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Abstract
Advances in information technology have led to extremely large datasets that are often kept
in different storage centers. Existing statistical methods must be adapted to overcome the
resulting computational obstacles while retaining statistical validity and efficiency. In this
situation, the split-and-conquer strategy is among the most effective solutions to many sta-
tistical problems, including quantile processes, regression analysis, principal eigenspaces,
and exponential families. This paper applies this strategy to develop a distributed learning
procedure of finite Gaussian mixtures. We recommend a reduction strategy and invent an
effective majorization-minimization algorithm. The new estimator is consistent and retains
root-n consistency under some general conditions. Experiments based on simulated and
real-world datasets show that the proposed estimator has comparable statistical perfor-
mance with the global estimator based on the full dataset, if the latter is feasible. It can
even outperform the global estimator for the purpose of clustering if the model assumption
does not fully match the real-world data. It also has better statistical and computational
performance than some existing split-and-conquer approaches.
Keywords: Barycenter, Gaussian mixture, Global convergence, Mixture reduction, MM
algorithm, Model-based clustering, Split-and-conquer.

1. Introduction

In the era of big data, the sizes of the datasets for various applications may be so large
that they cannot be stored on a single machine. According to Corbett et al. (2013), Google
distributes its huge database around the world. Even if the dataset is stored on a single
machine, it can be difficult to load the whole dataset into the computer memory. Distributed
data storage is also natural when the datasets are collected and managed by independent
agencies. Examples include patient information collected from different hospitals and data
collected by different government agencies (Agrawal et al., 2003). Privacy considerations
may make it difficult or even impossible to pool the separate collections of data into a single
dataset. Data analysis methods in such applications should therefore be designed so that
they can work with subsets of the dataset, in parallel or sequentially. The information
extracted from the subsets may then be combined to draw conclusions about the whole
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population. Under distributed data storage, a two-step split-and-conquer procedure is often
used for inference:

(i) Local inference: standard inference is carried out on local machines;

(ii) Aggregation: the local results are transmitted to a central machine and aggregated.

The split-and-conquer approach addresses privacy concerns by sharing only summary statis-
tics across machines. It is also communication efficient and avoids the potentially high
transmission cost that may exceed the computational cost (Jaggi et al., 2014).

A variety of split-and-conquer approaches have been developed. For example, the split-
and-conquer learning of the generalized linear models (Chen and Xie, 2014), kernel ridge
regression models (Zhang et al., 2015), ordinary linear models (Chang et al., 2017), and
the split-and-conquer estimation of principal eigen-spaces (Fan et al., 2019). Also see the
split-and-conquer version of the Wald and score tests (Battey et al., 2015). Most existing
approaches first obtain one local estimate of the model parameters based on per local dataset.
These local estimates are then pooled and aggregated through a linear averaging operation.

This paper focuses on developing split-and-conquer approaches for finite Gaussian mix-
ture models (GMMs), which is widely used for model-based clustering (Murphy, 2012).
Learning of mixture models is a well studied problem (McLachlan and Peel, 2004; Frühwirth-
Schnatter, 2006; Mengersen et al., 2011; Balakrishnan et al., 2017; Chen et al., 2020; Heinrich
and Kahn, 2018; Dwivedi et al., 2020) while the relatively new distributed learning of finite
mixtures remains to be investigated. We usually learn finite mixture models via the maxi-
mum likelihood estimate (MLE) through a well-established EM algorithm (Dempster et al.,
1977; Wu, 1983). Distributed versions of the EM algorithm such as Nowak (2003), Safarine-
jadian et al. (2010), and Chen et al. (2013) are also developed when datasets are stored in
a distributed fashion. However, these approaches require the communication of summary
statistics and the coordination across local machines at each iteration. Another approach is
to first condense the data on local machines into much smaller coresets (Lucic et al., 2017)
and then refit the mixture to the pooled coresets at a central machine. The coreset approach
achieves high computational efficient at the cost of statistical efficiency, and privacy due to
the transmission of raw data. The split-and-conquer based approaches also have their chal-
lenges under finite mixtures. The parameter of finite mixture, the mixing distribution, is a
discrete distribution with a finite number of support points. The popular linear averaging
operation of the local estimates results in a mixing distribution with an inflated number of
support points. The aggregated mixture hence has redundant and spurious subpopulations.
The KL divergence based aggregation approach of Liu and Ihler (2014) achieves the best
efficiency under models from exponential family, but it is less efficient under GMMs. We
therefore address the important problem of developing an aggregation procedure with high
computational and statistical efficiencies under GMMs.

In this paper, we learn the finite Gaussian mixtures via the penalized MLE during the
local inference. We explore two potential aggregation approaches and find that a specific
reduction approach has satisfactory statistical and computational efficiencies. During the
aggregation step, the reduction method first pools the local estimates to form a mixture
model with clearly an excessive number of subpopulations. We then search for a mixture
with a designated order that is optimal according to some divergence criteria. We identify a
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divergence metric based on the transportation distance so that the corresponding estimator
retains statistical efficiency and computational simplicity. We also develop an majorization-
minimization algorithm for the numerical computation.

The remainder of the paper is structured as follows. In Section 2, we introduce finite
Gaussian mixture models and the transportation distance. In Section 3, we study two split-
and-conquer methods and recommend a specific one. In Section 4, we describe an algorithm
for computing the recommended estimator. In Section 5, we show that the proposed esti-
mator has the best possible statistical convergence rate under some generic conditions. In
Section 6, we review existing approaches for distributed learning of finite Gaussian mixtures
and their pros and cons compared with our proposed method. Numerical experiments on
simulated, public, and real datasets are presented in Section 7. In all cases, the proposed
approach performs well. Section 8 contains some discussion and concluding remarks. The
technical details are given in the appendix.

2. Preliminaries on Finite Gaussian Mixtures and Divergences

In this section, we introduce finite Gaussian mixture models, EM algorithm, and the trans-
portation distances between mixing distributions or between mixtures.

2.1 Finite Gaussian Mixtures

A statistical model is a family of distributions. In many applications, a dataset can be
regarded as a random sample from a population, and the population is a member of some
parametric distribution family. For instance, a Gaussian distribution family is often assumed
in applications. When any single distribution in a parametric family fails to properly model
the data, it may be caused by the heterogeneity in the population. For instance, the popula-
tion is made of several subpopulations so that each subpopulation has a distinct distribution
belonging to the same parametric family. Then each observation in the dataset is a random
outcome from a subpopulation. The subpopulation, or the membership of the observation,
is itself random. Without the knowledge of subpopulation memberships of the individual
units, the data form a random sample from a mixture distribution. Mathematically, a finite
mixture model is defined as follows.

Definition 1 (Finite Mixture Model) Let F = {f(·; θ) : θ ∈ Θ} be a parametric family
of density functions with respect to some σ-finite measure, where Θ is some parameter space.
Let G =

∑K
k=1wkδθk be a discrete probability measure, assigning probability wk to parameter

value θk on Θ for some integer K > 0. The finite mixture distribution of F with mixing
distribution G has density function

f(x;G) :=

∫
f(x; θ) dG(θ) =

K∑
k=1

wkf(x; θk).

The finite mixture model of F is the distribution family with densities in the form of (1).

The parameter space Θ is usually a subset of d-dimensional Euclidean space Rd for some
integer d ≥ 1. In addition, θ = (θ1, . . . , θK)> is a vector of subpopulation parameters. We
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call f(·; θk)s subpopulation density functions. Let the K − 1 dimensional simplex be

∆K−1 =

{
(w1, . . . , wK) : wi ≥ 0,

K∑
i=1

wi = 1

}
.

The components of the vectorw = (w1, w2, . . . , wK)> ∈ ∆K−1 are called the mixing weights.
We use F (x; θ) and F (x;G) respectively for the cumulative distribution functions (CDFs)
of f(x; θ) and f(x;G). The space of mixing distributions of order up to K is denoted

GK =

{
G =

K∑
k=1

wkδθk ,w ∈ ∆K−1,θ ∈ ΘK

}
. (1)

An order K mixture has its mixing distribution in GK − GK−1. When the subpopulation
distribution is a multivariate Gaussian, we have a finite Gaussian mixture and the corre-
sponding Gaussian mixture model (GMM).

Example 1 (Finite Gaussian Mixtures) Let the density function of a d-dimensional
Gaussian random variable with mean vector µ and covariance matrix Σ be

φ(x;µ,Σ) = det{2πΣ}−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
,

and let Φ(x;µ,Σ) be its CDF. A Gaussian mixture of order K is a distribution with density
and CDF given by

φ(x;G) =

K∑
k=1

wkφ(x;µk,Σk); Φ(x;G) =

K∑
k=1

wkΦ(x;µk,Σk).

Note the mixing distribution G is a discrete distribution on Θ, which is the space of the
d-dimensional vector µ and d× d positive definite matrix Σ.

The earliest example of GMM in Pearson (1894) suggests that the skewness displayed in
the histogram of the biometrics of 1, 000 crabs is due to the presence of two non-identified
species. There are also applications of mixture in finance. Suppose the stock prices in the
hidden “normal” or “extreme” periods have different Gaussian distributions. The marginal
distribution is then a Gaussian mixture of order 2 (Liesenfeld, 2001). For general theory and
applications of the finite mixture models, see McLachlan and Peel (2004) and Frühwirth-
Schnatter (2006).

The most popular learning approach for finite mixture models is MLE. Under finite
GMMs, the likelihood is however unbounded, and the MLE is not well defined. Let X =
{x1,x2, . . . ,xn} be observed values on a set of independent and identically distributed (IID)
random vectors with a finite Gaussian mixture distribution φ(x;G) of order K. The log-
likelihood function of G is given by

`n(G|X ) =

n∑
i=1

log φ(xi;G) =

n∑
i=1

log
{ K∑
k=1

wkφ
(
xi;µk,Σk

)}
.
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This log-likelihood function is unbounded: its value goes to infinity for a specific combination
of µk and some degenerating Σk (Chen and Tan, 2009). To solve this issue, Chen and Tan
(2009) shows the log-likelihood function can be regularized by adding a penalty function
on the subpopulation covariance matrices. The maximizer of the penalized likelihood is
well-defined and is a consistent estimator. Let Sx be the sample covariance matrix. Chen
and Tan (2009) recommends the following penalized log-likelihood function

p`n(G|X ) = `n(G|X )− an
∑
k

{
tr(SxΣ−1

k ) + log det(Σk)
}

for some positive an that is allowed to depend on n, and they learn the mixing distribution
G via

Ĝn := arg sup p`n(G|X ). (2)

The size of an controls the strength of the penalty, and a recommended value is n−1/2.
Regularizing the likelihood function via a penalty function fixes the problem caused by
degenerated Σk. We call Ĝn in (2) pMLE and it is strongly consistent when the order has
a known upper bound.

