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Abstract

Neural Arithmetic Logic Modules have become a growing area of interest, though remain
a niche field. These modules are neural networks which aim to achieve systematic general-
isation in learning arithmetic and/or logic operations such as {+, —, x, =+, <, AND} while
also being interpretable. This paper is the first in discussing the current state of progress of
this field, explaining key works, starting with the Neural Arithmetic Logic Unit (NALU).
Focusing on the shortcomings of the NALU, we provide an in-depth analysis to reason
about design choices of recent modules. A cross-comparison between modules is made on
experiment setups and findings, where we highlight inconsistencies in a fundamental ex-
periment causing the inability to directly compare across papers. To alleviate the existing
inconsistencies, we create a benchmark which compares all existing arithmetic NALMs.
We finish by providing a novel discussion of existing applications for NALU and research
directions requiring further exploration.

Keywords: arithmetic, neural networks, extrapolation, interpretability, systematic gen-
eralisation

1. Introduction

The ability to learn by composition of already known knowledge is a form of systematic gen-
eralisation (Fodor et al., 1988), also termed as compositional generalisation (Lake, 2019).
Humans can apply such generalisations for arithmetic after learning the relevant underlying
rules. For example, combining primitive operations such as addition (a + b) and multipli-
cation (a x b) on already observed inputs to produce more complex expressions (such as
(a+b) % (c+d)). Humans can also transfer their skills in applying operations on limited set
of numbers (for example between 1-100) to the range of unobserved numbers. This ability
to extrapolate, that is generalise to out-of-distribution (OOD) data, is a desirable property
for neural networks. Research suggests neural networks struggle to extrapolate even for
the simplest of tasks such as learning the identity function (Trask et al., 2018). Rather
than generalising, networks lean towards memorisation in which the model memorises the
training labels (Zhang et al., 2020).

To address this issue, Trask et al. (2018) introduce the first of a new class of neural
modules which we term Neural Arithmetic Logic Modules (NALMs). Their mod-
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ule, the NALU, aims to learn systematic generalisation for arithmetic computations. For
example, learning the relation between input [z, 2, x3, 4] and output o; where the input
elements are real numbers and output is expression x; + x3 — x3. To achieve this they
assume an inductive bias such that particular weight values can be intuitively interpreted
as different primitive arithmetic operations. For example, using a weight of 1 to represent
addition and weight of -1 to represent subtraction. This form of interpretability is com-
parable to the definition of decomposable transparency by Lipton (2016). Though NALU
shows promising improvements over networks such as Multilayer Perceptrons (MLPs) for
extrapolation, the unit still presents various shortcomings in architecture, convergence, and
transparency. These areas for improvement inspired the design of other modules (Heim
et al., 2020; Madsen and Johansen, 2020; Schlor et al., 2020; Rana et al., 2019). Due to
the growing interest of NALMs, we believe it is important to have a resource, this paper,
to explain current motivations, strengths, weaknesses and gaps in this line of research.

1.1 Contributions

1. We provide the first definition to describe this research field by defining a NALM—a
neural network with the ability to model logic and/or arithmetic in a generalisable
manner to OOD data whilst expressing an interpretable solution.

2. We explain how recent modules are designed to overcome various shortcomings of
NALU including: inability to process negative inputs and outputs, lack of convergence
and adhering to its inductive bias, weak modelling of the division operation, and lack
of compositionality.

3. We highlight how a popular experiment for testing modules arithmetic capabilities is
inconsistent between different papers with regards to hyperparameters and experiment
setup. This leads to providing a new benchmark for comparing existing (and future)
arithmetic NALMs.

4. Using the first NALM, the NALU, as a focal point we show the usefulness of NALUs
in larger differentiable applications which require arithmetic and extrapolation capa-
bilities, while also making aware situations in which NALU is sub-optimal.

5. We outline possible research directions regarding modelling division, robustness across
different training ranges, compositionality of modelled expressions, and analysing the
impact of NALMs when integrated with other networks.

1.2 Outline

In this paper we begin by defining a NALM, motivating their aim and uses in Section 2.
Section 3 and 4 explains the definitions of key NALMs: NALU, iNALU, NAU, NMU, and
NPU to build understanding. Using the first NALM, the NALU, as a focal point, Section 5
provides an in-depth analysis of the shortcomings of NALU to understand the motivation
behind design choices for more recent NALMs. Section 6 highlights inconsistencies in exper-
iment setup and compares findings across existing modules. Additionally, we provide our
own findings comparing arithmetic NALMs using a consistent experiment setup. Section 7
discusses the findings of NALMs which specialise in logic operations. Section 8 shows the
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diversity in NALU’s use in applications, while also indicating situations in which NALU is
sub-optimal. Section 9 considers all discussed issues and outlines remaining gaps, suggest-
ing possible research directions to take as a result. We end by providing related work in
Section 10 which takes a step back and considers the wider research around areas relevant
to NALMs including extrapolative mathematics, inductive biases and specialist modules.

1.2.1 MATHEMATICAL NOTATION

When the individual NALM modules are defined, the mathematical notation will be in
element-wise form which provides how to calculate an output element y, indexed at o
given a single data sample (input vector x). For completeness, we also provide illustrations
for each module using the matrix/vector with symbols and colouring following the key in
Appendix A.

2. What are NALMs and Why use them?

We begin by defining NALMs. More specifically, before we detail instances of NALMs, we
first answer three questions: 1. What is a NALM? 2. What is the aim of a NALM? 3. Why
is a NALM useful?

From answering these questions, we shall arrive at the following definition: A NALM
is a neural network that performs arithmetic and/or logic based expressions which can ex-
trapolate to out-of-distribution (OOD) data when parameters are appropriately learnt whilst
expressing an interpretable solution.

2.1 What is a NALM?

NALM stands for Neural Arithmetic Logic Module. Neural refers to neural networks.
Arithmetic refers to the ability to learn arithmetic operations such as addition. Logic refers
to the ability to learn operations such as selection, comparison based logic (e.g., greater
than) and boolean based logic (e.g., conjunction). Module refers to the architecture’s of
the neural units which learns the arithmetic and/or logic operations. The term module
encompasses both a single (sub-)unit and multiple (sub-)units combined together.

What kind of operations can be learnt? Existing work has tried to model arith-
metic operations including addition, subtraction, multiplication, division, square, and square-
root. Logic based operations include logic rules (e.g., conjunction) (Reimann and Schwung,
2019), control logic (e.g., <=) (Faber and Wattenhofer, 2020) and selection of relevant
inputs.

How are operations learnt? Because a NALM is a neural network, a module can
model the relation between input and output vectors via supervised learning which trains
weights through backpropagation. To learn the relation between input and output, re-
quires learning to select relevant elements of the input and apply the relevant arithmetic
operation/s to the selected input to create the output.

How is data represented? The input and outputs are both vectors. Each vector
element is a real-valued number which is implemented as a floating point number. Each
output element can learn a different arithmetic expression. For a single data sample, this
can be illustrated in Figure 1 where we assume that the NALM used (made from two stacked
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Figure 1: High-level example of the input output structure into a NALM. Both networks
are the same. The generalised network defines the notation of each element in the
input and output. The explicit network is an example of valid input and output
values.

sub-units) can learn addition, subtraction and multiplication. In practice data would be
given in batch form.

2.2 What is the Aim of a NALM?

The main aim of NALMs is to provide systematic generalisation in learning arithmetic
and/or logic expressions. Once the learning state (training) has ended, if the correct weights
have been learned, the NALM is able to also extrapolate to unseen data (i.e., OOD data).

What does interpretability mean for NALMs? Imagine modelling the relation
between input x and output y with a module f parameterised by 0, i.e., y = fg(x). We say a
NALM is interpretable if you can set the module’s parameters (fy) to express the underlying
relation between x and y in a provable way. Simply put, the weights of a NALM can be
set such that, if the expression which NALM calculates is written out, we get an expression
which holds for all valid inputs. For example, for modelling the addition of two inputs (z;
and z), having a model which takes in the two inputs and applies a dot product with a

weight vector set to ones results in y = fy(x) = [w; wy] - [ij =[1 1]- [2] which will

always result in the output being x; + x2 no matter the values of z; and x».

More broadly speaking, the type of interpretability we want from a NALM is decompos-
able transparency (Lipton, 2016). Transparency means to understand how the model works.
Decomposability is transparency at component level defined by Lipton (2016) as ‘each part
of the model - each input, parameter, and calculation - admits an intuitive explanation’.
For example, for modelling force = mass x acceleration, there are: the two inputs into the
NALM representing mass and acceleration, the parameters representing the operation (mul-
tiplication) which are set to 1, and the calculation that multiplies the two inputs resulting
in the value for the force.

What does extrapolation on OOD data mean for NALMs? OOD data refers to
data which is sampled outside the training distribution. For example, if trained on a range
[0,10] a valid OOD range could be [11,20]. Extrapolation is the ability to correctly predict
the output when given OOD data. In the context of NALMs, extrapolation means that
the model successfully learns the underlying principles for modelling the (arithmetic/logic)
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operations it is designed for. From a practical viewpoint, a NALM with successful extrap-
olative capabilities can be considered as a module where loss in predictive accuracy occurs
due to numerical imprecisions of hardware limitations.

2.3 Why is a NALM useful?

The ability to learn arithmetic seems trivial in comparison to other architectures such as
LSTMs, CNNs or Transformers which can be used as standalone networks which learn tasks
such as arithmetic, object recognition and language modelling. So, why care about NALMs?

Learning arithmetic, though it may seem a simple task, remains unsolved for neural
networks. To solve this problem requires precisely learning the underlying rules of arithmetic
such that failure cases will not occur on cases of OOD data. Therefore, before considering
more complex tasks, solving the simple tasks seems reasonable.

Furthermore, even though NALMs specialise in arithmetic there is no restriction in us-
ing them as part of larger end-to-end neural networks. For example, attaching a NALM
to a CNN as residual connections (Rana et al., 2020) to improve counting in images. Util-
ising a NALM as a specialist module biased towards arithmetic operations provides more
focused learning. In Section 8, we show a vast array of applications in which NALMs are
being utilised. Being used as a sub-component in a larger network implies that the sub-
component has the ability to learn regardless of the data distribution. Therefore, the ability
to extrapolate is essential.

3. Overview of the NALU Architecture

The NALU, illustrated in Figure 2, provides the ability to model basic arithmetic operations,
specifically: addition, subtraction, multiplication, division. NALU requires no indication of
which operation to apply and aims to learn weights that provide extrapolation capabilities
if correctly converged. NALU comprises of two sub-units, a summative unit which models
{+,—} and a multiplicative unit which models {x,+}. Following the notation of Madsen
and Johansen (2020) we denote the sub-units as NAC, and NAC, respectively. Formally,
for calculating a specific output value, the NALU is expressed as:

Wio= tanh(VT/;)) ® sigmoid(]\/f-;o) (1)
T
NAC; tao =Y  (Wio-xi) (2)
i=1
I
NAC, : m, = exp (Z(wi,o n(ja] + e>>> (3)
i=1
I
go = sigmoid (Z(Gw . a;,)) (4)
i=1
NALU : 4o = go - ao + (1 — go) - My (5)

where ‘//1\/, M € RO are learnt matrices (I and O represent input and output dimension
sizes). A non-linear transformation is applied to each matrix and then both are combined via
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Figure 2: NALU architecture. Example of a 3-feature input and 2-feature output model.

element-wise multiplication to form W (Equation 1). Due to the range values of tanh and
sigmoid, W aims to have a inductive bias towards values {—1, 0, 1} which can be interpreted
as selecting a particular operation within a sub-unit (i.e., intra-sub-unit selection). For
example, in NAC, +1 is addition and -1 is subtraction, and in NAC, +1 is multiplication
and -1 is division. In both sub-units, 0 represents not selecting/ignoring an input element.
A sigmoidal gating mechanism (Equation 4) enables selection between the sub-units (inter-
sub-unit), where an open gate, 1, selects the NAC, and closed gate, 0, selects the NAC,.
Once trained the gating should ideally select a single sub-unit. G is learnt, and the gating
vector g represents which sub-unit to use for each element in the output vector. Finally,
Equation 5 gates the sub-units and sums the result to give the output. NALU’s gating only
allows for each output element to have a mixture of operations from the same sub-unit.
Therefore, each output element is an expression of a combination of operations from either
{+,—} or {x, =} but not {+, —, x,+}. This issue is fixed by stacking NALUs such that
the output of one NALU is the input of another. A step-by-step example for the NALU is
given in Appendix C. Next, we overview architectures of some recent modules.
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4. NALU Influenced Modules

NALU has inspired the creation of other modules including: Improved NALU (iNALU) (Schl5r
et al., 2020), Neural Addition Unit (NAU)/ Neural Multiplication Unit (NMU) (Madsen
and Johansen, 2020), Neural Power Unit (NPU) (Heim et al., 2020), Golden Ratio NALU
(G-NALU) (Rana et al., 2019), Neural Logic Rule Layer (NLRL) (Reimann and Schwung,
2019) and Neural Status Register (NSR) (Faber and Wattenhofer, 2020). This section will
go through each of the modules definitions, providing a consistent notation for each module
along with an illustrations of the module’s architecture.

