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Abstract

We introduce Bayesian Gaussian graphical models with covariates (GGMx), a class of
multivariate Gaussian distributions with covariate-dependent sparse precision matrix. We
propose a general construction of a functional mapping from the covariate space to the cone
of sparse positive definite matrices, which encompasses many existing graphical models for
heterogeneous settings. Our methodology is based on a novel mixture prior for precision
matrices with a non-local component that admits attractive theoretical and empirical prop-
erties. The flexible formulation of GGMx allows both the strength and the sparsity pattern
of the precision matrix (hence the graph structure) change with the covariates. Posterior
inference is carried out with a carefully designed Markov chain Monte Carlo algorithm,
which ensures the positive definiteness of sparse precision matrices at any given covariates’
values. Extensive simulations and a case study in cancer genomics demonstrate the utility
of the proposed model.

Keywords: Covariate-dependent graphs; Markov random fields; Random thresholding;
Subject-level inference; Undirected graphs

1. Introduction

Undirected Gaussian graphical models (GGMs), also known as Gaussian Markov random
fields, are one of the common tools to analyze multivariate data with complex structure and
find many useful applications across biomedicine, finance, and public health. A GGM can
simply be expressed as a multivariate Gaussian distribution with a sparse precision (inverse-
covariance) matrix. The zero entries of the precision matrix have probabilistic interpretation
of conditional independence between the Gaussian random variables (nodes of a graph).
Moreover, all the conditional independence relationships can be directly estimated from the
accompanying undirected graph for which a zero entry in the precision matrix corresponds
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to a missing edge in the graph. This equivalency, essentially reduces the problem of graph
structure learning in GGMs to finding zeros in the precision matrix.

Many existing GGM approaches (Dobra et al., 2004; Sudderth et al., 2004; Meinshausen
and Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al., 2008; Scott and Carvalho, 2008;
Dobra et al., 2011; Green and Thomas, 2013; Drton and Maathuis, 2017; Khare et al., 2018;
Massam, 2018; Gan et al., 2019) assume an independent and identically distributed (i.i.d.)
sampling scheme yi = (yi1, . . . , yip) ∼ N(0,Ω−1) for i = 1, . . . , n where Ω is the preci-
sion matrix. However, the independence assumption does not hold in many applications.
For example, observations in multivariate time series data are not independent and exhibit
temporal correlations; similarly for spatial data with spatial correlation. In addition, the
assumption of identical distribution implies homogeneity across observations and is often
violated as well. For instance, tumor heterogeneity is a well-known characteristic in cancer:
patients with the same cancer-type can be rather different in their genetic/genomic archi-
tecture. Forcing the same GGM (i.e., the same precision matrix Ω) onto every patient is a
restrictive modeling assertion, when modeling cancer genomic networks.

Attempts have been made to extend GGMs or other types of graphical models beyond
i.i.d. data. If there is a natural grouping of the observations, multiple graphical models (Guo
et al., 2011; Danaher et al., 2014; Oates et al., 2014; Peterson et al., 2015; Yajima et al.,
2015; Xie et al., 2016; Ni et al., 2018; Shaddox et al., 2018) can be applied to learn group-
specific graphs assuming observations within each group are i.i.d.. Another line of work
incorporates additional covariates xi in estimating graphs. Conditional Gaussian graphical
models (Rothman et al., 2010; Yin and Li, 2011; Bhadra and Mallick, 2013) are multivariate
linear regression models with the error terms following an i.i.d. GGM (can be viewed as
chain graphical models). While graph estimation is conditional on the covariates, they only
enter the model via the mean structure. As a consequence, the graph topology and the
precision matrix stay the same across observations. In this paper, we are taking a more
direct approach, in the sense that the latent graph and hence the sparse precision matrix
are explicit functions of covariates.

There are a few recent work in this direction. Liu et al. (2010a) proposed a tree-based
method that partitions the covariate space into a finite number of subspaces by classification
and regression trees and fits GGMs separately to subsets of data. However, the estimated
graphs may be unstable and lack similarity for similar covariates due to the separate graph
estimation, as reported by Cheng et al. (2014). Kolar et al. (2010) proposed a penalized
kernel smoothing approach that allows the precision matrix to vary with covariates. Cheng
et al. (2014) developed a conditional Ising model for binary data where the dependencies are
linear functions of covariates. Although the methods of Kolar et al. (2010) and Cheng et al.
(2014) allow edge strength to vary with covariates, graph structure is assumed to be constant
across all observations. Recently, Ni et al. (2019) proposed a graphical regression framework
that allows both edge strength and graph structure to vary with covariates in (directed)
Bayesian networks. They assumed there exists a natural ordering of the nodes. Given this
assumption, Bayesian networks can be written as systems of recursive linear regressions.
A conditional independence function was then introduced to connect regression coefficients
with covariates.

In this paper, we consider a general problem of estimating undirected GGMs conditional
on covariates (GGMx). GGMx allows not only the edge strength (i.e., off-diagonal elements
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Figure 1: Illustration of GGMx. Subject-level sparse precision matrices Ωi and graphs Gi of
Y vary with covariates X. The edge thickness is proportional to its strength of association
ωijk. Both edge strength and graph structure change with X. GGMx can also be viewed
as a generative model: X generate graphs which in turn generate Y .

of precision matrix) but also the graph structure (i.e., sparsity pattern of precision matrix)
to vary as functions of covariates, which is illustrated in Figure 1 with graphs with four
nodes and two covariates. Figure 1 also illustrates the generative mechanism underlying
GGMx: covariates xi generate sparse precision matrices Ωi (hence the graphs Gi), which in
turn generate responses yi. The major challenge in this context is the positive definiteness
constraint of precision matrices – a sine qua non for GGMs – in the presence of covari-
ates. We propose a simple strategy by specifying a matrix-valued function f(·), such that
Ωi = f(xi) is a positive definite matrix for any xi almost surely; along with the function
f(·) consisting of a random thresholding component that encourages sparse precision ma-
trix estimation, specifically enforcing the required zero-pattern that corresponds to missing
edges. The sparse functional relationship between Ωi and xi allows for novel graph interpo-
lation for an unseen observation at covariates x∗. We show that the random thresholding
gives rise to a discrete mixture of non-local priors (Johnson and Rossell, 2010) for preci-
sion matrices. We also carefully design a Markov chain Monte Carlo (MCMC) algorithm
for posterior inference, which guarantees to propose positive definite precision matrices for
any xi. GGMx allows for subject-level inference on unknown graphs. Moreover, GGMx
is a general class of graphical models, which subsumes at least five special cases including
standard GGMs, group-specific GGMs (Guo et al., 2011; Danaher et al., 2014; Peterson
et al., 2015), time-varying GGMs (Zhou et al., 2010), covariate-dependent GGMs (Kolar
et al., 2010), and context-specific GGMs (Nyman et al., 2017). Extensive simulation studies
show strong and robust performance of GGMx compared with competing methods. Using
a cancer genomics case study, we demonstrate how GGMx can be used to infer subject-
specific gene networks, which can facilitate deeper investigations in the genomic foundation
of precision medicine.

The rest of this article is organized as follows. We introduce the background and no-
tations in Section 2. We present the proposed GGMx in Section 3 and discuss the link
between the random thresholding prior and non-local priors in Section 4. We summarize
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the posterior inference and graph interpolation in Section 5. We demonstrate the utility and
robustness of GGMx with extensive simulation studies in Section 6. GGMx is illustrated
by a real data application in Section 7. Section 8 provides our closing discussion.

