Journal of Machine Learning Research 23 (2022) 1-34 Submitted 3/21; Revised 4/22; Published 4/22

Adaptivity without Compromise: A Momentumized,
Adaptive, Dual Averaged Gradient Method
for Stochastic Optimization

Aaron Defazio ADEFAZIO@QFB.COM
Facebook Al Research, New York

Samy Jelassi SJELASSIQPRINCETON.EDU
Princeton University, Princeton

Editor: Animashree Anandkumar

Abstract

We introduce MADGRAD, a novel optimization method in the family of AdaGrad adaptive
gradient methods. MADGRAD shows excellent performance on deep learning optimization
problems from multiple fields, including classification and image-to-image tasks in vision,
and recurrent and bidirectionally-masked models in natural language processing. For each
of these tasks, MADGRAD matches or outperforms both SGD and ADAM in test set
performance, even on problems for which adaptive methods normally perform poorly. An
implementation is available at https://github.com/facebookresearch/madgrad !
Keywords: Stochastic Optimization, AdaGrad, Optimization, Optimization for machine
learning

1. Introduction

Optimization for deep learning forms a relatively new and growing sub-field in the optimiza-
tion community. Compared to classical first order optimization, deep learning problems
introduce additional concerns which require new tools to overcome. Deep learning prob-
lems are characterized by very large parameter vector sizes D, making it computationally
infeasible to store matrices of size D x D, and even “limited memory” approaches can be im-
practical for problems such as the 100+ billion parameter models currently being explored
(Rajbhandari et al., 2019; Brown et al., 2020). The practical limit on these problems is
storage that is fixed at a small multiple of the parameter vector size.

For this reason, diagonal scaling approaches have become the industry standard for
deep learning. In this class of methods, adaptivity is performed independently for each
coordinate, so that memory usage scales as O(D). We consider Adam (Kingma and Ba,
2014) the benchmark method in this class; it has seen widespread adoption, and there are
no alternative adaptive methods that consistently out-perform it (Choi et al., 2020; Schmidt
et al., 2020).

1. This work revises and extends the technical report Jelassi and Defazio (2020) with a new algorithm and
further theory and experiments.

(©2022 Aaron Defazio Samy Jelassi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0226.html.


https://github.com/facebookresearch/madgrad
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0226.html

Adam builds upon a rich history of diagonal adaptive methods. The AdaGrad method
(Duchi et al., 2011) introduced a principled approach to diagonal adaptivity, that arises
naturally as a simplification of a full-matrix adaptivity scheme. This approach is clearly
motivated and yields natural convergence rate bounds for convex losses. Also within this
family, the RMSProp method (Tieleman and Hinton, 2012) arose as a well-performing em-
pirical method in this class, albeit with little theoretical motivation. The development of the
Adam method can be seen as a natural extension of the scaling used in RMSProp to include
a form of momentum, as well as a stabilizing “bias-correction” that significantly dampens
the adaptivity and step-size during the early stages of optimization.

Despite its widespread success, Adam is far from a panacea for deep learning optimiza-
tion. Wilson et al. (2017) show that Adam as well as other common adaptive optimizers
converge to bad local minima on some important problems, such as the widely studied
problem of image classification. This has led to the general claim that adaptive methods
generalize poorly. As we will show, this is not necessarily the case. The method we develop
in this work combines adaptivity with strong generalization performance.

Our MADGRAD (Momentumized, Adaptive, Dual averaged GRADient) method per-
forms consistently at a state-of-the-art level across a varied set of realistic large-scale deep
learning problems, without requiring any more tuning than Adam. MADGRAD is con-
structed from the lesser-used dual averaging form of AdaGrad, through a series of direct
and systematic changes that adapt the method to deep learning optimization.

2. Problem Setup

We consider the stochastic optimization framework, where the goal is to minimize a param-
eterized function

f(@) = Ee [f(,8)],

where € R”, and each £ is a random variable drawn from a fixed known distribution. In
the case of empirical risk minimization, £ is a data-point drawn from the data distribution,
typically further processed by a stochastic data-augmentation procedure. At each step k, a
stochastic optimization algorithm is given & and has access to f(xg, &) and V f(zk, &) for
a pre-specified iterate xy,.

