (e.g., alcohol), which is
unmeasured, then the restriction is violated.

As mentioned previously, these assumptions are typically not tested using data but,
rather, using domain knowledge (e.g., with a model of behavior in economics or under-
standing of biology in Mendelian randomization). In the next section we explicitly connect
these assumptions, presented to this point in the two-stage-least-squares context, to a pre-
diction model, generalizing these assumptions using the notion of prediction validity.

9



Li, Rudin, and McCormick

2. A machine learning perspective on the IV assumptions via prediction
validity

Both assumptions for the traditional two-stage method rely on the linear framework, using
linear correlation between variables. In the proposed framework, we will no longer use
(linear) correlation and, instead propose using prediction loss. To determine how well
several variables predict another variable, we consider how well they, together, can be used
to predict it using functions of these variables from a pre-specified class. Using prediction
rather than correlation expands the types of dependence that the procedure can capture
and incorporates potential misspecification in the form of the model explicitly.

Using the prediction validity framework, we can derive our new modified relevance and
exclusion assumptions. The new population versions and the new sample versions of the
assumptions are given below:

Prediction Validity Population Version of Relevance Assumption This as-
sumption concerns the relationship between Z and T . It states that T can be predicted
better by X and Z together than by X alone.

min
f∈F

loss(T, f(X,Z)) ≤ min
f∈F

loss(T, f(X))− ε,

where F is a class containing all possible models and loss is a non-negative loss function.
Here, ε indicates a positive threshold. ε can be chosen as a small fraction of either one of
the two loss terms. Written another way (that may seem unnecessarily complicated now
but will be generalized later), the assumption is:

loss(T, fω(X,Z)) ≤ loss(T, fω(X))− ε
where fω(X,Z) ∈ arg min

f∈F
loss(T, f(X,Z)),

and similarly, fω(X) ∈ arg min
f∈F

loss(T, f(X)).

Here, fω may not be identical to fωtrue from the data generation process, because XUN is
unknown.

This assumption, and all of the assumptions below, reduce to the standard correlation-
based assumptions in the linear version of the problem. Thus, these are strict generalizations
of the assumptions used in standard methodology.

Prediction Validity Population Version of Exclusion Restriction This assump-
tion concerns the relationship between U and Z. It states that the instrument Z and known
covariates X cannot be used to predict the true error term U any better than a model that
is identically 0 can, with a predetermined tolerance ε′.

loss(U, hα(X,Z)) ≥ loss(U, 0)− ε′

where U = Y − gβtrue(X,T )

and hα ∈ arg min
h∈H

loss(U, h(X,Z))

where H is a class containing all possible models and loss is a non-negative loss function.
Here, ε′ indicates a positive threshold.
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Prediction Validity Sample Version of Relevance Assumption This assumption
concerns the relationship between ~Z and ~t. It states that ~t can be predicted better by ~X
and ~Z together than by ~X alone.

min
f∈Fclass

loss(~t, f( ~X, ~Z)) ≤ min
f∈Fclass

loss(~t, f( ~X))− ε,

or equivalently,

loss(~t, fω( ~X, ~Z)) ≤ loss(~t, fω( ~X))− ε
where fω( ~X, ~Z) ∈ arg min

f∈Fclass

loss(~t, f( ~X, ~Z))

and similarly, fω( ~X) ∈ arg min
f∈Fclass

loss(~t, f( ~X)),

where Fclass is a flexible class of models (where the usual reasonable measures have been
taken to prevent overfitting). Here, ε indicates a positive threshold.

Prediction Validity Sample Version of Exclusion Restriction This assumption
concerns the relationship between ~u and ~Z. It states that the instrument ~Z and known
covariates ~X cannot be used to predict the true error term ~u any better than a model that
is identically 0 can, with a predetermined tolerance ε′.

loss(~u, hα( ~X, ~Z)) ≥ loss(~u, 0)− ε′

where ~u = ~y − gβtrue( ~X,~t)
and hα ∈ argminh∈Hclass

loss(~u, h( ~X, ~Z))

where Hclass is a flexible class of models (where the usual reasonable measures have been
taken to prevent overfitting) and loss is a non-negative loss function. Here, ε′ indicates a
positive threshold.

The prediction validity exclusion restriction states that no matter how hard we try to
minimize the loss using the instrument Z and known covariates X, we still cannot achieve a
loss lower than what we can achieve using the model that is identically 0. This assumption
is true if the true error term, U , is independent from the instrument Z and known covariates
X. However, if there exist unknown mediators XUN,DEP through which the instrument Z
also has an influence on outcomes Y , then this exclusion restriction does not hold. In the
case that the exclusion restriction does not hold, we should be able to observe empirically
that fitting ~u using ~Z will lead to a lower loss. If that occurs, we should question the validity
of Z as an instrument.

The sample versions are still not useful in practice since they rely on unmeasured quan-
tities. We will focus on this in the next section.

2.1 Empirically verifying the prediction validity assumptions

In practice, with the instrument ~Z, covariates ~X and the treatment ~t observable, the sample
version of the relevance assumption can be assessed directly. However, due to the fact that
the true error term ~u is never observable, the sample version of the exclusion restriction is
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not testable. Recall the formula of the true error term ~u = ~y−gβtrue( ~X,~t), where gβtrue(
~X,~t)

is the true model in the second stage, which we do not have. To remove the influence of
unmeasured confounders, both standard methods and our method use the predicted value
of the treatment t̂ (which uses the instrument) instead of the true treatment ~t in the second
stage. Because t̂ is estimated from ~Z and ~X, it purposely excludes unmeasured confounders
~XUN . Then we would use the corresponding estimated error term û = ~y − gβ( ~X, t̂) (where
gβ is learned from data) instead of the true error term ~u.

In order to avoid using the double hat on u when we need to estimate û later, let us
change notation, by defining the remainder ~r to be the estimated error term û. We will
separately estimate ~r using another machine learning model, and we call this estimate r̂,
also denoted by hα( ~X, ~Z), which shows its dependence on ~X and ~Z. Putting this together,
in order to test the sample version of the exclusion restriction, we use the following empirical
validity check.

Machine Learning Empirical Validity Check :

loss(~r, r̂) ≥ loss(~r, 0)− ε′ (can predict remainders no better than null model)

where ~r = ~y − ŷ, ŷ = gβ( ~X, t̂) and r̂ = hα( ~X, ~Z) (remainder)

where gβ ∈ argming∈Gclass
loss(~y, g( ~X, t̂)) (modeled outcomes)

and hα ∈ argminh∈Hclass
loss(~r, h( ~X, ~Z)) (modeled remainders)

where Gclass and Hclass are flexible classes of models (where the usual reasonable measures
have been taken to prevent overfitting). Here, ε′ indicates a positive threshold. Here, gβ
may not be identical to gβtrue from the data generation process, because neither ~XUN nor
~XUN,DEP is known. Instead, gβ contains all of the predictive strength of ~X and t̂ for
predicting ~y.

The validity check can be used in two ways: posthoc, where the model is constructed
first and the validity is checked afterwards, and second, where the model in the second stage
is constrained so that it obeys the validity check. If the instrument is valid, the posthoc
approach occasionally will mistakenly state that it is invalid, whereas the constrained ap-
proach will always yield an instrument that appears to be valid. If the proposed instrument
is not an instrument, ideally both the posthoc and constrained approaches will reveal this
information. If there is a feasible solution satisfying the constraints, then by definition Z is a
feasible instrument. Therefore, we use the constrained approach in most of our experiments.

2.2 Connection to Adversarial Machine Learning

Our general machine learning validity connects to adversarial learning, in that in order for
the ML empirical validity check to be valid, the remainders from the second stage must have
been generated in a way that we cannot use them to discriminate between the outcomes
any better than a model that is identically zero.

To turn this into an adversarial min/max formulation, one would maximize the loss for
loss(~r, hα( ~X, ~Z)) with respect to ~r. The discriminator, which consists of the optimization
problem for hα, would aim to predict the remainders ~r. If the generator wins, then it is not
possible for us to predict ~r any better than 0 can. If the discriminator wins, then hα can
approximate ~r and the validity check fails.
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The validity check is a feasibility condition, not an optimality condition. This is why
the generator’s “max” does not appear, instead replaced by an inequality (in the first line
of the validity check).

3. Optimization Methodology

To begin, we introduce the general additive model, which we will use to capture the non-
linear dependence in our prediction validity framework.

Definition A general additive model (GAM) is a general linear model that can be written
as a linear combination of both linear and non-linear features, i.e., a general additive model
with input variable X and target variable y has the following form:

ŷ = b0 + b1feature1(X) + · · ·+ bqfeatureq(X)

where featurej(X), j = 1, · · · , q is a linear or non-linear function of X and X = (x1, · · · , xp).
Note that the general additive model (GAM) defined above is different from the gener-

alized additive model with the following form:

ŷ = b0 + b1feature1(x1) + · · ·+ bpfeaturep(xp)

where featurej(xj), j = 1, · · · , p is a linear or non-linear function of xj .
Many of our calculations require least squares calculations, which means we need the

following assumptions: There is no multi-collinearity (or perfect collinearity) between input
variables, and the square matrix of the input variables is invertible (non-singular). This
assumption holds for the remainder of this paper.

Consistency of nonlinear IV estimators is established by Newey and Powell (2003)
via Lemma A1 and Theorem 4.1, under five assumptions: identifiability, approximability,
smoothness, compactness, and continuity. Similar results also apply to Deep IV (Hartford
et al., 2017).

3.1 Two Stage Method

We will first introduce the new two stage formulation, where the estimates for t̂ and ŷ
are based on general loss minimization. In the general formulation, both stages can use
nonlinear models. If using linear or general additive models (GAMs) in both stages, with
the squared loss, the computations simplify and we can gain more insight. The empirical
validity check is used as a constraint. Again, these reduce to the standard two-stage least
squares case when the constraints are removed and when the loss in the formulation is the
squared loss.

We present the one dimensional case here for exposition and, in the appendix, present
the complete vectorized version along with a simplification.

Stage One
The optimization problem can be written as follows:

ω ∈ arg min
ω

∑
i

loss(ti, t̂i) where t̂i = fω(xi, zi). (predict treatment)

13
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This determines t̂i = fω(xi, zi) for Stage Two.

Stage Two

β ∈ arg min
β

∑
i

loss(yi, ŷi) where ŷi = gβ(xi, t̂i) (predict outcome)

s.t. β obeys
∑
i

loss(ri, r̂i) ≥
∑
i

loss(ri, 0)− ε′

(the model cannot predict the remainder too much better than a zero model)

where ri = yi − ŷi (remainder)

and r̂i = hα(xi, zi), where α ∈ arg min
α

∑
i

loss(ri, r̂i) (predict remainder).

3.2 One Stage Method

While the proposed two-stage formulation can help us to answer the questions stated in
the introduction, it is possible that the constraints may not be obeyed in the second stage
because of a misspecified model in the first stage. Often there are many models that predict
almost equally well on a finite dataset (see Semenova et al., 2022), and it is not clear exactly
what the first stage model should be. It is possible that models that predict well in the first
stage lead to residuals that can be predicted by the instrument in the second stage. When
that happens, the experimenter is stuck – they have a valid instrument which appears to
be invalid, with no mechanism to change it. The one stage formulation we will present next
prevents this from happening. The formulation uses the notion of the “Rashomon set,” that
is, the set of models for with loss less than ε.

The first stage is replaced with a constraint that says any model t̂ is feasible if it predicts
~t well, that is, it is in the Rashomon set. This is equivalent in the Bayesian setting to forcing
a high posterior for t̂.

Similarly to the last subsection, we present the one dimensional setting for exposition
and then present multiple dimensions in the Appendix.

min
β,ω

∑
i

loss(yi, ŷi) where ŷi = gβ(xi, t̂i), and t̂i = fω(xi, zi) (predict outcome)

s.t. ω obeys
∑
i

loss(ti, t̂i) ≤
∑
i

loss(ti, fω(xi))− ε

(the model can predict the treatment well enough so that it is in the Rashomon set)

and β obeys
∑
i

loss(ri, r̂i) ≥
∑
i

loss(ri, 0)− ε′

(the model cannot predict the remainder too much better than a zero model)

where ri = yi − ŷi (remainder)

and r̂i = hα(xi, zi), where α ∈ arg min
α

∑
i

loss(ri, r̂i) (predict remainder).
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3.3 Defining the Optimization Threshold ε′

In order to determine the optimization threshold ε′, this subsection introduces a new param-
eter γ to help with the calculation. Here, γ defines whether an estimate for the remainder ~r
is sufficiently good. It compares that estimate with a baseline of all zero predictions. Once
γ is defined, we can easily use it to calculate ε′. More specifically, here, γ is a relative loss,
measured in percentages, whereas ε′ is absolute, measured in the units of the loss:

loss(~r, r̂) = loss(~r, 0)− ε′ where

ε′ := γ loss(r̃, 0) and r̃ approximates ~r, so that the expression above yields

loss(~r, r̂) ≈ loss(~r, 0)− γ loss(~r, 0), that is,

γ ≈ 1− loss(~r, r̂)

loss(~r, 0)
.