2. Background and notation

A GGM is a multivariate Gaussian distribution with a sparse precision matrix. Let Y =
(Y1, . . . , Yp) ∼ N(0,Ω−1) be multivariate Gaussian random variables with mean zero and
precision matrix Ω = [ωjk]. Since the off-diagonal elements in Ω are proportional to partial
correlations, a zero entry ωjk = 0 indicates that Yj and Yk are conditionally independent
given all other variables. A GGM graphically represents the zero patterns of Ω by an
undirected graph. An undirected graph G = (V,E) consists of a set of nodes V = {1, . . . , p}
and a set of undirected edges E ⊆ {{j, k}|j, k ∈ V }. The nodes V represent the variables Y
and an edge {j, k} is present in the graph if and only if ωjk 6= 0. This is not an arbitrary way
of drawing a graph. In fact, the conditional independence relationships that are encoded
in the multivariate Gaussian distribution can be directly read off from G using the notion
of graph separation. Importantly, learning the graph structure is equivalent to finding the
zero patterns of Ω.

Under the Bayesian paradigm, several prior distributions (Roverato, 2002; Wang et al.,
2012; Wang, 2015) for sparse precision matrices have been developed, which all take the
same general form,

π(Ω) =
π̃(Ω)I(Ω ∈M+)∫
π̃(Ω)I(Ω ∈M+)dΩ

∝ π̃(Ω)I(Ω ∈M+), (1)

with M+ being the collection of positive definite matrices (PDMs). For example, G-Wishart
prior (Roverato, 2002) assumes π̃(Ω) to be a Wishart distribution Wishart(·|b,Ω0) and
M+ := M+

G to be PDMs consistent with a graph G, which leads to π(Ω|G, b,Ω0) ∝
Wishart(Ω|b,Ω0)I(Ω ∈ M+

G ). Bayesian graphical lasso (Wang et al., 2012) assumes
π̃(Ω) to be a product of independent exponential priors Exp(·|λ) and double-exponential
priors DE(·|λ) on diagonal and off-diagonal elements of Ω, π(Ω|λ) ∝

∏
j<kDE(ωjk|λ)∏

j Exp(ωii|λ/2)I(Ω ∈ M+). Graphical spike-and-slab prior (Wang, 2015) replaces the
double-exponential priors in Bayesian graphical lasso by spike-and-slab priors, π(Ω|G, v1, v0, λ)
∝
∏
{j,k}∈E N(ωjk|0, v1)

∏
{j,k}/∈E N(ωjk|0, v0)

∏
j Exp(ωii|λ/2) I(Ω ∈M+) where v1 � v0.

Priors on Ω can be defined either conditionally on the graph G or marginally; in what
follows we do not use a model indicator parameter G but will infer the graph structures
directly from the zero patterns in the precision matrices.

3. Gaussian graphical models with covariates

Let y1, . . . ,yn be n realizations of a random vector Y = (Y1, . . . , Yp). We assume an inde-
pendent multivariate Gaussian distribution for each observation yi ∼ p(yi|Ωi) = N(0,Ω−1i )
with the precision matrix Ωi = [ωijk], importantly, indexed by i = 1, . . . , n. A subject-level
graph Gi = (V,Ei) is embedded in the subject-level precision matrix Ωi: {j, k} ∈ Ei if and
only if ωijk 6= 0.
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Without further modeling assumptions, Ωi cannot be estimated with a single observation
i. Let x1, . . . ,xn be n realizations of covariates X = (1, X1, . . . , Xq). Note that when
X = 1 (i.e., there is no covaraites), the proposed GGMx is reduced to standard GGMs;
more discussion of special cases of GGMx will be given later. We model Ωi := f(xi)
through a symmetric matrix-valued function f(·), which is estimable as a population-level
parameter shared across all observations.

General construction of covariate-dependent priors. The key is the construction
of the function f(·) = [fjk(·)] such that Ωi = f(xi) is a PDM for any xi, i = 1, . . . , n.
Let M+ denote the collection of all such functions. This can be achieved by specifying a
prior f ∼ Π that assigns positive mass only on functions that satisfy such requirement,
Π(M+) = 1. We consider the following generalization of the prior density in (1) as,

π(f) =
π̃(f)I(f ∈M+)∫
π̃(f)I(f ∈M+)df

, (2)

where π̃ is a distribution on matrix-valued functions. Note that the support of π̃ is not
limited to M+, offering great flexibility in the choice of π̃. For example, we can start from
independent distributions a priori such that π̃(f) =

∏
j≤k π̃(fjk); using this construction,

the marginal distribution π̃(fjk) need not be defined with a constrained range. Because
of the deterministic relationship Ωi = f(xi), prior π(f) induces a conditional prior on Ωi

given xi.
Two additional critical properties are desired for f(·). (i) Smoothness — similar inputs

should give rise to similar PDMs. Without smoothness, similar subjects may have vastly
different networks, which is difficult to interpret in many applications including ours. (ii)
Sparsity — π(f) should have positive probability on sparse PDMs. Sparsity is a common
assumption in high-dimensional models including GGMs, which improves statistical effi-
ciency and interpretability compared to dense models. In order to encourage sparsity of Ωi,
a positive mass has to be placed on sparse PDMs a priori because otherwise there will be
zero mass on sparse PDMs a posteriori even if data strongly favor sparse PDMs. To equip
f(·) with these two properties, we decompose each off-diagonal element fjk(·) of f(·) into
two components,

fjk(xi) = gjk(xi)I(|gjk(xi)| > tjk), for j < k, (3)

where gjk(·) is some smooth function, the hard thresholding I(|gjk(xi)| > tjk) promotes
sparsity in fjk(·), and tjk is a random threshold, which can be interpreted as a minimum
effect size of ωijk. Specifically, whenever gjk(xi) is less than tjk in magnitude, the hard
thresholding truncates fjk(xi) to zero and hence induces a missing edge between nodes j and
k for subject i. Our use of a thresholding function to induce sparsity on precision matrices
Ωi = f(xi) is novel and crucially different from conventional GGM priors including the
G-Wishart prior and the graphical spike-and-slab prior (Wang, 2015): in order to construct
observation-specific graphs, conventional priors would require a latent indicator for each
potential edge and each observation, which would greatly increase the model complexity.
For example, in our application with multiple myeloma dataset, conventional priors would
need n·p·(p−1)/2 = 79, 728 latent indicators whereas the proposed GGMx needs much fewer
p · (p− 1)/2 = 528 thresholding parameters. Moreover, as will be introduced later, GGMx
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enables undirected graph interpolation for unseen covariates, a new feature that is difficult
to obtain with conventional priors. Other choices of thresholding functions are possible
such as soft thresholding and nonnegative garrote thresholding. The main motivation of
choosing hard thresholding over the alternatives is its theoretical connection with mixture
of non-local priors; see Section 4.

For the diagonal elements (inverse-partial-variance, Whittaker 2009) fjj(·) of f(·), we
assume the following model to ensure its nonnegativity,

fjj(xi) = exp{gjj(xi)}. (4)

Note that unlike off-diagonal elements in (3), the diagonal element fjj(·) is not subject to
thresholding.

Remark 1 Our formulation encompasses covariate-dependent priors on both the off-diagonal
(inverse-covariance) and diagonal (inverse-partial-variance) elements, thus conducting both
graphical and inverse-partial-variance regression, simultaneously.

Remark 2 The proposed prior has two advantages over the more commonly used G-Wishart
prior: (i) the induced prior on Ωi from (2) explicitly incorporates covariates xi and (ii) the
normalizing constant of G-Wishart is not a constant with respect to graph G and therefore
comparing two graphs requires explicit evaluation of the intractable normalizing constant
whereas π(f), due to the thresholding function, does not have such complication.

Given f(·) and X, the proposed GGMx satisfies functional Markov properties, e.g., the
pairwise functional Markov property, which is stated formally in the following lemma.

Lemma 1 If fjk(X) = 0, then Yj ⊥⊥ Yk|Yrest,X where Yrest is the subvector of Y without
Yj and Yk.

The proof of Lemma 1 directly follows from the fact that fjk(X) = 0 implies there is
a missing edge between nodes j and k given covariates X, which in turn implies that
Yj ⊥⊥ Yk|Yrest,X from standard GGM theory.