3. Related Work

The theory of adaptive methods for non-convex optimization is still in its infancy. The
current best known convergence theory for Adam due to Défossez et al. (2020) greatly
improves over earlier theory (Zou et al., 2019b), but has the important caveat that it requires
momentum values of the order § =1 — 1/N for N iterations, which is far from the values
used in practice, which are of the order § = 0.9 to 8 = 0.99. Results for these settings may
not be possible, as Reddi et al. (2018) show via a counter-example that Adam may fail to
converge under common parameter settings, even in the convex case. When #; & (o are
small, the Adam update is close to sign-sgd (i.e. xx+1 = x — ysign(V f(xg, &)), a method
that also fails to converge in the general stochastic case (Balles and Hennig, 2018), although
some theory is possible under a large batch assumption Bernstein et al. (2018) where the
behavior is closer to the non-stochastic case.



A MOMENTUMIZED, ADAPTIVE, DUAL AVERAGED GRADIENT METHOD

AdaGrad’s convergence in the non-convex case has also been studied. Ward et al. (2019)
establish convergence for a restricted variant where only a global step size is adaptively
updated. Li and Orabona (2019) establish almost sure convergence for a variant of AdaGrad
where the most recently seen gradient is omitted from the denominator. Convergence with
high probability is also established for a variant with global rather than coordinate-wise
step size. More recently Zhou et al. (2020) and Zou et al. (2019a) establish convergence of
non-momentum and momentum variants respectively, although with bounds that are much
worse than established by Défossez et al. (2020), who also cover AdaGrad in their analysis.

Weighted AdaGrad as we use in this work has been explored to varying degrees before,
including the non-convex case in the aforementioned work by Zou et al. (2019a), and the
convex case by Levy et al. (2018). Weighting is particularly interesting in the strongly
convex case, where weights such as \;, oc k? can be used to achieve accelerated convergence.
Neither of these works cover the dual averaged form of AdaGrad which we explore.

4. Adaptivity in deep learning beyond Adam

To understand the motivation and design of the MADGRAD method, a clear understanding
of the short-comings of existing methods is needed. Consider Adam, the most heavily
used adaptive method in practice. Although it works remarkably well on some important
problems, it also suffers from the following issues:

e [t greatly under-performs the non-adaptive SGD-M method in a number of important
situations including the widely studied ImageNet training problem.

e Problems can be constructed on which it will fail to converge entirely, even in the
convex setting.

e The exponential moving average updates used are non-sparse when given sparse gra-
dients, which makes the method poorly suited to sparse problems.

Due to these issues, Adam doesn’t quite reach the goal of being a general-purpose deep
learning optimizer. The MADGRAD method is directly designed to address these issues.
MADGRAD:

e Achieves state-of-the-art performance across problems traditionally tackled by Adam,
while simultaneously achieving state-of-the-art on problems where Adam normally
under-performs.

e Has provable and strong convergence theory on convex problems.

e Is directly applicable to sparse problems when momentum is not used.

5. Design

The MADGRAD method is the combination of a number of techniques that individually
address separate short-comings in the AdaGrad method when applied to deep learning op-
timization problems. By building upon a method with known convergence theory, we are
able to construct a method that is still provably convergent (under convexity assumptions)



without sacrificing the practical performance characteristics of Adam. We will detail each
of these techniques in turn, to build up MADGRAD from its foundations.