Note that here r̃ is different from r̂. Here, r̃ is the remainder in the second stage from the
traditional two stage method, and it has a closed form expression (please see more details
in the appendix), while r̂ is the estimation of the remainder in our two stage model. Since
r̂ is the prediction of the remainder of ~r, loss(~r, r̂) is always smaller than loss(~r, 0), but
ideally it should not be too much smaller, assuming the instrument is valid. In fact, when
the model choice is correctly specified and sufficiently fitted to the data so that r̂ cannot
predict ~r much better than a zero model, loss(~r, r̂) is close to loss(~r, 0) and γ is small
enough to be close to zero. However, when the model choice is not sufficiently complex, or
when the selected variable z is not a valid instrument, then loss(~r, r̂) will be substantially
smaller than loss(~r, 0) and γ could be substantially greater than zero.

According to the definition of γ, γ ≈ 1− loss(~r,r̂)
loss(~r,0) . If the models are linear models and the

loss functions are squared loss, the influence of scale of the dataset in both loss functions
will cancel each other out. However, for other model choice and loss function combinations,
the scale of the dataset can be influential. In order to eliminate the influence of the scale,
we normalize all the input features before modeling. Therefore, we need to choose γ as a
function of only the sample size. The specific dependence between γ and the sample size
can depend on the construction of the loss function. In our experiments, with sample size
1000, we choose γ = 1% as the percentage. (Simulated experiments are given near the
beginning of Section 5 with different values of γ.)

4. Applicability for Our Two-Stage Method

In this section, we talk about the applicability of our two stage method. We discuss when it
is helpful for identifying a valid instrument. We also discuss when it can help “fix” a valid
instrument that appears to be invalid; in this case, the instrument only appears not to be
valid because of misspecification of the model structure. As it turns out, the optimization
results of our two stage model determine whether we may or may not be able to check the
validity of the instrument, and further fix a seemingly invalid instrument.

We start with an overview of the optimization results in this section and then state each
result formally.
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4.1 Overview of Optimization Results

The tables below provide a summary of all possible optimization feasibility and satisfiabil-
ity outcomes using our two stage method under different model constructions in the uni-
dimensional (Table 2) and multi-dimensional (Table 3) cases of the instrument respectively,
which illustrates the limitations and benefits of our two stage method under specific set-
tings. These tables are a summary of our main theoretical results for the new IV framework
involving prediction validity. The tables reference Theorem 1, Theorem 2 and Theorem 3
presented later in this section. Note that Theorem 2 is a special case of Theorem 1. By
definition, an active constraint is met at equality. Table 1 provides an intuitive explana-
tion of each potential optimization result using our two stage method, and is useful for
understanding Tables 2 and 3.

Optimization Result Intuition

The constraint is never active. The validity check always holds, so it is not use-
ful and we cannot check whether the instrument
is valid or not.

There is no feasible solution. The validity check is not satisfied. The selected
variable is not a valid instrument, and we cannot
fix it.

The constraint is active,
and there is a feasible solution.

The validity check was not initially satisfied,
which means the proposed instrument initially
appeared to be invalid. But we have fixed the
model to make it appear valid.

Table 1: Potential optimization results we might find and intuition of what they mean for
practice.

The interesting aspect of Tables 2 and 3 is that their rows are different from each
other; not all modeling choices yield the same set of possible results. Let us discuss the
results in Table 2 for univariate instruments: In LM/LM and LM/GAM (top two rows),
the constraints are always satisfied, and there is never an infeasible solution. This means
these models will never appear to violate the validity condition, whether or not they are
actually valid. Only the GAM/GAM combination permits checks and fixes to unsatisfied
constraints; GAM/LM can only discover such problems but not fix them. For multivariate
instruments, shown in Table 3, we can detect possible non-instruments in all cases, but can
only potentially fix valid instruments when the second stage is nonlinear.

Before introducing any lemmas and theorems, we introduce the notation and settings
that are used in this section. First, all the theorems in this section rely on the assump-
tion that the flexible model classes for the treatment ~t and for the remainder ~r have the
same level of complexity, that is, the predictor matrices for the treatment ~t and the re-
mainder ~r are equivalent i.e., Xt = Xr. Therefore, the hat matrix of the remainder ~r,
H = Xr(X

T
r Xr)

−1XT
r can be written as H = Xr(X

T
r Xr)

−1XT
r = Xt(X

T
t Xt)

−1XT
t , which

is the hat matrix for the treatment ~t. In the remainder of this section, we use the defi-
nition H = Xt(X

T
t Xt)

−1XT
t to represent both hat matrices for the remainder ~r and the
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Prediction

Model in

Stage One

Prediction

Model in

Stage Two

Potential Optimization Results

LM LM The constraint is always satisfied (i.e., never active). (The-
orem 2)

LM GAM The constraint is always satisfied (i.e., never active). (The-
orem 3)

GAM LM EITHER There is a feasible solution & constraint is not
active
OR There is no feasible solution (Theorem 1)

GAM GAM EITHER There is a feasible solution & constraint is not
active
OR There is no feasible solution
OR There exists a feasible solution and the constraint is
active

Table 2: Potential optimization results under different model constructions in the case of
uni-dimensional instruments. LM stands for linear model and GAM stands for
general additive model. Blue indicates cases where the constraints introduced in
this paper are relevant (active).

Prediction

Model in

Stage One

Prediction

Model in

Stage Two

Potential Optimization Results

LM LM EITHER There is a feasible solution, constraint is not active
OR There is no feasible solution (Theorem 1)

LM GAM EITHER There is a feasible solution, constraint is not active
OR There is no feasible solution
OR There is a feasible solution and the constraint is active

GAM LM EITHER There is a feasible solution, constraint is not active
OR There is no feasible solution (Theorem 1)

GAM GAM EITHER There is a feasible solution, constraint is not active
OR There is no feasible solution
OR There is a feasible solution and the constraint is active

Table 3: Potential optimization results under different model constructions in the case of
a multi-dimensional instrument. LM stands for linear model and GAM stands
for general additive model. Blue indicates cases where the constraints introduced
in this paper are relevant (active).

treatment ~t. The covariates are represented in an n × p matrix ~X whose column space
is p−dimensional, i.e., ~X = (x1, · · · , xp). In the multi-dimensional instrument cases, the

instrument ~Z is a n× q matrix whose column space is q−dimensional i.e. ~Z = (z1, · · · , zq).
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In the uni-dimensional cases, the instrument ~Z is a n × 1 matrix whose column space is
1−dimensional i.e. ~Z = (z1). To summarize, the notation is as follows for the traditional
two-stage-least-squares setup:

Stage One

The predictor matrix of ~t in Stage One is Xt = Xt( ~X, ~Z).

The hat matrix of ~t in Stage One is H = Xt(X
T
t Xt)

−1XT
t .

The predicted value of ~t in Stage One is t̂ = Xtω̂ and ω̂ = (XT
t Xt)

−1XT
t
~t. Thus,

t̂ = Xtω̂ = Xt(X
T
t Xt)

−1XT
t
~t = H~t.

Stage Two

The predictor matrix of ~y in Stage Two is Xy = Xy( ~X, t̂), where t̂ = Xtω̂.

The hat matrix of ~y in Stage Two is H1 = Xy(X
T
y Xy)

−1XT
y .

Appendix 8 provides these two stages formally in vector notation. For the squared loss,
the objective (2) is quadratic and the constraint (3) is ellipsoidal.

4.2 Lemmas and Theorems for Instruments with More Than One Dimension

Let us provide some results where instruments are at least 2 dimensional. The covariates
are (always) multi-dimensional. Note that the predictor matrix of ~y in the second stage,
Xy (see below), include the general additive model features (GAMs) when we are referring
to the general cases or they contain only the linear terms when we are talking about the
linear cases. All proofs for this section are in Appendix 8.

Linear Algebra Theorem A triangular matrix is invertible, if and only if all of its diag-
onal entries are nonzero.

The statement of Lemma 1 refers to the multidimensional formulation of our two-stage
model in Appendix 8, though we have restated all relevant material in the main text. For
instance, Constraint (3) mentioned below is in the appendix.

Lemma 1 If the models in Stage One and Stage Two are both linear models, the opti-
mal (minimum) solution of the objective function (2) (i.e., β̂min = arg minβ β

TXT
y Xyβ −

2βTXT
y ~y + ~yT~y) equals the optimal (minimum) solution of the objective function on the

left side of Constraint (3) (i.e., β̂′min = arg minβ β
TXT

y HXyβ − 2βTXT
y H~y + ~yTH~y), i.e.,

β̂min = β̂′min. This statement is true regardless of the dimension of ~X and the dimension of
~Z.

The next two lemmas are extensions of Lemma 1. Lemma 2 extends to general additive
models in the first stage, and Lemma 3 extends to additive models in both stages with
specific forms.

Lemma 2 If the model in Stage One is a general additive model, and the model in Stage
Two is a linear model, then the result of Lemma 1 still holds. This statement is true re-
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gardless of the dimension of ~X and the dimension of ~Z.

Lemma 3 If the models in Stage One and Stage Two are general additive models that have
the following forms:

t̂ =ω1feature1( ~X) + · · ·+ ωk1featurek1( ~X) + ωk1+1featurek1+1( ~X, ~Z) + · · ·+
ωk1+k2featurek1+k2( ~X, ~Z)

where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and each

featurej( ~X, ~Z), j = k1 + 1, · · · , k1 + k2 is a linear or non-linear function of ( ~X, ~Z) or only
~Z, and

ŷ = β1feature1( ~X) + · · ·+ βk′1featurek′1( ~X) + βk′1+1t̂

where k′1 ≤ k1 and {featurej( ~X)}k
′
1
j=1 is a subset of {featurej( ~X)}k1j=1, then the result of

Lemma 1 still holds. In other words, if the following conditions are satisfied:

1. the input features of the covariates ~X in Stage Two are a subset of those in Stage
One;

2. the model in Stage Two contains only the linear term of the predicted values of the
treatment t̂,

then the result of Lemma 1 still holds. This statement is true regardless of the dimension
of ~X and the dimension of ~Z.

Note that Lemma 3 is more general than both Lemma 1 and Lemma 2.

Our next result is interesting: it highlights a situation where one would expect the con-
straint to be sometimes satisfied at equality – but it cannot be. As it turns out, either the
solution is infeasible (meaning that the constraint cannot be satisfied) or the constraint is
irrelevant. We present a partial version of it that is easier to read, but provides only a
special case, before providing the full version.

Theorem 1 (Partial) If the model in Stage Two is a linear model, and if the model
in Stage One is a linear model or a general additive model, either Constraint (3) (i.e.,
βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is not active or there is no feasible solution. This

statement is true regardless of the dimension of ~X and the dimension of ~Z.

This theorem extends to more general cases, as we show next.

Theorem 1 (Full) If the models in Stage One and Stage two are general additive models
that have the following forms:

t̂ =ω1feature1( ~X) + · · ·+ ωk1featurek1( ~X) + ωk1+1featurek1+1( ~X, ~Z) + · · ·+
ωk1+k2featurek1+k2( ~X, ~Z)
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where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and each

featurej( ~X, ~Z), j = k1 + 1, · · · , k1 + k2 is a linear or non-linear function of ( ~X, ~Z) or only
~Z, and

ŷ = β1feature1( ~X) + · · ·+ βk′1featurek′1( ~X) + βk′1+1t̂

where k′1 ≤ k1 and {featurej( ~X)}k
′
1
j=1 is a subset of {featurej( ~X)}k1j=1, then either Constraint

(3) (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is not active or there is no feasible solution.

This statement is true regardless of the dimension of ~X and the dimension of ~Z. In other
words, if the following conditions are satisfied:

1. the input features of the covariates ~X in Stage Two are a subset of those in Stage
One;

2. the model in Stage Two contains only the linear term of the predicted values of the
treatment t̂,

then either Constraint (3) (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is not active or there
is no feasible solution.