A natural choice of gjk(·) is a linear function gjk(xi) = βTjkxi although, in general,
gjk(·) can be any smooth function. Given the limited sample size of the case study, we
consider gjk(·) to be linear for parsimony (see Section 8 for a brief discussion on modeling a
nonlinear gjk) and interpretability (βjk are the rates of changes of ωijk in xi). If the focus
is on learning the graph structure and strength, i.e., the off-diagonal elements of Ωi, one
can further simplify the model by reducing diagonal elements gjj(xi) to be constant with
respect to the covariates.

GGMx is a fairly flexible class of models and has at least five special cases (see Table
1). (i) If X only contains the intercept, then GGMx reduces to the case of the standard
GGM because the graph is a function of a constant and hence is constant. (ii) If X is
categorical, then GGMx is a multiple graphical model (also known as group-specific GGM)
as the categorical covariate defines the groups. (iii) If X is univariate time points, then
GGMx can be used for modeling time-varying GGMs (Zhou et al., 2010) by treating time as
a covariate1. (iv) If the thresholds tjk’s are fixed to 0, then GGMx is a covariate-dependent

1. This is a conceptual statement. Note that existing time-varying GGM methods typically assume graphs
to vary non-linearly with time whereas this paper considers linearly-varying graphs.
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GGM in which the strength of the graph varies continuously with the covariates but the
structure is constant because a non-zero linear function is non-zero almost everywhere. (v)
If X is a subset of Y , then GGMx can be interpreted as a context-specific GGM (Nyman
et al., 2017) where the graph structure varies with (discretized) X.

Table 1: Five special cases of GGMx.

Special cases of GGMx Conditions Mapping X 7→ Ω

Standard GGM xi = 1 gjk(xi) = βjk ωijk = βjkI(|βjk| > tjk)

Group-specific GGM
xi = c,

gjk(xi) = βjkc ωijk = βjkcI(|βjkc| > tjk)c ∈ {1, . . . , C}

Time-varying GGM
xi = x,

gjk(x) = x · βjk ωijk = x · βjkI(|x · βjk| > tjk)time x ∈ R
Covariate-dependent GGM tjk = 0 gjk(xi) = βTjkxi ωijk = βTjkxi
Context-specific GGM xi = yi1 gjk(xi) = yi1 · βjk ωijk = yi1 · βjkI(|yi1 · βjk| > tjk)

Priors. We assign priors to βjk and tjk, which in turn define π̃(f). We assume an
independent multivariate Gaussian prior βjk ∼ π(βjk) = N(βjk|0, τjkIq). The thresh-
olding parameter tjk can be interpreted as the minimum size of off-diagonal elements of
Ωi. Since its value is usually unknown in practice, we assign a truncated normal prior
tjk ∼ π(tjk) = N(µt, σ

2
t )I(tjk > 0) to reflect the uncertainty. As we will show in the next

section, the priors of βjk and tjk induce a mixture of non-local priors on Ωi.
To complete the prior formulation, for the hyperparamter τjk, we assign a hyperprior

τ = {τjk}j≤k ∼ π(τ ) =
Cτ
∏
j≤k IG(τjk|aτ , bτ )∫

Cτ
∏
j≤k IG(τjk|aτ , bτ )dτ

where IG(a, b) denotes an inverse-gamma density with shape a and scale b, and Cτ is the
normalizing constant in (2),

Cτ =

∫
π̃(f)I(f ∈M+)df .

Including Cτ in the prior of π(τ ) serves to cancel out C−1τ in (2) so that the full conditional of
τjk is inverse-gamma. Similar cancellation trick has been used and thoroughly investigated
in Bayesian graphical lasso (Wang et al., 2012).

A schematic representation of the proposed GGMx is provided in Figure 2.

4. Theoretical Properties

We establish a general result of the connection between the proposed prior of precision
matrices induced by (2) and (3) and non-local alternative priors in GGM. A non-local
prior assigns a vanishing density (under the alternative hypothesis) to the neighborhood
of the null hypothesis. In variable selection contexts, this density vanishes around 0 and
therefore shrinks small effect to zero, which is appealing because we are interested in a
parsimonious estimation of the graph (i.e., a sparse network). Non-local priors have been
shown, both theoretically and empirically, to have superior performance over local priors in
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Figure 2: A schematic representation of GGMx.

various applications including hypothesis testing, high-dimensional sparse regression, and
Bayesian networks (Johnson and Rossell, 2010, 2012; Altomare et al., 2013; Rossell and
Telesca, 2017; Shin et al., 2018; Ni et al., 2019). However, to the best of our knowledge, all
existing priors of sparse precision matrices in GGM (G-Wishart, Bayesian graphical lasso,
and stochastic search structure learning prior) are local, i.e., π(Ω) does not approach 0
as ωjk → 0 for (j, k) ∈ E. Conceptually, local priors have a seemingly “contradictory”
representation of one’s prior belief. On the one hand, (j, k) ∈ E suggests ωjk is non-zero.
But on the other hand, local priors fail to assign zero mass at ωjk = 0; in fact, local priors
often assign the maximum mass at zero. The practical implication of such “contradiction”
is that local priors tend to favor denser models and be more susceptible to false discoveries
compared to non-local priors especially for high-dimensional models like GGMx.

Let πθ and πt generically denote the priors for θjk and tjk, θjk ∼ πθ(θjk) and tjk ∼
πt(tjk). Let T = [tjk]. We now show the connection between non-local priors and the
proposed prior of the following general form,

π(Ω|T ) =
π̃(Ω|T )I(Ω ∈M+)∫
π̃(Ω|T )I(Ω ∈M+)dΩ

,

and

π̃(Ω|T ) =

p∏
j=1

πd(ωjj)
∏
j<k

πω|t(ωjk|tjk),

where
ωjk = θjkI(|θjk| > tjk), for j < k.

Note that the equations above have no reference to covariates. We deliberately do so for
clarity and generality; all the following theoretical results apply to the marginal distribution
π(Ωi) in GGMx by letting θjk = gjk(xi) = βTjkxi and ωjj = exp{gjj(xi)}. Conditional on
tjk, the prior πθ induces a spike-and-slab mixture distribution,

πω|t(ωjk|tjk) =ρδ0(ωjk) + (1− ρ)π̃ω|t(ωjk|tjk)

where the mixture weight ρ = Pr(|ωjk| < tjk|tjk) is computed under the conditional distri-
bution of ωjk induced by πθ(·) and hence is a function of tjk (not ωjk), and the slab is a
truncated distribution,

π̃ω|t(ωjk|tjk) =
πθ(ωjk)I(|ωjk| > tjk)

Pr(|ωjk| > tjk|tjk)
.
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Slightly abusing the notations, let ω = (ω1, . . . , ωM ) = (ω12, . . . , ω1p, ω23, . . . , ω2p, . . . , ωp−1,p)
be an M -dimensional vector containing upper-triangular elements of Ω with M =

(
p
2

)
. Let

S ⊆ {1, . . . ,M} denote the indices of non-zeros elements in Ω (or equivalently in ω), i.e.
ωm = 0 if and only if m ∈ Sc. Then the conditional prior of Ω given T can be written as a
mixture over all possible subsets S,

π(Ω|T ) =
1

g(T )
I(Ω ∈M+)

p∏
j=1

πd(ωjj) (5)

×
∑

S∈2{1,...,M}

∏
m∈S

πθ(ωm)I(|ωm| > tm)
∏
m∈Sc

Pr(|ωm| < tm|tm)δ0(ωm), (6)

where g(T ) =
∫
π̃(Ω|T )I(Ω ∈ M+)dΩ is the normalizing constant and 2{1,...,M} is the

power set of {1, . . . ,M}. Our main theorem shows that under very mild conditions, the
marginal prior π(Ω) is a discrete mixture of non-local priors. Before we present the main
theorem, we first state a lemma that is useful in proving the theorem.