5.1 Dual averaging for deep learning

MADGRAD is based upon the dual averaging formulation of AdaGrad, rather than the
mirror descent formulation. Although the original seminal work on AdaGrad (Duchi et al.,
2011) presents the dual averaging formulation with equal weight as the mirror descent (MD)
form, the dual averaging form has seen virtually no use for deep learning optimization. The
AdaGrad implementations available in major deep learning frameworks (PyTorch, Tensor-
flow) contain the mirror descent form only. This is despite the theory presented for the dual
averaging formulation being arguably more elegant than the mirror descent theory. The
dual averaging form of AdaGrad satisfies the following bound:

k

S flai) = fla) < wk r) ”va]@ @3 |

=1

Whereas the mirror descent form satisfies the following more complex bound, involving the
Bregman divergence of v:

k
D fwi) = fa) <
=1
1 1 k—1 ~ k
;Bwl (T4, 1) + 5 [Byi (T, Tig1) — By, (T, wig1)] + 5 Z IV fi(i)] i :
i=1 L=

Given the clear advantage in terms of theoretical simplicity, why then are dual averaging
approaches not used more widely? We believe this is due to a number of misconceptions. The
first misconception is that dual averaging is only interesting in the composite optimization
setting, where sophisticated regularizers are used to encourage sparsity or induce other
properties of the solution. It is true that for smooth non-stochastic optimization, gradient
descent and mirror descent coincide (under optimal hyper-parameters). However, when the
objective is stochastic or non-smooth, the methods become distinct, and actually behave
quite differently.
Dual averaging has the general form, given a proximal function :

gr — vf (xkaék) )
Sk+1 = Sk + Ak,
Tyl = arg mxin{<8k+1,l’> + Br1tp ()} (1)

The gradient buffer sg is initialized as the zero vector. The simplest form of dual averaging
occurs when the standard Euclidean squared norm is used: ¢(z) = 1 ||z — zol?, and A\, = 1
in which case the method takes the form:

Z Gi- (2)

Thi1 = T —
/8k+1



A MOMENTUMIZED, ADAPTIVE, DUAL AVERAGED GRADIENT METHOD

If the objective is either non-smooth or stochastic (or both), 8 sequences of the form S =
vk + 1 give a convergent method. Although Equation 2 has little resemblance to SGD as
written, SGD’s update:
Tp+1 = Tk — WV S (@h, &)
can be written in the more comparable form:
k
Thi1 =20 — Y Yibi- (3)
i=0

where to achieve convergence without a fixed stopping time, a step size of the form ~;
1/v/i+1 is standard. Comparing SGD and DA at a step k, it’s clear that the weighting
sequence used by SGD places a smaller weight on newer g; in the summation compared to
earlier g;, whereas the sequence used by DA places equal weight on all g;. This difference
is key to understanding why methods in the DA family behaves differently from SGD in
practice, even without additional regularization or non-Euclidean proximal functions.

The second misconception arises from implementing the dual averaging form of AdaGrad
without considering what modifications need to be made for the deep learning setting. The
algorithm as originally stated, uses an initial point of the origin g = 0, and a proximity
function vy (z) = 3 (z, Hyx) that is quadratic, but centered around the origin. It is well
known that neural network training exhibits pathological behavior when initialized at the
origin, and so naive use of this algorithm does not perform well. When centering around
0, we have observed severely degraded empirical performance and a high risk of divergence.
Instead, a proximity function centered about zg needs to be used:

(@) = 5 {0, Hy(z — 20)
with initialization of zg following standard conventions for the network being trained.

5.2 Dual averaging generalizes well

In addition to the theoretical advantages of dual averaging methods, we have also observed
that they also enjoy a strong practical advantage in the form of better generalization per-
formance. Dual averaging based methods include a form of implicit regularization, which
we believe is a crucial factor contributing to their good generalization performance. To see
this, consider the classical dual averaging update:

k
1
Thtl = T — ———= iy
k+1 0 NE Z% 9i
This update can be written in a form closer to the SGD update by substituting for z:
1 k—1 1 k
Tppr = | T+ —= D G| — == ) %>
1 VE+1 =
g — | —F—— 1 Zgi ;
VE+1 vk =

=T — k1+1 [gk—i—(\/ﬁ—\/%) (xk—mo)].

T —




Since vk + 1 — vk ~ 1/(2V/k + 1), the behavior of dual averaging resembles a SGD step
with a step-dependent regularizer:

L 2
— ||xr — x0||”,
4\/E k 0

which decays in strength during the course of optimization. We speculate that the indirect
decaying regularization inherent in dual averaging methods may explain why MADGRAD
also requires less decay than other methods to match their performance. The strong initial
regularization may have a positive effect during early iterations, while not negatively affect-
ing the ability of the model to fit to the data during the later "fine-tuning" epochs. Given
the practical advantages we observe in our experiments, we believe further research into the
effect of using stronger regularization at the early stages of optimization may be interesting
more generally.