The specific form of the penalty function mimics a Wishart prior on the subpopulation
precision matrices. It allows an easy generalization of the EM algorithm for the numerical
computation and a consistency proof (Chen and Tan, 2009). Other forms of the penalty
function should be possible but unlikely to markedly outperform the current one. We de-
scribe the EM algorithm for numerical computation in the next section.

2.2 EM Algorithm for Computing pMLE

Let X = {x1,x2, . . . ,xn}
i.i.d.∼ φ(·;G) and the sample covariance matrix is Sx. Recall

that each observation in the dataset can be regarded as a sample from a subpopulation
φ(x;µk,Σk) with probability wk. We hence introduce a membership vector zi = (zi1, . . . , ziK)
for the ith unit. The kth entry of zi is 1 when the response value xi is an observation from
the kth subpopulation, and 0 otherwise. When the complete data {(zi,xi), i = 1, 2, . . . , n}
are available, we can construct a penalized complete likelihood

p`cn(G) =
n∑
i=1

K∑
k=1

zik log{wkφ(xi;µk,Σk)} − an
∑
k

{
tr(SxΣ−1

k ) + log det(Σk)
}
.

Given the full dataset X and a proposed mixing distribution G(t), we may compute the
conditional expectation

w
(t)
ik = E(zik|X , G(t)) =

w
(t)
k φ(xi;µ

(t)
k ,Σ

(t)
k )∑K

j=1w
(t)
j φ(xi;µ

(t)
j ,Σ

(t)
j )

. (3)

With this, we define

Q(G;G(t)) =

K∑
k=1

{ n∑
i=1

w
(t)
ik

}
logwk −

1

2

K∑
k=1

(
2an +

n∑
i=1

w
(t)
ik

)
log det(Σk)

−1

2

K∑
k=1

{
2antr

{
Σ−1
k S

}
+

n∑
i=1

w
(t)
ik (xi − µk)>Σ−1

k (xi − µk)
}
. (4)
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Note that the subpopulation parameters are separated in Q(·; ·). We refer to the procedure
starting from G(t) to the definition of Q(G;G(t)) as the E-step of the algorithm. The
M-step of the algorithm maximizes Q(G;G(t)) with respect to G. Let

S
(t+1)
k =

n∑
i=1

w
(t)
ik (xi − µ(t+1)

k )(xi − µ(t+1)
k )>.

The solution of the M-step has an explicit expression with the mixing distribution G(t+1)

given by 
w

(t+1)
k = n−1

∑n
i=1w

(t)
ik ,

µ
(t+1)
k =

{
nw

(t+1)
k

}−1∑n
i=1w

(t)
ik xi,

Σ
(t+1)
k =

{
2an + nw

(t+1)
k

}−1{
2anSx + S

(t+1)
k

}
.

The adapted EM algorithm iterates between E and M steps until some convergence
criterion is satisfied and G(t) in the latest iteration is regarded as the pMLE. Like its MLE
counterpart, p`n(G(t)) is an increasing sequence in t. We say A ≥ B if A−B is semi-positive
definite for any two square matrices A and B. In this sense, Σ

(t+1)
k ≥ {2an/(n + 2an)}Sx

and the latter one does not dependent on t. Hence, the increasing sequence {p`n(G(t)), t =
1, 2, . . .} also has a finite upper bound. Therefore, p`n(G(t)) is guaranteed to converge and
the limiting points of G(t) are non-degenerate local maxima as t→∞, following additional
mathematical justifications of Wu (1983).

2.3 Divergence and Distance between Probability Measures

To develop split-and-conquer methods for learning finite mixture models, we need a measure
of the closeness between mixing distributions or between mixtures. We first introduce the
divergence and distance.

Definition 2 (Divergence and Distance) Let Θ be a space. A bivariate function ρ(·, ·)
defined on Θ is a divergence if ρ(θ1, θ2) ≥ 0, with equality holds if and only if θ1 = θ2.

Suppose that in addition ρ(·, ·) satisfies (i) symmetry, i.e., ρ(θ1, θ2) = ρ(θ2, θ1), and (ii)
the triangle inequality, i.e., ρ(θ1, θ2) ≤ ρ(θ1, θ3)+ρ(θ3, θ2), for all θ1, θ2, θ3 ∈ Θ. Then ρ(·, ·)
is a distance on Θ. When ρ(·, ·) is a distance, we call (Θ, ρ) a metric space.

We need divergences or distances specifically defined on the space of probability mea-
sures. The transportation divergence (Villani, 2003) is particularly useful. Let P(Θ) and
P(Θ2) be the spaces of probability measures on Θ and Θ × Θ, respectively, equipped with
some compatible σ-algebras. For any π ∈ P(Θ2), let its marginal measures be π1,· and π·,2.
For any η, ν ∈ P(Θ), we define a space of distributions on Θ×Θ as follows:

Π(η, ν) = {π ∈ P(Θ2) : π1,· = η, π·,2 = ν}.

The space Π(η, ν) is usually referred to as the coupling between η and ν, and it consists of
bivariate distributions for which the marginal distributions are η and ν. For convenience, we
use Π(η, ·) for the space of distributions with first marginal distribution being η, and similarly
for Π(·, ν). We regard the mixing weights w as a distribution on Θ when appropriate.
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Definition 3 (Transportation Divergence and r-Wasserstein distance) Let c(·, ·) be
a non-negative valued bivariate function on Θ×Θ satisfying c(θ, θ) = 0 for all θ ∈ Θ. The
transportation divergence from η to ν is defined to be

Tc(η, ν) = inf{Eπ[c(X,Y )] : π ∈ Π(η, ν)}.

where Eπ{c(X,Y )} is the expectation calculated when the joint distribution of X,Y is π.
If c(·, ·) = Dr(·, ·) for some r ≥ 1 and distance D(·, ·) on Θ, then WD = T 1/r

c (·, ·) is
called the r-Wasserstein distance with the ground distance D(·, ·).

The infimum in the above definition is with respect to π over Π(η, ν). The same con-
vention may be used subsequently. The joint distribution π that minimizes Eπ{c(X,Y )}
is called the optimal transportation plan and is usually denoted π∗. It is the most efficient
plan that transports mass distributed according to η to mass distributed according to ν.

Definition 4 (Barycenter) Let (P(Θ), ρ) be a space of probability measures on Θ that is
endowed with the divergence ρ(·, ·). Given positive constants (λ1, λ2, . . . , λM ) ∈ ∆M−1, the
(weighted) barycenter of ν1, . . . , νM ∈ P(Θ) is a minimum point of

∑M
m=1 λmρ(νm, η).

We allow ρ(·, ·) to be any divergence function. When ρ(·, ·) = Dr(·, ·), it becomes
the usual r-Wasserstein barycenter (Cuturi and Doucet, 2014). Conceptually, a barycenter
should always be referred to together with information on ρ and the weights (λ1, λ2, . . . , λM ).
However, the formal description can be tedious. We provide the full information only when
necessary.

3. Proposed Split-and-Conquer Approach

Suppose we have an IID random sample X = {x1,x2, . . . ,xN} from a parametric distri-
bution f(x; θ). Suppose that it is partitioned into M subsets X1, . . . ,XM completely at
random and stored on M local machines. Let Nm denote the sample size on the mth local
machine. Clearly,

∑M
m=1Nm = N . Let θ̂m be the local estimate of θ based on Xm. For

example, under finite GMM, the parameter θ becomes the mixing distribution G and the
local estimate is the pMLE

Ĝm = arg max

{∑
i∈Xm

log φ(xi;G)− am
K∑
k=1

{
tr(SmΣ−1

k ) + log det(Σk)
}}

where Sm is the sample covariance matrix based on the observations in Xm and am = N
−1/2
m

as recommended. How should we aggregate the local estimates, θ̂m in general and Ĝm in
particular, in the split-and-conquer framework?

One approach is to combine the local estimates by their linear average (Zhang et al., 2015;
Chang et al., 2017). The aggregated estimator is then the weighted average θ =

∑M
m=1 λmθ̂m

with λm set to the sample proportion Nm/N . This simple approach is appropriate for
parameters in a vector space, but it is nonsensical if the average of the parameters is not
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well defined. Under finite mixtures, let Ĝ1, . . . , ĜM be the local estimators. Then the linear
average is

G =
M∑
m=1

λmĜm. (5)

Its corresponding mixture has density function f(x;G) =
∑M

m=1 λmf(x; Ĝm). While f(x;G)
is a good estimate, it can be unsatisfactory in terms of revealing the latent structure of the
mixture. For instance, this estimator gives a mixture with MK subpopulations rather than
the assumed K, which is useless for clustering the dataset into K clusters.

Approach 1 One way to adapt the linear averaging is to define a sensible “average”
in the space of the mixing distributions. Recall that the linear average of vectors in the
Euclidean space is the centroid (barycenter) of these vectors from a geometric point of view.
Similarly, the local estimators Ĝ1, . . . , Ĝm may be “averaged” through their barycenter:

GC = arg inf
G∈GK

M∑
m=1

λmρ(Ĝm, G) (6)

for some choice of the divergence ρ(·, ·). The parameter space GK is the space of mixing
distributions with K support points and is defined in (1).

Approach 2 The mixing distribution G is likely close to the true mixing distribution
G∗, except for the incorrect number of support points. This problem can be solved by
approximating G by some G ∈ GK . This suggests another aggregation approach. Let ρ(·, ·)
be a divergence in the space of mixing distributions. We can aggregate the local estimates
via the reduction estimator, given by

GR = arg inf
G∈GK

ρ(G,G). (7)

These two aggregation approaches, barycenter and reduction, are connected when specific
divergences are used. For example, let the divergence ρ(·, ·) in the barycenter estimator (6)
or in the reduction estimator (7) be the well-known KL-divergence:

ρ(G1, G2) = DKL(Φ(·;G1)‖Φ(·;G2)) =

∫
φ(x;G1) log{φ(x;G1)/φ(x;G2)}dx.

In this case, we have

DKL(Φ(·;G)‖Φ(·;G)) =

∫
φ(x;G) log

{
φ(x;G)/φ(x;G)

}
dx

= C1 −
∫
φ(x;G) log φ(x;G)dx

= C1 −
M∑
m=1

λm

∫
φ(x; Ĝm) log φ(x;G)dx

= C2 +

M∑
m=1

λmDKL(Φ(·; Ĝm)‖Φ(·;G))
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where C1 and C2 are constants not dependent on G. This relationship implies that

GR = arg inf
G∈GK

ρ(G,G) = arg inf
G∈GK

{ M∑
m=1

λmρ(Ĝm, G)
}

= GC . (8)

Thus, the two aggregation methods give identical aggregated estimators. The following ex-
ample shows that the two methods do not always have the same outcome and the barycenter
may not give ideal aggregation result.