4.1 iNALU

OEG}

Figure 3: iNALU architecture. Example of a 3-feature input and 2-feature output model.

The iNALU identifies key issues in NALU and modifies the unit to incorporate solutions
(detailed in Section 5). In particular, they use:

1. Module illustrations from the original papers are provided in Appendix B.
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e Independent weight matrices. To allow the multiplicative and summative paths
to learn their own set of W and M weights to be used in calculating a for the NAC,
and m for the NAC,.

—_ —

Wiﬁ) = tanh(Wi‘}o) . sigmoid(M,f()), (6)

— —_

WZN(E = tanh(W%) . sigmoid(Mi,Né). (7)

e Clipping. Clipping the multiplicative weights using the equation below (with w = 20)
and clipping the gradient of learnable parameters between [-0.1,0.1].

me = exp(min(In(max(|z;], €)) - WM, w). (8)

1,07

e Multiplicative sign correction. Retrieve the output sign of the multiplicative path,

I
msv, = H (sign(z;) - \W%| +1- \W% ) - (9)
i1

e Regularisation. Include a regularisation loss term which avoids having near-zero
learnable parameters,

Rsparse =

1 29 S max(min(—6; 0, 6;0) + £, 0)
t > 0-1 ) (10)

GE{WA,Im,V/V\M,MM,g}

where ¢ = 20. This activates if the loss is under 1 and there have been over 10
iterations of training data.

e Reinitialisation. Reinitialise the model weights if the average loss collected over a
number of consecutive iterations has not improved. More specifically, reinitialisation
occurs for every 10" iteration, if over 10,000 iterations have occurred and the average
loss of the first half of those iterations of the errors is less than the average loss of
the second half plus its standard deviation, and the average loss of the latter half of
errors is larger than 1.

e Independent gating. Remove the dependence of the input values when learning the
gate parameters,

go =sigmoid(g,) . (11)

The iNALU expression for calculating a single output element indexed at o is

iNALU : ¢, = go - a6 + (1 — go) - Mg - M3, . (12)



A PRIMER FOR NEURAL ARITHMETIC LoGIiC MODULES

Figure 4: NAU architecture. Example of a 3-feature input and 2-feature output model.
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Figure 5: NMU architecture. Example of a 3-feature input and 2-feature output model.

4.2 NAU and NMU

The NAU and NMU are sub-units for addition/subtraction and multiplication respec-
tively. Architecture and initialisations of the sub-units have strong theoretical justifications
and empirical results to validate design choices. The NAU and NMU definitions for calcu-
lating an output element indexed at o is:

I
NAU: a, = Z (Wi,o : Xi) ’ (13)
=1
I
NMU :mp = [[(Wio - xi +1=Wiy) (14)
=1

where the W is unique for each sub-unit. Prior to applying the weights of a sub-unit to
the input vector, each element of W' is clamped between [-1,1] if using the NAU, or [0,1] if
using the NMU. Therefore, considering discrete weights {—1,0,1}, Equation 13 will do the
summation of the inputs where each input is either added (W;, = 1), ignored (W;, = 0),
or subtracted (W;, = —1). When considering the discrete weight values of the NMU {0, 1},
the result is the product of the inputs where each input is either multiplied (W;, = 1) or
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not selected (W;, = 0). Rather than allowing the product of the inputs to be multiplied
by 0 whenever an irrelevant input (i.e., with weight of 0) is processed, Equation 14 will
also convert the input to be 1 (the multiplicative identity value) resulting in the input not
having any effect towards the final output.

To enforce the module weights to become discrete values, the following regularisation
loss term is also used,

o I
1 .

Rsparse = mzzmln(‘whohl* |Wi,o’)- (15)

o=1 i=1
A scaling factor
N . iteration; — Astart
A = Amax | min ,11,0), (16)
)\end - )\start

is multiplied to Rgparse to get the final value, where regularisation strength is scaled by a
predefined .

4.3 NPU and RealNPU

Figure 6: NPU architecture. Example of a 3-feature input and 2-feature output model.

The NPU (Equation 17) focuses on improving the division ability of the NAC, by ap-
plying a complex log transformation and using real and complex weight matrices (WRE and
WM respectively). NPU based modules can model products of arbitrary powers ([]z}"),
therefore the learnable weight parameters do not require to be discrete. For example, mod-
elling the square-root operation requires W’ 'E = 0.5. The » (Equation 18) converts values
close to 0 into 1 to avoid the output multiplication becoming 0. To do this, a relevance gate
(g) is learnt representing if an input element is relevant and should be used as part of an
output expression (g; = 1) or not be selected (g; = 0). Furthermore, each element of g is

10
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clipped between the range [0,1] (Equation 20).

I

I
NPU : y, =exp ( (WP - In(ry)) = Y (WS- m))

i=1 i=1 (17)
I I
( (Wi In(re)) + > (W - m)
i=1 =1
where
ri =i O (|zi| +€) + (1 — gi), (18)
0 i >0
= { w20 (19)
g x; <0
and
¢; = min(max(g;,0),1) . (20)

Additionally a simplified version of the NPU exists, named the RealNPU, considering only
real values of Equation 17:

1 1
RealNPU :=exp (Z(WZ}EE . ln(ri))> - cos <Z(WZP})E . kl)> . (21)

i=1 i=1

As the NPU and RealNPU can express arbitrary powers, using a regulariser to enforce
discrete parameters like in the iNALU, NAU or NMU would restrict the expressiveness.
Therefore, Heim et al. (2020) use a scaled L1 penalty, where the scaling value 8 grows
between predefined values Bsiari t0 Beng and is increased every Bgiep = 10,000 iterations by
a growth factor Bgyowin = 10.

4.4 G-NALU

The G-NALU replaces the exponent base in the tanh and sigmoid operations when calcu-
lating NALU’s weight matrix with a golden ratio base value:

1++5

o=~ 1618 (22)
. . 1
sigmoidg, = = (23)
¢21 -1
b, =2 1 24
tanhg 27 11 (24)

The use of a golden ratio base also requires the NAC, definition (Equation 3) to be modified
into Equation 25 to allow for the In-exp transformation to work.

r (Wion(z;l+e)

NAC, : m, = <z>< e ) (25)

11
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Figure 7: G-NALU architecture. Example of a 3-feature input and 2-feature output model.

4.5 NLRL

The NLRL, Figure 8, is a module to express boolean logic rules and simple arithmetic
operations (add, subtract and multiply) via modelling AND (conjunction), OR (disjunction)
and NOT (negation). By stacking NLRLs together, it is also possible to represent more

[OloIo)ye

Figure 8: NLRL architecture. Example of a 3-feature input and 2-feature output model.

12
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complex relations including implication, exclusive OR and equivalence. The architecture is
designed under the assumption of modelling the logic rules on booleans, therefore the input
values must be booleans. The default NLRL architecture consists of the following four parts
in which the three base operators (negation, conjunction and disjunction) are modelled:

e Negation gating, which models the negation operator. The (negation) gate deter-
mines if an input element should be negated (gate value of 1) or simply passed along
(gate value of 0).

Zio=(1— sigmoid(G?ﬂ?G)) “Tio+ sigmoid(G?IfG) (1 —xip) - (26)

e OR calculation, which applies disjunctions (weight value of 1) for the output of the
input gating. This can also be used to model addition and subtraction.

I

PR = QU1 ~Ajo - i ® [-1 Arg-dng])1+1. (27)
=2

e AND calculation, which applies conjunctions (weight value of 1) over the output of
the input gating. This can also be used to model multiplication. The definition is the
same as the NAC, (Equation 3) used in the NALU.

I
20N = exp (Z(Ai,o “In([@i,0] + 6))) : (28)

=1

e Output gating, which determines whether an output value should use the OR cal-
culation (gate value 0) or AND calculation (gate value 1).
Jo=(1— sigmoid(GSjjT)) . ZAND sigmoid(GggT) - 29Ry (29)

Three parameter matrices require to be learnt. One for learning the gate values for
negation (GNFY), another for learning the (shared) weight values for the AND and OR
calculations (A) and one for learning the gate values for the output (GOUT).

Optionally, the application of De-Morgan laws which enables representing a conjunction
using only negation and disjunction and represent disjunction using only negation and
conjunction, makes it possible to modify the architecture to only need either the AND or
OR calculation block. The changes require removing the unwanted calculation block and
replacing the output gate with a negation gate. Using only the negation and conjunction
operators is favoured as the implementation of disjunction requires using the Kronecker
product which scales poorly with input size.

4.6 NSR

The NSR (inspired by physical status registers found in the Arithmetic Logic Unit’s of
computers), models comparison based control logic: <, >, | =, =, >=, <=. Simply put,
the NSR does quantitative reasoning by learning what input elements to compare and how
to compare them. A NSR will output two elements. The first represents if the comparison is

13
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OI0I0

Figure 9: NSR architecture. Example of a 3-feature input and 2-feature output model.

true (or false) and the second is the negation of the first output (i.e., 1 —o01). The negation is
given such that when the NSR is used in downstream task, the other layers can have access
to either branch of the comparison. To do this, the NSR architecture does the following:

1. Learns two matrices (VOP! and VOF2) whose purpose is to select two inputs to be

—

operands (z9F! and xOP2) of the comparison function.

I
2OP1 — Z($i - softmax (V9 )) (30)
—_— I

20P2 — Z(xi . softmaX(Vl%PQ)) (31)

i
2. Takes the difference of the two selected operands.
7, = 2071 — 2P (32)

3. Scales the difference with a hyperparameter (\) to avoid vanishing gradients. Authors
indicate an inverse relation between A and the difference of the input values which
can be used to set the A value (Faber and Wattenhofer, 2020, Figure 5).

To=A"To (33)

14
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4. Calculates the sign bit (a;}) and zero bit (.’2\0) of the difference value using smooth
continuous functions.

2 = tanh(5) (34)
20 =1 — 2tanh(z,)> (35)

5. Learns a scale value (for each bit) and shared shift value.

6. Applies the scale and shift to the bit values, takes the sum of the results and passes
the result through a sigmoid. The resulting value represents the probability of the
comparison being true/false.

o= aa - Wi +29- W, + b, (36)
Yo = sigmoid(z,) (37)

7. Returns as output the comparison value and its negation value (1 — y,).

Given two inputs (relevant for the comparison), the NSR will compute the sign and zero bit
of the difference of the two operands. The sign and zero bit definitions are continuous relax-
ations of the discrete definitions which rescale the bounds to avoid the gradients of partial

—

1 ifz, >0
T ’ {1 i E =0

—1 ifz,#0

derivatives becoming zero. That is: o = < 0 ifz,=0 and ;g =
-1 ifz, <0
To improve robustness to different initialisations,/tEe N/SEalso implements redundancy
which learns multiple independent operand pairs (z9P1, 2OFP2) in parallel for each output
element. Each pair will have its own sign and zero bit, hence learning its own set of scale
and shift values. These independent paths get aggregated together by summing the different
Zo’s together.