In the online learning setting, where dual averaging is known as follow-the-regularized-
leader, the differences between the two approaches are more heavily explored. There are
situations where the DA variant of a method is clearly superior to the mirror descent variant
of the same method. For instance, when the stopping time is not known in advance, scale-
free mirror descent may suffer from linear regret, whereas DA does not (Orabona and Pél,
2015).

Another advantage of DA approaches are their dependence on the sub-optimality of the
initial point. They have regret bounds that depend multiplicatively on the initial distance
to the solution ||zg — @4 ||* compared to maxj—q. n ||[2x — xo||* for mirror descent. The MD
bound may be much worse in cases where the iterate sequence is poorly behaved.

5.3 ) sequences for deep learning

Even with this modification, dual averaging both with and without adaptivity is not com-
petitive with SGD on standard benchmark problems such as CIFAR10, as shown in Figure
1. The top row shows AdaGrad and DA methods using a flat learning rate schedule, and the
bottom row shows a stage-wise schedule. SGD is shown as a baseline. For the DA family
methods, Aj is decreased for the stage-wise schedules. Both AdaGrad, DA and AdaGrad-
DA under-perform SGD with either learning rate schedule. Part of this performance gap
can be attributed to the fact that each of these methods either implicitly or explicitly use a
1/4/i 4+ 1 learning rate sequence. This sequence is actually harmful, as we can confirm by
testing SGD using a schedule of the form:

a
Yi = ma
Figure 2 illustrates the learning curves achievable for varying b values on CIFAR-10. Full
description of our experimental setup is in Section 7. We performed a hyper-parameter
search over a separately for each b, with test accuracy as the target quantity. All sqrt-decay
sequences are significantly worse than the baseline stage-wise schedule, where the learning
rate is decreased 10 fold at epochs 150 and 225. We speculate that the sqrt-decay sequences
result in convergence that is too rapid, skipping over the initial annealing stage of learning,
resulting in convergence to a poor local minima. The AdaGrad and AdaGrad-DA methods
also use an implicitly decreasing sequence, although the rate of decrease depends on the




95

90

85

80

Accuracy (%)

75

70

95

90

85

80

Accuracy (%)

75

70

Figure 1: Comparison of SGD without momentum to DA and DA-AdaGrad and AdaGrad
on CIFAR-10. Left column is test classification performance, right column is
training loss. The "stage" learning rate scheme involves a 10 fold decrease in the
learning rate at epochs 150 and 225. See Section 7 for a full description of the

A MOMENTUMIZED, ADAPTIVE, DUAL AVERAGED GRADIENT METHOD

DA/ADAGRAD on CIFAR-10

| —— SGD stagewise (94.26% SE 0.12)

fli ADAGRAD (91.31% SE 0.13)

ADAGRAD-DA (91.85% SE 0.11)
DA (87.03% SE 0.19)

T T T T T T
50 100 150 200 250 300

Epoch

DA/ADAGRAD on CIFAR-10

—— SGD stage (94.33% SE 0.13)
| ADAGRAD stage (92.05% SE 0.10)
ADAGRAD-DA stage (93.66% SE 0.07)
‘1 DA stage (84.48% SE 0.12)

T T T T T T
50 100 150 200 250 300

Epoch

experimental setup.

