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Abstract

We study a version of adversarial classification where an adversary is empowered to cor-
rupt data inputs up to some distance ε, using tools from variational analysis. In particular,
we describe necessary conditions associated with the optimal classifier subject to such an
adversary. Using the necessary conditions, we derive a geometric evolution equation which
can be used to track the change in classification boundaries as ε varies. This evolution
equation may be described as an uncoupled system of differential equations in one dimen-
sion, or as a mean curvature type equation in higher dimension. In one dimension, and
under mild assumptions on the data distribution, we rigorously prove that one can use the
initial value problem starting from ε = 0, which is simply the Bayes classifier, in order to
solve for the global minimizer of the adversarial problem for small values of ε. In higher
dimensions we provide a similar result, albeit conditional to the existence of regular solu-
tions of the initial value problem. In the process of proving our main results we obtain a
result of independent interest connecting the original adversarial problem with an optimal
transport problem under no assumptions on whether classes are balanced or not. Numerical
examples illustrating these ideas are also presented.

Keywords: adversarial learning, classification, optimal transportation, geometric flow,
differential equations, perimeter regularization

1. Introduction

In many learning settings, and in particular in the setting of deep learning, classifiers are
known to behave poorly when exposed to adversarial examples. This has led to a significant
body of work studying both the construction of specific adversaries and possible algorithms
defending against them. Furthermore, the notion of pitting learners versus adversaries
has stimulated significant new algorithms such as generative adversarial networks. One
may view such adversarial frameworks as one possible notion of robustness of a learning
algorithm, a critical concern in many applications.

In this work we consider the problem of optimal adversarial learning and aim at con-
necting it with a family of geometric evolution equations. The evolution equations that we
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derive answer the question: how would the decision boundary of a robust classifier change
infinitesimally, if the adversary was to infinitesimally increase its power to perturb the data?
Besides establishing new theoretical understanding for adversarial classification linking it
with a set of geometric equations of surface diffusion type (similar to the ones describing
the dynamics of interfaces of droplets of viscous fluids), our aim is also to explore compu-
tational alternatives to solve adversarial classification problems. At the theoretical level, a
standard un-robust classification problem admits an explicit solution (i.e. the Bayes classi-
fier), while adversarial problems typically do not have explicit solutions and in general are
quite challenging from a numerical point of view.

While the general perspective that we have described above can be studied in a variety
of settings, here we will study a concrete model for adversarial binary classification. In
particular, we assume that a binary classifier is subject to a data perturbing adversary:
namely, that for any future input x ∈ Rd and associated output y ∈ {0, 1}, the adversary
may select a new associated input x̃ = x+η in order to disrupt a classifier. The adversary is
assumed to possess limited power, namely that ‖η‖2 < ε, but is assumed to have knowledge
of the classifier that has been chosen. A basic question is how such an adversary affects
optimal classifiers. Various works have posited that adversaries do have an effect on classi-
fiers, and that they can induce regular decision boundaries. Heuristically, from a geometric
perspective this is natural, as boundaries with more surface area offer more opportunity
for adversaries to disrupt classifiers. However, rigorous justification of this assertion is,
to this point, unavailable. Several recent works have derived sufficient conditions for the
adversarial learning problem with such an adversary. In particular, (Bhagoji et al., 2019;
Pydi and Jog, 2019) both derive a duality principle related to the optimal adversarial clas-
sifier. They use this to derive bounds on the effect on the loss of such an adversary. Such
a duality principle provides an embedding of the optimal adversarial classification problem
as an optimal transportation problem.

As mentioned earlier, despite the potential difficulty of solving the optimal adversarial
classification problem for a fixed ε > 0 via optimization, we notice that the solution of the
problem for ε = 0 is well-known and does not require optimization: the optimizer is the
classical Bayes classifier. Namely, if we define

w0ρ0(x) = P(X ∈ dx, Y = 0), w1ρ1(x) = P(X ∈ dx, Y = 1),

then the Bayes classifier given by

u0(x) =

{
1 if w1ρ1(x) > w0ρ0(x)

0 otherwise

is known to be a minimizer of the un-robust risk. In the one-dimensional case we expect
to be able to write u0(x) = 1E for a set of the form E = ∪Ki=1[ai(0), bi(0)], where the “0”
indicates that ε = 0. The central idea of this work is to derive evolution equations for the
decision boundary of an optimal classifier as ε increases from zero, in the regime where
we may construct optimal classifiers as a perturbation of the explicit Bayes classifier. This
is achieved by deriving local necessary conditions (i.e. Euler-Lagrange type equations) for
optimal adversarial classifiers for any fixed ε (4.1). In particular, in the one-dimensional
case, these necessary conditions take the form of the algebraic equation

w1ρ1(bi(ε)− ε) = w0ρ0(bi(ε) + ε).
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Analogous necessary conditions are derived for the ai. These necessary conditions are then
used to derive evolution equations (4.2),(4.3). In particular, in one dimension this necessary
condition takes the form of a decoupled, ordinary differential equation (ODE)

dbi
dε

= −w0ρ
′
0(bi(ε) + ε) + w1ρ

′
1(bi(ε)− ε)

w0ρ′0(bi(ε) + ε)− w1ρ′1(bi(ε)− ε)
,

with an analogous equation for the ai. We remark that the resulting equation involves
a sort of weak non-local algebraic condition, which in turn means the evolution equation
includes a weak non-local forcing term. The evolution equation is ultimately a relatively
simple decoupled ODE, which may then be solved directly using numerical solvers, with very
modest computational effort and no optimization. This gives an easily computed candidate
solution to the optimal adversarial classification problem for ε sufficiently close to zero.

As the equations that we derive are based upon necessary conditions, a natural question
is whether solutions to the ODE indeed correspond to global minimizers of the optimal ad-
versarial classification problems. Following the duality principle derived in (Bhagoji et al.,
2019; Pydi and Jog, 2019) (which we extend here to include unbalanced classes, and which
holds under arbitrary metrics constraining adversarial perturbations and in arbitrary di-
mension), we derive the following theorem (stated informally):

Theorem 1 In one dimension, under mild technical assumptions on w0ρ0, w1ρ1 and the
associated Bayes classifier, there exists an interval [0, ε0] such that the solution of the op-
timal adversarial classification problem is given by the solution to the decoupled differential
equations (4.2),(4.3) with initial values given by the decision boundary of the Bayes classifier
(when ε = 0).

Subsequently, we turn our attention to studying the problem in higher dimensions,
where decision boundaries are now expressed as hyper-surfaces. For simplicity, we focus our
attention on the setting where the adversarial constraints are given in terms of the standard
Euclidean norm, which we denote by | · |. After deriving necessary conditions, which again
take the form of weakly non-local algebraic equations (6.1), we derive an evolution equation
for the decision boundary as ε varies (6.4). The well-posedness of this geometric evolution
equation is not immediately clear, but under the assumption that regular solutions do exist
we can also prove that the solution of the evolution equation characterizes global minimizers
on some interval [0, ε0], see Theorem 12. Using a Taylor expansion around ε = 0, we can
also identify approximate geometric evolution dynamics which are more interpretable. In
particular, we derive the evolution equation (6.5), which may be written as follows:

v(x) = −
∇ρ · ν + ρ

∑
i κi

(∇w1ρ1 −∇w0ρ0) · ν
, (1.1)

where here v represents the normal velocity (with respect to ε) of a point on the decision
boundary of the Bayes classifier, ν is the normal vector to the boundary, κi denote the
principal curvatures (see the Appendix for a definition) of the boundary, and ρ = w0ρ0 +
w1ρ1 = P(X ∈ dx). Conceptually, the vector field vν describes the infinitesimal change of
the Bayes classifier (i.e. the minimizer of the problem when ε = 0) as the adversary increases
its power. Evolution equation (1.1) takes the form of a weighted mean curvature flow plus
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a biasing term (the biasing term is driven by the gradient of the distribution ρ). Mean
curvature flow is an important geometric flow with many convenient properties, including
a comparison principle, and is known in many instances to induce significant regularity to
surfaces. In particular, mean curvature flow may be seen, within an appropriate function
space, as a gradient flow of the perimeter functional (in particular a flow that aims at
minimizing surface area). Equation (1.1) thus suggests that as ε increases, the corresponding
optimal decision boundaries become shorter and smoother, supporting previous work on the
topic. In addition, at least for the unweighted case, there are powerful and efficient numerical
algorithms to compute mean curvature flows (i.e. the MBO scheme given in Merriman et al.
1992).

To be more concrete about the connection between equation (1.1) and perimeter mini-
mization problems, let us consider the family of variational problems:

min
E⊆Rd

{R(1E) + εPerρ(E)} (1.2)

indexed by ε ≥ 0, where R denotes the standard average misclassification error and Perρ
represents the weighted (by ρ) perimeter of the set E, which, for sets E with smooth
boundary ∂E, can be written as:

Perρ(E) :=

ˆ
∂E
ρ(x)dHd−1(x);

in the above, Hd−1 is the d−1 dimensional Hausdorff measure. Problem (1.2) can be inter-
preted as a regularized risk minimization problem over binary classifiers, where Perρ plays
the role of an explicit regularizer, in this case penalizing binary classifiers when they have
large decision boundaries. Problem (1.2) is relevant in the context of adversarial learning
because, as we illustrate formally in Section 6.1.1, Equation (1.1) also describes the in-
finitesimal change of solutions to the family of problems (1.2) (indexed by ε) when starting
at ε = 0 (i.e. when starting with the Bayes classifier, which is the minimizer of the risk R.)
From this observation we can deduce that the instantaneous regularization effect that the
adversary has on the Bayes classifier is the same as the infinitesimal regularization effect
enforced by explicit perimeter regularization. This observation provides a novel geometric
interpretation for the role of adversaries in binary classification: they are approximately
equivalent to an explicit perimeter penalization. This line of research has been further ex-
plored by the authors in their work with Bungert, namely (Bungert et al., 2021), where they
prove an equivalence between adversarial learning for binary classification and regularized
risk minimization for all ε > 0 (and not just infinitesimally around ε = 0) at the expense
of having to modify the notion of perimeter used to measure the size of the boundary of a
set.

In summary, in this paper we take a novel approach and view an adversarial problem
as an ensemble of problems indexed by a parameter controlling the ability of an adversary
to perturb the data. The main motivation for doing this is to provide new theoretical
insights into the role played by adversaries in the training of binary classifiers. In concrete
terms, we discuss properties of the evolution equations that track solutions to an ensemble
of adversarial problems, starting from an un-robust optimal classifier. These evolution
equations take the form of geometric equations. For the specific adversarial model that
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we study here the adversarial problem and its corresponding geometric evolution equations
can be connected to a dual optimal transport problem, which is of interest on its own right
and that extends earlier work in (Pydi and Jog, 2019) where the case of balanced labels
(w0 = w1) was considered. In this paper, the connection to optimal transport is used to
certify global optimality of the decision boundaries generated by the geometric flows.

The remainder of this work is organized as follows. In Section 2 we review some relevant
literature. In Section 3 we describe concretely the model that we consider. In Section 3.1 we
review and extend the duality principle related to the model. In Sections 4 and 5 we derive
the main results in one dimension. Subsequently, Section 6 formally studies the higher-
dimensional case. Finally, Section 7 concludes by summarizing our work and describing a
number of promising future directions.