5. NALU’s Shortcomings and Existing Solutions

We detail the weaknesses of NALU and explain existing solutions. We focus especially
on the iNALU, NAU, NMU and NPU when looking at solutions, as these modules focus
on overcoming the shortcomings of NALU. A summary of the discussed NALU issues and
proposed solutions is given in Table 1.

5.1 Mixed Sign Inputs and Negative Outputs

The NAC, cannot deal with mixed sign inputs/negative outputs. Equation 3 requires
converting negative inputs into their positive counterparts because the log transformation
cannot evaluate negative values. Therefore the sign of the input is lost, causing the NAC,
to be unable to have negative target values. The use of an exponent also causes the inability
to have negative outputs, as the range of an exponent is Rsg. To allow for negative targets,
a module can incorporate logic to deal with assigning the correct sign to the output such
as the iINALU’s sign correction mechanism (Schlor et al., 2020) or the NPU’s inherent sign
retrieval (Heim et al., 2020).

15
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Short- ALM NAU/NMU iNALU NPU/Real CalcNet
coming NPU (G-
NALU)
NAC, cannot NMU: Remove Sign correction Sign re- Fixed rules
have negative log-exponent (mixed sign trieval and sign
inputs/targets transformation  vector) parsing
Convergence of Stacking in- Independent - -
gate parameters stead of gating gating, sepa-
rate  weights
per sub unit
and regularisa-
tion loss
Fragile initialisa- Theoretically Reinitialise - -
tion valid initialisa- model
tion scheme
Weight inductive Regularisation Regularisation (see below)™ -
bias of {-1,0,1} loss term and loss term
not met (non- clipping
discrete solutions)
Gradient propa- Linear weight NAC, clipand Relevance Replace
gation matrix gradient clip gating sigmoid
and  tanh
exponent’s
with golden
ratio
Singularity (val- NMU: Remove NAC, clip Complex -
ues close to 0) log-exponent space trans-
transformation formation
and rel-
evance
gating

Compositionality

Parsing al-
gorithm

“The NPU and Real NPU supports fractional weights (e.g., 0.5 representing square-
root) and therefore does not enforce discretisation.

Table 1: Summarised NALU shortcomings and existing proposed solutions.
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The sign correction mechanism creates a mixed sign vector (msv) € RO*1 consisting
of elements {—1, 1} (assuming W has converged to integers {—1,0,1}), where each element
represents the correct sign for each output element.? The msv is element-wise multiplied to
Equation 3 resulting in applying the relevant sign to the outputs of the multiplicative sub-
unit. The +1 — |W; ,| means unselected inputs (W, = 0) will avoid affecting the final sign
value, as they will only multiply the msv, value by 1. An alternate way to view the mswv
is as a gating mechanism, sign(x;):|W;,| + 1-(1 — |W;,|), where a on gate (W;, = —1/1)
gives the sign and an off gate (W;, = 0) returns 1.

In the case of a RealNPU, the latter half of its definition (in matrix form), that is
© cos(WREE), can be interpreted as a sign retrieval mechanism. k represents positive
inputs as 0 and negative inputs as 7 (assuming the gate value converged to select the input).
Assuming convergence, WRE) values are {1, —1} representing {x,+}. Two outcomes are
possible from evaluating the expression: —cos(+m) = —1 or cos(0) = 1 where the output
value represents the sign of the input value.

Alternatively, it is possible to remove the need for transformations in the log/exponent
space in Equation 3, as Madsen and Johansen (2020) does for defining the NMU (Equa-
tion 14). This means negative targets can be expressed because the sign is no longer removed
from the input.

5.2 Gating Parameter Convergence

The NALU gate, responsible for selection between the NAC, and NAC, modules, is unable
to converge reliably. This is due to the different convergence properties of the NAC, and
NAC, (Madsen and Johansen, 2020, Appendix C.5), which results in gate weights that
converge to a discrete value but not the correct value. For example, converging to a 1
when the true gate value is 0 and visa-versa. In cases where the correct gate is selected,
the NALU still fails to converge consistently (Madsen and Johansen, 2020, Appendix C.5)
implying additional architectural issues exist for the unit. Alternatively, partial convergence
of gate (and weight) parameters leads to a leaky gate effect (Schlor et al., 2020), where non-
discretised parameters leads to non-optimal solutions. Such solutions may perform well on
the interpolation data used during training but will not generalise to OOD data. This issue
is amplified when additional NALU modules are stacked.

Even when using the improved NAU and NMU modules, gating still leads to inferior
results, therefore Madsen and Johansen (2020) replace module gating with module stacking.
Schlor et al. (2020) suggests using separate weights for the iNALU sub-units (Equations 6
and 7) to improve convergence, and independent gating (removing x from Equation 4) so
learning g is no longer influenced by input (see Equation 11). Removing the dependence
of the input removes contradictory constraints on the gating that would lead to unoptimal
solutions. Taking the example given by Schlor et al. (2020, Section 3.3.6), imagine two
different input samples &1 = [2,2] and 2 = —x1 = [-2,—2] and the task of adding,
i.e., calculating 2 4+ 2 = 4 for the first input and —2 — 2 = —4 for the second. Assuming
we use the NALU gating method, it implies that g = sigmoid(x1G) = sigmoid(xz2G) =
sigmoid(—x1G). However, as 1 # x2, the above statement is invalid.

2. Notice the similarity in calculation between the NMU (Equation 14) and iNALU’s msv (Equation 9).
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Figure 10: Regularisation functions used to induce sparsity in learnable parameters. Left:
Sparsity regularisation used on the NAU and NMU (see Equation 15), forcing
values towards {—1,0,1}. Middle: Scaling function (Equation 16) to control
the importance of the sparsity regularisation for the NAU and NMU. For this
example, \ is set to 1 and the scale factor will grow between iterations 4 to 6.
Right: Sparsity regularisation for a single parameter used on the iNALU (see
Equation 10).

5.3 Bias Considerations

The weight biases are achieved by adding a regularisation term for sparsity and using
weight clamping (Madsen and Johansen, 2020; Schlor et al., 2020). The regularisation
penalty encourages weights to converge to the discrete values. An illustrative example of
the Madsen and Johansen (2020); Schlor et al. (2020) regularisation functions are found in
Figure 10. Madsen and Johansen (2020) use sparsity regularisation (Equation 15) to enforce
the relevant biases for both NAU {—1,0,1} and NMU {0,1}. Note that the absolute of
Wi o is not necessary when using NMU. The regularisation activates and warms up over
a predefined period of time to avoid overpowering the main mean squared error loss term
(Equation 16). Clamping is also applied to the weights beforehand to the ranges of the
desired biases. iNALU uses a piece-wise function (Equation 10) for regularisation on weight

(WA, MA, W, m) and gate (g) parameters to encourage discrete values that do not
converge to near-zero values. Intuitively, this regularisation penalises the parameter to
encourage it to move towards -t or t. Therefore, by having a large positive/negative value,
when the parameter goes through a sigmoid or tanh activation (see Equations 6, 7 and 11),
the resulting value will be close to {—1,0,1}. Rather than a warmup period, regularisation
occurs only once the loss is under a pre-defined threshold and stops once a discretisation
threshold ¢ = 20 is met.

5.4 Initialisation Considerations

Good initialisations are crucial for convergence. Assuming the Madsen and Johansen (2020)
implementation of NALU is used for initialisation, then weight matrices are from a uniform
distribution with the range calculated from the fan values,® and the gate matrix from a

3. https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/
stable_nalu/layer/nac.py#L22
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Figure 11: Adapted from Rana et al. (2019, Figure 2 and Figure 4) for showing the values
for W used in NALU calculated over the domain of W and M. Left: Using
NALU’s calculation of W where tanh and sigmoid are calculated with base e.
Right: G-NALU’s calculation of W where tanh and sigmoid are calculated with
a golden ratio base resulting in smoother value transition.

Xavier uniform initialisation with a sigmoid gain.? However, empirical results show difficulty
for both optimisation and robustness with such initialisations. Fragility in optimisation
results in converging to the expected parameter value difficult to achieve (Madsen and
Johansen, 2020), especially when redundant inputs that require sparse solutions exist. When
redundancy exists, non-sparse solutions are not extrapolative, lacking transparency.

To ease optimisation, Madsen and Johansen (2020) use a linear weight matrix con-
struction (removing the need of non-linear transformations), while Schlér et al. (2020) use
clipping on the NAC, calculation (see Equation 8). The minimum of the input is clipped
to € = 1077 and the result of the In operation is clipped to be at most w = 20. Using this
clipping allows to avoid exploding intermediary results. Additionally, gradient clipping is
used to avoid exploding gradients.

Rana et al. (2019) modify the non-linear activation’s of the weight matrices in the
NALU for smoother gradient propagation as shown by Figure 11. In contrast, in attempts
to avoid falling into a local optima, iNALU allows multiple reinitialisations of a model during
training to counteract the non-optimal initialisation in NALU which contribute to vanishing
gradients and convergence to local minimas. Reinitialisation occurs every m!® epoch if the
following two conditions are met: (1) the loss has not improved in the last n steps, (2) the
loss is larger than a pre-defined threshold. The main disadvantage reinitialising multiple
times during training is that it can require running more iterations which may be infeasible.
For example, for a standalone NALM it is possible to keep reinitialising until a reasonable
solution is found, however if the NALM is used as a subcomponent in a larger neural network
then reinitialisation can be too costly. Through a grid search they find having the mean of

4. https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/
stable_nalu/layer/_abstract_nalu.py#L90
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Figure 12: Taken from Madsen and Johansen (2020, Figure 2b). An example illustration of
the unstable optimisation issue arising when using a stacked NAC+ NAC, with
€ = 0.1. The plot represents the root mean squared loss surface when modelling
(x1 + x2) - (x1 + 22 + 23 + x4) for the input [1,1.2,1.8,2]. w; and wy represent
the weight values to use for the NAC+ and NAC, weight matrices such that
W, = [wlwl 00 ] and Wy = [w2 w2 ] .

w1 w1 w1 w1

the gate and NALU weight matrices M , W initialised to be 0, -1 and 1 respectively, results
in the most stable modules. However, even when using such initialisations, the stability
problem remains for division (Schlér et al., 2020, Table 1).

5.5 Division

Division is NALU’s weakest operation (Trask et al., 2018). Having both division and multi-
plication in the same module causes optimisation difficulties. Madsen and Johansen (2020)
highlight the singularity issue (caused from division by 0 or values close to 0 bounded by
an epsilon value) in the NAC, which causes exploding outputs (see Figure 12). This issue
is amplified due to operations being applied in log space. The NMU removes the use of
log, therefore is not epsilon bound. Furthermore, the NMU is only designed for multiplica-
tion. The NPU takes Madsen and Johansen (2020)’s interpretation of multiplication (using
products of power functions) but applies it in a complex space enabling division and multi-
plication (Heim et al., 2020). Though the NPU cannot fully solve the singularity issue as a
log transformation is still applied to the inputs, the relevance gating (see Equation 18) aids
in smoothing the loss surface to provide better convergence. Schlor et al. (2020) observe
that reinitialising modules numerous times during training can still lead to failure, implying
that the issue lies in unit architecture as well as initialisation. Hence, division remains an
open issue.
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5.6 Compositionality

A single NALU is unable to output expressions whose operations are from both {4+, —} and
{x,+}, for example 1 + x2 * x3. Bogin et al. (2020) hint at NALU’s inflexibility to learn
different expressions from same weights as once trained the learnt expression of a NALU is
static meaning that expressions with a different ordering of operations will not work. Rana
et al. (2019) develop CalcNet, a parsing algorithm, such that the expression to learn is
decomposed into its intermediary sub-expressions which obey the rules of precedence (i.e.,
BIDMAS) and then is solved in a compositional manner. However, decomposition requires
fixed rules and pre-trained sub-units which are undesirable because in order to decompose,
the input must also contain the operations used, meaning that model is exposed to a priori
relating to the underlying function.

6. Experiments and Findings of Modules for Arithmetic Tasks

To better understand the existing evaluation of modules, we go through the experiments
used in the papers for: NALU, iNALU, NAU, NMU, and NPU. We begin by indicating
inconsistencies across papers for the two-layer arithmetic task setup, highlighting the differ-
ent evaluation techniques used by each paper, encouraging the need of task standardisation.
Inter-module comparison using existing findings is made to infer the best module per op-
eration. We end this section by introducing a Single Module Arithmetic task to act as a
standardised benchmark for comparison against all existing arithmetic NALM modules.