This finishes our results for higher-dimensional instruments for the two-stage approach.
Let us work with one dimension now, where, as we prove below, under certain conditions,
the constraint is not needed because it is never active. It is simply always satisfied.

4.3 Lemmas and Theorems for 1D Instruments

The case of a 1D instrument is a special case of the multi-dimensional case discussed above,
but the range of potential optimization results is narrower than that of the multi-dimensional
case, as we show in this section. Theorem 1’s conclusion is that the constraint is either not
active or there is no feasible solution, whereas for Theorem 2 below, the conclusion is that
the constraint is simply never active and always satisfied. This means that in practice, one
never needs to check the constraint when using special cases for the Two-Stage method. In
these cases, the solution would be the same whether or not we include this constraint (and
we are back to standard practice by omitting it). In Theorem 2 partial and full versions,
the second stage must have a linear dependence on the treatment effect t̂. In order to derive
a more general result where the second stage can depend nonlinearly on t̂, we leverage two
lemmas from linear algebra to derive Theorem 3 and its full version. Theorem 3 (Partial)
applies when there is a linear first stage, and a second stage that can accommodate non-
linear dependence on t̂, whereas Theorem 3 (Full) handles general additive models in both
stages, again permitting nonlinear dependence on t̂ in the second stage. All proofs for this
section are in Appendix 8.

Theorem 2 (Partial) In the uni-dimensional case of the instrument ~Z, if the models
in Stage One and Stage Two are both linear models, Constraint (3) (i.e., βTXT

y HXyβ −
2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied and never active. This statement is true re-

gardless of the dimension of ~X.
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In the full version below, we allow additive models in both stages but in the second
stage, the dependence on t̂ is still linear.

Theorem 2 (Full) In the uni-dimensional case of the instrument ~Z, if the models in Stage
One and Stage Two are general additive models that have the following forms:

t̂ = ω1feature1( ~X) + · · ·+ ωkfeaturek( ~X) + ωk+1featurek+1(~Z)

where each featurej( ~X), j = 1, · · · , k is a linear or non-linear function of ~X and featurek+1(~Z)

is a linear or non-linear function of ~Z, and

ŷ = β1feature1( ~X) + · · ·+ βkfeaturek( ~X) + βk+1t̂

where each featurej( ~X), j = 1, · · · , k is a linear or non-linear function of ~X, then Constraint
(3) (i.e., βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e., never active).

This statement is true regardless of the dimension of ~X. In other words, if the following
conditions are satisfied:

1. the models in Stage One and Stage two share the same input features of the covariates
~X;

2. the model in Stage One contains only one input feature of the instrument ~Z, which
can be either linear or non-linear;

3. the model in Stage One contains no interaction term of the covariates ~X and the
instrument ~Z;

4. the model in Stage Two only contains the linear term of the predicted values of the
treatment t̂,

then Constraint (3) (i.e., βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied and
never active).

We would like to have more general dependence on t̂ in the second stage. To do that,
we leverage results from linear algebra in Lemma 4 and Lemma 5. These results allow us to
prove that the constraint in always satisfied in cases where there is nonlinear dependence
on t̂ in the second stage. Theorem 3 has this result when the first stage is linear, and the
full version of Theorem 3 has the result for when both stages are additive.

Lemma 4 If A ∈ Rn×m, n > m is an upper trapezoidal matrix with non-zero diagonal
entries, the matrix A[ATA]−1AT is a block matrix of the form:

A[ATA]−1AT =

(
Im×m 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

)
,

where Im×m is an m-dimensional identity matrix.
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Lemma 5 If B ∈ Rn×n is an upper triangular matrix with non-zero diagonal entries, the
matrix B[BTB]−1BT = In×n is an n-dimensional identity matrix.

Theorem 3 (Partial) In the uni-dimensional case for the instrument ~Z, if the model in
Stage One is a linear model, and the model in Stage Two is a general additive model, Con-
straint (3) (i.e., βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is never active. This statement

is true regardless of the dimension of ~X.

Theorem 3 (Full) In the uni-dimensional case for the instrument ~Z, if models in Stage
One and Stage Two are general additive models that have the following forms:

t̂ = ω1feature1( ~X) + · · ·+ ωk1featurek1( ~X) + ωk1+1featurek1+1(~Z)

where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and featurek1+1(~Z)

is a linear or non-linear function of ~Z and

ŷ = β1feature1( ~X) + · · ·+ βk1featurek1( ~X) + βk1+1t̂+ βk1+2featurek1+1( ~X, t̂) + · · ·
+βk1+k2+1featurek1+k2( ~X, t̂)

where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and featurej( ~X, t̂),

j = k1 + 1, · · · , k1 + k2 is a non-linear function of ( ~X, t̂) or a non-linear function of only
t̂, then Constraint 3 (βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is never active. This state-

ment is true regardless of the dimension of ~X. In other words, the following conditions are
satisfied:

1. the models in Stage One and Stage Two are general additive models that satisfy all
the conditions in Theorem 2.

2. the model in Stage Two contains non-linear features of the predicted values of the
treatment t̂ and the covariates ~X,

then Constraint (3) (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is never active.

5. Simulation

In this section we perform simulation studies to examine the prediction validity framework.
Section 5.1 verifies the theorems through simulation. Section 5.2 show the benefit of the
one-stage method, namely that it can sometimes find a feasible solution when there is none
in the two-stage approach. Section 5.3 is a case study on identifying whether a hypothesized
instrument is not actually a valid instrument. Section 5.4 shows that our two stage method’s
confidence intervals on the true treatment effect estimate tend to be wider than those of
the traditional method, which indicates that our new method can provide more robust
confidence intervals on the true treatment effect. An interesting result in Section 5.5 shows
that if we have a valid instrument but a misspecified model, our method can detect and fix
the misspecified model.
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5.1 Verifying Theorems

Simulations Verifying Theorem 1: Theorem 1 states that, in settings with multi-
dimensional instruments, if the prediction model in the first stage is a linear or general
additive model and the prediction model in the second stage is a linear model, either
the constraint is not active or there is no feasible solution. In order to verify this result
experimentally, we conduct a series of simulations with different data generation processes,
prediction models, and types of error terms.

The simulation results presented in Table 10 in the appendix accord with Theorem 1.
The simulation results show that Theorem 1 is true when the prediction model form is the
same as that of the generation model. The resuls also show that Theorem 1 holds as long as
the prediction models satisfy their conditions, regardless of the form of the data generation
functions. Other cases in Theorem 1 (Full) can also be verified by similar simulations.

Simulations Verifying Theorem 2 and Theorem 3: These theorems state that, in the
uni-dimensional case for the instrument ~Z, if the prediction model in the first stage is a
linear model and the prediction model in the second stage is a linear or general additive
model, the constraint is never active.

The simulation results presented in Table 9 in the appendix accord with Theorem 2 and
Theorem 3. The simulations empirically verify Theorem 2 and Theorem 3, regardless of the
type of the error term. It is also shown that Theorem 2 and Theorem 3 hold as long as the
prediction models satisfy their conditions, regardless of the forms of the data-generation
functions. As with the previous theorem, other cases in the full versions of Theorem 2 and
Theorem 3 can also be verified by similar simulations.

5.2 Simulations with One Stage Method

The one-stage method is not limited by the restrictions on model form given within Theorem
1, Theorem 2, and Theorem 3. In particular, the one-stage procedure can provide more
flexibility in the optimization process. We demonstrate this advantage by comparing its
results with those of the two-stage method through simulations. The simulation results are
presented in Table 11 in the appendix. Our general two-stage method and one-stage method
perform equally well when both of the two models are general additive models. When the
second stage is linear, our one-stage method is not subject to Theorem 1 and can outperform
our general two-stage method. The two-stage method cannot provide a feasible solution in
some cases where the one-stage method has a feasible solution. This is particularly useful
when the two-stage method indicates that a valid instrument is not an instrument; there is
no easy remedy besides the one-stage method.

Note that the conditions under which Theorem 2 and Theorem 3 apply also do not
restrict the model form of our one-stage method.

5.3 Identifying Non-Instruments and Valid Instruments

In the simulations below, we assume the correct model form; that is, we assume we had
made modeling choices with sufficient complexity so that our model could potentially rep-
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n = 2000 Predicted to be invalid.
(There is no feasible solution.)

Passes validity check.
(There is a feasible solution.)

Not an instrument 1000 0
Valid instrument 0 1000

Table 4: Confusion Matrix by Our Two Stage Method (γ = 1%)

resent ground truth.

Simulation Setup: In what follows, we assume we correctly specified the model form
in the first stage, but that there can be unknown mediators in the second stage. We con-
struct 1000 simulations for both the valid instrument case and the non-instrument case
respectively. We use the following data generation mechanism.

Data Generation (Construct Valid Instrument):

t = x+ z + z2 + e1

y = x+ t+ e2.

Data Generation (Construct Non-Instrument):

xUN,DEP = z3

t = x+ z + z2 + e1

y = x+ φ · xUN,DEP + t+ e2.

where x ∼ N(0, 1), z ∼ N(0, 1) and

(
e1
e2

)
∼ N

((
0
0

)
,

(
1 0.8

0.8 1

))
.

Here, z is not a valid instrument because there is a mediator xUN,DEP that will be
an unknown function of z. The parameter φ is used to quantify the strength of influence
from the unknown mediator on the “validity” of the instrument. The correlation between
e1 and e2 introduces unmeasured confounding: these correlated variables impact both the
treatment and outcome.

Here, we will use the same form of model for the prediction process. Thus, the predictor
matrices used in the three prediction models for the treatment t, outcomes y and the
remainder r are as follows.

Xt = (x, z, z2)

Xy = (x, t̂)

Xr = (x, z, z2).

Two Stage Model Validity Results: We show that our two stage method can
identify when the proposed instrument is valid and when it is not. To do this, we ran 2000
simulations, where 1000 of them used a valid instrument, and 1000 of them used a non-
instrument. Table 4 shows that our two-stage method identified whether the instrument is
valid in each of the simulations.
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n = 2000 Predicted to be invalid.
(There is no feasible solution.)

Predicted to be valid.
(There is a feasible solution.)

Not an instrument 797 203
Valid instrument 38 962

Table 5: Confusion Matrix by Our Two Stage Method (γ = 0.1%)

When we set φ = 1 and γ = 1%, then the accuracies are 100%. This indicates that
the valid instruments and non-instruments are perfectly separated when the unmeasured
mediators have a fairly strong influence. However, if we set φ = 0.1 and γ = 0.1%, the
accuracies drop. The results are shown in Table 5. It shows that our two stage method can
still identify the valid instruments and non-instruments well, even though the unmeasured
mediator is weak. When the strength of the unmeasured mediator is weak, non-instruments
are more likely to pass a validity test.

5.4 Robustness of ML-IV

This section shows that when the instrument is valid, the coefficients obtained by our
new method are more stable than those obtained by the traditional two-stage-least-squares
method, if even we only use a class of polynomial models as prediction models, when the
ground truth is not necessarily polynomial. We adopt some similar data generation models
and metrics as the full matching approach of Kang et al. (2016). In this paper, we use the
following model for the data generation process.

t = x+ πf(z) + e1

y = x+ βt+ e2

where x ∼ N(0, 1), z ∼ N(0, 1) and

(
e1
e2

)
∼ N

((
0
0

)
,

(
1 0.8

0.8 1

))
. The f(·) is a pre-

determined non-linear function of the instrument z. The parameter β in the second stage
is fixed to be 1, while the parameter π in the first stage can be varied. We use the value
of the parameter π to quantify the strength of the instrument z. We consider the following
functions f(·) of the instrument z and the corresponding predictor matrices for the treatment
t:

(a) Quadratic function: f(z) = z2 and Xt = (x, z, z2);

(b) Cubic function: f(z) = z3 and Xt = (x, z, z2, z3);

(c) Exponential function: f(z) = exp(z) and Xt = (x, z, z2, z3)

(d) Log function: f(z) = log(|z|) and Xt = (x, z, z2, z3)

(e) Square root function: f(z) =
√
|z| and Xt = (x, z, z2, z3)

(f) Logistic function: f(z) = 1
1+exp(−z) and Xt = (x, z, z2, z3)

For each functional form, we vary the parameter π from 0.1 to 1 by 0.05. For each
unique combination of f(·) and π, we simulate the process 1000 times and display the
estimates of the coefficient β. In Figure 3, the blue line represents the median estimate
of the parameter β by the traditional two stage method, while the red line represents the
median estimate of the parameter β by our two stage method. The blue region represents
the 95% confidence interval of the parameter β by the traditional two stage method, while
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the red line represents the 95% confidence interval of the parameter β by our two stage
method. The decreasing lines show that as the first stage become stronger, the estimation
of the parameter β is closer to 1, or in other words, the estimation of the true causal effect
becomes more accurate. The fact that the blue region is wider than the red region shows
that our two stage method provides more robust estimation than the traditional two-stage-
least-squares method.