Train Loss

Train Loss

102
10!
100
107!
1072
1073

107

102
10!
100
107!
1072
1073

107

DA/ADAGRAD on CIFAR-10

—— SGD stagewise (2.5e-04 SE 4.2e-05)
ADAGRAD (4.5e-03 SE 6.7e-04)
ADAGRAD-DA (2.1e-02 SE 1.5e-03)

DA (1.1e-02 SE 9.3e-04)

ABAMA & " m
M \,’"wr/\““w'v,"w“,‘w\v.},»,»

L]

T T T T T T
50 100 150 200 250 300

Epoch

DA/ADAGRAD on CIFAR-10

SGD stage (2.7e-04 SE 4.5e-05)
ADAGRAD stage (5.0e-04 SE 5.6e-05)
ADAGRAD-DA stage (2.2e-03 SE 2.8e-04)

DA stage (1.6e-01 SE 3.2e-03)




LR schedule for CIFAR-10 LR schedule for CIFAR-10

95 102 z
. S E —— SGD stagewise (2.3e-04 SE 3.9e-05)
10 2 SGD b=1 (4.9e-03 SE 4.7e-04)
90 7 100 E SGD b=300 (1.6e-04 SE 2.1e-05)
~ E SGD b=1000 (1.5e-04 SE 2.0e-05)
9 » = _ o -
E’ 85 — § 1071 4 SG]?/})—lOOOO (1.3e-04 SE 2.6e-05)
@ y o E '
! e ‘F 1072 -
g 80 4" —— SGD stagewise (94.15% SE 0.06) &
< / SGD b=1 (84.25% SE 0.15) 1073 -
75 SGD b=300 (91.68% SE 0.05)
SGD b=1000 (92.75% SE 0.07) 1074
f SGD b=10000 (93.55% SE 0.04) E
70 1073
T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch

Figure 2: Sqrt-decay learning rate schedules under-perform stage-wise schedules. With
batch-size 128 on CIFAR-10. No momentum is used in this comparison. A range
of offsets b in the rate a/+/i 4+ b were tried with values up to 10,000 shown. Larger
values of b up to 100,000 were also tested, they also failed to match the perfor-
mance of the stage-wise schedule. Left column is test classification performance,
right column is training loss.

magnitude of the gradients, which is very problem dependent. If gradients stay of similar
magnitude over a particular time-scale, then the rate of decrease will also be a 1/v/k rate
for step k. This step size scheme is also undesirable as prevents the use of standard SGD &
Adam step size sequences for choosing the explicit step size constants \;.

Since in practice the same learning rate scheme is commonly used when comparing
different optimization methods, this schedule contributes to the commonly held perception
that AdaGrad is not as effective as other adaptive methods such as Adam.

For the DA method, we propose to remedy this issue by introducing a scaling of the A
values to counter-act the step size sequence. In particular we propose the choice:

A= (i+1)"

where v is a conventional (SGD/Adam) step size sequence. The advantage of this choice is
that the leading term in the sum in Equation 2 has constant weight across k:

k
1
T =x0— g Nibi,
k

1 -1
= rn — — >\ iy

7=

mirroring the behavior of SGD during a constant step size phase, but retaining the vk + 1
decay of past gradients. This simple change is sufficient to greatly improve the test-set
performance of DA when using the same learning rate schedule as SGD.



A MOMENTUMIZED, ADAPTIVE, DUAL AVERAGED GRADIENT METHOD

Another advantage of this sequence is that it will place higher weights on latter gradients
in the final convergence rate bound. This makes no difference if we expect gradients to be of
similar magnitude at all stages of optimization (which can happen for non-smooth problems
in the worse case), but in practice even for non-smooth objectives the gradient typically
shrinks to some degree during optimization, leading to tighter bounds when using a forward
weighted lambda sequence. We discuss this difference further in Section 6.

5.4 Momentum

The use of momentum on top of SGD is known to be highly beneficial, if not crucial, for deep
learning optimization across a wide variety of architectures and problem settings (Sutskever
et al., 2013). Given how crucial it can be to maintaining competitive performance, we now
examine how we can add a form of momentum to the dual averaging updates, and latter
the AdaGrad updates.

We will consider an update of the following form, which was first explored in this gen-
eral form by Nesterov and Shikhman (2015) under the name Dual Averaging with Double
Averaging:

gk = Vf (:L'k:agk‘) 9
Sk+1 = Sk + )\kgkv
Zpp1 = argmin {(sg11,2) + Br19(2)} )

Try1 = (1 — Chy1) Tk + Ch1 241

The essential idea behind this algorithm is simple. Instead of evaluating the gradient at
each step at the value of the argmin operation as with regular DA, instead it’s evaluated at
a moving average point instead. This serves to smooth the iterate sequence. This technique
has the advantage in the convex setting of making it possible to prove convergence properties
of the last iterate x4 rather than the average iterate Xy, = k%i-l Zf:o x;. Essentially the
averaging operation is incorporated into the algorithm itself.