6.1 Why are the Square and Square-Root Operations not included in this
Discussion?

Though mentioned in Trask et al. (2018) that the NALU can learn to model square and
square-rooting, we will purposefully avoid analysing the ability of the multiplicative modules
to do square (a?) and square-root (y/a) operations. Rather, we focus only on the four core
arithmetic operations: addition, subtraction, multiplication and division.

Of the NALMSs described previously in Sections 3 and 4 only the NALU, G-NALU, NPU
and Real NPU are able to model squaring and square-rooting (without modifications to the
original architecture/training methodology). The other multiplicative modules (NMU and
iNALU) would have difficulty in modelling these operations which is explained below.

The squared operation can be solved when using a multiplication module in two ways,
differing by the way the input is represented. The first way expects two inputs of the same
value, which essentially results in a multiplication (a x a), and the second way expects one
input using it as the base and applying it with an exponent of two (a?). The second way
requires using a weight value of two (to correspond with the exponent), but this breaks the
inductive bias on many of the modules that weights should have a magnitude up to 1 which
is enforced using clipping. Therefore, we avoid analysing the square operation.

As for the square-root operation an int?rpretable weight value corresponds to 0.5 result-
ing in square-rooting being modelled as a2. This contradicts the inductive bias of discrete
weights of the NMU and iNALU which is enforced using regularisation penalties. Therefore,
we avoid analysis square-root operation.
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Figure 13: Taken from Madsen and Johansen (2020, Figure 6). Illustration on how to get
from input vector to target scalar for the Arithmetic Dataset Task. This setup
is solved using a stacked addition-multiplication module.

6.2 Two Layer Arithmetic Task

A task consistently used in all papers is the ‘Static Simple Function Learning’ experi-
ment (Trask et al., 2018), which evaluates the ability of a module to learn a trivial two-
operation function. Madsen and Johansen (2019) introduce their own experiment setup
(including details for reproducibility) which they utilise in their later work (Madsen and
Johansen, 2020) under the name ‘Arithmetic Datasets’ task. Specifically, given an input
vector R0V of floats, the first (addition) layer should learn to output two values (denoted a
and b) which are the sums of two different partially overlapping slices (i.e., subsets) of the
input, and the second layer should perform an operation on a and b. Figure 13 illustrates
such an example. Due to the rigorous setup, evaluation metrics, and available
code, we strongly suggest the Madsen and Johansen (2019) experiment be used
to test and compare new modules for the Two Layer Arithmetic task.

iNALU’s experiments 4 (‘Influence of Initalization’) and 5 (‘Simple Function Learning
Task’) is a copy of the task but is different to the Madsen and Johansen (2020) setup.
The experiments calculate a and b differently by not allowing for overlap between a and
b, and allowing a and b to be made up of random (instead of consecutive) elements of the
input. Also, the interpolation and extrapolation ranges are different. Heim et al. (2020)’s
claims that their ‘Large Scale Arithmetic’ task is equivalent to the Arithmetic Dataset task.
However, there are key distinctions between the two meaning the results from the two
papers are not directly comparable. We highlight in Table 2 differences between the three
experiment setups.®

6.2.1 EVALUATION METRICS

Currently, no de facto method exists for measuring arithmetic extrapolation performance
on models. The purpose of evaluation metrics is to reflect whether a model solution is the
true solution and be able to rank different model solutions against each other. We therefore

5. We do not compare Trask et al. (2018) as no details on the experiment setup is given. We do not compare
Rana et al. (2019) as they do not include this experiment.
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Property Madsen and Jo- Heim et al. (2020) Schlér et al.
hansen (2020) (2020)
Hidden size 2 100 2
Iterations for one 5,000,000 50,000 100,000
run
Number of seeds 100 10 10
Learning rates le-3 le-2 for addition and 1e-3
5e-3 for all other oper-
ations
Subset and over- 0.25 and 0.5 0.5 and 0.25 (for addi- 0.33 and 0
lap ratios tion, subtraction, and
multiplication)
Division a/b 1/a a/b
Interpolation and Train: UJ[1,2) for all Train: S(-1,1) for addi- Train: U[-3,3] and
extrapolation operations. tion, subtraction, and TN(#:O’U:U[—?),S]
ranges® Test: U[2,6). multiplication, S(0,0.5) Test: U[-5,-5] and
for division. TN(u:3-570:é)[3’4]
Test: S(—4,4) for ad- respectively.
dition, subtraction
and multiplication,
S(-0.5,0.5) for division.
Programming Pytorch (Python) Flux (Julia) Tensorflow (Python)
framework

Table 2: Differences in the ‘Large Scale Arithmetic’ task used in the papers Madsen and
Johansen (2020) and Heim et al. (2020). ‘a’ and ‘b’ represent summed slices of the
input, and are the expected output values for the addition module. *U=Uniform,
S=Sobol and TN=Truncated Normal.

explain the different metrics used in previous works. Trask et al. (2018) calculates a score
for each model, where the score is the MSE loss of a randl\frrslg li?lsisti(a)u{i;(}:g glggg (with no training) * A
score of 0 reflects perfect accuracy while a score larger than 100 means the solution is worse
than the baseline model. Though this method is good for relative rankings between different
models, there is no indication to the relative performance against the gold solution Schlor
et al. (2020). Furthermore, a randomly initialised model will most likely have poor perfor-
mance, so the scaled errors of the other models seem better than they actually are. Heim
et al. (2020) measures the median of the MSE with confidence intervals using the median
absolute deviation. Compared to the mean, the median is less sensitive to outliers and
skewed results, however as a result it discards information about individual errors which
can be helpful when considering factors such as the extent of robustness against different
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initialisations. Both Madsen and Johansen (2019); Schlor et al. (2020) measure the MSE,
but also compare if the MSE is within a threshold value representing the error of an ideal
solution to a given precision. This threshold comparison produces a success metric in which
each seed can be compared in a pass/fail situation which is averaged to a success rate.

Evaluation metrics used on the Arithmetic Dataset Task. Madsen and Johansen
(2019) extends the use of threshold based success by using: configuration-sensitive success
thresholds, two additional metrics to measure speed of convergence and sparsity, and confi-
dence intervals for each metric where each interval calculated using a different distribution
family to best match the metric. Specifically, there are three evaluation metrics: (1) the
success on the extrapolation dataset against a near optimal solution (success rate), (2) the
first iteration which the task is considered solved (speed of convergence), and (3) the extent
of discretisation towards the weights’ inductive biases (sparsity error). The sparsity error
calculated by Hl;%x(min(]WwL 1—|Wi,l)), calculates the NALM weight element which is the

furthest away from the acceptable discrete weights for a NALM. For example, for the NMU
if a weight was at 0.7 it would get a sparsity error of 0.3. A success means the MSE of the
trained model is lower than a threshold value (i.e., the MSE of a near optimal solution). For
the Arithmetic Dataset Task, the threshold is a simulated MSE on 1,000,000 data samples
using a model where each weight of the addition is off an optimal weight value by € =1e-5.
A near optimal solution is used over an optimal solution as it considers accumulated nu-
merical precision errors (a limitation of hardware rather than module architecture). Each
metric is calculated over different seeds where the total number of seeds should be enough
to demonstrate issues on robustness, while keeping computation time reasonable. 95% con-
fidence intervals are calculated for each metric. The success rate uses Binomial distribution
because trials (i.e., run on a single seed) are either pass/fail situations. The convergence
metric uses a Gamma distribution and sparsity error uses a Beta distribution. Both Beta
and Gamma can easily approximate the normal distribution and support its corresponding
metric.

6.3 Additional Experiments

This section briefly summarises additional experiments given in the NALM papers. We
do not cross-compare papers for each experiment as there is too little similarities between
experiments.

Trask et al. (2018) carries out a recurrent version of their static task experiment to
test the NAC,, where the subsets a and b are accumulated over multiple timesteps. The
purpose of this task is to generate much larger output values to test NALU on. As well as
pure arithmetic tasks, Trask et al. (2018) tests NALU in other settings such as: translating
numbers in text form into the numerical form (for example ‘two hundred and one’ to 201),
a block grid-world which requires travelling from point A to B in exactly n timesteps,
and program evaluation for programs with arithmetic and control operations. However, the
NALU is not utilised for its capabilities as a NALM in the text to number task as the NALU
is applied to a LSTM’s hidden state vector; therefore it is questionable if the arithmetic
capabilities of NALU are being used, as the NALU may also have to decode the numerical
values from the LSTM vector. MNIST is also used to evaluate NALU’s abilities on being
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part of end-to-end applications. This includes exploring counting the occurrence of different
digits, addition of a sequence of digits, and parity prediction.

Madsen and Johansen (2020) also use MNIST for testing the module’s abilities to act
as a recurrent module for adding/multiplying the digits. Madsen and Johansen (2020)
additionally provide experiments to express the validity of their modules. This includes
modifying the number of redundant hidden units, different input training ranges, ablation on
multiplication, stress testing the stacked NAU-NMU against difference input sizes, overlap
ratios and subset ratios, showing the failure of gating in convergence, and parameter tuning
regularisation parameters.

Schlor et al. (2020) provide three additional experiments. Experiment 1 (‘Minimal Arith-
metic Task’) uses a single-layer to do a single operation with no redundancy to see the effect
of different input distributions. Experiment 2 (‘Input Magnitude’) sees the effect of training
data by controlling the magnitude of the interpolation data. NALU fails on magnitudes
greater than 1. iNALU remains unaffected for addition and subtraction. Multiplication
performance is coupled to magnitude where extrapolation error increases with magnitude.
Division is uncorrelated to the input magnitude. To increase problem difficulty, experiment
3 (‘Simple Arithmetic Task’) introduces redundancy where from 10 inputs only 2 are rele-
vant. NALU improves on performance for exponentially distributed data when redundant
inputs are introduced. iNALU show improvements for multiplication where the module is
able to succeed on previously failed training ranges such as an exponential distribution with
a scale parameter of 5 (meaning lambda is 0.2) but worsens for division.

Heim et al. (2020) highlights the relevance gate’s use via a toy experiment to select
one of the two inputs. They show the relevance gate transforms regions away from the
solution which contain no gradient information into regions with more instructive gradients
(Heim et al., 2020, Figure 3). Additionally, they demonstrate an application of a stacked
NAU-NPU module for equation discovery for an epidemiological model.

6.4 Cross Module Comparison

We compare existing findings across modules. NALU is no longer considered the state-of-
the-art for neural arithmetic operation learning. For each operation the best module is as
follows - addition or subtraction: NAU, multiplication: NMU, division: NPU (or
RealNPU if the task is trivial).

iNALU generally outperforms NALU at the cost of additional parameters and complex-
ities to the model. The magnitude of iNALU’s improvement varies, as Schlor et al. (2020)
claims vast improvements, while Heim et al. (2020) claim minor. For division both the
iNALU and NALU performances remain comparable. Success on multiplication is depen-
dent on the input training range. Heim et al. (2020) states the NMU outperforms iNALU
on multiplication (as expected), but also addition and subtraction. The reason lies in the
architecture used. The model is a stacked NAU-NMU meaning the addition/subtraction
would be modelled by the NAU. Therefore, the NMU would only be required to act as
a selector, selecting the output of the summation (that is, have a single weight at 1 and
the rest at 0). Therefore, if two NMUs are stacked together we expect the failure in a
pure addition/subtraction task as shown in Madsen and Johansen (2020, Appendix C.7).
Surprisingly the two layer NMU was able to get 56% success for subtraction, though 0%
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success for addition (Madsen and Johansen, 2020, Table 6). Heim et al. (2020) is the only
work (at the time of writing this paper) to experimentally compare the main modules men-
tioned. Results show that the NPU outperforms the iNALU for multiplication and division.
When stacked on top of a NAU, the NPU performs similar to the NMU for addition and
subtraction. The NPU is outperformed by the NMU for multiplication, however it is more
consistent in convergence against different runs. For addition and subtraction, the NAU-
NMU is the sparsest module (having the least number of non-zero weights). Arithmetic
tasks using the basic arithmetic operation require the weight and gate values to be discrete.
Regularisation penalties have been a popular approach (Madsen and Johansen, 2020; Schlor
et al., 2020) to achieve this. The NPU uses L1 regularisation for arithmetic tasks, encour-
aging sparsity over discretisation due to its ability to express fractional powers. However,
the main influence of causing sparsity in the NPU modules are from using the relevance
gating. If this gating is removed (denoted by the NaiveNPU in the experiments), models
are consistently less sparse for all operations (Heim et al., 2020, Figure 7).