Example 2 (Barycenter of Mixtures with Identical Subpopulations) Suppose we wish
to aggregate two local estimates given by

Φ(x;G1) = 0.4Φ(x;−1, 1) + 0.6Φ(x; 1, 1) := 0.4Φ−1 + 0.6Φ1,

Φ(x;G2) = 0.6Φ(x;−1, 1) + 0.4Φ(x; 1, 1) := 0.6Φ−1 + 0.4Φ1

with λ1 = λ2 = 0.5. We anticipate that whatever distance or divergence we choose, the
barycenter will be given by

Φ(x;G) = 0.5Φ(x;−1, 1) + 0.5Φ(x; 1, 1) = 0.5Φ−1 + 0.5Φ1.

Consider the 2-Wasserstein distance with Euclidean ground distance between two univariate
Gaussian distributions that is given by

D2
(
Φ(·;µ1, σ

2
1),Φ(·;µ2, σ

2
2)
)

= (µ1 − µ2)2 + (σ1 − σ2)2.

Surprisingly, when the divergence is chosen to be ρ = W2
D(·, ·), the barycenter is given by

Φ(x;GC) = 0.4Φ(x;−1, 1) + 0.6Φ(x; 2/3, 1) := 0.4Φ−1 + 0.6Φ2/3.

We defer the technical details to Appendix 8.1.1. This example is extremely sharp
and best illustrates this issue. The distortion of barycenter to the level in this example is
unlikely in real-world applications. The issue here is rooted in the divergence ρ employed
in defining the barycenter. Other choices of ρ may lead to a solution not far from our
intuition. In comparison, for the reduction estimator, whatever divergence ρ is employed,
we always have GR = G. This example urges us to explore various choices of the divergence
ρ in (6) and (7). We must take into account both statistical efficiency and computational
complexity. For statistical efficiency, the properties of the divergence in (6) must ensure
that the corresponding barycenter matches our intuition. Besides, the computation of (6)
is usually more expensive than that of (7) given the same ρ. This paper hence focuses more
on reduction estimator (7) for split-and-conquer learning of finite mixtures.

In the machine learning community, approximate one Gaussian mixture by another with
a lower order is called Gaussian mixture reduction (GMR) (Crouse et al., 2011). These
approaches are either ad hoc or computationally challenging. For example, Williams and
Maybeck (2006) proposes to perform GMR by minimizing ρ(G,G) = L2(Φ(·;G),Φ(·;G)).
Although the L2 distance between two Gaussian mixtures has an analytical form, the opti-
mization can be expensive. Our key observation is that it is usually difficult to compute the
divergence between two mixtures, but easy to compute that between two Gaussian distri-
butions. This leads to the effective reduction algorithm that we present in the next section.
For simplicity, we refer to the proposed estimator as the GMR estimator.
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4. Numerical Algorithm for Proposed Reduction Approach

Let G be defined as in (5). Let the subpopulations in G be Φi = Φ(x;µi,Σi) and the mixing
weights be wi for i ∈ [MK] = {1, 2, . . . ,MK}. Let G be any mixing distribution of order
K with the K subpopulations Φγ = Φ(x;µγ ,Σγ) and the mixing weights vγ for γ ∈ [K]. In
vector format, the weights are w and v.

Let c(·, ·) be a cost function based on a divergence in the space of d-dimensional Gaus-
sian distributions for which the computational cost is low. Then the transportation diver-
gence (Nguyen, 2013) between mixing distributions G and G ∈ GK with cost function c
becomes

Tc(G,G) = inf
{∑

i,γ

πiγc(Φi,Φγ) : π ∈ Π(w,v)
}
.

The corresponding GMR estimator is

GR = arg inf
{
Tc(G,G) : G ∈ GK

}
. (9)

For (9), it may appear that calculating our estimator involves two optimizations: computing
Tc(G,G) for each pair of G and G, and then searching for arg infG Tc(G,G). We are able
to design a more efficient optimization algorithm based on the following observation. The
optimization problem in Tc(G,G) involves searching for transportation plans π under two
marginal constraints specified by w and v. While constraint w is strict, v is a moving
constraint. Instead of searching for π satisfying constraint v, we move v to meet π. This
makes the marginal distribution constraint v on π redundant.

Let us define two functions of G, with G hidden in the background:

Jc(G) = inf
{∑
i,γ

πiγc(Φi,Φγ) : π ∈ Π(w, ·)
}
, (10)

π(G) = arg inf
{∑
i,γ

πiγc(Φi,Φγ) : π ∈ Π(w, ·)
}
. (11)

Note that both functions depend on G through its subpopulations Φγ but are free of its
mixing weights v. The optimizations in (10) and (11) involve only the linear constraint in
terms of w. Hence, the optimal transportation plan π(G) for a given G has an analytical
form:

πiγ(G) =

{
wi if γ = arg minγ′ c(Φi,Φγ′)

0 otherwise.
(12)

When c(Φi,Φ) has multiple minima, we transport Φi evenly to every minimum Φ. For
example, if c(Φ1,Φ) have two minima Φγ′ and Φγ′′ , we let π1γ′(G) = π1γ′′(G) = w1/2.

Theorem 5 Let G, Tc(·), Jc(·), π(·), and other notations be the same as earlier. We have

inf{Tc(G) : G ∈ GK} = inf{Jc(G) : G ∈ GK}. (13)

The subpopulations of the GMR estimator are hence given by

GR = arg inf{Jc(G) : G ∈ GK} (14)

10
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and the mixing weights are given by v with

vγ =
∑
i

πiγ(GR). (15)

The existence of a solution to (14) is guaranteed under a simple condition on cost function
c(·, ·), see Theorem 7. The proof of Theorem 5 is in Appendix 8.1.2. Based on this theorem,
the optimization reduces to searching for K subpopulations Φγ for γ ∈ [K] to make up
G. The mixing proportions are then determined by (15). An iterative algorithm quickly
emerges following the well-known majorization-minimization (MM) idea (Hunter and Lange,
2004).

Algorithm 1 MM algorithm for GMR estimator with KL-divergence cost function.
Initialization: Φγ , γ ∈ [K]
repeat

for γ ∈ [K] do
for i ∈ [MK] do

Let

πiγ =

{
wi if γ = arg minγ′ DKL(Φi,Φγ′)

0 otherwise

end for
Let

π·γ =
MK∑
i=1

πiγ ,µγ =
MK∑
i=1

{πiγ/π·γ}µi

Σγ =

MK∑
i=1

{πiγ/π·γ}{Σi + (µi − µγ)(µi − µγ)>}

end for
until the change in the value of the objective function

∑
i,γ πiγDKL(Φi,Φγ) is below some

threshold ε > 0
Let vγ =

∑
i πiγ for γ ∈ [K]

Output: {(vγ ,µγ ,Σγ) : γ ∈ [K]}

The algorithm starts with some G(0) with K subpopulations specified. Let G(t) be the
mixing distribution after t MM iterations. Define a majorization function of Jc at G(t) to
be

Kc(G|G(t)) =
∑
i,γ

πiγ(G(t))c(Φi,Φγ) (16)

where πiγ(G(t)) is computed according to (12). Once π(G(t)) has been obtained, we update
the mixing proportion vector of G(t) easily via

v(t+1)
γ =

∑
i

πiγ(G(t)).

11
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In fact, v(t) is not needed until the algorithm converges.
The subpopulations Φγ are separated in the majorization function (16). This allows us

to update the subpopulation parameters, one Φγ at a time and possibly in parallel, as the
solutions to

Φ(t+1)
γ = arg inf

Φ

∑
i

πiγ(G(t))c(Φi,Φ). (17)

The MM algorithm then iterates between the majorization step (16) and the minimization
step (17) until some user-selected convergence criterion is met.

The most expensive step in the MM algorithm is the optimization in (17). If we choose
the cost function c(·, ·) = ρr(·, ·) with ρ(·, ·) being a divergence in the space of probability
measures, the solution to (17) is a barycenter as given in Definition 4. The following lemma
shows that the KL-based barycenter of Gaussian distributions has an analytical form and is
therefore computationally simple.

Lemma 6 (KL-Barycenter of Gaussian Measures) Let νm = Φ(·;µm,Σm),m ∈ [M ]
and λ = (λ1, . . . , λM ) ∈ ∆M−1. Then

∑M
m=1 λmDKL(νm‖η) is minimized uniquely in the

space of Gaussian measures at η = Φ(·;µ,Σ) with

µ =

M∑
m=1

λmµm and Σ =

M∑
m=1

λm{Σm + (µm − µ)(µm − µ)>}.

Due to the ease of computing the barycenter as shown in this lemma, we recommend
c(Φi,Φγ) = DKL(Φi‖Φγ) in (9). Cost functions define the geometries on the Gaussian
distribution space (Peyré and Cuturi, 2019), leading to slightly different outputs. We do
not rule out the possibility of better choices. The pseudo-code for the MM algorithm with
KL divergence as the cost function is given in Algorithm 1.

For notational convenience, in the following theorem, we use Φ for both the parameter
(µ,Σ) and the distribution, and similarly for Φ∗.

Theorem 7 Suppose the cost function c(·, ·) is continuous in both arguments. For some
distance in the parameter space of Φ, assume that for any constant ∆ > 0 and Φ∗ the
following set is compact:

{Φ : c(Φ∗,Φ) ≤ ∆}. (18)

Let {G(t)} be the sequence generated by G(t+1) = arg minKc(G|G(t)) with some initial mixing
distribution G(0). Then

(i) Jc(G(t+1)) ≤ Jc(G(t)) for any t;

(ii) if G∗ is a limiting point of G(t), then G(t) = G∗ implies Jc(G(t+1)) = Jc(G∗).

These two properties imply that Jc(G(t)) converges monotonically to some constant J ∗. All
the limiting points G(t) are stationary points of Jc(·): iterations from G∗ do not further
reduce the value of the objective function Jc(·). We have practically cloned the global
convergence theorem (Zangwill, 1969). We do not see a way to directly apply it and therefore
provide a proof of the theorem in Appendix 8.1.3.

We have all the ingredients for the split-and-conquer learning of a finite GMM. We then
consider the statistical properties of the GMR estimator and the experimental evidence for
the efficiency of our method.

12
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5. Statistical Properties of the Reduction Estimator

We show that the proposed GMR estimator GR is consistent and retains the optimal rate
of convergence in a statistical sense. We first state some conditions on the data and the
estimation methods.