Figure 3: Our two stage method versus the traditional two-stage-least-squares method
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5.5 Detect and address misspecification

Example 1: When model misspecification can be addressed. In the following
example, we have a valid instrument but a misspecified model, in that the data generation
is a quadratic model, but the prediction model is linear. If we use a quadratic prediction
model for the remainder r, we can detect that the model was misspecified. In that case, we
can fix the modeling choice for the treatment t̂ so that the instrument appears to be valid.

In particular, we use the following data generation process to construct a valid instru-
ment case:

t = x+ z + z2 + e1

y = x+ t+ e2,

where x ∼ N(0, 1), z ∼ N(0, 1) and

(
e1
e2

)
∼ N

((
0
0

)
,

(
1 0.8

0.8 1

))
. Again, the correlation

between e1 and e2 introduces unmeasured confounding, since these correlated variables
impact both the treatment and outcome.

Here are the predictor matrices used in the three prediction models for the treatment t,
outcomes y and the remainder r respectively:

Xt = (x, z)

Xy = (x, t̂)

Xr = (x, z, z2).

Here we use a more flexible class of prediction models for the remainder r than that
for the treatment t, which helps us to potentially detect a misspecified model when the
instrument is actually valid. In this case, the quadratic model form for the remainder r can
detect the quadratic dependence on the instrument z, which was not detected by the linear
model for the treatment t in the first stage: since the remainder can be well-predicted by a
more flexible model class, the loss between r and its estimated value r̂ is significantly smaller
than the loss between r and zero. As a result, the modeller would be able to conclude that
the constraint is not satisfied due to a misspecified model.

If we then apply the quadratic model form in the first stage for estimation of the treat-
ment t, the constraint can be satisfied again and the misspecified model is fixed. The
predictor matrices used in the fixed modeling process for the treatment t, outcomes y and
the remainder r are respectively:

Xt = (x, z, z2)

Xy = (x, t̂)

Xr = (x, z, z2, z3).

The values of loss functions on both sides of the constraint, loss(r, r̂) and loss(r, 0) for
the two modeling choices (insufficient and sufficient) are as follows.
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loss(r, 0) loss(r, r̂) True percentage:
loss(r, r̂)/loss(r, 0)

Linear first stage (insuffi-
cient):
Xt = (x, z)

44.44 34.50 77.64 (insufficient)%

Quadratic first stage (suffi-
cient):
Xt = (x, z, z2)

34.51 34.50 99.98 (sufficient)%

Table 6: Values of loss on both sides of the constraint

The results in Table 6 show that if we choose percentage γ equal to 10%, then our
misspecified model (the linear first stage) will be rejected while the (correct) quadratic first
stage will be accepted.

In the example above, we demonstrated than a misspecified model can be detected and
fixed, whereas the following example shows a non-instrument that cannot be fixed.

Example 2: Attempts to fix a non-instrument will be unsuccessful. Let us now
switch to working with the non-instrument case from in Section 5.3, where t = x+z+z2+e1,
y = x+xUN,DEP +t+e2 and xUN,DEP = z3. In Section 5.3, we used the following predictor
matrices for the treatment t, outcomes y and the remainder r respectively:

Xt = (x, z, z2)

Xy = (x, t̂)

Xr = (x, z, z2, z3).

If we had tested this setup, our validity constraint would have been violated and the pro-
posed instrument would (correctly) appear invalid. If we attempt to fix the proposed in-
strument, we can add a more complicated dependence of the model t̂ on the instrument
z. (We cannot include a term that depends directly on z in the model for ŷ because that
would violate the definition of a valid instrument.) In this case, we add a cubic term z3 to
the predictor matrix for the treatment t. When we do that, we also would like the model
for the remainder r̂ to be more flexible in order to detect possible misspecified models, so
we add an additional z4 term to the remainder model. The predictor matrices used for new
modeling choices of the treatment t, outcomes y and the remainder r are now respectively:

Xt = (x, z, z2, z3)

Xy = (x, t̂)

Xr = (x, z, z2, z3, z4).

The values of the loss functions on both sides of the constraint, loss(r, r̂) and loss(r, 0)
for these two modeling choices are as follows. As a reminder, both modeling choices are
reasonable, but neither can fix the non-instrument.

The results in Table 7 show that the attempt to fix the non-instrument by adding the
cubic term was not successful: the true percentage for the second modeling choice is no
better than that of the first model.
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loss(r, 0) loss(r, r̂) True percentage:
loss(r, r̂)/loss(r, 0)

Quadratic first stage:
Xt = (x, z, z2)

42.9038 35.4535 82.63%

Cubic first stage:
Xt = (x, z, z2, z3)

42.9131 35.3490 82.64%

Table 7: Values of loss on both sides on the constraint

6. Example: Backlash against climate change

In this section, we tested our two-stage and one-stage methods on data from the paper
entitled Electoral Backlash Against Climate Policy: A Natural Experiment on Retrospective
Voting and Local Resistance to Public Policy by Stokes (2016). We replicated the traditional
two-stage least squares regression form within the paper, and applied our two-stage and one-
stage methods.

Here, we give a brief introduction of this paper and its data. This paper investigates
whether living close to a wind energy project leads citizens or residents to vote against
an incumbent government due to its climate policy. The data consists of the election,
census and wind energy project data of 708 valid precincts in Ontario, Canada. Each row
represents a valid precinct. For each precinct, the dataset includes: the average wind power
(log) in a precinct as the instrument z, whether there is a proposed wind turbine within 3
km of the precinct in 2011 as the treatment t, the change in the Liberal Party vote share in
that precinct between the 2007 and 2011 elections as outcomes y, as well as features about
geographical information as other covariates x.

Due to the fact that the treatment t is a binary variable, we apply the kernel version
two-stage ML-IV method (see appendix A) and use logistic regression for the binary variable
in the first stage. Since there is no closed-form solution for the coefficients of the logistic
regression, we use the general loss version of our methods instead of the square loss version.

The data analysis procedures are as follows. First, we checked the relevance assumption
and the exclusion restriction of the instrument z in this dataset. In particular, since the
input features containing the instrument z contribute to the first stage model, the relevance
assumption is satisfied and the instrument z has a strong first stage. Since our empirical
validity check passed, the exclusion restriction is also satisfied and the instrument z appears
valid. Second, we built four different models using different input features and used RMSE
on the outcome as the metric to compare prediction performance. In the modeling process,
10-fold cross validation was used to ensure the stability of our results. The results are shown
in Table 8, and the important parts of this table are plotted in Figures 4 and 5. Note that
we have normalized all input variables when pre-processing, which means the results shown
in the table are standardized.

According to Figures 4 and 5, we can draw the following two conclusions. First, as
we choose more complicated models, our methods can provide more accurate prediction of
outcomes than the traditional two-stage-least-squares method. This indicates that more
complicated relationships between the variables may exist, and are taken into account by
our approach. Second, as prediction power increases, the causal effect size also increases.
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Models (Input Features) RMSE of
Outcomes y

Causal
Effect

Neyman
Variance

Model 1 Linear Regression (with only linear fea-
tures)

0.7075 -0.4541 2.6139×10−2

Model 2 Logistic Regression (with only linear fea-
tures)

0.7059 -0.4740 2.6017 ×10−2

Model 3 Logistic Regression (adding non-linear
features of the covariates x)

0.6956 -0.4742 2.7239×10−2

Model 4 Logistic Regression (adding interaction
terms between the instrument z and the covari-
ates x, the predicted values of the treatment t̂ and
the covariates x)

0.6731 -0.4992 2.9348×10−2

Table 8: Comparison of four different models (from the simplest to the most complicated)

Figure 4: RMSE of outcomes versus
models with different model
complexity

Figure 5: Causal effect size versus mod-
els with different model com-
plexity

This implies that the traditional two-stage method may underestimate the true causal effect
for this important dataset by using a simple linear framework, while our methods may be
able to provide more accurate estimation.

7. Recommendations for practice

In this section we provide concrete recommendations for scientists using IV models to ad-
dress substantive questions. As mentioned previously, these recommendations assure neces-
sary but not sufficient conditions and, thus, augment, rather than replace, the current state
of practice. We provide guidance on the uni-dimensional two-stage case, following Table 2,
however practitioners with multivariate instruments should consult Table 3. That is, in this
section, the scientist has a single proposed instrumental variable, and would like to use the
2-stage case.

First, the scientist should decide whether a linear model is sufficient for their dataset.
One can check this in both the first and second stage using both linear models and nonlinear
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models to determine whether the nonlinear terms improve prediction accuracy without
overfitting.

If a linear model in both stages is sufficient, then the first step is to check the relevance
assumption. To do this, one models the treatment as both a function of the covariates and
the proposed instrument, and then again as a function of just the covariates; if the first of
these two models is better than the second, the relevance assumption is satisfied. There
is no need to check the exclusion restriction, since it will always appear satisfied based on
observable variables (though this, of course, does not address unmeasured confounding or
mediation).

If a linear model in the first stage is sufficient but one chooses an additive model in the
second stage, again, one should check the relevance assumption as described in the previous
paragraph, but there is no need to check the exclusion restriction, since it will always
appear satisfied based on observable confounds (again, this does not address unmeasured
confounding or mediation).

If a linear model in the first stage is not sufficient, a general additive model could be
developed for the first stage. Again, one should check the relevance assumption is satisfied
by determining that a model that includes the proposed instrument predicts the treatment
better than one without the proposed instrument. Then, the scientist should decide whether
a linear model is sufficient in the second stage, and at that point we can check the exclusion
restriction.

When the first stage is a GAM and the second stage is linear, following the procedure
in Section 3.1, whose math is in Section 8, according to Table 2, we would find that either
there is a feasible solution where the constraint is not active, or there is no feasible solution
(this is by Theorem 1). In the case of a feasible solution, the proposed instrument passes
the check. In the second case, it fails. It is then possible that the proposed instrument is
not valid.

When both the first and second stages are chosen to be GAMs, either 1) there is a
feasible solution and the constraint may or may not be active, in which case the proposed
instrument passes the check, or 2) there is no feasible solution, in which case it does not pass
the check. In the case where the constraint is active, that is when the a posthoc approach
(doing the traditional two stage without constraints and then checking them afterwards)
would have made the instrument appear to be invalid, even though it might actually be
valid; our two-stage procedure fixed the problem.

The models from this two-stage procedure can then be used for standard instrumental
variable analysis. Though it is beyond the scope of this article to describe exactly how
to use these models for IV analysis, if the second stage is linear, typically the regression
coefficient would be used to determine the significance of the treatment variable on the
outcome. If the second stage is nonlinear, other types of statistical inference techniques can
be used, or variable importance techniques.

8. Conclusion and Discussion

As the current trend towards nonlinear modeling choices continues, particularly in instru-
mental variable analysis, we must always check for validity of instruments and misspecifi-
cation of modeling choices, and fix misspecified models if possible. If a scientist proceeds
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with analysis and leaves validity and modeling choices as an afterthought, it is possible that
their conclusions could be wrong. Our approach aims to prevent this.

The contributions of this paper are: (i) A framework that generalizes instrumental
variable analysis to general nonlinear modeling. The framework can theoretically handle
any choices for nonlinear models, and for instance, could be extended beyond the choices
made in this paper to very complex model choices such as neural networks or combinations
of decision trees. (ii) An empirical validity check for the presence of valid instruments or a
misspecified model, or a lack of serendipity in the data or fitting procedure. This empirical
validity check is incorporated as a constraint in the optimization problem solved in the first
stage of the analysis. As we showed, it is often possible to fix a misspecified model (or
lack of serendipity), but one cannot fix a non-instrument. (iii) A new one-stage method
for instrumental variable analysis, which is more flexible than the two-stage method, but
may be harder to use in practice because it requires the solution of a more challenging
optimization problem. In our experiments we used tools such as tensorflow, cvxopt and
cvxpi, and as these automatic solvers continue to be developed, the one-stage approach
may become more feasible in the future. (iv) Closed form solutions for the new two-stage
formulation for linear models and general additive models. (v) Conditions under which the
new IV formulation yields either the same solution as the traditional approach, no solutions,
or potentially better solutions.