6.5 Single Module Arithmetic Task

Having a standardised benchmark is essential for fair comparison of modules. As stated
previously, so far, no such benchmark exists. Therefore, we provide results on a Single
Module Arithmetic Task, training modules on their respective operations over a range of
different interpolation distributions and testing over a range of extrapolation distributions.®

Why not use the two-layered Arithmetic Dataset Task? The Arithmetic Dataset
Task requires modules to perform three sub-tasks: selection, operation, stacking. Selection
is the ability to deal with input redundancy for both modules (though more-so for the first
layer addition module). Operation is the ability to carry out the correct operation/s (i.e.,
addition and multiplication). Stacking sees if training can propagate through two layers.
Even with only two layers, there are already multiple components being assessed in a single
task, making it difficult to analyse where issues lie. Therefore, to gain a better understanding
of individual NALMs, we propose an experiment which evaluates if the operation/s the
module specialises in can be learnt.

Setup. A single module is used. The input size is two and output size is one, hence
there is no input redundancy. Hence, the objective is to model: y = x1 o x9 where
o€ {+,—, x,+}. Wetest the: NALU,iNALU, G-NALU, NAC,, NAC,, NAU, NMU, NPU,
and Real NPU. Each run trains for 50,000 iterations to allow for enough iterations until con-
vergence. A MSE loss is used with an Adam optimiser. Interpolation (training/validation)
and extrapolation (test) ranges are presented in Table 3. Early stopping is applied using
a validation dataset sampled from the interpolation range. Experiment/hyper-parameters
set can be found in Appendix D.

Evaluation. We adopt the Madsen and Johansen (2019)’s evaluation scheme used for
the Arithmetic Dataset Task (explained in Section 6.2.1) but adapt the expression used to
generate the predictions of an e-perfect model (y5). The expression used depends on the
operation to model as shown below:

6. Code is available at: https://github.com/bmistry4/nalm-benchmark
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Interpolation Extrapolation

[-20, -10) [-40, -20)

['27 '1) ['6) '2)

[-1.2, -1.1) [-6.1, -1.2)
[-0.2, -0.1) -2, -0.2)

[‘27 2) [[‘67 ’2)a [27 6)]
[0.1, 0.2) (0.2, 2)

1, 2) 2, 6)

(1.1, 1.2) (1.2, 6)

[10, 20) [20, 40)

Table 3: Interpolation (train/validation) and extrapolation (test) ranges used for the Single
Module Arithmetic Task. Data (as floats) is drawn from a Uniform distribution
with the range values as the lower and upper bounds.

Addition: y; = (z1 + x2) —

Subtraction: yi = (z1 — x2) —

Multiplication: y§ = (z122)(1 — €)* x [ (1 [zile)
iEX’iTT
s s £C1(1 — 6)
Division: y, = ——= x H (1 — |zile)
xQ(l + 6) iEXiT’I’

Assume x1 and x5 are the operands to apply the operation to and any remaining features
(z3,...,zy) be irrelevant to the calculation and part of the set X;... We use I to denote
the total number of input features. In each case the € for each feature will contribute some
error towards the prediction. A simulated MSE is then generated with an € = le — 5 like
in Madsen and Johansen (2019) and used as the threshold value to determine if a NALM
converges successfully for a particular range by comparing the NALMs extrapolation error

against the threshold value.”

6.5.1 RESULTS

We present the NALMSs’ performances on the four main arithmetic operations. Each figure
consist of plots for each evaluation metric (success rate, speed of convergence and sparsity
error) discussed in the evaluation paragraph above, with confidence intervals calculated over
25 seeds.

Addition (Figure 14). The NAU has full success for all ranges correlating to the

7. Other variations for generating the threshold exist which are further discussed in Appendix E.
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Figure 14: Performance on Single Module Task for addition.
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Figure 15: Performance on Single Module Task for subtraction.

sparsity errors around 0 meaning that weights successfully converge to the expected value
of 1. The iNALU also has full success but takes longer to solve and has a slightly larger
sparsity error than the NAU. The NALU struggles with consistent performance especially
for the small positive range (14[0.1,0.2)), large positive range (1/[10,20)) and range with both
positive and negative inputs (U[-2,2)). The low sparsity error implies that discrete values
are being converged to, though not to the correct ones. The NAC, also struggles to obtain
consistent results over different ranges like the NALU. The G-NALU performs the worst of
all the modules obtaining non-zero success on only 4 of the 9 ranges.

Subtraction (Figure 15). The NAU has full success for all ranges. The solved
at iterations does remain low, similar to addition, with perfect sparsity when converged.
However, ranges U[-1.2,-1.1) and U[1.1,1.2) require over double the number of iterations to
be solved compared to the rest of the ranges implying that small ranges with a mean of 1
can cause more challenging loss landscapes. The difficulty of these two ranges also holds
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Extrapolation range success rate Solved at iteration step Sparsity error
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Figure 16: Performance on Single Module Task for multiplication.

for all other modules which have near 0 success (except the iNALU which has at least 40%
success). The iINALU has full success on all ranges excluding ¢[-1.2,-1.1) and U[1.1,1.2).
Like addition, the solve speed and sparisty error of iNALU remain larger than the NAU.
The NALU struggles much more with subtraction than with addition (except for ¢/[10,20)).
The NAC, outperforms NALU on 4 of the 9 ranges. The G-NALU does not outperform
the NALU on any ranges.

Multiplication (Figure 16). The NMU, iNALU, NPU and RealNPU have full success
on range U[1,2). The NMU struggles with some negative input ranges, i.e., [-1.2,-1.1) and
U[-2, -1). Though NPUs in theory can learn with negative inputs, empirical results suggest
the modules struggle. The NPU and Real NPU perform the same for all ranges except
one, suggesting that the problem is not complex enough to require the use of the imaginary
weight matrix. However, U[-2,2) is an example in which W;,, is utilised (achieving 32%
more success than the RealNPU). Even though this range allows either of the input values
to be positive or negative values, the learnt weights should be [1,1] for the real weights
and [0,0] for the imaginary weights. The NALU can solve some ranges but no range with
full success. The NAC, outperforms the NALU on the 2 ranges it has success but fails to
achieve any success on the remaining 7 ranges. The iNALU outperforms the NALU on 7
ranges where it gains full success on 5 of those ranges. The G-NALU does not outperform
the NALU on any ranges.

Division (Figure 17). No model solves division for all ranges. The iNALU is the
only module to have a success rate of 1 on any range, fully solving 3 of the 9 ranges.
This highlights the difficulty in modelling division even for the simplest case, aligning with
prior claims Madsen and Johansen (2020). The NPU and RealNPU performs perfectly for
U[1,2). The RealNPU has better performance over the NPU for negative input ranges.
The NAC, is able to achieve some success on 4 ranges while the NALU and the G-NALU
cannot achieve any success on all 9 ranges. The failure on U[-2,2) for the NALU, iNALU
and G-NALU is expected due to the inability to process mixed sign inputs caused by the
modules’ log-exponent transformation.
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Figure 17: Performance on Single Module Task for division.
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Figure 18: iNALU failures on the Single Module Task for addition with 10 inputs (8 redun-
dant inputs).

Testing limits of full success modules. Achieving full success on all the ranges for
a operation only occurred three times - the iNALU for addition and the NAU in addition
and subtraction. To determine to what extent this holds we experiment with introducing
redundant units to the input, resulting in an increase of the task difficulty. The iNALU
(Figure 18) shows multiple failure ranges at 10 input units (8 redundant inputs), achieving
reasonable success only on the larger ranges. The NAU fails at 10 inputs (8 redundant
inputs) for both addition (Figure 19) and at 100 inputs (98 redundant inputs) for subtraction
(Figure 20) on the same ranges U[-1.2,-.1.1) and U[1.1,1.2).

Summary. The Single Module Task assesses the stability of individual NALMs. Having
stability at this granularity is especially important, because if a NALM as a stand-alone
unit is unstable how can we expect them to converge if applied larger networks where they
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Figure 19: NAU failures on the Single Module Task for addition with 10 inputs (8 redundant

inputs).
Extrapolation range success rate Solved at iteration step Sparsity error
1.00- 3e-05-
30000 -
0.75-
20000 - 2e-051
0.50-
4 le-05-
0.25 - 10000
000- ] ] ] ] ] ] ] ] O- ] ] ] ] ] ] ] Oe+00- ] ] ] ] ] ] ] ]
\\\\\\\\\ \\\\\\\\\ \\\\\\\\\
\r ' :\,L"l/ QNQ’S\’L '1/0{19 Q\r ,\/'\/ :\,L"l/ 0\/0’13\"1/ ’1/0{]9 {0\/{\,'\:%:\/%1 : 0\/9‘15\'1/ ’1;9@
Q N 0\ T W T ’\, 0\ T W N\ ,Qq/,'\:'l’ X \/{1’ RO S
NI X \)\ \5\ X XX N

Interpolation range

model NAU

Figure 20: NAU failures on the Single Module Task for subtraction with 100 inputs (98
redundant inputs).

are only a subcomponent? Overall, we find that a majority of NALMs are not robust to
different training ranges. NALMs which achieved full success on all ranges for a operation
on the two-input setup break when redundant inputs are introduced, however the extent
varies depending on the module. Division is the most challenging operation followed by
multiplication, subtraction and addition. NALMSs which specialise in at most two operations
are found to outperform the NALU in a majority of the cases. Of the NALMs which can
model the four operations, i.e., the NALU, iNALU and G-NALU, the iNALU performs
best on average over all operations, though the performance gain is less significant for
multiplication and division.
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7. Experiments and Findings of Modules for Logic Tasks

This section summarises the experiments provided in two existing logic based NALMs—the
NLRL and the NSR.

7.1 NLRL

Preliminary results are given which tests basic logic and arithmetic operations: AND, OR,
NOT and XOR, multiplication, addition with division, identity and constant selection.
Each model consists of a stacked NLRL. Different numbers of intermediary units per layer
are tested where the authors conclude increasing the units improves performance until a
saturation point (found to be 8) is reached. A multi-operation based task requires stacking
layers of NLRL which introduces redundancy as the stacked output and input layers both
use negation gating. Therefore, if stacking is required, it is suggested to remove cases with
consecutive negation gating layers and only have a single layer. Using a module with both
AND and OR results in faster convergence (less iterations), compared to using a module
only using AND operations, but has a longer computation time to train each iteration.

7.2 NSR

Faber and Wattenhofer (2020) first check if the NSR can learn comparison operations on
both an integer and floating point input setting. Results show that the NSR can learn the
comparison functions with both input types and can extrapolate well. Modules struggle
with learning the = and # operations, but performance can be improved by introducing
redundancy through additional sets of weights during training (Faber and Wattenhofer,
2020, Section 4.4). The NSR can be attached with a NAU to learn piecewise functions.
Findings suggest a simple continuous function (such as the absolute difference between two
inputs) can be learnt with extrapolation capabilities, but a non-continuous function cannot.
The NSR can be converted into a recurrent module to find the minimum of a list and to
count the occurrence of a number in a sequence. The minimum task performs perfectly on all
extrapolation settings however the counting task’s performance reduces as sequence length
increases. An additional task requires finding the shortest paths in a Graph Neural Network
(GNN) where the network should learn to imitate the Bellman-Ford algorithm. The is used
to show that the recurrent NSR can learn to aggregate numbers to a minimum. When
extrapolating to larger graphs, performance improved with larger edge weights. Finally,
a MNIST digit comparison task tested to see if the NSR can be used as a downstream
module for a CNN in an end-to-end manner. Findings show that the NSR based network
cannot outperform a vanilla CNN but is comparable to a MLP based network, where the
underperformance was suggested to be a result of a weak learning signal.