Lemma 2 E[1/g(T )] < ∞ if the distribution πθ(·) of θjk has positive mass around zero,

i.e., there exists δ > 0 such that for any 0 < δ′ < δ,
∫ δ′
−δ′ πθ(θ)dθ > 0, and the distribution

πd(·) of ωjj is not a point mass at zero, i.e., πd(·) 6= δ0(·).

Proof Consider

g(T ) =

∫
π̃(Ω|T )I(Ω ∈M+)dΩ = Pr(Ω ∈M+|T )

> Pr({ωjj > (p− 1)λ}pj=1, {|ωjk| ≤ λ}j<k|T ), ∀λ ≥ 0

> Pr({ωjj > (p− 1)λ}pj=1, {|θjk| ≤ λ}j<k)

=

p∏
j=1

Pr(ωjj > (p− 1)λ)
∏
j<k

Pr(|θjk| ≤ λ)
def
=L(λ).

The first inequality holds because diagonally dominant symmetric matrix is positive definite
and the second inequality is true because |θjk| ≤ λ implies |ωjk| ≤ λ by design and T is
independent of ωjj and θjk. If πθ has positive mass around zero and πd is not a point mass
at zero, we can pick a sufficiently small (but positive) λ? > 0 such that the lower bound
L(λ?) of g(T ) is positive. Then it follows that E[1/g(T )] <∞.

Theorem 1 The marginal prior π(Ω) is given by

π(Ω) =
∑

S∈2{1,...,M}
ρSπS(Ω),

where πS(Ω) is the prior under the hypothesis HS : ωm 6= 0,m ∈ S and ωm = 0,m ∈ Sc.
Moreover, πS(Ω) is a non-local prior for any S ∈ 2{1,...,M}\∅, that is, πS(Ω)→ 0 as ωm → 0
for m ∈ S, provided (i) Pr(t = 0) = 0, (ii) πθ(·) is bounded and has positive mass near 0,
and (iii) πd(·) 6= δ0(·).
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Proof The marginal distribution of Ω is given by

π(Ω) =

∫
π(Ω|T )πt(T )dT = I(Ω ∈M+)

p∏
j=1

πd(ωjj)

∫
1

g(T )

∏
j<k

πω|t(ωjk|tjk)πt(T )dT .

Let m(Ω) = I(Ω ∈M+)
∏p
j=1 πd(ωjj), then

π(Ω) =

∫
m(Ω)

1

g(T )

∏
j<k

πω|t(ωjk|tjk)πt(T )dT

=

∫
m(Ω)

1

g(T )

∏
j<k

{Pr(|ωjk| < tjk|tjk)δ0(ωjk) + πθ(ωjk)I(|ωjk| > tjk)}πt(tjk)dT

=

∫
m(Ω)

1

g(T )

∑
S∈2{1,...,M}

∏
m∈S

πθ(ωm)I(|ωm| > tm)πt(tm)
∏
m∈Sc

Pr(|ωm| < tm|tm)δ0(ωm)πt(tm)dT

=
∑

S∈2{1,...,M}
m(Ω)ET

[
1

g(T )

∏
m∈S

I(|ωm| > tm)
∏
m∈Sc

Pr(|ωm| < tm|tm)

] ∏
m∈S

πθ(ωm)
∏
m∈Sc

δ0(ωm)

def
=

∑
S∈2{1,...,M}

hS(Ω) =
∑

S∈2{1,...,M}

∫
hS(Ω)dΩ× hS(Ω)∫

hS(Ω)dΩ

def
=

∑
S∈2{1,...,M}

ρS × πS(Ω).

We will show that for any m ∈ S and any sequence ω
(n)
m → 0 as n → ∞, πS(Ω(n)) → 0 as

n→∞ where Ω(n) contains ω
(n)
m as an element. Note that

1

g(T )

∏
m∈S

I(|ωm| > tm)
∏
m∈Sc

Pr(|ωm| < tm|tm) ≤ 1

g(T )
.

Since E[1/g(T )] < ∞ due to conditions (ii) - (iii) and Lemma 2, and limn→∞ I(|ω(n)
m | >

tm) = 0 almost surely due to condition (i), then by dominated convergence theorem, we
have

lim
n→∞

ET

 1

g(T )
I(|ω(n)

m | > tm)
∏

m′∈S,m′ 6=m
I(|ωm′ | > tm′)

∏
m∈Sc

Pr(|ωm| < tm|tm)


=ET

 1

g(T )

{
lim
n→∞

I(|ω(n)
m | > tm)

} ∏
m′∈S,m′ 6=m

I(|ωm′ | > tm′)
∏
m∈Sc

Pr(|ωm| < tm|tm)


=0

Finally, condition (ii) renders πS(Ω(n))→ 0.

Conditions (i) - (iii) in Theorem 1 are very mild and satisfied by a wide range of πt, πθ,
and πd. Condition (i) is trivially satisfied if πt is continuous (e.g., gamma, inverse-gamma,
log-normal, and truncated normal distributions). Condition (ii) holds for Cauchy, normal,
and most of the scale mixtures of normal distributions such as Laplace, normal-gamma, and
t distributions. Condition (iii) only excludes point mass at zero δ0(·) from all the possible
choices of πd(·).

10
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A simple illustrative example As a concrete example, πS(Ω) is non-local under the
prior distributions specified in Section 3, namely, πθ(θjk) = N(0, τ), πd(ωjj) = log-normal(0, τ),
and πt(tjk) = N(µt, σ

2
t )I(tjk > 0). To visualize the proposed non-local prior, we consider a

small precision matrix with p = 3 and perform a prior simulation to generate Ω from π(Ω),
the procedure of which is a special case of the posterior simulation procedure (ignoring the
likelihood) to be described in Section 5. We visualize πS(Ω) for S = {1, . . . ,M}, i.e., a
complete graph. The marginal densities of pairs of off-diagonal elements of Ω (normalized
to partial correlations) are depicted in the top panel of Figure 3 which show vanishing den-
sity as ωjk approaches 0. By contrast, a local prior on Ω (simulated by fixing tjk = 0) has
an increasing density as ωjk approaches 0 as shown in the bottom panel of Figure 3.
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Figure 3: Non-local (top) and local (bottom) prior distributions of Ω.

Remark The connection between non-local priors and random thresholding has been
investigated in the regression context (Rossell and Telesca, 2017; Ni et al., 2019). We make
a nontrivial extension to precision matrix estimation for undirected GGMs. One major
difference between our theory and those in Rossell and Telesca (2017) and Ni et al. (2019)
is the complexity of the intractable prior normalizing constant g(T ) in (5). Intractable
prior normalizing constant is a common challenge in standard Bayesian GGMs (Dobra
et al., 2011; Wang et al., 2012; Wang, 2015), both theoretically and computationally. In
order to show the equivalence between non-local priors and random thresholding for GGMs,
we make extra assumptions, i.e., πθ(·) has positive mass around zero and πd(·) 6= δ0(·), in
order to bound E[1/g(T )]. These mild assumptions are not required in previous works. Also
note that Rossell and Telesca (2017) truncates probability density whereas we threshold the
random variables. Consequently, the resulting marginal prior of Rossell and Telesca (2017)
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is a non-local prior while ours is a discrete mixture of the non-local prior and point mass at
0. Computationally, the issue of intractable normalizing constant is resolved by a carefully
designed MCMC algorithm, which will be discussed in the next section.

5. Posterior Inference

The proposed GGMx is parameterized by three sets of parameters {βjk}j≤k, {tjk}j<k, and
{τjk}j≤k. The joint posterior distribution of these parameters is given by,

p({βjk}j≤k, {tjk}j<k, {τjk}j≤k|{yi,xi}ni=1)

∝
n∏
i=1

N(yi|0,Ωi)
∏
j<k

N(tjk|µt, σ2t )I(tjk > 0)
∏
j≤k

N(βjk|0, τjkIq)IG(τjk|aτ , bτ ),

where the right-hand side of this equation depends on xi through Ωi = f(xi) and f(·)
is defined by {βjk}j≤k and {tjk}j<k. The posterior inference of the model parameters
is carried out by MCMC. We need to carefully choose a proposal distribution that can
propose f ∈ M+ efficiently. This is not a trivial task because the probability that we
generate f ∈M+ is practically zero if we propose βjk and tjk from naive proposals such as
standard random walks. Here, we introduce a proposal that always proposes f ∈M+.