C1 The data X are IID observations from the finite Gaussian mixture Φ(x;G∗) with K
distinct subpopulations, that is the order of G∗ is known to be K. The subpopulations
have distinct parameters and positive definite covariance matrices.

C2 The dataset X is partitioned into M subsets X1, . . . ,XM of sizes N1, . . . , NM , where
each set contains IID observations from the same finite Gaussian mixture distribution.
The number of local machines M does not increase with N =

∑
mNm.

C3 The local machine sample ratios Nm/N have a nonzero limit as N →∞.

C4 The cost function c(Φk,Φ0)→ 0 or c(Φ0,Φk)→ 0 if and only if Φk → Φ0 in distribu-
tion, and c(Φ1,Φ2) is continuous in both Φ1 and Φ2.

Condition C4 is necessary to ensure consistency. It further rules out the case that
Tc(G,G∗) =∞ for any G with different mixing weights from that of G∗.

The consistency and asymptotic normality of the pMLE under the finite multivariate
GMM are established in Chen and Tan (2009) under the standard IID setting. We do
not repeat the details here but state the conclusion in a simplified fashion. We use Φ∗k
and (w∗k,µ

∗
k,Σ

∗
k) to respectively denote true subpopulation, the mixing weight and the true

subpopulation parameters.

Lemma 8 (Consistency of pMLE) Given n IID observations from a finite multivariate
Gaussian mixture with known order K, the pMLE Ĝ as defined by (2) with an = n−1/2 is
asymptotically normal with rate n−1/2.

Specifically, it is possible to line up the subpopulation parameters of the true mixing
distribution G∗ and of the pMLE Ĝ such that

(ŵk, µ̂k, Σ̂k) = (w∗k,µ
∗
k,Σ

∗
k) + o(1)

and
(ŵk, µ̂k, Σ̂k) = (w∗k,µ

∗
k,Σ

∗
k) +Op(n

−1/2)

as n→∞ in obvious notation.

Here o(1) is a quantity that converges to 0 almost surely. A quantity is Op(n−1/2)
if it is bounded by Cn−1/2 for sufficiently large C with a probability arbitrarily close to
1. Chen and Tan (2009) proves the root-n-consistency for a non-random penalty term, the
asymptotic normality remains valid when the sample covariance matrix is part of the penalty.
This is because the sample covariance matrix converges to a positive definite matrix. The
assumption of known K is crucial for the claimed rate of convergence. If K is unknown, then
the convergence rate of Ĝ is far below n−1/2: see Chen (1995) and the recent developments
in Rousseau and Mengersen (2011), Nguyen (2013), Heinrich and Kahn (2018), and Dwivedi
et al. (2020). Our proposed reduction estimator is aggregated from the pMLEs learned
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at the local machines. Under the condition that minNm → ∞ stated above, all the local
estimators are consistent by Lemma 8. Hence, the consistency of the linear average estimator
G is taken as granted for a constant M .

Theorem 9 (Consistency of GR) Let G be the linear average estimator defined by (5)
and GR be the aggregated estimator by reduction defined by (7) with ρ = Tc. Assume
conditions C1–C4 are satisfied. Then GR is strongly consistent. Specifically, Tc(GR, G∗)→ 0
almost surely as N →∞.

The proof of the theorem is given in Appendix 8.1.4. The following theorem shows that
under one additional mild condition on the cost function c(·, ·), the reduction estimator GR

has the standard N−1/2 convergence rate. We denote by ‖Φ1 − Φ2‖ the Euclidean norm in
µ,Σ in the sense of (20). We use ΦR

k for the kth subpopulation of GR and wk for its mixing
weight for k ∈ [K].

Theorem 10 (Convergence Rate of GR) Let G be the aggregate estimator defined by (5)
and GR be the aggregate estimator by reduction defined by (7). Assume conditions C1–C4
are satisfied and further assume that

C5 For any Φ, there exists a small neighborhood Ω of Φ and a positive constant A, such
that for any Φ1,Φ2 ∈ Ω, we have

A−1‖Φ1 − Φ2‖2 ≤ c(Φ1,Φ2) ≤ A‖Φ1 − Φ2‖2.

Then with proper labelling of subpopulations, we have

ΦR
k − Φ∗k = Op(N

−1/2), wRk − π∗k = Op(N
−1/2).

Condition C5 requires the cost function c(·, ·) behaves locally as a quadratic loss function.
This is a most natural property for a cost function. In Appendix 8.1.6, we show this condition
holds for the KL divergence. The conclusion should hold with any other reasonable choices.
The proof of the theorem is given in Appendix 8.1.5. Our proof remains valid, for instance,
if we replace ‖Φ1 − Φ2‖2 by ‖Φ1 − Φ2‖r for any r > 0 in C5.

6. Related Work

In this section, we describe several related approaches. We compare some of these approaches
with our proposed approach in Section 7 in the experiments.

6.1 KL Averaging

Liu and Ihler (2014) considers the distributed learning of models from an exponential family
by the split-and-conquer approach. The parameter θ is a real vector in this case. It proposes
to perform local inference by finding the local MLEs and aggregate them by their KL
barycenter. This estimator is referred to as the KL averaging (KLA). When the model
belongs to the exponential family, the aggregated estimator is as efficient as the global MLE
based on the full dataset. For models not in the exponential family, such as GMM, the KLA
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estimator is less efficient. Moreover, the exact computation of the KL barycenter of local
estimators under GMM is difficult. Liu and Ihler (2014) suggests to find an approximate
solution instead. It first generates random samples X̂m of size 1000 from the local estimates
Ĝm at the central machine. Then a GMM of order K is fitted on the pooled sample ∪mX̂m
which has a moderate size of 1000M . This approach does not need to transmit the raw data
but requires refitting of the mixture on the central machine.

6.2 Distributed EM Algorithm

The distributed learning of GMMs can also be tackled by developing a distributed version of
the EM algorithm (DEM) (Nowak, 2003). We briefly describe DEM and provide a conceptual
comparison to our approach in this section.

Under distributed learning setting, let Xm be the dataset stored at themth local machine
m ∈ [M ] and N be the total sample size. Note that the quantities required in defining
Q(G;G(t)) based on full dataset X have the following decomposition: for k ∈ [K],

Ω
(t)
k :=

N∑
i=1

w
(t)
ik =

M∑
m=1

{ ∑
i∈Xm

w
(t)
ik

}
:=

M∑
m=1

Ω
(t)
m,k,

A
(t)
k :=

N∑
i=1

w
(t)
ik xi =

M∑
m=1

{ ∑
i∈Xm

w
(t)
ik xi

}
:=

M∑
m=1

A
(t)
m,k,

B
(t)
k :=

N∑
i=1

w
(t)
ik xix

>
i =

M∑
m=1

{ ∑
i∈Xm

w
(t)
ik xix

>
i

}
:=

M∑
m=1

B
(t)
m,k.

Given G(t), one can compute w(t)
ik defined by (3) for ith observation on local machine m

for all m ∈ [M ] and k ∈ [K]. Hence, one can obtain ∪Kk=1{Ω
(t)
m,k,A

(t)
m,k,B

(t)
m,k} at the mth

local machine and have them transmitted to a central machine. One can then construct
Q(G;G(t)) on the central machine and carry out the M-step to get G(t+1), which reproduces
the EM-iteration based on the full dataset.

Nowak (2003) considers the situation where the local machines form a sensor network
and the transmission cost cannot be ignored. The paper suggests the mth machine trans-
mits ∪mj=1{Ω

(t)
j,k,A

(t)
j,k,B

(t)
j,k} to the next machine in the queue. Furthermore, it adopts the

incremental E and M steps of Neal and Hinton (1998) to speed up the convergence of the
algorithm. Nowak (2003) further shows that the DEM has a local linear convergence rate.

The DEM and proposed GMR approaches are designed for distributed learning with
different communication schemes. DEM requires a high level of coordination between local
machines and repeated access of the local data. Our proposed method allows local machines
to complete the learning on its own. Moreover, our method only requires one round of
communication across all machines and is communication efficient. If successful, DEM leads
to a solution to the original learning problem retaining full statistical efficiency. We do not
include DEM in the experiment because the conclusions are already known. Our proposed
method is superior in terms of communication cost. The statistical efficienty of DEM is same
as the global estimator which is compared with our proposed method in the experiment.
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6.3 Learning at Scale via Coresets

Most machine learning problems can be formulated as an optimization problem that mini-
mizes a cost function cost(X , θ) over the parameter space. For our problem, the cost function
could be the negative log likelihood, X is the full dataset, and the parameter space GK is
given by (1).

When X is very large, the computational burden can be extremely heavy. Feldman et al.
(2011) suggests to replace X by a much smaller weighted subset C, called coreset hereafter,
such that

|cost(X , G)− cost(C, G)|
cost(X , G)

≤ ε (19)

for some given small ε > 0. Minimize the cost(C, G) based on the coreset can be much
faster than the original cost based on the full dataset. The construction of coreset is to
assure the minimizer of cost(C, G) approximates that of cost(X , G). Lucic et al. (2017)
provides theoretical analysis and techniques for constructing coresets under GMM. For GMM
of dimension d, order K, it gives a scheme to obtain coresets of size |C| = O(d4K6ε−2)
satisfying (19) uniformly over some compact subset of GK . This is a surprising result as the
size of C does not depend on the size of X .

When the datasets are stored in distributed fashion, one may first reduce the dataset in
each machine into the first generation coresets. Then these coresets are paired up to create a
second generation coreset from each pair. This procedure is repeated if needed until we get
a final coreset. Due to the composition properties of coreset (Lucic et al., 2017, Section 5),
the quality of the final coreset can be maintained. We refer to this approach as the Coreset
approach hereafter.

The Coreset approach is computationally very efficient. Unlike DEM, it looks for ap-
proximate solutions leading to inevitable loss in statistical efficiency. Moreover, the Coreset
approach requires the transmission of the raw data unlike other approaches for distributed
learning that only requires the communication of summary statistics. We include the Coreset
approach in our experiment for efficiency comparison.

We wish to remark that the log-likelihood function in statistics is defined up to an
additive constant. The precision specification (19) can be affected by how it is normalized.
We adopt the normalization convention of (Lucic et al., 2017).