2. Related literature

2.1 Adversarial learning

A significant body of recent work considers the problem of adversarial learning; we only aim
to provide a review of the most relevant references. Early works focused on the existence
of adversarial examples in deep learning (Szegedy et al., 2013; Goodfellow et al., 2014b).
These examples typically involved adding carefully structured noise to images in ways that
was imperceptible to humans, but which led to gross classification errors for fitted neural
networks. A number of different algorithms were then developed for both constructing
adversarial attacks and defending against them; these models are distinct from but related to
the one we consider in this work: one influential example from this literature is (Madry et al.,
2017), which established important benchmarks for both adversarial attack and defense.
Several works advocate for attempting to differentiate between “natural” and “adversarial”
inputs (Gong et al., 2017; Grosse et al., 2017; Metzen et al., 2017), while other works
describe the ability of adversaries to circumvent such a defense (Carlini and Wagner, 2017;
Athalye et al., 2018). A parallel line of work posed a construction of improved classifiers by
posing a game in which adversaries and classifiers iteratively try to best one another: this
is the underlying framework for generative adversarial networks (Goodfellow et al., 2014a).

One work along this vein which relates closely with our work is (Moosavi-Dezfooli et al.,
2019). That work observes that many boundaries obtained via robust classification are
empirically observed to have smaller curvature. They then propose including a regular-
ization term in classification that penalizes boundaries with higher curvature. Our work
complements theirs in that we directly obtain a mean curvature in our d-dimensional evo-
lution equation, indicating that the curvature indeed plays an explicit role in how decision
boundaries change upon introducing stronger adversaries. While we do not explicitly prove
that lower curvature is induced in our adversarial setting, the evolution equation implicitly
suggests that such is the case, and a rigorous connection between these notions is a topic
of current work.

The fact that simple defenses were often insufficient against adversaries led to a number
of theoretical works regarding the inherent difficulty of finding classifiers that are robust to
adversaries. For example, (Bubeck et al., 2019) suggests that in some settings computation
is the primary bottleneck in constructing adversarially robust classifiers. (Gilmer et al.,
2018; Mahloujifar et al., 2019; Shafahi et al., 2018) all highlight how high dimensional
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geometry induces inherent limitations in the ability to avoid adversarial examples. (Ilyas
et al., 2019) argues that adversarial examples are often based upon human derived notions
of similarity that are incompatible with the geometry and training that occurs in deep
learning. Finally, the interplay between the geometry of the types of perturbations used in
measuring adversarial attacks was explored in (Khoury and Hadfield-Menell, 2018). That
work demonstrated that adversarial robustness with respect to `∞ norm perturbations is
not equivalent to `2 norm perturbations, and that under a manifold hypothesis adversarial
examples may be a consequence of the the complicated nature of high-dimensional geometry.

While the above works highlight the difficulty of completely avoiding adversarial ex-
amples, they do not study the ability of classifiers to mitigate the effects of adversarial
examples. One such framework for mitigating, on average, these effects is the optimal ad-
versarial classification problem that we study here. Several variants of this problem have
been previously studied. One variant permits the adversary to perturb the distribution
of (x, y)’s that are inputted (Blanchet et al., 2019; Gao et al., 2017); in (Blanchet et al.,
2019) a family of robust regression and classification problems are seen to be equivalent to
a series of regularized risk minimization problems. A second variant, considered in both
(Bhagoji et al., 2019; Pydi and Jog, 2019), studies the data perturbing adversary. In par-
ticular, those works derive a duality principle relating the optimal classification problem
for balanced classes to a optimal coupling or transportation problem. (Pydi and Jog, 2019)
uses Strassen’s theorem from the theory of optimal transportation (Villani, 2003) to derive
a duality principle, and demonstrates that minimizers of the adversarial problem may be
taken to be closed sets. This may be seen as an initial step towards proving that optimal
adversarial classifiers are indeed smoother than ones without adversaries. These works have
focused on the sufficient conditions associated with duality principles, but to our knowl-
edge there is no work deriving the necessary conditions associated with optimal decision
boundaries of adversarially robust classifiers.

Tracking the effect of a regularization parameter on optimal solutions of a statistical
problem has been studied in various contexts. For example, the evolution of optimal solu-
tions of `1 regularized regression problems (i.e. Lasso) were studied in (Belloni et al., 2011).
More recently, in the context of parametric adversarial learning, (Javanmard et al., 2020)
studied the tradeoff between accuracy and adversarial robustness as a function of “ε”. In
that work the optimal solutions admit direct representation formulas, and hence one can
directly describe the evolution of the optimal classifier. In contrast, our work focuses on
non-parametric classifiers, and to our knowledge no other works attempt to describe the
evolution, in terms of a differential equation, of classification boundaries as a function of
the adversarial power.

Finally, it is worth mentioning that other notions of classification robustness have been
introduced in the literature (Wang et al., 2018). Similar questions to the ones explored in
this paper can also be studied under the setting proposed in that work.

2.2 Geometric flows and PDE methods in learning

Our work also draws upon ideas from geometric evolutions, and more generally variational
problems. Mean curvature flow is well-studied from a theoretical standpoint, in particular
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as a gradient flow of the perimeter. Desirable properties of this flow, such as compari-
son principles, and local regularity theorems, are available in (Ecker, 2012). High fidelity
numerical approximations are also available (Merriman et al., 1992). Our evolution equa-
tion is also not unrelated to non-local versions of curvature flow, which also are a topic of
significant current interest (Chambolle et al., 2015).

In recent years, there has also been a growing interest in using the ideas and techniques
from the analysis of interfacial flows, to construct new algorithms in data analysis. These
algorithms arise as iterative schemes to solve optimization problems closely related to graph-
based supervised, unsupervised, and semi-supervised learning; see (Calatroni et al., 2017;
Cucuringu et al., 2019; Hu et al., 2013; Jacobs et al., 2018; Merkurjev et al., 2013, 2018;
van Gennip et al., 2014) and references within.

3. Problem setup

Let ν be a Borel probability measure on Rd × {0, 1} representing a data distribution for
pairs (x, y) where x is a feature vector and y an associated label. Let (X,Y ) ∼ ν. We
assume that the conditional distribution of X given Y = 0 takes the form ρ0dx, while the
conditional distribution of X given Y = 1 equals ρ1dx, for two density functions ρ0, ρ1 that
are assumed to satisfy certain regularity and non-degeneracy properties that we will make
precise later on (for example see Assumptions 5 for the one-dimensional setting). We use
ρdx to denote the marginal distribution of X. Notice that ρ can be expressed as

ρ = w0ρ0 + w1ρ1,

where w0 = P(Y = 0) and w1 = P(Y = 1). We let

µ(x) := P(Y = 1|X = x)

represent the conditional probability (or mean) of the label variable Y given X. Our
conventional notation throughout the paper is that ρi(z + w) is always meant to denote ρi
evaluated at z+w, while any multiplication of ρi by (z+w) will be denoted using ρi ·(z+w).
We notice that as a consequence of Bayes’ theorem µ may be written using

µ(x) = P(Y = 1) · ρ1(x)

ρ(x)
=
w1ρ1(x)

ρ(x)
.

The classical classification problem seeks to minimize the functional

R(f) = E(`(f(x), y)) =

ˆ
`(f(x), y) dν(x, y)

over some class of functions f ∈ F . Usually, one is required to select f = 1A for some Borel
set A. Of particular importance is the case when `(f(x), y) = 1f(x)6=y (known as the 0-1
loss), where one may actually minimize over the class of L1 functions, and where minimizers
of the form 1A always exist. In particular, the function

uB(x) =

{
1 if µ(x) ≥ 1/2

0 otherwise
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known as the Bayes classifier, is a minimizer to the 0-1 loss problem. In short, at least
from a theoretical perspective, the optimization of the risk functional R relative to 0-1 loss
admits a closed form solution.

In the adversarial classification problem, one supposes an adversary that is able to
modify incoming data points. In particular, in this paper we imagine that the adversary is
allowed to shift any data point x with label y to a nearby point g(x, y) so that |x−g(x, y)| ≤
ε. Here ε is a parameter that describes the power of the adversary: the larger the value of ε,
the more the adversary can perturb the data. In this setting, one seeks to build a classifier
that minimizes the robust risk

Rε(f) := sup
g:supx d(g(x,y),x)≤ε

ˆ
`(f(g(x, y)), y) dν(x, y),

which factors in the action of the adversary. Notice that in the above model, the adversary
can use information of a feature vector x as well as of its corresponding label y in order
to decide on the new features for that data point. This model has been studied previously
in (Bhagoji et al., 2019; Pydi and Jog, 2019) where interesting connections with optimal
transport problems have been established. In this paper we revisit these connections and
extend them.

In order to analyze the minimization of the above robust risk, we first must characterize
the g which achieves the maximum risk for a given f = 1A. We begin by defining the
distance between a point and a set A ∈M(Rd) via

d(x,A) := inf
y∈A

d(x, y),

whereM(Rd) denotes the Borel sets of Rd. For convenience, we also define a signed distance
via

d̃A(x) =

{
d(x,A) if x /∈ A
−d(x,Ac) if x ∈ A.

The maximization problem for the adversary admits a direct representation in terms of this
signed distance. In particular, we notice that for f = 1A, if |d̃A(x)| ≤ ε, then the adversary
is free to select an arbitrary response at the point (x, y) regardless of the value of y. On the
other hand, if |d̃A(x)| > ε the adversary is unable to modify the label f(x) by moving the
inputted point by distance ε. This information may be encoded by rewriting our objective
functional Rε in the form:

Rε(1A) =

ˆ
d̃A(x)<−ε

`(1, y) dν(x, y)+

ˆ
d̃A(x)>ε

`(0, y) dν(x, y)+

ˆ
|d̃A(x)|<ε

max
z∈{0,1}

`(z, y) dν(x, y).

We notice that when ε = 0 this functional reduces to the standard, non-adversarial, loss.

In order to simplify notation, we define, for any s ∈ R, the set

As := {x ∈ Rd : d̃A(x) ≤ s}.
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Furthermore, in what follows we will always consider the 0-1 loss function. In that case, we
may rewrite our objective function as follows:

Rε(1A) =

ˆ
A−ε

w0ρ0dx+

ˆ
(Aε)c

w1ρ1dx+

ˆ
|d̃A(x)|≤ε

ρ(x)dx

=

ˆ
A−ε

w0ρ0dx+

ˆ
(Aε)c

w1ρ1dx+

ˆ
Aε\A−ε

w0ρ0 + w1ρ1dx

=

ˆ
Aε

w0ρ0dx+

ˆ
(A−ε)c

w1ρ1dx

=

ˆ
Aε

w0ρ0dx+ w1 −
ˆ
A−ε

w1ρ1dx,

where we have used the fact that ρ1 is a probability distribution. We are interested in the
robust classification problem:

inf
A∈M(Rd)

Rε(1A). (3.1)

3.1 Duality principle and connection to an optimal transport problem

Problem (3.1) admits a strong duality theorem. To illustrate, we recall previous results in
(Bhagoji et al., 2019; Pydi and Jog, 2019). In those works, they consider w0 = w1 = 1/2,
in which case the robust risk minimization problem becomes

inf
A∈M(Rd)

Rε(1A) =
1

2

(
1− sup

A∈M(Rd)

{ˆ
A−ε

ρ1dx−
ˆ
Aε

ρ0dx

})
.