For illustration, suppose we are currently updating the (j, k)th element of Ωi. Let ωi,−k,k
denote the kth column of Ωi without the kth row and let Ωi,−k,−k denote the submatrix of Ωi

without the kth row and column. Let φik = ωikk−uik with uik = ωTi,−k,kΩ
−1
i,−k,−kωi,−k,k. We

first propose new β∗jk` and t∗jk from some proposal densities qβ(β∗jk`|βjk`) and qt(t
∗
jk|tjk) such

as random walks for ` = 1, . . . , q+1. The resulting new values of ωi,−k,k and uik are denoted
by ω∗i,−k,k and u∗ik. Notice that Ωi is positive definite if and only if φik > 0 for k = 1, . . . , p.
This is due to the Sylvester’s criterion that a symmetric matrix is positive definite if and
only if all of the leading principal minors are positive. Without loss of generality, assuming
k is the last column and all previous principal minors are positive, and assuming covariates
xi are positive. Then the last leading principal minor det(Ωi) = (ωikk − uik) det(Ωi,−k,−k)
is positive if and only if ωikk−uik > 0. Therefore, in order to ensure positive definiteness of
Ωi,∀i when updating its (j, k)th element, we will additionally propose a new β∗kk` such that
ω∗ikk = exp{g∗kk(xi)} > uik∗ where g∗kk(xi) = xi`β

∗
kk` +

∑
`′ 6=` xi`′βkk`′ . The solution to this

inequality for all i is the constraint that the proposal of β∗kk` needs to respect. Specifically,
we will propose β∗kk` ∼ qβ(β∗kk`|βkk`)I(β∗kk` ∈ S∗k`) where

S∗k` =

{
β

∣∣∣∣β > max
i

(
log(u∗ik)−

∑
`′ 6=` xi`′βkk`′

xi`

)}
.

We summarize the property of the proposal density in the following proposition, of which
the proof is given by the proceeding paragraph.

Proposition 1 The proposal density q(β∗jk`, t
∗
jk, β

∗
kk`|βjk`, tjk, βkk`) = qβ(β∗jk`|βjk`)qt(t∗jk|tjk)

qβ(β∗kk`|βkk`)I(β∗kk` ∈ S∗k`) and the full conditional density p(β∗jk`, t
∗
jk, β

∗
kk`|·) have the same

support.

We now provide the MCMC (Metropolis-within-Gibbs) algorithm below; its validity is guar-
anteed by Proposition 1 and standard MCMC theory.
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The MCMC Algorithm. Initialize model parameters. Repeat the following steps
until practical convergence.

(I) Update precision matrices Ωi. Scanning through each column k = 1, . . . , p, each
row j 6= k, and each covariate ` = 1, . . . , q + 1, we propose β∗jk`, t

∗
jk, and β∗kk` from

qβ(β∗jk`|βjk`), qt(log t∗jk| log tjk), and qβ(β∗kk`|βkk`)I(β∗kk` ∈ S∗k`) where qt(log t∗jk| log tjk) =

N(log t∗jk| log tjk, η
2
t ), qβ(β∗jk`|βjk`) = N(β∗jk`|βjk`, η2β), and qβ(β∗kk`|βkk`) = N(β∗kk`|βkk`, η2β).

We accept the proposal with probability min(1, α) where

α =

∏n
i=1 p(yi|Ω∗i )π(β∗jk`)π(t∗jk)π(β∗kk`)qβ(βjk`|β∗jk`)qt(tjk|t∗jk)qβ(βjk`|β∗jk`)I(βkk` ∈ Sk`)∏n
i=1 p(yi|Ωi)π(βjk`)π(tjk)π(βkk`)qβ(β∗jk`|βjk`)qt(t∗jk|tjk)qβ(β∗kk`|βkk`)I(β∗kk` ∈ S∗k`)

.

The proposal standard deviations η2t and η2β can be set to achieve desired acceptance rate
(say, 20%-40%).

(II) Update the hypervariances τjk from the inverse-gamma full conditional, τjk ∼
IG(aτ + 1/2, bτ + β2jk`/2).

Graph estimation. A point estimate of Gi can be obtained by thresholding the posterior
probability of inclusion. Specifically, we select {j, k} ∈ Ei if Pr({j, k} ∈ Ei|yi,xi) > c
where c ∈ [0, 1] is the probability cutoff2 . The posterior probability of inclusion can be
approximated by the MCMC samples,

Pr({j, k} ∈ Ei|yi,xi) = Pr(ωijk 6= 0|yi,xi) ≈
1

R

R∑
r=1

I{ω(r)
ijk 6= 0},

where the superscript (r) indexes the posterior samples.
Graph interpolation. Since the precision matrix Ωi = f(xi) is modeled as a function of

xi, we can interpolate a graph G∗ = (V,E∗) for an unseen observation at covariates x∗. It
is achieved through the posterior predictive distribution of f(·), which can be approximated
by the MCMC samples,

Pr({j, k} ∈ E∗|y,x,x∗) = Pr{fjk(x∗) 6= 0|y,x,x∗} ≈ 1

R

R∑
r=1

I{f (r)jk (x∗) 6= 0}.

Graph interpolation requires covariates x∗ only, since the right-hand side of the equation
above does not depend on y∗. In practice, this is a desirable property. For example, one
can predict the gene network for new patients without sequencing the whole genome; the
measurement of covariates (e.g., blood biomarkers) will suffice.

6. Simulations

6.1 Simulation Setup

We assessed the utility and operating characteristics of GGMx in seven simulation scenarios
with different levels of sparsity and types of covariates. The same size of the dataset in

2. Note that the probability cutoff c is different from the random threshold tjk. The random threshold is a
model parameter used to induce sparsity whereas the probability cutoff is introduced to obtain posterior
point estimate of graphs.
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application was used: n = 151, p = 33, and q = 2 (q was set to 1 for the last scenario).
Note that even with a moderate dataset, the number of parameters (βjk, tjk, τjk) that need

to be estimated is p(p+1)(q+2)
2 + p(p−1)

2 =2,772, which is substantially larger than the sample
size. We focused on graph structure learning in the first five scenarios by assuming constant
diagonal elements gjj(·) for simplicity; non-constant case (i.e., simultaneous inverse-partial-
variance and graphical regression) will be considered in the last two scenarios. We fixed the
probability cutoff c to be 0.5 in all scenarios.

Scenario I. We generated the simulated data from our model. We randomly set 2% of
βjk` for j < k to be ±1 with equal probability. We set tjk = 0.5 and all the diagonal
elements of Ωi to be 1. The covariate xij was generated from an uniform distribution

xij
iid∼ U(−1, 1). The resulting precision matrix Ωi might not be positive definite for all

observations i = 1, . . . , n. We repeated the process until Ωi > 0, ∀i. Then the observation

yi was drawn from normal yi
ind∼ N(0,Ω−1i ). Using the same procedure, we generated a

similar independent dataset with sample size 50 for testing graph interpolation of GGMx.

Scenario II. The procedure in Scenario I was inefficient to generate a denser network.
In addition, it may not mimic well the data in application. In this scenario, we used one
posterior draw from GGMx applied to the multiple myeloma data as simulation truth. The
true βjk`’s are shown as heatmaps in Figure 4a where ` = 1 corresponds to the intercept
and ` = 2, 3 correspond to the two covariates. Since the heatmap of βjk1 is denser than
those of βjk2 and βjk3, there were more nearly constant edges than highly varying edges.
The true tjk’s are shown in Figure 4b. The covariates xi of the multiple myeloma dataset

was used. And yi was drawn from the model yi
ind∼ N(0,Ω−1i ) with Ωi = f(xi).