8. Applications of NALU

This section describes uses of NALU as a sub-component in architectures to tackle practical
problems outside the domain of solving arithmetic on numeric inputs. Success and failure
cases are mentioned. We choose to focus on NALU applications on the basis that the
improved modules discussed above can be applied in place of NALU to provide additional
performance gains to the mentioned applications.
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8.1 Existing Applications

Xiao et al. (2020) insert a NALU layer between a two-layer Gated Recurrent Unit (GRU)
and dense layer to predict vehicle trajectory of complex road sections (containing constantly
changing directions). NALU improves extrapolation capabilities to deal with abnormal
input cases outside the range of the GRU hidden states output.

Raj et al. (2020) combine NAC, modules before LSTM cells for fast training in the
extraction of temporal features to classify videos for badminton strokes. They further ex-
periment in using NAC; modules with a dense layer to learn temporal transformations,
finding better performance than the LSTM based module and the dense modules being
quicker to train. They justify the use of the NAC, as a way to produce sparse represen-
tations of frames, as non-relevant pixels would not be selected by the NAC, resulting in 0
values, while relevant pixels accumulate.

Zhang et al. (2019a) use deep reinforcement learning to learn to schedule views on
content-delivery-networks (CDNs) for crowdsourced-live-streaming (CLS). NALU’s extrap-
olative ability alleviates the issue of data bias (which is the failure of models outside the
training range) by using the NALU to build an offline simulator to train the agent when
learning to choose actions. The simulator is composed of a two layer LSTM with a NALU
layer attached to the end. Zhang et al. (2019b) propose a novel framework (named Lives-
mart) for cost-efficient CLS scheduling on CDNs with a quality-of-service (QoS) guarantee.
Two components required in Livesmart contain models using NALU. The first component
(named new viewer predictor) uses a stacked LSTM-NALU to predict workloads from new
viewers. The second component (named QoS characterizer) predicts the QoS of a CDN
provider. This component uses a stack of Convolutional Neural Networks (CNNs), LSTM
and NALU. Both components use the NALU’s ability to capture OOD data to aid in dealing
with rare events/unexpected data.

Wu et al. (2020) combines layers of NAC, to learn to do addition and subtraction on
vector embeddings to form novel compositions for creating analogies. Modules are applied
to the output of an attention module (scoring candidate analogies) that is passed through
a MLP. The output of the NAC, modules is passed to a LSTM producing the final analogy
encoding.

The NALU has also been used with CNNs. Rajaa and Sahoo (2019) applies stacked
NALUSs to the end of convolution units to predict stock future stock prices. Rana et al.
(2020) utilises the NAC, /NALU as residual connections modules to larger convolutional
networks such as U-Net and a fully convolutional regression networks for cell counting in
images. Such connections enable better generalisation when transitioning to data with
higher cell counts to the training data. However, no observations are made to what the
units learn which lead to an improvement on cell counting over the baseline models.

Chennupati et al. (2020) uses the NALU as part of a larger architecture to predict
the runtime of code on different hardware devices configured using hyperparameters. The
NALU predicts the reuse profile of the program, keeping track of the count of memory
references accessed in the execution trace. The NALU outperforms a genetic programming
approach for doing such a prediction.

Teitelman et al. (2020) explores the problem domain of cloning black-box functionality
in a generalisable and interpretable way. A decision tree is trained to differentiate between

33



MiSTRY, FARRAHI AND HARE

different tasks of the black box. Each leaf of the tree is assigned a neural network comprising
of stacked dense layers with a NALU layer between them. Each neural network is able to
learn the black-box behaviour for a particular task. Like Xiao et al. (2020), results showed
that NALU is required to learn the more complex tasks.

Finally, Sestili et al. (2018) suggests the NALU has potential use in networks which
predict security defects in code. This is due to the module’s ability to work with numerical
inputs in a generalisable manner, instead of limiting the application to be bound to a fixed
token vocabulary requiring lookups.

8.2 Applications Where NALU Is Inferior

We discuss examples of situations in which NALU modules are a sub-optimal architecture
choice for applicational settings. Madsen and Johansen (2020) show that the NAU/NMU
outperforms NALU in the MNIST sequence task for both addition and multiplication. Dai
and Muggleton (2020) show the arithmetic ability (named background knowledge) of the
NALU is incapable in performing the MNIST task for addition or products when combined
with a LSTM. Instead, they show a neural model for symbolic learning, which learns logic
programs using pre-defined rules as background knowledge, can perform with over 95%
accuracy. However, we question whether the failure is a result of the NALU or due to
the misuse of its abilities from combining it with a LSTM. For example, as the inputs are
images, unless the LSTM converts each image into a numerical value which can be processed
by the NALU in an arithmetic way it can be suggested that the LSTM is completing the
task without the numerical capabilities of the NALM. Jacovi et al. (2019) show that in black
box cloning for the Trask et al. (2018) MNIST addition task, their EstiNet model which
captures non-differentiable models outperforms NALU. Though it can be argued that a
more relevant comparison would test the NAC, or the NAU which are solely designed for
addition. Joseph-Rivlin et al. (2019) show that although the NAC, can learn the order for
a polynomial transformation to a high accuracy, it is still outperformed by a pre-defined
order two polynomial model. Results suggest that the NAC, may not have fully converged
to express integer orders. Dobbels et al. (2020) found the NALU was unable to extrapolate
for the task of predicting far-infrared radiation fluxes from ultraviolet-mid-infrared fluxes.
Though no clear reason was stated, the lack of extrapolation could be attributed to the
co-dependence of features because of applying a fully connected layers prior to the module.
Jia et al. (2020) considers the NALU as a hardware component concluding that the NALU
has too high an area and power cost to be feasible for practical use. Implementing for
addition costs 17 times the area of a digital adder, and the memory requirements for weight
storage is energy inefficient for doing CPU operations.

9. Remaining Gaps

This section discusses areas which remain to be fully addressed. We focus on: benchmarks,
division, robustness, compositionality, and interpretability of more complex architectures.

Having benchmarks is important in allowing for reliable comparison between mod-
ules. Such benchmarks should include a simple synthetic dataset which we detail in this
paper, and a real-world data benchmark (which remains to be created) with a systematic
evaluation.
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Division remains a challenge. To date no module has been able to reliably solve division.
Currently the NPU by Heim et al. (2020) is the best module to use, though it would struggle
with input values close to zero. Madsen and Johansen (2020) argues modelling division is
not possible due to the singularity issue. One suggestion for dealing with the zero case is
to take influence from Reimann and Schwung (2019) which can have an option for showing
an output which is invalid (or in their case all off values).

One goal of these modules is to be able to extrapolate. To achieve this, a module
should be robust to being trained on any input range. Madsen and Johansen (2020)
show that modules are unable to achieve full success of all tested ranges (with the stacked
NAU-NMU failing on a training range of [1.1,1.2], being unable to obtain a single success).
Reinitialisation of weights (Schlor et al., 2020) during training could provide a solution,
however this seems to be unlikely given Madsen and Johansen (2020) tests against 100
model initialisations and using reinitalisation for a NALM that is part of a large end-to-end
network may not be economical.

Compositionality is desirable. A model should be flexible, having the option to select
different types of operations and model complex mathematical expressions. Currently the
two popular approaches are gating and stacking. Gating has been found to not work as
expected and give convergence issues. Stacking, though more reliable, has less options in
operation selection than gating. Deep stacking of modules (in a non-recurrent fashion)
remains untested.

It remains to be understood how modules influence learning of other modules
(such as recurrent networks and CNNs) in their representations. For example, seeing if
representations are more interpretable because of being trained with a module.

10. Related Work

We now take a step back, overviewing related works, as part of the bigger picture in deep
learning. In particular we focus on other arithmetic based architectures, inductive biases
and specialist modules.

10.1 Extrapolative Mathematics

In contrast to specialists, generic neural architectures have also been investigated for learn-
ing mathematics. Two such examples include convolutional recurrent networks (used in the
Neural GPU) Kaiser and Sutskever (2016) and transformers Lample and Charton (2020), of
which both have been shown to be Turing complete.® (Pérez et al., 2019) Neural GPUs are
constructed from convolutional gated recurrent units. The Neural GPUs can extrapolate
to long sequence lengths (2000) from being trained on length 20 inputs, but use binary
inputs rather than real numbers (Kaiser and Sutskever, 2016). However, various training
techniques require to be implemented such as curriculum learning, relaxed parameter shar-
ing and dropout; such techniques are not required for training NALMs. Furthermore only
a few Neural GPU models generalise to such a long sequence, but this has been improved
on in Freivalds and Liepins (2017) by simplifying the architecture/training and introduc-
ing diagonal gating and hard non-linearities with additional cost functions. Transformers,

8. That is, Turning complete under the assumption that arbitrary (rather than finite) precision is used.
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which can process numerical values, remain unsuccessful for extrapolation tasks which are
simple such as arithmetic using multiplication (Saxton et al., 2019). In contrast, once a
NALM learns to apply an operation (by converging to the relevant interpretable weight) it
will always calculate the operation correctly. For more complex maths such as integration,
generalisation over different input/output sequence length data generators have also been
identified as a weak point in transformers (Lample and Charton, 2020).

Other approaches which can process raw numerical inputs include using reinforcement
learning, non-specialised MLP architectures and symbolic regression. Chen et al. (2018)
uses a multi-level hierarchical reinforcement learning approach allowing for operations to
be decomposed into simpler operations and solved via specialised skill modules. A proximal
policy optimisation strategy is used to train the modules responsible for decomposing and
calling the specialised skill modules. Furthermore, a curriculum learning methodology is
adopted by using a teacher-student continual learning strategy to control the task difficulty
setting when learning. In experiments for modelling the four arithmetic operations, the
model is able to learn to full accuracy short sequence lengths (5) but cannot learn longer
lengths (20). Similar to NALMs, the model especially struggles with division. A downside
is that arithmetic operation/s require to be defined in the input unlike in NALMs where
only the input values require to be given. Nollet et al. (2020) uses non-specialised MLP
architectures to learn long multiplication and addition for up to 7 digits. By breaking
the task into processing steps representing sub-operations allows for the input to act as
external memory. Similar to Kaiser and Sutskever (2016)’s need of curriculum learning,
active learning was required to control the difficulty of the dataset to learn long multi-
digit multiplication. Though less interpretable than NALU weights, certain neurons in the
MLP were found to encode digit operations for some operands. However, extrapolation
performance to longer digits remained untested.

In short, though various alternates to NALMSs exist, each have their own shortcomings
in regard to input format, extrapolation, and robustness.

10.2 Inductive Biases

Using an inductive bias, to give control over the learning space of the model, can be a critical
factor in achieving generalisation (Mitchell, 1980). In NALMs, weights have inductive biases
such that particular weights (e.g., discretised values) represent applying an arithmetic/logic
operation. Others forms include utilising knowledge of the task to incorporate biases directly
into the architecture. For example, using periodic activation functions (sin and cos) (Martius
and Lampert, 2017) or simplifying expressions through symmetry/separability (Udrescu and
Tegmark, 2020) to model physics based expressions. Alternatively, regularisation can be
used as a form of bias, incorporated with additional auxiliary loss terms (Lopedoto and
Weyde, 2020). NALMSs can use such losses to induce discretisation (Schlor et al., 2020;
Madsen and Johansen, 2020). Though auxiliary losses can only be minimised at training
time and result in optimising an alternate objective to the original loss, a possible way to
alleviate this through the use of unsupervised fine tuning and nested optimisation (Alet
et al., 2021).
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10.3 Specialist Modules

NALMs can be viewed as specialist modules for arithmetic/logic. Using modules can provide
better systematic generalisation than generic architectures (Bahdanau et al., 2019). Other
works on specialist modules include Zhang et al. (2019¢) who introduces a module which
learns permutation-invariant representation of a set. This is achieved by learning a pairwise
ordering cost function with constraints to acquire desirable properties such as symmetry
and the identity value. Importantly, this module does not require priori knowledge of the
inputs which is analogous to how NALMs do not require to know the operation to learn.
Zhang et al. (2018) creates a module to learn to count objects in images from attention
weights with the ability to reduce double counting of visual objects. The module takes in
object proposals and converts them into a graph whose edges can be removed /scaled in a
fully differentiable manner to recover the object count. In particular, they learn piecewise
linear monotonically increasing functions, designed to handle overlapping object proposals
while enforcing the constraint that the extreme cases of bounding boxes being either fully
distinct /overlapping returning 0 and 1 respectively and having all other cases interpolate
between the [0,1]. This is analogous to how many NALMs use the bounding parameter
ranges to represent particular operations such as -1 for addition and 1 for subtraction, and
interpolate between them when learning. Furthermore, this counting module is an example
of a specialist which can be integrated into larger networks to improve performance for more
complex tasks (Kim et al., 2018).