It is then shown that

sup
A∈M(Rd)

{ˆ
A−ε

ρ1dx−
ˆ
Aε

ρ0dx

}
= inf

π∈Γ(ρ1,ρ0)

ˆ
1d(x1,x2)>2εdπ(x1, x2) =: dε(ρ1, ρ0),

where here Γ(ρ1, ρ0) denotes the set of probability measures on Rd × Rd with marginals
ρ1 and ρ0 (i.e. the set of couplings or transportation plans between ρ1 and ρ0); the above
result is closely connected to Strassen’s theorem (see Corollary 1.28 in (Villani, 2003)). This
result may be restated in the following way

inf
A∈M(Rd)

Rε(1A) = sup
π∈Γ(ρ1,ρ0)

1

2

(
1−
ˆ
1d(x1,x2)>2εdπ(x1, x2)

)
.

This duality principle provides a means of certifying the optimality of solutions to the
functional Rε, as is common in the context of convex optimization. Our later proofs es-
tablishing the global optimality of solutions that we construct using evolution equations
will directly utilize this duality principle. Previous results in this vein focused only on the
case with balanced classes: here we extend their results to the case of unbalanced classes.
Indeed, the remainder of this section provides a direct generalization of the duality results
given in (Bhagoji et al., 2019; Pydi and Jog, 2019).

In order to state a duality principle for more general wi, it will be convenient to define
the probability measure on Rd × {0, 1} given by

νS(E × {1}) = ν(E × {0}), νS(F × {0}) = ν(F × {1}).
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In words, νS is simply the data distribution after swapping the y labels. Using the measures
ν and νS , we now state a more general duality principle that applies for arbitrary w0, w1

and not just for w0 = w1 = 1/2.

Proposition 2 Let cε : (Rd × {0, 1})2 → R be the cost defined by

cε(z1, z2) := 1{d(x1,x2)>2ε}∪{y1 6=y2},

where we write zi = (xi, yi). Then,

2 sup
B∈M(Rd)

{ˆ
B−ε

w1ρ1dx−
ˆ
Bε

w0ρ0dx

}
− w1 + w0 = inf

π∈Γ(ν,νS)

ˆ
cε(z1, z2)dπ(z1, z2),

which is also equal to

2 sup
A∈M(Rd)

{ˆ
A−ε

w0ρ0dx−
ˆ
Aε

w1ρ1dx

}
− w0 + w1.

Proof We follow Theorem 1.27 in (Villani, 2003). First, by the Kantorovich duality
theorem (see Theorem 1.3 in (Villani, 2003)) we have

sup
φ(z1)+ψ(z2)≤cε(z1,z2)

ˆ
φ(z1)dν(z1)+

ˆ
ψ(z2)dνS(z2) = inf

π∈Γ(ν,νS)

ˆ
cε(z1, z2)dπ(z1, z2). (3.2)

where the sup is over all φ ∈ L1(ν) and ψ ∈ L1(µ) (known as Kantorovich potentials), and
the inequality constraint must be interpreted for ν almost every z1 and for νS almost every
z2.

Let φ and ψ be two arbitrary Kantorovich potentials. Notice that if φ(z) + ψ(z̃) ≤
cε(z, z̃) then necessarily φ is (essentially) bounded above. By subtracting a constant from
φ and adding this same constant to ψ, we can assume without the loss of generality that
supz φ(z) = 1. Now, for a given such φ the best corresponding ψ, i.e. its dual conjugate
potential, is given by

φcε(z̃) := inf
z
{cε(z, z̃)− φ(z)} .

Notice that φcε can be written as:

φcε(x̃, 0) = min


inf{cε(z, z̃)− φ(z) : z = (x, 0), d(x, x̄ > 2ε}
inf{cε(z, z̃)− φ(z) : z = (x, 0), d(x, x̄) ≤ 2ε}
inf{cε(z, z̃)− φ(z) : z = (x, 1)}

= min

{
1− sup

x:d(x̃,x)>2ε
φ(x, 0),− sup

x:d(x̃,x)≤2ε
φ(x, 0), 1− sup

x
φ(x, 1)

}
,

Similarly we find that

φcε(x̃, 1) = min

{
1− sup

x:d(x̃,x)>2ε
φ(x, 1),− sup

x:d(x̃,x)≤2ε
φ(x, 1), 1− sup

x
φ(x, 0)

}
.
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Since we have assumed that supz φ(z) = 1 we can deduce from the above that φcε(z̃) ∈
[−1, 0]. In particular, the supremum in (3.2) can be restricted to pairs φ, ψ satisfying the
cost constraint and ψ ∈ [−1, 0].

Let us now consider an arbitrary ψ taking values in [−1, 0] with its best associated φ:

ψcε(x, 0) := min

{
1− sup

x̃:d(x̃,x)>2ε
ψ(x̃, 0),− sup

x̃:d(x̃,x)≤2ε
ψ(x̃, 0), 1− sup

x̃
ψ(x̃, 1)

}
.

ψcε(x, 1) := min

{
1− sup

x̃:d(x̃,x)>2ε
ψ(x̃, 1),− sup

x̃:d(x̃,x)≤2ε
ψ(x̃, 1), 1− sup

x̃
ψ(x̃, 0)

}
.

Since we are only considering ψ which take non-positive values, it follows that

ψcε(x, 0) = − sup
x̃:d(x̃,x)≤2ε

ψ(x̃, 0), ψcε(x, 1) = − sup
x̃:d(x̃,x)≤2ε

ψ(x̃, 1),

which in particular implies that ψcε ∈ [0, 1]. Finally, computing the conjugate of φ := ψcε

we get
φcε(x̃, 0) = − sup

x:d(x̃,x)≤2ε
φ(x, 0), φcε(x̃, 1) = − sup

x:d(x̃,x)≤2ε
φ(x, 1)

which is then seen to take values on [−1, 0]. Since φcε is the best ψ for a given φ ∈ [0, 1], it
follows that the supremum in (3.2) is equal to

sup
φ∈[0,1]

ˆ
φ(z)dν(z) +

ˆ
φcε(z̃)dνS(z).

From the fact that for arbitrary φ ∈ [0, 1] we have φcε ∈ [−1, 0], we deduce, using the
“layer cake” representation (which we recall in Lemma 16 in the Appendix),

ˆ
φ(z)dν(z) +

ˆ
φcε(z̃)dνS(z̃) =

ˆ 1

0

ˆ
1φ(z)>sdν(z)ds−

ˆ 1

0

ˆ
1−φcε (z̃)>sdν

S(z̃)ds,

=

ˆ 1

0

(ˆ
1φ(z)>sdν(z)ds−

ˆ
1−φcε (z̃)>sdν

S(z̃)

)
ds. (3.3)

We now rewrite the indicator function 1−φcε (z̃)≥s in terms of a 2ε-expansion of a set. Indeed,
for z̃ = (x̃, 0) we have:

1{−φcε (·)>s}(z̃) = 1⇔ −φcε(x̃, 0) > s

⇔ ∃x s.t. d(x, x̃) ≤ 2ε and φ(x, 0) > s

⇔ x̃ ∈ {x : φ(x, 0) > s}2ε.

Thus, 1{−φcε (·)>s}(x̃, 0) = 1{φ(·,0)>s}2ε(x̃). In the exact same way we see that 1{−φcε (·)>s}(x̃, 1) =
1{φ(·,1)>s}2ε(x̃). Since we are integrating over s ∈ [0, 1], we may infer that there exists
s ∈ [0, 1] such that

ˆ 1

0

(ˆ
1φ(z)>sdν(z)ds−

ˆ
1−φcε (z̃)>sdν

S(z̃)

)
ds ≤

ˆ
1φ(z)>sdν(z)ds−

ˆ
1−φcε (z̃)>sdν

S(z̃)

11
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=

ˆ
1{φ(x,0)>s}w0ρ0(x)dx+

ˆ
1{φ(x,1)>s}w1ρ1(x)dx

−
ˆ
1{φ(x,0)>s}2εw1ρ1(x)dx−

ˆ
1{φ(x,1)>s}2εw0ρ0(x)dx,

where we have used the definitions of ν and νS . The above computations, along with (3.3),
allow us to conclude that:

inf
π∈Γ(ν,νS)

ˆ
cε(z1, z2)dπ(z1, z2)

= sup
A∈M(Rd)

{ˆ
A
w0ρ0dx−

ˆ
A2ε

w1ρ1dx

}
+ sup
B∈M(Rd)

{ˆ
B
w1ρ1dx−

ˆ
B2ε

w0ρ0dx

}
= sup

A∈M(Rd)

{ˆ
A−ε

w0ρ0dx−
ˆ
Aε

w1ρ1dx

}
+ sup
B∈M(Rd)

{ˆ
B−ε

w1ρ1dx−
ˆ
Bε

w0ρ0dx

}

= sup
A∈M(Rd)

{ˆ
(Ac)−ε

w1ρ1dx−
ˆ

(Ac)ε
w0ρ0dx

}

+ sup
B∈M(Rd)

{ˆ
B−ε

w1ρ1dx−
ˆ
Bε

w0ρ0dx

}
− w1 + w0

= 2 sup
B∈M(Rd)

{ˆ
B−ε

w1ρ1dx−
ˆ
Bε

w0ρ0dx

}
− w1 + w0.

In the previous computation the step from line two to line three is the only one which
does not follow directly from definitions: its justification relies upon technical measure-
theoretical arguments which can be found in the appendix of (Pydi and Jog, 2019), and
which we omit here for the sake of brevity. Notice that we also obtain:

= 2 sup
A∈M(Rd)

{ˆ
A−ε

w0ρ0dx−
ˆ
Aε

w1ρ1dx

}
− w0 + w1.

This shows our desired result.

We now translate the previous proposition, which mirrors the terminology used in de-
scribing duality in optimal transportation and linear programming, into a form which di-
rectly links the adversarial classification problem with the transportation problem from the
previous proposition.

Corollary 3 1A for some A ∈M(Rd) minimizes Rε if and only if A maximizes

sup
A∈M(Rd)

{
w1

ˆ
A−ε

ρ1dx− w0

ˆ
Aε

ρ0dx

}
.

Moreover,

inf
A∈M(Rd)

Rε(1A) =
1

2
− 1

2
inf

π∈Γ(ν,νS)
cε(z1, z2)dπ(z1, z2).

12
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Proof Recall that

Rε(1A) =

ˆ
Aε

w0ρ0dx+ w1 −
ˆ
A−ε

w1ρ1dx

so

inf
A∈M(Rd)

Rε(1A) = w1 − sup
A

{ˆ
A−ε

w1ρ1dx−
ˆ
Aε

w0ρ0dx

}
= w1 −

1

2
(w1 − w0)− 1

2
inf

π∈Γ(ν,νS)
cε(z1, z2)dπ(z1, z2)

Remark 4 Let us consider the balanced case w0 = w1 = 1/2. Since

inf
A∈M(Rd)

Rε(A) =
1

2

(
1− inf

π∈Γ(ν,νS)
cε(z1, z2)dπ(z1, z2)

)
,

it follows that

inf
π∈Γ(ν,νS)

ˆ
cε(z1, z2)dπ(z1, z2) = inf

γ∈Γ(ρ0,ρ1)

ˆ
1d(x1,x2)>2εdγ(x1, x2).