Possible directions for future work include developing approximate solutions to the
framework’s one-stage and two-stage optimization problems for different loss functions,
and working out theory of existence of solutions for these loss functions as we have done
for the linear and general additive two-stage cases. Another possible future direction is in
applications: one can apply our method to deep learning or other nonlinear analysis choices,
or in more traditional modeling cases, as desired.
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Appendix A. Pseudocode for the Two-Stage and One-Stage ML-IV
Methods

In order to generalize the square loss, we replace the inner product in the square loss function
with a kernel function, which generalizes the least square solution to the kernel least square
solution. The pseudo codes of the kernel least square methods are provided in this section.
There are closed form solutions for these procedures that are analogous to the least square
solutions, replacing the inner products with kernel functions. For cases beyond what we
present, when there is not a closed form for the optimization problem, different techniques
would be applied in practice to reach a local optimal solution. To solve the optimization
problem in practice, we use solvers cvxopt and cvxpy in python for our two stage method
and tensorflow for our one stage method.

Two Stage Method

Stage One

1. construct the predictor matrix of t in Stage One, X(t), where matrix X(t) is defined

element-wise by x
(t)
ij = functionj(xi·, zi·), where function is a user-defined function,

which creates features from xi· and zi·;

2. compute r∗1 by minimizing the square loss: r∗1 ∈ argminr1 loss(r1) = ‖t − X(t)ωr1‖22,

where ωr1 = X(t)T r1 =
n∑
i=1

x(t)
T
i·r1i, and obtain the least square solution ω̂r1 , ω̂r1 =

n∑
i=1

x(t)
T
i·r
∗
1i;

3. obtain the least square solution of the treatment t̂, t̂i· = x(t)i·ω̂r1 = x(t)i·
n∑

i′=1

x(t)
T
i′·r
∗
1i′ =

n∑
i′=1

x(t)i·x
(t)T
i′·r
∗
1i′ ;

4. if desired, replace the inner product with a kernel function k(·, ·), and obtain the

kernel least square solution of t̂, t̂i· =
n∑

i′=1

k(x(t)i·, x
(t)
i′·)r

∗
1i′ .

Stage Two

1. construct the predictor matrix of y in Stage One, X(y), where matrix X(y) is defined

element-wise by x
(y)
ij = functionj(xi·, t̂i), where function is a user-defined function,

which creates features from xi· and t̂i;

2. compute r∗2 by minimizing the square loss:

r∗2 ∈ argminr2 loss(r2) = ‖y −X(y)βr2‖22 + C‖H~y −HX(y)βr2‖22,

where H = Xt(X
T
t Xt)

−1XT
t and βr2 = X(y)T r2 =

n∑
i=1

x(y)
T
i·r2i, and obtain the least

square solution of β̂r2 , β̂r2 =
n∑
i=1

x(y)
T
i′·r
∗
2i;
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3. obtain the least square solution of the outcomes ŷ, ŷi· = x(y)i·β̂r2 = x(y)i·
n∑

i′=1

x(y)
T
i′·r
∗
2i′ =

n∑
i′=1

x(y)i·x
(y)T

i′·r
∗
2i′ ;

4. if desired, replace the inner product with a kernel function k(·, ·), and obtain the

kernel least square solution of ŷ, ŷi· =
n∑

i′=1

k(x(y)i·, x
(y)

i′·)r
∗
2i′ .

One Stage Method

1. construct the predictor matrix of t in Stage One, X(t), where matrix X(t) is defined

element-wise by x
(t)
ij = functionj(xi·, zi·) and the predictor matrix of y in Stage One,

X(y), where matrix X(y) is defined element-wise by x
(y)
ij = functionj(xi·, t̂i);

2. compute r∗1 and r∗2 by minimizing the square loss:

loss(r1, r2) = ‖y −X(y)(r1)βr2‖2 + C1‖t−X(t)ωr1‖2 + C2‖H~y −HX(y)(r1)βr2‖2,

where H = Xt(X
T
t Xt)

−1XT
t , and where X(y)(r1) = function( ~X, t̂(r1)), with t̂(r1) =

X(t)Tωr1 , where ωr1 = X(t)T r1 =
n∑
i=1

x(t)
T
i·r1i, and also βr2 = X(y)T r2 =

n∑
i=1

x(y)
T
i·r2i.

We then obtain the least square solution of ω̂r1 as ω̂r1 =
n∑
i=1

x(t)
T
i·r
∗
1i and the least

squares solution of β̂r2 as β̂r2 =
n∑
i=1

x(y)
T
i·r
∗
2i;

3. obtain the least square solutions of the treatment t̂, t̂i· = x(t)i·ω̂r1 = x(t)i·
n∑

i′=1

x(t)
T
i′·r
∗
1i′ =

n∑
i′=1

x(t)i·x
(t)T
i′·r
∗
1i′ and the outcomes ŷ, ŷi· = x(y)i·β̂r2 = x(y)i·

n∑
i′=1

x(y)
T
i′·r
∗
2i′ =

n∑
i′=1

x(y)i·x
(y)T

i′·r
∗
2i′ ;

4. if desired, replace the inner product with a kernel function k(·, ·), and obtain the

kernel least square solutions of t̂, t̂i· =
n∑

i′=1

k(x(t)i·, x
(t)
i′·)r

∗
1i′ and ŷ, ŷi· =

n∑
i′=1

k(x(y)i·, x
(y)

i′·)r
∗
2i′ .

Appendix B. Proofs

Lemma 1 If the models in Stage One and Stage Two are both linear models, the opti-
mal (minimum) solution of the objective function (2) (i.e., β̂min = arg minβ β

TXT
y Xyβ −

2βTXT
y ~y + ~yT~y) equals the optimal (minimum) solution of the objective function on the

left side of Constraint (3) (i.e., β̂′min = arg minβ β
TXT

y HXyβ − 2βTXT
y H~y + ~yTH~y), i.e.,

β̂min = β̂′min. This statement is true regardless of the dimension of ~X and the dimension of

34



Prediction Validity for IV Models

~Z.

Proof. Recall the notation for the model in Stage One is: t̂ = fω( ~X, ~Z) = fω(x1, · · · , xp,
z1, · · · , zq). To notate that it is a linear model, we use the following notation: t̂ = ω1x1 +
· · ·+ ωpxp + ωp+1z1 + · · ·+ ωp+qzq.

Recall notation for the model in Stage Two is: ŷ = gβ( ~X, t̂) = gβ(x1, · · · , xp, t̂). To
notate that it is a linear model, we use the following notation: ŷ = β1x1+ · · ·+βpxp+βp+1t̂.

Define the predictor matrix of t in Stage One:

Xt = (x1, · · · , xp, z1, · · · , zq)n×(p+q) ∈ Rn×(p+q).

Define the predictor matrix of y in Stage Two:

Xy =(x1, · · · , xp, t̂)n×(p+1)

=(x1, · · · , xp, z1, · · · , zq)n×(p+q)



1 · · · 0 ω1
...

...
...

0 · · · 1 ωp
0 · · · 0 ωp+1
...

...
...

0 · · · 0 ωp+q


(p+q)×(p+1)

=:XtB ∈ Rn×(p+1).

In Stage Two of our two stage method, the optimal (minimum) solution of the objective
function (2) (βTXT

y Xyβ − 2βTXT
y ~y + ~yT~y) is β̂min = [XT

y Xy]
−1XT

y ~y, and the optimal

(minimum) solution of the objective function of Constraint (3) (βTXT
y HXyβ−2βTXT

y H~y+

~yTH~y) is β̂′min = [XT
y HXy]

−1XT
y H~y. Then,

β̂′min =[XT
y HXy]

−1XT
y H~y

=[BTXT
t HXtB]−1BTXT

t H~y, where Xy = XtB

=[BTXT
t Xt[X

T
t Xt]

−1XT
t XtB]−1BTXT

t Xt[X
T
t Xt]

−1XT
t ~y, where Xy = XtB

=[BTXT
t XtB]−1BTXT

t ~y

=β̂min.

Therefore, the two optimal solutions are equivalent, i.e., β̂min = β̂′min.

Lemma 2 If the model in Stage One is a general additive model, and the model in Stage
Two is a linear model, then the result of Lemma 1 still holds. This statement is true re-
gardless of the dimension of ~X and the dimension of ~Z.

Proof. Recall the notation for the model in Stage One is: t̂ = fω( ~X, ~Z) = fω(x1, · · · , xp,
z1, · · · , zq). To notate that it is a general additive model, we use the following notation: t̂ =

ω1x1+· · ·+ωpxp+ωp+1z1+· · ·+ωp+qzq+ωp+q+1feature1( ~X, ~Z)+· · ·+ωp+q+kfeaturek( ~X, ~Z),

where featurej( ~X, ~Z), j = 1, · · · , k is a non-linear function of ( ~X, ~Z).
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Recall notation for the model in Stage Two is: ŷ = gβ( ~X, t̂) = gβ(x1, · · · , xp, t̂). To
notate that it is a linear model, we use the following notation: ŷ = β1x1+ · · ·+βpxp+βp+1t̂.

Define the predictor matrix of t in Stage One:

Xt = (x1, · · · , xp, z1, · · · , zq, feature1( ~X, ~Z), · · · , featurek( ~X, ~Z))n×(p+q+k) ∈ Rn×(p+q+k).

Define the predictor matrix of y in Stage Two:

Xy =(x1, · · · , xp, t̂)n×(p+1)

=(x1, · · · , xp, z1, · · · , zq, feature1( ~X, ~Z), · · · , featurek( ~X, ~Z))n×(p+q+k)

·



1 · · · 0 ω1
...

...
...

0 · · · 1 ωp
0 · · · 0 ωp+1
...

...
...

0 · · · 0 ωp+q
0 · · · 0 ωp+q+1
...

...
...

0 · · · 0 ωp+q+k


(p+q+k)×(p+1)

=:XtB
′ ∈ Rn×(p+1).

Since the matrix B′ has the same form as the matrix B in Lemma 1, it has already been
proved that two optimal (minimum) solutions are equivalent i.e. β̂min = β̂′min.

Lemma 3 If the models in Stage One and Stage two are general additive models that have
the following forms:

t̂ =ω1feature1( ~X) + · · ·+ ωk1featurek1( ~X) + ωk1+1featurek1+1( ~X, ~Z) + · · ·+
ωk1+k2featurek1+k2( ~X, ~Z)

where featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and featurej( ~X, ~Z),

j = k1 + 1, · · · , k1 + k2 is a linear or non-linear function of ( ~X, ~Z) or only ~Z, and

ŷ = β1feature1( ~X) + · · ·+ βk′1featurek′1( ~X) + βk′1+1t̂

where k′1 ≤ k1 and {featurej( ~X)}k
′
1
j=1 is a subset of {featurej( ~X)}k1j=1, then the result of

Lemma 1 still holds. In other words, if the following conditions are satisfied:

1. the input features of the covariates ~X in Stage Two are a subset of those in Stage
One;

2. the model in Stage Two contains only the linear term of the predicted values of the
treatment t̂,
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then the result of Lemma 1 still holds. This statement is true regardless of the dimension
of ~X and the dimension of ~Z. Note that Lemma 3 is a more general version of both Lemma
1 and Lemma 2.

Proof. Recall the notation of the models in Stage One and Stage Two in Lemma 3 and
define the predictor matrices as follows:

Define the predictor matrix of t in Stage One:

Xt = (feature1( ~X), · · · , featurek1( ~X), featurek1+1( ~X, ~Z), · · · , featurek1+k2( ~X, ~Z))n×(k1+k2)

∈ Rn×(k1+k2).

Define the predictor matrix of y in Stage Two:

Xy =(feature1( ~X), · · · , featurek′1( ~X), t̂)n×(p+1)

=(feature1( ~X), · · · , featurek1( ~X), featurek1+1( ~X, ~Z), · · · , featurek1+k2( ~X, ~Z))n×(k1+k2)

·



1 · · · 0 ω1
...

...
...

0 · · · 1 ωk′1
0 · · · 0 ωk′1+1
...

...
...

0 · · · 0 ωk1
0 · · · 0 ωk1+1
...

...
...

0 · · · 0 ωk1+k2


(k1+k2)×(k′1+1)

=:XtB
′′ ∈ Rn×(k

′
1+1).