Utilising different specialists encourages factorisation of the task resulting in searching
for reusable components. Hu et al. (2017) produce specialist modules for compositional
reasoning tasks in visual question answering. For example, the ‘find’ and ‘relocate’ modules
output attention maps which can be applied to the visual input in order to carry out the
sub-task. ‘Find’ would be able to focus on an object/attribute (e.g., the red sphere) and
‘relocate’ can infer spatial relations (e.g., focus on object A behind object B). Jiang and
Bansal (2019) use similar types of modules with attention maps as outputs but only use a
text based modality. Modules with generic structures such as LSTMs can also be turned into
specialist modules by controlling the update dynamics through inter-module competition
and sparse communication (Goyal et al., 2021; Goyal and Bengio, 2020). However, due to
the generic nature, such modules will not be interpretable at a parameter level like NALMs.

11. Conclusion

Neural Arithmetic Logic Modules (NALMs) are a promising area of research for system-
atic generalisation. Focusing on the first Neural Arithmetic Unit, the NALU, we explained
the unit’s limitations along with existing solutions from other modules: iNALU, NAU,
NMU, NPU, and CalcNet. We also detail the two logic NALMs: NLRL and NSR inspired
by NALU. There exists a range of applications for the NALU, though some uses remain
questionable. Cross-comparing modules suggest inconsistencies with experiment method-
ology and limitations existing in the current state-of-the-art modules. A new benchmark
is provided for comparing arithmetic modules named the ‘Single Module Arithmetic Task’.
Finally, we outline remaining research gaps regarding: solving division, robustness, compo-
sitionality and interpretability of complex architectures.
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Appendix A. Architecture Illustration Key

—» Data flow O Input/output
[] Intermediary result QO Learnable parameter
@  Matrix Multiplication QO Part of gating calculation
®  Element-wise multiplication QO Part of summative path calculation
+ Element-wise addition O Partof multiplicative path calculation
—  Element-wise subtraction O Partof multiplicative sign retieval calculation
1-  Element-wise 1-<value>

X Kronecker product
. T Transpose input -

[-]] -] Concatenate input - (column-wise)

Figure 21: Key containing the symbols and colouring system used for architecture illustra-
tions.

Appendix B. Module Illustrations

Table 4 displays, in chronological order, the module architecture illustrations given in their
respective papers. *Note that we modified the NALU architecture from Trask et al. (2018,
Figure 2b) as the learned gate matrix (R3*#) is mistakenly drawn as a vector (R?) in the
original figure.)

Module Architecture

NALU* (Trask et al.,
2018)

0000
0000
OO000
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/ /
> matmul 7 va ] ®

summation/subtraction path

multiplication/division path

+ —

¥
7 g
o output vector
max — log ——p matmul — min —> exp [0]

[]e)

input vector

iNALU (Schlor et al.,

'
sign —@Q —+ —[» [ ——— O ——
t
1-x
1

2020) |
O G
. Decisi?/n gate
W. M. W, Mo

NPU (Heim et al,

2020)

Table 4: Module architecture illustrations taken from the original papers.
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Appendix C. Step-by-step Example using the NALU

To better understand how the internal process of a NALM, we provide a worked through
example for addition using the NALU with parameters that can extrapolate.

Task: Subtract the the second input value from the first where the input is * = [2 3 4].
The output value should be [-1].

Steps:

1.

2.

6.

. Calculate tanh(ﬁ\/') ©) sigmoid(ﬁ) to obtain W = [—11}

Calculate tanh(W). The operation is +x1 — x2 so tanh(ﬁ\/') = [—(1)1}.

Calculate sigmoid(ﬁ ). The first two input values are selected and the third is ignored,
Slo) sigmoid(ﬁ) = [é]

0

. Calculate the result of the summative path.

—
)
X
—
=
F
—
w
><
H
=
F
—
N
X
(=)
=

. Calculate the result of the multiplicative path. (For simplicity, let us assume € = 0.)

NAC, = exp(W In(|x| + ¢)
exp(| <1 | n(|[234] )
= exp [ ] [In(2) In(3) In(4) ])

xp(
(
= exp([In(2")+In(3=1)+In(4%) |)
= exp(In([2! x 371 x 49))
(
(

I
@

[2x3x1]))

(
xp(In([2
([31)

= exp(In([
.

2
3

The target expression requires the summative path (NAC,) and ignores the multi-
plicative path (NAC,), therefore gate is sigmoid(xG) = [1].

7. Combine all the pieces to get the output.
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Parameter Single Module Task
Layers 1

Input size 2

Subset ratio 0.5

Overlap ratio 0

Total iterations 50000

Train samples 128 per batch
Validation 10000

samples®

Test samples* 10000

Seeds 25

Optimiser Adam (with default parameters)
Learning rate! 1.00E-03

Table 5: Parameters which are applied to all modules. *Validation and test datasets gen-
erate one batch of samples at the start which gets used for evaluation for all
iterations. TWill hold unless specified otherwise.

Appendix D. Single Module Task Module Parameters

Refer to Tables 5, 6, and 7 for the breakdown of parameters used in the Single Module Task

for experiments with input size 2.

Module Operation Parameter Value
Mul (ﬁstartvﬂend) (16‘7716‘5)
NPU, Div (Bsmrhﬁend) (16—9,16-7)
Real- Bgrowth 10
NPU Mul, Div  Bgep 10000
Learning rate 5.00E-03

Table 6: Parameters specific to the NPU and RealNPU modules for the Single Module Task.

Parameter

Single Module Task

~

A

Astart
Aend

0.01 (NAU), 10 (NMU)
20000
35000

Table 7: Parameters specific to the NAU and NMU modules for the Single Module Task.
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Parameter Single Module Task
w 20

t 20

Gradient clip range [-0.1,0.1]

Max stored losses (for reinitialisation check) 5000

Minimum number of epochs before regularisation starts 10000

Table 8: Parameters specific to the iNALU for the Single Module Task.

Appendix E. Single Module Task: Alternative Options for Generating a
Success Threshold

Other methods can be used to generate the e-threshold. The factors which can be changed
include:

e the e-perfect model, e.g., we could use a e-perfect NALU expression which uses log
space.

e the comparison metric against the perfect model. A MSE is used but other metrics
such as PCC or MAPE are also valid, with each metric having it’s own biases.

e the value of € to control the tolerance of the threshold. Larger values would be more
tolerant while smaller values are harsher.

All these can be modified and should be considered if creating a new threshold evaluation
scheme. However, the three points to be consistent on no matter the chosen evaluation
method is to: (1) be task and range dependant, (2) use the same threshold when comparing
models on the same task, and (3) not make the generation of the threshold dependant on
the benchmarked model.

A suggestion for an additional metric would be to generate a e-threshold used to mea-
sure if the model weights have converged enough prior to applying any (discretisation)
regularisation. Using the NMU as an example, a pre-regularisation threshold would set the
epsilon to be < 0.5. The resultant threshold will therefore determine if the weights have
converged towards the direction of the expected discrete value before the regularisation
begins to get applied. Having this threshold helps determine where the module would be
having difficulties i.e., if the problem is the finding the global-minima or if the problem lies
in regularisation of the weights to the final value since the regularisation (if given enough
priority) would force values to round to the nearest integer.
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Appendix F. Results for the Single Module Task
F.1 Addition

Table 9: Results for addition. Comparison of the success-rate, model convergence iteration,
and the sparsity error, with 95% confidence interval on the “single layer” task. Each value
is a summary of 25 different seeds. Bold values refers to the best result for a evaluation
metric for a single module across the different ranges.

Model Range Success Solved at Sparsity error
Rate Mean Mean
U[0.2,0.1) 0% *l3% —
+20% 4 +8.2:102 —5 +2.3:107¢
RO SO 1
+16% 4 +7.3 -5 +1.0-10™
Ul-2,-1) 64% C1o 4.8-10 e 1.2-10 ~10-10°0
+ 0 4 +6.4- -5 +1.0-10™
U[—2,2) 40% _1170?; 4.9-10 723%83 1.5-10 71.10-11?666
+10% 4 +8.2: -6 +1.1.107
AC U[-20,-10) 84%+ﬁ§% 45-10* 8210 5.4.1076 F11107
tU[0.1,02) 0% ° — -
) —0%
+15% 4 +7.5:102 -5 +1.1:1076
PRSEINGE Ii es
+19% 4 +8.3 -5 +1.7-10™
U[1.1,1.2) 36% i 4.9-10 et 1.4-10 e,
U[10,20) 84% 1_19(70 4.5-10% 1_7.8:102 5.4-107° —1—1.1:10_6
+19% 4 +2.5-103 —6 +3.0-1076
U[-0.2,-0.1) 24%“_35’% 4.4-10 05108 6.7-10 ~3.0.10—6
UFL.2-1.1) 0% 3% — —
+13%
U['Q,—l) 0% —0% - o
Ul2,2) 0% fLF — —
+17% 4 +3.9-103 —6 +2.7-1075
oAty DT e T o 10 B po s
+18% 4 +6.5- —6 +2.0-10™
U[0.1,0.2) 12%53859 4.0-10% T, 4.6-1077 T
U[1,2) 0% _0%0 - o
U[L1,1.2) 0% e N
U[10,20) 4% 3% 4.2-10* 3.5-106
+0% 4 +1.9-10° —7 +4.1-1078
Ohtat) 100 B 1010t HEB a0, 10s HAS
+0% 4 +2.0- —6 +1.5:10~
s 100% L 1o0 HEE 20 Lo H3T
+0% 4 +7.8- —6 +1.5-10™
os 100% ML 110t ES Te o T3
+0% 4 +2.0- —6 +2.9-10~
o 100 AL Lo t0n ti 100 AT
+0% 4 +43 —6 +3.1.10~
NALU U[-20,-10) 100% T 1.6-10 a3 5.8-10 31107
+07% 4 +7.8- -8 +1.2.10™
U[0.1,0.2) 100% “ign 1.9-10 o 8.8-10 Tia10
+0% 4 +1.1- —7 +4.5:10~
. bl R 1
+07% 4 +1.1- =7 +1.9-10™
U[1.1,1.2) 100% 1 1.6-10 L1 3.1-10 L9108
+0% 4 +7.8 —7 +8.3-10~
U[10,20) 100% "%, 2.0-10% 2800 4.6-1077 Tou s
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Table 9: Results for addition. Comparison of the success-rate, model convergence iteration,
and the sparsity error, with 95% confidence interval on the “single layer” task. Each value

is a summary of 25 different seed (continued)