4. Necessary conditions and corresponding evolution equation in one
dimension

We now describe, in detail, the necessary conditions for minimizing Rε, and the evolution
equation that they induce. For clarity, we begin by describing this evolution equation in
the simple case where x ∈ R, under the standard metric. In this case we will be able to
prove that the resulting evolution equation completely characterizes the global minimizer
of Rε for small ε under mild assumptions; the formal statement and proof of this result is
given in Section 5. Subsequently, in Section 6 we will turn our attention to the case where
x ∈ Rd.

To begin, let us assume that we may represent the boundary of the optimal set A∗ε in
terms of two parametrized collections of points ai(ε) and bi(ε), so thatA∗ε = ∪Ki=1[ai(ε), bi(ε)].
Here we allow a1 = −∞ and bK = +∞ if necessary, and we notice that, as w0ρ0, w1ρ1 are
both absolutely continuous (see Assumptions 5), it makes no difference whether the sub-
intervals are open or closed. We note that this assumption will hold for ε = 0 as long as
the set where w0ρ0 = w1ρ1 is a discrete set, a mild assumption. Finally, in the remainder
we may suppress the dependence of ai, bi on ε, in order to decrease the notational bur-
den. Furthermore, and following our notational convention for the ρi, any time ai, bi are
followed by parentheses we always mean that the parentheses denote function evaluation:
cases where multiplication is implied will be denoted by ai · z. We use the convention
a1 < b1 < a2 < b2 < · · · < aK < bK .

As A∗ε is a minimizer of Rε, we may freely perturb the boundary points (i.e. ai, bi)
without increasing the energy. In particular, for |δ| small enough, if we consider the set
A(δ) = (a1, b1 + δ) ∪

(
∪Ki=2(ai, bi)

)
, then since A∗ε is a minimizer we have that Rε(A(δ)) −

13
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Rε(A
∗
ε) ≥ 0. Taking δ → 0 and using the fundamental theorem of Calculus then allows us

to write

0 = lim
δ→0

Rε(A(δ))−Rε(A∗ε)
δ

= w0ρ0(b1 + ε)− w1ρ1(b1 − ε).

An analogous argument for the ai and for the rest of the bi then allows us to write the
necessary conditions:

w1ρ1(bi − ε) = w0ρ0(bi + ε), w1ρ1(ai + ε) = w0ρ0(ai − ε), (4.1)

which hold for all ai and bi that are not −∞ or +∞. In the remainder, if a1(0) = −∞ we
set a1(ε) = −∞ for ε > 0 and likewise if bK(0) = +∞, then bK(ε) = +∞. This relates
to the fact that our differential equation approach does not track potential “topological
changes” in the decision boundaries, and is mostly focused on the case where ε is small.
We remark that when ε = 0, the above necessary condition gives precisely w0ρ0 = w1ρ1,
which characterizes the boundary points of the Bayes classifier. In a sense, we may view
the necessary condition above as a non-local algebraic condition: namely, that the condition
that w0ρ0(bi) = w1ρ1(bi) (for ε = 0) has been replaced by the non-local algebraic condition
w0ρ0(bi + ε) = w1ρ1(bi − ε) (for ε > 0).

Using the necessary conditions (4.1), we can exactly describe the local evolution of the
boundary of the set A∗ε for small changes in ε. In particular, let us suppose that each
boundary point varies smoothly in ε, namely that we express ai(ε) and bi(ε) as smooth
functions in ε. Differentiating the necessary condition and using the chain rule, we find
that

w0ρ
′
0(bi + ε)

(
dbi
dε

+ 1

)
− w1ρ

′
1(bi − ε)

(
dbi
dε
− 1

)
= 0.

We may then solve this equation for dbi
dε ,

dbi
dε

= −w0ρ
′
0(bi + ε) + w1ρ

′
1(bi − ε)

w0ρ′0(bi + ε)− w1ρ′1(bi − ε)
. (4.2)

The necessary condition for the ai is analogous:

dai
dε

= −w1ρ
′
1(ai + ε) + w0ρ

′
0(ai − ε)

w1ρ′1(ai + ε)− w0ρ′0(ai − ε)
. (4.3)

We continue to use the convention that a1(ε) = −∞ when a1(0) = −∞ and similarly
bK(ε) = +∞ if bK(0) = +∞.

The previous equations allow us to precisely describe (locally) the evolution of the
decision boundaries using ordinary differential equations. In particular, beginning at ε = 0
with the decision boundary of the Bayes classifier, we may directly solve for the optimizer
of Rε by solving a system of at most 2K decoupled differential equations. High fidelity
approximations of these equations may be obtained using standard software packages.

We remark that the differential equations at ε = 0 are much simpler, for example:

dbi
dε

[ε = 0] = − ρ′(bi)

w0ρ′0(bi)− w1ρ′1(bi)
.

14
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This indicates that the bi initially moves downhill in ρ, with speed dictated by the inverse of
the derivative of the difference between the probability of the different classes. To determine
the sign of the denominator, we notice that since w1ρ1 is assumed to be larger than w0ρ0

inside (ai(0), bi(0)), it is natural to assume that w1ρ
′
1(bi(0)) < w0ρ

′
0(bi(0)). This assump-

tion is made explicit in Assumption 5). A similar conclusion holds for the left endpoints ai.
Although the above non-local formulas are not too complicated here, the analogous approx-
imation near ε = 0 will be more important in understanding the geometric flow induced in
dimension higher than one as we will see in Section 6.

4.1 Simple example

Suppose that P(X ∈ dx|Y = 1) = φ(x)dx, where φ is the standard normal density φ(x) =
1√
2π

exp(−x2/2), and let P(X ∈ dx|Y = 0) = φ((x−2)/2)dx
2 . Assume also that P(Y =

1) = P(Y = 0) = 1/2. Since the variances of the two Gaussians P(X ∈ dx|Y = 0) and
P(X = x|Y = 1) are different, their densities must intersect at exactly two points, in this
case at

a1(0) = −2

3

(
1 +

√
2(2 + 3 log(2))

)
≈ −2.57, b1(0) =

2

3

(√
2(2 + 3 log(2))− 1

)
≈ 1.23.

The corresponding Bayes classifier for this problem is the indicator function of the set
(a1(0), b1(0)).

Since the solutions a1 and b1 of the ODEs (4.2) and (4.3) satisfy the necessary conditions
(4.1), it follows from Theorem 2 in (Pydi and Jog, 2019) (which characterizes optimality in
the Gaussian setting) that the set A∗ε := (a1(ε), b1(ε)) is a global solution to the adversarial
robust problem (3.1) for all ε small enough.

In order to provide concrete numerical values for the decision boundary as a function of
ε we use a standard ODE solver in Python. The decision boundary, as well as the associated
densities, are given in Figure 1. We notice that aε moves to the left, which is consistent
with the fact that ρ has positive slope at a(0). Similarly, the bε moves to the right, which
is consistent with the fact that ρ has negative slope at b(0). These decision boundaries
required no optimization, and are provably global minimizers for small ε.

5. Global minimizers in one dimension

The evolution equations of the previous section are based upon necessary conditions for the
adversarial classification problem. Since they are based upon necessary conditions, it is not
immediately obvious whether or not these solutions are global minimizers of the adversarial
variational problem (3.1). The goal of this section is to prove that solutions of the evolution
equation are indeed global minimizers for all small enough ε, or in other words that the
evolution equation locally characterizes the minimizers of the adversarial problem. In order
to do so, we will require the following mild assumptions on the densities w0ρ0, w1ρ1:

Assumption 5 We make the following assumptions on the densities ρ0 and ρ1.

i) Regularity condition: ρ0, ρ1 ∈ C1(R).

15
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Figure 1: Plot of decision boundaries as ε varies for example in Section 4.1 , as well as the
underlying probabilities.

ii) Non-degeneracy condition I: there are only finitely many t ∈ R for which w0ρ0(t) =
w1ρ1(t) > 0.

iii) Non-degeneracy condition II: for every t ∈ R for which w0ρ0(t) = w1ρ1(t) > 0 we
have w0ρ

′
0(t) 6= w1ρ

′
1(t).

We pause to briefly discuss these assumptions. First, we notice that the points in the
boundary of the Bayes’ classifier will necessarily satisfy w0ρ0(t) = w1ρ1(t). Condition ii)
then can be restated as requiring that the Bayes classifier be composed of finitely many
intervals on the support of ρ. Condition iii), which only makes sense if we assume enough
regularity, i.e. Condition i), rules out degeneracies, implying that the Bayes’ classifier is
essentially unique. Condition iii) also implies that the Bayes’ classifier is stable under C1

perturbations of the ρi: in a sense, this is what is leveraged in the proof of our main
result, namely Theorem 8. These conditions should be seen as relatively mild, and indeed
Condition iii) ought to be generic within the class of C1 functions. For example, if we
require that the ρi be given by finite mixtures of Gaussians, then these assumptions will
hold for almost every choice of parameters (i.e. means and variances). Before stating the
main result, we begin with a few remarks which will be important in our proof strategy.
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Remark 6 (Global optimality via duality) Suppose that A is a measurable subset of
Rd that satisfies

1

2

ˆ
cε(z1, z2)dπε(z1, z2) +

1

2
(w1 − w0) ≤

ˆ
A−ε

w1ρ1dx−
ˆ
Aε

w0ρ0dx, (5.1)

for some πε ∈ Γ(ν, νS). Then, it follows from Proposition 2 that A and πε are solutions
to the optimization problems in that same proposition, and by Corollary 3, A is also a
minimizer of (3.1).

Remark 7 (Knott-Smith optimality criterion) According to Remark (6), to show that
a given measurable set A is an optimizer for (3.1), we would need to construct a coupling
πε for which (5.1) holds. Now, let A be a measurable subset of Rd, and suppose that πε ∈
Γ(ν, νS) is concentrated on the set:

{(z1, z2) ∈ (Rd×{0, 1})2 : 1A−ε×{0}(z1)−1Aε×{0}(z2)+1(Ac)−ε×{1}(z1)−1(Ac)ε×{1}(z2) = cε(z1, z2)}.

Then, it is straightforward to check that A and πε satisfy (5.1) (with equality). The above
condition for πε suggests then how mass must be exchanged between the measures ν and νS

in order to get an optimal coupling. This insight is used to build the coupling from Theorem
8 below.

We are now ready to state the main result of this section, which states that the evolution
equations (4.2) and (4.3) locally characterize minimizers of the adversarial classification
problem.

Theorem 8 Under Assumptions 5 on ρ0, ρ1, w0, w1, there exists ε0 > 0 such that for every
ε ∈ [0, ε0] there exists a coupling πε ∈ Γ(ν, νS) satisfying:

w1

ˆ
(A∗)−ε

ρ1dx− w0

ˆ
(A∗)ε

ρ0dx =
1

2

ˆ
cε(z1, z2)dπε(z1, z2) +

1

2
(w1 − w0),

where A∗ = A∗ε :=
⋃K
i=1(ai(ε), bi(ε)) and the functions ai, bi solve the Equations (4.2) and

(4.3), which we recall to be

dbi
dε

= −w0ρ
′
0(bi + ε) + w1ρ

′
1(bi − ε)

w0ρ′0(bi + ε)− w1ρ′1(bi − ε)
,

dai
dε

= −w1ρ
′
1(ai + ε) + w0ρ

′
0(ai − ε)

w1ρ′1(ai + ε)− w0ρ′0(ai − ε)
,

with initial conditions ai(0), bi(0); here, the points ai(0), bi(0) form the decision boundary
for the Bayes classifier. In particular, according to Remark 6 the set A∗ε induces an optimal
robust classifier for ε, i.e., it is a solution to the Problem (3.1).