Momentum is normally thought of as performing more than just a smoothing of the
iterate sequence, although a line of recent research has shown that inline averaging of the
above form is actually exactly equivalent to momentum (Sebbouh et al., 2020; Defazio,
2020). This is clearly illustrated when momentum is added on top of SGD, where inline
averaging:

Ze+1 = 2k — MV f @k, Ek),
Trr1 = (1 — cry1) Tk + Chy12k41,5
is actually exactly equivalent to more common equational forms of momentum:
M1 = B + V f (wk, &),
Th+1 = Tk — OpMp41,

for appropriate choices of the hyper-parameters. In the convex setting the advantage of
this form arises when cgy1 = k—il, which corresponds to an equal weighted moving average
Tpy1 = k%q Z?:o z;. Under this setting convergence of the last iterate can be shown just



as when this kind of averaging is used with dual averaging (Defazio and Gower, 2020). In
the non-convex setting, constant cx4; values, which correspond to an exponential moving
average, appear to be the best choice (Defazio, 2020).

5.5 Adaptivity

Our goal is to combine these ideas together with the adaptivity technique from the AdaGrad
method. The dual averaging form of coordinate-wise AdaGrad has the following form:

Th41 = 20 — Z’ngu
V Zz 07’091 =0

where o represents the element-wise (Hadamard) product, and ~ is a fixed step size hyper-
parameter. There are many different ways of combining this kind of coordinate-wise adap-
tivity with the weighted gradient sequence \; = /i + 1 that we have proposed. Due to
the flexibility of the dual averaging framework, it’s possible to prove a convergence rate of
some form for practically any choice of denominator sequence. However, we must take into
consideration that we also want to maintain the magnitude of the “effective” step size, as
discussed in Section 5.3.

We also need to ensure that the weighted dominator includes ~; not just /7 + 1, as this
mitigates a problem illustrated for DA in Figure 1: when A\ is decreased 10 fold at epoch
150, the method starts to diverge. At this point, the 5 sequence continues to decrease at a
square-root rate, while the sum-of-gradients starts growing ten times slower. This results in
the method shrinking the iterates towards zg far to strongly.

We review a number of possible alternatives below and discuss their practicality.

5.5.1 UNWEIGHTED DENOMINATOR

One possibility is keep the denominator the same but just weight the gradients in the sum:

k
Thy1 = 0 — ———10 Y (i + 1) igi,
\V Zz 0 72.91 =0
This is appealing as it maintains the constant effective step size property, however the

resulting convergence rate bound derivable from this form depends on \’Z?:o v;9? rather

than \/ Ef:o (i + 1)1/ 2 7i9?, which defeats the purpose of using a front-weighted gradient
sequence.

5.5.2 WEIGHTED DENOMINATOR

We can weight the gradient sequence in the denominator by A also:

1 k
o (i+ 1) ;.

Tp41 = 20 — * T/
\/Zi:o (i+1)Y vig? =0

10



A MOMENTUMIZED, ADAPTIVE, DUAL AVERAGED GRADIENT METHOD

This form does not maintain a constant effective step size, which results in poor empirical
performance. We experimented with mitigations such as adding additional terms to the
numerator that would counteract this growth, however this still resulted in unsatisfactory
empirical results.

5.5.3 WEIGHTED NUMERATOR

The AdaGrad variant proposed by Zou et al. (2019a) uses a weighting scheme where the
weights Ax are included in the numerator as well as the denominator:

Vi Zf’f 0N Vi \/Zf:o (i + 1)1/2

Gi = 29 — —=

Tk+1 = X0 — —F——0¢; O g;
VS A2 VIS 4+ 1) g2

This numerator is proportional to /4. To adapt this sequence to dual averaging, we must
include a step size parameter in the weights. It’s unclear exactly how to do this in a way
that maintains the effective step size property, since if A\; o< 7; then the step size will cancel
between the numerator and denominator.