Since the matrix B′′ has the same form as the matrix B in Lemma 1, it has already
been proved that two optimal (minimum) solutions are equivalent i.e. β̂min = β̂′min.

Theorem 1 (Partial) If the model in Stage Two is a linear model, and if the model in
Stage One is a linear model or a general additive model, either Constraint 3 (βTXT

y HXyβ−
2βTXT

y H~y + ~yTH~y ≤ ε′) is not active or there is no feasible solution. This statement is

true regardless of the dimension of ~X and the dimension of ~Z.

Proof. To notate the objective function 2 (βTXT
y Xyβ − 2βTXT

y ~y + ~yT~y), we use the

following notation: Cβ(x1, · · · , xp, t̂).
To notate the objective function on the left side of Constraint 3 (βTXT

y HXyβ−2βTXT
y H~y+

~yTH~y), we use the following notation: Cβ′(x1, · · · , xp, t̂).
Recall Lemma 1 and Lemma 2, the optimal (minimum) solution of the objective function

2 (Cβ(x1, · · · , xp, t̂)) is β̂min, and the optimal (minimum) solution of the objective function

on the left side of Constraint 3 (Cβ′(x1, · · · , xp, t̂)) is β̂′min. Two optimal (minimum) solu-

tions are equivalent, i.e., β̂min = β̂′min.
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If Constraint 3 is active, then β̂min does not satisfy it, i.e., Cβ̂min
(x1, · · · , xp, t̂) > ε′.

min
β′

Cβ′(x1, · · · , xp, t̂)

= Cβ̂′min
(x1, · · · , xp, t̂), where β̂′min is the optimal (minimum) solution of Cβ′(x1, · · · , xp, t̂)

= Cβ̂min
(x1, · · · , xp, t̂) > ε′, where β̂′min = β̂min.

Therefore, Cβ′(x1, · · · , xp, t̂) > ε′, Constraint 3 is never satisfied. In conclusion, once Con-
straint 3 (βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is active, there does not exist a solution

that can satisfy it.

Theorem 1 (Full) If the models in Stage One and Stage two are general additive models
that have the following forms:

t̂ =ω1feature1( ~X) + · · ·+ ωk1featurek1( ~X) + ωk1+1featurek1+1( ~X, ~Z) + · · ·+
ωk1+k2featurek1+k2( ~X, ~Z)

where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and each

featurej( ~X, ~Z), j = k1 + 1, · · · , k1 + k2 is a linear or non-linear function of ( ~X, ~Z) or only
~Z, and

ŷ = β1feature1( ~X) + · · ·+ βk′1featurek′1( ~X) + βk′1+1t̂

where k′1 ≤ k1 and {featurej( ~X)}k
′
1
j=1 is a subset of {featurej( ~X)}k1j=1, then either Constraint

3 (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is not active or there is no feasible solution.

This statement is true regardless of the dimension of ~X and the dimension of ~Z. In other
words, if the following conditions are satisfied:

1. the input features of the covariates ~X in Stage Two is a subset of those in Stage One;

2. the model in Stage Two only contains the linear term of the predicted values of the
treatment t̂,

then either Constraint (3) (i.e., βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is not active or
there is no feasible solution.

Proof. The proof of the Full Version of Theorem 1 using Lemma 3 is the same as the proof
of Theorem 1 using Lemma 1 and Lemma 2.

Theorem 2 (Partial) In the uni-dimensional case of the instrument ~Z, if the mod-
els in Stage One and Stage Two are both linear models, Constraint (3) (βTXT

y HXyβ −
2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e., never active). This statement is true

regardless of the dimension of ~X.

Proof. Recall the notation for the model in Stage One is: t̂ = fω( ~X, ~Z) = fω(x1, · · · , xp, z1).
To notate that it is a linear model, we use the following notation: t̂ = ω1x1 + · · ·+ ωpxp +
ωp+1z1.
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Recall notation for the model in Stage Two is: ŷ = gβ( ~X, t̂) = gβ(x1, · · · , xp, t̂). To
denote that it is a linear model, we use the following notation: ŷ = β1x1+ · · ·+βpxp+βp+1t̂.

Define the predictor matrix of t in Stage One:

Xt = (x1, x2, · · · , xp, z1)n×(p+1) ∈ Rn×(p+1)

Define the predictor matrix of y in Stage Two:

Xy =(x1, x2 · · · , xp, t̂)n×(p+1)

=(x1, x2, · · · , xp, z1)n×(p+1)


1 0 · · · 0 ω1

0 1 · · · 0 ω2
...

...
...

...
0 0 · · · 1 ωp
0 0 · · · 0 ωp+1


(p+1)×(p+1)

=:XtA ∈ Rn×(p+1)

where diagonal entries of A are aii = 1, 1 ≤ i ≤ p and a(p+1)(p+1) = ωp+1. Therefore, the
upper trapezoidal matrix A has non-zero diagonal entries.

As shown in the following, the hat matrix H1 equals the hat matrix H.

H1 = Xy[X
T
y Xy]

−1XT
y , where Xy = XtA

= XtA[ATXT
t XtA]−1ATXT

t , where A ∈ R(p+1)×(p+1)

= XtAA
−1[XT

t Xt]
−1A−TATXT

t

= Xt[X
T
t Xt]

−1XT
t

= H.

In Stage Two of our two stage method, the optimal (minimum) solution of the objective
function 2 (βTXT

y Xyβ − 2βTXT
y ~y + ~yT~y) is β̂min = [XT

y Xy]
−1XT

y ~y and ŷ = Xyβ̂min =

Xy[X
T
y Xy]

−1XT
y ~y = H1~y.

The objective function on the left side of Constraint 3 (βTXT
y HXyβ − 2βTXT

y H~y +

~yTH~y) is:

‖H(~y − ŷ)‖2 =‖H~y −Hŷ‖2 where ŷ = H1y

=‖H~y −HH1~y‖2 where H1 = H

=‖H~y −H2~y‖2 where H2 = H

=‖H~y −H~y‖2

=0 ≤ ε′ where ε′ > 0.

Therefore, Constraint (3) (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e.,
never active).

Theorem 2 (Full) In the uni-dimensional case of the instrument ~Z, if the models in Stage
One and Stage Two are general additive models that have the following forms:

t̂ = ω1feature1( ~X) + · · ·+ ωkfeaturek( ~X) + ωk+1featurek+1(~Z)
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where each featurej( ~X), j = 1, · · · , k is a linear or non-linear function of ~X and featurek+1(~Z)

is a linear or non-linear function of ~Z, and

ŷ = β1feature1( ~X) + · · ·+ βkfeaturek( ~X) + βk+1t̂

where each featurej( ~X), j = 1, · · · , k is a linear or non-linear function of ~X, then Con-
straint 3 (βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e., never active).

This statement is true regardless of the dimension of ~X. In other words, if the following
conditions are satisfied:

1. the models in Stage One and Stage two share the same input features of the covariates
~X;

2. the model in Stage One contains only one input feature of the instrument ~Z, which
can be either linear or non-linear;

3. the model in Stage One contains no interaction term of the covariates ~X and the
instrument ~Z;

4. the model in Stage Two only contains the linear term of the predicted values of the
treatment t̂,

then Constraint 3 (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e., never
active).

Proof. Recall the notation of the models in Stage One and Stage Two in the Full Version
of Theorem 2 and define the predictor matrices as follows:

Define the predictor matrix of t in Stage One:

Xt = (feature1( ~X), · · · , featurek( ~X), featurek+1(~Z))n×(k+1) ∈ Rn×(k+1)

Define the predictor matrix of y in Stage Two:

Xy =(feature1( ~X), · · · , featurek( ~X), t̂)n×(k+1)

=(feature1( ~X), · · · , featurek( ~X), featurek+1(~Z))n×(k+1)


1 · · · 0 ω1
...

...
...

0 · · · 1 ωk
0 · · · 0 ωk+1


(k+1)×(k+1)

=:XtA ∈ Rn×(k+1)

where diagonal entries of A are aii = 1, 1 ≤ i ≤ k and a(k+1)(k+1) = ωk+1. Therefore, the
upper trapezoidal matrix A has non-zero diagonal entries.

As shown in the following, the hat matrix H1 equals the hat matrix H.

H1 = Xy[X
T
y Xy]

−1XT
y , where Xy = XtA

= XtA[ATXT
t XtA]−1ATXT

t , where A ∈ R(k+1)×(k+1)

= XtAA
−1[XT

t Xt]
−1A−TATXT

t

= Xt[X
T
t Xt]

−1XT
t

= H.
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In Stage Two of our two stage method, the optimal (minimum) solution of the objective
function 2 (βTXT

y Xyβ − 2βTXT
y ~y + ~yT~y) is β̂min = [XT

y Xy]
−1XT

y ~y and ŷ = Xyβ̂min =

Xy[X
T
y Xy]

−1XT
y ~y = H1~y.

The objective function on the left side of Constraint 3 (βTXT
y HXyβ − 2βTXT

y H~y +

~yTH~y) is:

‖H(~y − ŷ)‖2 =‖H~y −Hŷ‖2 where ŷ = H1y

=‖H~y −HH1y‖2 where H1 = H

=‖H~y −H2y‖2 where H2 = H

=‖H~y −H~y‖2

=0 ≤ ε′ where ε′ > 0.

Therefore, Constraint 3 (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e.,
never active).

Lemma 4 If A ∈ Rn×m, n > m is an upper trapezoidal matrix with non-zero diagonal en-

tries, the matrix A[ATA]−1AT is a block matrix of the form A[ATA]−1AT =

(
Im×m 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

)
,

Im×m is an m-dimensional identity matrix.

Proof. Denote A =

(
Cm×m

0(n−m)×m

)
, where C ∈ Rm×m is an upper triangular matrix with

non-zero diagonal entries.

A[ATA]−1AT =

(
Cm×m

0(n−m)×m

)
[
(
CTm×m 0(n−m)×m

)( Cm×m
0(n−m)×m

)
]−1
(
CTm×m 0(n−m)×m

)
=

(
Cm×m

0(n−m)×m

)
[CTm×mCm×m]−1

(
CTm×m 0(n−m)×m

)
=

(
Cm×m

0(n−m)×m

)
C−1m×mC

−T
m×m

(
CTm×m 0(n−m)×m

)
=

(
Im×m

0(n−m)×m

)(
Im×m 0(n−m)×m

)
=

(
Im×m 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

)
.

Lemma 5 If B ∈ Rn×n is an upper triangular matrix with non-zero diagonal entries, the
matrix B[BTB]−1BT = In×n is an n-dimensional identity matrix.
Proof.

B[BTB]−1BT = BB−1B−TBT = In×nIn×n = In×n.
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Theorem 3 (Partial) In the uni-dimensional case for the instrument ~Z, if the model in
Stage One is a linear model, and the model in Stage Two is a general additive model, Con-
straint 3 (βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is never active. This statement is true

regardless of the dimension of ~X.

Proof. Recall that Theorem 2 holds because H = H1. In Theorem 3, although H 6= H1,
H −HH1 = 0.

In Stage Two of our method, the optimal (minimum) solution of the objective func-
tion (2) (βTXT

y Xyβ − 2βTXT
y ~y + ~yT~y) is β̂min = [XT

y Xy]
−1XT

y ~y and ŷ = Xyβ̂min =

Xy[X
T
y Xy]

−1XT
y ~y = H1~y.

The objective function on the left side of Constraint (3) (βTXT
y HXyβ − 2βTXT

y H~y +

~yTH~y) is:

‖H(~y − ŷ)‖2 =‖H~y −Hŷ)‖2

=‖H~y −HH1y)‖2 where ŷ = H1y

=‖(H −HH1)y)‖2 where H −HH1 = 0

=0 ≤ ε′ where ε′ > 0.

Therefore, Constraint (3) (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is always satisfied (i.e.,
never active).

Next prove H −HH1 = 0.
Recall the notation for the model in Stage One is: t̂ = fω( ~X, ~Z) = fω(x1, · · · , xp, z1). To

notate that it is a linear model, we use the following notation: t̂ = ω1x1+· · ·+ωpxp+ωp+1z1.