The proof of this result is somewhat technical, because one needs to explicitly construct
the transportation plans in question. We construct these plans in several steps, which can
be related to the different cases in the 0-1 cost function. The most crucial step of this
construction, and the one which requires Assumption iii), involves how to construct the
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part of the transportation plan close to the classification boundary. This is carried out in
Steps 1-3 below, and is illustrated in Figure 2. Step 4 constructs the (relatively simple)
remainder of the transportation plan and wraps up the proof.
Proof

Let us recall that by convention we have ordered the endpoints as a1(0) < b1(0) <
a2(0) < b2(0) < · · · < aK(0) < bK(0). We can pick δ > 0 small enough so that for all i > 1
we have

bi−1(0) + δ < ai(0)− δ < ai(0) + δ < bi(0)− δ.
For i = 1, if a1(0) is finite the same inequality applies, interpreting b0(0) := −∞. Similarly,

ai(0) + δ < bi(0)− δ < bi(0) + δ < ai+1(0)− δ

for i < K, and if bK(0) < +∞ the same inequality applies, interpreting aK+1(0) := +∞.
We notice that the solutions of the evolution equations (4.2) and (4.3), which will possess
local solutions under Assumption 5, are guaranteed to satisfy the necessary conditions (4.1).
This fact will be used repeatedly below.

w0ρ0

w1ρ1

r+
i r̃+

ibi + εbi − ε

Figure 2: Illustration of mass exchange defined by γbi (middle) and by γ̃−1
bi

(bottom).

Step 1: [Construct matching from the left of bi] Figure 2 provides a visual
illustration of the particular construction that we use in our transportation plan near the
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boundary point bi(ε). In Step 1, we are focusing on constructing the mapping involving
the green mass in the plot. This mapping is constructed in such a way that the total green
mass on the left and the right are equal, and so that no mass needs to travel a distance
greater than 2ε. We notice that the heights at bi(ε)− ε and bi(ε) + ε are equal, and so that
mass travels distance exactly 2ε. The slope conditions assumed in Assumption 5, which we
can show continues to hold locally near bi(0), is what allows us to infer that the rest of the
green mass indeed is transported less than distance 2ε.

To begin the construction, let us fix a particular i corresponding to a finite right endpoint
bi(ε) and notice that for small enough ε > 0 we have

bi(0)− δ/2 ≤ bi − ε < bi + ε < bi(0) + δ/2 < ai+1(0)− δ,

where we recall that bi = bi(ε) (we have dropped the dependence on ε to ease the notation).
Now, by Assumption 5 we know that w0ρ

′
0(bi(0)) 6= w1ρ

′
1(bi(0)). Given that when ε = 0 we

have that A∗ε is the Bayes’ classifier, we may deduce that w0ρ0 < w1ρ1 inside (ai(0), bi(0)).
Hence w0ρ

′
0(bi(0)) > w1ρ

′
1(bi(0)). Moreover, the fact that ρ0, ρ1 are C1(R) allows us to

deduce that
w0ρ

′
0(t0) > w1ρ

′
1(t1) (5.4)

for every t0, t1 in [bi(0)− δ, bi(0) + δ] (by making δ smaller if needed). In particular, for all
ε > 0 small enough we have

d

ds
(w0ρ0(bi + ε− s)) < d

ds
(w1ρ1(bi − ε− s)) , ∀s ∈ (0, δ/2). (5.5)

The above condition can be combined with the necessary condition for bi in (4.1) and the
fundamental theorem of Calculus to obtain

w0ρ0(bi + ε− s) ≤ w1ρ1(bi − ε− s), ∀s ∈ (0, δ/2), (5.6)

for all small enough ε > 0.
Let r+

i (which depends on ε) be the largest number smaller than bi − ε satisfying:

ˆ bi−ε

r+i

w1ρ1(x)dx =

ˆ bi+ε

r+i

w0ρ0(x)dx. (5.7)

The existence of r+
i (at least for small enough ε) follows from (5.5) and condition (4.1),

which combined also imply that r+
i satisfies bi − δ/2 ≤ r+

i . On the other hand, we can see
that r+

i also satisfies r+
i ≤ bi(0). Indeed, if bi − ε ≤ bi(0) this is immediate. If on the other

hand, bi − ε > bi(0) we see that for all t ∈ [bi(0), bi − ε]
ˆ bi−ε

t
w1ρ1(x)dx <

ˆ bi+ε

t
w0ρ0(x)dx,

because in the interval (bi(0), bi + ε) we have w0ρ0 > w1ρ1. Therefore, r+
i ≤ bi(0) in this

case too. In summary,
r+
i ∈ [bi − δ/2, bi(0)].
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Now we define the function φbi : [r+
i , bi − ε] → [r+

i , bi + ε] as t 7→ φbi(t) where φbi(t) is
the largest number in [r+

i , bi − ε] which satisfies:

ˆ bi−ε

t
w1ρ1(x)dx =

ˆ bi+ε

φbi (t)
w0ρ0(x)dx.

Due to inequality (5.6), φbi satisfies:

|t− φbi(t)| ≤ 2ε, ∀t ∈ [r+
i , bi − ε].

The map φbi induces a measure γbi on R× R given by

γbi := (Id× φbi)]
(
w1ρ1

¬
[r+
i , bi − ε]

)
,

whose first and second marginals are the measures w1ρ1
¬
[r+
i , bi − ε] and w0ρ0

¬
[r+
i , bi + ε]

respectively; in the above ] denotes the push-forward operation and
¬
the restriction of a

measure to a given set. Here we recall that the push-forward of a measure µ (defined over a
space Ω1) by a map F : Ω1 → Ω2 is a measure on Ω2 defined by F]µ(B) = µ(F−1(B)), where
by F−1 is the inverse image. We also consider the inverse coupling γ−1

bi
defined according

to the identity
γ−1
bi

(D ×D′) := γbi(D
′ ×D),

for all D,D′ measurable subsets of R.
Step 2: [Construct matching from the right of bi] In Step 2 we are repeating

the same type of construction that we did in Step 1, but to the other side of the boundary
point. In terms of the illustration in Figure 2, we are now describing the transportation of
the blue mass at the bottom of the figure. As in Step 1, we have to guarantee that such a
mapping exists and transports mass at most distance 2ε.

To achieve this goal, we consider a symmetric construction to the one from Step 1. Using
again (5.4) and combining with the necessary condition for bi in (4.1) we obtain:

w1ρ1(bi − ε+ s) ≤ w0ρ0(bi + ε+ s), ∀s ∈ (0, δ/2). (5.8)

We let r̃+
i be the smallest number larger than bi + ε that satisfies:

ˆ r̃+i

bi−ε
w1ρ1(x)dx =

ˆ r̃+i

bi+ε
w0ρ0(x)dx.

This quantity can be shown to exist and to satisfy

r̃+
i ∈ [bi(0), bi + δ/2]

using similar arguments to the ones employed in Step 1 (including utilizing Assumption 5).

We let φ̃bi : [bi − ε, r̃+
i ]→ [bi + ε, r̃+

i ] be the function defined as t 7→ φ̃bi(t) where φ̃bi(t)
is the smallest number in [bi + ε, r̃+

i ] which satisfies:

ˆ t

bi−ε
w1ρ1(x)dx =

ˆ φ̃bi (t)

bi+ε
w0ρ0(x)dx.
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Inequality (5.8) implies

|t− φ̃bi(t)| ≤ 2ε, ∀t ∈ [bi − ε, r̃+
i ].

The map φ̃bi induces a measure γ̃bi on R× R given by

γ̃bi := (Id× φ̃bi)]
(
w1ρ1

¬
[bi − ε, r̃+

i ]
)
,

whose first and second marginals are the measures w1ρ1
¬
[bi − ε, r̃+

i ] and w0ρ0
¬
[bi + ε, r̃+

i ]
respectively. We also consider the inverse coupling γ̃−1

bi
.

Step 3: [Construct matchings for ai] So far we have constructed measures γbi , γ
−1
bi
, γ̃bi , γ̃

−1
bi

relative to a finite right endpoint bi, but following a completely analogous scheme, and again
utilizing Assumption 5, we can introduce measures γai , γ

−1
ai , γ̃ai , γ̃

−1
ai satisfying completely

equivalent properties to their ai counterparts. In particular, for a finite left endpoint ai we
introduce two quantities r−i and r̃−i that satisfy

r−i ∈ [ai(0), ai + δ/2], r̃−i ∈ [ai − δ/2, ai(0)],

ˆ ai+ε

r̃−i

w1ρ1(x)dx =

ˆ ai−ε

r̃−i

w0ρ0(x)dx,

ˆ r−i

ai+ε
w1ρ1(x)dx =

ˆ r−i

ai−ε
w0ρ0(x)dx.

Two maps φai : [ai + ε, r−i ]→ [ai − ε, r−i ] and φ̃ai : [r̃−i , ai + ε]→ [r̃−i , ai − ε] satisfying

|t− φai(t)| ≤ 2ε, ∀t ∈ [ai + ε, r−i ], |t− φ̃ai(t)| ≤ 2ε, ∀t ∈ [r̃−i , ai + ε].

can be constructed. These maps induce the couplings

γai = (Id× φai)]
(
w1ρ1

¬
[ai + ε, r−i ]

)
and γ̃ai = (Id× φ̃ai)]

(
w1ρ1

¬
[r̃−i , ai + ε]

)
.

Step 4:[Construct remainder of plan and compute cost] In addition to the con-
structions in Steps 1-3 we introduce r̃+

0 = −∞ and r̃−K+1 = +∞. Also, we set r̃−1 = r−1 =

−∞ in case a1(0) = −∞ and r+
K = r̃+

K = +∞ in case bK(0) = +∞. We now define the
desired transport plan πε.

Let νR0 , ν
R
1 be the measures on R given by:

νR0 :=
K∑
i=1

(w1ρ1 − w0ρ0)
¬
[r−i , r

+
i ]

νR1 :=

(
K∑
i=1

(w0ρ0 − w1ρ1)
¬
[r̃+
i−1, r̃

−
i ]

)
+ (w0ρ0 − w1ρ1)

¬
[r̃+
K , r̃

−
K+1],

we notice that since [r−i , r
+
i ] ⊆ [ai(0), bi(0)], ν0 is indeed a positive measure. Similarly, we

can see that νR1 is a positive measure too . From our construction it follows that

ˆ r̃+i

r+i

w0ρ0 dx =

ˆ r̃+i

r+i

w1ρ1 dx,

ˆ r−i

r̃−i

w0ρ0 dx =

ˆ r−i

r̃−i

w1ρ1 dx, (5.9)
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for all i, and hence

νR0 (R) = νR1 (R) + w1 − w0.