6.4 Bayesian Moment Matching (BMM)

Direct Bayesian inference under GMM is challening due to the well-known label switching
problem. See Murphy (2012, Chapter 11) for explanation and possible solutions. Jaini and
Poupart (2016) proposes an approximate inference procedure that does not suffer from the
issue of label switching. Under GMM with known order K, given a prior π0 with Dirichlet
for weights and Gaussian-Gamma for subpopulation parameters, the posterior distribution
π̃1 with a single observation x1 is a complex mixture of Dirichlet and Gaussian-Gamma
combination. Repeating this operation given another observation would lead to an even
more complex posterior. Instead, Jaini and Poupart (2016) suggests to approximate π̃1

posterior with a simple Dirichlet and Gaussian-Gamma combination π1 so that π̃1 and π1

have the same lower order moments. Let π1 be the prior distribution, with the next single
observation x2, we obtain π2 in the same way. Repeat sequentially until we have exhausted
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all data to get πN . Under multivariate GMMs, one replaces Gaussian-Gamma prior by
Gaussian-Wishart. The end product πN is regarded as an approximate posterior and it
serves well for Bayes inferences.

Being sequential in nature, BMM is computationally efficient but apparently loses statis-
tical efficiency due to approximation. Based on Table 2 in Jaini and Poupart (2016) and our
Table 1, the per observation log-likelihood value of BMM when applied to Magic04 is −32.1,
which is much lower than that of our proposed GMR −26.6. Jaini and Poupart (2016)
shows that BMM has higher statistical efficiency than the online EM approach of Cappé
and Moulines (2009, Theorem 2), whose convergence rate is lower than N−1/2.

We do not include BMM in the experiment not only because of the comparison above
but also because we do not know how they handle the redundant moment equations. Under
the multivariate GMM, there are K+dK+d(d+1)K/2 parameters to be estimated at each
step but there are dK+ 2K− 1 + 3d(d+ 1)K/2 moment equations. The redudant equations
make it difficult for us to replicate their approach.

6.5 ADMM for Distributed Optimization

The distributed learning of GMM is essentially a distributed optimization problem. We may
therefore directly use the Alternating Direction Method of Multipliers (ADMM) of Boyd
et al. (2011). Consider the optimization problem defined as

min
{ M∑
m=1

f(θm|Xm) : θm − θ = 0, m ∈ [M ], θ ∈ Θ
}

for some function f(·|Xm) and a Euclidean parameter space Θ. The parameters θm are
called local variables and θ is called a global variable. The ADMM for this optimization
problem is based on the augmented Lagrangian

Lρ(θm, ηm, θ) =

M∑
m=1

{f(θm|Xm) + η>m(θm − θ) + (ρ/2)‖θm − θ‖22}

for some regularization parameter ρ > 0. The ADMM then iterates according to

θ(t+1)
m = arg min

θm

{
f(θm|Xm) + (η(t)

m )>(θm − θ(t)) + (ρ/2)‖θm − θ(t)‖22
}
,

θ(t+1) = M−1
M∑
m=1

θ(t+1)
m ,

η(t+1)
m = η(t)

m + ρ(θ(t+1)
m − θ(t+1)).

Similar to DEM, the ADMM requires a high level of coordination between local machines
at each iteration. If successful, it gives the solution to the original optimization problem,
void the statistical efficiency comparison. In the context of GMM, one must look for suitable
substitutes for the term (η

(t)
m )>(θm−θ(t)) in the augmented Lagrangian since θm is a discrete

distribution. We therefore do not include ADMM in the experiment.
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7. Experiments

We conduct experiments on both simulated and real data to illustrate the effectiveness of the
proposed GMR estimator in (9) with c(Φi,Φγ) = DKL(Φi,Φγ). We compare its performance
with some existing approaches in terms of their statistical efficiency and computational costs.
Our experiments include the following estimators:

1. Global. The pMLE based on the full dataset. The Global estimator is statistically
most efficient and therefore used as the baseline for comparison.

2. Median. An off-the-shelf aggregation approach is the median

GM = arg min
G∈{Ĝ1,Ĝ2,...,ĜM}

M∑
m=1

λmTDKL(Ĝm, G).

The sample median is intuitively a robust alternative with minor efficiency loss.

3. KLA. The KL-Averaging in Liu and Ihler (2014) with nm = 1000 observations gener-
ated from local estimate Ĝm. The real datasets have different dimensions and sample
sizes, the size nm for real data experiments is specified if different.

4. Coreset. The Coreset approach with |Cm| = 1000 on each local machine. They are
repeatedly merged as in Lucic et al. (2017) to arrive at the final coreset C of size 1000,
the coreset sizes for real data experiment is specified if different.

For the ease of comparison, we use the pMLE defined in (2) with penalty size N−1/2
m

as local estimates when applicable. The pMLE is also used in the KLA estimator of Liu
and Ihler (2014) on the central machine with penalty size (1000M)−1/2, and for the Coreset
method with penalty size |C|−1/2. We use the EM algorithm to compute pMLE and declare
convergence when the per observation penalized log-likelihood function is less than 10−6.
With very large sample sizes of the simulated data, the maxima of the penalized likelihood
should be attained at a mixing distribution close to the true mixing distribution. We there-
fore use the true mixing distribution as the initial value and regard the output of the EM
algorithm as the global maximum of the penalized likelihood. This strategy does not work
for the real-world data in the absence of a true mixing distribution. For real-world data, we
use kmeans++ with default arguments in scikit-learn package (Pedregosa et al., 2011) to
generate 10 initial values for the EM algorithm. Ideally, we run the EM algorithm with these
initial values until convergence and regard the output of the EM algorithm with the highest
penalized log-likelihood function as the pMLE. To save time on the real dataset, we use a
warmup strategy. We run the EM algorithm with these 10 initial values for 20 iterations
and pick the one with the highest penalized log-likelihood value. We use the output of this
one as the initial value to run the EM algorithm further until convergence and this output
is treated as the pMLE.

The choice of the initial value in the aggregation step is also important. When the sample
size is large, we have good reason to believe that the optimal solution is close to the true
value. Also, by the principle of majority rules, the median of the local estimates is likely
the closest to the optimal solution. Thus, in simulation studies, we initialize the algorithm
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with the true mixing distribution and the median estimate. For real-world data, we use the
local estimators as multiple initial values and output of the MM algorithm with the lowest
objective function value is regarded as the GMR estimator. We declare the convergence of
the MM algorithm for the GMR estimator when the change in the objective function is less
than 10−6.

All experiments are conducted on the Compute Canada (Baldwin, 2012) Cedar cluster
with Intel E5 Broadwell CPUs with 64G memory. The codes are written in Python and
are publicly available at https://github.com/SarahQiong/SCGMM. The code for Coreset
method is provided by the author of Lucic et al. (2017).

7.1 Performance Measure

In each simulation experiment, we generate R = 100 random samples X (r) from a finite
GMM with mixing distribution G(r) and obtain its estimate Ĝ(r), for r ∈ [R]. We use the
following performance metrics.

1. Transportation divergence (W1). We define the ground distance between Φi and
Φγ with mean vectors µi and µγ and covariance matrices Σi and Σγ to be

D(Φi,Φγ) = ‖µi − µγ‖2 + ‖Σ1/2
i −Σ1/2

γ ‖F (20)

where ‖A‖F =
√

tr(A>A) is the Frobenius norm of a matrix. The corresponding
transportation distance is W1(Ĝ(r), G(r)) = TD(Ĝ(r), G(r)) given in Definition 3.

2. Adjusted Rand Index (ARI). The well known adjusted Rand index (ARI) measures
the degree of similarity between two clustering outcomes. Suppose the observations in
a dataset are divided into K clusters A1, A2, . . . , AK by one method, and K ′ clusters
B1, B2, . . . , BK′ by another method. Let Ni = #(Ai), Mj = #(Bj), Nij = #(AiBj)
for i ∈ [K] and j ∈ [K ′], where #(A) is the number of units in set A. The ARI of
these two clustering outcomes is defined to be

ARI =

∑
i,j

(Nij

2

)
−
(
N
2

)−1∑
i,j

(
Ni
2

)(Mj

2

)
1
2

∑
i

(
Ni
2

)
+ 1

2

∑
j

(Mj

2

)
−
(
N
2

)−1∑
i,j

(
Ni
2

)(Mj

2

)
where

(
n
k

)
is the number of k combinations from a given set of n elements. An ARI

value close to 1 indicates a high degree of agreement. The ARI is 1 when the two
clustering methods completely agree.

The mixture models are commonly used for model-based clustering. Based on a given
G, we classify a unit with observed value x into cluster

k(x) = arg max
k
{wkφ(x;µk,Σk)} (21)

in obvious notation. We obtain the ARI between the clustering outcomes based on
Ĝ(r) and G(r) and use it as a performance metric.

3. Log-likelihood (LL). The per observation log-likelihood value at the estimated mixing
distribution Ĝ(r) based on the full dataset is often regarded as a goodness metric.
See Liu and Ihler (2014), Jaini and Poupart (2016), and Lucic et al. (2017).

19

https://github.com/SarahQiong/SCGMM


Zhang and Chen

The split-and-conquer approaches have some advantages in computation time by per-
forming local inference on multiple machines. Since we can compute the local estimates in
parallel, the time it takes to obtain the final estimate is the maximum local time plus the
aggregation time. We keep record of this time for each experiment. Similarly, we record the
total time for constructing the coreset and fitting the mixture on the central machine. We
do not keep track of the transmitting time.

7.2 Experiments Based on Simulated Data

Distributed learning methods are designed for learning at scale where the observations have
high dimensions and large sample size. To reduce the potential influence of human bias,
we simulate data from finite Gaussian mixtures with randomly generated parameter values.
We use the R package MixSim (Melnykov et al., 2012; Maitra and Melnykov, 2010). An
important quantity of a finite mixture is pairwise overlap

oj|i = P(wif(X;θi) < wjf(X;θj)|X ∼ f(·;θi)).

The maximum overlap of a finite mixture is defined to be

MaxOmega = max
i,j∈[K]

{oj|i + oi|j}.

We use MixSim to generate 100 finite Gaussian mixtures with d = 50 and K = 5. We let
MaxOmega be 1%, 5%, and 10%, N = 2l for l = 17, 19, 21 and M = 2l for l = 2, 4, 6. The
simulated data are divided evenly over the local machines. We combine 100 outcomes from
each combination of dimension, order, MaxOmega, sample size, and number of local machines
to form boxplots for each estimation method. Figure 1 and Figure 2 show the results.

Figure 1 reports the result when the total sample size is N = 221. Within each subfigure,
the MaxOmega increases from the left panel to the right panel. Within each panel, the x-axis
gives the number of local machines: 4, 16, or 64. The plots in Figure 1 contain boxplots of
W1, ARI, LL, and the computation time.

Based on Figure 1, all methods have better performance in terms of W1, ARI, and LL
when MaxOmega is lower. This is consistent with our intuition and the experiment survives
the sanity check.