Scenario III. This scenarios considered a simulation truth from an ordinary GGM, i.e.
Ωi = Ω,∀i. We generated a true Ω as follows.

1. Generate an Erdös-Rényi graph G with connecting probability 5%.

2. Set the diagonal entries of Ω to 1. For each edge {j, k} in G, draw corresponding
off-diagonal entrie ωjk uniformly in [−1,−0.5] ∪ [0.5, 1].

3. Since Ω might not be positive definite, we kept adding 0.1I to Ω until Ω became
positive definite. The resulting partial correlations were less than 0.4 in magnitude. Then

we simulated yi
iid∼ N(0,Ω−1) and xij

iid∼ U(−1, 1). GGMx took the independently generated
xij as covariates, which were pure “noises” for constructing the graph of yi.

Scenario IV. We extended Scenario III to multiple graphs with C = 3 groups. The
sample size of each group was n1 = 50, n2 = 50, and n3 = 51. Graph G1 was generated as
an Erdös-Rényi graph with connecting probability 10%, which led to 63 edges. We randomly
turned 3 edges on and 3 edges off from G1 to obtain G2 and similarly constructed G3 from
G2. As a result, each pair of (G1, G2) and (G2, G3) shares about 90% edges whereas (G1, G3)
shares about 80% edges. Then given graphs, the precision matrices and observations yi were
generated in the same way as Scenario III. To apply GGMx in this setting, we let xij be
a binary indicator such that xij = 1 if observation i belongs to group j for j = 1, 2 and
xij = 0 for j = 1, 2 if observation i belongs to group 3.

Scenario V. We have considered continuous covariates (Scenarios I-II), a discrete covari-
ate (Scenarios IV), or no relevant covariates (Scenario III). Here, we included a scenario with
one continuous covariate and one discrete covariate. We generated the data by following
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Figure 4: Simulation truths for Scenario II. Heatmaps of (a) true βjkl’s and (b) true tjk.
They are one posterior draw from GGMx applied to the multiple myeloma data.

Scenario I with one covariate replaced by a Bernoulli(0.5) variable and the corresponding
coefficients βjk`’s set to ±0.5 with equal probability.

Scenario VI. We considered a scenario without assuming ωijj to be a constant; instead
we set gjj(xi) = 0.1+0.2xi1 +0.2xi2 and ωijj = exp{gjj(xi)}. For off-diagonal elements, we
randomly included 2% of the edges and the corresponding βjk` for j < k was set to be 0.7.

The covariate xi` was generated from xi`
iid∼ 2Beta(2, 1). The resulting precision matrix Ωi

might not be positive definite for all observations i = 1, . . . , n. We repeated the process

until Ωi > 0, ∀i. Then the observation yi was drawn from normal yi
ind∼ N(0,Ω−1i ).

Scenario VII. To illustrate GGMx can be used to recover time-varying GGM, we reduced
the number of covariate to q = 1 from Scenario VI.
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6.2 Methods under Consideration

We compared the proposed GGMx with six competing methods: Bayesian Gaussian graph-
ical models (Mohammadi et al., 2015), graphical lasso (Friedman et al., 2008), kernel graph-
ical lasso (Liu et al., 2010a), fused graphical lasso, group graphical lasso (Danaher et al.,
2014), and Bayesian multiple Gaussian graphical model (Shaddox et al., 2018).

Bayesian Gaussian graphical models (BGGMs) assume i.i.d. multivariate Gaussian like-
lihood and the G-Wishart prior on the precision Ω ∼ WG(b,D) and a uniform prior on
the graph G. G-Wishart prior is conjugate to the multivariate Gaussian likelihood. How-
ever, due to intractable prior normalizing constant of G-Wishart prior, non-trivial MCMC
algorithm is required for posterior inference. We use an efficient trans-dimensional MCMC
algorithm proposed by Mohammadi et al. (2015) based on a continuous-time birth-death
process.

Graphical lasso (glasso) is a penalized likelihood approach that maximizes the objective
function log |Ω| − tr(SΩ)− λ||Ω||1 where S is the sample covariance matrix. The first two
terms are the Gaussian log-likelihood and the last term is an `1 penalty, which induces
sparsity in Ω. The optimization is solved using a coordinate descent algorithm.

Both BGGM and glasso assume i.i.d. sampling and are designed to infer networks that
do not change with covariates. For a more fair comparison, we implemented the kernel
graphical lasso (k-glasso) approach outlined in Liu et al. (2010a). K-glasso is a modification
of glasso with the sample covariance matrix S replaced by a covariate-dependent covariance
matrix via kernel smoothing. Specifically, let

S(x) =
n∑
i=1

K

(
||x− xi||

h

)
(yi − µ(x))(yi − µ(x))T

/ n∑
i=1

K

(
||x− xi||

h

)
,

with

µ(x) =
n∑
i=1

K

(
||x− xi||

h

)
yi

/ n∑
i=1

K

(
||x− xi||

h

)
,

where || · || is the Euclidean norm, h > 0 is the bandwidth, and K(·) is a Gaussian
kernel. Then a sparse estimate of Ωi is obtained by applying glasso with S = S(xi),
Ω̂i = arg minΩ{log |Ω| − tr(S(xi)Ω)− λi||Ω||1}.

As pointed out in Section 3, the proposed GGMx is a multiple graphical model when the
covariates are categorical. Multiple graphical models assume that observations are divided
into C groups. The goal is to jointly estimate group-specific sparse precision matrices
Ω(c), c = 1, . . . , C. Since the grouping of observations can be represented by a categorical
variable, GGMx is able to learn group-specific graphs. For comparison, we consider three
alternative multiple graphical model approaches, the two penalized approaches proposed
in Danaher et al. (2014), fused graphical lasso (FGL) and group graphical lasso (GGL),
and the Bayesian multiple Gaussian graphical model (MGGM) proposed by Shaddox et al.
2018. Both penalized algorithms maximize the following objective with respect to positive
definite matrices {Ω(c)}Cc=1,

C∑
c=1

nc{log |Ω(c)| − tr(S(c)Ω(c))} − P ({Ω(c)}Cc=1),
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where nc is the sample size of group c, S(c) is the sample covariance matrix of group c, and
P (·) is a penalty that encourages sparsity and similarity of {Ω(c)}Cc=1. The penalty is chosen

to be λ1
∑C

c=1

∑
j 6=k |ω

(c)
jk |+ λ2

∑
c<c′

∑
j,k |ω

(c)
jk − ω

(c′)
jk | for FGL and λ1

∑C
c=1

∑
j 6=k |ω

(c)
jk |+

λ2
∑

j 6=k

√∑C
c=1 ω

(c)2
jk for GGL.

Finally, MGGM uses local priors on sparse precision matrices (Wang, 2015) and can
be thought as the local prior counterpart of the proposed method for the multiple graphs
setting; comparisons with this method only pertain to Scenario IV.

For GGMx, we set the hyperparameters, aτ = bτ = 10−1, µt = 1, and σt = 0.2; these
choices will be tested in sensitivity analyses at the end of this section. Both GGMx and
BGGM were run for 10,000 iterations with 5,000 burn-in. The regularization parameter
of glasso was selected by the stability approach (Liu et al., 2010b) implemented in the R
package huge. The tuning parameters λ1 and λ2 of FGL and GGL were selected based
on the approximated Akaike Information Criterion (AIC) as suggested by Danaher et al.
(2014). A 20 × 20 grid evenly spaced between 0.05 and 0.5 for λ1, and between 0.001 and
0.01 for λ2, was used. Likewise, the tuning parameters λi and hi of k-glasso were also
selected based on AIC on a 20× 20 grid [0.1, 1]× [0.1, 1] for each observation i = 1, . . . , n.
All results were based on 50 repeat simulations.