Let πR be any coupling between the measures

(νR0 ⊗ δ0 + νR1 ⊗ δ1), and (νR1 ⊗ δ0 + νR0 ⊗ δ1);

notice that πR is a measure on (R × {0, 1})2. This is always possible using a product
coupling. In the above ⊗ is used to denote the product of two measures.

Let π0 be the measure on (R× {0, 1})2 given by:

π0(dz1, dz2) :=
K∑
i=1

(γbi(dx1, dx2)⊗ δ{0}×{0}(dy1, dy2) + γ−1
bi

(dx1, dx2)⊗ δ{1}×{1}(dy1, dy2)

+ γ̃bi(dx1, dx2)⊗ δ{0}×{0}(dy1, dy2) + γ̃−1
bi

(dx1, dx2)⊗ δ{1}×{1}(dy1, dy2)

+ γai(dx1, dx2)⊗ δ{0}×{0}(dy1, dy2) + γ−1
ai (dx1, dx2)⊗ δ{1}×{1}(dy1, dy2)

+ γ̃ai(dx1, dx2)⊗ δ{0}×{0}(dy1, dy2) + γ̃−1
ai (dx1, dx2)⊗ δ{1}×{1}(dy1, dy2)).

The first and fourth terms in this expression with eight terms are the mass exchanges
illustrated in Figure 2. The other terms have similar interpretations. Finally, we let πF be
the measure on (R× {0, 1})2 given by πF := (Id× Id)](ν − (π0 + πR)1), where (π0 + πR)1

is the first marginal of π0 + πR.
With all the above definitions in hand, we can now introduce:

πε := π0 + πR + πF .

Here, π0 satisfies the property that for all the points in its support cε = 0. πF corresponds to
the mass that is fixed and thus does not contribute to the cost of πε. Finally, πR corresponds
to the remaining mass. Our construction then guarantees that

ˆ
cε(z1, z2)dπε(z1, z2) =

ˆ
cε(z1, z2)dπR(z1, z2) ≤ πR((R× {0, 1})2)

= νR0 (R) + νR1 (R) = 2νR0 (R) + w0 − w1 = 2
K∑
i=1

ˆ r+i

r−i

(w1ρ1 − w0ρ0)dx+ w0 − w1.

In turn,

K∑
i=1

ˆ r+i

r−i

(w1ρ1 − w0ρ0)dx =

K∑
i=1

(ˆ bi−ε

ai+ε
w1ρ1dx−

ˆ bi+ε

ai−ε
w0ρ0dx

)
=

ˆ
(A∗)−ε

w1ρ1dx−
ˆ

(A∗)ε
w0ρ0dx,

thanks to equation (5.7) and the analogues for the ai. Thus,

1

2

ˆ
cε(z1, z2)dπε(z1, z2) +

1

2
(w1 − w0) ≤

ˆ
(A∗)−ε

w1ρ1dx−
ˆ

(A∗)ε
w0ρ0dx,
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which thanks to Remark 6 implies that A∗ solves the optimization problem and that the
above inequality is actually an equality.

Remark 9 The construction of transportation plans in the previous proof is possible due
to the necessary conditions (4.1) that are maintained by the evolution equations (4.3) and
(4.2). Indeed, the necessary conditions are crucially used to prove the equalities in (5.9),
which factored prominently in the construction of the certifying transportation plan πε.

Remark 10 The construction in the previous proof is local, in the sense that we can only
show that solutions to our evolution equations are global minimizers for ε sufficiently small.
However, the proof of the previous proposition indicates some situations where one can
detect that these solutions cease to be global minimizers. For example, if at some point
r+
i = r̃−i+1 then one expects that the construction may not be continued for larger ε. This

should correspond to a change in topology of the global optimizer. On the other hand, the
fact that global minimizers are characterized by the differential equation implies that the
topology of the minimizers does not change for small values of ε, and if one chose to track
the range of values for which the constructions in the previous proof were valid (which would
depend upon the difference between w0ρ

′
0 and w1ρ

′
1 and upon the C1 norms of the densities)

one could quantify the range of ε for which the topology does not change.Understanding
the type of degeneracies that may arise when solving the geometric evolution equations,
and the associated changes in topology of the optimizers,as well as their implications to the
adversarial risk minimization problem are topics of current investigation.

6. Necessary conditions and geometric evolution equations in higher
dimension

In one dimension, the necessary condition allowed us to derive an ordinary differential equa-
tion that described the motion of decision boundaries as we increased the adversarial power
ε. This evolution equation was driven, for small ε, by the gradient of ρ. In higher dimension
the optimality conditions and their associated geometric evolution equations are necessarily
more complex. In particular, the presence of curvature in higher dimensions introduces a
greater degree of complexity. For clarity, throughout our study of dimension d > 1 we will
restrict our attention to the standard Euclidean metric, namely we let d(x1, x2) = |x1−x2|.

To begin, we will develop some intuition about the problem by studying an explicit,
radial example.

Example 1 Let us consider the case where ρ is a uniform distribution on a ball of radius 1
in Rd, and w0ρ0(x) = |x|

ωd
, with ωd the Ld measure of the unit ball. Here the Bayes classifier

is given by uB(x) = 1|x|≤1/2. We then consider a classifier, parameterized in ε, which
(by way of ansatz) is given by 1|x|≤r(ε), which minimizes the adversarial cost. Necessary
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conditions for optimality then take the form

0 = lim
δ→0

Rε(r(ε) + δ)−Rε(r(ε))
δ

= ωdw0ρ0(r(ε) + ε) · (r(ε) + ε)d−1 − ωdw1ρ1(r(ε)− ε) · (r(ε)− ε)d−1

= (r(ε) + ε) · (r(ε) + ε)d−1 − (1− (r(ε)− ε)) · (r(ε)− ε)d−1,

where here we are abusing notation slightly and writing ρ1(t) and ρ0(t) to represent ρ1(x)
and ρ0(x) for all x such that |x| = t, and writing Rε(s) = Rε(1|x|≤s).Taking a derivative in
ε we obtain

d(r(ε) + ε)d−1

(
d

dε
r + 1

)
=
(

(d− 1)(r(ε)− ε)d−2 − d(r(ε)− ε)d−1
)( d

dε
r − 1

)
,

which may be written

dr

dε
= −

d(r(ε) + ε)d−1 +
(
(d− 1)(r(ε)− ε)d−2 − d(r(ε)− ε)d−1

)
d(r(ε) + ε)d−1 − ((d− 1)(r(ε)− ε)d−2 − d(r(ε)− ε)d−1)

.

At ε = 0 this becomes

dr

dε
(ε = 0) = − (d− 1)rd−2

2drd−1 − (d− 1)rd−2
= − (d− 1)r−1

2d− (d− 1)r−1

Recalling that r−1 = κ is the mean curvature of a sphere of radius r in Rd, we immediately
see the effect of curvature, namely that this evolution corresponds, at ε = 0 to a mean
curvature flow that has been reweighted in the denominator by a density-dependent factor.
We notice that here, ∇ρ ≡ 0, which in the one-dimensional case dominated the evolution
for small ε regimes. This example was specifically chosen in order to highlight the effect of
curvature, but we will subsequently see that both curvature and ∇ρ play a role in the surface
evolution.

We remark that, in order to make the formulas explicit, we choose to work with the
uniform density on the ball, which has non-smooth density. We notice that the classification
boundary occurs in the region where the density is smooth, and so mollifying the density
near the boundary of the ball would not materially affect the behavior of the example besides
complicating the formulas for the total density.

With the previous example in mind, we derive the necessary condition, assuming that
the decision boundary is sufficiently smooth.

Proposition 11 Suppose that Aε is a critical point of the problem Rε (with respect to
normal variations (Maggi, 2012), further description given in the proof below) and that
the signed distance function d̃Aε is C3 on the set |d̃Aε | < 2ε. For x ∈ ∂Aε, let ν denote
the outward unit normal and κi denote the principal curvatures (see the Appendix for a
definition). Then the following necessary condition holds for almost every x ∈ ∂Aε:

w1ρ1(x− εν(x))
d−1∏
i=1

|1− κiε| − w0ρ0(x+ εν(x))
d−1∏
i=1

|1 + κiε| = 0. (6.1)
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Proof We again recall

Rε(1A) =

ˆ
d̃A(x)<−ε

w0(x)ρ0(x) dx+

ˆ
d̃A(x)>ε

w1ρ1(x) dx

+

ˆ
|d̃A(x)|<ε

ρ(x) dx.

We consider the class of normal variations (Maggi, 2012) of the set A = Aε: that is, we
consider a one parameter family of sets At of the form At = φ(t, A) for some diffeomorphism
φ(t, x) which satisfies φ(0, A) = A and dφ

dt (t = 0) = F (x), where F satisfies F (x) = ν(x)ψ(x)
for x ∈ ∂A and for some smooth scalar valued function ψ that we assume, without loss of
generality, satisfies ∇ψ(x) · ν(x) = 0 for all x ∈ ∂A . Taking the derivative of Rε(1At) and
evaluating it at t = 0, we obtain that

0 =

ˆ
d̃A(y)=ε

w0ρ0(y)ψ(P∂A(y)) dHd−1(y)−
ˆ
d̃A(y)=−ε

w1ρ1(y)ψ(P∂A(y)) dHd−1(y),

where here P∂A(x) is the projection of x onto the boundary of A, meaning the point in the
boundary of A which is closest to x, whose uniqueness is guaranteed by the assumption
upon the regularity of the signed distance function.

Noting that y = x±εν(x) in the previous two integrals, we then use a change of variables
as in Corollary 15 to convert to

0 =

ˆ
d̃A(x)=0

(
w0ρ0(x+ εν(x))

d−1∏
i=1

|1 + κi(x)ε| − w1ρ1(x− εν(x))
d−1∏
i=1

|1− κi(x)ε|

)
ψ(x) dHd−1(x).

Since this holds for all smooth ψ, we then have that, for Hd−1 almost every x ∈ ∂A

0 =

(
w0ρ0(x+ εν(x))

d−1∏
i=1

|1 + κi(x)ε| − w1ρ1(x− εν(x))
d−1∏
i=1

|1− κi(x)ε|

)
(6.2)

We notice that assuming that the conditional densities ρ0, ρ1 are smooth is not sufficient
to guarantee that the set of x’s for which w0ρ0 − w1ρ1 = 0 is smooth, as evidenced by the
following basic example:

Example 2 Suppose in R2 that one places normals associated with y = +1 at (1, 1) and
(−1,−1), and then places normals associated with y = −1 at (1,−1) and (−1, 1), with
w0 = w1 = 1/2. In this case the set where w0ρ0 = w1ρ1 is given by the set {x = 0}∪{y = 0},
which is not smooth at (0, 0).

In Proposition 11 we notice that the necessary condition directly utilizes the normal
vectors to the surface and the curvatures (which may be viewed as derivatives of the normal
vectors). These notions are intimately tied with the classical Euclidean geometry: indeed
if we did not have d(x1, x2) = |x1 = x2| then the previous theorem would need to be
modified in order to accommodate for normal vectors and their derivatives in the appropriate
geometry. Such definitions have been pursued in the context of mean curvature flow, for
example in (Bellettini, 2004). However, extending those definitions to apply to the present
context is beyond the scope of this work.
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Garćıa Trillos and Murray

6.1 Geometric flow

In this section we seek to formally derive a geometric flow which characterizes the evolution
of the boundary of the Aε. As in the one-dimensional case, we can Taylor expand for ε
small to derive an approximating geometric flow which is more transparent and easier to
interpret.