The proposed GMR has comparable performance to the gold-standard global estimator
in all three metrics. It is arguably the best aggregation approach. The number of local ma-
chines has little influence on its performance. KLA has relatively poor performance though
it improves moderately when the number of local machines increases. Recall that KLA gen-
erates a fixed number of observations from each local estimator. More local machines lead to
a larger total sample size in its aggregation step. This helps its statistical performance but
not computational efficiency. The median estimator does not perform with a large number
of local machines. The Coreset estimator does not perform in all cases.

All aggregation approaches take less computation time than the global estimator. The
Coreset estimator takes the least amount of computation time. However, the computation
time does not taken the transmission cost into account. Moreover, the computation time
does not make up the poor statistical performance. By far a large chunk of computation
time of the split-and-conquer approaches is spent on learning the local estimators. Because
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(a) Transportation distance W1

(b) ARI

(c) Log-likelihood

(d) Computation time

Figure 1: Performance of five estimators for learning 50-dimensional order 5 Gaussian mix-
tures with sample size N = 221. All subplots share the same color coding.
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GMR and the median estimators spend negligible time on aggregation, they use about 1/M
of the global estimator computational time. When the data generating mixture has a high
degree of overlapping, the EM algorithm needs more iterations to converge leading to higher
computation time. KLA must re-learn the GMM based on the pooled data generated from
the local estimates, therefore generally takes longer time than the GMR approach.

Figure 2 presents results when MaxOmega is 10% and M = 64. It is seen the proposed

(a) W1 distance (b) ARI

(c) Log-likelihood (d) Computation time

Figure 2: Performance of five estimators when MaxOmega = 0.1 and M = 64 for learning
50-dimensional order 5 Gaussian mixtures.

GMR has very good performance, comparable to the global estimator. The relative per-
formance of the median estimator improves when the sample size increases, but still not
good enough to be recommended. The performance of KLA and Coreset approaches do not
improve with increased sample size. They are far from competitive against the proposed
GMR approach.

Coreset approach does not benefit from larger sample size likely because the coreset size
is fixed at 1000. KLA approach does not because the larger sample size improves only the
precision of the local estimates. Its aggregation step is heavily influenced by the built-in
randomness when we generate samples from the local estimates. The other aspects of the
simulation results are as expected.
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We have more simulation results when the dimensions d = 10, 50 combined with orders
K = 5, 10, and 50. They are presented in Appendix 8.2.1. These results are consistent with
what we find so far in terms of the statistical efficiency. Since the Coreset estimator is found
not competitive, it is not included in these experiments.

7.3 Public and Real-World Datasets

We now examine the performance of the proposed approach on large scale public datasets
in Section 7.3.1, for clustering the handwritten digits in Section 7.3.2, and for clustering a
large scale spatio-temporal data in Section 7.3.3.

7.3.1 Public Datasets

We experiment on the public datasets that are widely used for learning Gaussian mixtures
at scale in this section. The following datasets are used in Lucic et al. (2017) and Jaini and
Poupart (2016).

1. MAGIC04. This is a simulated dataset for classifying gamma particles in the up-
per atmosphere. It contains 19, 020 observations with 10 real valued features and is
publicly available at UCI machine learning repository.

2. MiniBooNE. The dataset is taken from the MiniBooNE experiment that is used to
distinguish electron neutrinos from muon neutrinos. It contains 130, 065 observations
with 50 real valued features and is publicly available at UCI machine learning reposi-
tory.

3. KDD. This dataset is used in Lucic et al. (2017). It contains 145, 751 observations
with 74 real valued features for predicting the protein types. It is available at https:
//kdd.org/kdd-cup/view/kdd-cup-2004/Data.

4. MSYP. The dataset is used to predict the release year of a song from audio features.
It contains 515, 345 observations with 90 real valued features. The dataset is publicly
available at UCI machine learning repository. Following Lucic et al. (2017), we reduce
the dataset to its top 25 principal components and fit the mixture model with these
25 features.

For the first three datasets, we divide the dataset ontoM = 4 local machines completely
at random. Since MSYP is very big and the order of the mixture to be fitted is high, we
divide the dataset onto M = 16 local machines. The random partition of the dataset is
repeated R = 100 times. The size of the generated sample and coreset size are set to be
1000 for MAGIC04, and 10, 000 for other datasets. The order of the fitted mixture on each
dataset follows the setting in Lucic et al. (2017) and is specified in Table 1.

For each method, due to repetition, we have 100 LL values based on the full dataset
at the learned mixing distributions. We summarize these values by its median and inter
quartile range (IQR). We also obtain the total computation time for each method. These
results are given in Table 1.

Based on Table 1, it is clear that the proposed GMR has the best performance among all
split-and-conquer based approaches in terms of the LL value. For the MiniBooNE dataset,
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Table 1: Performance of five learning approaches on public datasets.
Dataset N d K M Global GMR Median KLA Coreset

Median (IQR) LL values (the larger the better)

MIGIC04 19020 10 10 4 -24.15 -24.30(0.07) -26.60(0.05) -26.73(0.07) -27.16(0.55)
MiniBooNE 130065 50 10 4 -19.46 -22.00(0.53) -24.60(0.32) −6.41(1.95)× 103 −8.6(2.56)× 109

KDD 145751 74 10 4 -221.80 -223.25(0.42) -232.93(8.02) -235.00(8.96) -374.43(193.58)
MSYP 515345 25 50 16 -166.56 -167.05(0.04) -171.10(0.04) -170.72(0.01) -181.64(1.78)

Median (IQR) computation times in seconds

MIGIC04 19020 10 10 4 19.3 7.0(3.2) 6.7(3.2) 10.2(3.1) 2.2(0.6)
MiniBooNE 130065 50 10 4 346.9 313.1(162.6) 313.2(162.6) 511.3(213.2) 26.6(64.3)

KDD 145751 74 10 4 1033.9 544.4(309.5) 543.0(310.0) 706.0(290.3) 4.3(64.0)
MSYP 515345 25 50 16 67048.8 2611.6(474.0) 1777.5(511.2) 5515.9(1629.7) 67.4(12.6)

the LL values of KLA and Coreset approaches are very small. This is likely because the total
sample size to refit the GMM on the central machine is relatively small in 50-dimensional
space. The fitted order 10 mixture may not be able to cover the entire space properly and the
log-likelihood contribution of some observations is practically negative infinity. A single near
zero likelihood value could lead to a very small LL value. To evaluate the improvement of
the GMR approach over other approaches, we consider how many extra subpopulations are
needed to achieve the same gain in the LL value. Note that the famous BIC (Schwarz, 1978)
would favor a model with an extra parameter if the gain in LL is more than log(N)/(2N).
The log(N)/(2N) values for these datasets are (26, 4.5, 4.1, 1.3) × 10−5. A subpopulation
in GMM with d = 74 needs 1 + 74 + 74 ∗ 75/2 = 2854 parameters. This translates into a
difference of 0.116 in LL. For the KDD data, the gain in GMR compared to KLA would
allow another 17 subpopulations.

All the split-and-conquer learning methods are much faster than the global method. For
the MSYP dataset, the split-and-conquer methods can be 10 times as fast compared to
the global estimator. The Coreset method takes the shortest time. The proposed GMR
approach takes comparable computation time with the KLA approach.

7.3.2 NIST Handwritten-Digit Dataset

The finite GMM is often used for model-based clustering (Friedman et al., 2001; Fraley
and Raftery, 2002, Chapter 14.3). When the dataset is large and/or distributed over many
local machines, split-and-conquer approaches such as the proposed GMR become useful.
In this section, we demonstrate the use of the GMR method on the famous NIST dataset
for character recognition (Grother and Hanaoka, 2016). We use the second edition of the
dataset, named by_class.zip 1. It consists of approximately 4M images of handwritten digits
and characters (0–9, A–Z, and a–z) by different writers. Our experiment focuses on the digits
and we still refer to it as the NIST dataset. The images of the digits are in directories 30–39.
According to the user guide 2, the images in the train_30 to train_39 and hsf_4 folders
are used as the training and test sets respectively. The numbers of training images for each
digit are listed in the following table:

1. Available at https://www.nist.gov/srd/nist-special-database-19.
2. Available at https://s3.amazonaws.com/nist-srd/SD19/sd19_users_guide_edition_2.pdf.
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Table 2: The numbers of training images for each digit in NIST dataset.
Digits 0 1 2 3 4 5 6 7 8 9

Training 34803 38049 34184 35293 33432 31067 34079 35796 33884 33720
Test 5560 6655 5888 5819 5722 5539 5858 6097 5695 5813

Each image is a 128× 128 pixel grayscale matrix whose entries are real values between 0
and 1 that record the darkness of the corresponding pixels. A darker pixel has a value closer
to 1. Following the common practice, we first train a 5-layer convolutional neural network
and reduce each image to a d = 50 feature vector of real values. The details of the neural
network for the dimension reduction are given in Appendix 8.2.2. A naïve approach to build
a classifier is to regard the features of each digit as a random sample from a distinct Gaussian
distribution. The pooled data is therefore a sample from a finite Gaussian mixture of order
K = 10. We may learn this model based on the whole dataset or through split-and-conquer
approaches.

We randomly select R = 100 datasets of size N = 50K from the training set. Each
dataset is then randomly partitioned intoM = 10 subsets. We obtain global, GMR, Median,
KLA, and Coreset estimates for a Gaussian mixture of order 10 on each dataset. The size
of the generated sample for the KLA method and the coreset size in the Coreset method are
both set to be 3000. This experiment is also carried out with the sample sizes N = 100K,
200K, and 300K. These mixture estimates are then used to cluster images of handwritten
digits in the training and test sets. We show the boxplots of the LL values based on the
training dataset and the test dataset in Figure 3(a) and Figure 3(b) respectively. The ARI
between the true label of the image and the predicted label based on (21)is respectively
given in Figure 3(c) and Figure 3(d).

In terms of the LL value, the proposed GMR approach attains the highest log-likelihood
among all split-and-conquer approaches. The performance of Coreset estimator is far behind.
In this experiment, the number of local machine is fixed at M = 10 and the sample sizes
are from 50K to 300K. Increasing the sample size benefits median estimator most notably.
This is because the local sample size increases as the total sample size increases. When
the total sample size is 300K, the number of samples used to fit the local models and the
samples generated to fit the aggregated model in the KLA approach are the same. The LL
value of median estimator and the KLA estimator are about the same.

In terms of clustering performance, the global estimator surprisingly performs noticeably
worse than the split-and-conquer approaches. The high LL value of the global estimator does
not help. A likely explanation is that a GMM of order 10 is merely a working model rather
than the true model, whereas true models are used in simulated data. This eliminates the
advantage of the global estimator. This can also be seen that an increased total sample size
N does not lead to an improved fit in general. The ARIs of all approaches get worse when
the sample size increases. We think that the damage of the model-misspecification is more
severe when the sample size is large. Nevertheless, the proposed GMR method has the best
performance in all cases. It has the highest average ARI values and smaller variations.