6.3 Simulation Results

To assess the graph recovery performance, we computed true positive rate (TPR), false
discovery rate (FDR), and Matthews correlation coefficient (MCC),

TPR =
TP

TP + FN
, FDR =

FP

TP + FP
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, FP, TN, and FN stand for true positives, false positives, true negatives, and
false negatives. MCC takes value between -1 and 1 with 1 being perfect graph recovery
and 0 being random guess. In addition, we scrutinized the edges with inclusion probability
that is considerably affected by the covariates’ value. Hence, we introduced another three
measures: partial TPR (pTPR), partial FDR (pFDR), and partial MCC (pMCC) which
are simply TPR, FDR, and MCC restricted to the edges with true frequency of inclusion
across observations between 0.1 and 0.9. We report all the metrics in Figure 5. Overall,
GGMx had robust, superior performance (with high true positive and low false discovery
rates) across all scenarios.

In Scenario I, GGMx clearly outperformed BGGM and glasso in all six measures. This
was expected because the data were generated from the proposed model and all edges were
associated with covariates. BGGM and glasso assume i.i.d. sampling and therefore did not
perform well. Although k-glasso was much better than BGGM and glasso, it is clear that
GGMx performed significantly better than k-glasso in all metrics. In addition, GGMx can
interpolate graph structure given new covariates. The results of graph interpolation (not
shown) were very similar to those of graph estimation.

In Scenario II, it appeared that BGGM was comparable to GGMx in TPR, FDR and
MCC. This is because in the simulation truth, there were much more nearly constant edges
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than highly varying edges. In many cases including the application, it is interesting to focus
on highly varying edges as they are most differential across observations. Not surprisingly,
GGMx had favorable performance compared to BGGM and glasso in terms of pTPR, pFDR,
and pMCC. K-glasso was not able to pick up the signals in this scenario, which mimicked
the real data.

In Scenario III where there was no relationship between graph and covariates, BGGM
outperformed GGMx, glasso, and k-glasso. But GGMx still had a reasonably good perfor-
mance with the lowest FDR and substantially better overall performance than glasso and
k-glasso.

In Scenario IV (multiple graphical models), GGL, FGL, and MGGM had higher TPR
compared to GGMx, however, at the price of higher FDR. Consequently, GGMx outper-
formed GGL, FGL, and MGGM in terms of FDR and the overall measure MCC.

In Scenario V, GGL and FGL were applied ignoring the continuous covariate whereas
k-glasso was applied ignoring the discrete covariate. GGMx was able to simultaneously
incorporate both continuous and discrete covariates in estimating graphs and therefore as
expected it had the best performance compared to BGGM, glasso, k-glasso, GGL, and FGL
in practically all measures.

In Scenario VI where the diagonal elements of Ωi were not constrained to be constants,
the results were consistent with those in Scenarios I-V. BGGM and glasso outperformed
k-glasso overall but k-glasso was much better with respect to the selection of the edges
that have substantial variability (measured by pTPR, pFDR, and pMCC). The proposed
GGMx was clearly the best in both overall measures and partial measures. For example,
GGMx had considerably higher MCC as well as pMCC than all the competing methods. In
addition, we also evaluated the estimation accuracy of Ωi by computing the mean squared
error (MSE). We again focused on edges with true frequency of inclusion across observations
between 0.1 and 0.9. The resulting MSE was 0.10, 1.24, 0.44, and 0.82 for GGMx, BGGM,
glasso, and k-glasso, which demonstrated the capability of the proposed GGMx in capturing
the heterogeneity in Ωi.

In Scenario VII, the main conclusion stays the same as in Scenario VI although k-
glasso had significantly reduced FDR, however, at the price of significantly reduced TPR.
GGMx, on the other hand, demonstrated its stable performance across all scenarios and all
measures.

Lastly, we assessed the sensitivity of GGMx to the choice of all the hyperparame-
ters (aτ , bτ ) and (µt, σt). We picked Scenario VII and varied the hyperparameters in
the following range, (aτ , bτ ) ∈ {(10−2, 10−2), (10−3, 10−3), (10−4, 10−4)} and (µt, σt) ∈
{(1.0, 0.5), (1.0, 1.0), (1.5, 1.0)}3. The performance of GGMx with different hyperparam-
eters is reported in Table 2, which shows GGMx is robust within the considered range.

7. Application in Multiple Myeloma

We present an application of GGMx in modeling transcriptomic regulation in multiple
myeloma (MM) which is a late-stage malignancy of plasma cells. Recent research has
shifted the focus from traditional “one size fits all” therapies to precision medicine strate-

3. The resulting prior means (variances) of the minimum effect size tjk are 1.0 (0.22), 1.3 (0.63), and 1.6
(0.77).
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Figure 5: Simulations. Operating characteristics averaged over 50 repeat simulations under
seven scenarios. Graph interpolation is not shown as it is similar to graph estimation.
pMCC is 0 when no missing edge is detected. pTPR, pFDR, and pMCC are not available
for Scenarios III and IV.

gies because MM is a highly heterogeneous genetic disease at an individual level (Hervé
et al., 2011). To find better personalized treatment and more accurate prescriptive recom-
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Table 2: Sensitivity Analysis. Operating characteristics for simulations under six alter-
native hyperparameter settings. The numbers are calculated on the basis of 50 repeti-
tions; standard deviations are within parentheses. The first row shows the performance
of GGMx in Scenario VII with default hyperparameter setting (aτ , bτ ) = (10−1, 10−1) and
(µt, σt) = (1, 0.2).

TPR FDR MCC pTPR pFDR pMCC

Default Parameter Setting 0.94 (0.04) 0.20 (0.12) 0.86 (0.07) 0.94 (0.04) 0.01 (0.01) 0.81 (0.09)
(aτ , bτ )

(10−2, 10−2) 0.93 (0.04) 0.15 (0.10) 0.89 (0.06) 0.93 (0.04) 0.01 (0.01) 0.81 (0.09)
(10−3, 10−3) 0.93 (0.04) 0.10 (0.08) 0.91 (0.05) 0.93 (0.04) 0.01 (0.01) 0.80 (0.08)
(10−4, 10−4) 0.93 (0.04) 0.07 (0.07) 0.93 (0.04) 0.93 (0.04) 0.01 (0.01) 0.80 (0.08)

(µt, σt)
(1.0, 0.5) 0.97 (0.03) 0.33 (0.12) 0.80 (0.08) 0.97 (0.03) 0.02 (0.02) 0.82 (0.07)
(1.0, 1.0) 0.98 (0.02) 0.30 (0.13) 0.82 (0.08) 0.98 (0.02) 0.03 (0.02) 0.81 (0.08)
(1.5, 1.0) 0.97 (0.03) 0.19 (0.11) 0.88 (0.07) 0.97 (0.03) 0.03 (0.02) 0.81 (0.08)

mendations to MM patients, there needs to be a better understanding of the heterogeneity
based on genomically defined pathways (Lohr et al., 2014). We use data generated by
the Multiple Myeloma Research Consortium, a multi-institutional collaborative research
effort collected data (among others) on gene expressions and clinical parameters from MM
patients (Chapman et al., 2011).

We focus our analyses on the genes mapped to one of the most important pathways
in MM, NF-κB signaling pathway. Activation of the NF-κB pathway has been implicated
in MM, but the genomic foundation of such activation is only partially understood (Dem-
chenko et al., 2010; Roy et al., 2018). Clinical information includes measurements of two
important prognostic factors, serum beta-2 microglobulin (Sβ2M) and serum albumin. The
International Staging System (Greipp et al. 2005) uses these two prognostic factors to stage
MM: stage I, Sβ2M < 3.5 mg/L and serum albumin ≥ 3.5 g/dL; stage II, neither stage I
nor III; and stage III, Sβ2M ≥ 5.5 mg/L. The observed values of Sβ2M and serum albumin,
and the staging partition are depicted in Figure 6. We use these two prognostic factors as
covariates (q = 2).