To begin, let us suppose that φ(ε, x) be a diffeomorphism so that φ(ε,A) = Aε. We shall
utilize the necessary condition (6.1) to characterize this diffeomorphism for points x ∈ ∂A0.

We now use a chain rule on the necessary condition as follows (suppressing the depen-
dence on x, ε, and always assuming that x ∈ ∂A0):

0 =
d

dε

(
w0ρ0(φ+ εν(φ))

d−1∏
i=1

(1 + εκi(φ))− w1ρ1(φ− εν(φ)
d−1∏
i=1

(1− εκi(φ))

)

=

d−1∏
i=1

(1 + εκi(φ))

(
∇w0ρ0(φ+ εν(φ)

(
d

dε
φ+ ν(φ) + ε

d

dε
(ν(φ))

)
+ w0ρ0(φ+ εν(φ))

∑
i

κi(φ) + ε ddεκ(φ)

1 + εκi(φ)

)

−
d−1∏
i=1

(1− εκi(φ))

(
∇w1ρ1(φ− εν(φ)

(
d

dε
φ− ν(φ)− ε d

dε
(ν(φ))

)
+ w1ρ1(φ− εν(φ))

∑
i

−κi(φ)− ε ddεκ(φ)

1− εκi(φ)

)
(6.3)

One major challenge here is that d
dεν(φ) and d

dεκ will involve mixed derivatives, i.e., deriva-
tives in both ε and x. Indeed, we recall (see for example Section 17.1 in (Maggi, 2012))
that, in terms of φ and for x ∈ ∂A0, one may express the geometric quantity ν (the outward
surface normal) as

ν(φ(ε, x)) =
( ∂
∂xφ(ε, x))−T · ν0(x)

|( ∂
∂xφ(ε, x))−T · ν0(x)|

Similarly, the curvatures κi may be expressed in terms of appropriate spatial derivatives
of ν, more precisely, as the non-trivial eigenvalues of the matrix ∂ν

∂x ; see Proposition 14 in
the Appendix. Thus for ε > 0 this evolution equation is a non-local, mixed-type partial
differential equation, which appears difficult to solve.

However, each of the terms involving mixed derivatives is pre-multiplied by ε, and hence
may plausibly be ignored for ε sufficiently small. To this end, we rearrange the previous
equation(
d−1∏
i=1

(1 + εκi(φ))∇w1ρ1(φ+ εν(φ))−
d−1∏
i=1

(1− εκi(φ))∇w0ρ0(φ− εν(φ))

)
d

dε
φ

= −
d−1∏
i=1

(1 + εκi(φ))

(
∇w1ρ1(φ+ εν(φ)(ν(φ) + ε

d

dε
ν(φ)) + w1ρ1(φ+ εν(φ))

∑
i

κi(φ) + ε ddεκ(φ)

1 + εκi(φ)

)

−
d−1∏
i=1

(1− εκi(φ))

(
∇w0ρ0(φ− εν(φ)(ν(φ) + ε

d

dε
ν(φ)) + w0ρ0(φ− εν(φ))

∑
i

κi(φ) + ε ddεκ(φ)

1− εκi(φ)

)
.

(6.4)
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Evaluating at ε = 0, we find that

(w1∇ρ1 − w0∇ρ0)
dφ

dε
= −

(
∇ρ · ν + ρ

∑
i

κi

)
.

If we express dφ
dε = vν, namely we consider the normal speed v, then we may write

v(x, ε = 0) = −
∇ρ · ν + ρ

∑
i κi

(w1∇ρ1 − w0∇ρ0) · ν
(6.5)

Here we observe two terms: one which induces motion “downhill” in ρ and a second which
is a positively weighted mean curvature term. As we have used ν as an outwardly pointing
normal vector, the −

∑
κ will correspond to the standard mean curvature flow. This indi-

cates that heuristically, near ε = 0, the optimal adversarial classifier seeks to i) go downhill
in ρ, and ii) decrease the perimeter of the decision boundary (since mean curvature flow is
a type of gradient flow of perimeter; see Section 6.1.1 below.) While the reweighing in the
denominator is not homogeneous, and indeed makes this heuristic description imprecise,
we believe this heuristic picture is helpful for understanding the local effects induced by
adversarial robustness.

Mean curvature flow, namely the case where v(x) =
∑

i κi without any density weight-
ing, is a fundamental geometric flow. One reference text, among many, on the topic is
(Mantegazza, 2011). This geometric flow is known to be the gradient flow of the perime-
ter or area functional with respect to a certain function space. It is also known to induce
increased smoothness in surfaces, when measured in the correct function spaces. Finally,
mean curvature flow obeys a comparison principle and admits efficient numerical methods.
While the flow that we have derived for the adversarial problem does not match mean cur-
vature flow exactly, one of the terms in the approximate surface evolution at ε = 0 amounts
to a scalar function times mean curvature flow, suggesting that the flow induced by the
adversarial problems also may enjoy similar useful characteristics. In the next section we
take this analogy one step further by deriving a variant of perimeter regularization, which
matches the adversarial evolution equation to higher order.

6.1.1 Connection with explicit perimeter regularization

As mentioned at the end of the Introduction, there is a close relationship between the
evolution equation derived earlier and the one that one would obtain by tracking solutions
to the family of problems (1.2) indexed with ε. In what follows we elaborate on this
statement. It will be convenient to write R explicitly as:

R(1A) =

ˆ
A
w0ρ0(x)dx+ w1 −

ˆ
A
w1ρ1(x)dx.

First, let us derive necessary conditions for an optimal solution A to problem (1.2). We
assume that A has at least C2 boundary for simplicity. Let φ be a normal variation of A
as considered in Section 6.1 with the same notation used there. Then the following two
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relations hold:

d

dt

∣∣∣
t=0

R(1At) =
d

dt

∣∣∣
t=0

(ˆ
At

(w0ρ0(x)− w1ρ1(x))dx

)
=

ˆ
∂A
ψ(x)(w0ρ0(x)− w1ρ1(x))dHd−1(x),

and

d

dt

∣∣∣
t=0

Perρ(A
t) =

d

dt

∣∣∣
t=0

(ˆ
∂At

ρ(z)dHd−1(z)

)
=

d

dt

∣∣∣
t=0

ˆ
∂A
ρ (x+ tψ(x)ν(x))

∣∣∣∣det

(
I + tψ(x)

∂ν(x)

∂x

)∣∣∣∣Hd−1(x)

=

ˆ
∂A
ψ(x)(∇ρ(x) · ν(x) + ρ(x)

∑
i

κi)dHd−1(x).

We conclude that

0 =
d

dt

∣∣∣
t=0

(
R(1At) + εPerρ(A

t)
)

=

ˆ
∂A
ψ(x)(w0ρ0(x)− w1ρ1(x) + ε(∇ρ(x) · ν(x) + ρ(x)

∑
i

κi))dHd−1(x).

Since the normal variation was arbitrary, and thus the scalar function ψ was too, we deduce
the necessary condition:

0 = w0ρ0(x)− w1ρ1(x) + ε(∇ρ(x) · ν(x) + ρ(x)
∑
i

κi), x ∈ ∂A. (6.6)

LetAε be a solution to problem (1.2) for a given value of ε and let us assume that the fam-
ily {Aε}ε>0 can be represented via a one-parameter family of diffeomorphisms {φ(ε, ·)}ε>0

so that φ(ε,A) = Aε, where A is the set induced by the Bayes classifier. As in Section
6.1, we now use the necessary conditions (6.6) at each point x to characterize the family of
diffeomorphisms at ε = 0 and x ∈ ∂A. Indeed, differentiating the equation

0 = w0ρ0(φ(ε, x))− w1ρ1(φ(ε, x))

+ ε(∇ρ(φ(ε, x)) · ν(φ(ε, x)) + ρ(φ(ε, x))
∑
i

κi(φ(ε, x))), x ∈ ∂A, ε ≥ 0

with respect to ε, and setting ε = 0, we deduce:

0 = (w0∇ρ0(x)− w1∇ρ1(x)) · dφ
dε

(0, x) + (∇ρ(x) · ν(x) + ρ(x)
∑
i

κi(x)), x ∈ ∂A.

Expressing dφ
dε = vν(x), we obtain (6.5), i.e., the same infinitesimal change as the one coming

from the original adversarial problem.
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6.2 Global minimizers in higher dimension

Theorem 12 Suppose that the evolution equation (6.3) admits a classical solution for ε ∈
[0, ε0], in the sense that there exists a C2 diffeomorphism φ which satisfies the equation at
every point x ∈ ∂A0. Suppose, furthermore, that ρ0, ρ1 are C2 (i.e. bounded first and second
derivatives) and that along the entire interface of the Bayes’ classifier we have

(w0∇ρ0 − w1∇ρ1) · ν ≥ c0 > 0, (6.7)

for some constant c0, where ν = ν(x) is the outer unit normal at x ∈ ∂A0. Then for ε
sufficiently small the solution to the evolution equation is also a global minimizer of the
adversarial problem, where the metric determining the actions of the adversary is the Eu-
clidean metric.

Proof To begin, we notice that, by (6.7) along with the implicit function theorem, the
boundary of A0 is locally the graph of a C2 function. Classical geometric results imply that
for any point x̃ in a δ neighborhood of ∂A0 there exists a unique closest point P∂A0(x̃) in the
boundary of ∂A0, and that the signed distance function is C3 in that same δ neighborhood
of ∂A0.

Under the assumption that φ is C2, the chain rule computation shown in Section 6.1,
along with the fact that A0 is the Bayes’ classifier, implies that the necessary condition
(6.2) is satisfied at every point in the boundary of Aε, namely for every x ∈ ∂Aε

0 =

(
w0ρ0(x+ εν(x))

d−1∏
i=1

|1 + κi(x)ε| − w1ρ1(x− εν(x))

d−1∏
i=1

|1− κi(x)ε|

)
.

Next we notice that we may express points within the δ neighborhood of ∂A0, using
what is called a normal coordinate system. In particular, for any x̃ in that neighborhood,
we may (uniquely) represent x̃ = P∂A0(x̃) + d̃A0(x̃)ν(P (x̃)). This essentially allows us to
locally transform from points in a neighborhood of the boundary into flattened geometry.
We note that, since φ is C2 and starts as the identity mapping, the set Aε also has boundary
which is the graph of a C2 function and admits local normal boundary coordinates, for ε
sufficiently small, and for a δ neighborhood of the boundary of Aε which is independent of
ε. From this point on we will always assume that ε is small enough that this representation
is possible.

Our goal now will be to construct a transportation plan which certifies the optimality of
the set Aε. In doing so, as in the one-dimensional proof, it suffices to construct mappings
locally near the boundary which transfer mass from ρ0 to ρ1 (and vice versa), and which
move mass at most 2ε distance. As we will see, our construction reduces the problem almost
entirely to the one-dimensional setting.