Figure 3(e) gives the computation time. All split-and-conquer approaches save compu-
tation time. The Coreset estimator is most time efficient, the GMR and median estimators
takes slightly longer and the KLA takes the longest.
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(a) Training LL (b) Test LL

(c) Training ARI (d) Test ARI

(e) Computation time

Figure 3: Performance of five approaches for learning of 50-dimension order 10 Gaussian
mixture for NIST digit classification. All subplots share the same color coding.
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7.3.3 Atmospheric Data Analysis

We apply the proposed GMR approach to fit a finite GMM to an atmospheric dataset 3

named CCSM run cam5.1.amip.2d.001 following Chen et al. (2013). These data are com-
puter simulated based on Community Atmosphere Model version 5 (CAM5). The dataset
contains daily observations of multiple atmospheric variables between years 1979 and 2005
over 192 longitudes (lon), 288 latitudes (lat), and 30 vertical altitude levels (lev). There
variables are included: the moisture content (Q), temperature (T), and vertical velocity (Ω,
OMEGA) of the air.

For ease of comparison, we analyze only observations in December, January, and Febru-
ary, i.e., winter in the northern hemisphere. The number of days is thus 2, 430, and the
restriction reduces the variation in the dataset. At each surface location, we filter out non-
wet days (less than 1mm of daily precipitation) and focus on days with precipitation above
the 95th wet-day percentile. This step reduces the number of observations at each loca-
tion, not necessarily evenly. The analysis aims to cluster the locations according to the
multivariate variable of dimension d = 91: 30 lev× {Q, T, Ω} plus the daily precipitation
(PRECL) at the surface. Following Chen et al. (2013), we fit a finite GMM of order K = 4.
They suggest that this model is helpful in identifying modes of extreme precipitation in 3D
atmospheric space over a few atmospheric variables.

After this preprocessing, the dataset still takes about 3GB of memory, so we cannot
learn a global mixture in a reasonable time. We partition the dataset evenly into M = 128
subsets and apply the proposed GMR approach with the same numerical strategies as in the
NIST experiments. For comparison, we also aggregate the local estimates by the KLA with
500 observations generated from each local estimate.

Figure 4: Surface locations colored by clusters. Within each cluster, the darker the color,
the more wet days at that location.

Once a finite GMM is learned, we cluster the observations based on (21). Each combi-
nation of day and surface location is clustered into one of four subpopulations. To visualize

3. Available at https://www.earthsystemgrid.org/dataset.

27

https://www.earthsystemgrid.org/dataset


Zhang and Chen

the clusters, we further allocate each surface location to the cluster in which it belongs on
most days. Figure 4 shows the geographical distribution of these four clusters represented
by different colors. Similar to Chen et al. (2013), the GMR clusters reveal a strong latitu-
dinal structure, they clearly separate the frigid, temperate, and tropical zones. The KLA
results in similar clusters. Unlike Chen et al. (2013), the proposed GMR clusters are able
to separate the continental and oceanic areas in the temperate zone.

8. Discussion and Concluding Remarks

We develop an effective split-and-conquer approach for learning finite GMMs. Our experi-
ments show that it has good performance both statistically and computationally. We focus
on finite GMMs, but with some adjustment our approach could be applied to learning mix-
tures with other subpopulation distributions such as Gamma and Poisson.

We have ignored many potential issues in this paper. In particular, we assume that
the order of the mixture is correctly specified and that datasets on different local machines
are IID and have the same underlying distributions. Our method is a preliminary attempt
toward more satisfactory solutions to these real-world problems.
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Appendices

The appendix is organized as follows. Section 8.1 contains all left over technical details and
proofs. Section 8.2 provides additional details in the experiment.

8.1 Proofs

8.1.1 Example 2: Technical Details.

Let
D(G) = 0.5W2

D(G1, G) + 0.5W2
D(G2, G).

By definition, the barycenter minimizes D(G). Recall we suggest that the barycenter is given
by

Φ(x;GC) = 0.4Φ−1 + 0.6Φ2/3

instead of
Φ(x;G) = 0.5Φ−1 + 0.5Φ1.

The full proof is overly tedious. Instead, we verify that D(GC) < D(G) so that G is not a
barycenter but the suggested GC is likely the one.

Note that all transportation plans from G1 and G2 to the presumed barycenter GC have
the form (

p 0.4− p
0.4− p 0.2 + p

)
and

(
p 0.6− p

0.4− p p

)
,

respectively, for some p between 0 and 0.4. These two matrices are bivariate probability
mass functions with the marginal probability masses (0.4, 0.6) and (0.6, 0.4) as required.
The cost functions may be presented as(

c(−1,−1) c(−1, 2/3)
c(1,−1) c(1, 2/3)

)
=

(
0 25/9
4 1/9

)
.

It is clear that p = 0.4 gives the optimal plans for transporting G1 to GC and G2 to GC .
With these plans in place, we can see that

D(GC) = 0.5W2
D(G1, G

C) + 0.5W2
D(G2, G

C) = 1/3.

In comparison, the optimal transportation plan from G1 to G is to move 0.1 mass from Φ1

to Φ−1 with a total cost of 0.1× 4 = 0.4. Hence,

D(G) = 0.5W2
D(G1, G) + 0.5W2

D(G2, G) = 0.4 > 1/3.

That is, G is not a barycenter.

8.1.2 Proof of Theorem 5

The key conclusion of this theorem is

inf{Tc(G) : G ∈ GK} = inf{Jc(G) : G ∈ GK}.
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We prove this result by showing both

inf{Tc(G) : G ∈ GK} ≥ inf{Jc(G) : G ∈ GK} (22)

and
inf{Tc(G) : G ∈ GK} ≤ inf{Jc(G) : G ∈ GK}. (23)

We first prove (22). Let G∗ = arg inf{Jc(G) : G ∈ GK}. Denote the mixing weights of
any G ∈ GK as v(G), and the subpopulations prescribed by G as Φγ . According to (15),
we have

v(G∗) =
∑
i

πi,γ(G?),

which implies that π(G∗) ∈ Π(·,v(G∗)). Since π(G∗) ∈ Π(w, ·) by (10), we also have that
π(G∗) ∈ Π(w,v(G∗)). In other words, π(G∗) is a valid transportation plan from G to G∗.
Consequently,

inf{Tc(G) : G ∈ GK} ≤
∑
i,γ

πiγ(G∗)c(Φi,Φ
∗
γ) = Jc(G∗) = inf{Jc(G) : G ∈ GK},

with the last equality implied by the definition of G∗. This proves (22).
Next, we prove (23). Let G† = inf{Tc(G) : G ∈ GK}, the solution to the optimization

on the left-hand side of (23). We denote the subpopulations prescribed by G† as Φ†γ . Let

π† = arg inf
{∑
i,γ

πiγc(Φi,Φ
†
γ) : π ∈ Π(w,v(G†))

}
,

which is the optimal transportation plan from G to this G†. Because of this, we have

inf{Tc(G) : G ∈ GK} = Tc(G†) =
∑
i,γ

π†iγc(Φi,Φ
†
γ) ≥ Jc(G†) ≥ inf{Jc(G) : G ∈ GK}.

The last step holds because π† ∈ Π(w, ·). This proves (23).

8.1.3 Proof of Theorem 7

Theorem 7 claims that the MM-iteration leads to (i) decreasing sequence Jc(G(t)) in t; and
(ii) stationary limiting points G∗ of {G(t))}.

Proof of (i): Clearly, we have Kc(G|G(t)) ≥ Jc(G) for all G with equality holds at
G = G(t). Hence,

Jc(G(t)) ≥ Jc(G(t))− {Kc(G(t+1)|G(t))− Jc(G(t+1))}
= Jc(G(t+1))− {Kc(G(t+1)|G(t))− Jc(G(t))}
≥ Jc(G(t+1))− {Kc(G(t)|G(t))− Jc(G(t))}
= Jc(G(t+1)).

This is the property that an MM-algorithm must have.
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Proof of (ii). Suppose G(t) has a convergent subsequence leading to a limit G∗. Let this
subsequence be G(tk). By Helly’s selection theorem (Van der Vaart, 2000), there is a sub-
sequence sk of tk such that G(sk+1) has a limit, say G∗∗. These limits, however, could
be subprobability distributions. That is, we cannot rule out the possibility that the total
probability in the limit is below 1 by Helly’s theorem.

This is not the case under the theorem conditions. Let ∆ > 0 be large enough such that

A1 = {Φ : c(Φi,Φ) ≤ ∆, for all subpopulations Φi of G}

is not empty. With this ∆, we define

A2 = {Φ : c(Φi,Φ) > ∆, for all subpopulations Φi of G}.

Suppose G† has a subpopulation Φ† such that c(Φi,Φ
†) > ∆ for all i. Replacing this

subpopulation in G† by any Φ†† ∈ A1 to form G††, we can see that for any t,

Kc(G†|G(t−1)) > Kc(G††|G(t−1)).

Because G(t) minimizes Kc(G|G(t−1)) in G, the above result shows that none of the subpop-
ulations of G(t) are members of A2.

Note that the complement of A2 is compact by condition (18). Consequently, the subpop-
ulations of G(t) are confined to a compact subset. Hence, all limit points of G(t), including
both G∗ and G∗∗, are proper distributions. By the monotonicity of the iteration:

Jc(G(sk+1)) ≤ Jc(G(sk+1)) ≤ Jc(G(sk)).

Let k →∞, we get
Jc(G∗∗) = Jc(G∗). (24)

By the definition of the MM iteration, we have

Kc(G(sk+1)|G(sk)) ≤ Kc(G|G(sk)).

Let k →∞ and by the continuity of Kc(·|·), we get

Kc(G∗∗|G∗) ≤ Kc(G|G∗).

Hence, G∗∗ is a solution to minKc(G|Gt)) when G(t) = G∗. Namely, we have Kc(G∗∗|G∗) =
Kc(G(t+1)|G∗). With the help of (24), it further implies

Jc(G∗∗) = Jc(G(t+1)) = Jc(G∗)

when G(t) = G∗. This shows that iteration from G(t) = G∗ does not make Jc(G(t+1)) smaller
than Jc(G(t)). Hence, G∗ is a stationary point of the MM iteration. This is conclusion (ii)
and we have completed the proof.
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8.1.4 Proof of Theorem 9

Recall that the local estimators Ĝm,m ∈ [M ] are strongly consistent for G∗ when the order
K of G∗ is known. This implies that the simple average G → G∗ and Tc(G,G∗) → 0
almost surely. Because Tc(·, ·) is not necessarily a mathematical distance, we do not have an
easy-to-use triangle inequality. The subsequent steps may appear tedious but unavoidable.