5.5.4 MADGRAD’s CUBE-ROOT DENOMINATOR

To maintain the correct effective step size we propose the use of a cube root instead:

k
1 .
Thil = T0 — = — oY (i+ 1) g, (5)
YEE 1) g2

Although this modification appears ad-hoc, the use of a cube root here can actually be
motivated by a similar argument used to motivate the standard square-root formulation.
Duchi et al. (2011) consider the following minimization problem over a D dimensional vector

s: - 2
mlnzz Zid ) <e¢, Vd: sq >0,
0 d=0

which is solved by sgq o< 4/ Z?:o gizd. The motivation for this surrogate problem is to minimize
weighted square norm of the gradients in hind-sight. Rather than a linear penalty on the
size of s, which when combined with the positivity constraint is just a L1 norm penalty
||ls||; < e, if we instead use a L2 norm penalty:

k D o
9i 2
nZZﬁ, |s]|5 < e, Vd: sqg>0

=0 d=0

then we recover a cube-root solution sg oc { Zf:o gfd. We show this in the Appendix. The

cube root maintains the effective step size as can be seem by considering that Zf (1 + 1)1/ ? x

(k+ 1)3/ 2 which after the cube root operation gives the necessary vk + 1 scaled denominator
required to cancel against \’s square-root growth.

11



Algorithm 1 MADGRAD

Require: ;. stepsize sequence, ¢ momentum sequence, initial point xg, epsilon €
1: 50:d=0,19:d=0
2: for k=0,...,7 do
3: Sample & and set gx = V f(zk, &)

4 M =wVvk+1
5: Sk41 = Sk + AkGk
6: Vi1 = Vg + Mg (gk © gk)
7
1
z =ryg— —— O S8
k+1 0 S+ e E+1
8: Tpt1 = (1 — Cpg1) Tk + Ch12k41-
9: end for

10: return zr

One disadvantage of this weighting is that it results in a final convergence rate bound
that is not fully adaptive in the sense that the choices of global step size will depend on
an expression involving the gradient norms. We don’t believe this is a significant problem
given that the choice of step size still depends on other unknown quantities even when using
a fully adaptive sequence such as the function sub-optimality gap and gradient bound G.

6. Convergence Theory

The MADGRAD algorithm, combining the discussed ideas, is listed in Algorithm 1. In order
to establish convergence results for potentially non-smooth functions, we rely on a bounded
gradient assumption:

IV £(2,6)l, < G for all 2, .

We also assume each f(-,-) is proper and convex in z over all R”. Our analysis uses a slight
variant of Algorithm 1, where the denominator includes an extra term \,G2:

1

Rk+1 = L0 — O Sk+1, (6)
3
VAk+1G? + vppa

A similar term is also needed by the original DA-AdaGrad method in Duchi et al. (2011).
We don’t believe this term plays an important role in practice as its magnitude quickly
diminishes, and so we have not included this term in Algorithm 1. Orabona and Pal (2015)
describe a way to remove this term from AdaGrad DA methods, at the expense of a more
complicated analysis. A per-coordinate upper bound G4 may be used instead of G to further
tighten the theory.

Theorem 1. After k steps of MADGRAD using the update in Equation 6,

6
Elf(wr) = fl@)] < 1575 llzo — 2l GD'?,

if cp = ki/732/2 and
1

— 3/2
V= A psaciz lzo — 25"

12



A MOMENTUMIZED, ADAPTIVE, DUAL AVERAGED GRADIENT METHOD

This bound is very loose. It results from the application of Vf(z,£); < G to bound
each index of the gradient at each time-step separately, which does not capture any of
the adaptivity of the convergence rate. We discuss more precise bounds below. Note that
lglly, < DY?|lgll,, = GD?, so the dependence on dimensionality here is comparable to
bounds established for non-adaptive stochastic methods which have bounds on the 2-norm
of the gradient on the right instead. Note also that we recommend using a flat ¢ = ¢
momentum for non-convex problems, this decaying rate is only optimal in the convex case.
A value of ¢ = 0.1 corresponds to the § = 0.9 momentum commonly used with SGD and
Adam.