In particular, fix x0 ∈ ∂A0 let z0 = φ(ε, x0), and consider points of the form z0+tν(z0) =
z(t, z0), for t ∈ (−δ, δ). After changing variables (to be precise, in the boundary normal
coordinates associated with ∂Aε), the density associated with a particular t for fixed z0 is
given by

ρ̃i(t|z0) := ρi(z(t, z0))
d−1∏
i=1

|1 + tκi(z0)|.
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More precisely, using the coarea formula (Evans and Gariepy, 2015) and Corollary 15 in the
Appendix, we can write

ˆ
|d̃Aε (z)|≤δ

g(z)ρi(z)dz =

ˆ δ

−δ

(ˆ
d̃Aε (z)=s

g(z)ρi(z)dHd−1(z)

)
dt

=

ˆ δ

−δ

(ˆ
∂Aε

g(z(t, z0))ρi(z(t, z0))
d−1∏
i=1

|1 + tκi(z0)|dHd−1(z)

)
dt

=

ˆ
∂Aε

ˆ δ

−δ
g(z(t, z0))ρ̃i(t|z0)dtdHd−1(z),

for arbitrary smooth and bounded test function g. This provides a representation of the dis-
tribution ρidx restricted to the set {|d̃Aε(z)| ≤ δ} in normal coordinates, and in particular,
up to rescaling, we can now interpret the function ρ̃i(·|z0) as the conditional distribution of
t ∈ [−δ, δ] given z0.

Now for any fixed ε and x0 (i.e. fixed z0 = φ(ε, x0)) we will construct a transportation
plan using ρ̃(·|z0): in the original high-dimensional problem this means that in the set
{|d̃Aε(z)| ≤ δ}, our transportation plan only transports along rays normal to the boundary
of ∂Aε. Notice that outside of {|d̃Aε(z)| ≤ δ}, on the other hand, we may transport in any
way we want so as to match the marginal constraints (just as in the 1d setting): this is why
we focus on the set {|d̃Aε(z)| ≤ δ} exclusively.

By the necessary condition (6.2) we have the necessary matching condition, namely that
w0ρ̃0(−ε|z0) = w1ρ̃1(ε|z0). All that remains is to verify that we can transport w0ρ̃0(·|z0) on
the interval [−ε, ε] on to w1ρ̃1(·|z0) without moving more than distance 2ε in t. To this end,
we notice that, by the assumption (6.7), |(w1∇ρ1(x̃)−w0∇ρ0(x̃′)) ·ν(x0)| > c0/2 > 0 for all
x̃, x̃′ in a neighborhood of x0 ∈ ∂A0. Using the fact that φ is C2 and that is the identity for
ε = 0, then implies that the same inequality, with constant c0/4 holds in a neighborhood
of φ(x0, ε), for small enough ε, and for the size of the neighborhood independent of ε. We
may then compute

w1ρ̃
′
1(t1|z0)− w0ρ̃

′
0(t0|z0) = (w1∇ρ1(z(t1, z0))− w0∇ρ0(z(t0, z0))) · ν(z0)

+ w1ρ1(z(t1, z0))
∑
i

κi(z0)
∏
j 6=i
|1 + t1κj(z0)|

− w0ρ0(z(t0, z0))
∑
i

κi(z0)
∏
j 6=i
|1 + t0κj(z0)|.

The first of these terms is bounded from below by c0/4. Recalling that w0ρ0(x0) = w1ρ1(x0)
(as A0 is a Bayes’ classifier), we may bound the magnitude of the remaining terms by
|ti|(1 + δ): in particular, if ti is of order ε ( notice that κi is uniformly bounded since φ
was assumed C2) then we may conclude that w1ρ̃

′
1(t1|z0) − w0ρ̃

′
0(t0|z0) > c0/8 for small

enough ε. This then allows us to directly use the one-dimensional construction from the
proof of Theorem 8 in order to construct appropriate transportation plans for the ρ̃(·|z0).
By constructing such a plan along normal rays corresponding to every z0 ∈ ∂Aε, we then
have a candidate transportation plan, which transports points near the boundary at most
distance 2ε. Using the same argument via the fundamental theorem of calculus and the
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Figure 3: The contours of the function w1ρ1 − w0ρ0 for the example in Section 6.3. The
contour corresponding to w1ρ1−w0ρ0 = 0 is the s-shaped curve, and represents the decision
boundary for the Bayes classifier.

duality principle as in the proof of Theorem 8, we obtain the desired result.

Remark 13 In the previous proof we assumed that the solutions to the partial differential
equation existed. We suspect that the local existence and uniqueness of solutions can be
proved by an appropriate non-linear PDE argument under the assumption (6.7), but the
technical details of such a proof lie outside of the scope of this paper.

We also notice that the same conclusions about topology which we indicated in one
dimension would also hold in the setting of Theorem 12. Indeed, minimizers will not change
their topology for sufficiently small ε, the size of which should depend upon the size of c0

in (6.7) and upon the smoothness of the underlying densities. Of course the topologies are
potentially much more complicated in higher dimension, and the evolution of the topology
of the minimizing classifiers is an intriguing potential future direction.

6.3 Illustration in two dimensions

Here we show a basic numerical example of the geometric evolution (6.5) in two dimensions.
This example is intended to be an illustration, rather than a detailed computational study.
Such a study would require careful numerical analysis, which lies outside of the scope of
this work.

We consider two different classes ρ1 ∼ N((−.5,−2),Σ) + N((−.5, .5),Σ) and ρ2 ∼
N((.5,−.5),Σ) + N((.5, 2),Σ, where Σ = .2I, and w0 = w1 = .5. The Bayes classifier
boundary, along with contours of the misclassification error w1ρ1 −w0ρ0 are shown in Fig-
ure 3.
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We then use a modified version of the scheme from (Merriman et al., 1992) to track the
evolution of the decision boundary under the evolution equation (6.5) for different values
of ε. These curves are displayed in Figure 4, next to the curves evolved via standard mean
curvature flow as a point of reference.

7. Conclusion

This work provides a first analysis of the evolution equations associated with an ensemble
of adversarial classification problems. In particular, we have shown that for the model
considered here, the evolution equations in one dimension are completely able to characterize
the global minimizer for small enough ε (the power level of the adversary) without needing
to conduct any optimization. In higher dimension the same evolution equations are linked
with mean curvature flow and allude to implicit regularization.

This work suggests many promising future directions, both in terms of analysis and
implementation. We list a few here, some of which are the topic of current investigation.

i) In this work, the connection between the evolution equations and global minimizers
only holds for small ε, and we made no attempt to quantify the size of ε0 in our
theorem. This is partly unavoidable given the generality of the input distributions
and the learned classifiers. We expect that the results in our paper should hold locally
in ε, in the sense that if the adversarial problem admits a unique solution at ε̃ then the
solution of the adversarial problem should be characterized by the evolution equation
in a neighborhood of ε̃. We do not expect the theorem to generally hold for large
ranges of ε, as topological changes can cause non-uniqueness of optimal solutions for
certain (likely discrete) values of ε. It may be possible to use primal-dual methods
to numerically detect when topological changes occur, or, in other words, in what
ranges of ε the evolution equations describe optimal solution families. Investigating
such methods could provide a lot more information about how large ε may be in our
theorems.

ii) In higher dimensions, we made the additional assumption that the evolution equa-
tions admitted smooth solutions. Justifying this assumption would likely require
careful analysis of the partial differential equation. Similarly, it would be interest-
ing to develop more efficient numerical methods for the actual evolution equation in
higher-dimensional settings.

iii) The smoothness of minimizers, and whether curvature is implicitly bounded, is a
natural question. This is not obvious, as the objective functional of the adversarial
problem does not impose a priori regularity. Similarly, the evolution of singularities
(and whether they may disappear or appear) is completely unclear.

iv) Various notions of distance have been used in studying adversarial examples. Notable
examples include the `∞ distance. The effect of such a distance on the evolution
equations that we describe in this work is an interesting question to study.

v) The problem of a data perturbing adversary for multiple labels, and the resulting
evolution equations, is also a compelling, open problem.

32



Geometric flows for adversarial classification

Figure 4: The first set of curves represent the evolution of the decision boundary according
to the geometric evolution (6.5), which includes a weighted curvature flow and a drift term.
The second set of curves is the geometric evolution following standard mean curvature flow.
In this case the curves are largely the same, with only a very small damping of the curvature
flow in the first case (which makes sense since ∇ρ is of modest size in this example).
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vi) Finally, here we have considered one specific example of adversarial classification
model, but many others are possible. Likewise, we have restricted our attention
to the classification problem with 0-1 loss, while one may also study other settings
like regression under different loss functions. Exploring other settings and studying
their connection to other geometric flows is a promising direction of research that we
hope to explore. Our hope is to provide deeper insights into the properties of different
robust learning methodologies.
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Appendix A. Properties of the signed distance function

We recall the definition of the signed distance function

d̃E(x) =

{
d(x,E) if x 6∈ E
−d(x,Ec) for x ∈ E

The following properties are classical and may be found in, for example, (Ambrosio and
Mantegazza, 1998):

Proposition 14 Let E be an open set with C2 boundary. Then on some neighborhood U
of ∂E we have the following:

• d̃ ∈ C2(U).

• Each y in U has a unique closest point P (y) in ∂E, and P is a continuous function
in y.

• We have, for y /∈ ∂E, that ∇d̃ = P (y)−y
d̃(Y )

. For y ∈ ∂E the outward unit normal is

given by ν(y) = ∇d̃(y).

• For y ∈ ∂E, the matrix D2d̃ = ∂ν
∂x has 1 eigenvalue that is equal to zero (with eigen-

vector in the normal direction ν), and d − 1 eigenvalues with eigenvectors spanning
the tangent directions. These eigenvalues are called the principal curvatures of the
surface, and are denoted κi.

The principal curvatures of a surface may be viewed as inverses of the principal radii.
The principal radii grow (or shrink depending on their sign) linearly in their distance from
∂E. By using these facts and applying a classical change of variables to the transformation
T (x) = x+ εν(x), we obtain the following formula:

Corollary 15 If ∂E is a C2 surface then for ε sufficiently small

ˆ
d̃A(y)=ε

g(y) dHd−1(y) =

ˆ
d̃A(x)=0

g(x+ εν(x))
d−1∏
i=1

|1 + εκi(x)| dHd−1(x).

34



Geometric flows for adversarial classification

The following lemma, sometimes called the “layer cake representation”, is a classical
lemma from measure theory (see for example Chapter 1 in (Lieb and Loss, 2001)), and may
be directly proved by using the Fubini-Tonelli theorem.

Lemma 16 Given a non-negative function f on a measure space (X,µ) the following iden-
tity holds: ˆ

X
f(x) dµ(x) =

ˆ ∞
0

µ({x : f(x) > t}) dt.
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Leon Bungert, Nicolás Garćıa Trillos, and Ryan Murray. The geometry of adversarial
training in binary classification. arXiv preprint arXiv:2111.13613, 2021.

Luca Calatroni, Yves van Gennip, Carola-Bibiane Schönlieb, Hannah M. Rowland, and
Arjuna Flenner. Graph clustering, variational image segmentation methods and hough
transform scale detection for object measurement in images. Journal of Mathematical
Imaging and Vision, 57(2):269–291, 2017. doi: 10.1007/s10851-016-0678-0. URL https:

//doi.org/10.1007/s10851-016-0678-0.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: By-
passing ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 3–14, 2017.

35

http://www.jstor.org/stable/23076172
https://doi.org/10.1007/s10851-016-0678-0
https://doi.org/10.1007/s10851-016-0678-0
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