By “almost surely”, it implies other than a probability 0 event in the probability space Ω
on which the random variables are defined, Tc(G,G∗)→ 0 holds. Without loss of generality,
assume Tc(G,G∗) → 0 holds at all ω ∈ Ω without a zero-probability exception. With this,
Tc(G,G∗) → 0 holds only if each support point of G converges to one of those of G∗. The
total weights of the support points of G converging to the same support of G∗ must converge
to the corresponding weight of G∗.

By definition, GR has K support points. We also notice that

Tc(G,GR) ≤ Tc(G,G∗)→ 0. (25)

Suppose that GR does not converge to G∗ at some ω ∈ Ω. One possibility is that the
smallest mixing weight of GR (or a subsequence thereof) goes to zero as N → ∞. In this
case, GR has K − 1 or fewer meaningful support points. Since the support points of G
are in an infinitesimal neighborhood of those of G∗, one of them must be a distance away
from any of the support points of GR. Therefore, by Condition 4, the transportation cost
of this support point is larger than a positive constant not depending on N . The positive
transportation cost implies that Tc(G,GR) 6→ 0, which contradicts (25).

The next possibility is that the smallest mixing weight of GR does not go to zero. In this
case, there is a subsequence such that all the mixing weights converge to positive constants.
Without loss of generality, all the mixing weights simply converge to positive constants as
N →∞. If there is a subsequence of support points of GR that is at least ε-distance away
from any of the support points of G∗, then the transportation cost from G to this support
point will be larger than a positive constant not depending on N . This again leads to a
contradiction to (25).

The final possibility is that GR (or a subsequence thereof) has a proper limit, say G∗∗ 6=
G∗. If so, Tc(G,GR)→ Tc(G∗, G∗∗) 6= 0, contradicting (25).

We have exhausted all the possibilities. Hence, the consistency claim is true.

8.1.5 Proof of Theorem 10

Theorem 10 states that the GMR estimator GR retains the convergence rate N−1/2, under
the key condition C1 that the order K of the finite mixture model is known.

Let Φmk be the kth subpopulation learned at local machine m and wmk be its mixing
weight. Note that we do not put a “hat” on them for notation simplicity. According to
Lemma 8 on the rate of convergence of the pMLE at local machines, these subpopulations
can be arranged so that for all m ∈ [M ] and k ∈ [K], we have

‖Φmk − Φ∗k‖ = Op(N
−1/2), wmk − w∗k = Op(N

−1/2).

By C5, the first rate conclusion above implies

max{c(Φmk,Φ
∗
k) : k ∈ [K]} = Op(N

−1).
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For each k, let w̃k =
∑M

m=1 λmwmk and Φ̃k be the local barycenter of Φmk, m ∈ [M ]:

Φ̃k = arg min{Φ :
M∑
m=1

λmwmkc(Φmk,Φ)}.

Let G̃ be the mixing distribution with weights w̃k and subpopulations Φ̃k. By the rate
conclusions given earlier, we have w̃k = w∗k + Op(N

−1/2) for k ∈ [K]. By C5, we must also
have

‖Φ̃k − Φ∗k‖ = Op(N
−1/2)

and Tc(G, G̃) = Op(N
−1). If the GMR GR = G̃, then the rate conclusion of the theorem

would have been proved.
Next, we show GR = G̃ asymptotically. By theorem conditions, the true subpopulations

Φ∗k are all distinct. Hence, by condition C4, we have

min{c(Φ∗k,Φ∗k′) : k 6= k′ ∈ [K]} > 0.

Thus, if the subpopulations of GR is not in an op(1) neighbourhood of one of Φ∗k even
though everyone of G is, the transport cost to this subpopulation from any subpopulation
of G exceeds a positive constant in probability. This contradicts

Tc(G,GR) ≤ Tc(G, G̃) = Op(N
−1). (26)

This implies, all subpopulations of GR are within op(1) neighbourhood of one of Φ∗k. Denote
these subpopulations as ΦR

k . The optimal plan must transport Φmk to ΦR
k , otherwise the

total transport cost exceeds a positive constant in probability which again contradicts (26).
Since GR minimizes the transport cost, we must have ΦR

k = Φ̃k, the local barycenter. These
conclusions imply that GMR GR = G̃ with probability approaching to 1. Consequently, the
rates of convergence of w̃k, Φ̃k extend to those of GR and this completes the proof.

8.1.6 KL-divergence satisfies C5

Let µ1,Σ1 and µ2,Σ2 be the parameters of Φ1 and Φ2. It is known that

2DKL(Φ1‖Φ2) = log{det(Σ2)/det(Σ1)}+ tr(Σ−1
2 Σ1 − Id) + (µ2 − µ1)τΣ−1

2 (µ2 − µ1).

Assume both Φ1 and Φ2 are in a small neighborhood of Φ whose covariance matrix Σ is
positive definite. Hence, eigenvalues of Σ2 are in small neighborhood of these of Σ. Thus,
there exists a positive constant A1 such that the third term in 2DKL(Φ1‖Φ2) satisfies

A−1
1 ‖µ2 − µ1‖2 ≤ (µ2 − µ1)τΣ−1

2 (µ2 − µ1) ≤ A1‖µ2 − µ1‖2 (27)

Let λ1, . . . , λd be eigenvalues of Σ
−1/2
2 Σ1Σ

−1/2
2 . Since both Σ1 and Σ2 are in a small

neighborhood of Σ, we have λ1, . . . , λd all close to 1. Note that

log{det(Σ2)/det(Σ1)}+ tr(Σ−1
2 Σ1 − Id) =

d∑
j=1

{(λj − 1)− log λj}.
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Note that (λ− 1)− log λ is a convex function with its minimum attained at λ = 1 at which
point its second derivative equals 1. Hence, there exists an A2 > 0 such that

A−1
2 (λ− 1)2 ≤ (λ− 1)− log λ ≤ A2(λ− 1)2.

We have therefore shown that

A−1
2

d∑
j=1

(λj − 1)2 ≤ log{det(Σ2)/det(Σ1)}+ tr(Σ−1
2 Σ1 − Id) ≤ A2

d∑
j=1

(λj − 1)2. (28)

We now connect this bound with Frobenius norm.
For a positive definite matrix Σ, it is easy to see that ‖Σ−Id‖2F =

∑d
j=1(σj−1)2, where

σ1, σ2, . . . , σd are eigenvalues of Σ. Frobenius norm also has sub-multiplicative property

‖Σ1Σ2‖F ≤ ‖Σ1‖F ‖Σ2‖F .

Applying the sub-multiplicative property in our context, we get

‖Σ1 −Σ2‖2F ≤ ‖Σ1/2
2 ‖

4
F ‖Σ

−1/2
2 Σ1Σ

−1/2
2 − Id‖2F

≤ A3 ‖Σ−1/2
2 Σ1Σ

−1/2
2 − Id‖2F = A3

d∑
j=1

(λj − 1)2

for some local positive constant A3 > ‖Σ1/2‖4F , as both matrices are in a small neighborhood
of Σ. Similarly, we have

d∑
j=1

(λj − 1)2 = ‖Σ−1/2
2 Σ1Σ

−1/2
2 − Id‖2F = ‖Σ−1/2

2 {Σ1 −Σ2}Σ−1/2
2 ‖2F

≤ ‖Σ−1/2
2 ‖4F ‖Σ1 −Σ2‖2F ≤ A4‖Σ1 −Σ2‖2F .

for some positive constant A4. This leads to

‖Σ1 −Σ2‖2F ≥ A−1
4

d∑
j=1

(λj − 1)2.

Let A = 2 max{A1, A2, A3, A4}. Applying (27) and (28), we have

A−1{‖µ1 − µ2‖2 + ‖Σ1 −Σ2‖2F } ≤ DKL(Φ1‖Φ2) ≤ A{‖µ1 − µ2‖2 + ‖Σ1 −Σ2‖2F }

when Φ1,Φ2 are in a small neighborhood of Φ, with A being a positive constant depends on
Φ. This shows that the KL-divergence has property C5.

8.2 Other Details

8.2.1 Additional Simulation Results

We present simulation results for K = 5, 10, 50 and d = 10, 50 as supplementary to Sec-
tion 7.2. Figures 5–6 show the results for N = 219 and M = 4 with various combinations of
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K and d. The panels in each figure are arranged so that the order of the mixture increases
from left to right, and the dimension of the mixture increases from top to bottom.

Comparing panels within the same row in Figure 5, we note that the performance of each
the estimators becomes worse as the order of the mixture increases in terms of W1 distance.
The panels within the same column in Figures 5 show that all the estimators become worse
as the dimension of the mixture increases in terms of both performance measures.

Regardless, our estimator has performance comparable to that of the global estimator. In
terms of the misclassification error, for the same degree of overlapping, the superiority of our
estimator becomes even clearer compared to the KL-averaging as the number of components
and the dimension increase.

The computational costs of the local estimators are typically low, and this gives our
method an added computational advantage. However, this advantage is not guaranteed: see
the bottom right panel in Figure 6, where d = 50, K = 50, and the degree of overlapping is
above 1%. There are many other factors at play. A more skillful implementation may lead
to different conclusions on the computational time.

Figure 5: W1 distances of estimators for learning mixtures.

8.2.2 Convolutional Neural Network in NIST Example

Deep convolutional neural networks (CNNs) are commonly used to reduce the complex
structure of a dataset to informative rectangle data. CNNs effectively perform dimension
reduction and classification in an end-to-end fashion (Dara and Tumma, 2018). The final
soft-max layer in a CNN can be viewed as fitting a multinomial logistic regression model on
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Figure 6: Computation times for learning mixtures.

the reduced feature space. We use a CNN for dimension reduction in the NIST experiment;
its architecture is specified in Table 3. We implement the CNN in pytorch 1.5.0 (Paszke
et al., 2019) and train it for 10 epochs on the NIST training dataset. We use the SGD
optimizer with learning rate 0.01, momentum 0.9, and batch size 64. After training, we
drop the final layer and use the resulting CNN to reduce the dimension to 50 for both the
training and test sets.

Table 3: Architecture and layer specifications of CNN for dimension reduction in NIST
example.

Layer Layer specification Activation function

Conv2d Cin = 1, Cout = 20, H = W = 5 Relu
MaxPool2d k = 2 –
Conv2d Cin = 20, Cout = 50, H = W = 5 Relu

MaxPool2d k = 2 –
Flatten – –
Linear Hin = 800, Hout = 50 Relu
Linear Hin = 50, Hout = 10 Softmax
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