Model Range Success Solved at Sparsity error
Rate Mean Mean
+18% 4 +4.2:103 —6 +2.1:1076
UR02-0.1) 52% *ig 3.8-10* HE0, 751070 B0,
U[1.2,-1.1)  40% T19%  4.2.10% 28200 9.9.7076 F30207
+16% 4 +3.0-103 —6 +1.4-1076
U[-2,-1) 647+1§§7 4.4-10 Toaqes 91-107° Tio-e
U[-2,2) 0% —0%O o o
+15% 4 +1.8:10% 6 +2.0-1076
NALU Ub20-10) 6% %gg o _11981%3 ool _21071%66
+19% 4+ 6 +
U[0.1,0.2) 16% S 2.5-10 frnge 2.9-10~ o
+11% 4+ —6 +8.810~
U[1,2) 80% 11??(;) 4.4-10 _3 é %83 9.1-10 _5%513}8_2
+13% 4 425 —5 +1.1.10~
U[1.1,1.2) 76% “io 4.5-10 5o 1.0-10 Crio
+19% 4 +8.4- —6 +7.1-10™
U[10,20) 20% F19%  3.8-10* 34100 46.1076 71107
102 An—Inf
U[-0.2,-0.1) 100% 9%, 5.0-10% T261%  1.0.10716 TN 107"
UF12-1.1) 100% 9%, 5.0-103 *26100 10.10-16 +NaN-1077
102 10—Inf
U[-2-1) 100% 9%, 5.0-10° 72610 1.0.10716 NN 107
U[-2,2) 100% +0%  49.103 t2610° 1 .10-16 +NaN-10-1nf
0 —15;% : -2.8102 —%a%-m*?;
+0% 3 +2.6-10 —16 +NaN-10~1"
. U[-20,-10) 100% i 5.0-10° 5% 1.0-10716 N0 L
+0% 3 +2.6-10 —16 +NaN-10-'"
U[0.1,0.2) 100% i 5.0 - 10 S 1.0-10 _%g%,w,ﬁ
+0% 3 +2.6-1 —16 +NaN-10~1"
U[1,2) 100% —1%% 5.0-10 ~2.6102 1.0-10 —NZN-IO*?";
+0% 3 +2.6-10 —16 +NaN-10~1"
U[1.1,1.2) 100% i 5.0-10° 5% 1.0-10710 TR0 Ly
+0% 3 +2.6-10 —16 +NaN-10~1"
U[10,20) 100% *%%, 5.0-10% 26100 10.10-16 +NaN-107"
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F.2 Subtraction

Table 10: Results for subtraction. Comparison of the success-rate, model convergence
iteration, and the sparsity error, with 95% confidence interval on the “single layer” task.
Each value is a summary of 25 different seeds. Bold values refers to the best result for a

evaluation metric for a single module across the different ranges.

Model Range Success Solved at Sparsity error
Rate Mean Mean
%
U[0.2,-0.1) 0% "4 —
U[-1.2-1.1) 0% 127 —
+19% 4 +5.2-103 —5 +4.0-1076
[ ) 20% 1% 4.4-10 T5a 10; 2.2-10 _4. 4'10766
U[-2,2) 52% *18%  4.6-10* T25100 1.4.1075 HT107
+10% 4 +2.2:103 -5 +3.9-1076
NAC U[20,-10)  84% Tig0  4.1-10% T5750  1.6-1077 Tygho
TU0.1,02) 0% T —
[ ) 20% i‘%?% 4.4-10% +g Z igi’ 2.2.107° tigig:z
U[1.1,1.2) 0% +i3% — |
+10% 4 +2.2:103 -5 +3.9-1076
U[10,20) 84% *19%  4.1.10* F2210° 1,6.1075 39107
U[-0.2,-0.1) 0% T4 —
U[-1.2,-1.1) 0% T53% —
UR2-1) 0% -
UR22) 0% Fot -
+16% 4 -5
axapy  UE20-10) 4% to 42-10 2.0-10
U[0.1,0.2) 0% *L% —
UL2) 0% ot -
U[L1,1.2) 0% % —
U[10,20) 20% T19%  45.10% ¥33100 9 1. 105 +111077
11% 3.4-10 1.1-10
U[0.2-0.1) 100% 0%, 1.7-10% T13100 95,107 #2710
URL2-11) 0% T19% 2.1.101 #3915 3. 90-8 480107
Ul-2-1) 100% *0% 1710 27100 58.1077 +121077
U[-2,2) 100% *0%  1.7-10* L0100 g7 107 +82107F
U[-20,-10) 100% *%%  1.6-10% *37100 94.10-7 +211077
iNALU 0% 4 +1.9-102 7 42.0-108
VI0-102) 100% Sy 110 o 1510 agnors
+0% 4 415 —7 +2.7-107
pRROGEs i e
+17% 4 +1.9- -8 +4.4:10~
U[LLL2) 56% 1o 200101 10, 441078 HA0
U[10,20) 100% *0%, 1.7-10* 17100 76.10-7 +6.7107C
U[0.2-0.1) 0% +33% —
U[-L.2-1.1) 0% L7 —
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Table 10: Results for subtraction. Comparison of the success-rate, model convergence
iteration, and the sparsity error, with 95% confidence interval on the “single layer” task.
Each value is a summary of 25 different seed (continued)

Model Range Success Solved at Sparsity error
Rate Mean Mean
3 6
[ ) 12? +18% 4.6 - 104 +34103 29.10" 5 +3.1.10~ .
s +1?7% - 35100 —2.9-10—
—0%
+19% 4 +7.4.10° 5 +10.0-10-6
NALU U20,-10) 20%531(%% 3.8-10% Tg7 g 141077 150006
[0 1 O 2) 0% 70%0 - T
+18% 4 +2.010° —5 +1.7.107°
U[1,2) 12%+I§(y 4.8-10% 75 gs 2.3-107° T o6
ULL12) 0% T — -
U[10,20) 84% *19%  4.3.10* +23100 93,195 +8:31070
UR02-01)  100% % 6.0-10° 451, 101071 TRt !
UFL.2-11) 100% *9%,  1.6-10° F10100 271077 12107
Ul-2-1) 100% *9%  6.0-10° T9210)  3.1.1078 F131070
UR22) 100% U 40-10° 210 10.1071 HNeN I L
U[20-10) 100% 55 5.9-10° 0350, 1.0 10716 TR,
NAU +0% 3 +6.3-102 ~16 +NaN-10-1"f
U0-102)  100% U 6.1-10° oS, 101071 TRavAE
U[1,2) 100% ™% 6.0-10° T6210 2.4.1078 12107
0% 4 +1.0-10° ~7 4151077
[1 1 1. 2) 100% —13% 1.6 -10 _1_1‘103 3.2-10 —1.5-10—7 Inf
U[10,20) 100% *9%  5.9-10% *o210  1.0.10716 HReNET
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F.3 Multiplication

Table 11: Results for multiplication. Comparison of the success-rate, model convergence
iteration, and the sparsity error, with 95% confidence interval on the “single layer” task.
Each value is a summary of 25 different seeds. Bold values refers to the best result for a
evaluation metric for a single module across the different ranges.

Model Range Success Solved at Sparsity error
Rate Mean Mean
U[0.2,-0.1) 0% *i3% -
%
U[-1.2,-1.1) 0% tg@ — —
vt S B
vk2.2) 0% 7007?;:/ N 9.9-102 N 5.01077
+8% 4+ —6 +5.0-10~
NAC U[-20,-10) 88% *75%,  4.5-10% *oo L.7-107% 17007
* U102 0% R .
UlL2) 0% St — B
UL1,12) 0%t -
+8% 4 +9.9-102 —6 +5.0-1077
U[10,20) 88% 5% 4.5.10% 010 L7-1077 T -
U[0.2,0.1) 0% "i3%  — —
U[1.2,1.1) 0% 5% — -
UR2-1) 0% fppf B
+13%
U-2,2) 0% 0% 7 L5107 o 04106
+19% 4+ —6 +2.4-10—
GNaLy  CC20-10) 16% S 9010 o 80 oy
+207% 4 + -5 +4.0-10™
U[0.1,0.2) 32W+131075% 4.5-10% T30 2.1-107 T gi0-6
U[L2) 0% 5" o o
U1.1,1.2) 0% 5% — -
+19% 4 +1.5-103 6 +2.3-107¢
U[10,20) 16% *19%  4.9.10* £1210 3.5.106 £23107
+0% 4 +1.8:10° 9 +1.7.107°
U[-0.2,-0.1)  100% 1% 2.1-10 Lo 1.9-107 LT
+18% 4 +NaN-107'" 16 +NaN-107'"
[ 1 2 1 1) 12% §?7 20 . 10 _évg%%offnf 10 : 0 7—4]\/56]\[910 Inf
+15% 4 +9.3- -9 +
UR2-1) 68% Dy 22-100TgRnG 85107 Tghg
U[-2,2) 100% *9%, 1.7.10% HNaN107m0 43,1078 141070
' UR20,-10) 12% *18%  1.5.10% +NeN10T 7 g, 1077 4651077
lNALU [O 1 0 2) 4% i-il)’%% 21 . 104 10 * 1079
a0—Inf Inf
U[1,2) 100% "%, 17100 PYeN0T T 1.0 10718 TRe0T
+0% 4 +1.5-10° —8 +4.9-107°
U[1.1,1.2) 100% *0%  1.9-10" T 102, 5-7-107" Zyg.10-9
U[10,20) 100% 9%, 1.5-10% +15107 151077 F23107
U[0.2-0.1) 0% +i3% —
U[1.2-1.1) 0% j}f%% — -
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Table 11: Results for multiplication. Comparison of the success-rate, model convergence
iteration, and the sparsity error, with 95% confidence interval on the “single layer” task.

Each value is a summary of 25 different seed (continued)

Model Range Success Solved at Sparsity error
Rate Mean Mean
+18% 4 +3.4.108 —6 +5.8:10°6
U[-2,-1) 12%5%% 4.6- 101 3410 9.7-1076 3807
U[—2,2) 0% _0%0 - -
+18% 4 +2.7-103 —6 +7.9.10°7
NALU U[-20,-10) 52% %%) 4.3-10 723961?83 1.3-10 758&8,2
+177% 4 +3.6- —5 +3.0-10™
U[0.1,0.2) 60% "o 3.7-10 Soap 1.7-10 e
+17% 4 458 ~5 +6.1.10~
U[1,2) 8% ;??(7 4.6 -10% 72008 LO-1077 T2 o-6
UL.1,12) 0% "5 — —
U[10,20) 84% *10%  4.3.10* +1810] 1.2.1076 +5:01077
+0% 4 +NaN-10~Inf ~16 +NaN-10—1nf
U[-0.2,-0.1) 100% 1% 2.1-10 _NjéNNm,I?ff 1.0-10 —%Z%'lo’ﬁ”’f'
+15% 3 +NaN-10-1" —16 +NaN-10~In
U[1.2,-1.1) 68% 20% 2.0 10% TN g rmg  1.0-1078 TRON s
+11% 3 +NaN-10-1n ~16 +NaN-10~In
U[-2-1) 80% T 2.0-10* TRON 101y 10-10 _NZN,IO,?L;
+0% 3 +1.7-10 ~16 +NaN-10~In
U[-2,2) 100% T 2.3-10° 170 1.0-10 _NZN,IO,?L;
+0% 3 +1.8-10 ~16 +NaN-10~In
AU U[-20,-10) 100% —1&/% 2.4-10 19102 1.0-10 _N‘;N'lo,ﬁn;
+0% 3 +4.4-10 ~16 +NaN-10~In
U[0.1,0.2) 100% T 5.5 10" T4 s 1.0-10 _NZN.m—yL;
+0% 3 +1.6-10 ~16 +NaN-10~In
U[1,2) 100% T 2.8:10° 71710, 101071 TIN5t
+0% 3 +2.4-10 —7 +8.4-10
U[1.1,1.2) 100% Vi 8.0-10° 550 2.3-10 S
+0% 3 +1.9-10 -16 + 10~ 1In
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Table 11: Results for multiplication. Comparison of the success-rate, model convergence
iteration, and the sparsity error, with 95% confidence interval on the “single layer” task.
Each value is a summary of 25 different seed (continued)

Model Range Success Solved at Sparsity error
Rate Mean Mean
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U[10.20) 84% Figf  1.8-10° F3E 9.1-10°% HiT
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F.4 Division

Table 12: Results for division. Comparison of the success-rate, model convergence iteration,
and the sparsity error, with 95% confidence interval on the “single layer” task. Each value
is a summary of 25 different seeds. Bold values refers to the best result for a evaluation
metric for a single module across the different ranges.

Model Range Success Solved at Sparsity error
Rate Mean Mean
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Table 12: Results for division. Comparison of the success-rate, model convergence iteration,
and the sparsity error, with 95% confidence interval on the “single layer” task. Each value
is a summary of 25 different seed (continued)

Model Range Success Solved at Sparsity error
Rate Mean Mean
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