6.1 Adaptivity

To understand the adaptivity of the method at a more granular level, we can express the
convergence rate as:

31 i e
E[f(zx) = f(a)] < ° 3/22 E | A (ZM@)
=0

7

= |w

1 = k 1/3
m Z (20r = 72a)' B (Ak-‘rlGQ + Z )\igfd>
d=0

i=0
The convergence rate heavily depends on a weighted sequence:

D k

Dk
Y Ng=> > i+ )" g2,

d=0 t=0 d=0 t=0

rather than an unweighted sum deZO Zf:o gfd used in AdaGrad. This is key to understand-
ing the performance characteristics of MADGRAD over traditional AdaGrad. In particular,
large gradients at the early stages have a smaller effect on the overall bound then they do
for AdaGrad. This can be quantified by considering the behavior when the gradient norm
bound is time dependent, i.e. ||V f(x;,&)|,, < G;. Then as we show in the appendix, for
MADGRAD, when using optimal step-sizes:

1/2
6 k
E[f(zr) — F(@)] € ——— oo — DW( (i +1) 1/2G2) ,
* (b4 1)p/t 0 Zo

whereas for AdaGrad with the use of momentum:

1/2
E[f(ei) ~ f(e)] < gy oo - x*HQD”Q(ZGQ) -

=0

In MADGRAD the effect of an “outlier” GG; that is particularly large at time-step i decays
at a faster rate, with a power 5/4 compared to linearly for AdaGrad. Using \; with larger
power than 1/2 is also possible within our momentumized-dual averaged gradient framework,

13



which would result in a faster decay. We have found that the 1/2 factor is a "Sweet-spot",
as larger values result in empirically slower convergence. Similar convergence rate bounds
can be derived using the same proof technique, although they are prefixed by progressively
larger constants (growing factorially in the power) as the power used is increased. In general,
the advantage of MADGRAD over AdaGrad manifests in the common situation where the
gradients are largest at the early stages of optimization.

6.2 Comparison to Adam

Although Adam is known to potentially diverge, we can consider the theoretical properties
of the AMSGrad variant of Adam, which is perhaps the smallest modification to Adam that
results in provable convergence. For AMSGrad, parameterized by momentum 3; A1 at step
i, assuming a bounded domain with R = max, , ||z — y||c2>o, defining v = $1/+/B2, and using
step size a; = a/V/i (Reddi et al., 2018):

D

k
2 fl b1RG N
E;f( ) ) = (1—ﬁ1)2(1—)\) 1_51 Z

=1

1/2
ay/T+1logk
+ (1 —/81)2 (1 ) 1= 3, _52 Z (Z.%d)

¥ is the maximum of the exponential moving average of the squared gradients, see Reddi
et al. (2018) for further details. This result has a number of shortcomings compared to the
MADGRAD. Firstly, note that the momentum term 1 — 3y, comparable to ¢ in MADGRAD
divides each term in the bound. This means that momentum hurts rather than improves per-
formance. The dependence on a bounded domain is also an undesirable property compared
to MADGRAD, and the convergence theory of MADGRAD avoids log factors.

i=1

7. Experimental Results

In our experiments we compared MADGRAD against SGD, Adam and AdaGrad. SGD
is known to perform well on computer vision classification problems due to its ability to
produce solutions that generalize better than adaptive methods. In contrast, Adam is the
method of choice in other domains with structured output where overfitting is less of an issue.
We present results across a large number of problems across both categories to validate the
general purpose utility of the MADGRAD approach.

In our experiments we use the most common step-size reduction scheme used in the
literature for each respective problem. For all algorithms, we performed a learning rate
and decay sweep on a grid on intervals of [1 x 10%,2.5 x 10¢,5 x 10¢] for a range of i large
enough to ensure the best parameters for each problem and method were considered. We
present the results from the best learning rate and decay for each method when considering
test set performance. For other hyper-parameters, we used commonly accepted defaults
for each respective problem. Full parame