Recall the notation for the model in Stage Two is: ŷ = gβ( ~X, t̂) = gβ(x1, · · · , xp, t̂).
To notate that it is a general additive model, we use the following notation: ŷ = β1x1 +
· · ·+ βpxp + βp+1t̂+ βp+2feature1( ~X, t̂) + · · ·+ βp+k+1featurek( ~X, t̂), where featurej( ~X, t̂),

j = 1, · · · , k is a non-linear function of ( ~X, t̂).
Define the predictor matrix of t in Stage One:

Xt = (x1, · · · , xp, z1) ∈ Rn×(p+1).

Define the predictor matrix of y in Stage Two:

Xy = (x1, · · · , xp, t̂, feature1( ~X, t̂), · · · , featurek( ~X, t̂)) ∈ Rn×m

where m = p+ k + 1.
Use the Gram-Schmidt algorithm to construct an orthogonal set of unit vectors.

Step 1: u1 = x1, e1 = u1
|u1|

Step 2: u2 = x2 − x2·u1
|u1|2 u1, e2 = u2

|u2|
...

Step p+1: up+1 = t̂− t̂·u1
|u1|2u1 − · · · −

t̂·up
|up|2up, ep+1 =

up+1

|up+1|

Step p+2: up+2 = feature1( ~X, t̂)− feature1( ~X,t̂)·u1
|u1|2 u1−· · ·− feature1( ~X,t̂)·up+1

|up+1|2 up+1, ep+2 =
up+2

|up+2|
...
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Step m: um = featurek( ~X, t̂)− featurek( ~X,t̂)·u1
|u1|2 u1 − · · · − featurek( ~X,t̂)·um−1

|um−1|2 um−1, em = um
|um| .

Therefore the predictor matrix and t and y can be written as follows:

Xt =(x1, · · · , xp, z1)

=(u1, u2, · · · , um)



1 a12 · · · a1(p+1)

0 1 · · · a2(p+1)
...

...
...

0 0 · · · 1/ωp+1

0 0 · · · 0
...

...
...

0 0 · · · 0


m×(p+1)

=:UAu = (e1, e2, · · · , em)


|u1| 0 · · · 0
0 |u2| · · · 0
0 0 · · · 0
0 0 · · · |um|


m×m



1 a12 · · · a1(p+1)

0 1 · · · a2(p+1)
...

...
...

0 0 · · · 1/ωp+1

0 0 · · · 0
...

...
...

0 0 · · · 0


m×(p+1)

=:EDuAu

=:EA,

where diagonal entries of Du are dii = |ui| > 0, and diagonal entries of Au are aii = 1,
1 ≤ i ≤ p and a(p+1)(p+1) = 1/ωp+1. Therefore, the upper trapezoidal matrix A = DuAu
has non-zero diagonal entries.

Xy =(x1, · · · , xp, t̂, feature1( ~X, t̂), · · · , featurek( ~X, t̂))

=(u1, u2, · · · , um)


1 b12 · · · b1m
0 1 · · · b2m
...

...
...

0 0 · · · 1


m×m

=:UBu = (e1, e2, · · · , em)


|u1| 0 · · · 0
0 |u2| · · · 0
0 0 · · · 0
0 0 · · · |um|


m×m


1 b12 · · · b1m
0 1 · · · b2m
...

...
...

0 0 · · · 1


m×m

=:EDuBu

=:EB,

where diagonal entries of Du are dii = |ui| > 0, and diagonal entries of Bu are bii = 1,
1 ≤ i ≤ m. Therefore, the upper triangular matrix B = DuBu has non-zero diagonal
entries.
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The hat matrix H is

H =Xt[X
T
t Xt]

−1XT
t , where Xt = EA

=EA[ATETEA]−1ATET , where ETE = Im

=EA[ATA]−1ATET

=E

(
Ip+1 0(p+1)×(m−p−1)

0(m−p−1)×(p+1) 0m−p−1

)
ET .

The hat matrix H1 is

H1 =Xy[X
T
y Xy]

−1XT
y , where Xy = EB

=EB[BTETEB]−1BTET , where ETE = Im

=EB[BTB]−1BTET

=EImE
T .

Therefore,

HH1 =E

(
Ip+1 0(p+1)×(m−p−1)

0(m−p−1)×(p+1) 0m−p−1

)
ETEImE

T , where ETE = Im

=E

(
Ip+1 0(p+1)×(m−p−1)

0(m−p−1)×(p+1) 0m−p−1

)
ImE

T

=E

(
Ip+1 0(p+1)×(m−p−1)

0(m−p−1)×(p+1) 0m−p−1

)
ET

=H.

Theorem 3 (Full) In the uni-dimensional case for the instrument ~Z, if models in Stage
One and Stage Two are general additive models that have the following forms:

t̂ = ω1feature1( ~X) + · · ·+ ωk1featurek1( ~X) + ωk1+1featurek1+1(~Z)

where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and featurek1+1(~Z)

is a linear or non-linear function of ~Z and

ŷ =β1feature1( ~X) + · · ·+ βk1featurek1( ~X) + βk1+1t̂+ βk1+2featurek1+1( ~X, t̂) + · · ·+
βk1+k2+1featurek1+k2( ~X, t̂)

where each featurej( ~X), j = 1, · · · , k1 is a linear or non-linear function of ~X and featurej( ~X, t̂),

j = k1 + 1, · · · , k1 + k2 is a non-linear function of ( ~X, t̂) or a non-linear function of only
t̂, then then Constraint 3 (βTXT

y HXyβ − 2βTXT
y H~y + ~yTH~y ≤ ε′) is never active. This

statement is true regardless of the dimension of ~X. In other words, the following conditions
are satisfied:
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1. the models in Stage One and Stage Two are general additive models that satisfy all
the conditions in Theorem 2.

2. the model in Stage Two contains non-linear features of the predicted values of the
treatment t̂ and the covariates ~X,

then Constraint 3 (βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′) is never active.

Proof. Recall that Theorem 2 holds because of H = H1. In the Full version of Theorem 3,
although H 6= H1, H −HH1 = 0.

In Stage Two of our method, the optimal (minimum) solution of the objective function 2
(βTXT

y Xyβ−2βTXT
y ~y+~yT~y) is β̂min = [XT

y Xy]
−1XT

y ~y and ŷ = Xyβ̂min = Xy[X
T
y Xy]

−1XT
y ~y =

H1~y.

The objective function on the left side of Constraint 3 (βTXT
y HXyβ − 2βTXT

y H~y +

~yTH~y) is:

‖H(~y − ŷ)‖2 =‖H~y −Hŷ)‖2

=‖H~y −HH1y)‖2 where ŷ = H1y

=‖(H −HH1)y)‖2 where H −HH1 = 0

=0 ≤ ε′ where ε′ > 0.

Therefore, Constraint 3 (βTXT
y HXyβ−2βTXT

y H~y+~yTH~y ≤ ε′) is always satisfied (i.e.,
never active).

Next prove H −HH1 = 0.

Recall the notation of the models in Stage One and Stage Two in the Full version of
Theorem 3 and define the predictor matrices as follows:

Define the predictor matrix of t in Stage One:

Xt = (feature1( ~X), · · · , featurek1( ~X), featurek1+1(~Z))n×(k1+1) ∈ Rn×(k1+1)

Define the predictor matrix of y in Stage Two:

Xy = (feature1( ~X), · · · , featurek1( ~X), t̂, featurek1+1( ~X, t̂), · · · , featurek1+k2( ~X, t̂))n×(k1+k2+1)

∈ Rn×m

where m = k1 + k2 + 1.

Next use the Gram-Schmidt algorithm to construct an orthogonal set of unit
vectors.

Step 1: u1 = feature1( ~X), e1 = u1
|u1|

Step 2: u2 = feature2( ~X)− feature2( ~X)·u1
|u1|2 u1, e2 = u2

|u2|
...

Step k1 + 1: uk1+1 = t̂− t̂·u1
|u1|2u1 − · · · −

t̂·uk1
|uk1 |

2uk1 , ek1+1 =
uk1+1

|uk1+1|
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Step k1+2: uk1+2 = featurek1+1( ~X, t̂)−
featurek1+1( ~X,t̂)·u1

|u1|2 u1−· · ·−
featurek1+1( ~X,t̂)·uk1+1

|uk1+1|2
uk1+1,

ek1+2 =
uk1+2

|uk1+2|
...

Step m: um = featurek1+k2( ~X, t̂)− featurek1+k2
( ~X,t̂)·u1

|u1|2 u1−· · ·−
featurek1+k2

( ~X,t̂)·um−1

|um−1|2 um−1,

em = um
|um|

Therefore the predictor matrix and t and y can be written as follows,

Xt =(feature1( ~X), · · · , featurek1( ~X), featurek1+1(~Z))

=(u1, u2, · · · , um)



1 a12 · · · a1(k1+1)

0 1 · · · a2(k1+1)
...

...
...

0 0 · · · 1/ωk1+1

0 0 · · · 0
...

...
...

0 0 · · · 0


m×(k1+1)

=:UAu = (e1, e2, · · · , em)


|u1| 0 · · · 0
0 |u2| · · · 0
0 0 · · · 0
0 0 · · · |um|


m×m



1 a12 · · · a1(k1+1)

0 1 · · · a2(k1+1)
...

...
...

0 0 · · · 1/ωk1+1

0 0 · · · 0
...

...
...

0 0 · · · 0


m×(k1+1)

=:EDuAu

=:EA

where diagonal entries of Du are dii = |ui| > 0, and diagonal entries of Au are aii = 1,
1 ≤ i ≤ k1 and a(k1+1)(k1+1) = 1/ωk1+1. Therefore, the upper trapezoidal matrix A = DuAu
has non-zero diagonal entries.

Xy =(feature1( ~X), · · · , featurek1( ~X), t̂, featurek1+1( ~X, t̂), · · · , featurek1+k2( ~X, t̂))

=(u1, u2, · · · , um)


1 b12 · · · b1m
0 1 · · · b2m
...

...
...

0 0 · · · 1


m×m

=:UBu = (e1, e2, · · · , em)


|u1| 0 · · · 0
0 |u2| · · · 0
0 0 · · · 0
0 0 · · · |um|


m×m


1 b12 · · · b1m
0 1 · · · b2m
...

...
...

0 0 · · · 1


m×m

=:EDuBu

=:EB
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where diagonal entries of Du are dii = |ui| > 0, and diagonal entries of Bu are bii = 1,
1 ≤ i ≤ m. Therefore, the upper triangular matrix B = DuBu has non-zero diagonal
entries.

The hat matrix H is

H =Xt[X
T
t Xt]

−1XT
t , where Xt = EA

=EA[ATETEA]−1ATET , where ETE = Im

=EA[ATA]−1ATET

=E

(
Ik1+1 0(k1+1)×k2

0k2×(k1+1) 0k2

)
ET .

The hat matrix H1 is

H1 =Xy[X
T
y Xy]

−1XT
y , where Xy = EB

=EB[BTETEB]−1BTET , where ETE = Im

=EB[BTB]−1BTET

=EImE
T .