The goal of this study was to infer subject-level gene expression networks whose struc-
tures are modified by the prognostic factors. After removing outliers and samples with
missing gene expression or clinical information, we had n = 151 samples and p = 33
genes. We ran two separate MCMCs, each with 50,000 iterations, discarded the first 50%
as burn-in and saved every 50th sample after burn-in. To check MCMC convergence, we
calculated the potential scale reduction factor (PSRF, Gelman et al. 1992) for each entry in
Ωi, i = 1, . . . , n. The median PSRF was 1.00 with interquartile range 0.01, which showed
no lack of convergence. We then concatenated the two chains and all subsequent inference
was based on the combined Monte Carlo samples. The probability cutoff c was chosen to
control the posterior expected FDR at 1%.

Population-level inference The estimated graphs had 30 edges per subject on average
with minimum 20 edges (from a stage III patient) and maximum 37 edges (from a stage
I patient). We summarized a population-level gene expression network G = (V,E) as the
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Figure 6: Observed prognostic factors are shown as crosses and dots. Dots are chosen
as representative cases for network visualization in Figure 8. Triangles will be used to
interpolate networks for unseen patients shown in Figure 9. The prognostic covariates space
are partitioned into Stages I, II, and III, according to the International Staging System for
multiple myeloma.

union of all networks across subjects E = ∪ni=1Ei. There were |E| = 42 edges in G. To
visualize the graph variability, we computed the variance of edge inclusion. Specifically,
let ejk = (e1jk, . . . , enjk) be a binary vector such that eijk = 1 if {j, k} ∈ Ei. Then for
edge {j, k}, the variance of edge inclusion was defined as the sample variance of ejk. The
population-level network was reported in Figure 7, with the edge width proportional to
edge inclusion variability. We found 14 out of 42 edges with variance greater than 0.2 (note
the maximum variance is 0.25 for Bernoulli random variable). These 14 edges appeared in
about 30%-70% of the patients. In line with our simulation studies, traditional GGMs are
unlikely to accurately capture these differential edges.

Subject-level inference Next, we focus on the subject-level inference. We chose 6 rep-
resentative patients, 2 from each stage, to show their respective networks in Figure 8. The
values of their prognostics factors are represented by the dots in Figure 6. We set the
edge width proportional to the absolute value of partial correlation ρijk = − ωijk√

ωijjωikk
, and

use solid lines to represent positive partial correlations and dashed lines negative partial
correlations.

We highlight several interesting biological findings. RELB was found to be a highly
connected gene across all patients (Figures 7 and 8). RELB is a core member of NF-κB
family. Hence it is not surprising that RELB played an import role in NF-κB pathway.
In fact, many MM patients have abnormal NF-κB target gene expression, associated with
genetic aberration of NFKB1 and NFKB2 (Annunziata et al., 2007). This further confirms
our finding that RELB was consistently positively associated with NFKB1 and NFKB2.
In addition, NFKBIA is an inhibitor of NF-κB, which is consistent with our findings that
NFKBIA was negatively associated with RELB across patients. It is also known that genes
in the same family tend to be positively associated with each other. Our study found positive
links, for example, BIRC2—BIRC3 and NFKBIA—NFKBIZ. As disease progresses, some
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Figure 7: Population-level summary of gene expression network. The network is a union of
all networks across subjects. The edge width is proportional to edge inclusion variability.

paths get blocked and some new connections get acquired. Among others, the link between
LTB and TNFRSF13B was found in stage III patients but not in stage I patients whereas
the link between NFKBIL2 and MAP3K7IP2 was lost in stage III patients. While some of
those links are well documented in the biological literature (Liu et al., 2017), their gain and
loss mechanisms need further validation and investigation.

Finally, as new patients come into the clinic, GGMx can be used to quickly predict
the individualized gene network only based on the blood test results of Sβ2M and serum
albumin without the costly and time-consuming whole genome sequencing. For illustra-
tion, we picked two sets of covariates that were unobserved in our collected data; they are
represented by triangles in Figure 6. The estimated gene expression network of the two
hypothetical patients are shown in Figure 9, which was enabled by the unique feature of
graph interpolation of the proposed GGMx.

8. Discussion

In this article, we introduce a general regression framework for (undirected) Gaussian graph-
ical models with covariates (GGMx). This generalization of regular GGM beyond i.i.d. data
allows the graph structure and strength to change with covariates and is particularly chal-
lenging especially in the undirected graph context due to the positive definiteness constraint
of a precision matrix. We have addressed this challenge through a novel prior that is theoret-
ically connected to non-local priors for precision matrices, paired with a carefully designed
MCMC algorithm for efficient posterior inference. GGMx includes at least five special cases
including standard GGMs, group-specific GGMs, time-varying GGMs, covariate-dependent
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GGMs, and context-specific GGMs. We demonstrated the utility and robustness of GGMx
through extensive simulations and an application in precision oncology. Our GGMx frame-
work is broadly applicable to many other scientific domains of interest. For example, in
brain functional magnetic resonance imaging data, GGMx can be used to study how brain
connectivity networks change with covariates such as time and stimuli.

We remark that covariance regression (Hoff and Niu, 2012; Fox and Dunson, 2015) is
a closely related model. It is, however, fundamentally different from the proposed GGMx
in at least two ways. First, covariance regression assumes the covariance matrix rather
than the precision matrix to be a function of xi which takes a specific form, Σi = Ω−1i =
Ψ + Λ(xi)Λ(xi)

T for some PDM Ψ and matrix-value function Λ(xi). Second, covariance
regression assumes a dense Σi whereas GGMx allows Ωi to be sparse and moreover, the
sparsity pattern can change with covariates. Note that zeros in Λ(xi) generally do not
translate to zeros in Σi or Ωi. Therefore, it is not straightforward to extend the covariance
regression framework to allow sparsity.

While our work is a useful first step for undirected graphical regression, there are sev-
eral extensions and refinements possible. We have chosen the smooth covariate-dependent
functions, gjk(·), to be linear for simplicity and parsimony. Same choice has been made
by similar papers (Cheng et al., 2014). However, in general, it can be replaced by a non-
linear function. For example, letting x̃ denote some basis expansion of x such as splines
and wavelets, we can model gjk(x) = βTjkx̃ and the same inference procedure with linear
functions applies. We plan to incorporate nonlinearity in our future work. Furthermore, we
have worked with a moderate number of variables due to several reasons. First, the number
of parameters that need to be estimated in GGMx is on the order of p(p+1)(q+2)

2 + p(p−1)
2 ,

which can be large even for a moderate number of variables and covariates. Second, from
an application perspective, we focus on a specific signalling pathway in multiple myeloma,
NF-κB for deeper scientific interpretations. The small sample size (relative to the number
of parameters) does not allow for reliable inferences for a much larger number of variables
(e.g., the entire transcriptomic profile). Finally, the scalability of the proposed GGMx also
limits the number of variables under consideration. The scalability can be potentially im-
proved by adopting more efficient MCMC algorithms such as Metropolis-adjusted Langevin
algorithm (Roberts et al., 1996) or Hamiltonian Monte Carlo (Duane et al., 1987). Both
algorithms take advantage of gradient information of the target distribution. However,
the hard thresholding function in (3) is discontinuous. This difficulty can be potentially
overcome by considering a continuous relaxation of the hard thresholding function (Cai
et al., 2018). Another potential solution is resorting to variational Bayes algorithms, which
approximate the posterior distributions by simpler variational distributions through mini-
mizing the Kullback–Leibler divergence between them. We hope to address the scalability
issue in our future work.
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(a) Stage I (b) Stage I

(c) Stage II (d) Stage II

(e) Stage III (f) Stage III

Figure 8: Subject-level networks for six representative patients, represented as dots in Figure
6. The edge width is proportional to the absolute value of partial correlation. The sign of
partial correlation is represented by line type: + solid line and - dashed line.
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Figure 9: Network interpolation for two sets of unseen prognostic factors, represented as
triangles in Figure 6.
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