Therefore,

HH1 =E

(
Ik1+1 0(k1+1)×k2

0k2×(k1+1) 0k2

)
ETEImE

T , where ETE = Im

=E

(
Ik1+1 0(k1+1)×k2

0k2×(k1+1) 0k2

)
ImE

T

=E

(
Ik1+1 0(k1+1)×k2

0k2×(k1+1) 0k2

)
ET

=H.
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Appendix C. Tables

In-
dex

Data Generation Error Term Predictor Matrices Fraction of time

that the con-

straint holds /

Fraction of time

that the left side

of the constraint

is zero

Row 1-3 state that the constraint is always satisfied (never active) regardless of the type of
the error term when models in both stages are linear models and the data generation and
prediction models share the same model forms.
1 t = x+ z + e1

y = x+ t+ e2

Gaussian error Xt = (x, z)
Xy = (x, t̂)

100% / 100%

2 t = x+ z + e1
y = x+ t+ e2

mixture error Xt = (x, z)
Xy = (x, t̂)

100% / 100%

3 t = x+ z + e1
y = x+ t+ e2

fanning error Xt = (x, z)
Xy = (x, t̂)

100% / 100%

Row 4-6 state that the constraint is always satisfied (never active) regardless of the type of
the error term when the model in the first stage is linear, the model in the second stage
is a general additive model, and the data generation and prediction models share the same
model forms.
4 t = x+ z + e1

y = x+ t+ t2 + e2

Gaussian error Xt = (x, z)
Xy = (x, t̂, t̂2)

100% / 100%

5 t = x+ z + e1
y = x+ t+ t2 + e2

mixture error Xt = (x, z)
Xy = (x, t̂, t̂2)

100% / 100%

6 t = x+ z + e1
y = x+ t+ t2 + e2

fanning error Xt = (x, z)
Xy = (x, t̂, t̂2)

100% / 100%

Row 7-10 state that the constraint is always satisfied (never active) even when the data
generation and prediction models do not have the same model forms.
7 t = x2 + z2 + e1

y = x2 + t2 + e2

fanning error Xt = (x, z)
Xy = (x, t̂)

100% / 100%

8 t = sin(x) + cos(z) + e1
y = cos(x) + sin(t) + e2

fanning error Xt = (x, z)
Xy = (x, t̂)

100% / 100%

9 t = x2 + z2 + e1
y = x2 + t2 + e2

fanning error Xt = (x, z)
Xy = (x, t̂, t̂2, xt̂)

100% / 100%

10 t = sin(x) + cos(z) + e1
y = cos(x) + sin(t) + e2

fanning error Xt = (x, z)
Xy = (x, t̂, t̂2, xt̂)

100% / 100%

Table 9: 1D instrument, results using two-stage methods
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In-
dex

Data Generation Predictor Matrices Epsilon

Per-

cent

γ

Fraction

of

cases

when

con-

straint

holds

Fraction

of

cases

with

no fea-

sible

solu-

tion

Total

Frac-

tion

Row 1-3 state that in the multi-dimensional cases for instrument z, either the constraint is not
active or there is no feasible solution when models in both stage are linear and the data generation
and prediction models share the same model forms.
1 t = x+ z1 + z2 + e1

y = x+ t+ e2

Xt = (x, z1, z2)
Xy = (x, t̂)

0.5% 99.9% 0.1% 100%

2 t = x+ z1 + z2 + e1
y = x+ t+ e2

Xt = (x, z1, z2)
Xy = (x, t̂)

0.1% 84% 16% 100%

3 t = x1+x2+z1+z2+z3+e1
y = x1 + x2 + t+ e2

Xt = (x1, x2, z1, z2, z3)
Xy = (x1, x2, t̂)

0.5% 99.5% 0.5% 100%

Row 4-6 state that in the multi-dimensional cases for instrument z, either the constraint is not
active or there is no feasible solution when the model in the first stage is a general additive model,
the model in the second stage is linear and the data generation and prediction models share the
same model forms.
4 t = x1+x2+z1+z2+z3+e1

y = x1 + x2 + t+ e2

Xt = (x1, x2, z1, z2, z3)
Xy = (x1, x2, t̂)

0.1% 64.8% 35.2% 100%

5 t = x1+x2+z1+z2+x21+
x22 + z21 + z22 + e1
y = x1 + x2 + t+ e2

Xt =
(x1, x2, z1, z2, x

2
1, x

2
2, z

2
1 , z

2
2)

Xy = (x1, x2, t̂)

0.5% 84.8% 15.2% 100%

6 t = x1 + x2 + z1 + z2 +
x1z1 + x2z2 + e1
y = x1 + x2 + t+ e2

Xt =
(x1, x2, z1, z2, x1z1, x2z2)
Xy = (x1, x2, t̂)

0.5% 96.0% 4.0% 100%

Row 7-10 state that in the multi-dimensional cases for instrument z, either the constraint is not
active or there is no feasible solution even when the data generation and prediction models do not
have the same model forms.
7 t = x21 + x22 + z21 + z22 + e1

y = x21 + x22 + t2 + e2

Xt = (x1, x2, z1, z2)
Xy = (x1, x2, t̂)

0.1% 61.6% 38.4% 100%

8 t = sin(x1) + sin(x2) +
cos(z1) + cos(z2) + e1
y = sin(x1) + sin(x2) +
cos(t) + e2

Xt = (x1, x2, z1, z2)
Xy = (x1, x2, t̂)

0.1% 71.7% 28.3% 100%

9 t = x21 + x22 + z21 + z22 + e1
y = x21 + x22 + t2 + e2

Xt =
(x1, x2, z1, z2, x1z1, x2z2)
Xy = (x1, x2, t̂)

0.5% 97.8% 2.0% 100%

10 t = sin(x1) + sin(x2) +
cos(z1) + cos(z2) + e1
y = sin(x1) + sin(x2) +
cos(t) + e2

Xt =
(x1, x2, z1, z2, x1z1, x2z2)
Xy = (x1, x2, t̂)

0.5% 90.9% 9.1% 100%

Table 10: 2+-D instrument: results using two-stage methods. Sum
of fifth and sixth columns is always 100%.
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In-
dex

Data Generation Predictor Matrices Fraction

of

cases

that

con-

straint

holds

Fraction

of

cases

with

a fea-

sible

solu-

tion

for the

two-

stage

method

Fraction

of

cases

with

a fea-

sible

solu-

tion

for the

one-

stage

method

Fraction

of

cases

with

no fea-

sible

solu-

tion

Total

Frac-

tion

Row 1-4 state that the fractions of time that there is a feasible solution are the same for our two-stage
and one-stage method when models in both stages are general additive models.
1 t = x+ z + xz + e1

y = x+ t+ xt+ e2

Xt = (x, z, xz)
Xy = (x, t̂, xt̂)

99.0% 1.0% 1.0% 0.0% 100%

2 t = x+ z + z2 + e1
y = x+ t+ t2 + e2

Xt = (x, z, z2)
Xy = (x, t̂, t̂2)

97.0% 3.0% 3.0% 0.0% 100%

3 t = x+ x2 + z+ z2 + e1
y = x+ x2 + t+ t2 + e2

Xt = (x, z, z2)
Xy = (x, t̂, t̂2)

96.0% 4.0% 4.0% 0.0% 100%

4 t = x+z1 +z2 +
z21 + z22 + e1
y = x+t+t2+e2

Xt = (x, z1, z2, z
2
1 , z

2
2)

Xy = (x, t̂, t̂2)
98.0% 1.0% 1.0% 1.0% 100%

Row 5-8 state that the fraction of time that there is a feasible solution for our one-stage method
are greater than that for two-stage method when the model in the first stage is a linear or general
additive model and the model in the second stage is linear.
5 t = x+ z + xz + e1

y = x+ t+ e2

Xt = (x, z, xz)
Xy = (x, t̂)

92.0% 0.0% 8.0% 0.0% 100%

6 t = x+ z + z2 + e1
y = x+ t+ e2

Xt = (x, z, z2)
Xy = (x, t̂)

96.0% 0.0% 4.0% 0.0% 100%

7 t = x+x2 +z+z2 +e1
y = x+ t+ e2

Xt = (x, z, xz)
Xy = (x, t̂)

88.0% 0.0% 12.0% 0.0% 100%

8 t = x+ z1 + z2 + e1
y = x+ t+ e2

Xt = (x, z1, z2)
Xy = (x, t̂)

96% 0.0% 2.0% 2.0% 100%

Table 11: Results using Our One-Stage Method. The sum of
percentages, which is always 100%, is the fourth and second last
columns, plus the maximum of the fifth and sixth columns.

Appendix D. Additional details of the two stage approach

Vectorized Version with General Loss

All quantities are vectorized in this version.

Stage One

ω ∈ arg min
ω

loss(~t, t̂) where t̂ = fω( ~X, ~Z)
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Stage Two

β ∈ arg min
β

loss(~y, ŷ) where ŷ = gβ( ~X, t̂)

s.t. β obeys loss(~r, r̂) ≥ loss(~r, 0)− ε′

where ~r = ~y − ŷ
and r̂ = hα( ~X, ~Z), where α ∈ arg min

α
loss(~r, r̂).

When the squared loss is chosen as the loss function, many of the calculations simplify,
allowing us to gain insight into the structure of the problem and its solution. Thus, we
state the formulation above with the squared loss, and then simplify it.

Vectorized Version with Squared Loss

In what follows, we replaced the general loss function with the squared loss function.
Stage One

ω ∈ arg min
ω

(~t− t̂)T (~t− t̂) where t̂ = fω( ~X, ~Z)

Stage Two

β ∈ arg min
β

(~y − ŷ)T (~y − ŷ) where ŷ = gβ( ~X, t̂)

s.t. β obeys (~r − r̂)T (~r − r̂) ≥ (~r − 0)T (~r − 0)− ε′

where ~r = ~y − ŷ
and r̂ = hα( ~X, ~Z), where α ∈ arg min

α
(~r − r̂)T (~r − r̂).

Simplified Version

Let us define Xt = Xt( ~X, ~Z), Xy = Xy( ~X, t̂), and Xr = Xr( ~X, ~Z) to be the predictor
matrices of ~t, ~y, and ~r respectively. Also, t̂ = Xtω̂ and ω̂ is the result of Stage One.

Then, let us solve for α using the squared loss functions, so that α = (XT
t Xt)

−1XT
t ~r

where ~r = ~y − ŷ and ŷ = Xyβ. We will use this to eliminate α in the following version of
the problem.
Stage One

ω ∈ arg min
ω

ωTXT
t Xtω − 2ωTXT

t
~t+ ~tT~t (1)

Stage Two

β ∈ arg min
β
βTXT

y Xyβ − 2βTXT
y ~y + ~yT~y (2)

s.t. β obeys βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′ (3)

where ε′ = γr̃T r̃, and r̃ is obtained by the traditional two stage method without constraints,
i.e.,

r̃ = ~y −H1~y = ~y −Xy( ~X,H~t)(Xy( ~X,H~t)
TXy( ~X,H~t))

−1Xy( ~X,H~t))
T~y,
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where H = Xr(X
T
r Xr)

−1XT
r and H1 = Xy(X

T
y Xy)

−1XT
y .

The first stage is the same as that of the traditional two stage method when fω is
a linear model with coefficients ω, and squared loss. The second stage has a model for
outcomes ŷ depending on t̂ and the covariates ~X as the traditional method does, however,
the model is constrained by an ellipsoidal constraint. The constraint says that if we were
to use the instrument to model the remainder (generating a model r̂ to fit ~r) then despite
our efforts, we cannot predict the remainder much better than if we had used a model that
was identically 0.

At this point, we have derived the final simplified two stage least squares model with
the new machine learning constraint for the general additive case. This can be directly
implemented according to the formulas above. Although there is not a closed-form solution
for other losses, the formulations can also be applied in practice, assuming access to opti-
mization methods that can handle the new objectives and constraint. Now we will switch
over to the one stage method.

Appendix E. Additional details on the one stage optimization approach

Vectorized Version with General Loss

All quantities are vectorized in this version.

min
β,ω

loss(~y, ŷ) where ŷ = gβ( ~X, t̂), and t̂ = fω( ~X, ~Z)

s.t. ω obeys loss(~t, t̂) ≤ loss(~t, fω( ~X))− ε
and β obeys loss(~r, r̂) ≥ loss(~r, 0)− ε′

where ~r = ~y − ŷ
and r̂ = hα( ~X, ~Z), where α ∈ arg min

α
loss(~r, r̂).

Vectorized Version with Squared Loss

Again we work with the squared loss, which allows for simplification.

min
β,ω

(~y − ŷ)T (~y − ŷ) where ŷ = gβ( ~X, t̂), and t̂ = fω( ~X, ~Z)

s.t. ω obeys (~t− t̂)T (~t− t̂) ≤ (~t− fω( ~X))T (~t− fω( ~X))− ε
and β obeys (~r − r̂)T (~r − r̂) ≥ (~r − 0)T (~r − 0)− ε′

where ~r = ~y − ŷ
and r̂ = hα( ~X, ~Z), where α ∈ arg min

α
(~r − r̂)T (~r − r̂).

Simplified Version

Let us define Xt = Xt( ~X, ~Z) and Xy = Xy( ~X,Xtω) to be the predictor matrices of ~t and ~y
respectively.

Then, let us solve for α using the squared loss functions, so that α = (XT
t Xt)

−1XT
t ~r

where ~r = ~y − ŷ and ŷ = Xyβ. We will use this to eliminate α in the following version of
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the problem.

min
β,ω

βTXT
y Xyβ − 2βTXT

y ~y + ~yT~y (4)

s.t. ω obeys ωTXT
t Xtω − 2ωTXT

t
~t+ ~tT~t ≤ ε (5)

and β obeys βTXT
y HXyβ − 2βTXT

y H~y + ~yTH~y ≤ ε′. (6)

Here, ε = γ~tT~t, ε′ = γr̃T r̃, and H = Xr(X
T
r Xr)

−1XT
r . Also r̃ is obtained by the traditional

two stage method without constraints i.e.

r̃ = ~y −Xy(X
T
y Xy)

−1XT
y ~y.
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